Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…
| // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT | |
| // file at the top-level directory of this distribution and at | |
| // http://rust-lang.org/COPYRIGHT. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| pub use self::ImplOrTraitItemId::*; | |
| pub use self::ClosureKind::*; | |
| pub use self::Variance::*; | |
| pub use self::DtorKind::*; | |
| pub use self::ExplicitSelfCategory::*; | |
| pub use self::ImplOrTraitItemContainer::*; | |
| pub use self::BorrowKind::*; | |
| pub use self::ImplOrTraitItem::*; | |
| pub use self::IntVarValue::*; | |
| pub use self::LvaluePreference::*; | |
| use front::map as ast_map; | |
| use front::map::LinkedPath; | |
| use metadata::csearch; | |
| use middle; | |
| use middle::def::{self, ExportMap}; | |
| use middle::def_id::{DefId, LOCAL_CRATE}; | |
| use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem}; | |
| use middle::subst::{self, ParamSpace, Subst, Substs, VecPerParamSpace}; | |
| use middle::traits; | |
| use middle::ty; | |
| use middle::ty::fold::TypeFolder; | |
| use middle::ty::walk::TypeWalker; | |
| use util::common::memoized; | |
| use util::nodemap::{NodeMap, NodeSet, DefIdMap}; | |
| use util::nodemap::FnvHashMap; | |
| use std::borrow::{Borrow, Cow}; | |
| use std::cell::{Cell, RefCell}; | |
| use std::hash::{Hash, Hasher}; | |
| use std::iter; | |
| use std::rc::Rc; | |
| use std::slice; | |
| use std::vec::IntoIter; | |
| use std::collections::{HashMap, HashSet}; | |
| use syntax::ast::{self, CrateNum, Name, NodeId}; | |
| use syntax::attr::{self, AttrMetaMethods}; | |
| use syntax::codemap::Span; | |
| use syntax::parse::token::{InternedString, special_idents}; | |
| use rustc_front::hir; | |
| use rustc_front::hir::{ItemImpl, ItemTrait}; | |
| use rustc_front::hir::{MutImmutable, MutMutable, Visibility}; | |
| pub use self::sty::{Binder, DebruijnIndex}; | |
| pub use self::sty::{BuiltinBound, BuiltinBounds, ExistentialBounds}; | |
| pub use self::sty::{BareFnTy, FnSig, PolyFnSig, FnOutput, PolyFnOutput}; | |
| pub use self::sty::{ClosureTy, InferTy, ParamTy, ProjectionTy, TraitTy}; | |
| pub use self::sty::{ClosureSubsts, TypeAndMut}; | |
| pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef}; | |
| pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region}; | |
| pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid, SkolemizedRegionVid}; | |
| pub use self::sty::BoundRegion::*; | |
| pub use self::sty::FnOutput::*; | |
| pub use self::sty::InferTy::*; | |
| pub use self::sty::Region::*; | |
| pub use self::sty::TypeVariants::*; | |
| pub use self::sty::BuiltinBound::Send as BoundSend; | |
| pub use self::sty::BuiltinBound::Sized as BoundSized; | |
| pub use self::sty::BuiltinBound::Copy as BoundCopy; | |
| pub use self::sty::BuiltinBound::Sync as BoundSync; | |
| pub use self::contents::TypeContents; | |
| pub use self::context::{ctxt, tls}; | |
| pub use self::context::{CtxtArenas, Lift, Tables}; | |
| pub mod adjustment; | |
| pub mod cast; | |
| pub mod error; | |
| pub mod fast_reject; | |
| pub mod fold; | |
| pub mod _match; | |
| pub mod outlives; | |
| pub mod relate; | |
| pub mod walk; | |
| pub mod wf; | |
| pub mod util; | |
| mod contents; | |
| mod context; | |
| mod flags; | |
| mod ivar; | |
| mod structural_impls; | |
| mod sty; | |
| pub type Disr = u64; | |
| pub const INITIAL_DISCRIMINANT_VALUE: Disr = 0; | |
| // Data types | |
| /// The complete set of all analyses described in this module. This is | |
| /// produced by the driver and fed to trans and later passes. | |
| pub struct CrateAnalysis { | |
| pub export_map: ExportMap, | |
| pub exported_items: middle::privacy::ExportedItems, | |
| pub public_items: middle::privacy::PublicItems, | |
| pub reachable: NodeSet, | |
| pub name: String, | |
| pub glob_map: Option<GlobMap>, | |
| } | |
| #[derive(Copy, Clone)] | |
| pub enum DtorKind { | |
| NoDtor, | |
| TraitDtor(bool) | |
| } | |
| impl DtorKind { | |
| pub fn is_present(&self) -> bool { | |
| match *self { | |
| TraitDtor(..) => true, | |
| _ => false | |
| } | |
| } | |
| pub fn has_drop_flag(&self) -> bool { | |
| match self { | |
| &NoDtor => false, | |
| &TraitDtor(flag) => flag | |
| } | |
| } | |
| } | |
| #[derive(Clone, Copy, PartialEq, Eq, Debug)] | |
| pub enum ImplOrTraitItemContainer { | |
| TraitContainer(DefId), | |
| ImplContainer(DefId), | |
| } | |
| impl ImplOrTraitItemContainer { | |
| pub fn id(&self) -> DefId { | |
| match *self { | |
| TraitContainer(id) => id, | |
| ImplContainer(id) => id, | |
| } | |
| } | |
| } | |
| #[derive(Clone)] | |
| pub enum ImplOrTraitItem<'tcx> { | |
| ConstTraitItem(Rc<AssociatedConst<'tcx>>), | |
| MethodTraitItem(Rc<Method<'tcx>>), | |
| TypeTraitItem(Rc<AssociatedType<'tcx>>), | |
| } | |
| impl<'tcx> ImplOrTraitItem<'tcx> { | |
| fn id(&self) -> ImplOrTraitItemId { | |
| match *self { | |
| ConstTraitItem(ref associated_const) => { | |
| ConstTraitItemId(associated_const.def_id) | |
| } | |
| MethodTraitItem(ref method) => MethodTraitItemId(method.def_id), | |
| TypeTraitItem(ref associated_type) => { | |
| TypeTraitItemId(associated_type.def_id) | |
| } | |
| } | |
| } | |
| pub fn def_id(&self) -> DefId { | |
| match *self { | |
| ConstTraitItem(ref associated_const) => associated_const.def_id, | |
| MethodTraitItem(ref method) => method.def_id, | |
| TypeTraitItem(ref associated_type) => associated_type.def_id, | |
| } | |
| } | |
| pub fn name(&self) -> Name { | |
| match *self { | |
| ConstTraitItem(ref associated_const) => associated_const.name, | |
| MethodTraitItem(ref method) => method.name, | |
| TypeTraitItem(ref associated_type) => associated_type.name, | |
| } | |
| } | |
| pub fn vis(&self) -> hir::Visibility { | |
| match *self { | |
| ConstTraitItem(ref associated_const) => associated_const.vis, | |
| MethodTraitItem(ref method) => method.vis, | |
| TypeTraitItem(ref associated_type) => associated_type.vis, | |
| } | |
| } | |
| pub fn container(&self) -> ImplOrTraitItemContainer { | |
| match *self { | |
| ConstTraitItem(ref associated_const) => associated_const.container, | |
| MethodTraitItem(ref method) => method.container, | |
| TypeTraitItem(ref associated_type) => associated_type.container, | |
| } | |
| } | |
| pub fn as_opt_method(&self) -> Option<Rc<Method<'tcx>>> { | |
| match *self { | |
| MethodTraitItem(ref m) => Some((*m).clone()), | |
| _ => None, | |
| } | |
| } | |
| } | |
| #[derive(Clone, Copy, Debug)] | |
| pub enum ImplOrTraitItemId { | |
| ConstTraitItemId(DefId), | |
| MethodTraitItemId(DefId), | |
| TypeTraitItemId(DefId), | |
| } | |
| impl ImplOrTraitItemId { | |
| pub fn def_id(&self) -> DefId { | |
| match *self { | |
| ConstTraitItemId(def_id) => def_id, | |
| MethodTraitItemId(def_id) => def_id, | |
| TypeTraitItemId(def_id) => def_id, | |
| } | |
| } | |
| } | |
| #[derive(Clone, Debug)] | |
| pub struct Method<'tcx> { | |
| pub name: Name, | |
| pub generics: Generics<'tcx>, | |
| pub predicates: GenericPredicates<'tcx>, | |
| pub fty: BareFnTy<'tcx>, | |
| pub explicit_self: ExplicitSelfCategory, | |
| pub vis: hir::Visibility, | |
| pub def_id: DefId, | |
| pub container: ImplOrTraitItemContainer, | |
| // If this method is provided, we need to know where it came from | |
| pub provided_source: Option<DefId> | |
| } | |
| impl<'tcx> Method<'tcx> { | |
| pub fn new(name: Name, | |
| generics: ty::Generics<'tcx>, | |
| predicates: GenericPredicates<'tcx>, | |
| fty: BareFnTy<'tcx>, | |
| explicit_self: ExplicitSelfCategory, | |
| vis: hir::Visibility, | |
| def_id: DefId, | |
| container: ImplOrTraitItemContainer, | |
| provided_source: Option<DefId>) | |
| -> Method<'tcx> { | |
| Method { | |
| name: name, | |
| generics: generics, | |
| predicates: predicates, | |
| fty: fty, | |
| explicit_self: explicit_self, | |
| vis: vis, | |
| def_id: def_id, | |
| container: container, | |
| provided_source: provided_source | |
| } | |
| } | |
| pub fn container_id(&self) -> DefId { | |
| match self.container { | |
| TraitContainer(id) => id, | |
| ImplContainer(id) => id, | |
| } | |
| } | |
| } | |
| #[derive(Clone, Copy, Debug)] | |
| pub struct AssociatedConst<'tcx> { | |
| pub name: Name, | |
| pub ty: Ty<'tcx>, | |
| pub vis: hir::Visibility, | |
| pub def_id: DefId, | |
| pub container: ImplOrTraitItemContainer, | |
| pub default: Option<DefId>, | |
| } | |
| #[derive(Clone, Copy, Debug)] | |
| pub struct AssociatedType<'tcx> { | |
| pub name: Name, | |
| pub ty: Option<Ty<'tcx>>, | |
| pub vis: hir::Visibility, | |
| pub def_id: DefId, | |
| pub container: ImplOrTraitItemContainer, | |
| } | |
| #[derive(Clone, PartialEq, RustcDecodable, RustcEncodable)] | |
| pub struct ItemVariances { | |
| pub types: VecPerParamSpace<Variance>, | |
| pub regions: VecPerParamSpace<Variance>, | |
| } | |
| #[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)] | |
| pub enum Variance { | |
| Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type | |
| Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell | |
| Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type | |
| Bivariant, // T<A> <: T<B> -- e.g., unused type parameter | |
| } | |
| #[derive(Clone, Copy, Debug)] | |
| pub struct MethodCallee<'tcx> { | |
| /// Impl method ID, for inherent methods, or trait method ID, otherwise. | |
| pub def_id: DefId, | |
| pub ty: Ty<'tcx>, | |
| pub substs: &'tcx subst::Substs<'tcx> | |
| } | |
| /// With method calls, we store some extra information in | |
| /// side tables (i.e method_map). We use | |
| /// MethodCall as a key to index into these tables instead of | |
| /// just directly using the expression's NodeId. The reason | |
| /// for this being that we may apply adjustments (coercions) | |
| /// with the resulting expression also needing to use the | |
| /// side tables. The problem with this is that we don't | |
| /// assign a separate NodeId to this new expression | |
| /// and so it would clash with the base expression if both | |
| /// needed to add to the side tables. Thus to disambiguate | |
| /// we also keep track of whether there's an adjustment in | |
| /// our key. | |
| #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] | |
| pub struct MethodCall { | |
| pub expr_id: NodeId, | |
| pub autoderef: u32 | |
| } | |
| impl MethodCall { | |
| pub fn expr(id: NodeId) -> MethodCall { | |
| MethodCall { | |
| expr_id: id, | |
| autoderef: 0 | |
| } | |
| } | |
| pub fn autoderef(expr_id: NodeId, autoderef: u32) -> MethodCall { | |
| MethodCall { | |
| expr_id: expr_id, | |
| autoderef: 1 + autoderef | |
| } | |
| } | |
| } | |
| // maps from an expression id that corresponds to a method call to the details | |
| // of the method to be invoked | |
| pub type MethodMap<'tcx> = FnvHashMap<MethodCall, MethodCallee<'tcx>>; | |
| // Contains information needed to resolve types and (in the future) look up | |
| // the types of AST nodes. | |
| #[derive(Copy, Clone, PartialEq, Eq, Hash)] | |
| pub struct CReaderCacheKey { | |
| pub cnum: CrateNum, | |
| pub pos: usize, | |
| pub len: usize | |
| } | |
| /// A restriction that certain types must be the same size. The use of | |
| /// `transmute` gives rise to these restrictions. These generally | |
| /// cannot be checked until trans; therefore, each call to `transmute` | |
| /// will push one or more such restriction into the | |
| /// `transmute_restrictions` vector during `intrinsicck`. They are | |
| /// then checked during `trans` by the fn `check_intrinsics`. | |
| #[derive(Copy, Clone)] | |
| pub struct TransmuteRestriction<'tcx> { | |
| /// The span whence the restriction comes. | |
| pub span: Span, | |
| /// The type being transmuted from. | |
| pub original_from: Ty<'tcx>, | |
| /// The type being transmuted to. | |
| pub original_to: Ty<'tcx>, | |
| /// The type being transmuted from, with all type parameters | |
| /// substituted for an arbitrary representative. Not to be shown | |
| /// to the end user. | |
| pub substituted_from: Ty<'tcx>, | |
| /// The type being transmuted to, with all type parameters | |
| /// substituted for an arbitrary representative. Not to be shown | |
| /// to the end user. | |
| pub substituted_to: Ty<'tcx>, | |
| /// NodeId of the transmute intrinsic. | |
| pub id: NodeId, | |
| } | |
| /// Describes the fragment-state associated with a NodeId. | |
| /// | |
| /// Currently only unfragmented paths have entries in the table, | |
| /// but longer-term this enum is expected to expand to also | |
| /// include data for fragmented paths. | |
| #[derive(Copy, Clone, Debug)] | |
| pub enum FragmentInfo { | |
| Moved { var: NodeId, move_expr: NodeId }, | |
| Assigned { var: NodeId, assign_expr: NodeId, assignee_id: NodeId }, | |
| } | |
| // Flags that we track on types. These flags are propagated upwards | |
| // through the type during type construction, so that we can quickly | |
| // check whether the type has various kinds of types in it without | |
| // recursing over the type itself. | |
| bitflags! { | |
| flags TypeFlags: u32 { | |
| const HAS_PARAMS = 1 << 0, | |
| const HAS_SELF = 1 << 1, | |
| const HAS_TY_INFER = 1 << 2, | |
| const HAS_RE_INFER = 1 << 3, | |
| const HAS_RE_EARLY_BOUND = 1 << 4, | |
| const HAS_FREE_REGIONS = 1 << 5, | |
| const HAS_TY_ERR = 1 << 6, | |
| const HAS_PROJECTION = 1 << 7, | |
| const HAS_TY_CLOSURE = 1 << 8, | |
| // true if there are "names" of types and regions and so forth | |
| // that are local to a particular fn | |
| const HAS_LOCAL_NAMES = 1 << 9, | |
| const NEEDS_SUBST = TypeFlags::HAS_PARAMS.bits | | |
| TypeFlags::HAS_SELF.bits | | |
| TypeFlags::HAS_RE_EARLY_BOUND.bits, | |
| // Flags representing the nominal content of a type, | |
| // computed by FlagsComputation. If you add a new nominal | |
| // flag, it should be added here too. | |
| const NOMINAL_FLAGS = TypeFlags::HAS_PARAMS.bits | | |
| TypeFlags::HAS_SELF.bits | | |
| TypeFlags::HAS_TY_INFER.bits | | |
| TypeFlags::HAS_RE_INFER.bits | | |
| TypeFlags::HAS_RE_EARLY_BOUND.bits | | |
| TypeFlags::HAS_FREE_REGIONS.bits | | |
| TypeFlags::HAS_TY_ERR.bits | | |
| TypeFlags::HAS_PROJECTION.bits | | |
| TypeFlags::HAS_TY_CLOSURE.bits | | |
| TypeFlags::HAS_LOCAL_NAMES.bits, | |
| // Caches for type_is_sized, type_moves_by_default | |
| const SIZEDNESS_CACHED = 1 << 16, | |
| const IS_SIZED = 1 << 17, | |
| const MOVENESS_CACHED = 1 << 18, | |
| const MOVES_BY_DEFAULT = 1 << 19, | |
| } | |
| } | |
| pub struct TyS<'tcx> { | |
| pub sty: TypeVariants<'tcx>, | |
| pub flags: Cell<TypeFlags>, | |
| // the maximal depth of any bound regions appearing in this type. | |
| region_depth: u32, | |
| } | |
| impl<'tcx> PartialEq for TyS<'tcx> { | |
| #[inline] | |
| fn eq(&self, other: &TyS<'tcx>) -> bool { | |
| // (self as *const _) == (other as *const _) | |
| (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>) | |
| } | |
| } | |
| impl<'tcx> Eq for TyS<'tcx> {} | |
| impl<'tcx> Hash for TyS<'tcx> { | |
| fn hash<H: Hasher>(&self, s: &mut H) { | |
| (self as *const TyS).hash(s) | |
| } | |
| } | |
| pub type Ty<'tcx> = &'tcx TyS<'tcx>; | |
| /// Upvars do not get their own node-id. Instead, we use the pair of | |
| /// the original var id (that is, the root variable that is referenced | |
| /// by the upvar) and the id of the closure expression. | |
| #[derive(Clone, Copy, PartialEq, Eq, Hash)] | |
| pub struct UpvarId { | |
| pub var_id: NodeId, | |
| pub closure_expr_id: NodeId, | |
| } | |
| #[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)] | |
| pub enum BorrowKind { | |
| /// Data must be immutable and is aliasable. | |
| ImmBorrow, | |
| /// Data must be immutable but not aliasable. This kind of borrow | |
| /// cannot currently be expressed by the user and is used only in | |
| /// implicit closure bindings. It is needed when you the closure | |
| /// is borrowing or mutating a mutable referent, e.g.: | |
| /// | |
| /// let x: &mut isize = ...; | |
| /// let y = || *x += 5; | |
| /// | |
| /// If we were to try to translate this closure into a more explicit | |
| /// form, we'd encounter an error with the code as written: | |
| /// | |
| /// struct Env { x: & &mut isize } | |
| /// let x: &mut isize = ...; | |
| /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn | |
| /// fn fn_ptr(env: &mut Env) { **env.x += 5; } | |
| /// | |
| /// This is then illegal because you cannot mutate a `&mut` found | |
| /// in an aliasable location. To solve, you'd have to translate with | |
| /// an `&mut` borrow: | |
| /// | |
| /// struct Env { x: & &mut isize } | |
| /// let x: &mut isize = ...; | |
| /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x | |
| /// fn fn_ptr(env: &mut Env) { **env.x += 5; } | |
| /// | |
| /// Now the assignment to `**env.x` is legal, but creating a | |
| /// mutable pointer to `x` is not because `x` is not mutable. We | |
| /// could fix this by declaring `x` as `let mut x`. This is ok in | |
| /// user code, if awkward, but extra weird for closures, since the | |
| /// borrow is hidden. | |
| /// | |
| /// So we introduce a "unique imm" borrow -- the referent is | |
| /// immutable, but not aliasable. This solves the problem. For | |
| /// simplicity, we don't give users the way to express this | |
| /// borrow, it's just used when translating closures. | |
| UniqueImmBorrow, | |
| /// Data is mutable and not aliasable. | |
| MutBorrow | |
| } | |
| /// Information describing the capture of an upvar. This is computed | |
| /// during `typeck`, specifically by `regionck`. | |
| #[derive(PartialEq, Clone, Debug, Copy)] | |
| pub enum UpvarCapture { | |
| /// Upvar is captured by value. This is always true when the | |
| /// closure is labeled `move`, but can also be true in other cases | |
| /// depending on inference. | |
| ByValue, | |
| /// Upvar is captured by reference. | |
| ByRef(UpvarBorrow), | |
| } | |
| #[derive(PartialEq, Clone, Copy)] | |
| pub struct UpvarBorrow { | |
| /// The kind of borrow: by-ref upvars have access to shared | |
| /// immutable borrows, which are not part of the normal language | |
| /// syntax. | |
| pub kind: BorrowKind, | |
| /// Region of the resulting reference. | |
| pub region: ty::Region, | |
| } | |
| pub type UpvarCaptureMap = FnvHashMap<UpvarId, UpvarCapture>; | |
| #[derive(Copy, Clone)] | |
| pub struct ClosureUpvar<'tcx> { | |
| pub def: def::Def, | |
| pub span: Span, | |
| pub ty: Ty<'tcx>, | |
| } | |
| #[derive(Clone, Copy, PartialEq)] | |
| pub enum IntVarValue { | |
| IntType(ast::IntTy), | |
| UintType(ast::UintTy), | |
| } | |
| /// Default region to use for the bound of objects that are | |
| /// supplied as the value for this type parameter. This is derived | |
| /// from `T:'a` annotations appearing in the type definition. If | |
| /// this is `None`, then the default is inherited from the | |
| /// surrounding context. See RFC #599 for details. | |
| #[derive(Copy, Clone)] | |
| pub enum ObjectLifetimeDefault { | |
| /// Require an explicit annotation. Occurs when multiple | |
| /// `T:'a` constraints are found. | |
| Ambiguous, | |
| /// Use the base default, typically 'static, but in a fn body it is a fresh variable | |
| BaseDefault, | |
| /// Use the given region as the default. | |
| Specific(Region), | |
| } | |
| #[derive(Clone)] | |
| pub struct TypeParameterDef<'tcx> { | |
| pub name: Name, | |
| pub def_id: DefId, | |
| pub space: subst::ParamSpace, | |
| pub index: u32, | |
| pub default_def_id: DefId, // for use in error reporing about defaults | |
| pub default: Option<Ty<'tcx>>, | |
| pub object_lifetime_default: ObjectLifetimeDefault, | |
| } | |
| #[derive(Clone)] | |
| pub struct RegionParameterDef { | |
| pub name: Name, | |
| pub def_id: DefId, | |
| pub space: subst::ParamSpace, | |
| pub index: u32, | |
| pub bounds: Vec<ty::Region>, | |
| } | |
| impl RegionParameterDef { | |
| pub fn to_early_bound_region(&self) -> ty::Region { | |
| ty::ReEarlyBound(ty::EarlyBoundRegion { | |
| param_id: self.def_id.node, | |
| space: self.space, | |
| index: self.index, | |
| name: self.name, | |
| }) | |
| } | |
| pub fn to_bound_region(&self) -> ty::BoundRegion { | |
| ty::BoundRegion::BrNamed(self.def_id, self.name) | |
| } | |
| } | |
| /// Information about the formal type/lifetime parameters associated | |
| /// with an item or method. Analogous to hir::Generics. | |
| #[derive(Clone, Debug)] | |
| pub struct Generics<'tcx> { | |
| pub types: VecPerParamSpace<TypeParameterDef<'tcx>>, | |
| pub regions: VecPerParamSpace<RegionParameterDef>, | |
| } | |
| impl<'tcx> Generics<'tcx> { | |
| pub fn empty() -> Generics<'tcx> { | |
| Generics { | |
| types: VecPerParamSpace::empty(), | |
| regions: VecPerParamSpace::empty(), | |
| } | |
| } | |
| pub fn is_empty(&self) -> bool { | |
| self.types.is_empty() && self.regions.is_empty() | |
| } | |
| pub fn has_type_params(&self, space: subst::ParamSpace) -> bool { | |
| !self.types.is_empty_in(space) | |
| } | |
| pub fn has_region_params(&self, space: subst::ParamSpace) -> bool { | |
| !self.regions.is_empty_in(space) | |
| } | |
| } | |
| /// Bounds on generics. | |
| #[derive(Clone)] | |
| pub struct GenericPredicates<'tcx> { | |
| pub predicates: VecPerParamSpace<Predicate<'tcx>>, | |
| } | |
| impl<'tcx> GenericPredicates<'tcx> { | |
| pub fn empty() -> GenericPredicates<'tcx> { | |
| GenericPredicates { | |
| predicates: VecPerParamSpace::empty(), | |
| } | |
| } | |
| pub fn instantiate(&self, tcx: &ctxt<'tcx>, substs: &Substs<'tcx>) | |
| -> InstantiatedPredicates<'tcx> { | |
| InstantiatedPredicates { | |
| predicates: self.predicates.subst(tcx, substs), | |
| } | |
| } | |
| pub fn instantiate_supertrait(&self, | |
| tcx: &ctxt<'tcx>, | |
| poly_trait_ref: &ty::PolyTraitRef<'tcx>) | |
| -> InstantiatedPredicates<'tcx> | |
| { | |
| InstantiatedPredicates { | |
| predicates: self.predicates.map(|pred| pred.subst_supertrait(tcx, poly_trait_ref)) | |
| } | |
| } | |
| } | |
| #[derive(Clone, PartialEq, Eq, Hash)] | |
| pub enum Predicate<'tcx> { | |
| /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be | |
| /// the `Self` type of the trait reference and `A`, `B`, and `C` | |
| /// would be the parameters in the `TypeSpace`. | |
| Trait(PolyTraitPredicate<'tcx>), | |
| /// where `T1 == T2`. | |
| Equate(PolyEquatePredicate<'tcx>), | |
| /// where 'a : 'b | |
| RegionOutlives(PolyRegionOutlivesPredicate), | |
| /// where T : 'a | |
| TypeOutlives(PolyTypeOutlivesPredicate<'tcx>), | |
| /// where <T as TraitRef>::Name == X, approximately. | |
| /// See `ProjectionPredicate` struct for details. | |
| Projection(PolyProjectionPredicate<'tcx>), | |
| /// no syntax: T WF | |
| WellFormed(Ty<'tcx>), | |
| /// trait must be object-safe | |
| ObjectSafe(DefId), | |
| } | |
| impl<'tcx> Predicate<'tcx> { | |
| /// Performs a substitution suitable for going from a | |
| /// poly-trait-ref to supertraits that must hold if that | |
| /// poly-trait-ref holds. This is slightly different from a normal | |
| /// substitution in terms of what happens with bound regions. See | |
| /// lengthy comment below for details. | |
| pub fn subst_supertrait(&self, | |
| tcx: &ctxt<'tcx>, | |
| trait_ref: &ty::PolyTraitRef<'tcx>) | |
| -> ty::Predicate<'tcx> | |
| { | |
| // The interaction between HRTB and supertraits is not entirely | |
| // obvious. Let me walk you (and myself) through an example. | |
| // | |
| // Let's start with an easy case. Consider two traits: | |
| // | |
| // trait Foo<'a> : Bar<'a,'a> { } | |
| // trait Bar<'b,'c> { } | |
| // | |
| // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then | |
| // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we | |
| // knew that `Foo<'x>` (for any 'x) then we also know that | |
| // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from | |
| // normal substitution. | |
| // | |
| // In terms of why this is sound, the idea is that whenever there | |
| // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>` | |
| // holds. So if there is an impl of `T:Foo<'a>` that applies to | |
| // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all | |
| // `'a`. | |
| // | |
| // Another example to be careful of is this: | |
| // | |
| // trait Foo1<'a> : for<'b> Bar1<'a,'b> { } | |
| // trait Bar1<'b,'c> { } | |
| // | |
| // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know? | |
| // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The | |
| // reason is similar to the previous example: any impl of | |
| // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`. So | |
| // basically we would want to collapse the bound lifetimes from | |
| // the input (`trait_ref`) and the supertraits. | |
| // | |
| // To achieve this in practice is fairly straightforward. Let's | |
| // consider the more complicated scenario: | |
| // | |
| // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x` | |
| // has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`, | |
| // where both `'x` and `'b` would have a DB index of 1. | |
| // The substitution from the input trait-ref is therefore going to be | |
| // `'a => 'x` (where `'x` has a DB index of 1). | |
| // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an | |
| // early-bound parameter and `'b' is a late-bound parameter with a | |
| // DB index of 1. | |
| // - If we replace `'a` with `'x` from the input, it too will have | |
| // a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>` | |
| // just as we wanted. | |
| // | |
| // There is only one catch. If we just apply the substitution `'a | |
| // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will | |
| // adjust the DB index because we substituting into a binder (it | |
| // tries to be so smart...) resulting in `for<'x> for<'b> | |
| // Bar1<'x,'b>` (we have no syntax for this, so use your | |
| // imagination). Basically the 'x will have DB index of 2 and 'b | |
| // will have DB index of 1. Not quite what we want. So we apply | |
| // the substitution to the *contents* of the trait reference, | |
| // rather than the trait reference itself (put another way, the | |
| // substitution code expects equal binding levels in the values | |
| // from the substitution and the value being substituted into, and | |
| // this trick achieves that). | |
| let substs = &trait_ref.0.substs; | |
| match *self { | |
| Predicate::Trait(ty::Binder(ref data)) => | |
| Predicate::Trait(ty::Binder(data.subst(tcx, substs))), | |
| Predicate::Equate(ty::Binder(ref data)) => | |
| Predicate::Equate(ty::Binder(data.subst(tcx, substs))), | |
| Predicate::RegionOutlives(ty::Binder(ref data)) => | |
| Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))), | |
| Predicate::TypeOutlives(ty::Binder(ref data)) => | |
| Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))), | |
| Predicate::Projection(ty::Binder(ref data)) => | |
| Predicate::Projection(ty::Binder(data.subst(tcx, substs))), | |
| Predicate::WellFormed(data) => | |
| Predicate::WellFormed(data.subst(tcx, substs)), | |
| Predicate::ObjectSafe(trait_def_id) => | |
| Predicate::ObjectSafe(trait_def_id), | |
| } | |
| } | |
| } | |
| #[derive(Clone, PartialEq, Eq, Hash)] | |
| pub struct TraitPredicate<'tcx> { | |
| pub trait_ref: TraitRef<'tcx> | |
| } | |
| pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>; | |
| impl<'tcx> TraitPredicate<'tcx> { | |
| pub fn def_id(&self) -> DefId { | |
| self.trait_ref.def_id | |
| } | |
| pub fn input_types(&self) -> &[Ty<'tcx>] { | |
| self.trait_ref.substs.types.as_slice() | |
| } | |
| pub fn self_ty(&self) -> Ty<'tcx> { | |
| self.trait_ref.self_ty() | |
| } | |
| } | |
| impl<'tcx> PolyTraitPredicate<'tcx> { | |
| pub fn def_id(&self) -> DefId { | |
| self.0.def_id() | |
| } | |
| } | |
| #[derive(Clone, PartialEq, Eq, Hash, Debug)] | |
| pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1` | |
| pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>; | |
| #[derive(Clone, PartialEq, Eq, Hash, Debug)] | |
| pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B` | |
| pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>; | |
| pub type PolyRegionOutlivesPredicate = PolyOutlivesPredicate<ty::Region, ty::Region>; | |
| pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region>; | |
| /// This kind of predicate has no *direct* correspondent in the | |
| /// syntax, but it roughly corresponds to the syntactic forms: | |
| /// | |
| /// 1. `T : TraitRef<..., Item=Type>` | |
| /// 2. `<T as TraitRef<...>>::Item == Type` (NYI) | |
| /// | |
| /// In particular, form #1 is "desugared" to the combination of a | |
| /// normal trait predicate (`T : TraitRef<...>`) and one of these | |
| /// predicates. Form #2 is a broader form in that it also permits | |
| /// equality between arbitrary types. Processing an instance of Form | |
| /// #2 eventually yields one of these `ProjectionPredicate` | |
| /// instances to normalize the LHS. | |
| #[derive(Clone, PartialEq, Eq, Hash)] | |
| pub struct ProjectionPredicate<'tcx> { | |
| pub projection_ty: ProjectionTy<'tcx>, | |
| pub ty: Ty<'tcx>, | |
| } | |
| pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>; | |
| impl<'tcx> PolyProjectionPredicate<'tcx> { | |
| pub fn item_name(&self) -> Name { | |
| self.0.projection_ty.item_name // safe to skip the binder to access a name | |
| } | |
| pub fn sort_key(&self) -> (DefId, Name) { | |
| self.0.projection_ty.sort_key() | |
| } | |
| } | |
| pub trait ToPolyTraitRef<'tcx> { | |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>; | |
| } | |
| impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> { | |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { | |
| assert!(!self.has_escaping_regions()); | |
| ty::Binder(self.clone()) | |
| } | |
| } | |
| impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> { | |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { | |
| self.map_bound_ref(|trait_pred| trait_pred.trait_ref.clone()) | |
| } | |
| } | |
| impl<'tcx> ToPolyTraitRef<'tcx> for PolyProjectionPredicate<'tcx> { | |
| fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> { | |
| // Note: unlike with TraitRef::to_poly_trait_ref(), | |
| // self.0.trait_ref is permitted to have escaping regions. | |
| // This is because here `self` has a `Binder` and so does our | |
| // return value, so we are preserving the number of binding | |
| // levels. | |
| ty::Binder(self.0.projection_ty.trait_ref.clone()) | |
| } | |
| } | |
| pub trait ToPredicate<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx>; | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| // we're about to add a binder, so let's check that we don't | |
| // accidentally capture anything, or else that might be some | |
| // weird debruijn accounting. | |
| assert!(!self.has_escaping_regions()); | |
| ty::Predicate::Trait(ty::Binder(ty::TraitPredicate { | |
| trait_ref: self.clone() | |
| })) | |
| } | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| ty::Predicate::Trait(self.to_poly_trait_predicate()) | |
| } | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| Predicate::Equate(self.clone()) | |
| } | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| Predicate::RegionOutlives(self.clone()) | |
| } | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| Predicate::TypeOutlives(self.clone()) | |
| } | |
| } | |
| impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> { | |
| fn to_predicate(&self) -> Predicate<'tcx> { | |
| Predicate::Projection(self.clone()) | |
| } | |
| } | |
| impl<'tcx> Predicate<'tcx> { | |
| /// Iterates over the types in this predicate. Note that in all | |
| /// cases this is skipping over a binder, so late-bound regions | |
| /// with depth 0 are bound by the predicate. | |
| pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> { | |
| let vec: Vec<_> = match *self { | |
| ty::Predicate::Trait(ref data) => { | |
| data.0.trait_ref.substs.types.as_slice().to_vec() | |
| } | |
| ty::Predicate::Equate(ty::Binder(ref data)) => { | |
| vec![data.0, data.1] | |
| } | |
| ty::Predicate::TypeOutlives(ty::Binder(ref data)) => { | |
| vec![data.0] | |
| } | |
| ty::Predicate::RegionOutlives(..) => { | |
| vec![] | |
| } | |
| ty::Predicate::Projection(ref data) => { | |
| let trait_inputs = data.0.projection_ty.trait_ref.substs.types.as_slice(); | |
| trait_inputs.iter() | |
| .cloned() | |
| .chain(Some(data.0.ty)) | |
| .collect() | |
| } | |
| ty::Predicate::WellFormed(data) => { | |
| vec![data] | |
| } | |
| ty::Predicate::ObjectSafe(_trait_def_id) => { | |
| vec![] | |
| } | |
| }; | |
| // The only reason to collect into a vector here is that I was | |
| // too lazy to make the full (somewhat complicated) iterator | |
| // type that would be needed here. But I wanted this fn to | |
| // return an iterator conceptually, rather than a `Vec`, so as | |
| // to be closer to `Ty::walk`. | |
| vec.into_iter() | |
| } | |
| pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> { | |
| match *self { | |
| Predicate::Trait(ref t) => { | |
| Some(t.to_poly_trait_ref()) | |
| } | |
| Predicate::Projection(..) | | |
| Predicate::Equate(..) | | |
| Predicate::RegionOutlives(..) | | |
| Predicate::WellFormed(..) | | |
| Predicate::ObjectSafe(..) | | |
| Predicate::TypeOutlives(..) => { | |
| None | |
| } | |
| } | |
| } | |
| } | |
| /// Represents the bounds declared on a particular set of type | |
| /// parameters. Should eventually be generalized into a flag list of | |
| /// where clauses. You can obtain a `InstantiatedPredicates` list from a | |
| /// `GenericPredicates` by using the `instantiate` method. Note that this method | |
| /// reflects an important semantic invariant of `InstantiatedPredicates`: while | |
| /// the `GenericPredicates` are expressed in terms of the bound type | |
| /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance | |
| /// represented a set of bounds for some particular instantiation, | |
| /// meaning that the generic parameters have been substituted with | |
| /// their values. | |
| /// | |
| /// Example: | |
| /// | |
| /// struct Foo<T,U:Bar<T>> { ... } | |
| /// | |
| /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like | |
| /// `[[], [U:Bar<T>]]`. Now if there were some particular reference | |
| /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[], | |
| /// [usize:Bar<isize>]]`. | |
| #[derive(Clone)] | |
| pub struct InstantiatedPredicates<'tcx> { | |
| pub predicates: VecPerParamSpace<Predicate<'tcx>>, | |
| } | |
| impl<'tcx> InstantiatedPredicates<'tcx> { | |
| pub fn empty() -> InstantiatedPredicates<'tcx> { | |
| InstantiatedPredicates { predicates: VecPerParamSpace::empty() } | |
| } | |
| pub fn is_empty(&self) -> bool { | |
| self.predicates.is_empty() | |
| } | |
| } | |
| impl<'tcx> TraitRef<'tcx> { | |
| pub fn new(def_id: DefId, substs: &'tcx Substs<'tcx>) -> TraitRef<'tcx> { | |
| TraitRef { def_id: def_id, substs: substs } | |
| } | |
| pub fn self_ty(&self) -> Ty<'tcx> { | |
| self.substs.self_ty().unwrap() | |
| } | |
| pub fn input_types(&self) -> &[Ty<'tcx>] { | |
| // Select only the "input types" from a trait-reference. For | |
| // now this is all the types that appear in the | |
| // trait-reference, but it should eventually exclude | |
| // associated types. | |
| self.substs.types.as_slice() | |
| } | |
| } | |
| /// When type checking, we use the `ParameterEnvironment` to track | |
| /// details about the type/lifetime parameters that are in scope. | |
| /// It primarily stores the bounds information. | |
| /// | |
| /// Note: This information might seem to be redundant with the data in | |
| /// `tcx.ty_param_defs`, but it is not. That table contains the | |
| /// parameter definitions from an "outside" perspective, but this | |
| /// struct will contain the bounds for a parameter as seen from inside | |
| /// the function body. Currently the only real distinction is that | |
| /// bound lifetime parameters are replaced with free ones, but in the | |
| /// future I hope to refine the representation of types so as to make | |
| /// more distinctions clearer. | |
| #[derive(Clone)] | |
| pub struct ParameterEnvironment<'a, 'tcx:'a> { | |
| pub tcx: &'a ctxt<'tcx>, | |
| /// See `construct_free_substs` for details. | |
| pub free_substs: Substs<'tcx>, | |
| /// Each type parameter has an implicit region bound that | |
| /// indicates it must outlive at least the function body (the user | |
| /// may specify stronger requirements). This field indicates the | |
| /// region of the callee. | |
| pub implicit_region_bound: ty::Region, | |
| /// Obligations that the caller must satisfy. This is basically | |
| /// the set of bounds on the in-scope type parameters, translated | |
| /// into Obligations, and elaborated and normalized. | |
| pub caller_bounds: Vec<ty::Predicate<'tcx>>, | |
| /// Caches the results of trait selection. This cache is used | |
| /// for things that have to do with the parameters in scope. | |
| pub selection_cache: traits::SelectionCache<'tcx>, | |
| /// Scope that is attached to free regions for this scope. This | |
| /// is usually the id of the fn body, but for more abstract scopes | |
| /// like structs we often use the node-id of the struct. | |
| /// | |
| /// FIXME(#3696). It would be nice to refactor so that free | |
| /// regions don't have this implicit scope and instead introduce | |
| /// relationships in the environment. | |
| pub free_id: ast::NodeId, | |
| } | |
| impl<'a, 'tcx> ParameterEnvironment<'a, 'tcx> { | |
| pub fn with_caller_bounds(&self, | |
| caller_bounds: Vec<ty::Predicate<'tcx>>) | |
| -> ParameterEnvironment<'a,'tcx> | |
| { | |
| ParameterEnvironment { | |
| tcx: self.tcx, | |
| free_substs: self.free_substs.clone(), | |
| implicit_region_bound: self.implicit_region_bound, | |
| caller_bounds: caller_bounds, | |
| selection_cache: traits::SelectionCache::new(), | |
| free_id: self.free_id, | |
| } | |
| } | |
| pub fn for_item(cx: &'a ctxt<'tcx>, id: NodeId) -> ParameterEnvironment<'a, 'tcx> { | |
| match cx.map.find(id) { | |
| Some(ast_map::NodeImplItem(ref impl_item)) => { | |
| match impl_item.node { | |
| hir::TypeImplItem(_) => { | |
| // associated types don't have their own entry (for some reason), | |
| // so for now just grab environment for the impl | |
| let impl_id = cx.map.get_parent(id); | |
| let impl_def_id = DefId::local(impl_id); | |
| let scheme = cx.lookup_item_type(impl_def_id); | |
| let predicates = cx.lookup_predicates(impl_def_id); | |
| cx.construct_parameter_environment(impl_item.span, | |
| &scheme.generics, | |
| &predicates, | |
| id) | |
| } | |
| hir::ConstImplItem(_, _) => { | |
| let def_id = DefId::local(id); | |
| let scheme = cx.lookup_item_type(def_id); | |
| let predicates = cx.lookup_predicates(def_id); | |
| cx.construct_parameter_environment(impl_item.span, | |
| &scheme.generics, | |
| &predicates, | |
| id) | |
| } | |
| hir::MethodImplItem(_, ref body) => { | |
| let method_def_id = DefId::local(id); | |
| match cx.impl_or_trait_item(method_def_id) { | |
| MethodTraitItem(ref method_ty) => { | |
| let method_generics = &method_ty.generics; | |
| let method_bounds = &method_ty.predicates; | |
| cx.construct_parameter_environment( | |
| impl_item.span, | |
| method_generics, | |
| method_bounds, | |
| body.id) | |
| } | |
| _ => { | |
| cx.sess | |
| .bug("ParameterEnvironment::for_item(): \ | |
| got non-method item from impl method?!") | |
| } | |
| } | |
| } | |
| } | |
| } | |
| Some(ast_map::NodeTraitItem(trait_item)) => { | |
| match trait_item.node { | |
| hir::TypeTraitItem(..) => { | |
| // associated types don't have their own entry (for some reason), | |
| // so for now just grab environment for the trait | |
| let trait_id = cx.map.get_parent(id); | |
| let trait_def_id = DefId::local(trait_id); | |
| let trait_def = cx.lookup_trait_def(trait_def_id); | |
| let predicates = cx.lookup_predicates(trait_def_id); | |
| cx.construct_parameter_environment(trait_item.span, | |
| &trait_def.generics, | |
| &predicates, | |
| id) | |
| } | |
| hir::ConstTraitItem(..) => { | |
| let def_id = DefId::local(id); | |
| let scheme = cx.lookup_item_type(def_id); | |
| let predicates = cx.lookup_predicates(def_id); | |
| cx.construct_parameter_environment(trait_item.span, | |
| &scheme.generics, | |
| &predicates, | |
| id) | |
| } | |
| hir::MethodTraitItem(_, ref body) => { | |
| // for the body-id, use the id of the body | |
| // block, unless this is a trait method with | |
| // no default, then fallback to the method id. | |
| let body_id = body.as_ref().map(|b| b.id).unwrap_or(id); | |
| let method_def_id = DefId::local(id); | |
| match cx.impl_or_trait_item(method_def_id) { | |
| MethodTraitItem(ref method_ty) => { | |
| let method_generics = &method_ty.generics; | |
| let method_bounds = &method_ty.predicates; | |
| cx.construct_parameter_environment( | |
| trait_item.span, | |
| method_generics, | |
| method_bounds, | |
| body_id) | |
| } | |
| _ => { | |
| cx.sess | |
| .bug("ParameterEnvironment::for_item(): \ | |
| got non-method item from provided \ | |
| method?!") | |
| } | |
| } | |
| } | |
| } | |
| } | |
| Some(ast_map::NodeItem(item)) => { | |
| match item.node { | |
| hir::ItemFn(_, _, _, _, _, ref body) => { | |
| // We assume this is a function. | |
| let fn_def_id = DefId::local(id); | |
| let fn_scheme = cx.lookup_item_type(fn_def_id); | |
| let fn_predicates = cx.lookup_predicates(fn_def_id); | |
| cx.construct_parameter_environment(item.span, | |
| &fn_scheme.generics, | |
| &fn_predicates, | |
| body.id) | |
| } | |
| hir::ItemEnum(..) | | |
| hir::ItemStruct(..) | | |
| hir::ItemImpl(..) | | |
| hir::ItemConst(..) | | |
| hir::ItemStatic(..) => { | |
| let def_id = DefId::local(id); | |
| let scheme = cx.lookup_item_type(def_id); | |
| let predicates = cx.lookup_predicates(def_id); | |
| cx.construct_parameter_environment(item.span, | |
| &scheme.generics, | |
| &predicates, | |
| id) | |
| } | |
| hir::ItemTrait(..) => { | |
| let def_id = DefId::local(id); | |
| let trait_def = cx.lookup_trait_def(def_id); | |
| let predicates = cx.lookup_predicates(def_id); | |
| cx.construct_parameter_environment(item.span, | |
| &trait_def.generics, | |
| &predicates, | |
| id) | |
| } | |
| _ => { | |
| cx.sess.span_bug(item.span, | |
| "ParameterEnvironment::from_item(): | |
| can't create a parameter \ | |
| environment for this kind of item") | |
| } | |
| } | |
| } | |
| Some(ast_map::NodeExpr(..)) => { | |
| // This is a convenience to allow closures to work. | |
| ParameterEnvironment::for_item(cx, cx.map.get_parent(id)) | |
| } | |
| _ => { | |
| cx.sess.bug(&format!("ParameterEnvironment::from_item(): \ | |
| `{}` is not an item", | |
| cx.map.node_to_string(id))) | |
| } | |
| } | |
| } | |
| } | |
| /// A "type scheme", in ML terminology, is a type combined with some | |
| /// set of generic types that the type is, well, generic over. In Rust | |
| /// terms, it is the "type" of a fn item or struct -- this type will | |
| /// include various generic parameters that must be substituted when | |
| /// the item/struct is referenced. That is called converting the type | |
| /// scheme to a monotype. | |
| /// | |
| /// - `generics`: the set of type parameters and their bounds | |
| /// - `ty`: the base types, which may reference the parameters defined | |
| /// in `generics` | |
| /// | |
| /// Note that TypeSchemes are also sometimes called "polytypes" (and | |
| /// in fact this struct used to carry that name, so you may find some | |
| /// stray references in a comment or something). We try to reserve the | |
| /// "poly" prefix to refer to higher-ranked things, as in | |
| /// `PolyTraitRef`. | |
| /// | |
| /// Note that each item also comes with predicates, see | |
| /// `lookup_predicates`. | |
| #[derive(Clone, Debug)] | |
| pub struct TypeScheme<'tcx> { | |
| pub generics: Generics<'tcx>, | |
| pub ty: Ty<'tcx>, | |
| } | |
| bitflags! { | |
| flags TraitFlags: u32 { | |
| const NO_TRAIT_FLAGS = 0, | |
| const HAS_DEFAULT_IMPL = 1 << 0, | |
| const IS_OBJECT_SAFE = 1 << 1, | |
| const OBJECT_SAFETY_VALID = 1 << 2, | |
| const IMPLS_VALID = 1 << 3, | |
| } | |
| } | |
| /// As `TypeScheme` but for a trait ref. | |
| pub struct TraitDef<'tcx> { | |
| pub unsafety: hir::Unsafety, | |
| /// If `true`, then this trait had the `#[rustc_paren_sugar]` | |
| /// attribute, indicating that it should be used with `Foo()` | |
| /// sugar. This is a temporary thing -- eventually any trait wil | |
| /// be usable with the sugar (or without it). | |
| pub paren_sugar: bool, | |
| /// Generic type definitions. Note that `Self` is listed in here | |
| /// as having a single bound, the trait itself (e.g., in the trait | |
| /// `Eq`, there is a single bound `Self : Eq`). This is so that | |
| /// default methods get to assume that the `Self` parameters | |
| /// implements the trait. | |
| pub generics: Generics<'tcx>, | |
| pub trait_ref: TraitRef<'tcx>, | |
| /// A list of the associated types defined in this trait. Useful | |
| /// for resolving `X::Foo` type markers. | |
| pub associated_type_names: Vec<Name>, | |
| // Impls of this trait. To allow for quicker lookup, the impls are indexed | |
| // by a simplified version of their Self type: impls with a simplifiable | |
| // Self are stored in nonblanket_impls keyed by it, while all other impls | |
| // are stored in blanket_impls. | |
| /// Impls of the trait. | |
| pub nonblanket_impls: RefCell< | |
| FnvHashMap<fast_reject::SimplifiedType, Vec<DefId>> | |
| >, | |
| /// Blanket impls associated with the trait. | |
| pub blanket_impls: RefCell<Vec<DefId>>, | |
| /// Various flags | |
| pub flags: Cell<TraitFlags> | |
| } | |
| impl<'tcx> TraitDef<'tcx> { | |
| // returns None if not yet calculated | |
| pub fn object_safety(&self) -> Option<bool> { | |
| if self.flags.get().intersects(TraitFlags::OBJECT_SAFETY_VALID) { | |
| Some(self.flags.get().intersects(TraitFlags::IS_OBJECT_SAFE)) | |
| } else { | |
| None | |
| } | |
| } | |
| pub fn set_object_safety(&self, is_safe: bool) { | |
| assert!(self.object_safety().map(|cs| cs == is_safe).unwrap_or(true)); | |
| self.flags.set( | |
| self.flags.get() | if is_safe { | |
| TraitFlags::OBJECT_SAFETY_VALID | TraitFlags::IS_OBJECT_SAFE | |
| } else { | |
| TraitFlags::OBJECT_SAFETY_VALID | |
| } | |
| ); | |
| } | |
| /// Records a trait-to-implementation mapping. | |
| pub fn record_impl(&self, | |
| tcx: &ctxt<'tcx>, | |
| impl_def_id: DefId, | |
| impl_trait_ref: TraitRef<'tcx>) { | |
| debug!("TraitDef::record_impl for {:?}, from {:?}", | |
| self, impl_trait_ref); | |
| // We don't want to borrow_mut after we already populated all impls, | |
| // so check if an impl is present with an immutable borrow first. | |
| if let Some(sty) = fast_reject::simplify_type(tcx, | |
| impl_trait_ref.self_ty(), false) { | |
| if let Some(is) = self.nonblanket_impls.borrow().get(&sty) { | |
| if is.contains(&impl_def_id) { | |
| return // duplicate - skip | |
| } | |
| } | |
| self.nonblanket_impls.borrow_mut().entry(sty).or_insert(vec![]).push(impl_def_id) | |
| } else { | |
| if self.blanket_impls.borrow().contains(&impl_def_id) { | |
| return // duplicate - skip | |
| } | |
| self.blanket_impls.borrow_mut().push(impl_def_id) | |
| } | |
| } | |
| pub fn for_each_impl<F: FnMut(DefId)>(&self, tcx: &ctxt<'tcx>, mut f: F) { | |
| tcx.populate_implementations_for_trait_if_necessary(self.trait_ref.def_id); | |
| for &impl_def_id in self.blanket_impls.borrow().iter() { | |
| f(impl_def_id); | |
| } | |
| for v in self.nonblanket_impls.borrow().values() { | |
| for &impl_def_id in v { | |
| f(impl_def_id); | |
| } | |
| } | |
| } | |
| /// Iterate over every impl that could possibly match the | |
| /// self-type `self_ty`. | |
| pub fn for_each_relevant_impl<F: FnMut(DefId)>(&self, | |
| tcx: &ctxt<'tcx>, | |
| self_ty: Ty<'tcx>, | |
| mut f: F) | |
| { | |
| tcx.populate_implementations_for_trait_if_necessary(self.trait_ref.def_id); | |
| for &impl_def_id in self.blanket_impls.borrow().iter() { | |
| f(impl_def_id); | |
| } | |
| // simplify_type(.., false) basically replaces type parameters and | |
| // projections with infer-variables. This is, of course, done on | |
| // the impl trait-ref when it is instantiated, but not on the | |
| // predicate trait-ref which is passed here. | |
| // | |
| // for example, if we match `S: Copy` against an impl like | |
| // `impl<T:Copy> Copy for Option<T>`, we replace the type variable | |
| // in `Option<T>` with an infer variable, to `Option<_>` (this | |
| // doesn't actually change fast_reject output), but we don't | |
| // replace `S` with anything - this impl of course can't be | |
| // selected, and as there are hundreds of similar impls, | |
| // considering them would significantly harm performance. | |
| if let Some(simp) = fast_reject::simplify_type(tcx, self_ty, true) { | |
| if let Some(impls) = self.nonblanket_impls.borrow().get(&simp) { | |
| for &impl_def_id in impls { | |
| f(impl_def_id); | |
| } | |
| } | |
| } else { | |
| for v in self.nonblanket_impls.borrow().values() { | |
| for &impl_def_id in v { | |
| f(impl_def_id); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| bitflags! { | |
| flags AdtFlags: u32 { | |
| const NO_ADT_FLAGS = 0, | |
| const IS_ENUM = 1 << 0, | |
| const IS_DTORCK = 1 << 1, // is this a dtorck type? | |
| const IS_DTORCK_VALID = 1 << 2, | |
| const IS_PHANTOM_DATA = 1 << 3, | |
| const IS_SIMD = 1 << 4, | |
| const IS_FUNDAMENTAL = 1 << 5, | |
| const IS_NO_DROP_FLAG = 1 << 6, | |
| } | |
| } | |
| pub type AdtDef<'tcx> = &'tcx AdtDefData<'tcx, 'static>; | |
| pub type VariantDef<'tcx> = &'tcx VariantDefData<'tcx, 'static>; | |
| pub type FieldDef<'tcx> = &'tcx FieldDefData<'tcx, 'static>; | |
| // See comment on AdtDefData for explanation | |
| pub type AdtDefMaster<'tcx> = &'tcx AdtDefData<'tcx, 'tcx>; | |
| pub type VariantDefMaster<'tcx> = &'tcx VariantDefData<'tcx, 'tcx>; | |
| pub type FieldDefMaster<'tcx> = &'tcx FieldDefData<'tcx, 'tcx>; | |
| pub struct VariantDefData<'tcx, 'container: 'tcx> { | |
| pub did: DefId, | |
| pub name: Name, // struct's name if this is a struct | |
| pub disr_val: Disr, | |
| pub fields: Vec<FieldDefData<'tcx, 'container>> | |
| } | |
| pub struct FieldDefData<'tcx, 'container: 'tcx> { | |
| /// The field's DefId. NOTE: the fields of tuple-like enum variants | |
| /// are not real items, and don't have entries in tcache etc. | |
| pub did: DefId, | |
| /// special_idents::unnamed_field.name | |
| /// if this is a tuple-like field | |
| pub name: Name, | |
| pub vis: hir::Visibility, | |
| /// TyIVar is used here to allow for variance (see the doc at | |
| /// AdtDefData). | |
| ty: ivar::TyIVar<'tcx, 'container> | |
| } | |
| /// The definition of an abstract data type - a struct or enum. | |
| /// | |
| /// These are all interned (by intern_adt_def) into the adt_defs | |
| /// table. | |
| /// | |
| /// Because of the possibility of nested tcx-s, this type | |
| /// needs 2 lifetimes: the traditional variant lifetime ('tcx) | |
| /// bounding the lifetime of the inner types is of course necessary. | |
| /// However, it is not sufficient - types from a child tcx must | |
| /// not be leaked into the master tcx by being stored in an AdtDefData. | |
| /// | |
| /// The 'container lifetime ensures that by outliving the container | |
| /// tcx and preventing shorter-lived types from being inserted. When | |
| /// write access is not needed, the 'container lifetime can be | |
| /// erased to 'static, which can be done by the AdtDef wrapper. | |
| pub struct AdtDefData<'tcx, 'container: 'tcx> { | |
| pub did: DefId, | |
| pub variants: Vec<VariantDefData<'tcx, 'container>>, | |
| destructor: Cell<Option<DefId>>, | |
| flags: Cell<AdtFlags>, | |
| } | |
| impl<'tcx, 'container> PartialEq for AdtDefData<'tcx, 'container> { | |
| // AdtDefData are always interned and this is part of TyS equality | |
| #[inline] | |
| fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ } | |
| } | |
| impl<'tcx, 'container> Eq for AdtDefData<'tcx, 'container> {} | |
| impl<'tcx, 'container> Hash for AdtDefData<'tcx, 'container> { | |
| #[inline] | |
| fn hash<H: Hasher>(&self, s: &mut H) { | |
| (self as *const AdtDefData).hash(s) | |
| } | |
| } | |
| #[derive(Copy, Clone, Debug, Eq, PartialEq)] | |
| pub enum AdtKind { Struct, Enum } | |
| #[derive(Copy, Clone, Debug, Eq, PartialEq)] | |
| pub enum VariantKind { Dict, Tuple, Unit } | |
| impl<'tcx, 'container> AdtDefData<'tcx, 'container> { | |
| fn new(tcx: &ctxt<'tcx>, | |
| did: DefId, | |
| kind: AdtKind, | |
| variants: Vec<VariantDefData<'tcx, 'container>>) -> Self { | |
| let mut flags = AdtFlags::NO_ADT_FLAGS; | |
| let attrs = tcx.get_attrs(did); | |
| if attr::contains_name(&attrs, "fundamental") { | |
| flags = flags | AdtFlags::IS_FUNDAMENTAL; | |
| } | |
| if attr::contains_name(&attrs, "unsafe_no_drop_flag") { | |
| flags = flags | AdtFlags::IS_NO_DROP_FLAG; | |
| } | |
| if tcx.lookup_simd(did) { | |
| flags = flags | AdtFlags::IS_SIMD; | |
| } | |
| if Some(did) == tcx.lang_items.phantom_data() { | |
| flags = flags | AdtFlags::IS_PHANTOM_DATA; | |
| } | |
| if let AdtKind::Enum = kind { | |
| flags = flags | AdtFlags::IS_ENUM; | |
| } | |
| AdtDefData { | |
| did: did, | |
| variants: variants, | |
| flags: Cell::new(flags), | |
| destructor: Cell::new(None) | |
| } | |
| } | |
| fn calculate_dtorck(&'tcx self, tcx: &ctxt<'tcx>) { | |
| if tcx.is_adt_dtorck(self) { | |
| self.flags.set(self.flags.get() | AdtFlags::IS_DTORCK); | |
| } | |
| self.flags.set(self.flags.get() | AdtFlags::IS_DTORCK_VALID) | |
| } | |
| /// Returns the kind of the ADT - Struct or Enum. | |
| #[inline] | |
| pub fn adt_kind(&self) -> AdtKind { | |
| if self.flags.get().intersects(AdtFlags::IS_ENUM) { | |
| AdtKind::Enum | |
| } else { | |
| AdtKind::Struct | |
| } | |
| } | |
| /// Returns whether this is a dtorck type. If this returns | |
| /// true, this type being safe for destruction requires it to be | |
| /// alive; Otherwise, only the contents are required to be. | |
| #[inline] | |
| pub fn is_dtorck(&'tcx self, tcx: &ctxt<'tcx>) -> bool { | |
| if !self.flags.get().intersects(AdtFlags::IS_DTORCK_VALID) { | |
| self.calculate_dtorck(tcx) | |
| } | |
| self.flags.get().intersects(AdtFlags::IS_DTORCK) | |
| } | |
| /// Returns whether this type is #[fundamental] for the purposes | |
| /// of coherence checking. | |
| #[inline] | |
| pub fn is_fundamental(&self) -> bool { | |
| self.flags.get().intersects(AdtFlags::IS_FUNDAMENTAL) | |
| } | |
| #[inline] | |
| pub fn is_simd(&self) -> bool { | |
| self.flags.get().intersects(AdtFlags::IS_SIMD) | |
| } | |
| /// Returns true if this is PhantomData<T>. | |
| #[inline] | |
| pub fn is_phantom_data(&self) -> bool { | |
| self.flags.get().intersects(AdtFlags::IS_PHANTOM_DATA) | |
| } | |
| /// Returns whether this type has a destructor. | |
| pub fn has_dtor(&self) -> bool { | |
| match self.dtor_kind() { | |
| NoDtor => false, | |
| TraitDtor(..) => true | |
| } | |
| } | |
| /// Asserts this is a struct and returns the struct's unique | |
| /// variant. | |
| pub fn struct_variant(&self) -> &VariantDefData<'tcx, 'container> { | |
| assert!(self.adt_kind() == AdtKind::Struct); | |
| &self.variants[0] | |
| } | |
| #[inline] | |
| pub fn type_scheme(&self, tcx: &ctxt<'tcx>) -> TypeScheme<'tcx> { | |
| tcx.lookup_item_type(self.did) | |
| } | |
| #[inline] | |
| pub fn predicates(&self, tcx: &ctxt<'tcx>) -> GenericPredicates<'tcx> { | |
| tcx.lookup_predicates(self.did) | |
| } | |
| /// Returns an iterator over all fields contained | |
| /// by this ADT. | |
| #[inline] | |
| pub fn all_fields(&self) -> | |
| iter::FlatMap< | |
| slice::Iter<VariantDefData<'tcx, 'container>>, | |
| slice::Iter<FieldDefData<'tcx, 'container>>, | |
| for<'s> fn(&'s VariantDefData<'tcx, 'container>) | |
| -> slice::Iter<'s, FieldDefData<'tcx, 'container>> | |
| > { | |
| self.variants.iter().flat_map(VariantDefData::fields_iter) | |
| } | |
| #[inline] | |
| pub fn is_empty(&self) -> bool { | |
| self.variants.is_empty() | |
| } | |
| #[inline] | |
| pub fn is_univariant(&self) -> bool { | |
| self.variants.len() == 1 | |
| } | |
| pub fn is_payloadfree(&self) -> bool { | |
| !self.variants.is_empty() && | |
| self.variants.iter().all(|v| v.fields.is_empty()) | |
| } | |
| pub fn variant_with_id(&self, vid: DefId) -> &VariantDefData<'tcx, 'container> { | |
| self.variants | |
| .iter() | |
| .find(|v| v.did == vid) | |
| .expect("variant_with_id: unknown variant") | |
| } | |
| pub fn variant_index_with_id(&self, vid: DefId) -> usize { | |
| self.variants | |
| .iter() | |
| .position(|v| v.did == vid) | |
| .expect("variant_index_with_id: unknown variant") | |
| } | |
| pub fn variant_of_def(&self, def: def::Def) -> &VariantDefData<'tcx, 'container> { | |
| match def { | |
| def::DefVariant(_, vid, _) => self.variant_with_id(vid), | |
| def::DefStruct(..) | def::DefTy(..) => self.struct_variant(), | |
| _ => panic!("unexpected def {:?} in variant_of_def", def) | |
| } | |
| } | |
| pub fn destructor(&self) -> Option<DefId> { | |
| self.destructor.get() | |
| } | |
| pub fn set_destructor(&self, dtor: DefId) { | |
| assert!(self.destructor.get().is_none()); | |
| self.destructor.set(Some(dtor)); | |
| } | |
| pub fn dtor_kind(&self) -> DtorKind { | |
| match self.destructor.get() { | |
| Some(_) => { | |
| TraitDtor(!self.flags.get().intersects(AdtFlags::IS_NO_DROP_FLAG)) | |
| } | |
| None => NoDtor, | |
| } | |
| } | |
| } | |
| impl<'tcx, 'container> VariantDefData<'tcx, 'container> { | |
| #[inline] | |
| fn fields_iter(&self) -> slice::Iter<FieldDefData<'tcx, 'container>> { | |
| self.fields.iter() | |
| } | |
| pub fn kind(&self) -> VariantKind { | |
| match self.fields.get(0) { | |
| None => VariantKind::Unit, | |
| Some(&FieldDefData { name, .. }) if name == special_idents::unnamed_field.name => { | |
| VariantKind::Tuple | |
| } | |
| Some(_) => VariantKind::Dict | |
| } | |
| } | |
| pub fn is_tuple_struct(&self) -> bool { | |
| self.kind() == VariantKind::Tuple | |
| } | |
| #[inline] | |
| pub fn find_field_named(&self, | |
| name: ast::Name) | |
| -> Option<&FieldDefData<'tcx, 'container>> { | |
| self.fields.iter().find(|f| f.name == name) | |
| } | |
| #[inline] | |
| pub fn field_named(&self, name: ast::Name) -> &FieldDefData<'tcx, 'container> { | |
| self.find_field_named(name).unwrap() | |
| } | |
| } | |
| impl<'tcx, 'container> FieldDefData<'tcx, 'container> { | |
| pub fn new(did: DefId, | |
| name: Name, | |
| vis: hir::Visibility) -> Self { | |
| FieldDefData { | |
| did: did, | |
| name: name, | |
| vis: vis, | |
| ty: ivar::TyIVar::new() | |
| } | |
| } | |
| pub fn ty(&self, tcx: &ctxt<'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> { | |
| self.unsubst_ty().subst(tcx, subst) | |
| } | |
| pub fn unsubst_ty(&self) -> Ty<'tcx> { | |
| self.ty.unwrap() | |
| } | |
| pub fn fulfill_ty(&self, ty: Ty<'container>) { | |
| self.ty.fulfill(ty); | |
| } | |
| } | |
| /// Records the substitutions used to translate the polytype for an | |
| /// item into the monotype of an item reference. | |
| #[derive(Clone)] | |
| pub struct ItemSubsts<'tcx> { | |
| pub substs: Substs<'tcx>, | |
| } | |
| #[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Debug, RustcEncodable, RustcDecodable)] | |
| pub enum ClosureKind { | |
| // Warning: Ordering is significant here! The ordering is chosen | |
| // because the trait Fn is a subtrait of FnMut and so in turn, and | |
| // hence we order it so that Fn < FnMut < FnOnce. | |
| FnClosureKind, | |
| FnMutClosureKind, | |
| FnOnceClosureKind, | |
| } | |
| impl ClosureKind { | |
| pub fn trait_did(&self, cx: &ctxt) -> DefId { | |
| let result = match *self { | |
| FnClosureKind => cx.lang_items.require(FnTraitLangItem), | |
| FnMutClosureKind => { | |
| cx.lang_items.require(FnMutTraitLangItem) | |
| } | |
| FnOnceClosureKind => { | |
| cx.lang_items.require(FnOnceTraitLangItem) | |
| } | |
| }; | |
| match result { | |
| Ok(trait_did) => trait_did, | |
| Err(err) => cx.sess.fatal(&err[..]), | |
| } | |
| } | |
| /// True if this a type that impls this closure kind | |
| /// must also implement `other`. | |
| pub fn extends(self, other: ty::ClosureKind) -> bool { | |
| match (self, other) { | |
| (FnClosureKind, FnClosureKind) => true, | |
| (FnClosureKind, FnMutClosureKind) => true, | |
| (FnClosureKind, FnOnceClosureKind) => true, | |
| (FnMutClosureKind, FnMutClosureKind) => true, | |
| (FnMutClosureKind, FnOnceClosureKind) => true, | |
| (FnOnceClosureKind, FnOnceClosureKind) => true, | |
| _ => false, | |
| } | |
| } | |
| } | |
| impl<'tcx> TyS<'tcx> { | |
| /// Iterator that walks `self` and any types reachable from | |
| /// `self`, in depth-first order. Note that just walks the types | |
| /// that appear in `self`, it does not descend into the fields of | |
| /// structs or variants. For example: | |
| /// | |
| /// ```notrust | |
| /// isize => { isize } | |
| /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize } | |
| /// [isize] => { [isize], isize } | |
| /// ``` | |
| pub fn walk(&'tcx self) -> TypeWalker<'tcx> { | |
| TypeWalker::new(self) | |
| } | |
| /// Iterator that walks the immediate children of `self`. Hence | |
| /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]` | |
| /// (but not `i32`, like `walk`). | |
| pub fn walk_shallow(&'tcx self) -> IntoIter<Ty<'tcx>> { | |
| walk::walk_shallow(self) | |
| } | |
| /// Walks `ty` and any types appearing within `ty`, invoking the | |
| /// callback `f` on each type. If the callback returns false, then the | |
| /// children of the current type are ignored. | |
| /// | |
| /// Note: prefer `ty.walk()` where possible. | |
| pub fn maybe_walk<F>(&'tcx self, mut f: F) | |
| where F : FnMut(Ty<'tcx>) -> bool | |
| { | |
| let mut walker = self.walk(); | |
| while let Some(ty) = walker.next() { | |
| if !f(ty) { | |
| walker.skip_current_subtree(); | |
| } | |
| } | |
| } | |
| } | |
| impl<'tcx> ItemSubsts<'tcx> { | |
| pub fn empty() -> ItemSubsts<'tcx> { | |
| ItemSubsts { substs: Substs::empty() } | |
| } | |
| pub fn is_noop(&self) -> bool { | |
| self.substs.is_noop() | |
| } | |
| } | |
| #[derive(Copy, Clone, Debug, PartialEq, Eq)] | |
| pub enum LvaluePreference { | |
| PreferMutLvalue, | |
| NoPreference | |
| } | |
| impl LvaluePreference { | |
| pub fn from_mutbl(m: hir::Mutability) -> Self { | |
| match m { | |
| hir::MutMutable => PreferMutLvalue, | |
| hir::MutImmutable => NoPreference, | |
| } | |
| } | |
| } | |
| /// Helper for looking things up in the various maps that are populated during | |
| /// typeck::collect (e.g., `cx.impl_or_trait_items`, `cx.tcache`, etc). All of | |
| /// these share the pattern that if the id is local, it should have been loaded | |
| /// into the map by the `typeck::collect` phase. If the def-id is external, | |
| /// then we have to go consult the crate loading code (and cache the result for | |
| /// the future). | |
| fn lookup_locally_or_in_crate_store<V, F>(descr: &str, | |
| def_id: DefId, | |
| map: &RefCell<DefIdMap<V>>, | |
| load_external: F) -> V where | |
| V: Clone, | |
| F: FnOnce() -> V, | |
| { | |
| match map.borrow().get(&def_id).cloned() { | |
| Some(v) => { return v; } | |
| None => { } | |
| } | |
| if def_id.is_local() { | |
| panic!("No def'n found for {:?} in tcx.{}", def_id, descr); | |
| } | |
| let v = load_external(); | |
| map.borrow_mut().insert(def_id, v.clone()); | |
| v | |
| } | |
| impl BorrowKind { | |
| pub fn from_mutbl(m: hir::Mutability) -> BorrowKind { | |
| match m { | |
| hir::MutMutable => MutBorrow, | |
| hir::MutImmutable => ImmBorrow, | |
| } | |
| } | |
| /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow | |
| /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a | |
| /// mutability that is stronger than necessary so that it at least *would permit* the borrow in | |
| /// question. | |
| pub fn to_mutbl_lossy(self) -> hir::Mutability { | |
| match self { | |
| MutBorrow => hir::MutMutable, | |
| ImmBorrow => hir::MutImmutable, | |
| // We have no type corresponding to a unique imm borrow, so | |
| // use `&mut`. It gives all the capabilities of an `&uniq` | |
| // and hence is a safe "over approximation". | |
| UniqueImmBorrow => hir::MutMutable, | |
| } | |
| } | |
| pub fn to_user_str(&self) -> &'static str { | |
| match *self { | |
| MutBorrow => "mutable", | |
| ImmBorrow => "immutable", | |
| UniqueImmBorrow => "uniquely immutable", | |
| } | |
| } | |
| } | |
| impl<'tcx> ctxt<'tcx> { | |
| pub fn node_id_to_type(&self, id: NodeId) -> Ty<'tcx> { | |
| match self.node_id_to_type_opt(id) { | |
| Some(ty) => ty, | |
| None => self.sess.bug( | |
| &format!("node_id_to_type: no type for node `{}`", | |
| self.map.node_to_string(id))) | |
| } | |
| } | |
| pub fn node_id_to_type_opt(&self, id: NodeId) -> Option<Ty<'tcx>> { | |
| self.tables.borrow().node_types.get(&id).cloned() | |
| } | |
| pub fn node_id_item_substs(&self, id: NodeId) -> ItemSubsts<'tcx> { | |
| match self.tables.borrow().item_substs.get(&id) { | |
| None => ItemSubsts::empty(), | |
| Some(ts) => ts.clone(), | |
| } | |
| } | |
| // Returns the type of a pattern as a monotype. Like @expr_ty, this function | |
| // doesn't provide type parameter substitutions. | |
| pub fn pat_ty(&self, pat: &hir::Pat) -> Ty<'tcx> { | |
| self.node_id_to_type(pat.id) | |
| } | |
| pub fn pat_ty_opt(&self, pat: &hir::Pat) -> Option<Ty<'tcx>> { | |
| self.node_id_to_type_opt(pat.id) | |
| } | |
| // Returns the type of an expression as a monotype. | |
| // | |
| // NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in | |
| // some cases, we insert `AutoAdjustment` annotations such as auto-deref or | |
| // auto-ref. The type returned by this function does not consider such | |
| // adjustments. See `expr_ty_adjusted()` instead. | |
| // | |
| // NB (2): This type doesn't provide type parameter substitutions; e.g. if you | |
| // ask for the type of "id" in "id(3)", it will return "fn(&isize) -> isize" | |
| // instead of "fn(ty) -> T with T = isize". | |
| pub fn expr_ty(&self, expr: &hir::Expr) -> Ty<'tcx> { | |
| self.node_id_to_type(expr.id) | |
| } | |
| pub fn expr_ty_opt(&self, expr: &hir::Expr) -> Option<Ty<'tcx>> { | |
| self.node_id_to_type_opt(expr.id) | |
| } | |
| /// Returns the type of `expr`, considering any `AutoAdjustment` | |
| /// entry recorded for that expression. | |
| /// | |
| /// It would almost certainly be better to store the adjusted ty in with | |
| /// the `AutoAdjustment`, but I opted not to do this because it would | |
| /// require serializing and deserializing the type and, although that's not | |
| /// hard to do, I just hate that code so much I didn't want to touch it | |
| /// unless it was to fix it properly, which seemed a distraction from the | |
| /// thread at hand! -nmatsakis | |
| pub fn expr_ty_adjusted(&self, expr: &hir::Expr) -> Ty<'tcx> { | |
| self.expr_ty(expr) | |
| .adjust(self, expr.span, expr.id, | |
| self.tables.borrow().adjustments.get(&expr.id), | |
| |method_call| { | |
| self.tables.borrow().method_map.get(&method_call).map(|method| method.ty) | |
| }) | |
| } | |
| pub fn expr_span(&self, id: NodeId) -> Span { | |
| match self.map.find(id) { | |
| Some(ast_map::NodeExpr(e)) => { | |
| e.span | |
| } | |
| Some(f) => { | |
| self.sess.bug(&format!("Node id {} is not an expr: {:?}", | |
| id, f)); | |
| } | |
| None => { | |
| self.sess.bug(&format!("Node id {} is not present \ | |
| in the node map", id)); | |
| } | |
| } | |
| } | |
| pub fn local_var_name_str(&self, id: NodeId) -> InternedString { | |
| match self.map.find(id) { | |
| Some(ast_map::NodeLocal(pat)) => { | |
| match pat.node { | |
| hir::PatIdent(_, ref path1, _) => path1.node.name.as_str(), | |
| _ => { | |
| self.sess.bug(&format!("Variable id {} maps to {:?}, not local", id, pat)); | |
| }, | |
| } | |
| }, | |
| r => self.sess.bug(&format!("Variable id {} maps to {:?}, not local", id, r)), | |
| } | |
| } | |
| pub fn resolve_expr(&self, expr: &hir::Expr) -> def::Def { | |
| match self.def_map.borrow().get(&expr.id) { | |
| Some(def) => def.full_def(), | |
| None => { | |
| self.sess.span_bug(expr.span, &format!( | |
| "no def-map entry for expr {}", expr.id)); | |
| } | |
| } | |
| } | |
| pub fn expr_is_lval(&self, expr: &hir::Expr) -> bool { | |
| match expr.node { | |
| hir::ExprPath(..) => { | |
| // We can't use resolve_expr here, as this needs to run on broken | |
| // programs. We don't need to through - associated items are all | |
| // rvalues. | |
| match self.def_map.borrow().get(&expr.id) { | |
| Some(&def::PathResolution { | |
| base_def: def::DefStatic(..), .. | |
| }) | Some(&def::PathResolution { | |
| base_def: def::DefUpvar(..), .. | |
| }) | Some(&def::PathResolution { | |
| base_def: def::DefLocal(..), .. | |
| }) => { | |
| true | |
| } | |
| Some(..) => false, | |
| None => self.sess.span_bug(expr.span, &format!( | |
| "no def for path {}", expr.id)) | |
| } | |
| } | |
| hir::ExprUnary(hir::UnDeref, _) | | |
| hir::ExprField(..) | | |
| hir::ExprTupField(..) | | |
| hir::ExprIndex(..) => { | |
| true | |
| } | |
| hir::ExprCall(..) | | |
| hir::ExprMethodCall(..) | | |
| hir::ExprStruct(..) | | |
| hir::ExprRange(..) | | |
| hir::ExprTup(..) | | |
| hir::ExprIf(..) | | |
| hir::ExprMatch(..) | | |
| hir::ExprClosure(..) | | |
| hir::ExprBlock(..) | | |
| hir::ExprRepeat(..) | | |
| hir::ExprVec(..) | | |
| hir::ExprBreak(..) | | |
| hir::ExprAgain(..) | | |
| hir::ExprRet(..) | | |
| hir::ExprWhile(..) | | |
| hir::ExprLoop(..) | | |
| hir::ExprAssign(..) | | |
| hir::ExprInlineAsm(..) | | |
| hir::ExprAssignOp(..) | | |
| hir::ExprLit(_) | | |
| hir::ExprUnary(..) | | |
| hir::ExprBox(..) | | |
| hir::ExprAddrOf(..) | | |
| hir::ExprBinary(..) | | |
| hir::ExprCast(..) => { | |
| false | |
| } | |
| hir::ExprParen(ref e) => self.expr_is_lval(e), | |
| } | |
| } | |
| pub fn provided_source(&self, id: DefId) -> Option<DefId> { | |
| self.provided_method_sources.borrow().get(&id).cloned() | |
| } | |
| pub fn provided_trait_methods(&self, id: DefId) -> Vec<Rc<Method<'tcx>>> { | |
| if id.is_local() { | |
| if let ItemTrait(_, _, _, ref ms) = self.map.expect_item(id.node).node { | |
| ms.iter().filter_map(|ti| { | |
| if let hir::MethodTraitItem(_, Some(_)) = ti.node { | |
| match self.impl_or_trait_item(DefId::local(ti.id)) { | |
| MethodTraitItem(m) => Some(m), | |
| _ => { | |
| self.sess.bug("provided_trait_methods(): \ | |
| non-method item found from \ | |
| looking up provided method?!") | |
| } | |
| } | |
| } else { | |
| None | |
| } | |
| }).collect() | |
| } else { | |
| self.sess.bug(&format!("provided_trait_methods: `{:?}` is not a trait", id)) | |
| } | |
| } else { | |
| csearch::get_provided_trait_methods(self, id) | |
| } | |
| } | |
| pub fn associated_consts(&self, id: DefId) -> Vec<Rc<AssociatedConst<'tcx>>> { | |
| if id.is_local() { | |
| match self.map.expect_item(id.node).node { | |
| ItemTrait(_, _, _, ref tis) => { | |
| tis.iter().filter_map(|ti| { | |
| if let hir::ConstTraitItem(_, _) = ti.node { | |
| match self.impl_or_trait_item(DefId::local(ti.id)) { | |
| ConstTraitItem(ac) => Some(ac), | |
| _ => { | |
| self.sess.bug("associated_consts(): \ | |
| non-const item found from \ | |
| looking up a constant?!") | |
| } | |
| } | |
| } else { | |
| None | |
| } | |
| }).collect() | |
| } | |
| ItemImpl(_, _, _, _, _, ref iis) => { | |
| iis.iter().filter_map(|ii| { | |
| if let hir::ConstImplItem(_, _) = ii.node { | |
| match self.impl_or_trait_item(DefId::local(ii.id)) { | |
| ConstTraitItem(ac) => Some(ac), | |
| _ => { | |
| self.sess.bug("associated_consts(): \ | |
| non-const item found from \ | |
| looking up a constant?!") | |
| } | |
| } | |
| } else { | |
| None | |
| } | |
| }).collect() | |
| } | |
| _ => { | |
| self.sess.bug(&format!("associated_consts: `{:?}` is not a trait \ | |
| or impl", id)) | |
| } | |
| } | |
| } else { | |
| csearch::get_associated_consts(self, id) | |
| } | |
| } | |
| pub fn trait_items(&self, trait_did: DefId) -> Rc<Vec<ImplOrTraitItem<'tcx>>> { | |
| let mut trait_items = self.trait_items_cache.borrow_mut(); | |
| match trait_items.get(&trait_did).cloned() { | |
| Some(trait_items) => trait_items, | |
| None => { | |
| let def_ids = self.trait_item_def_ids(trait_did); | |
| let items: Rc<Vec<ImplOrTraitItem>> = | |
| Rc::new(def_ids.iter() | |
| .map(|d| self.impl_or_trait_item(d.def_id())) | |
| .collect()); | |
| trait_items.insert(trait_did, items.clone()); | |
| items | |
| } | |
| } | |
| } | |
| pub fn trait_impl_polarity(&self, id: DefId) -> Option<hir::ImplPolarity> { | |
| if id.is_local() { | |
| match self.map.find(id.node) { | |
| Some(ast_map::NodeItem(item)) => { | |
| match item.node { | |
| hir::ItemImpl(_, polarity, _, _, _, _) => Some(polarity), | |
| _ => None | |
| } | |
| } | |
| _ => None | |
| } | |
| } else { | |
| csearch::get_impl_polarity(self, id) | |
| } | |
| } | |
| pub fn custom_coerce_unsized_kind(&self, did: DefId) -> adjustment::CustomCoerceUnsized { | |
| memoized(&self.custom_coerce_unsized_kinds, did, |did: DefId| { | |
| let (kind, src) = if did.krate != LOCAL_CRATE { | |
| (csearch::get_custom_coerce_unsized_kind(self, did), "external") | |
| } else { | |
| (None, "local") | |
| }; | |
| match kind { | |
| Some(kind) => kind, | |
| None => { | |
| self.sess.bug(&format!("custom_coerce_unsized_kind: \ | |
| {} impl `{}` is missing its kind", | |
| src, self.item_path_str(did))); | |
| } | |
| } | |
| }) | |
| } | |
| pub fn impl_or_trait_item(&self, id: DefId) -> ImplOrTraitItem<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "impl_or_trait_items", id, &self.impl_or_trait_items, | |
| || csearch::get_impl_or_trait_item(self, id)) | |
| } | |
| pub fn trait_item_def_ids(&self, id: DefId) -> Rc<Vec<ImplOrTraitItemId>> { | |
| lookup_locally_or_in_crate_store( | |
| "trait_item_def_ids", id, &self.trait_item_def_ids, | |
| || Rc::new(csearch::get_trait_item_def_ids(&self.sess.cstore, id))) | |
| } | |
| /// Returns the trait-ref corresponding to a given impl, or None if it is | |
| /// an inherent impl. | |
| pub fn impl_trait_ref(&self, id: DefId) -> Option<TraitRef<'tcx>> { | |
| lookup_locally_or_in_crate_store( | |
| "impl_trait_refs", id, &self.impl_trait_refs, | |
| || csearch::get_impl_trait(self, id)) | |
| } | |
| /// Returns whether this DefId refers to an impl | |
| pub fn is_impl(&self, id: DefId) -> bool { | |
| if id.is_local() { | |
| if let Some(ast_map::NodeItem( | |
| &hir::Item { node: hir::ItemImpl(..), .. })) = self.map.find(id.node) { | |
| true | |
| } else { | |
| false | |
| } | |
| } else { | |
| csearch::is_impl(&self.sess.cstore, id) | |
| } | |
| } | |
| pub fn trait_ref_to_def_id(&self, tr: &hir::TraitRef) -> DefId { | |
| self.def_map.borrow().get(&tr.ref_id).expect("no def-map entry for trait").def_id() | |
| } | |
| pub fn item_path_str(&self, id: DefId) -> String { | |
| self.with_path(id, |path| ast_map::path_to_string(path)) | |
| } | |
| pub fn with_path<T, F>(&self, id: DefId, f: F) -> T where | |
| F: FnOnce(ast_map::PathElems) -> T, | |
| { | |
| if id.is_local() { | |
| self.map.with_path(id.node, f) | |
| } else { | |
| f(csearch::get_item_path(self, id).iter().cloned().chain(LinkedPath::empty())) | |
| } | |
| } | |
| pub fn item_name(&self, id: DefId) -> ast::Name { | |
| if id.is_local() { | |
| self.map.get_path_elem(id.node).name() | |
| } else { | |
| csearch::get_item_name(self, id) | |
| } | |
| } | |
| // Register a given item type | |
| pub fn register_item_type(&self, did: DefId, ty: TypeScheme<'tcx>) { | |
| self.tcache.borrow_mut().insert(did, ty); | |
| } | |
| // If the given item is in an external crate, looks up its type and adds it to | |
| // the type cache. Returns the type parameters and type. | |
| pub fn lookup_item_type(&self, did: DefId) -> TypeScheme<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "tcache", did, &self.tcache, | |
| || csearch::get_type(self, did)) | |
| } | |
| /// Given the did of a trait, returns its canonical trait ref. | |
| pub fn lookup_trait_def(&self, did: DefId) -> &'tcx TraitDef<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "trait_defs", did, &self.trait_defs, | |
| || self.alloc_trait_def(csearch::get_trait_def(self, did)) | |
| ) | |
| } | |
| /// Given the did of an ADT, return a master reference to its | |
| /// definition. Unless you are planning on fulfilling the ADT's fields, | |
| /// use lookup_adt_def instead. | |
| pub fn lookup_adt_def_master(&self, did: DefId) -> AdtDefMaster<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "adt_defs", did, &self.adt_defs, | |
| || csearch::get_adt_def(self, did) | |
| ) | |
| } | |
| /// Given the did of an ADT, return a reference to its definition. | |
| pub fn lookup_adt_def(&self, did: DefId) -> AdtDef<'tcx> { | |
| // when reverse-variance goes away, a transmute::<AdtDefMaster,AdtDef> | |
| // woud be needed here. | |
| self.lookup_adt_def_master(did) | |
| } | |
| /// Return the list of all interned ADT definitions | |
| pub fn adt_defs(&self) -> Vec<AdtDef<'tcx>> { | |
| self.adt_defs.borrow().values().cloned().collect() | |
| } | |
| /// Given the did of an item, returns its full set of predicates. | |
| pub fn lookup_predicates(&self, did: DefId) -> GenericPredicates<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "predicates", did, &self.predicates, | |
| || csearch::get_predicates(self, did)) | |
| } | |
| /// Given the did of a trait, returns its superpredicates. | |
| pub fn lookup_super_predicates(&self, did: DefId) -> GenericPredicates<'tcx> { | |
| lookup_locally_or_in_crate_store( | |
| "super_predicates", did, &self.super_predicates, | |
| || csearch::get_super_predicates(self, did)) | |
| } | |
| /// Get the attributes of a definition. | |
| pub fn get_attrs(&self, did: DefId) -> Cow<'tcx, [ast::Attribute]> { | |
| if did.is_local() { | |
| Cow::Borrowed(self.map.attrs(did.node)) | |
| } else { | |
| Cow::Owned(csearch::get_item_attrs(&self.sess.cstore, did)) | |
| } | |
| } | |
| /// Determine whether an item is annotated with an attribute | |
| pub fn has_attr(&self, did: DefId, attr: &str) -> bool { | |
| self.get_attrs(did).iter().any(|item| item.check_name(attr)) | |
| } | |
| /// Determine whether an item is annotated with `#[repr(packed)]` | |
| pub fn lookup_packed(&self, did: DefId) -> bool { | |
| self.lookup_repr_hints(did).contains(&attr::ReprPacked) | |
| } | |
| /// Determine whether an item is annotated with `#[simd]` | |
| pub fn lookup_simd(&self, did: DefId) -> bool { | |
| self.has_attr(did, "simd") | |
| || self.lookup_repr_hints(did).contains(&attr::ReprSimd) | |
| } | |
| /// Obtain the representation annotation for a struct definition. | |
| pub fn lookup_repr_hints(&self, did: DefId) -> Rc<Vec<attr::ReprAttr>> { | |
| memoized(&self.repr_hint_cache, did, |did: DefId| { | |
| Rc::new(if did.is_local() { | |
| self.get_attrs(did).iter().flat_map(|meta| { | |
| attr::find_repr_attrs(self.sess.diagnostic(), meta).into_iter() | |
| }).collect() | |
| } else { | |
| csearch::get_repr_attrs(&self.sess.cstore, did) | |
| }) | |
| }) | |
| } | |
| pub fn item_variances(&self, item_id: DefId) -> Rc<ItemVariances> { | |
| lookup_locally_or_in_crate_store( | |
| "item_variance_map", item_id, &self.item_variance_map, | |
| || Rc::new(csearch::get_item_variances(&self.sess.cstore, item_id))) | |
| } | |
| pub fn trait_has_default_impl(&self, trait_def_id: DefId) -> bool { | |
| self.populate_implementations_for_trait_if_necessary(trait_def_id); | |
| let def = self.lookup_trait_def(trait_def_id); | |
| def.flags.get().intersects(TraitFlags::HAS_DEFAULT_IMPL) | |
| } | |
| /// Records a trait-to-implementation mapping. | |
| pub fn record_trait_has_default_impl(&self, trait_def_id: DefId) { | |
| let def = self.lookup_trait_def(trait_def_id); | |
| def.flags.set(def.flags.get() | TraitFlags::HAS_DEFAULT_IMPL) | |
| } | |
| /// Load primitive inherent implementations if necessary | |
| pub fn populate_implementations_for_primitive_if_necessary(&self, | |
| primitive_def_id: DefId) { | |
| if primitive_def_id.is_local() { | |
| return | |
| } | |
| if self.populated_external_primitive_impls.borrow().contains(&primitive_def_id) { | |
| return | |
| } | |
| debug!("populate_implementations_for_primitive_if_necessary: searching for {:?}", | |
| primitive_def_id); | |
| let impl_items = csearch::get_impl_items(&self.sess.cstore, primitive_def_id); | |
| // Store the implementation info. | |
| self.impl_items.borrow_mut().insert(primitive_def_id, impl_items); | |
| self.populated_external_primitive_impls.borrow_mut().insert(primitive_def_id); | |
| } | |
| /// Populates the type context with all the inherent implementations for | |
| /// the given type if necessary. | |
| pub fn populate_inherent_implementations_for_type_if_necessary(&self, | |
| type_id: DefId) { | |
| if type_id.is_local() { | |
| return | |
| } | |
| if self.populated_external_types.borrow().contains(&type_id) { | |
| return | |
| } | |
| debug!("populate_inherent_implementations_for_type_if_necessary: searching for {:?}", | |
| type_id); | |
| let mut inherent_impls = Vec::new(); | |
| csearch::each_inherent_implementation_for_type(&self.sess.cstore, type_id, |impl_def_id| { | |
| // Record the implementation. | |
| inherent_impls.push(impl_def_id); | |
| // Store the implementation info. | |
| let impl_items = csearch::get_impl_items(&self.sess.cstore, impl_def_id); | |
| self.impl_items.borrow_mut().insert(impl_def_id, impl_items); | |
| }); | |
| self.inherent_impls.borrow_mut().insert(type_id, Rc::new(inherent_impls)); | |
| self.populated_external_types.borrow_mut().insert(type_id); | |
| } | |
| /// Populates the type context with all the implementations for the given | |
| /// trait if necessary. | |
| pub fn populate_implementations_for_trait_if_necessary(&self, trait_id: DefId) { | |
| if trait_id.is_local() { | |
| return | |
| } | |
| let def = self.lookup_trait_def(trait_id); | |
| if def.flags.get().intersects(TraitFlags::IMPLS_VALID) { | |
| return; | |
| } | |
| debug!("populate_implementations_for_trait_if_necessary: searching for {:?}", def); | |
| if csearch::is_defaulted_trait(&self.sess.cstore, trait_id) { | |
| self.record_trait_has_default_impl(trait_id); | |
| } | |
| csearch::each_implementation_for_trait(&self.sess.cstore, trait_id, |impl_def_id| { | |
| let impl_items = csearch::get_impl_items(&self.sess.cstore, impl_def_id); | |
| let trait_ref = self.impl_trait_ref(impl_def_id).unwrap(); | |
| // Record the trait->implementation mapping. | |
| def.record_impl(self, impl_def_id, trait_ref); | |
| // For any methods that use a default implementation, add them to | |
| // the map. This is a bit unfortunate. | |
| for impl_item_def_id in &impl_items { | |
| let method_def_id = impl_item_def_id.def_id(); | |
| match self.impl_or_trait_item(method_def_id) { | |
| MethodTraitItem(method) => { | |
| if let Some(source) = method.provided_source { | |
| self.provided_method_sources | |
| .borrow_mut() | |
| .insert(method_def_id, source); | |
| } | |
| } | |
| _ => {} | |
| } | |
| } | |
| // Store the implementation info. | |
| self.impl_items.borrow_mut().insert(impl_def_id, impl_items); | |
| }); | |
| def.flags.set(def.flags.get() | TraitFlags::IMPLS_VALID); | |
| } | |
| /// Given the def_id of an impl, return the def_id of the trait it implements. | |
| /// If it implements no trait, return `None`. | |
| pub fn trait_id_of_impl(&self, def_id: DefId) -> Option<DefId> { | |
| self.impl_trait_ref(def_id).map(|tr| tr.def_id) | |
| } | |
| /// If the given def ID describes a method belonging to an impl, return the | |
| /// ID of the impl that the method belongs to. Otherwise, return `None`. | |
| pub fn impl_of_method(&self, def_id: DefId) -> Option<DefId> { | |
| if def_id.krate != LOCAL_CRATE { | |
| return match csearch::get_impl_or_trait_item(self, | |
| def_id).container() { | |
| TraitContainer(_) => None, | |
| ImplContainer(def_id) => Some(def_id), | |
| }; | |
| } | |
| match self.impl_or_trait_items.borrow().get(&def_id).cloned() { | |
| Some(trait_item) => { | |
| match trait_item.container() { | |
| TraitContainer(_) => None, | |
| ImplContainer(def_id) => Some(def_id), | |
| } | |
| } | |
| None => None | |
| } | |
| } | |
| /// If the given def ID describes an item belonging to a trait (either a | |
| /// default method or an implementation of a trait method), return the ID of | |
| /// the trait that the method belongs to. Otherwise, return `None`. | |
| pub fn trait_of_item(&self, def_id: DefId) -> Option<DefId> { | |
| if def_id.krate != LOCAL_CRATE { | |
| return csearch::get_trait_of_item(&self.sess.cstore, def_id, self); | |
| } | |
| match self.impl_or_trait_items.borrow().get(&def_id).cloned() { | |
| Some(impl_or_trait_item) => { | |
| match impl_or_trait_item.container() { | |
| TraitContainer(def_id) => Some(def_id), | |
| ImplContainer(def_id) => self.trait_id_of_impl(def_id), | |
| } | |
| } | |
| None => None | |
| } | |
| } | |
| /// If the given def ID describes an item belonging to a trait, (either a | |
| /// default method or an implementation of a trait method), return the ID of | |
| /// the method inside trait definition (this means that if the given def ID | |
| /// is already that of the original trait method, then the return value is | |
| /// the same). | |
| /// Otherwise, return `None`. | |
| pub fn trait_item_of_item(&self, def_id: DefId) -> Option<ImplOrTraitItemId> { | |
| let impl_item = match self.impl_or_trait_items.borrow().get(&def_id) { | |
| Some(m) => m.clone(), | |
| None => return None, | |
| }; | |
| let name = impl_item.name(); | |
| match self.trait_of_item(def_id) { | |
| Some(trait_did) => { | |
| self.trait_items(trait_did).iter() | |
| .find(|item| item.name() == name) | |
| .map(|item| item.id()) | |
| } | |
| None => None | |
| } | |
| } | |
| /// Construct a parameter environment suitable for static contexts or other contexts where there | |
| /// are no free type/lifetime parameters in scope. | |
| pub fn empty_parameter_environment<'a>(&'a self) | |
| -> ParameterEnvironment<'a,'tcx> { | |
| ty::ParameterEnvironment { tcx: self, | |
| free_substs: Substs::empty(), | |
| caller_bounds: Vec::new(), | |
| implicit_region_bound: ty::ReEmpty, | |
| selection_cache: traits::SelectionCache::new(), | |
| // for an empty parameter | |
| // environment, there ARE no free | |
| // regions, so it shouldn't matter | |
| // what we use for the free id | |
| free_id: ast::DUMMY_NODE_ID } | |
| } | |
| /// Constructs and returns a substitution that can be applied to move from | |
| /// the "outer" view of a type or method to the "inner" view. | |
| /// In general, this means converting from bound parameters to | |
| /// free parameters. Since we currently represent bound/free type | |
| /// parameters in the same way, this only has an effect on regions. | |
| pub fn construct_free_substs(&self, generics: &Generics<'tcx>, | |
| free_id: NodeId) -> Substs<'tcx> { | |
| // map T => T | |
| let mut types = VecPerParamSpace::empty(); | |
| for def in generics.types.as_slice() { | |
| debug!("construct_parameter_environment(): push_types_from_defs: def={:?}", | |
| def); | |
| types.push(def.space, self.mk_param_from_def(def)); | |
| } | |
| let free_id_outlive = self.region_maps.item_extent(free_id); | |
| // map bound 'a => free 'a | |
| let mut regions = VecPerParamSpace::empty(); | |
| for def in generics.regions.as_slice() { | |
| let region = | |
| ReFree(FreeRegion { scope: free_id_outlive, | |
| bound_region: BrNamed(def.def_id, def.name) }); | |
| debug!("push_region_params {:?}", region); | |
| regions.push(def.space, region); | |
| } | |
| Substs { | |
| types: types, | |
| regions: subst::NonerasedRegions(regions) | |
| } | |
| } | |
| /// See `ParameterEnvironment` struct def'n for details | |
| pub fn construct_parameter_environment<'a>(&'a self, | |
| span: Span, | |
| generics: &ty::Generics<'tcx>, | |
| generic_predicates: &ty::GenericPredicates<'tcx>, | |
| free_id: NodeId) | |
| -> ParameterEnvironment<'a, 'tcx> | |
| { | |
| // | |
| // Construct the free substs. | |
| // | |
| let free_substs = self.construct_free_substs(generics, free_id); | |
| let free_id_outlive = self.region_maps.item_extent(free_id); | |
| // | |
| // Compute the bounds on Self and the type parameters. | |
| // | |
| let bounds = generic_predicates.instantiate(self, &free_substs); | |
| let bounds = self.liberate_late_bound_regions(free_id_outlive, &ty::Binder(bounds)); | |
| let predicates = bounds.predicates.into_vec(); | |
| debug!("construct_parameter_environment: free_id={:?} free_subst={:?} predicates={:?}", | |
| free_id, | |
| free_substs, | |
| predicates); | |
| // | |
| // Finally, we have to normalize the bounds in the environment, in | |
| // case they contain any associated type projections. This process | |
| // can yield errors if the put in illegal associated types, like | |
| // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We | |
| // report these errors right here; this doesn't actually feel | |
| // right to me, because constructing the environment feels like a | |
| // kind of a "idempotent" action, but I'm not sure where would be | |
| // a better place. In practice, we construct environments for | |
| // every fn once during type checking, and we'll abort if there | |
| // are any errors at that point, so after type checking you can be | |
| // sure that this will succeed without errors anyway. | |
| // | |
| let unnormalized_env = ty::ParameterEnvironment { | |
| tcx: self, | |
| free_substs: free_substs, | |
| implicit_region_bound: ty::ReScope(free_id_outlive), | |
| caller_bounds: predicates, | |
| selection_cache: traits::SelectionCache::new(), | |
| free_id: free_id, | |
| }; | |
| let cause = traits::ObligationCause::misc(span, free_id); | |
| traits::normalize_param_env_or_error(unnormalized_env, cause) | |
| } | |
| pub fn is_method_call(&self, expr_id: NodeId) -> bool { | |
| self.tables.borrow().method_map.contains_key(&MethodCall::expr(expr_id)) | |
| } | |
| pub fn is_overloaded_autoderef(&self, expr_id: NodeId, autoderefs: u32) -> bool { | |
| self.tables.borrow().method_map.contains_key(&MethodCall::autoderef(expr_id, | |
| autoderefs)) | |
| } | |
| pub fn upvar_capture(&self, upvar_id: ty::UpvarId) -> Option<ty::UpvarCapture> { | |
| Some(self.tables.borrow().upvar_capture_map.get(&upvar_id).unwrap().clone()) | |
| } | |
| } | |
| /// The category of explicit self. | |
| #[derive(Clone, Copy, Eq, PartialEq, Debug)] | |
| pub enum ExplicitSelfCategory { | |
| StaticExplicitSelfCategory, | |
| ByValueExplicitSelfCategory, | |
| ByReferenceExplicitSelfCategory(Region, hir::Mutability), | |
| ByBoxExplicitSelfCategory, | |
| } | |
| /// A free variable referred to in a function. | |
| #[derive(Copy, Clone, RustcEncodable, RustcDecodable)] | |
| pub struct Freevar { | |
| /// The variable being accessed free. | |
| pub def: def::Def, | |
| // First span where it is accessed (there can be multiple). | |
| pub span: Span | |
| } | |
| pub type FreevarMap = NodeMap<Vec<Freevar>>; | |
| pub type CaptureModeMap = NodeMap<hir::CaptureClause>; | |
| // Trait method resolution | |
| pub type TraitMap = NodeMap<Vec<DefId>>; | |
| // Map from the NodeId of a glob import to a list of items which are actually | |
| // imported. | |
| pub type GlobMap = HashMap<NodeId, HashSet<Name>>; | |
| impl<'tcx> ctxt<'tcx> { | |
| pub fn with_freevars<T, F>(&self, fid: NodeId, f: F) -> T where | |
| F: FnOnce(&[Freevar]) -> T, | |
| { | |
| match self.freevars.borrow().get(&fid) { | |
| None => f(&[]), | |
| Some(d) => f(&d[..]) | |
| } | |
| } | |
| pub fn make_substs_for_receiver_types(&self, | |
| trait_ref: &ty::TraitRef<'tcx>, | |
| method: &ty::Method<'tcx>) | |
| -> subst::Substs<'tcx> | |
| { | |
| /*! | |
| * Substitutes the values for the receiver's type parameters | |
| * that are found in method, leaving the method's type parameters | |
| * intact. | |
| */ | |
| let meth_tps: Vec<Ty> = | |
| method.generics.types.get_slice(subst::FnSpace) | |
| .iter() | |
| .map(|def| self.mk_param_from_def(def)) | |
| .collect(); | |
| let meth_regions: Vec<ty::Region> = | |
| method.generics.regions.get_slice(subst::FnSpace) | |
| .iter() | |
| .map(|def| def.to_early_bound_region()) | |
| .collect(); | |
| trait_ref.substs.clone().with_method(meth_tps, meth_regions) | |
| } | |
| } | |
| /// An "escaping region" is a bound region whose binder is not part of `t`. | |
| /// | |
| /// So, for example, consider a type like the following, which has two binders: | |
| /// | |
| /// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize)) | |
| /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope | |
| /// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope | |
| /// | |
| /// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the | |
| /// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner | |
| /// fn type*, that type has an escaping region: `'a`. | |
| /// | |
| /// Note that what I'm calling an "escaping region" is often just called a "free region". However, | |
| /// we already use the term "free region". It refers to the regions that we use to represent bound | |
| /// regions on a fn definition while we are typechecking its body. | |
| /// | |
| /// To clarify, conceptually there is no particular difference between an "escaping" region and a | |
| /// "free" region. However, there is a big difference in practice. Basically, when "entering" a | |
| /// binding level, one is generally required to do some sort of processing to a bound region, such | |
| /// as replacing it with a fresh/skolemized region, or making an entry in the environment to | |
| /// represent the scope to which it is attached, etc. An escaping region represents a bound region | |
| /// for which this processing has not yet been done. | |
| pub trait RegionEscape { | |
| fn has_escaping_regions(&self) -> bool { | |
| self.has_regions_escaping_depth(0) | |
| } | |
| fn has_regions_escaping_depth(&self, depth: u32) -> bool; | |
| } | |
| pub trait HasTypeFlags { | |
| fn has_type_flags(&self, flags: TypeFlags) -> bool; | |
| fn has_projection_types(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_PROJECTION) | |
| } | |
| fn references_error(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_TY_ERR) | |
| } | |
| fn has_param_types(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_PARAMS) | |
| } | |
| fn has_self_ty(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_SELF) | |
| } | |
| fn has_infer_types(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_TY_INFER) | |
| } | |
| fn needs_infer(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER) | |
| } | |
| fn needs_subst(&self) -> bool { | |
| self.has_type_flags(TypeFlags::NEEDS_SUBST) | |
| } | |
| fn has_closure_types(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_TY_CLOSURE) | |
| } | |
| fn has_erasable_regions(&self) -> bool { | |
| self.has_type_flags(TypeFlags::HAS_RE_EARLY_BOUND | | |
| TypeFlags::HAS_RE_INFER | | |
| TypeFlags::HAS_FREE_REGIONS) | |
| } | |
| /// Indicates whether this value references only 'global' | |
| /// types/lifetimes that are the same regardless of what fn we are | |
| /// in. This is used for caching. Errs on the side of returning | |
| /// false. | |
| fn is_global(&self) -> bool { | |
| !self.has_type_flags(TypeFlags::HAS_LOCAL_NAMES) | |
| } | |
| } |