Skip to content
Permalink
Tree: fefe81605d
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
681 lines (587 sloc) 22.6 KB
//! An interpreter for MIR used in CTFE and by miri
#[macro_export]
macro_rules! err {
($($tt:tt)*) => { Err($crate::mir::interpret::EvalErrorKind::$($tt)*.into()) };
}
mod error;
mod value;
pub use self::error::{
EvalError, EvalResult, EvalErrorKind, AssertMessage, ConstEvalErr, struct_error,
FrameInfo, ConstEvalResult,
};
pub use self::value::{Scalar, Value, ConstValue};
use std::fmt;
use mir;
use hir::def_id::DefId;
use ty::{self, TyCtxt, Instance};
use ty::layout::{self, Align, HasDataLayout, Size};
use middle::region;
use std::iter;
use std::io;
use std::ops::{Deref, DerefMut};
use std::hash::Hash;
use syntax::ast::Mutability;
use rustc_serialize::{Encoder, Decodable, Encodable};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::{Lock as Mutex, HashMapExt};
use rustc_data_structures::tiny_list::TinyList;
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian, BigEndian};
use ty::codec::TyDecoder;
use std::sync::atomic::{AtomicU32, Ordering};
use std::num::NonZeroU32;
#[derive(Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Lock {
NoLock,
WriteLock(DynamicLifetime),
/// This should never be empty -- that would be a read lock held and nobody there to release it...
ReadLock(Vec<DynamicLifetime>),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct DynamicLifetime {
pub frame: usize,
pub region: Option<region::Scope>, // "None" indicates "until the function ends"
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum AccessKind {
Read,
Write,
}
/// Uniquely identifies a specific constant or static.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, RustcEncodable, RustcDecodable)]
pub struct GlobalId<'tcx> {
/// For a constant or static, the `Instance` of the item itself.
/// For a promoted global, the `Instance` of the function they belong to.
pub instance: ty::Instance<'tcx>,
/// The index for promoted globals within their function's `Mir`.
pub promoted: Option<mir::Promoted>,
}
////////////////////////////////////////////////////////////////////////////////
// Pointer arithmetic
////////////////////////////////////////////////////////////////////////////////
pub trait PointerArithmetic: layout::HasDataLayout {
// These are not supposed to be overridden.
//// Trunace the given value to the pointer size; also return whether there was an overflow
fn truncate_to_ptr(self, val: u128) -> (u64, bool) {
let max_ptr_plus_1 = 1u128 << self.data_layout().pointer_size.bits();
((val % max_ptr_plus_1) as u64, val >= max_ptr_plus_1)
}
// Overflow checking only works properly on the range from -u64 to +u64.
fn overflowing_signed_offset(self, val: u64, i: i128) -> (u64, bool) {
// FIXME: is it possible to over/underflow here?
if i < 0 {
// trickery to ensure that i64::min_value() works fine
// this formula only works for true negative values, it panics for zero!
let n = u64::max_value() - (i as u64) + 1;
val.overflowing_sub(n)
} else {
self.overflowing_offset(val, i as u64)
}
}
fn overflowing_offset(self, val: u64, i: u64) -> (u64, bool) {
let (res, over1) = val.overflowing_add(i);
let (res, over2) = self.truncate_to_ptr(res as u128);
(res, over1 || over2)
}
fn signed_offset<'tcx>(self, val: u64, i: i64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_signed_offset(val, i as i128);
if over { err!(Overflow(mir::BinOp::Add)) } else { Ok(res) }
}
fn offset<'tcx>(self, val: u64, i: u64) -> EvalResult<'tcx, u64> {
let (res, over) = self.overflowing_offset(val, i);
if over { err!(Overflow(mir::BinOp::Add)) } else { Ok(res) }
}
fn wrapping_signed_offset(self, val: u64, i: i64) -> u64 {
self.overflowing_signed_offset(val, i as i128).0
}
}
impl<T: layout::HasDataLayout> PointerArithmetic for T {}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, RustcEncodable, RustcDecodable, Hash)]
pub struct Pointer {
pub alloc_id: AllocId,
pub offset: Size,
}
/// Produces a `Pointer` which points to the beginning of the Allocation
impl From<AllocId> for Pointer {
fn from(alloc_id: AllocId) -> Self {
Pointer::new(alloc_id, Size::ZERO)
}
}
impl<'tcx> Pointer {
pub fn new(alloc_id: AllocId, offset: Size) -> Self {
Pointer { alloc_id, offset }
}
pub(crate) fn wrapping_signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> Self {
Pointer::new(
self.alloc_id,
Size::from_bytes(cx.data_layout().wrapping_signed_offset(self.offset.bytes(), i)),
)
}
pub fn overflowing_signed_offset<C: HasDataLayout>(self, i: i128, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_signed_offset(self.offset.bytes(), i);
(Pointer::new(self.alloc_id, Size::from_bytes(res)), over)
}
pub(crate) fn signed_offset<C: HasDataLayout>(self, i: i64, cx: C) -> EvalResult<'tcx, Self> {
Ok(Pointer::new(
self.alloc_id,
Size::from_bytes(cx.data_layout().signed_offset(self.offset.bytes(), i)?),
))
}
pub fn overflowing_offset<C: HasDataLayout>(self, i: Size, cx: C) -> (Self, bool) {
let (res, over) = cx.data_layout().overflowing_offset(self.offset.bytes(), i.bytes());
(Pointer::new(self.alloc_id, Size::from_bytes(res)), over)
}
pub fn offset<C: HasDataLayout>(self, i: Size, cx: C) -> EvalResult<'tcx, Self> {
Ok(Pointer::new(
self.alloc_id,
Size::from_bytes(cx.data_layout().offset(self.offset.bytes(), i.bytes())?),
))
}
}
#[derive(Copy, Clone, Eq, Hash, Ord, PartialEq, PartialOrd, Debug)]
pub struct AllocId(pub u64);
impl ::rustc_serialize::UseSpecializedEncodable for AllocId {}
impl ::rustc_serialize::UseSpecializedDecodable for AllocId {}
#[derive(RustcDecodable, RustcEncodable)]
enum AllocKind {
Alloc,
Fn,
Static,
}
pub fn specialized_encode_alloc_id<
'a, 'tcx,
E: Encoder,
>(
encoder: &mut E,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
alloc_id: AllocId,
) -> Result<(), E::Error> {
let alloc_type: AllocType<'tcx, &'tcx Allocation> =
tcx.alloc_map.lock().get(alloc_id).expect("no value for AllocId");
match alloc_type {
AllocType::Memory(alloc) => {
trace!("encoding {:?} with {:#?}", alloc_id, alloc);
AllocKind::Alloc.encode(encoder)?;
alloc.encode(encoder)?;
}
AllocType::Function(fn_instance) => {
trace!("encoding {:?} with {:#?}", alloc_id, fn_instance);
AllocKind::Fn.encode(encoder)?;
fn_instance.encode(encoder)?;
}
AllocType::Static(did) => {
// referring to statics doesn't need to know about their allocations,
// just about its DefId
AllocKind::Static.encode(encoder)?;
did.encode(encoder)?;
}
}
Ok(())
}
// Used to avoid infinite recursion when decoding cyclic allocations.
type DecodingSessionId = NonZeroU32;
#[derive(Clone)]
enum State {
Empty,
InProgressNonAlloc(TinyList<DecodingSessionId>),
InProgress(TinyList<DecodingSessionId>, AllocId),
Done(AllocId),
}
pub struct AllocDecodingState {
// For each AllocId we keep track of which decoding state it's currently in.
decoding_state: Vec<Mutex<State>>,
// The offsets of each allocation in the data stream.
data_offsets: Vec<u32>,
}
impl AllocDecodingState {
pub fn new_decoding_session(&self) -> AllocDecodingSession {
static DECODER_SESSION_ID: AtomicU32 = AtomicU32::new(0);
let counter = DECODER_SESSION_ID.fetch_add(1, Ordering::SeqCst);
// Make sure this is never zero
let session_id = DecodingSessionId::new((counter & 0x7FFFFFFF) + 1).unwrap();
AllocDecodingSession {
state: self,
session_id,
}
}
pub fn new(data_offsets: Vec<u32>) -> AllocDecodingState {
let decoding_state: Vec<_> = ::std::iter::repeat(Mutex::new(State::Empty))
.take(data_offsets.len())
.collect();
AllocDecodingState {
decoding_state: decoding_state,
data_offsets,
}
}
}
#[derive(Copy, Clone)]
pub struct AllocDecodingSession<'s> {
state: &'s AllocDecodingState,
session_id: DecodingSessionId,
}
impl<'s> AllocDecodingSession<'s> {
// Decodes an AllocId in a thread-safe way.
pub fn decode_alloc_id<'a, 'tcx, D>(&self,
decoder: &mut D)
-> Result<AllocId, D::Error>
where D: TyDecoder<'a, 'tcx>,
'tcx: 'a,
{
// Read the index of the allocation
let idx = decoder.read_u32()? as usize;
let pos = self.state.data_offsets[idx] as usize;
// Decode the AllocKind now so that we know if we have to reserve an
// AllocId.
let (alloc_kind, pos) = decoder.with_position(pos, |decoder| {
let alloc_kind = AllocKind::decode(decoder)?;
Ok((alloc_kind, decoder.position()))
})?;
// Check the decoding state, see if it's already decoded or if we should
// decode it here.
let alloc_id = {
let mut entry = self.state.decoding_state[idx].lock();
match *entry {
State::Done(alloc_id) => {
return Ok(alloc_id);
}
ref mut entry @ State::Empty => {
// We are allowed to decode
match alloc_kind {
AllocKind::Alloc => {
// If this is an allocation, we need to reserve an
// AllocId so we can decode cyclic graphs.
let alloc_id = decoder.tcx().alloc_map.lock().reserve();
*entry = State::InProgress(
TinyList::new_single(self.session_id),
alloc_id);
Some(alloc_id)
},
AllocKind::Fn | AllocKind::Static => {
// Fns and statics cannot be cyclic and their AllocId
// is determined later by interning
*entry = State::InProgressNonAlloc(
TinyList::new_single(self.session_id));
None
}
}
}
State::InProgressNonAlloc(ref mut sessions) => {
if sessions.contains(&self.session_id) {
bug!("This should be unreachable")
} else {
// Start decoding concurrently
sessions.insert(self.session_id);
None
}
}
State::InProgress(ref mut sessions, alloc_id) => {
if sessions.contains(&self.session_id) {
// Don't recurse.
return Ok(alloc_id)
} else {
// Start decoding concurrently
sessions.insert(self.session_id);
Some(alloc_id)
}
}
}
};
// Now decode the actual data
let alloc_id = decoder.with_position(pos, |decoder| {
match alloc_kind {
AllocKind::Alloc => {
let allocation = <&'tcx Allocation as Decodable>::decode(decoder)?;
// We already have a reserved AllocId.
let alloc_id = alloc_id.unwrap();
trace!("decoded alloc {:?} {:#?}", alloc_id, allocation);
decoder.tcx().alloc_map.lock().set_id_same_memory(alloc_id, allocation);
Ok(alloc_id)
},
AllocKind::Fn => {
assert!(alloc_id.is_none());
trace!("creating fn alloc id");
let instance = ty::Instance::decode(decoder)?;
trace!("decoded fn alloc instance: {:?}", instance);
let alloc_id = decoder.tcx().alloc_map.lock().create_fn_alloc(instance);
Ok(alloc_id)
},
AllocKind::Static => {
assert!(alloc_id.is_none());
trace!("creating extern static alloc id at");
let did = DefId::decode(decoder)?;
let alloc_id = decoder.tcx().alloc_map.lock().intern_static(did);
Ok(alloc_id)
}
}
})?;
self.state.decoding_state[idx].with_lock(|entry| {
*entry = State::Done(alloc_id);
});
Ok(alloc_id)
}
}
impl fmt::Display for AllocId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[derive(Debug, Clone, Eq, PartialEq, Hash, RustcDecodable, RustcEncodable)]
pub enum AllocType<'tcx, M> {
/// The alloc id is used as a function pointer
Function(Instance<'tcx>),
/// The alloc id points to a static variable
Static(DefId),
/// The alloc id points to memory
Memory(M)
}
pub struct AllocMap<'tcx, M> {
/// Lets you know what an AllocId refers to
id_to_type: FxHashMap<AllocId, AllocType<'tcx, M>>,
/// Used to ensure that functions and statics only get one associated AllocId
type_interner: FxHashMap<AllocType<'tcx, M>, AllocId>,
/// The AllocId to assign to the next requested id.
/// Always incremented, never gets smaller.
next_id: AllocId,
}
impl<'tcx, M: fmt::Debug + Eq + Hash + Clone> AllocMap<'tcx, M> {
pub fn new() -> Self {
AllocMap {
id_to_type: FxHashMap(),
type_interner: FxHashMap(),
next_id: AllocId(0),
}
}
/// obtains a new allocation ID that can be referenced but does not
/// yet have an allocation backing it.
pub fn reserve(
&mut self,
) -> AllocId {
let next = self.next_id;
self.next_id.0 = self.next_id.0
.checked_add(1)
.expect("You overflowed a u64 by incrementing by 1... \
You've just earned yourself a free drink if we ever meet. \
Seriously, how did you do that?!");
next
}
fn intern(&mut self, alloc_type: AllocType<'tcx, M>) -> AllocId {
if let Some(&alloc_id) = self.type_interner.get(&alloc_type) {
return alloc_id;
}
let id = self.reserve();
debug!("creating alloc_type {:?} with id {}", alloc_type, id);
self.id_to_type.insert(id, alloc_type.clone());
self.type_interner.insert(alloc_type, id);
id
}
// FIXME: Check if functions have identity. If not, we should not intern these,
// but instead create a new id per use.
// Alternatively we could just make comparing function pointers an error.
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> AllocId {
self.intern(AllocType::Function(instance))
}
pub fn get(&self, id: AllocId) -> Option<AllocType<'tcx, M>> {
self.id_to_type.get(&id).cloned()
}
pub fn unwrap_memory(&self, id: AllocId) -> M {
match self.get(id) {
Some(AllocType::Memory(mem)) => mem,
_ => bug!("expected allocation id {} to point to memory", id),
}
}
pub fn intern_static(&mut self, static_id: DefId) -> AllocId {
self.intern(AllocType::Static(static_id))
}
pub fn allocate(&mut self, mem: M) -> AllocId {
let id = self.reserve();
self.set_id_memory(id, mem);
id
}
pub fn set_id_memory(&mut self, id: AllocId, mem: M) {
if let Some(old) = self.id_to_type.insert(id, AllocType::Memory(mem)) {
bug!("tried to set allocation id {}, but it was already existing as {:#?}", id, old);
}
}
pub fn set_id_same_memory(&mut self, id: AllocId, mem: M) {
self.id_to_type.insert_same(id, AllocType::Memory(mem));
}
}
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct Allocation {
/// The actual bytes of the allocation.
/// Note that the bytes of a pointer represent the offset of the pointer
pub bytes: Vec<u8>,
/// Maps from byte addresses to allocations.
/// Only the first byte of a pointer is inserted into the map.
pub relocations: Relocations,
/// Denotes undefined memory. Reading from undefined memory is forbidden in miri
pub undef_mask: UndefMask,
/// The alignment of the allocation to detect unaligned reads.
pub align: Align,
/// Whether the allocation (of a static) should be put into mutable memory when codegenning
///
/// Only happens for `static mut` or `static` with interior mutability
pub runtime_mutability: Mutability,
}
impl Allocation {
pub fn from_bytes(slice: &[u8], align: Align) -> Self {
let mut undef_mask = UndefMask::new(Size::ZERO);
undef_mask.grow(Size::from_bytes(slice.len() as u64), true);
Self {
bytes: slice.to_owned(),
relocations: Relocations::new(),
undef_mask,
align,
runtime_mutability: Mutability::Immutable,
}
}
pub fn from_byte_aligned_bytes(slice: &[u8]) -> Self {
Allocation::from_bytes(slice, Align::from_bytes(1, 1).unwrap())
}
pub fn undef(size: Size, align: Align) -> Self {
assert_eq!(size.bytes() as usize as u64, size.bytes());
Allocation {
bytes: vec![0; size.bytes() as usize],
relocations: Relocations::new(),
undef_mask: UndefMask::new(size),
align,
runtime_mutability: Mutability::Immutable,
}
}
}
impl<'tcx> ::serialize::UseSpecializedDecodable for &'tcx Allocation {}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Relocations(SortedMap<Size, AllocId>);
impl Relocations {
pub fn new() -> Relocations {
Relocations(SortedMap::new())
}
// The caller must guarantee that the given relocations are already sorted
// by address and contain no duplicates.
pub fn from_presorted(r: Vec<(Size, AllocId)>) -> Relocations {
Relocations(SortedMap::from_presorted_elements(r))
}
}
impl Deref for Relocations {
type Target = SortedMap<Size, AllocId>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Relocations {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////
pub fn write_target_uint(
endianness: layout::Endian,
mut target: &mut [u8],
data: u128,
) -> Result<(), io::Error> {
let len = target.len();
match endianness {
layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
}
}
pub fn write_target_int(
endianness: layout::Endian,
mut target: &mut [u8],
data: i128,
) -> Result<(), io::Error> {
let len = target.len();
match endianness {
layout::Endian::Little => target.write_int128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_int128::<BigEndian>(data, len),
}
}
pub fn read_target_uint(endianness: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
match endianness {
layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Undefined byte tracking
////////////////////////////////////////////////////////////////////////////////
type Block = u64;
const BLOCK_SIZE: u64 = 64;
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct UndefMask {
blocks: Vec<Block>,
len: Size,
}
impl_stable_hash_for!(struct mir::interpret::UndefMask{blocks, len});
impl UndefMask {
pub fn new(size: Size) -> Self {
let mut m = UndefMask {
blocks: vec![],
len: Size::ZERO,
};
m.grow(size, false);
m
}
/// Check whether the range `start..end` (end-exclusive) is entirely defined.
pub fn is_range_defined(&self, start: Size, end: Size) -> bool {
if end > self.len {
return false;
}
for i in start.bytes()..end.bytes() {
if !self.get(Size::from_bytes(i)) {
return false;
}
}
true
}
pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) {
let len = self.len;
if end > len {
self.grow(end - len, new_state);
}
self.set_range_inbounds(start, end, new_state);
}
pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
for i in start.bytes()..end.bytes() {
self.set(Size::from_bytes(i), new_state);
}
}
#[inline]
pub fn get(&self, i: Size) -> bool {
let (block, bit) = bit_index(i);
(self.blocks[block] & 1 << bit) != 0
}
#[inline]
pub fn set(&mut self, i: Size, new_state: bool) {
let (block, bit) = bit_index(i);
if new_state {
self.blocks[block] |= 1 << bit;
} else {
self.blocks[block] &= !(1 << bit);
}
}
pub fn grow(&mut self, amount: Size, new_state: bool) {
let unused_trailing_bits = self.blocks.len() as u64 * BLOCK_SIZE - self.len.bytes();
if amount.bytes() > unused_trailing_bits {
let additional_blocks = amount.bytes() / BLOCK_SIZE + 1;
assert_eq!(additional_blocks as usize as u64, additional_blocks);
self.blocks.extend(
iter::repeat(0).take(additional_blocks as usize),
);
}
let start = self.len;
self.len += amount;
self.set_range_inbounds(start, start + amount, new_state);
}
}
#[inline]
fn bit_index(bits: Size) -> (usize, usize) {
let bits = bits.bytes();
let a = bits / BLOCK_SIZE;
let b = bits % BLOCK_SIZE;
assert_eq!(a as usize as u64, a);
assert_eq!(b as usize as u64, b);
(a as usize, b as usize)
}
You can’t perform that action at this time.