Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
rust/compiler/rustc_trait_selection/src/traits/object_safety.rs
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
945 lines (861 sloc)
37.2 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//! "Object safety" refers to the ability for a trait to be converted | |
//! to an object. In general, traits may only be converted to an | |
//! object if all of their methods meet certain criteria. In particular, | |
//! they must: | |
//! | |
//! - have a suitable receiver from which we can extract a vtable and coerce to a "thin" version | |
//! that doesn't contain the vtable; | |
//! - not reference the erased type `Self` except for in this receiver; | |
//! - not have generic type parameters. | |
use super::elaborate; | |
use crate::infer::TyCtxtInferExt; | |
use crate::traits::query::evaluate_obligation::InferCtxtExt; | |
use crate::traits::{self, Obligation, ObligationCause}; | |
use rustc_errors::{DelayDm, FatalError, MultiSpan}; | |
use rustc_hir as hir; | |
use rustc_hir::def_id::DefId; | |
use rustc_middle::query::Providers; | |
use rustc_middle::ty::subst::{GenericArg, InternalSubsts}; | |
use rustc_middle::ty::{ | |
self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor, | |
}; | |
use rustc_middle::ty::{ToPredicate, TypeVisitableExt}; | |
use rustc_session::lint::builtin::WHERE_CLAUSES_OBJECT_SAFETY; | |
use rustc_span::symbol::Symbol; | |
use rustc_span::Span; | |
use smallvec::SmallVec; | |
use std::iter; | |
use std::ops::ControlFlow; | |
pub use crate::traits::{MethodViolationCode, ObjectSafetyViolation}; | |
/// Returns the object safety violations that affect | |
/// astconv -- currently, `Self` in supertraits. This is needed | |
/// because `object_safety_violations` can't be used during | |
/// type collection. | |
pub fn astconv_object_safety_violations( | |
tcx: TyCtxt<'_>, | |
trait_def_id: DefId, | |
) -> Vec<ObjectSafetyViolation> { | |
debug_assert!(tcx.generics_of(trait_def_id).has_self); | |
let violations = traits::supertrait_def_ids(tcx, trait_def_id) | |
.map(|def_id| predicates_reference_self(tcx, def_id, true)) | |
.filter(|spans| !spans.is_empty()) | |
.map(ObjectSafetyViolation::SupertraitSelf) | |
.collect(); | |
debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}", trait_def_id, violations); | |
violations | |
} | |
fn object_safety_violations(tcx: TyCtxt<'_>, trait_def_id: DefId) -> &'_ [ObjectSafetyViolation] { | |
debug_assert!(tcx.generics_of(trait_def_id).has_self); | |
debug!("object_safety_violations: {:?}", trait_def_id); | |
tcx.arena.alloc_from_iter( | |
traits::supertrait_def_ids(tcx, trait_def_id) | |
.flat_map(|def_id| object_safety_violations_for_trait(tcx, def_id)), | |
) | |
} | |
fn check_is_object_safe(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool { | |
let violations = tcx.object_safety_violations(trait_def_id); | |
if violations.is_empty() { | |
return true; | |
} | |
// If the trait contains any other violations, then let the error reporting path | |
// report it instead of emitting a warning here. | |
if violations.iter().all(|violation| { | |
matches!( | |
violation, | |
ObjectSafetyViolation::Method(_, MethodViolationCode::WhereClauseReferencesSelf, _) | |
) | |
}) { | |
for violation in violations { | |
if let ObjectSafetyViolation::Method( | |
_, | |
MethodViolationCode::WhereClauseReferencesSelf, | |
span, | |
) = violation | |
{ | |
lint_object_unsafe_trait(tcx, *span, trait_def_id, &violation); | |
} | |
} | |
return true; | |
} | |
false | |
} | |
/// We say a method is *vtable safe* if it can be invoked on a trait | |
/// object. Note that object-safe traits can have some | |
/// non-vtable-safe methods, so long as they require `Self: Sized` or | |
/// otherwise ensure that they cannot be used when `Self = Trait`. | |
pub fn is_vtable_safe_method(tcx: TyCtxt<'_>, trait_def_id: DefId, method: ty::AssocItem) -> bool { | |
debug_assert!(tcx.generics_of(trait_def_id).has_self); | |
debug!("is_vtable_safe_method({:?}, {:?})", trait_def_id, method); | |
// Any method that has a `Self: Sized` bound cannot be called. | |
if generics_require_sized_self(tcx, method.def_id) { | |
return false; | |
} | |
match virtual_call_violation_for_method(tcx, trait_def_id, method) { | |
None | Some(MethodViolationCode::WhereClauseReferencesSelf) => true, | |
Some(_) => false, | |
} | |
} | |
fn object_safety_violations_for_trait( | |
tcx: TyCtxt<'_>, | |
trait_def_id: DefId, | |
) -> Vec<ObjectSafetyViolation> { | |
// Check assoc items for violations. | |
let mut violations: Vec<_> = tcx | |
.associated_items(trait_def_id) | |
.in_definition_order() | |
.filter_map(|&item| object_safety_violation_for_assoc_item(tcx, trait_def_id, item)) | |
.collect(); | |
// Check the trait itself. | |
if trait_has_sized_self(tcx, trait_def_id) { | |
// We don't want to include the requirement from `Sized` itself to be `Sized` in the list. | |
let spans = get_sized_bounds(tcx, trait_def_id); | |
violations.push(ObjectSafetyViolation::SizedSelf(spans)); | |
} | |
let spans = predicates_reference_self(tcx, trait_def_id, false); | |
if !spans.is_empty() { | |
violations.push(ObjectSafetyViolation::SupertraitSelf(spans)); | |
} | |
let spans = bounds_reference_self(tcx, trait_def_id); | |
if !spans.is_empty() { | |
violations.push(ObjectSafetyViolation::SupertraitSelf(spans)); | |
} | |
let spans = super_predicates_have_non_lifetime_binders(tcx, trait_def_id); | |
if !spans.is_empty() { | |
violations.push(ObjectSafetyViolation::SupertraitNonLifetimeBinder(spans)); | |
} | |
debug!( | |
"object_safety_violations_for_trait(trait_def_id={:?}) = {:?}", | |
trait_def_id, violations | |
); | |
violations | |
} | |
/// Lint object-unsafe trait. | |
fn lint_object_unsafe_trait( | |
tcx: TyCtxt<'_>, | |
span: Span, | |
trait_def_id: DefId, | |
violation: &ObjectSafetyViolation, | |
) { | |
// Using `CRATE_NODE_ID` is wrong, but it's hard to get a more precise id. | |
// It's also hard to get a use site span, so we use the method definition span. | |
tcx.struct_span_lint_hir( | |
WHERE_CLAUSES_OBJECT_SAFETY, | |
hir::CRATE_HIR_ID, | |
span, | |
DelayDm(|| format!("the trait `{}` cannot be made into an object", tcx.def_path_str(trait_def_id))), | |
|err| { | |
let node = tcx.hir().get_if_local(trait_def_id); | |
let mut spans = MultiSpan::from_span(span); | |
if let Some(hir::Node::Item(item)) = node { | |
spans.push_span_label( | |
item.ident.span, | |
"this trait cannot be made into an object...", | |
); | |
spans.push_span_label(span, format!("...because {}", violation.error_msg())); | |
} else { | |
spans.push_span_label( | |
span, | |
format!( | |
"the trait cannot be made into an object because {}", | |
violation.error_msg() | |
), | |
); | |
}; | |
err.span_note( | |
spans, | |
"for a trait to be \"object safe\" it needs to allow building a vtable to allow the \ | |
call to be resolvable dynamically; for more information visit \ | |
<https://doc.rust-lang.org/reference/items/traits.html#object-safety>", | |
); | |
if node.is_some() { | |
// Only provide the help if its a local trait, otherwise it's not | |
violation.solution(err); | |
} | |
err | |
}, | |
); | |
} | |
fn sized_trait_bound_spans<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
bounds: hir::GenericBounds<'tcx>, | |
) -> impl 'tcx + Iterator<Item = Span> { | |
bounds.iter().filter_map(move |b| match b { | |
hir::GenericBound::Trait(trait_ref, hir::TraitBoundModifier::None) | |
if trait_has_sized_self( | |
tcx, | |
trait_ref.trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()), | |
) => | |
{ | |
// Fetch spans for supertraits that are `Sized`: `trait T: Super` | |
Some(trait_ref.span) | |
} | |
_ => None, | |
}) | |
} | |
fn get_sized_bounds(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> { | |
tcx.hir() | |
.get_if_local(trait_def_id) | |
.and_then(|node| match node { | |
hir::Node::Item(hir::Item { | |
kind: hir::ItemKind::Trait(.., generics, bounds, _), | |
.. | |
}) => Some( | |
generics | |
.predicates | |
.iter() | |
.filter_map(|pred| { | |
match pred { | |
hir::WherePredicate::BoundPredicate(pred) | |
if pred.bounded_ty.hir_id.owner.to_def_id() == trait_def_id => | |
{ | |
// Fetch spans for trait bounds that are Sized: | |
// `trait T where Self: Pred` | |
Some(sized_trait_bound_spans(tcx, pred.bounds)) | |
} | |
_ => None, | |
} | |
}) | |
.flatten() | |
// Fetch spans for supertraits that are `Sized`: `trait T: Super`. | |
.chain(sized_trait_bound_spans(tcx, bounds)) | |
.collect::<SmallVec<[Span; 1]>>(), | |
), | |
_ => None, | |
}) | |
.unwrap_or_else(SmallVec::new) | |
} | |
fn predicates_reference_self( | |
tcx: TyCtxt<'_>, | |
trait_def_id: DefId, | |
supertraits_only: bool, | |
) -> SmallVec<[Span; 1]> { | |
let trait_ref = ty::Binder::dummy(ty::TraitRef::identity(tcx, trait_def_id)); | |
let predicates = if supertraits_only { | |
tcx.super_predicates_of(trait_def_id) | |
} else { | |
tcx.predicates_of(trait_def_id) | |
}; | |
predicates | |
.predicates | |
.iter() | |
.map(|&(predicate, sp)| (predicate.subst_supertrait(tcx, &trait_ref), sp)) | |
.filter_map(|predicate| predicate_references_self(tcx, predicate)) | |
.collect() | |
} | |
fn bounds_reference_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> SmallVec<[Span; 1]> { | |
tcx.associated_items(trait_def_id) | |
.in_definition_order() | |
.filter(|item| item.kind == ty::AssocKind::Type) | |
.flat_map(|item| tcx.explicit_item_bounds(item.def_id).subst_identity_iter_copied()) | |
.filter_map(|pred_span| predicate_references_self(tcx, pred_span)) | |
.collect() | |
} | |
fn predicate_references_self<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
(predicate, sp): (ty::Predicate<'tcx>, Span), | |
) -> Option<Span> { | |
let self_ty = tcx.types.self_param; | |
let has_self_ty = |arg: &GenericArg<'tcx>| arg.walk().any(|arg| arg == self_ty.into()); | |
match predicate.kind().skip_binder() { | |
ty::PredicateKind::Clause(ty::Clause::Trait(ref data)) => { | |
// In the case of a trait predicate, we can skip the "self" type. | |
data.trait_ref.substs[1..].iter().any(has_self_ty).then_some(sp) | |
} | |
ty::PredicateKind::Clause(ty::Clause::Projection(ref data)) => { | |
// And similarly for projections. This should be redundant with | |
// the previous check because any projection should have a | |
// matching `Trait` predicate with the same inputs, but we do | |
// the check to be safe. | |
// | |
// It's also won't be redundant if we allow type-generic associated | |
// types for trait objects. | |
// | |
// Note that we *do* allow projection *outputs* to contain | |
// `self` (i.e., `trait Foo: Bar<Output=Self::Result> { type Result; }`), | |
// we just require the user to specify *both* outputs | |
// in the object type (i.e., `dyn Foo<Output=(), Result=()>`). | |
// | |
// This is ALT2 in issue #56288, see that for discussion of the | |
// possible alternatives. | |
data.projection_ty.substs[1..].iter().any(has_self_ty).then_some(sp) | |
} | |
ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(_ct, ty)) => { | |
has_self_ty(&ty.into()).then_some(sp) | |
} | |
ty::PredicateKind::AliasRelate(..) => bug!("`AliasRelate` not allowed as assumption"), | |
ty::PredicateKind::WellFormed(..) | |
| ty::PredicateKind::ObjectSafe(..) | |
| ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) | |
| ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..)) | |
| ty::PredicateKind::ClosureKind(..) | |
| ty::PredicateKind::Subtype(..) | |
| ty::PredicateKind::Coerce(..) | |
// FIXME(generic_const_exprs): this can mention `Self` | |
| ty::PredicateKind::ConstEvaluatable(..) | |
| ty::PredicateKind::ConstEquate(..) | |
| ty::PredicateKind::Ambiguous | |
| ty::PredicateKind::TypeWellFormedFromEnv(..) => None, | |
} | |
} | |
fn super_predicates_have_non_lifetime_binders( | |
tcx: TyCtxt<'_>, | |
trait_def_id: DefId, | |
) -> SmallVec<[Span; 1]> { | |
// If non_lifetime_binders is disabled, then exit early | |
if !tcx.features().non_lifetime_binders { | |
return SmallVec::new(); | |
} | |
tcx.super_predicates_of(trait_def_id) | |
.predicates | |
.iter() | |
.filter_map(|(pred, span)| pred.has_non_region_late_bound().then_some(*span)) | |
.collect() | |
} | |
fn trait_has_sized_self(tcx: TyCtxt<'_>, trait_def_id: DefId) -> bool { | |
generics_require_sized_self(tcx, trait_def_id) | |
} | |
fn generics_require_sized_self(tcx: TyCtxt<'_>, def_id: DefId) -> bool { | |
let Some(sized_def_id) = tcx.lang_items().sized_trait() else { | |
return false; /* No Sized trait, can't require it! */ | |
}; | |
// Search for a predicate like `Self : Sized` amongst the trait bounds. | |
let predicates = tcx.predicates_of(def_id); | |
let predicates = predicates.instantiate_identity(tcx).predicates; | |
elaborate(tcx, predicates.into_iter()).any(|pred| match pred.kind().skip_binder() { | |
ty::PredicateKind::Clause(ty::Clause::Trait(ref trait_pred)) => { | |
trait_pred.def_id() == sized_def_id && trait_pred.self_ty().is_param(0) | |
} | |
ty::PredicateKind::Clause(ty::Clause::Projection(..)) | |
| ty::PredicateKind::Clause(ty::Clause::ConstArgHasType(..)) | |
| ty::PredicateKind::Subtype(..) | |
| ty::PredicateKind::Coerce(..) | |
| ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..)) | |
| ty::PredicateKind::WellFormed(..) | |
| ty::PredicateKind::ObjectSafe(..) | |
| ty::PredicateKind::ClosureKind(..) | |
| ty::PredicateKind::Clause(ty::Clause::TypeOutlives(..)) | |
| ty::PredicateKind::ConstEvaluatable(..) | |
| ty::PredicateKind::ConstEquate(..) | |
| ty::PredicateKind::AliasRelate(..) | |
| ty::PredicateKind::Ambiguous | |
| ty::PredicateKind::TypeWellFormedFromEnv(..) => false, | |
}) | |
} | |
/// Returns `Some(_)` if this item makes the containing trait not object safe. | |
#[instrument(level = "debug", skip(tcx), ret)] | |
fn object_safety_violation_for_assoc_item( | |
tcx: TyCtxt<'_>, | |
trait_def_id: DefId, | |
item: ty::AssocItem, | |
) -> Option<ObjectSafetyViolation> { | |
// Any item that has a `Self : Sized` requisite is otherwise | |
// exempt from the regulations. | |
if generics_require_sized_self(tcx, item.def_id) { | |
return None; | |
} | |
match item.kind { | |
// Associated consts are never object safe, as they can't have `where` bounds yet at all, | |
// and associated const bounds in trait objects aren't a thing yet either. | |
ty::AssocKind::Const => { | |
Some(ObjectSafetyViolation::AssocConst(item.name, item.ident(tcx).span)) | |
} | |
ty::AssocKind::Fn => virtual_call_violation_for_method(tcx, trait_def_id, item).map(|v| { | |
let node = tcx.hir().get_if_local(item.def_id); | |
// Get an accurate span depending on the violation. | |
let span = match (&v, node) { | |
(MethodViolationCode::ReferencesSelfInput(Some(span)), _) => *span, | |
(MethodViolationCode::UndispatchableReceiver(Some(span)), _) => *span, | |
(MethodViolationCode::ReferencesImplTraitInTrait(span), _) => *span, | |
(MethodViolationCode::ReferencesSelfOutput, Some(node)) => { | |
node.fn_decl().map_or(item.ident(tcx).span, |decl| decl.output.span()) | |
} | |
_ => item.ident(tcx).span, | |
}; | |
ObjectSafetyViolation::Method(item.name, v, span) | |
}), | |
// Associated types can only be object safe if they have `Self: Sized` bounds. | |
ty::AssocKind::Type => { | |
if !tcx.features().generic_associated_types_extended | |
&& !tcx.generics_of(item.def_id).params.is_empty() | |
&& item.opt_rpitit_info.is_none() | |
{ | |
Some(ObjectSafetyViolation::GAT(item.name, item.ident(tcx).span)) | |
} else { | |
// We will permit associated types if they are explicitly mentioned in the trait object. | |
// We can't check this here, as here we only check if it is guaranteed to not be possible. | |
None | |
} | |
} | |
} | |
} | |
/// Returns `Some(_)` if this method cannot be called on a trait | |
/// object; this does not necessarily imply that the enclosing trait | |
/// is not object safe, because the method might have a where clause | |
/// `Self:Sized`. | |
fn virtual_call_violation_for_method<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
trait_def_id: DefId, | |
method: ty::AssocItem, | |
) -> Option<MethodViolationCode> { | |
let sig = tcx.fn_sig(method.def_id).subst_identity(); | |
// The method's first parameter must be named `self` | |
if !method.fn_has_self_parameter { | |
let sugg = if let Some(hir::Node::TraitItem(hir::TraitItem { | |
generics, | |
kind: hir::TraitItemKind::Fn(sig, _), | |
.. | |
})) = tcx.hir().get_if_local(method.def_id).as_ref() | |
{ | |
let sm = tcx.sess.source_map(); | |
Some(( | |
( | |
format!("&self{}", if sig.decl.inputs.is_empty() { "" } else { ", " }), | |
sm.span_through_char(sig.span, '(').shrink_to_hi(), | |
), | |
( | |
format!("{} Self: Sized", generics.add_where_or_trailing_comma()), | |
generics.tail_span_for_predicate_suggestion(), | |
), | |
)) | |
} else { | |
None | |
}; | |
return Some(MethodViolationCode::StaticMethod(sugg)); | |
} | |
for (i, &input_ty) in sig.skip_binder().inputs().iter().enumerate().skip(1) { | |
if contains_illegal_self_type_reference(tcx, trait_def_id, sig.rebind(input_ty)) { | |
let span = if let Some(hir::Node::TraitItem(hir::TraitItem { | |
kind: hir::TraitItemKind::Fn(sig, _), | |
.. | |
})) = tcx.hir().get_if_local(method.def_id).as_ref() | |
{ | |
Some(sig.decl.inputs[i].span) | |
} else { | |
None | |
}; | |
return Some(MethodViolationCode::ReferencesSelfInput(span)); | |
} | |
} | |
if contains_illegal_self_type_reference(tcx, trait_def_id, sig.output()) { | |
return Some(MethodViolationCode::ReferencesSelfOutput); | |
} | |
if let Some(code) = contains_illegal_impl_trait_in_trait(tcx, method.def_id, sig.output()) { | |
return Some(code); | |
} | |
// We can't monomorphize things like `fn foo<A>(...)`. | |
let own_counts = tcx.generics_of(method.def_id).own_counts(); | |
if own_counts.types + own_counts.consts != 0 { | |
return Some(MethodViolationCode::Generic); | |
} | |
let receiver_ty = tcx.liberate_late_bound_regions(method.def_id, sig.input(0)); | |
// Until `unsized_locals` is fully implemented, `self: Self` can't be dispatched on. | |
// However, this is already considered object-safe. We allow it as a special case here. | |
// FIXME(mikeyhew) get rid of this `if` statement once `receiver_is_dispatchable` allows | |
// `Receiver: Unsize<Receiver[Self => dyn Trait]>`. | |
if receiver_ty != tcx.types.self_param { | |
if !receiver_is_dispatchable(tcx, method, receiver_ty) { | |
let span = if let Some(hir::Node::TraitItem(hir::TraitItem { | |
kind: hir::TraitItemKind::Fn(sig, _), | |
.. | |
})) = tcx.hir().get_if_local(method.def_id).as_ref() | |
{ | |
Some(sig.decl.inputs[0].span) | |
} else { | |
None | |
}; | |
return Some(MethodViolationCode::UndispatchableReceiver(span)); | |
} else { | |
// Do sanity check to make sure the receiver actually has the layout of a pointer. | |
use rustc_target::abi::Abi; | |
let param_env = tcx.param_env(method.def_id); | |
let abi_of_ty = |ty: Ty<'tcx>| -> Option<Abi> { | |
match tcx.layout_of(param_env.and(ty)) { | |
Ok(layout) => Some(layout.abi), | |
Err(err) => { | |
// #78372 | |
tcx.sess.delay_span_bug( | |
tcx.def_span(method.def_id), | |
format!("error: {err}\n while computing layout for type {ty:?}"), | |
); | |
None | |
} | |
} | |
}; | |
// e.g., `Rc<()>` | |
let unit_receiver_ty = | |
receiver_for_self_ty(tcx, receiver_ty, tcx.mk_unit(), method.def_id); | |
match abi_of_ty(unit_receiver_ty) { | |
Some(Abi::Scalar(..)) => (), | |
abi => { | |
tcx.sess.delay_span_bug( | |
tcx.def_span(method.def_id), | |
format!( | |
"receiver when `Self = ()` should have a Scalar ABI; found {:?}", | |
abi | |
), | |
); | |
} | |
} | |
let trait_object_ty = object_ty_for_trait(tcx, trait_def_id, tcx.lifetimes.re_static); | |
// e.g., `Rc<dyn Trait>` | |
let trait_object_receiver = | |
receiver_for_self_ty(tcx, receiver_ty, trait_object_ty, method.def_id); | |
match abi_of_ty(trait_object_receiver) { | |
Some(Abi::ScalarPair(..)) => (), | |
abi => { | |
tcx.sess.delay_span_bug( | |
tcx.def_span(method.def_id), | |
format!( | |
"receiver when `Self = {}` should have a ScalarPair ABI; found {:?}", | |
trait_object_ty, abi | |
), | |
); | |
} | |
} | |
} | |
} | |
// NOTE: This check happens last, because it results in a lint, and not a | |
// hard error. | |
if tcx.predicates_of(method.def_id).predicates.iter().any(|&(pred, span)| { | |
// dyn Trait is okay: | |
// | |
// trait Trait { | |
// fn f(&self) where Self: 'static; | |
// } | |
// | |
// because a trait object can't claim to live longer than the concrete | |
// type. If the lifetime bound holds on dyn Trait then it's guaranteed | |
// to hold as well on the concrete type. | |
if pred.to_opt_type_outlives().is_some() { | |
return false; | |
} | |
// dyn Trait is okay: | |
// | |
// auto trait AutoTrait {} | |
// | |
// trait Trait { | |
// fn f(&self) where Self: AutoTrait; | |
// } | |
// | |
// because `impl AutoTrait for dyn Trait` is disallowed by coherence. | |
// Traits with a default impl are implemented for a trait object if and | |
// only if the autotrait is one of the trait object's trait bounds, like | |
// in `dyn Trait + AutoTrait`. This guarantees that trait objects only | |
// implement auto traits if the underlying type does as well. | |
if let ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate { | |
trait_ref: pred_trait_ref, | |
constness: ty::BoundConstness::NotConst, | |
polarity: ty::ImplPolarity::Positive, | |
})) = pred.kind().skip_binder() | |
&& pred_trait_ref.self_ty() == tcx.types.self_param | |
&& tcx.trait_is_auto(pred_trait_ref.def_id) | |
{ | |
// Consider bounds like `Self: Bound<Self>`. Auto traits are not | |
// allowed to have generic parameters so `auto trait Bound<T> {}` | |
// would already have reported an error at the definition of the | |
// auto trait. | |
if pred_trait_ref.substs.len() != 1 { | |
tcx.sess.diagnostic().delay_span_bug( | |
span, | |
"auto traits cannot have generic parameters", | |
); | |
} | |
return false; | |
} | |
contains_illegal_self_type_reference(tcx, trait_def_id, pred) | |
}) { | |
return Some(MethodViolationCode::WhereClauseReferencesSelf); | |
} | |
None | |
} | |
/// Performs a type substitution to produce the version of `receiver_ty` when `Self = self_ty`. | |
/// For example, for `receiver_ty = Rc<Self>` and `self_ty = Foo`, returns `Rc<Foo>`. | |
fn receiver_for_self_ty<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
receiver_ty: Ty<'tcx>, | |
self_ty: Ty<'tcx>, | |
method_def_id: DefId, | |
) -> Ty<'tcx> { | |
debug!("receiver_for_self_ty({:?}, {:?}, {:?})", receiver_ty, self_ty, method_def_id); | |
let substs = InternalSubsts::for_item(tcx, method_def_id, |param, _| { | |
if param.index == 0 { self_ty.into() } else { tcx.mk_param_from_def(param) } | |
}); | |
let result = EarlyBinder::bind(receiver_ty).subst(tcx, substs); | |
debug!( | |
"receiver_for_self_ty({:?}, {:?}, {:?}) = {:?}", | |
receiver_ty, self_ty, method_def_id, result | |
); | |
result | |
} | |
/// Creates the object type for the current trait. For example, | |
/// if the current trait is `Deref`, then this will be | |
/// `dyn Deref<Target = Self::Target> + 'static`. | |
#[instrument(level = "trace", skip(tcx), ret)] | |
fn object_ty_for_trait<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
trait_def_id: DefId, | |
lifetime: ty::Region<'tcx>, | |
) -> Ty<'tcx> { | |
let trait_ref = ty::TraitRef::identity(tcx, trait_def_id); | |
debug!(?trait_ref); | |
let trait_predicate = ty::Binder::dummy(ty::ExistentialPredicate::Trait( | |
ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref), | |
)); | |
debug!(?trait_predicate); | |
let pred: ty::Predicate<'tcx> = trait_ref.to_predicate(tcx); | |
let mut elaborated_predicates: Vec<_> = elaborate(tcx, [pred]) | |
.filter_map(|pred| { | |
debug!(?pred); | |
let pred = pred.to_opt_poly_projection_pred()?; | |
Some(pred.map_bound(|p| { | |
ty::ExistentialPredicate::Projection(ty::ExistentialProjection::erase_self_ty( | |
tcx, p, | |
)) | |
})) | |
}) | |
.collect(); | |
// NOTE: Since #37965, the existential predicates list has depended on the | |
// list of predicates to be sorted. This is mostly to enforce that the primary | |
// predicate comes first. | |
elaborated_predicates.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder())); | |
elaborated_predicates.dedup(); | |
let existential_predicates = tcx.mk_poly_existential_predicates_from_iter( | |
iter::once(trait_predicate).chain(elaborated_predicates), | |
); | |
debug!(?existential_predicates); | |
tcx.mk_dynamic(existential_predicates, lifetime, ty::Dyn) | |
} | |
/// Checks the method's receiver (the `self` argument) can be dispatched on when `Self` is a | |
/// trait object. We require that `DispatchableFromDyn` be implemented for the receiver type | |
/// in the following way: | |
/// - let `Receiver` be the type of the `self` argument, i.e `Self`, `&Self`, `Rc<Self>`, | |
/// - require the following bound: | |
/// | |
/// ```ignore (not-rust) | |
/// Receiver[Self => T]: DispatchFromDyn<Receiver[Self => dyn Trait]> | |
/// ``` | |
/// | |
/// where `Foo[X => Y]` means "the same type as `Foo`, but with `X` replaced with `Y`" | |
/// (substitution notation). | |
/// | |
/// Some examples of receiver types and their required obligation: | |
/// - `&'a mut self` requires `&'a mut Self: DispatchFromDyn<&'a mut dyn Trait>`, | |
/// - `self: Rc<Self>` requires `Rc<Self>: DispatchFromDyn<Rc<dyn Trait>>`, | |
/// - `self: Pin<Box<Self>>` requires `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<dyn Trait>>>`. | |
/// | |
/// The only case where the receiver is not dispatchable, but is still a valid receiver | |
/// type (just not object-safe), is when there is more than one level of pointer indirection. | |
/// E.g., `self: &&Self`, `self: &Rc<Self>`, `self: Box<Box<Self>>`. In these cases, there | |
/// is no way, or at least no inexpensive way, to coerce the receiver from the version where | |
/// `Self = dyn Trait` to the version where `Self = T`, where `T` is the unknown erased type | |
/// contained by the trait object, because the object that needs to be coerced is behind | |
/// a pointer. | |
/// | |
/// In practice, we cannot use `dyn Trait` explicitly in the obligation because it would result | |
/// in a new check that `Trait` is object safe, creating a cycle (until object_safe_for_dispatch | |
/// is stabilized, see tracking issue <https://github.com/rust-lang/rust/issues/43561>). | |
/// Instead, we fudge a little by introducing a new type parameter `U` such that | |
/// `Self: Unsize<U>` and `U: Trait + ?Sized`, and use `U` in place of `dyn Trait`. | |
/// Written as a chalk-style query: | |
/// ```ignore (not-rust) | |
/// forall (U: Trait + ?Sized) { | |
/// if (Self: Unsize<U>) { | |
/// Receiver: DispatchFromDyn<Receiver[Self => U]> | |
/// } | |
/// } | |
/// ``` | |
/// for `self: &'a mut Self`, this means `&'a mut Self: DispatchFromDyn<&'a mut U>` | |
/// for `self: Rc<Self>`, this means `Rc<Self>: DispatchFromDyn<Rc<U>>` | |
/// for `self: Pin<Box<Self>>`, this means `Pin<Box<Self>>: DispatchFromDyn<Pin<Box<U>>>` | |
// | |
// FIXME(mikeyhew) when unsized receivers are implemented as part of unsized rvalues, add this | |
// fallback query: `Receiver: Unsize<Receiver[Self => U]>` to support receivers like | |
// `self: Wrapper<Self>`. | |
#[allow(dead_code)] | |
fn receiver_is_dispatchable<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
method: ty::AssocItem, | |
receiver_ty: Ty<'tcx>, | |
) -> bool { | |
debug!("receiver_is_dispatchable: method = {:?}, receiver_ty = {:?}", method, receiver_ty); | |
let traits = (tcx.lang_items().unsize_trait(), tcx.lang_items().dispatch_from_dyn_trait()); | |
let (Some(unsize_did), Some(dispatch_from_dyn_did)) = traits else { | |
debug!("receiver_is_dispatchable: Missing Unsize or DispatchFromDyn traits"); | |
return false; | |
}; | |
// the type `U` in the query | |
// use a bogus type parameter to mimic a forall(U) query using u32::MAX for now. | |
// FIXME(mikeyhew) this is a total hack. Once object_safe_for_dispatch is stabilized, we can | |
// replace this with `dyn Trait` | |
let unsized_self_ty: Ty<'tcx> = | |
tcx.mk_ty_param(u32::MAX, Symbol::intern("RustaceansAreAwesome")); | |
// `Receiver[Self => U]` | |
let unsized_receiver_ty = | |
receiver_for_self_ty(tcx, receiver_ty, unsized_self_ty, method.def_id); | |
// create a modified param env, with `Self: Unsize<U>` and `U: Trait` added to caller bounds | |
// `U: ?Sized` is already implied here | |
let param_env = { | |
let param_env = tcx.param_env(method.def_id); | |
// Self: Unsize<U> | |
let unsize_predicate = | |
ty::TraitRef::new(tcx, unsize_did, [tcx.types.self_param, unsized_self_ty]) | |
.without_const() | |
.to_predicate(tcx); | |
// U: Trait<Arg1, ..., ArgN> | |
let trait_predicate = { | |
let trait_def_id = method.trait_container(tcx).unwrap(); | |
let substs = InternalSubsts::for_item(tcx, trait_def_id, |param, _| { | |
if param.index == 0 { unsized_self_ty.into() } else { tcx.mk_param_from_def(param) } | |
}); | |
ty::TraitRef::new(tcx, trait_def_id, substs).to_predicate(tcx) | |
}; | |
let caller_bounds = | |
param_env.caller_bounds().iter().chain([unsize_predicate, trait_predicate]); | |
ty::ParamEnv::new( | |
tcx.mk_predicates_from_iter(caller_bounds), | |
param_env.reveal(), | |
param_env.constness(), | |
) | |
}; | |
// Receiver: DispatchFromDyn<Receiver[Self => U]> | |
let obligation = { | |
let predicate = | |
ty::TraitRef::new(tcx, dispatch_from_dyn_did, [receiver_ty, unsized_receiver_ty]); | |
Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate) | |
}; | |
let infcx = tcx.infer_ctxt().build(); | |
// the receiver is dispatchable iff the obligation holds | |
infcx.predicate_must_hold_modulo_regions(&obligation) | |
} | |
fn contains_illegal_self_type_reference<'tcx, T: TypeVisitable<TyCtxt<'tcx>>>( | |
tcx: TyCtxt<'tcx>, | |
trait_def_id: DefId, | |
value: T, | |
) -> bool { | |
// This is somewhat subtle. In general, we want to forbid | |
// references to `Self` in the argument and return types, | |
// since the value of `Self` is erased. However, there is one | |
// exception: it is ok to reference `Self` in order to access | |
// an associated type of the current trait, since we retain | |
// the value of those associated types in the object type | |
// itself. | |
// | |
// ```rust | |
// trait SuperTrait { | |
// type X; | |
// } | |
// | |
// trait Trait : SuperTrait { | |
// type Y; | |
// fn foo(&self, x: Self) // bad | |
// fn foo(&self) -> Self // bad | |
// fn foo(&self) -> Option<Self> // bad | |
// fn foo(&self) -> Self::Y // OK, desugars to next example | |
// fn foo(&self) -> <Self as Trait>::Y // OK | |
// fn foo(&self) -> Self::X // OK, desugars to next example | |
// fn foo(&self) -> <Self as SuperTrait>::X // OK | |
// } | |
// ``` | |
// | |
// However, it is not as simple as allowing `Self` in a projected | |
// type, because there are illegal ways to use `Self` as well: | |
// | |
// ```rust | |
// trait Trait : SuperTrait { | |
// ... | |
// fn foo(&self) -> <Self as SomeOtherTrait>::X; | |
// } | |
// ``` | |
// | |
// Here we will not have the type of `X` recorded in the | |
// object type, and we cannot resolve `Self as SomeOtherTrait` | |
// without knowing what `Self` is. | |
struct IllegalSelfTypeVisitor<'tcx> { | |
tcx: TyCtxt<'tcx>, | |
trait_def_id: DefId, | |
supertraits: Option<Vec<DefId>>, | |
} | |
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for IllegalSelfTypeVisitor<'tcx> { | |
type BreakTy = (); | |
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> { | |
match t.kind() { | |
ty::Param(_) => { | |
if t == self.tcx.types.self_param { | |
ControlFlow::Break(()) | |
} else { | |
ControlFlow::Continue(()) | |
} | |
} | |
ty::Alias(ty::Projection, ref data) | |
if self.tcx.is_impl_trait_in_trait(data.def_id) => | |
{ | |
// We'll deny these later in their own pass | |
ControlFlow::Continue(()) | |
} | |
ty::Alias(ty::Projection, ref data) => { | |
// This is a projected type `<Foo as SomeTrait>::X`. | |
// Compute supertraits of current trait lazily. | |
if self.supertraits.is_none() { | |
let trait_ref = | |
ty::Binder::dummy(ty::TraitRef::identity(self.tcx, self.trait_def_id)); | |
self.supertraits = Some( | |
traits::supertraits(self.tcx, trait_ref).map(|t| t.def_id()).collect(), | |
); | |
} | |
// Determine whether the trait reference `Foo as | |
// SomeTrait` is in fact a supertrait of the | |
// current trait. In that case, this type is | |
// legal, because the type `X` will be specified | |
// in the object type. Note that we can just use | |
// direct equality here because all of these types | |
// are part of the formal parameter listing, and | |
// hence there should be no inference variables. | |
let is_supertrait_of_current_trait = self | |
.supertraits | |
.as_ref() | |
.unwrap() | |
.contains(&data.trait_ref(self.tcx).def_id); | |
if is_supertrait_of_current_trait { | |
ControlFlow::Continue(()) // do not walk contained types, do not report error, do collect $200 | |
} else { | |
t.super_visit_with(self) // DO walk contained types, POSSIBLY reporting an error | |
} | |
} | |
_ => t.super_visit_with(self), // walk contained types, if any | |
} | |
} | |
fn visit_const(&mut self, ct: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> { | |
// Constants can only influence object safety if they are generic and reference `Self`. | |
// This is only possible for unevaluated constants, so we walk these here. | |
self.tcx.expand_abstract_consts(ct).super_visit_with(self) | |
} | |
} | |
value | |
.visit_with(&mut IllegalSelfTypeVisitor { tcx, trait_def_id, supertraits: None }) | |
.is_break() | |
} | |
pub fn contains_illegal_impl_trait_in_trait<'tcx>( | |
tcx: TyCtxt<'tcx>, | |
fn_def_id: DefId, | |
ty: ty::Binder<'tcx, Ty<'tcx>>, | |
) -> Option<MethodViolationCode> { | |
// This would be caught below, but rendering the error as a separate | |
// `async-specific` message is better. | |
if tcx.asyncness(fn_def_id).is_async() { | |
return Some(MethodViolationCode::AsyncFn); | |
} | |
// FIXME(RPITIT): Perhaps we should use a visitor here? | |
ty.skip_binder().walk().find_map(|arg| { | |
if let ty::GenericArgKind::Type(ty) = arg.unpack() | |
&& let ty::Alias(ty::Projection, proj) = ty.kind() | |
&& tcx.is_impl_trait_in_trait(proj.def_id) | |
{ | |
Some(MethodViolationCode::ReferencesImplTraitInTrait(tcx.def_span(proj.def_id))) | |
} else { | |
None | |
} | |
}) | |
} | |
pub fn provide(providers: &mut Providers) { | |
*providers = Providers { object_safety_violations, check_is_object_safe, ..*providers }; | |
} |