Permalink
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up| //! A contiguous growable array type with heap-allocated contents, written | |
| //! `Vec<T>`. | |
| //! | |
| //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and | |
| //! `O(1)` pop (from the end). | |
| //! | |
| //! # Examples | |
| //! | |
| //! You can explicitly create a [`Vec<T>`] with [`new`]: | |
| //! | |
| //! ``` | |
| //! let v: Vec<i32> = Vec::new(); | |
| //! ``` | |
| //! | |
| //! ...or by using the [`vec!`] macro: | |
| //! | |
| //! ``` | |
| //! let v: Vec<i32> = vec![]; | |
| //! | |
| //! let v = vec![1, 2, 3, 4, 5]; | |
| //! | |
| //! let v = vec![0; 10]; // ten zeroes | |
| //! ``` | |
| //! | |
| //! You can [`push`] values onto the end of a vector (which will grow the vector | |
| //! as needed): | |
| //! | |
| //! ``` | |
| //! let mut v = vec![1, 2]; | |
| //! | |
| //! v.push(3); | |
| //! ``` | |
| //! | |
| //! Popping values works in much the same way: | |
| //! | |
| //! ``` | |
| //! let mut v = vec![1, 2]; | |
| //! | |
| //! let two = v.pop(); | |
| //! ``` | |
| //! | |
| //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): | |
| //! | |
| //! ``` | |
| //! let mut v = vec![1, 2, 3]; | |
| //! let three = v[2]; | |
| //! v[1] = v[1] + 5; | |
| //! ``` | |
| //! | |
| //! [`Vec<T>`]: ../../std/vec/struct.Vec.html | |
| //! [`new`]: ../../std/vec/struct.Vec.html#method.new | |
| //! [`push`]: ../../std/vec/struct.Vec.html#method.push | |
| //! [`Index`]: ../../std/ops/trait.Index.html | |
| //! [`IndexMut`]: ../../std/ops/trait.IndexMut.html | |
| //! [`vec!`]: ../../std/macro.vec.html | |
| #![stable(feature = "rust1", since = "1.0.0")] | |
| use core::cmp::{self, Ordering}; | |
| use core::fmt; | |
| use core::hash::{self, Hash}; | |
| use core::intrinsics::{arith_offset, assume}; | |
| use core::iter::{FromIterator, FusedIterator, TrustedLen}; | |
| use core::marker::PhantomData; | |
| use core::mem; | |
| use core::ops::{self, Index, IndexMut, RangeBounds}; | |
| use core::ops::Bound::{Excluded, Included, Unbounded}; | |
| use core::ptr::{self, NonNull}; | |
| use core::slice::{self, SliceIndex}; | |
| use crate::borrow::{ToOwned, Cow}; | |
| use crate::collections::CollectionAllocErr; | |
| use crate::boxed::Box; | |
| use crate::raw_vec::RawVec; | |
| /// A contiguous growable array type, written `Vec<T>` but pronounced 'vector'. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = Vec::new(); | |
| /// vec.push(1); | |
| /// vec.push(2); | |
| /// | |
| /// assert_eq!(vec.len(), 2); | |
| /// assert_eq!(vec[0], 1); | |
| /// | |
| /// assert_eq!(vec.pop(), Some(2)); | |
| /// assert_eq!(vec.len(), 1); | |
| /// | |
| /// vec[0] = 7; | |
| /// assert_eq!(vec[0], 7); | |
| /// | |
| /// vec.extend([1, 2, 3].iter().cloned()); | |
| /// | |
| /// for x in &vec { | |
| /// println!("{}", x); | |
| /// } | |
| /// assert_eq!(vec, [7, 1, 2, 3]); | |
| /// ``` | |
| /// | |
| /// The [`vec!`] macro is provided to make initialization more convenient: | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.push(4); | |
| /// assert_eq!(vec, [1, 2, 3, 4]); | |
| /// ``` | |
| /// | |
| /// It can also initialize each element of a `Vec<T>` with a given value. | |
| /// This may be more efficient than performing allocation and initialization | |
| /// in separate steps, especially when initializing a vector of zeros: | |
| /// | |
| /// ``` | |
| /// let vec = vec![0; 5]; | |
| /// assert_eq!(vec, [0, 0, 0, 0, 0]); | |
| /// | |
| /// // The following is equivalent, but potentially slower: | |
| /// let mut vec1 = Vec::with_capacity(5); | |
| /// vec1.resize(5, 0); | |
| /// ``` | |
| /// | |
| /// Use a `Vec<T>` as an efficient stack: | |
| /// | |
| /// ``` | |
| /// let mut stack = Vec::new(); | |
| /// | |
| /// stack.push(1); | |
| /// stack.push(2); | |
| /// stack.push(3); | |
| /// | |
| /// while let Some(top) = stack.pop() { | |
| /// // Prints 3, 2, 1 | |
| /// println!("{}", top); | |
| /// } | |
| /// ``` | |
| /// | |
| /// # Indexing | |
| /// | |
| /// The `Vec` type allows to access values by index, because it implements the | |
| /// [`Index`] trait. An example will be more explicit: | |
| /// | |
| /// ``` | |
| /// let v = vec![0, 2, 4, 6]; | |
| /// println!("{}", v[1]); // it will display '2' | |
| /// ``` | |
| /// | |
| /// However be careful: if you try to access an index which isn't in the `Vec`, | |
| /// your software will panic! You cannot do this: | |
| /// | |
| /// ```should_panic | |
| /// let v = vec![0, 2, 4, 6]; | |
| /// println!("{}", v[6]); // it will panic! | |
| /// ``` | |
| /// | |
| /// In conclusion: always check if the index you want to get really exists | |
| /// before doing it. | |
| /// | |
| /// # Slicing | |
| /// | |
| /// A `Vec` can be mutable. Slices, on the other hand, are read-only objects. | |
| /// To get a slice, use `&`. Example: | |
| /// | |
| /// ``` | |
| /// fn read_slice(slice: &[usize]) { | |
| /// // ... | |
| /// } | |
| /// | |
| /// let v = vec![0, 1]; | |
| /// read_slice(&v); | |
| /// | |
| /// // ... and that's all! | |
| /// // you can also do it like this: | |
| /// let x : &[usize] = &v; | |
| /// ``` | |
| /// | |
| /// In Rust, it's more common to pass slices as arguments rather than vectors | |
| /// when you just want to provide a read access. The same goes for [`String`] and | |
| /// [`&str`]. | |
| /// | |
| /// # Capacity and reallocation | |
| /// | |
| /// The capacity of a vector is the amount of space allocated for any future | |
| /// elements that will be added onto the vector. This is not to be confused with | |
| /// the *length* of a vector, which specifies the number of actual elements | |
| /// within the vector. If a vector's length exceeds its capacity, its capacity | |
| /// will automatically be increased, but its elements will have to be | |
| /// reallocated. | |
| /// | |
| /// For example, a vector with capacity 10 and length 0 would be an empty vector | |
| /// with space for 10 more elements. Pushing 10 or fewer elements onto the | |
| /// vector will not change its capacity or cause reallocation to occur. However, | |
| /// if the vector's length is increased to 11, it will have to reallocate, which | |
| /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`] | |
| /// whenever possible to specify how big the vector is expected to get. | |
| /// | |
| /// # Guarantees | |
| /// | |
| /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees | |
| /// about its design. This ensures that it's as low-overhead as possible in | |
| /// the general case, and can be correctly manipulated in primitive ways | |
| /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`. | |
| /// If additional type parameters are added (e.g., to support custom allocators), | |
| /// overriding their defaults may change the behavior. | |
| /// | |
| /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) | |
| /// triplet. No more, no less. The order of these fields is completely | |
| /// unspecified, and you should use the appropriate methods to modify these. | |
| /// The pointer will never be null, so this type is null-pointer-optimized. | |
| /// | |
| /// However, the pointer may not actually point to allocated memory. In particular, | |
| /// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`], | |
| /// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`] | |
| /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized | |
| /// types inside a `Vec`, it will not allocate space for them. *Note that in this case | |
| /// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only | |
| /// if [`mem::size_of::<T>`]`() * capacity() > 0`. In general, `Vec`'s allocation | |
| /// details are very subtle — if you intend to allocate memory using a `Vec` | |
| /// and use it for something else (either to pass to unsafe code, or to build your | |
| /// own memory-backed collection), be sure to deallocate this memory by using | |
| /// `from_raw_parts` to recover the `Vec` and then dropping it. | |
| /// | |
| /// If a `Vec` *has* allocated memory, then the memory it points to is on the heap | |
| /// (as defined by the allocator Rust is configured to use by default), and its | |
| /// pointer points to [`len`] initialized, contiguous elements in order (what | |
| /// you would see if you coerced it to a slice), followed by [`capacity`]` - | |
| /// `[`len`] logically uninitialized, contiguous elements. | |
| /// | |
| /// `Vec` will never perform a "small optimization" where elements are actually | |
| /// stored on the stack for two reasons: | |
| /// | |
| /// * It would make it more difficult for unsafe code to correctly manipulate | |
| /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were | |
| /// only moved, and it would be more difficult to determine if a `Vec` had | |
| /// actually allocated memory. | |
| /// | |
| /// * It would penalize the general case, incurring an additional branch | |
| /// on every access. | |
| /// | |
| /// `Vec` will never automatically shrink itself, even if completely empty. This | |
| /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` | |
| /// and then filling it back up to the same [`len`] should incur no calls to | |
| /// the allocator. If you wish to free up unused memory, use | |
| /// [`shrink_to_fit`][`shrink_to_fit`]. | |
| /// | |
| /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is | |
| /// sufficient. [`push`] and [`insert`] *will* (re)allocate if | |
| /// [`len`]` == `[`capacity`]. That is, the reported capacity is completely | |
| /// accurate, and can be relied on. It can even be used to manually free the memory | |
| /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even | |
| /// when not necessary. | |
| /// | |
| /// `Vec` does not guarantee any particular growth strategy when reallocating | |
| /// when full, nor when [`reserve`] is called. The current strategy is basic | |
| /// and it may prove desirable to use a non-constant growth factor. Whatever | |
| /// strategy is used will of course guarantee `O(1)` amortized [`push`]. | |
| /// | |
| /// `vec![x; n]`, `vec![a, b, c, d]`, and | |
| /// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec` | |
| /// with exactly the requested capacity. If [`len`]` == `[`capacity`], | |
| /// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to | |
| /// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements. | |
| /// | |
| /// `Vec` will not specifically overwrite any data that is removed from it, | |
| /// but also won't specifically preserve it. Its uninitialized memory is | |
| /// scratch space that it may use however it wants. It will generally just do | |
| /// whatever is most efficient or otherwise easy to implement. Do not rely on | |
| /// removed data to be erased for security purposes. Even if you drop a `Vec`, its | |
| /// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory | |
| /// first, that may not actually happen because the optimizer does not consider | |
| /// this a side-effect that must be preserved. There is one case which we will | |
| /// not break, however: using `unsafe` code to write to the excess capacity, | |
| /// and then increasing the length to match, is always valid. | |
| /// | |
| /// `Vec` does not currently guarantee the order in which elements are dropped. | |
| /// The order has changed in the past and may change again. | |
| /// | |
| /// [`vec!`]: ../../std/macro.vec.html | |
| /// [`Index`]: ../../std/ops/trait.Index.html | |
| /// [`String`]: ../../std/string/struct.String.html | |
| /// [`&str`]: ../../std/primitive.str.html | |
| /// [`Vec::with_capacity`]: ../../std/vec/struct.Vec.html#method.with_capacity | |
| /// [`Vec::new`]: ../../std/vec/struct.Vec.html#method.new | |
| /// [`shrink_to_fit`]: ../../std/vec/struct.Vec.html#method.shrink_to_fit | |
| /// [`capacity`]: ../../std/vec/struct.Vec.html#method.capacity | |
| /// [`mem::size_of::<T>`]: ../../std/mem/fn.size_of.html | |
| /// [`len`]: ../../std/vec/struct.Vec.html#method.len | |
| /// [`push`]: ../../std/vec/struct.Vec.html#method.push | |
| /// [`insert`]: ../../std/vec/struct.Vec.html#method.insert | |
| /// [`reserve`]: ../../std/vec/struct.Vec.html#method.reserve | |
| /// [owned slice]: ../../std/boxed/struct.Box.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct Vec<T> { | |
| buf: RawVec<T>, | |
| len: usize, | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // Inherent methods | |
| //////////////////////////////////////////////////////////////////////////////// | |
| impl<T> Vec<T> { | |
| /// Constructs a new, empty `Vec<T>`. | |
| /// | |
| /// The vector will not allocate until elements are pushed onto it. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # #![allow(unused_mut)] | |
| /// let mut vec: Vec<i32> = Vec::new(); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[rustc_const_unstable(feature = "const_vec_new")] | |
| pub const fn new() -> Vec<T> { | |
| Vec { | |
| buf: RawVec::new(), | |
| len: 0, | |
| } | |
| } | |
| /// Constructs a new, empty `Vec<T>` with the specified capacity. | |
| /// | |
| /// The vector will be able to hold exactly `capacity` elements without | |
| /// reallocating. If `capacity` is 0, the vector will not allocate. | |
| /// | |
| /// It is important to note that although the returned vector has the | |
| /// *capacity* specified, the vector will have a zero *length*. For an | |
| /// explanation of the difference between length and capacity, see | |
| /// *[Capacity and reallocation]*. | |
| /// | |
| /// [Capacity and reallocation]: #capacity-and-reallocation | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = Vec::with_capacity(10); | |
| /// | |
| /// // The vector contains no items, even though it has capacity for more | |
| /// assert_eq!(vec.len(), 0); | |
| /// | |
| /// // These are all done without reallocating... | |
| /// for i in 0..10 { | |
| /// vec.push(i); | |
| /// } | |
| /// | |
| /// // ...but this may make the vector reallocate | |
| /// vec.push(11); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn with_capacity(capacity: usize) -> Vec<T> { | |
| Vec { | |
| buf: RawVec::with_capacity(capacity), | |
| len: 0, | |
| } | |
| } | |
| /// Creates a `Vec<T>` directly from the raw components of another vector. | |
| /// | |
| /// # Safety | |
| /// | |
| /// This is highly unsafe, due to the number of invariants that aren't | |
| /// checked: | |
| /// | |
| /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>` | |
| /// (at least, it's highly likely to be incorrect if it wasn't). | |
| /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with. | |
| /// * `length` needs to be less than or equal to `capacity`. | |
| /// * `capacity` needs to be the capacity that the pointer was allocated with. | |
| /// | |
| /// Violating these may cause problems like corrupting the allocator's | |
| /// internal data structures. For example it is **not** safe | |
| /// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`. | |
| /// | |
| /// The ownership of `ptr` is effectively transferred to the | |
| /// `Vec<T>` which may then deallocate, reallocate or change the | |
| /// contents of memory pointed to by the pointer at will. Ensure | |
| /// that nothing else uses the pointer after calling this | |
| /// function. | |
| /// | |
| /// [`String`]: ../../std/string/struct.String.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::ptr; | |
| /// use std::mem; | |
| /// | |
| /// fn main() { | |
| /// let mut v = vec![1, 2, 3]; | |
| /// | |
| /// // Pull out the various important pieces of information about `v` | |
| /// let p = v.as_mut_ptr(); | |
| /// let len = v.len(); | |
| /// let cap = v.capacity(); | |
| /// | |
| /// unsafe { | |
| /// // Cast `v` into the void: no destructor run, so we are in | |
| /// // complete control of the allocation to which `p` points. | |
| /// mem::forget(v); | |
| /// | |
| /// // Overwrite memory with 4, 5, 6 | |
| /// for i in 0..len as isize { | |
| /// ptr::write(p.offset(i), 4 + i); | |
| /// } | |
| /// | |
| /// // Put everything back together into a Vec | |
| /// let rebuilt = Vec::from_raw_parts(p, len, cap); | |
| /// assert_eq!(rebuilt, [4, 5, 6]); | |
| /// } | |
| /// } | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T> { | |
| Vec { | |
| buf: RawVec::from_raw_parts(ptr, capacity), | |
| len: length, | |
| } | |
| } | |
| /// Returns the number of elements the vector can hold without | |
| /// reallocating. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let vec: Vec<i32> = Vec::with_capacity(10); | |
| /// assert_eq!(vec.capacity(), 10); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn capacity(&self) -> usize { | |
| self.buf.cap() | |
| } | |
| /// Reserves capacity for at least `additional` more elements to be inserted | |
| /// in the given `Vec<T>`. The collection may reserve more space to avoid | |
| /// frequent reallocations. After calling `reserve`, capacity will be | |
| /// greater than or equal to `self.len() + additional`. Does nothing if | |
| /// capacity is already sufficient. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the new capacity overflows `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1]; | |
| /// vec.reserve(10); | |
| /// assert!(vec.capacity() >= 11); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn reserve(&mut self, additional: usize) { | |
| self.buf.reserve(self.len, additional); | |
| } | |
| /// Reserves the minimum capacity for exactly `additional` more elements to | |
| /// be inserted in the given `Vec<T>`. After calling `reserve_exact`, | |
| /// capacity will be greater than or equal to `self.len() + additional`. | |
| /// Does nothing if the capacity is already sufficient. | |
| /// | |
| /// Note that the allocator may give the collection more space than it | |
| /// requests. Therefore, capacity can not be relied upon to be precisely | |
| /// minimal. Prefer `reserve` if future insertions are expected. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the new capacity overflows `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1]; | |
| /// vec.reserve_exact(10); | |
| /// assert!(vec.capacity() >= 11); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn reserve_exact(&mut self, additional: usize) { | |
| self.buf.reserve_exact(self.len, additional); | |
| } | |
| /// Tries to reserve capacity for at least `additional` more elements to be inserted | |
| /// in the given `Vec<T>`. The collection may reserve more space to avoid | |
| /// frequent reallocations. After calling `reserve`, capacity will be | |
| /// greater than or equal to `self.len() + additional`. Does nothing if | |
| /// capacity is already sufficient. | |
| /// | |
| /// # Errors | |
| /// | |
| /// If the capacity overflows, or the allocator reports a failure, then an error | |
| /// is returned. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(try_reserve)] | |
| /// use std::collections::CollectionAllocErr; | |
| /// | |
| /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { | |
| /// let mut output = Vec::new(); | |
| /// | |
| /// // Pre-reserve the memory, exiting if we can't | |
| /// output.try_reserve(data.len())?; | |
| /// | |
| /// // Now we know this can't OOM in the middle of our complex work | |
| /// output.extend(data.iter().map(|&val| { | |
| /// val * 2 + 5 // very complicated | |
| /// })); | |
| /// | |
| /// Ok(output) | |
| /// } | |
| /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); | |
| /// ``` | |
| #[unstable(feature = "try_reserve", reason = "new API", issue="48043")] | |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { | |
| self.buf.try_reserve(self.len, additional) | |
| } | |
| /// Tries to reserves the minimum capacity for exactly `additional` more elements to | |
| /// be inserted in the given `Vec<T>`. After calling `reserve_exact`, | |
| /// capacity will be greater than or equal to `self.len() + additional`. | |
| /// Does nothing if the capacity is already sufficient. | |
| /// | |
| /// Note that the allocator may give the collection more space than it | |
| /// requests. Therefore, capacity can not be relied upon to be precisely | |
| /// minimal. Prefer `reserve` if future insertions are expected. | |
| /// | |
| /// # Errors | |
| /// | |
| /// If the capacity overflows, or the allocator reports a failure, then an error | |
| /// is returned. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(try_reserve)] | |
| /// use std::collections::CollectionAllocErr; | |
| /// | |
| /// fn process_data(data: &[u32]) -> Result<Vec<u32>, CollectionAllocErr> { | |
| /// let mut output = Vec::new(); | |
| /// | |
| /// // Pre-reserve the memory, exiting if we can't | |
| /// output.try_reserve(data.len())?; | |
| /// | |
| /// // Now we know this can't OOM in the middle of our complex work | |
| /// output.extend(data.iter().map(|&val| { | |
| /// val * 2 + 5 // very complicated | |
| /// })); | |
| /// | |
| /// Ok(output) | |
| /// } | |
| /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); | |
| /// ``` | |
| #[unstable(feature = "try_reserve", reason = "new API", issue="48043")] | |
| pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { | |
| self.buf.try_reserve_exact(self.len, additional) | |
| } | |
| /// Shrinks the capacity of the vector as much as possible. | |
| /// | |
| /// It will drop down as close as possible to the length but the allocator | |
| /// may still inform the vector that there is space for a few more elements. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = Vec::with_capacity(10); | |
| /// vec.extend([1, 2, 3].iter().cloned()); | |
| /// assert_eq!(vec.capacity(), 10); | |
| /// vec.shrink_to_fit(); | |
| /// assert!(vec.capacity() >= 3); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn shrink_to_fit(&mut self) { | |
| if self.capacity() != self.len { | |
| self.buf.shrink_to_fit(self.len); | |
| } | |
| } | |
| /// Shrinks the capacity of the vector with a lower bound. | |
| /// | |
| /// The capacity will remain at least as large as both the length | |
| /// and the supplied value. | |
| /// | |
| /// Panics if the current capacity is smaller than the supplied | |
| /// minimum capacity. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// #![feature(shrink_to)] | |
| /// let mut vec = Vec::with_capacity(10); | |
| /// vec.extend([1, 2, 3].iter().cloned()); | |
| /// assert_eq!(vec.capacity(), 10); | |
| /// vec.shrink_to(4); | |
| /// assert!(vec.capacity() >= 4); | |
| /// vec.shrink_to(0); | |
| /// assert!(vec.capacity() >= 3); | |
| /// ``` | |
| #[unstable(feature = "shrink_to", reason = "new API", issue="56431")] | |
| pub fn shrink_to(&mut self, min_capacity: usize) { | |
| self.buf.shrink_to_fit(cmp::max(self.len, min_capacity)); | |
| } | |
| /// Converts the vector into [`Box<[T]>`][owned slice]. | |
| /// | |
| /// Note that this will drop any excess capacity. | |
| /// | |
| /// [owned slice]: ../../std/boxed/struct.Box.html | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let v = vec![1, 2, 3]; | |
| /// | |
| /// let slice = v.into_boxed_slice(); | |
| /// ``` | |
| /// | |
| /// Any excess capacity is removed: | |
| /// | |
| /// ``` | |
| /// let mut vec = Vec::with_capacity(10); | |
| /// vec.extend([1, 2, 3].iter().cloned()); | |
| /// | |
| /// assert_eq!(vec.capacity(), 10); | |
| /// let slice = vec.into_boxed_slice(); | |
| /// assert_eq!(slice.into_vec().capacity(), 3); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn into_boxed_slice(mut self) -> Box<[T]> { | |
| unsafe { | |
| self.shrink_to_fit(); | |
| let buf = ptr::read(&self.buf); | |
| mem::forget(self); | |
| buf.into_box() | |
| } | |
| } | |
| /// Shortens the vector, keeping the first `len` elements and dropping | |
| /// the rest. | |
| /// | |
| /// If `len` is greater than the vector's current length, this has no | |
| /// effect. | |
| /// | |
| /// The [`drain`] method can emulate `truncate`, but causes the excess | |
| /// elements to be returned instead of dropped. | |
| /// | |
| /// Note that this method has no effect on the allocated capacity | |
| /// of the vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// Truncating a five element vector to two elements: | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3, 4, 5]; | |
| /// vec.truncate(2); | |
| /// assert_eq!(vec, [1, 2]); | |
| /// ``` | |
| /// | |
| /// No truncation occurs when `len` is greater than the vector's current | |
| /// length: | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.truncate(8); | |
| /// assert_eq!(vec, [1, 2, 3]); | |
| /// ``` | |
| /// | |
| /// Truncating when `len == 0` is equivalent to calling the [`clear`] | |
| /// method. | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.truncate(0); | |
| /// assert_eq!(vec, []); | |
| /// ``` | |
| /// | |
| /// [`clear`]: #method.clear | |
| /// [`drain`]: #method.drain | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn truncate(&mut self, len: usize) { | |
| let current_len = self.len; | |
| unsafe { | |
| let mut ptr = self.as_mut_ptr().add(self.len); | |
| // Set the final length at the end, keeping in mind that | |
| // dropping an element might panic. Works around a missed | |
| // optimization, as seen in the following issue: | |
| // https://github.com/rust-lang/rust/issues/51802 | |
| let mut local_len = SetLenOnDrop::new(&mut self.len); | |
| // drop any extra elements | |
| for _ in len..current_len { | |
| local_len.decrement_len(1); | |
| ptr = ptr.offset(-1); | |
| ptr::drop_in_place(ptr); | |
| } | |
| } | |
| } | |
| /// Extracts a slice containing the entire vector. | |
| /// | |
| /// Equivalent to `&s[..]`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::io::{self, Write}; | |
| /// let buffer = vec![1, 2, 3, 5, 8]; | |
| /// io::sink().write(buffer.as_slice()).unwrap(); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "vec_as_slice", since = "1.7.0")] | |
| pub fn as_slice(&self) -> &[T] { | |
| self | |
| } | |
| /// Extracts a mutable slice of the entire vector. | |
| /// | |
| /// Equivalent to `&mut s[..]`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// use std::io::{self, Read}; | |
| /// let mut buffer = vec![0; 3]; | |
| /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "vec_as_slice", since = "1.7.0")] | |
| pub fn as_mut_slice(&mut self) -> &mut [T] { | |
| self | |
| } | |
| /// Forces the length of the vector to `new_len`. | |
| /// | |
| /// This is a low-level operation that maintains none of the normal | |
| /// invariants of the type. Normally changing the length of a vector | |
| /// is done using one of the safe operations instead, such as | |
| /// [`truncate`], [`resize`], [`extend`], or [`clear`]. | |
| /// | |
| /// [`truncate`]: #method.truncate | |
| /// [`resize`]: #method.resize | |
| /// [`extend`]: #method.extend-1 | |
| /// [`clear`]: #method.clear | |
| /// | |
| /// # Safety | |
| /// | |
| /// - `new_len` must be less than or equal to [`capacity()`]. | |
| /// - The elements at `old_len..new_len` must be initialized. | |
| /// | |
| /// [`capacity()`]: #method.capacity | |
| /// | |
| /// # Examples | |
| /// | |
| /// This method can be useful for situations in which the vector | |
| /// is serving as a buffer for other code, particularly over FFI: | |
| /// | |
| /// ```no_run | |
| /// # #![allow(dead_code)] | |
| /// # // This is just a minimal skeleton for the doc example; | |
| /// # // don't use this as a starting point for a real library. | |
| /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void } | |
| /// # const Z_OK: i32 = 0; | |
| /// # extern "C" { | |
| /// # fn deflateGetDictionary( | |
| /// # strm: *mut std::ffi::c_void, | |
| /// # dictionary: *mut u8, | |
| /// # dictLength: *mut usize, | |
| /// # ) -> i32; | |
| /// # } | |
| /// # impl StreamWrapper { | |
| /// pub fn get_dictionary(&self) -> Option<Vec<u8>> { | |
| /// // Per the FFI method's docs, "32768 bytes is always enough". | |
| /// let mut dict = Vec::with_capacity(32_768); | |
| /// let mut dict_length = 0; | |
| /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: | |
| /// // 1. `dict_length` elements were initialized. | |
| /// // 2. `dict_length` <= the capacity (32_768) | |
| /// // which makes `set_len` safe to call. | |
| /// unsafe { | |
| /// // Make the FFI call... | |
| /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); | |
| /// if r == Z_OK { | |
| /// // ...and update the length to what was initialized. | |
| /// dict.set_len(dict_length); | |
| /// Some(dict) | |
| /// } else { | |
| /// None | |
| /// } | |
| /// } | |
| /// } | |
| /// # } | |
| /// ``` | |
| /// | |
| /// While the following example is sound, there is a memory leak since | |
| /// the inner vectors were not freed prior to the `set_len` call: | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![vec![1, 0, 0], | |
| /// vec![0, 1, 0], | |
| /// vec![0, 0, 1]]; | |
| /// // SAFETY: | |
| /// // 1. `old_len..0` is empty so no elements need to be initialized. | |
| /// // 2. `0 <= capacity` always holds whatever `capacity` is. | |
| /// unsafe { | |
| /// vec.set_len(0); | |
| /// } | |
| /// ``` | |
| /// | |
| /// Normally, here, one would use [`clear`] instead to correctly drop | |
| /// the contents and thus not leak memory. | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub unsafe fn set_len(&mut self, new_len: usize) { | |
| debug_assert!(new_len <= self.capacity()); | |
| self.len = new_len; | |
| } | |
| /// Removes an element from the vector and returns it. | |
| /// | |
| /// The removed element is replaced by the last element of the vector. | |
| /// | |
| /// This does not preserve ordering, but is O(1). | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `index` is out of bounds. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = vec!["foo", "bar", "baz", "qux"]; | |
| /// | |
| /// assert_eq!(v.swap_remove(1), "bar"); | |
| /// assert_eq!(v, ["foo", "qux", "baz"]); | |
| /// | |
| /// assert_eq!(v.swap_remove(0), "foo"); | |
| /// assert_eq!(v, ["baz", "qux"]); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn swap_remove(&mut self, index: usize) -> T { | |
| unsafe { | |
| // We replace self[index] with the last element. Note that if the | |
| // bounds check on hole succeeds there must be a last element (which | |
| // can be self[index] itself). | |
| let hole: *mut T = &mut self[index]; | |
| let last = ptr::read(self.get_unchecked(self.len - 1)); | |
| self.len -= 1; | |
| ptr::replace(hole, last) | |
| } | |
| } | |
| /// Inserts an element at position `index` within the vector, shifting all | |
| /// elements after it to the right. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `index > len`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.insert(1, 4); | |
| /// assert_eq!(vec, [1, 4, 2, 3]); | |
| /// vec.insert(4, 5); | |
| /// assert_eq!(vec, [1, 4, 2, 3, 5]); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn insert(&mut self, index: usize, element: T) { | |
| let len = self.len(); | |
| assert!(index <= len); | |
| // space for the new element | |
| if len == self.buf.cap() { | |
| self.reserve(1); | |
| } | |
| unsafe { | |
| // infallible | |
| // The spot to put the new value | |
| { | |
| let p = self.as_mut_ptr().add(index); | |
| // Shift everything over to make space. (Duplicating the | |
| // `index`th element into two consecutive places.) | |
| ptr::copy(p, p.offset(1), len - index); | |
| // Write it in, overwriting the first copy of the `index`th | |
| // element. | |
| ptr::write(p, element); | |
| } | |
| self.set_len(len + 1); | |
| } | |
| } | |
| /// Removes and returns the element at position `index` within the vector, | |
| /// shifting all elements after it to the left. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `index` is out of bounds. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = vec![1, 2, 3]; | |
| /// assert_eq!(v.remove(1), 2); | |
| /// assert_eq!(v, [1, 3]); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn remove(&mut self, index: usize) -> T { | |
| let len = self.len(); | |
| assert!(index < len); | |
| unsafe { | |
| // infallible | |
| let ret; | |
| { | |
| // the place we are taking from. | |
| let ptr = self.as_mut_ptr().add(index); | |
| // copy it out, unsafely having a copy of the value on | |
| // the stack and in the vector at the same time. | |
| ret = ptr::read(ptr); | |
| // Shift everything down to fill in that spot. | |
| ptr::copy(ptr.offset(1), ptr, len - index - 1); | |
| } | |
| self.set_len(len - 1); | |
| ret | |
| } | |
| } | |
| /// Retains only the elements specified by the predicate. | |
| /// | |
| /// In other words, remove all elements `e` such that `f(&e)` returns `false`. | |
| /// This method operates in place and preserves the order of the retained | |
| /// elements. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3, 4]; | |
| /// vec.retain(|&x| x%2 == 0); | |
| /// assert_eq!(vec, [2, 4]); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn retain<F>(&mut self, mut f: F) | |
| where F: FnMut(&T) -> bool | |
| { | |
| self.drain_filter(|x| !f(x)); | |
| } | |
| /// Removes all but the first of consecutive elements in the vector that resolve to the same | |
| /// key. | |
| /// | |
| /// If the vector is sorted, this removes all duplicates. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![10, 20, 21, 30, 20]; | |
| /// | |
| /// vec.dedup_by_key(|i| *i / 10); | |
| /// | |
| /// assert_eq!(vec, [10, 20, 30, 20]); | |
| /// ``` | |
| #[stable(feature = "dedup_by", since = "1.16.0")] | |
| #[inline] | |
| pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq { | |
| self.dedup_by(|a, b| key(a) == key(b)) | |
| } | |
| /// Removes all but the first of consecutive elements in the vector satisfying a given equality | |
| /// relation. | |
| /// | |
| /// The `same_bucket` function is passed references to two elements from the vector and | |
| /// must determine if the elements compare equal. The elements are passed in opposite order | |
| /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. | |
| /// | |
| /// If the vector is sorted, this removes all duplicates. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"]; | |
| /// | |
| /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); | |
| /// | |
| /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]); | |
| /// ``` | |
| #[stable(feature = "dedup_by", since = "1.16.0")] | |
| pub fn dedup_by<F>(&mut self, same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool { | |
| let len = { | |
| let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); | |
| dedup.len() | |
| }; | |
| self.truncate(len); | |
| } | |
| /// Appends an element to the back of a collection. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the number of elements in the vector overflows a `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2]; | |
| /// vec.push(3); | |
| /// assert_eq!(vec, [1, 2, 3]); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn push(&mut self, value: T) { | |
| // This will panic or abort if we would allocate > isize::MAX bytes | |
| // or if the length increment would overflow for zero-sized types. | |
| if self.len == self.buf.cap() { | |
| self.reserve(1); | |
| } | |
| unsafe { | |
| let end = self.as_mut_ptr().add(self.len); | |
| ptr::write(end, value); | |
| self.len += 1; | |
| } | |
| } | |
| /// Removes the last element from a vector and returns it, or [`None`] if it | |
| /// is empty. | |
| /// | |
| /// [`None`]: ../../std/option/enum.Option.html#variant.None | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// assert_eq!(vec.pop(), Some(3)); | |
| /// assert_eq!(vec, [1, 2]); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn pop(&mut self) -> Option<T> { | |
| if self.len == 0 { | |
| None | |
| } else { | |
| unsafe { | |
| self.len -= 1; | |
| Some(ptr::read(self.get_unchecked(self.len()))) | |
| } | |
| } | |
| } | |
| /// Moves all the elements of `other` into `Self`, leaving `other` empty. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the number of elements in the vector overflows a `usize`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// let mut vec2 = vec![4, 5, 6]; | |
| /// vec.append(&mut vec2); | |
| /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); | |
| /// assert_eq!(vec2, []); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "append", since = "1.4.0")] | |
| pub fn append(&mut self, other: &mut Self) { | |
| unsafe { | |
| self.append_elements(other.as_slice() as _); | |
| other.set_len(0); | |
| } | |
| } | |
| /// Appends elements to `Self` from other buffer. | |
| #[inline] | |
| unsafe fn append_elements(&mut self, other: *const [T]) { | |
| let count = (*other).len(); | |
| self.reserve(count); | |
| let len = self.len(); | |
| ptr::copy_nonoverlapping(other as *const T, self.get_unchecked_mut(len), count); | |
| self.len += count; | |
| } | |
| /// Creates a draining iterator that removes the specified range in the vector | |
| /// and yields the removed items. | |
| /// | |
| /// Note 1: The element range is removed even if the iterator is only | |
| /// partially consumed or not consumed at all. | |
| /// | |
| /// Note 2: It is unspecified how many elements are removed from the vector | |
| /// if the `Drain` value is leaked. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the starting point is greater than the end point or if | |
| /// the end point is greater than the length of the vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = vec![1, 2, 3]; | |
| /// let u: Vec<_> = v.drain(1..).collect(); | |
| /// assert_eq!(v, &[1]); | |
| /// assert_eq!(u, &[2, 3]); | |
| /// | |
| /// // A full range clears the vector | |
| /// v.drain(..); | |
| /// assert_eq!(v, &[]); | |
| /// ``` | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| pub fn drain<R>(&mut self, range: R) -> Drain<'_, T> | |
| where R: RangeBounds<usize> | |
| { | |
| // Memory safety | |
| // | |
| // When the Drain is first created, it shortens the length of | |
| // the source vector to make sure no uninitialized or moved-from elements | |
| // are accessible at all if the Drain's destructor never gets to run. | |
| // | |
| // Drain will ptr::read out the values to remove. | |
| // When finished, remaining tail of the vec is copied back to cover | |
| // the hole, and the vector length is restored to the new length. | |
| // | |
| let len = self.len(); | |
| let start = match range.start_bound() { | |
| Included(&n) => n, | |
| Excluded(&n) => n + 1, | |
| Unbounded => 0, | |
| }; | |
| let end = match range.end_bound() { | |
| Included(&n) => n + 1, | |
| Excluded(&n) => n, | |
| Unbounded => len, | |
| }; | |
| assert!(start <= end); | |
| assert!(end <= len); | |
| unsafe { | |
| // set self.vec length's to start, to be safe in case Drain is leaked | |
| self.set_len(start); | |
| // Use the borrow in the IterMut to indicate borrowing behavior of the | |
| // whole Drain iterator (like &mut T). | |
| let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), | |
| end - start); | |
| Drain { | |
| tail_start: end, | |
| tail_len: len - end, | |
| iter: range_slice.iter(), | |
| vec: NonNull::from(self), | |
| } | |
| } | |
| } | |
| /// Clears the vector, removing all values. | |
| /// | |
| /// Note that this method has no effect on the allocated capacity | |
| /// of the vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = vec![1, 2, 3]; | |
| /// | |
| /// v.clear(); | |
| /// | |
| /// assert!(v.is_empty()); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn clear(&mut self) { | |
| self.truncate(0) | |
| } | |
| /// Returns the number of elements in the vector, also referred to | |
| /// as its 'length'. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let a = vec![1, 2, 3]; | |
| /// assert_eq!(a.len(), 3); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn len(&self) -> usize { | |
| self.len | |
| } | |
| /// Returns `true` if the vector contains no elements. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = Vec::new(); | |
| /// assert!(v.is_empty()); | |
| /// | |
| /// v.push(1); | |
| /// assert!(!v.is_empty()); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn is_empty(&self) -> bool { | |
| self.len() == 0 | |
| } | |
| /// Splits the collection into two at the given index. | |
| /// | |
| /// Returns a newly allocated `Self`. `self` contains elements `[0, at)`, | |
| /// and the returned `Self` contains elements `[at, len)`. | |
| /// | |
| /// Note that the capacity of `self` does not change. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `at > len`. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1,2,3]; | |
| /// let vec2 = vec.split_off(1); | |
| /// assert_eq!(vec, [1]); | |
| /// assert_eq!(vec2, [2, 3]); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "split_off", since = "1.4.0")] | |
| pub fn split_off(&mut self, at: usize) -> Self { | |
| assert!(at <= self.len(), "`at` out of bounds"); | |
| let other_len = self.len - at; | |
| let mut other = Vec::with_capacity(other_len); | |
| // Unsafely `set_len` and copy items to `other`. | |
| unsafe { | |
| self.set_len(at); | |
| other.set_len(other_len); | |
| ptr::copy_nonoverlapping(self.as_ptr().add(at), | |
| other.as_mut_ptr(), | |
| other.len()); | |
| } | |
| other | |
| } | |
| /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. | |
| /// | |
| /// If `new_len` is greater than `len`, the `Vec` is extended by the | |
| /// difference, with each additional slot filled with the result of | |
| /// calling the closure `f`. The return values from `f` will end up | |
| /// in the `Vec` in the order they have been generated. | |
| /// | |
| /// If `new_len` is less than `len`, the `Vec` is simply truncated. | |
| /// | |
| /// This method uses a closure to create new values on every push. If | |
| /// you'd rather [`Clone`] a given value, use [`resize`]. If you want | |
| /// to use the [`Default`] trait to generate values, you can pass | |
| /// [`Default::default()`] as the second argument. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.resize_with(5, Default::default); | |
| /// assert_eq!(vec, [1, 2, 3, 0, 0]); | |
| /// | |
| /// let mut vec = vec![]; | |
| /// let mut p = 1; | |
| /// vec.resize_with(4, || { p *= 2; p }); | |
| /// assert_eq!(vec, [2, 4, 8, 16]); | |
| /// ``` | |
| /// | |
| /// [`resize`]: #method.resize | |
| /// [`Clone`]: ../../std/clone/trait.Clone.html | |
| #[stable(feature = "vec_resize_with", since = "1.33.0")] | |
| pub fn resize_with<F>(&mut self, new_len: usize, f: F) | |
| where F: FnMut() -> T | |
| { | |
| let len = self.len(); | |
| if new_len > len { | |
| self.extend_with(new_len - len, ExtendFunc(f)); | |
| } else { | |
| self.truncate(new_len); | |
| } | |
| } | |
| } | |
| impl<T: Clone> Vec<T> { | |
| /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. | |
| /// | |
| /// If `new_len` is greater than `len`, the `Vec` is extended by the | |
| /// difference, with each additional slot filled with `value`. | |
| /// If `new_len` is less than `len`, the `Vec` is simply truncated. | |
| /// | |
| /// This method requires [`Clone`] to be able clone the passed value. If | |
| /// you need more flexibility (or want to rely on [`Default`] instead of | |
| /// [`Clone`]), use [`resize_with`]. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec!["hello"]; | |
| /// vec.resize(3, "world"); | |
| /// assert_eq!(vec, ["hello", "world", "world"]); | |
| /// | |
| /// let mut vec = vec![1, 2, 3, 4]; | |
| /// vec.resize(2, 0); | |
| /// assert_eq!(vec, [1, 2]); | |
| /// ``` | |
| /// | |
| /// [`Clone`]: ../../std/clone/trait.Clone.html | |
| /// [`Default`]: ../../std/default/trait.Default.html | |
| /// [`resize_with`]: #method.resize_with | |
| #[stable(feature = "vec_resize", since = "1.5.0")] | |
| pub fn resize(&mut self, new_len: usize, value: T) { | |
| let len = self.len(); | |
| if new_len > len { | |
| self.extend_with(new_len - len, ExtendElement(value)) | |
| } else { | |
| self.truncate(new_len); | |
| } | |
| } | |
| /// Clones and appends all elements in a slice to the `Vec`. | |
| /// | |
| /// Iterates over the slice `other`, clones each element, and then appends | |
| /// it to this `Vec`. The `other` vector is traversed in-order. | |
| /// | |
| /// Note that this function is same as [`extend`] except that it is | |
| /// specialized to work with slices instead. If and when Rust gets | |
| /// specialization this function will likely be deprecated (but still | |
| /// available). | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1]; | |
| /// vec.extend_from_slice(&[2, 3, 4]); | |
| /// assert_eq!(vec, [1, 2, 3, 4]); | |
| /// ``` | |
| /// | |
| /// [`extend`]: #method.extend | |
| #[stable(feature = "vec_extend_from_slice", since = "1.6.0")] | |
| pub fn extend_from_slice(&mut self, other: &[T]) { | |
| self.spec_extend(other.iter()) | |
| } | |
| } | |
| impl<T: Default> Vec<T> { | |
| /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. | |
| /// | |
| /// If `new_len` is greater than `len`, the `Vec` is extended by the | |
| /// difference, with each additional slot filled with [`Default::default()`]. | |
| /// If `new_len` is less than `len`, the `Vec` is simply truncated. | |
| /// | |
| /// This method uses [`Default`] to create new values on every push. If | |
| /// you'd rather [`Clone`] a given value, use [`resize`]. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # #![allow(deprecated)] | |
| /// #![feature(vec_resize_default)] | |
| /// | |
| /// let mut vec = vec![1, 2, 3]; | |
| /// vec.resize_default(5); | |
| /// assert_eq!(vec, [1, 2, 3, 0, 0]); | |
| /// | |
| /// let mut vec = vec![1, 2, 3, 4]; | |
| /// vec.resize_default(2); | |
| /// assert_eq!(vec, [1, 2]); | |
| /// ``` | |
| /// | |
| /// [`resize`]: #method.resize | |
| /// [`Default::default()`]: ../../std/default/trait.Default.html#tymethod.default | |
| /// [`Default`]: ../../std/default/trait.Default.html | |
| /// [`Clone`]: ../../std/clone/trait.Clone.html | |
| #[unstable(feature = "vec_resize_default", issue = "41758")] | |
| #[rustc_deprecated(reason = "This is moving towards being removed in favor \ | |
| of `.resize_with(Default::default)`. If you disagree, please comment \ | |
| in the tracking issue.", since = "1.33.0")] | |
| pub fn resize_default(&mut self, new_len: usize) { | |
| let len = self.len(); | |
| if new_len > len { | |
| self.extend_with(new_len - len, ExtendDefault); | |
| } else { | |
| self.truncate(new_len); | |
| } | |
| } | |
| } | |
| // This code generalises `extend_with_{element,default}`. | |
| trait ExtendWith<T> { | |
| fn next(&mut self) -> T; | |
| fn last(self) -> T; | |
| } | |
| struct ExtendElement<T>(T); | |
| impl<T: Clone> ExtendWith<T> for ExtendElement<T> { | |
| fn next(&mut self) -> T { self.0.clone() } | |
| fn last(self) -> T { self.0 } | |
| } | |
| struct ExtendDefault; | |
| impl<T: Default> ExtendWith<T> for ExtendDefault { | |
| fn next(&mut self) -> T { Default::default() } | |
| fn last(self) -> T { Default::default() } | |
| } | |
| struct ExtendFunc<F>(F); | |
| impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> { | |
| fn next(&mut self) -> T { (self.0)() } | |
| fn last(mut self) -> T { (self.0)() } | |
| } | |
| impl<T> Vec<T> { | |
| /// Extend the vector by `n` values, using the given generator. | |
| fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) { | |
| self.reserve(n); | |
| unsafe { | |
| let mut ptr = self.as_mut_ptr().add(self.len()); | |
| // Use SetLenOnDrop to work around bug where compiler | |
| // may not realize the store through `ptr` through self.set_len() | |
| // don't alias. | |
| let mut local_len = SetLenOnDrop::new(&mut self.len); | |
| // Write all elements except the last one | |
| for _ in 1..n { | |
| ptr::write(ptr, value.next()); | |
| ptr = ptr.offset(1); | |
| // Increment the length in every step in case next() panics | |
| local_len.increment_len(1); | |
| } | |
| if n > 0 { | |
| // We can write the last element directly without cloning needlessly | |
| ptr::write(ptr, value.last()); | |
| local_len.increment_len(1); | |
| } | |
| // len set by scope guard | |
| } | |
| } | |
| } | |
| // Set the length of the vec when the `SetLenOnDrop` value goes out of scope. | |
| // | |
| // The idea is: The length field in SetLenOnDrop is a local variable | |
| // that the optimizer will see does not alias with any stores through the Vec's data | |
| // pointer. This is a workaround for alias analysis issue #32155 | |
| struct SetLenOnDrop<'a> { | |
| len: &'a mut usize, | |
| local_len: usize, | |
| } | |
| impl<'a> SetLenOnDrop<'a> { | |
| #[inline] | |
| fn new(len: &'a mut usize) -> Self { | |
| SetLenOnDrop { local_len: *len, len: len } | |
| } | |
| #[inline] | |
| fn increment_len(&mut self, increment: usize) { | |
| self.local_len += increment; | |
| } | |
| #[inline] | |
| fn decrement_len(&mut self, decrement: usize) { | |
| self.local_len -= decrement; | |
| } | |
| } | |
| impl Drop for SetLenOnDrop<'_> { | |
| #[inline] | |
| fn drop(&mut self) { | |
| *self.len = self.local_len; | |
| } | |
| } | |
| impl<T: PartialEq> Vec<T> { | |
| /// Removes consecutive repeated elements in the vector according to the | |
| /// [`PartialEq`] trait implementation. | |
| /// | |
| /// If the vector is sorted, this removes all duplicates. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut vec = vec![1, 2, 2, 3, 2]; | |
| /// | |
| /// vec.dedup(); | |
| /// | |
| /// assert_eq!(vec, [1, 2, 3, 2]); | |
| /// ``` | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[inline] | |
| pub fn dedup(&mut self) { | |
| self.dedup_by(|a, b| a == b) | |
| } | |
| /// Removes the first instance of `item` from the vector if the item exists. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # #![feature(vec_remove_item)] | |
| /// let mut vec = vec![1, 2, 3, 1]; | |
| /// | |
| /// vec.remove_item(&1); | |
| /// | |
| /// assert_eq!(vec, vec![2, 3, 1]); | |
| /// ``` | |
| #[unstable(feature = "vec_remove_item", reason = "recently added", issue = "40062")] | |
| pub fn remove_item(&mut self, item: &T) -> Option<T> { | |
| let pos = self.iter().position(|x| *x == *item)?; | |
| Some(self.remove(pos)) | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // Internal methods and functions | |
| //////////////////////////////////////////////////////////////////////////////// | |
| #[doc(hidden)] | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> { | |
| <T as SpecFromElem>::from_elem(elem, n) | |
| } | |
| // Specialization trait used for Vec::from_elem | |
| trait SpecFromElem: Sized { | |
| fn from_elem(elem: Self, n: usize) -> Vec<Self>; | |
| } | |
| impl<T: Clone> SpecFromElem for T { | |
| default fn from_elem(elem: Self, n: usize) -> Vec<Self> { | |
| let mut v = Vec::with_capacity(n); | |
| v.extend_with(n, ExtendElement(elem)); | |
| v | |
| } | |
| } | |
| impl SpecFromElem for u8 { | |
| #[inline] | |
| fn from_elem(elem: u8, n: usize) -> Vec<u8> { | |
| if elem == 0 { | |
| return Vec { | |
| buf: RawVec::with_capacity_zeroed(n), | |
| len: n, | |
| } | |
| } | |
| unsafe { | |
| let mut v = Vec::with_capacity(n); | |
| ptr::write_bytes(v.as_mut_ptr(), elem, n); | |
| v.set_len(n); | |
| v | |
| } | |
| } | |
| } | |
| impl<T: Clone + IsZero> SpecFromElem for T { | |
| #[inline] | |
| fn from_elem(elem: T, n: usize) -> Vec<T> { | |
| if elem.is_zero() { | |
| return Vec { | |
| buf: RawVec::with_capacity_zeroed(n), | |
| len: n, | |
| } | |
| } | |
| let mut v = Vec::with_capacity(n); | |
| v.extend_with(n, ExtendElement(elem)); | |
| v | |
| } | |
| } | |
| unsafe trait IsZero { | |
| /// Whether this value is zero | |
| fn is_zero(&self) -> bool; | |
| } | |
| macro_rules! impl_is_zero { | |
| ($t: ty, $is_zero: expr) => { | |
| unsafe impl IsZero for $t { | |
| #[inline] | |
| fn is_zero(&self) -> bool { | |
| $is_zero(*self) | |
| } | |
| } | |
| } | |
| } | |
| impl_is_zero!(i8, |x| x == 0); | |
| impl_is_zero!(i16, |x| x == 0); | |
| impl_is_zero!(i32, |x| x == 0); | |
| impl_is_zero!(i64, |x| x == 0); | |
| impl_is_zero!(i128, |x| x == 0); | |
| impl_is_zero!(isize, |x| x == 0); | |
| impl_is_zero!(u16, |x| x == 0); | |
| impl_is_zero!(u32, |x| x == 0); | |
| impl_is_zero!(u64, |x| x == 0); | |
| impl_is_zero!(u128, |x| x == 0); | |
| impl_is_zero!(usize, |x| x == 0); | |
| impl_is_zero!(bool, |x| x == false); | |
| impl_is_zero!(char, |x| x == '\0'); | |
| impl_is_zero!(f32, |x: f32| x.to_bits() == 0); | |
| impl_is_zero!(f64, |x: f64| x.to_bits() == 0); | |
| unsafe impl<T: ?Sized> IsZero for *const T { | |
| #[inline] | |
| fn is_zero(&self) -> bool { | |
| (*self).is_null() | |
| } | |
| } | |
| unsafe impl<T: ?Sized> IsZero for *mut T { | |
| #[inline] | |
| fn is_zero(&self) -> bool { | |
| (*self).is_null() | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // Common trait implementations for Vec | |
| //////////////////////////////////////////////////////////////////////////////// | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Clone> Clone for Vec<T> { | |
| #[cfg(not(test))] | |
| fn clone(&self) -> Vec<T> { | |
| <[T]>::to_vec(&**self) | |
| } | |
| // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is | |
| // required for this method definition, is not available. Instead use the | |
| // `slice::to_vec` function which is only available with cfg(test) | |
| // NB see the slice::hack module in slice.rs for more information | |
| #[cfg(test)] | |
| fn clone(&self) -> Vec<T> { | |
| crate::slice::to_vec(&**self) | |
| } | |
| fn clone_from(&mut self, other: &Vec<T>) { | |
| other.as_slice().clone_into(self); | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Hash> Hash for Vec<T> { | |
| #[inline] | |
| fn hash<H: hash::Hasher>(&self, state: &mut H) { | |
| Hash::hash(&**self, state) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[rustc_on_unimplemented( | |
| message="vector indices are of type `usize` or ranges of `usize`", | |
| label="vector indices are of type `usize` or ranges of `usize`", | |
| )] | |
| impl<T, I: SliceIndex<[T]>> Index<I> for Vec<T> { | |
| type Output = I::Output; | |
| #[inline] | |
| fn index(&self, index: I) -> &Self::Output { | |
| Index::index(&**self, index) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| #[rustc_on_unimplemented( | |
| message="vector indices are of type `usize` or ranges of `usize`", | |
| label="vector indices are of type `usize` or ranges of `usize`", | |
| )] | |
| impl<T, I: SliceIndex<[T]>> IndexMut<I> for Vec<T> { | |
| #[inline] | |
| fn index_mut(&mut self, index: I) -> &mut Self::Output { | |
| IndexMut::index_mut(&mut **self, index) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> ops::Deref for Vec<T> { | |
| type Target = [T]; | |
| fn deref(&self) -> &[T] { | |
| unsafe { | |
| let p = self.buf.ptr(); | |
| assume(!p.is_null()); | |
| slice::from_raw_parts(p, self.len) | |
| } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> ops::DerefMut for Vec<T> { | |
| fn deref_mut(&mut self) -> &mut [T] { | |
| unsafe { | |
| let ptr = self.buf.ptr(); | |
| assume(!ptr.is_null()); | |
| slice::from_raw_parts_mut(ptr, self.len) | |
| } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> FromIterator<T> for Vec<T> { | |
| #[inline] | |
| fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> { | |
| <Self as SpecExtend<T, I::IntoIter>>::from_iter(iter.into_iter()) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> IntoIterator for Vec<T> { | |
| type Item = T; | |
| type IntoIter = IntoIter<T>; | |
| /// Creates a consuming iterator, that is, one that moves each value out of | |
| /// the vector (from start to end). The vector cannot be used after calling | |
| /// this. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let v = vec!["a".to_string(), "b".to_string()]; | |
| /// for s in v.into_iter() { | |
| /// // s has type String, not &String | |
| /// println!("{}", s); | |
| /// } | |
| /// ``` | |
| #[inline] | |
| fn into_iter(mut self) -> IntoIter<T> { | |
| unsafe { | |
| let begin = self.as_mut_ptr(); | |
| assume(!begin.is_null()); | |
| let end = if mem::size_of::<T>() == 0 { | |
| arith_offset(begin as *const i8, self.len() as isize) as *const T | |
| } else { | |
| begin.add(self.len()) as *const T | |
| }; | |
| let cap = self.buf.cap(); | |
| mem::forget(self); | |
| IntoIter { | |
| buf: NonNull::new_unchecked(begin), | |
| phantom: PhantomData, | |
| cap, | |
| ptr: begin, | |
| end, | |
| } | |
| } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> IntoIterator for &'a Vec<T> { | |
| type Item = &'a T; | |
| type IntoIter = slice::Iter<'a, T>; | |
| fn into_iter(self) -> slice::Iter<'a, T> { | |
| self.iter() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> IntoIterator for &'a mut Vec<T> { | |
| type Item = &'a mut T; | |
| type IntoIter = slice::IterMut<'a, T>; | |
| fn into_iter(self) -> slice::IterMut<'a, T> { | |
| self.iter_mut() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> Extend<T> for Vec<T> { | |
| #[inline] | |
| fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { | |
| <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter()) | |
| } | |
| } | |
| // Specialization trait used for Vec::from_iter and Vec::extend | |
| trait SpecExtend<T, I> { | |
| fn from_iter(iter: I) -> Self; | |
| fn spec_extend(&mut self, iter: I); | |
| } | |
| impl<T, I> SpecExtend<T, I> for Vec<T> | |
| where I: Iterator<Item=T>, | |
| { | |
| default fn from_iter(mut iterator: I) -> Self { | |
| // Unroll the first iteration, as the vector is going to be | |
| // expanded on this iteration in every case when the iterable is not | |
| // empty, but the loop in extend_desugared() is not going to see the | |
| // vector being full in the few subsequent loop iterations. | |
| // So we get better branch prediction. | |
| let mut vector = match iterator.next() { | |
| None => return Vec::new(), | |
| Some(element) => { | |
| let (lower, _) = iterator.size_hint(); | |
| let mut vector = Vec::with_capacity(lower.saturating_add(1)); | |
| unsafe { | |
| ptr::write(vector.get_unchecked_mut(0), element); | |
| vector.set_len(1); | |
| } | |
| vector | |
| } | |
| }; | |
| <Vec<T> as SpecExtend<T, I>>::spec_extend(&mut vector, iterator); | |
| vector | |
| } | |
| default fn spec_extend(&mut self, iter: I) { | |
| self.extend_desugared(iter) | |
| } | |
| } | |
| impl<T, I> SpecExtend<T, I> for Vec<T> | |
| where I: TrustedLen<Item=T>, | |
| { | |
| default fn from_iter(iterator: I) -> Self { | |
| let mut vector = Vec::new(); | |
| vector.spec_extend(iterator); | |
| vector | |
| } | |
| default fn spec_extend(&mut self, iterator: I) { | |
| // This is the case for a TrustedLen iterator. | |
| let (low, high) = iterator.size_hint(); | |
| if let Some(high_value) = high { | |
| debug_assert_eq!(low, high_value, | |
| "TrustedLen iterator's size hint is not exact: {:?}", | |
| (low, high)); | |
| } | |
| if let Some(additional) = high { | |
| self.reserve(additional); | |
| unsafe { | |
| let mut ptr = self.as_mut_ptr().add(self.len()); | |
| let mut local_len = SetLenOnDrop::new(&mut self.len); | |
| iterator.for_each(move |element| { | |
| ptr::write(ptr, element); | |
| ptr = ptr.offset(1); | |
| // NB can't overflow since we would have had to alloc the address space | |
| local_len.increment_len(1); | |
| }); | |
| } | |
| } else { | |
| self.extend_desugared(iterator) | |
| } | |
| } | |
| } | |
| impl<T> SpecExtend<T, IntoIter<T>> for Vec<T> { | |
| fn from_iter(iterator: IntoIter<T>) -> Self { | |
| // A common case is passing a vector into a function which immediately | |
| // re-collects into a vector. We can short circuit this if the IntoIter | |
| // has not been advanced at all. | |
| if iterator.buf.as_ptr() as *const _ == iterator.ptr { | |
| unsafe { | |
| let vec = Vec::from_raw_parts(iterator.buf.as_ptr(), | |
| iterator.len(), | |
| iterator.cap); | |
| mem::forget(iterator); | |
| vec | |
| } | |
| } else { | |
| let mut vector = Vec::new(); | |
| vector.spec_extend(iterator); | |
| vector | |
| } | |
| } | |
| fn spec_extend(&mut self, mut iterator: IntoIter<T>) { | |
| unsafe { | |
| self.append_elements(iterator.as_slice() as _); | |
| } | |
| iterator.ptr = iterator.end; | |
| } | |
| } | |
| impl<'a, T: 'a, I> SpecExtend<&'a T, I> for Vec<T> | |
| where I: Iterator<Item=&'a T>, | |
| T: Clone, | |
| { | |
| default fn from_iter(iterator: I) -> Self { | |
| SpecExtend::from_iter(iterator.cloned()) | |
| } | |
| default fn spec_extend(&mut self, iterator: I) { | |
| self.spec_extend(iterator.cloned()) | |
| } | |
| } | |
| impl<'a, T: 'a> SpecExtend<&'a T, slice::Iter<'a, T>> for Vec<T> | |
| where T: Copy, | |
| { | |
| fn spec_extend(&mut self, iterator: slice::Iter<'a, T>) { | |
| let slice = iterator.as_slice(); | |
| self.reserve(slice.len()); | |
| unsafe { | |
| let len = self.len(); | |
| self.set_len(len + slice.len()); | |
| self.get_unchecked_mut(len..).copy_from_slice(slice); | |
| } | |
| } | |
| } | |
| impl<T> Vec<T> { | |
| fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) { | |
| // This is the case for a general iterator. | |
| // | |
| // This function should be the moral equivalent of: | |
| // | |
| // for item in iterator { | |
| // self.push(item); | |
| // } | |
| while let Some(element) = iterator.next() { | |
| let len = self.len(); | |
| if len == self.capacity() { | |
| let (lower, _) = iterator.size_hint(); | |
| self.reserve(lower.saturating_add(1)); | |
| } | |
| unsafe { | |
| ptr::write(self.get_unchecked_mut(len), element); | |
| // NB can't overflow since we would have had to alloc the address space | |
| self.set_len(len + 1); | |
| } | |
| } | |
| } | |
| /// Creates a splicing iterator that replaces the specified range in the vector | |
| /// with the given `replace_with` iterator and yields the removed items. | |
| /// `replace_with` does not need to be the same length as `range`. | |
| /// | |
| /// Note 1: The element range is removed even if the iterator is not | |
| /// consumed until the end. | |
| /// | |
| /// Note 2: It is unspecified how many elements are removed from the vector, | |
| /// if the `Splice` value is leaked. | |
| /// | |
| /// Note 3: The input iterator `replace_with` is only consumed | |
| /// when the `Splice` value is dropped. | |
| /// | |
| /// Note 4: This is optimal if: | |
| /// | |
| /// * The tail (elements in the vector after `range`) is empty, | |
| /// * or `replace_with` yields fewer elements than `range`’s length | |
| /// * or the lower bound of its `size_hint()` is exact. | |
| /// | |
| /// Otherwise, a temporary vector is allocated and the tail is moved twice. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if the starting point is greater than the end point or if | |
| /// the end point is greater than the length of the vector. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let mut v = vec![1, 2, 3]; | |
| /// let new = [7, 8]; | |
| /// let u: Vec<_> = v.splice(..2, new.iter().cloned()).collect(); | |
| /// assert_eq!(v, &[7, 8, 3]); | |
| /// assert_eq!(u, &[1, 2]); | |
| /// ``` | |
| #[inline] | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter> | |
| where R: RangeBounds<usize>, I: IntoIterator<Item=T> | |
| { | |
| Splice { | |
| drain: self.drain(range), | |
| replace_with: replace_with.into_iter(), | |
| } | |
| } | |
| /// Creates an iterator which uses a closure to determine if an element should be removed. | |
| /// | |
| /// If the closure returns true, then the element is removed and yielded. | |
| /// If the closure returns false, the element will remain in the vector and will not be yielded | |
| /// by the iterator. | |
| /// | |
| /// Using this method is equivalent to the following code: | |
| /// | |
| /// ``` | |
| /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 }; | |
| /// # let mut vec = vec![1, 2, 3, 4, 5, 6]; | |
| /// let mut i = 0; | |
| /// while i != vec.len() { | |
| /// if some_predicate(&mut vec[i]) { | |
| /// let val = vec.remove(i); | |
| /// // your code here | |
| /// } else { | |
| /// i += 1; | |
| /// } | |
| /// } | |
| /// | |
| /// # assert_eq!(vec, vec![1, 4, 5]); | |
| /// ``` | |
| /// | |
| /// But `drain_filter` is easier to use. `drain_filter` is also more efficient, | |
| /// because it can backshift the elements of the array in bulk. | |
| /// | |
| /// Note that `drain_filter` also lets you mutate every element in the filter closure, | |
| /// regardless of whether you choose to keep or remove it. | |
| /// | |
| /// | |
| /// # Examples | |
| /// | |
| /// Splitting an array into evens and odds, reusing the original allocation: | |
| /// | |
| /// ``` | |
| /// #![feature(drain_filter)] | |
| /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]; | |
| /// | |
| /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>(); | |
| /// let odds = numbers; | |
| /// | |
| /// assert_eq!(evens, vec![2, 4, 6, 8, 14]); | |
| /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]); | |
| /// ``` | |
| #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] | |
| pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F> | |
| where F: FnMut(&mut T) -> bool, | |
| { | |
| let old_len = self.len(); | |
| // Guard against us getting leaked (leak amplification) | |
| unsafe { self.set_len(0); } | |
| DrainFilter { | |
| vec: self, | |
| idx: 0, | |
| del: 0, | |
| old_len, | |
| pred: filter, | |
| } | |
| } | |
| } | |
| /// Extend implementation that copies elements out of references before pushing them onto the Vec. | |
| /// | |
| /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to | |
| /// append the entire slice at once. | |
| /// | |
| /// [`copy_from_slice`]: ../../std/primitive.slice.html#method.copy_from_slice | |
| #[stable(feature = "extend_ref", since = "1.2.0")] | |
| impl<'a, T: 'a + Copy> Extend<&'a T> for Vec<T> { | |
| fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { | |
| self.spec_extend(iter.into_iter()) | |
| } | |
| } | |
| macro_rules! __impl_slice_eq1 { | |
| ($Lhs: ty, $Rhs: ty) => { | |
| __impl_slice_eq1! { $Lhs, $Rhs, Sized } | |
| }; | |
| ($Lhs: ty, $Rhs: ty, $Bound: ident) => { | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> { | |
| #[inline] | |
| fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] } | |
| #[inline] | |
| fn ne(&self, other: &$Rhs) -> bool { self[..] != other[..] } | |
| } | |
| } | |
| } | |
| __impl_slice_eq1! { Vec<A>, Vec<B> } | |
| __impl_slice_eq1! { Vec<A>, &'b [B] } | |
| __impl_slice_eq1! { Vec<A>, &'b mut [B] } | |
| __impl_slice_eq1! { Cow<'a, [A]>, &'b [B], Clone } | |
| __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B], Clone } | |
| __impl_slice_eq1! { Cow<'a, [A]>, Vec<B>, Clone } | |
| macro_rules! array_impls { | |
| ($($N: expr)+) => { | |
| $( | |
| // NOTE: some less important impls are omitted to reduce code bloat | |
| __impl_slice_eq1! { Vec<A>, [B; $N] } | |
| __impl_slice_eq1! { Vec<A>, &'b [B; $N] } | |
| // __impl_slice_eq1! { Vec<A>, &'b mut [B; $N] } | |
| // __impl_slice_eq1! { Cow<'a, [A]>, [B; $N], Clone } | |
| // __impl_slice_eq1! { Cow<'a, [A]>, &'b [B; $N], Clone } | |
| // __impl_slice_eq1! { Cow<'a, [A]>, &'b mut [B; $N], Clone } | |
| )+ | |
| } | |
| } | |
| array_impls! { | |
| 0 1 2 3 4 5 6 7 8 9 | |
| 10 11 12 13 14 15 16 17 18 19 | |
| 20 21 22 23 24 25 26 27 28 29 | |
| 30 31 32 | |
| } | |
| /// Implements comparison of vectors, lexicographically. | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: PartialOrd> PartialOrd for Vec<T> { | |
| #[inline] | |
| fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering> { | |
| PartialOrd::partial_cmp(&**self, &**other) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Eq> Eq for Vec<T> {} | |
| /// Implements ordering of vectors, lexicographically. | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Ord> Ord for Vec<T> { | |
| #[inline] | |
| fn cmp(&self, other: &Vec<T>) -> Ordering { | |
| Ord::cmp(&**self, &**other) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| unsafe impl<#[may_dangle] T> Drop for Vec<T> { | |
| fn drop(&mut self) { | |
| unsafe { | |
| // use drop for [T] | |
| ptr::drop_in_place(&mut self[..]); | |
| } | |
| // RawVec handles deallocation | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> Default for Vec<T> { | |
| /// Creates an empty `Vec<T>`. | |
| fn default() -> Vec<T> { | |
| Vec::new() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: fmt::Debug> fmt::Debug for Vec<T> { | |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
| fmt::Debug::fmt(&**self, f) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> AsRef<Vec<T>> for Vec<T> { | |
| fn as_ref(&self) -> &Vec<T> { | |
| self | |
| } | |
| } | |
| #[stable(feature = "vec_as_mut", since = "1.5.0")] | |
| impl<T> AsMut<Vec<T>> for Vec<T> { | |
| fn as_mut(&mut self) -> &mut Vec<T> { | |
| self | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> AsRef<[T]> for Vec<T> { | |
| fn as_ref(&self) -> &[T] { | |
| self | |
| } | |
| } | |
| #[stable(feature = "vec_as_mut", since = "1.5.0")] | |
| impl<T> AsMut<[T]> for Vec<T> { | |
| fn as_mut(&mut self) -> &mut [T] { | |
| self | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T: Clone> From<&[T]> for Vec<T> { | |
| #[cfg(not(test))] | |
| fn from(s: &[T]) -> Vec<T> { | |
| s.to_vec() | |
| } | |
| #[cfg(test)] | |
| fn from(s: &[T]) -> Vec<T> { | |
| crate::slice::to_vec(s) | |
| } | |
| } | |
| #[stable(feature = "vec_from_mut", since = "1.19.0")] | |
| impl<T: Clone> From<&mut [T]> for Vec<T> { | |
| #[cfg(not(test))] | |
| fn from(s: &mut [T]) -> Vec<T> { | |
| s.to_vec() | |
| } | |
| #[cfg(test)] | |
| fn from(s: &mut [T]) -> Vec<T> { | |
| crate::slice::to_vec(s) | |
| } | |
| } | |
| #[stable(feature = "vec_from_cow_slice", since = "1.14.0")] | |
| impl<'a, T> From<Cow<'a, [T]>> for Vec<T> where [T]: ToOwned<Owned=Vec<T>> { | |
| fn from(s: Cow<'a, [T]>) -> Vec<T> { | |
| s.into_owned() | |
| } | |
| } | |
| // note: test pulls in libstd, which causes errors here | |
| #[cfg(not(test))] | |
| #[stable(feature = "vec_from_box", since = "1.18.0")] | |
| impl<T> From<Box<[T]>> for Vec<T> { | |
| fn from(s: Box<[T]>) -> Vec<T> { | |
| s.into_vec() | |
| } | |
| } | |
| // note: test pulls in libstd, which causes errors here | |
| #[cfg(not(test))] | |
| #[stable(feature = "box_from_vec", since = "1.20.0")] | |
| impl<T> From<Vec<T>> for Box<[T]> { | |
| fn from(v: Vec<T>) -> Box<[T]> { | |
| v.into_boxed_slice() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl From<&str> for Vec<u8> { | |
| fn from(s: &str) -> Vec<u8> { | |
| From::from(s.as_bytes()) | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // Clone-on-write | |
| //////////////////////////////////////////////////////////////////////////////// | |
| #[stable(feature = "cow_from_vec", since = "1.8.0")] | |
| impl<'a, T: Clone> From<&'a [T]> for Cow<'a, [T]> { | |
| fn from(s: &'a [T]) -> Cow<'a, [T]> { | |
| Cow::Borrowed(s) | |
| } | |
| } | |
| #[stable(feature = "cow_from_vec", since = "1.8.0")] | |
| impl<'a, T: Clone> From<Vec<T>> for Cow<'a, [T]> { | |
| fn from(v: Vec<T>) -> Cow<'a, [T]> { | |
| Cow::Owned(v) | |
| } | |
| } | |
| #[stable(feature = "cow_from_vec_ref", since = "1.28.0")] | |
| impl<'a, T: Clone> From<&'a Vec<T>> for Cow<'a, [T]> { | |
| fn from(v: &'a Vec<T>) -> Cow<'a, [T]> { | |
| Cow::Borrowed(v.as_slice()) | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<'a, T> FromIterator<T> for Cow<'a, [T]> where T: Clone { | |
| fn from_iter<I: IntoIterator<Item = T>>(it: I) -> Cow<'a, [T]> { | |
| Cow::Owned(FromIterator::from_iter(it)) | |
| } | |
| } | |
| //////////////////////////////////////////////////////////////////////////////// | |
| // Iterators | |
| //////////////////////////////////////////////////////////////////////////////// | |
| /// An iterator that moves out of a vector. | |
| /// | |
| /// This `struct` is created by the `into_iter` method on [`Vec`][`Vec`] (provided | |
| /// by the [`IntoIterator`] trait). | |
| /// | |
| /// [`Vec`]: struct.Vec.html | |
| /// [`IntoIterator`]: ../../std/iter/trait.IntoIterator.html | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| pub struct IntoIter<T> { | |
| buf: NonNull<T>, | |
| phantom: PhantomData<T>, | |
| cap: usize, | |
| ptr: *const T, | |
| end: *const T, | |
| } | |
| #[stable(feature = "vec_intoiter_debug", since = "1.13.0")] | |
| impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { | |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
| f.debug_tuple("IntoIter") | |
| .field(&self.as_slice()) | |
| .finish() | |
| } | |
| } | |
| impl<T> IntoIter<T> { | |
| /// Returns the remaining items of this iterator as a slice. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let vec = vec!['a', 'b', 'c']; | |
| /// let mut into_iter = vec.into_iter(); | |
| /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); | |
| /// let _ = into_iter.next().unwrap(); | |
| /// assert_eq!(into_iter.as_slice(), &['b', 'c']); | |
| /// ``` | |
| #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] | |
| pub fn as_slice(&self) -> &[T] { | |
| unsafe { | |
| slice::from_raw_parts(self.ptr, self.len()) | |
| } | |
| } | |
| /// Returns the remaining items of this iterator as a mutable slice. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let vec = vec!['a', 'b', 'c']; | |
| /// let mut into_iter = vec.into_iter(); | |
| /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); | |
| /// into_iter.as_mut_slice()[2] = 'z'; | |
| /// assert_eq!(into_iter.next().unwrap(), 'a'); | |
| /// assert_eq!(into_iter.next().unwrap(), 'b'); | |
| /// assert_eq!(into_iter.next().unwrap(), 'z'); | |
| /// ``` | |
| #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] | |
| pub fn as_mut_slice(&mut self) -> &mut [T] { | |
| unsafe { | |
| slice::from_raw_parts_mut(self.ptr as *mut T, self.len()) | |
| } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| unsafe impl<T: Send> Send for IntoIter<T> {} | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| unsafe impl<T: Sync> Sync for IntoIter<T> {} | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> Iterator for IntoIter<T> { | |
| type Item = T; | |
| #[inline] | |
| fn next(&mut self) -> Option<T> { | |
| unsafe { | |
| if self.ptr as *const _ == self.end { | |
| None | |
| } else { | |
| if mem::size_of::<T>() == 0 { | |
| // purposefully don't use 'ptr.offset' because for | |
| // vectors with 0-size elements this would return the | |
| // same pointer. | |
| self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T; | |
| // Make up a value of this ZST. | |
| Some(mem::zeroed()) | |
| } else { | |
| let old = self.ptr; | |
| self.ptr = self.ptr.offset(1); | |
| Some(ptr::read(old)) | |
| } | |
| } | |
| } | |
| } | |
| #[inline] | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| let exact = if mem::size_of::<T>() == 0 { | |
| (self.end as usize).wrapping_sub(self.ptr as usize) | |
| } else { | |
| unsafe { self.end.offset_from(self.ptr) as usize } | |
| }; | |
| (exact, Some(exact)) | |
| } | |
| #[inline] | |
| fn count(self) -> usize { | |
| self.len() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> DoubleEndedIterator for IntoIter<T> { | |
| #[inline] | |
| fn next_back(&mut self) -> Option<T> { | |
| unsafe { | |
| if self.end == self.ptr { | |
| None | |
| } else { | |
| if mem::size_of::<T>() == 0 { | |
| // See above for why 'ptr.offset' isn't used | |
| self.end = arith_offset(self.end as *const i8, -1) as *mut T; | |
| // Make up a value of this ZST. | |
| Some(mem::zeroed()) | |
| } else { | |
| self.end = self.end.offset(-1); | |
| Some(ptr::read(self.end)) | |
| } | |
| } | |
| } | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| impl<T> ExactSizeIterator for IntoIter<T> { | |
| fn is_empty(&self) -> bool { | |
| self.ptr == self.end | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<T> FusedIterator for IntoIter<T> {} | |
| #[unstable(feature = "trusted_len", issue = "37572")] | |
| unsafe impl<T> TrustedLen for IntoIter<T> {} | |
| #[stable(feature = "vec_into_iter_clone", since = "1.8.0")] | |
| impl<T: Clone> Clone for IntoIter<T> { | |
| fn clone(&self) -> IntoIter<T> { | |
| self.as_slice().to_owned().into_iter() | |
| } | |
| } | |
| #[stable(feature = "rust1", since = "1.0.0")] | |
| unsafe impl<#[may_dangle] T> Drop for IntoIter<T> { | |
| fn drop(&mut self) { | |
| // destroy the remaining elements | |
| for _x in self.by_ref() {} | |
| // RawVec handles deallocation | |
| let _ = unsafe { RawVec::from_raw_parts(self.buf.as_ptr(), self.cap) }; | |
| } | |
| } | |
| /// A draining iterator for `Vec<T>`. | |
| /// | |
| /// This `struct` is created by the [`drain`] method on [`Vec`]. | |
| /// | |
| /// [`drain`]: struct.Vec.html#method.drain | |
| /// [`Vec`]: struct.Vec.html | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| pub struct Drain<'a, T: 'a> { | |
| /// Index of tail to preserve | |
| tail_start: usize, | |
| /// Length of tail | |
| tail_len: usize, | |
| /// Current remaining range to remove | |
| iter: slice::Iter<'a, T>, | |
| vec: NonNull<Vec<T>>, | |
| } | |
| #[stable(feature = "collection_debug", since = "1.17.0")] | |
| impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> { | |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
| f.debug_tuple("Drain") | |
| .field(&self.iter.as_slice()) | |
| .finish() | |
| } | |
| } | |
| impl<'a, T> Drain<'a, T> { | |
| /// Returns the remaining items of this iterator as a slice. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// # #![feature(vec_drain_as_slice)] | |
| /// let mut vec = vec!['a', 'b', 'c']; | |
| /// let mut drain = vec.drain(..); | |
| /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']); | |
| /// let _ = drain.next().unwrap(); | |
| /// assert_eq!(drain.as_slice(), &['b', 'c']); | |
| /// ``` | |
| #[unstable(feature = "vec_drain_as_slice", reason = "recently added", issue = "58957")] | |
| pub fn as_slice(&self) -> &[T] { | |
| self.iter.as_slice() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| unsafe impl<T: Sync> Sync for Drain<'_, T> {} | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| unsafe impl<T: Send> Send for Drain<'_, T> {} | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<T> Iterator for Drain<'_, T> { | |
| type Item = T; | |
| #[inline] | |
| fn next(&mut self) -> Option<T> { | |
| self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) }) | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.iter.size_hint() | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<T> DoubleEndedIterator for Drain<'_, T> { | |
| #[inline] | |
| fn next_back(&mut self) -> Option<T> { | |
| self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) }) | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<T> Drop for Drain<'_, T> { | |
| fn drop(&mut self) { | |
| // exhaust self first | |
| self.for_each(drop); | |
| if self.tail_len > 0 { | |
| unsafe { | |
| let source_vec = self.vec.as_mut(); | |
| // memmove back untouched tail, update to new length | |
| let start = source_vec.len(); | |
| let tail = self.tail_start; | |
| if tail != start { | |
| let src = source_vec.as_ptr().add(tail); | |
| let dst = source_vec.as_mut_ptr().add(start); | |
| ptr::copy(src, dst, self.tail_len); | |
| } | |
| source_vec.set_len(start + self.tail_len); | |
| } | |
| } | |
| } | |
| } | |
| #[stable(feature = "drain", since = "1.6.0")] | |
| impl<T> ExactSizeIterator for Drain<'_, T> { | |
| fn is_empty(&self) -> bool { | |
| self.iter.is_empty() | |
| } | |
| } | |
| #[stable(feature = "fused", since = "1.26.0")] | |
| impl<T> FusedIterator for Drain<'_, T> {} | |
| /// A splicing iterator for `Vec`. | |
| /// | |
| /// This struct is created by the [`splice()`] method on [`Vec`]. See its | |
| /// documentation for more. | |
| /// | |
| /// [`splice()`]: struct.Vec.html#method.splice | |
| /// [`Vec`]: struct.Vec.html | |
| #[derive(Debug)] | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| pub struct Splice<'a, I: Iterator + 'a> { | |
| drain: Drain<'a, I::Item>, | |
| replace_with: I, | |
| } | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| impl<I: Iterator> Iterator for Splice<'_, I> { | |
| type Item = I::Item; | |
| fn next(&mut self) -> Option<Self::Item> { | |
| self.drain.next() | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| self.drain.size_hint() | |
| } | |
| } | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| impl<I: Iterator> DoubleEndedIterator for Splice<'_, I> { | |
| fn next_back(&mut self) -> Option<Self::Item> { | |
| self.drain.next_back() | |
| } | |
| } | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| impl<I: Iterator> ExactSizeIterator for Splice<'_, I> {} | |
| #[stable(feature = "vec_splice", since = "1.21.0")] | |
| impl<I: Iterator> Drop for Splice<'_, I> { | |
| fn drop(&mut self) { | |
| self.drain.by_ref().for_each(drop); | |
| unsafe { | |
| if self.drain.tail_len == 0 { | |
| self.drain.vec.as_mut().extend(self.replace_with.by_ref()); | |
| return | |
| } | |
| // First fill the range left by drain(). | |
| if !self.drain.fill(&mut self.replace_with) { | |
| return | |
| } | |
| // There may be more elements. Use the lower bound as an estimate. | |
| // FIXME: Is the upper bound a better guess? Or something else? | |
| let (lower_bound, _upper_bound) = self.replace_with.size_hint(); | |
| if lower_bound > 0 { | |
| self.drain.move_tail(lower_bound); | |
| if !self.drain.fill(&mut self.replace_with) { | |
| return | |
| } | |
| } | |
| // Collect any remaining elements. | |
| // This is a zero-length vector which does not allocate if `lower_bound` was exact. | |
| let mut collected = self.replace_with.by_ref().collect::<Vec<I::Item>>().into_iter(); | |
| // Now we have an exact count. | |
| if collected.len() > 0 { | |
| self.drain.move_tail(collected.len()); | |
| let filled = self.drain.fill(&mut collected); | |
| debug_assert!(filled); | |
| debug_assert_eq!(collected.len(), 0); | |
| } | |
| } | |
| // Let `Drain::drop` move the tail back if necessary and restore `vec.len`. | |
| } | |
| } | |
| /// Private helper methods for `Splice::drop` | |
| impl<T> Drain<'_, T> { | |
| /// The range from `self.vec.len` to `self.tail_start` contains elements | |
| /// that have been moved out. | |
| /// Fill that range as much as possible with new elements from the `replace_with` iterator. | |
| /// Returns `true` if we filled the entire range. (`replace_with.next()` didn’t return `None`.) | |
| unsafe fn fill<I: Iterator<Item=T>>(&mut self, replace_with: &mut I) -> bool { | |
| let vec = self.vec.as_mut(); | |
| let range_start = vec.len; | |
| let range_end = self.tail_start; | |
| let range_slice = slice::from_raw_parts_mut( | |
| vec.as_mut_ptr().add(range_start), | |
| range_end - range_start); | |
| for place in range_slice { | |
| if let Some(new_item) = replace_with.next() { | |
| ptr::write(place, new_item); | |
| vec.len += 1; | |
| } else { | |
| return false | |
| } | |
| } | |
| true | |
| } | |
| /// Makes room for inserting more elements before the tail. | |
| unsafe fn move_tail(&mut self, extra_capacity: usize) { | |
| let vec = self.vec.as_mut(); | |
| let used_capacity = self.tail_start + self.tail_len; | |
| vec.buf.reserve(used_capacity, extra_capacity); | |
| let new_tail_start = self.tail_start + extra_capacity; | |
| let src = vec.as_ptr().add(self.tail_start); | |
| let dst = vec.as_mut_ptr().add(new_tail_start); | |
| ptr::copy(src, dst, self.tail_len); | |
| self.tail_start = new_tail_start; | |
| } | |
| } | |
| /// An iterator produced by calling `drain_filter` on Vec. | |
| #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] | |
| #[derive(Debug)] | |
| pub struct DrainFilter<'a, T, F> | |
| where F: FnMut(&mut T) -> bool, | |
| { | |
| vec: &'a mut Vec<T>, | |
| idx: usize, | |
| del: usize, | |
| old_len: usize, | |
| pred: F, | |
| } | |
| #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] | |
| impl<T, F> Iterator for DrainFilter<'_, T, F> | |
| where F: FnMut(&mut T) -> bool, | |
| { | |
| type Item = T; | |
| fn next(&mut self) -> Option<T> { | |
| unsafe { | |
| while self.idx != self.old_len { | |
| let i = self.idx; | |
| self.idx += 1; | |
| let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len); | |
| if (self.pred)(&mut v[i]) { | |
| self.del += 1; | |
| return Some(ptr::read(&v[i])); | |
| } else if self.del > 0 { | |
| let del = self.del; | |
| let src: *const T = &v[i]; | |
| let dst: *mut T = &mut v[i - del]; | |
| // This is safe because self.vec has length 0 | |
| // thus its elements will not have Drop::drop | |
| // called on them in the event of a panic. | |
| ptr::copy_nonoverlapping(src, dst, 1); | |
| } | |
| } | |
| None | |
| } | |
| } | |
| fn size_hint(&self) -> (usize, Option<usize>) { | |
| (0, Some(self.old_len - self.idx)) | |
| } | |
| } | |
| #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")] | |
| impl<T, F> Drop for DrainFilter<'_, T, F> | |
| where F: FnMut(&mut T) -> bool, | |
| { | |
| fn drop(&mut self) { | |
| self.for_each(drop); | |
| unsafe { | |
| self.vec.set_len(self.old_len - self.del); | |
| } | |
| } | |
| } |