Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1679 lines (1536 sloc) 63.9 KB
//! Write the output of rustc's analysis to an implementor of Dump.
//!
//! Dumping the analysis is implemented by walking the AST and getting a bunch of
//! info out from all over the place. We use `DefId`s to identify objects. The
//! tricky part is getting syntactic (span, source text) and semantic (reference
//! `DefId`s) information for parts of expressions which the compiler has discarded.
//! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
//! path and a reference to `baz`, but we want spans and references for all three
//! idents.
//!
//! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
//! from spans (e.g., the span for `bar` from the above example path).
//! DumpVisitor walks the AST and processes it, and JsonDumper is used for
//! recording the output.
use rustc::hir::def::{Res, DefKind as HirDefKind};
use rustc::hir::def_id::DefId;
use rustc::session::config::Input;
use rustc::span_bug;
use rustc::ty::{self, DefIdTree, TyCtxt};
use rustc_data_structures::fx::FxHashSet;
use std::path::Path;
use std::env;
use syntax::ast::{self, Attribute, NodeId, PatKind, CRATE_NODE_ID};
use syntax::parse::token;
use syntax::visit::{self, Visitor};
use syntax::print::pprust::{
bounds_to_string,
generic_params_to_string,
ty_to_string
};
use syntax::ptr::P;
use syntax::source_map::{Spanned, DUMMY_SP, respan};
use syntax::walk_list;
use syntax_pos::*;
use crate::{escape, generated_code, id_from_def_id, id_from_node_id, lower_attributes,
PathCollector, SaveContext};
use crate::json_dumper::{Access, DumpOutput, JsonDumper};
use crate::span_utils::SpanUtils;
use crate::sig;
use rls_data::{CompilationOptions, CratePreludeData, Def, DefKind, GlobalCrateId, Import,
ImportKind, Ref, RefKind, Relation, RelationKind, SpanData};
use log::{debug, error};
macro_rules! down_cast_data {
($id:ident, $kind:ident, $sp:expr) => {
let $id = if let super::Data::$kind(data) = $id {
data
} else {
span_bug!($sp, "unexpected data kind: {:?}", $id);
};
};
}
macro_rules! access_from {
($save_ctxt:expr, $item:expr, $id:expr) => {
Access {
public: $item.vis.node.is_pub(),
reachable: $save_ctxt.access_levels.is_reachable($id),
}
};
}
macro_rules! access_from_vis {
($save_ctxt:expr, $vis:expr, $id:expr) => {
Access {
public: $vis.node.is_pub(),
reachable: $save_ctxt.access_levels.is_reachable($id),
}
};
}
pub struct DumpVisitor<'l, 'tcx, 'll, O: DumpOutput> {
save_ctxt: SaveContext<'l, 'tcx>,
tcx: TyCtxt<'tcx>,
dumper: &'ll mut JsonDumper<O>,
span: SpanUtils<'l>,
cur_scope: NodeId,
// Set of macro definition (callee) spans, and the set
// of macro use (callsite) spans. We store these to ensure
// we only write one macro def per unique macro definition, and
// one macro use per unique callsite span.
// mac_defs: FxHashSet<Span>,
// macro_calls: FxHashSet<Span>,
}
impl<'l, 'tcx, 'll, O: DumpOutput + 'll> DumpVisitor<'l, 'tcx, 'll, O> {
pub fn new(
save_ctxt: SaveContext<'l, 'tcx>,
dumper: &'ll mut JsonDumper<O>,
) -> DumpVisitor<'l, 'tcx, 'll, O> {
let span_utils = SpanUtils::new(&save_ctxt.tcx.sess);
DumpVisitor {
tcx: save_ctxt.tcx,
save_ctxt,
dumper,
span: span_utils,
cur_scope: CRATE_NODE_ID,
// mac_defs: FxHashSet::default(),
// macro_calls: FxHashSet::default(),
}
}
fn nest_scope<F>(&mut self, scope_id: NodeId, f: F)
where
F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>),
{
let parent_scope = self.cur_scope;
self.cur_scope = scope_id;
f(self);
self.cur_scope = parent_scope;
}
fn nest_tables<F>(&mut self, item_id: NodeId, f: F)
where
F: FnOnce(&mut DumpVisitor<'l, 'tcx, 'll, O>),
{
let item_def_id = self.tcx.hir().local_def_id_from_node_id(item_id);
if self.tcx.has_typeck_tables(item_def_id) {
let tables = self.tcx.typeck_tables_of(item_def_id);
let old_tables = self.save_ctxt.tables;
self.save_ctxt.tables = tables;
f(self);
self.save_ctxt.tables = old_tables;
} else {
f(self);
}
}
fn span_from_span(&self, span: Span) -> SpanData {
self.save_ctxt.span_from_span(span)
}
pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
let source_file = self.tcx.sess.local_crate_source_file.as_ref();
let crate_root = source_file.map(|source_file| {
let source_file = Path::new(source_file);
match source_file.file_name() {
Some(_) => source_file.parent().unwrap().display(),
None => source_file.display(),
}.to_string()
});
let data = CratePreludeData {
crate_id: GlobalCrateId {
name: name.into(),
disambiguator: self.tcx
.sess
.local_crate_disambiguator()
.to_fingerprint()
.as_value(),
},
crate_root: crate_root.unwrap_or_else(|| "<no source>".to_owned()),
external_crates: self.save_ctxt.get_external_crates(),
span: self.span_from_span(krate.span),
};
self.dumper.crate_prelude(data);
}
pub fn dump_compilation_options(&mut self, input: &Input, crate_name: &str) {
// Apply possible `remap-path-prefix` remapping to the input source file
// (and don't include remapping args anymore)
let (program, arguments) = {
let remap_arg_indices = {
let mut indices = FxHashSet::default();
// Args are guaranteed to be valid UTF-8 (checked early)
for (i, e) in env::args().enumerate() {
if e.starts_with("--remap-path-prefix=") {
indices.insert(i);
} else if e == "--remap-path-prefix" {
indices.insert(i);
indices.insert(i + 1);
}
}
indices
};
let mut args = env::args()
.enumerate()
.filter(|(i, _)| !remap_arg_indices.contains(i))
.map(|(_, arg)| {
match input {
Input::File(ref path) if path == Path::new(&arg) => {
let mapped = &self.tcx.sess.local_crate_source_file;
mapped
.as_ref()
.unwrap()
.to_string_lossy()
.into()
},
_ => arg,
}
});
(args.next().unwrap(), args.collect())
};
let data = CompilationOptions {
directory: self.tcx.sess.working_dir.0.clone(),
program,
arguments,
output: self.save_ctxt.compilation_output(crate_name),
};
self.dumper.compilation_opts(data);
}
fn write_sub_paths(&mut self, path: &ast::Path) {
for seg in &path.segments {
if let Some(data) = self.save_ctxt.get_path_segment_data(seg) {
self.dumper.dump_ref(data);
}
}
}
// As write_sub_paths, but does not process the last ident in the path (assuming it
// will be processed elsewhere). See note on write_sub_paths about global.
fn write_sub_paths_truncated(&mut self, path: &ast::Path) {
for seg in &path.segments[..path.segments.len() - 1] {
if let Some(data) = self.save_ctxt.get_path_segment_data(seg) {
self.dumper.dump_ref(data);
}
}
}
fn lookup_def_id(&self, ref_id: NodeId) -> Option<DefId> {
match self.save_ctxt.get_path_res(ref_id) {
Res::PrimTy(..) | Res::SelfTy(..) | Res::Err => None,
def => Some(def.def_id()),
}
}
fn process_formals(&mut self, formals: &'l [ast::Arg], qualname: &str) {
for arg in formals {
self.visit_pat(&arg.pat);
let mut collector = PathCollector::new();
collector.visit_pat(&arg.pat);
for (id, ident, ..) in collector.collected_idents {
let hir_id = self.tcx.hir().node_to_hir_id(id);
let typ = match self.save_ctxt.tables.node_type_opt(hir_id) {
Some(s) => s.to_string(),
None => continue,
};
if !self.span.filter_generated(ident.span) {
let id = id_from_node_id(id, &self.save_ctxt);
let span = self.span_from_span(ident.span);
self.dumper.dump_def(
&Access {
public: false,
reachable: false,
},
Def {
kind: DefKind::Local,
id,
span,
name: ident.to_string(),
qualname: format!("{}::{}", qualname, ident.to_string()),
value: typ,
parent: None,
children: vec![],
decl_id: None,
docs: String::new(),
sig: None,
attributes: vec![],
},
);
}
}
}
}
fn process_method(
&mut self,
sig: &'l ast::MethodSig,
body: Option<&'l ast::Block>,
id: ast::NodeId,
ident: ast::Ident,
generics: &'l ast::Generics,
vis: ast::Visibility,
span: Span,
) {
debug!("process_method: {}:{}", id, ident);
if let Some(mut method_data) = self.save_ctxt.get_method_data(id, ident, span) {
let sig_str = crate::make_signature(&sig.decl, &generics);
if body.is_some() {
self.nest_tables(
id,
|v| v.process_formals(&sig.decl.inputs, &method_data.qualname),
);
}
self.process_generic_params(&generics, &method_data.qualname, id);
method_data.value = sig_str;
method_data.sig = sig::method_signature(id, ident, generics, sig, &self.save_ctxt);
let hir_id = self.tcx.hir().node_to_hir_id(id);
self.dumper.dump_def(&access_from_vis!(self.save_ctxt, vis, hir_id), method_data);
}
// walk arg and return types
for arg in &sig.decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output {
self.visit_ty(ret_ty);
}
// walk the fn body
if let Some(body) = body {
self.nest_tables(id, |v| v.nest_scope(id, |v| v.visit_block(body)));
}
}
fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) {
let field_data = self.save_ctxt.get_field_data(field, parent_id);
if let Some(field_data) = field_data {
let hir_id = self.tcx.hir().node_to_hir_id(field.id);
self.dumper.dump_def(&access_from!(self.save_ctxt, field, hir_id), field_data);
}
}
// Dump generic params bindings, then visit_generics
fn process_generic_params(
&mut self,
generics: &'l ast::Generics,
prefix: &str,
id: NodeId,
) {
for param in &generics.params {
match param.kind {
ast::GenericParamKind::Lifetime { .. } => {}
ast::GenericParamKind::Type { .. } => {
let param_ss = param.ident.span;
let name = escape(self.span.snippet(param_ss));
// Append $id to name to make sure each one is unique.
let qualname = format!("{}::{}${}", prefix, name, id);
if !self.span.filter_generated(param_ss) {
let id = id_from_node_id(param.id, &self.save_ctxt);
let span = self.span_from_span(param_ss);
self.dumper.dump_def(
&Access {
public: false,
reachable: false,
},
Def {
kind: DefKind::Type,
id,
span,
name,
qualname,
value: String::new(),
parent: None,
children: vec![],
decl_id: None,
docs: String::new(),
sig: None,
attributes: vec![],
},
);
}
}
ast::GenericParamKind::Const { .. } => {}
}
}
self.visit_generics(generics);
}
fn process_fn(
&mut self,
item: &'l ast::Item,
decl: &'l ast::FnDecl,
ty_params: &'l ast::Generics,
body: &'l ast::Block,
) {
if let Some(fn_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(fn_data, DefData, item.span);
self.nest_tables(
item.id,
|v| v.process_formals(&decl.inputs, &fn_data.qualname),
);
self.process_generic_params(ty_params, &fn_data.qualname, item.id);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(&access_from!(self.save_ctxt, item, hir_id), fn_data);
}
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
self.nest_tables(item.id, |v| v.nest_scope(item.id, |v| v.visit_block(&body)));
}
fn process_static_or_const_item(
&mut self,
item: &'l ast::Item,
typ: &'l ast::Ty,
expr: &'l ast::Expr,
) {
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.nest_tables(item.id, |v| {
if let Some(var_data) = v.save_ctxt.get_item_data(item) {
down_cast_data!(var_data, DefData, item.span);
v.dumper.dump_def(&access_from!(v.save_ctxt, item, hir_id), var_data);
}
v.visit_ty(&typ);
v.visit_expr(expr);
});
}
fn process_assoc_const(
&mut self,
id: ast::NodeId,
ident: ast::Ident,
typ: &'l ast::Ty,
expr: Option<&'l ast::Expr>,
parent_id: DefId,
vis: ast::Visibility,
attrs: &'l [Attribute],
) {
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(id)));
if !self.span.filter_generated(ident.span) {
let sig = sig::assoc_const_signature(id, ident.name, typ, expr, &self.save_ctxt);
let span = self.span_from_span(ident.span);
let hir_id = self.tcx.hir().node_to_hir_id(id);
self.dumper.dump_def(
&access_from_vis!(self.save_ctxt, vis, hir_id),
Def {
kind: DefKind::Const,
id: id_from_node_id(id, &self.save_ctxt),
span,
name: ident.name.to_string(),
qualname,
value: ty_to_string(&typ),
parent: Some(id_from_def_id(parent_id)),
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(attrs),
sig,
attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
},
);
}
// walk type and init value
self.nest_tables(id, |v| {
v.visit_ty(typ);
if let Some(expr) = expr {
v.visit_expr(expr);
}
});
}
// FIXME tuple structs should generate tuple-specific data.
fn process_struct(
&mut self,
item: &'l ast::Item,
def: &'l ast::VariantData,
ty_params: &'l ast::Generics,
) {
debug!("process_struct {:?} {:?}", item, item.span);
let name = item.ident.to_string();
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(item.id)));
let kind = match item.node {
ast::ItemKind::Struct(_, _) => DefKind::Struct,
ast::ItemKind::Union(_, _) => DefKind::Union,
_ => unreachable!(),
};
let (value, fields) = match item.node {
ast::ItemKind::Struct(ast::VariantData::Struct(ref fields, ..), ..) |
ast::ItemKind::Union(ast::VariantData::Struct(ref fields, ..), ..) => {
let include_priv_fields = !self.save_ctxt.config.pub_only;
let fields_str = fields
.iter()
.enumerate()
.filter_map(|(i, f)| {
if include_priv_fields || f.vis.node.is_pub() {
f.ident
.map(|i| i.to_string())
.or_else(|| Some(i.to_string()))
} else {
None
}
})
.collect::<Vec<_>>()
.join(", ");
let value = format!("{} {{ {} }}", name, fields_str);
(
value,
fields
.iter()
.map(|f| id_from_node_id(f.id, &self.save_ctxt))
.collect(),
)
}
_ => (String::new(), vec![]),
};
if !self.span.filter_generated(item.ident.span) {
let span = self.span_from_span(item.ident.span);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(
&access_from!(self.save_ctxt, item, hir_id),
Def {
kind,
id: id_from_node_id(item.id, &self.save_ctxt),
span,
name,
qualname: qualname.clone(),
value,
parent: None,
children: fields,
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, &self.save_ctxt),
attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
},
);
}
for field in def.fields() {
self.process_struct_field_def(field, item.id);
self.visit_ty(&field.ty);
}
self.process_generic_params(ty_params, &qualname, item.id);
}
fn process_enum(
&mut self,
item: &'l ast::Item,
enum_definition: &'l ast::EnumDef,
ty_params: &'l ast::Generics,
) {
let enum_data = self.save_ctxt.get_item_data(item);
let enum_data = match enum_data {
None => return,
Some(data) => data,
};
down_cast_data!(enum_data, DefData, item.span);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
let access = access_from!(self.save_ctxt, item, hir_id);
for variant in &enum_definition.variants {
let name = variant.node.ident.name.to_string();
let qualname = format!("{}::{}", enum_data.qualname, name);
let name_span = variant.node.ident.span;
match variant.node.data {
ast::VariantData::Struct(ref fields, ..) => {
let fields_str = fields
.iter()
.enumerate()
.map(|(i, f)| {
f.ident.map(|i| i.to_string()).unwrap_or_else(|| i.to_string())
})
.collect::<Vec<_>>()
.join(", ");
let value = format!("{}::{} {{ {} }}", enum_data.name, name, fields_str);
if !self.span.filter_generated(name_span) {
let span = self.span_from_span(name_span);
let id = id_from_node_id(variant.node.id, &self.save_ctxt);
let parent = Some(id_from_node_id(item.id, &self.save_ctxt));
self.dumper.dump_def(
&access,
Def {
kind: DefKind::StructVariant,
id,
span,
name,
qualname,
value,
parent,
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
sig: sig::variant_signature(variant, &self.save_ctxt),
attributes: lower_attributes(
variant.node.attrs.clone(),
&self.save_ctxt,
),
},
);
}
}
ref v => {
let mut value = format!("{}::{}", enum_data.name, name);
if let &ast::VariantData::Tuple(ref fields, _) = v {
value.push('(');
value.push_str(&fields
.iter()
.map(|f| ty_to_string(&f.ty))
.collect::<Vec<_>>()
.join(", "));
value.push(')');
}
if !self.span.filter_generated(name_span) {
let span = self.span_from_span(name_span);
let id = id_from_node_id(variant.node.id, &self.save_ctxt);
let parent = Some(id_from_node_id(item.id, &self.save_ctxt));
self.dumper.dump_def(
&access,
Def {
kind: DefKind::TupleVariant,
id,
span,
name,
qualname,
value,
parent,
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&variant.node.attrs),
sig: sig::variant_signature(variant, &self.save_ctxt),
attributes: lower_attributes(
variant.node.attrs.clone(),
&self.save_ctxt,
),
},
);
}
}
}
for field in variant.node.data.fields() {
self.process_struct_field_def(field, variant.node.id);
self.visit_ty(&field.ty);
}
}
self.process_generic_params(ty_params, &enum_data.qualname, item.id);
self.dumper.dump_def(&access, enum_data);
}
fn process_impl(
&mut self,
item: &'l ast::Item,
generics: &'l ast::Generics,
trait_ref: &'l Option<ast::TraitRef>,
typ: &'l ast::Ty,
impl_items: &'l [ast::ImplItem],
) {
if let Some(impl_data) = self.save_ctxt.get_item_data(item) {
if !self.span.filter_generated(item.span) {
if let super::Data::RelationData(rel, imp) = impl_data {
self.dumper.dump_relation(rel);
self.dumper.dump_impl(imp);
} else {
span_bug!(item.span, "unexpected data kind: {:?}", impl_data);
}
}
}
self.visit_ty(&typ);
if let &Some(ref trait_ref) = trait_ref {
self.process_path(trait_ref.ref_id, &trait_ref.path);
}
self.process_generic_params(generics, "", item.id);
for impl_item in impl_items {
let map = &self.tcx.hir();
self.process_impl_item(impl_item, map.local_def_id_from_node_id(item.id));
}
}
fn process_trait(
&mut self,
item: &'l ast::Item,
generics: &'l ast::Generics,
trait_refs: &'l ast::GenericBounds,
methods: &'l [ast::TraitItem],
) {
let name = item.ident.to_string();
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(item.id)));
let mut val = name.clone();
if !generics.params.is_empty() {
val.push_str(&generic_params_to_string(&generics.params));
}
if !trait_refs.is_empty() {
val.push_str(": ");
val.push_str(&bounds_to_string(trait_refs));
}
if !self.span.filter_generated(item.ident.span) {
let id = id_from_node_id(item.id, &self.save_ctxt);
let span = self.span_from_span(item.ident.span);
let children = methods
.iter()
.map(|i| id_from_node_id(i.id, &self.save_ctxt))
.collect();
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(
&access_from!(self.save_ctxt, item, hir_id),
Def {
kind: DefKind::Trait,
id,
span,
name,
qualname: qualname.clone(),
value: val,
parent: None,
children,
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, &self.save_ctxt),
attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
},
);
}
// super-traits
for super_bound in trait_refs.iter() {
let trait_ref = match *super_bound {
ast::GenericBound::Trait(ref trait_ref, _) => trait_ref,
ast::GenericBound::Outlives(..) => continue,
};
let trait_ref = &trait_ref.trait_ref;
if let Some(id) = self.lookup_def_id(trait_ref.ref_id) {
let sub_span = trait_ref.path.segments.last().unwrap().ident.span;
if !self.span.filter_generated(sub_span) {
let span = self.span_from_span(sub_span);
self.dumper.dump_ref(Ref {
kind: RefKind::Type,
span: span.clone(),
ref_id: id_from_def_id(id),
});
self.dumper.dump_relation(Relation {
kind: RelationKind::SuperTrait,
span,
from: id_from_def_id(id),
to: id_from_node_id(item.id, &self.save_ctxt),
});
}
}
}
// walk generics and methods
self.process_generic_params(generics, &qualname, item.id);
for method in methods {
let map = &self.tcx.hir();
self.process_trait_item(method, map.local_def_id_from_node_id(item.id))
}
}
// `item` is the module in question, represented as an item.
fn process_mod(&mut self, item: &ast::Item) {
if let Some(mod_data) = self.save_ctxt.get_item_data(item) {
down_cast_data!(mod_data, DefData, item.span);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(&access_from!(self.save_ctxt, item, hir_id), mod_data);
}
}
fn dump_path_ref(&mut self, id: NodeId, path: &ast::Path) {
let path_data = self.save_ctxt.get_path_data(id, path);
if let Some(path_data) = path_data {
self.dumper.dump_ref(path_data);
}
}
fn process_path(&mut self, id: NodeId, path: &'l ast::Path) {
if self.span.filter_generated(path.span) {
return;
}
self.dump_path_ref(id, path);
// Type arguments
for seg in &path.segments {
if let Some(ref generic_args) = seg.args {
match **generic_args {
ast::GenericArgs::AngleBracketed(ref data) => {
for arg in &data.args {
match arg {
ast::GenericArg::Type(ty) => self.visit_ty(ty),
_ => {}
}
}
}
ast::GenericArgs::Parenthesized(ref data) => {
for t in &data.inputs {
self.visit_ty(t);
}
if let Some(ref t) = data.output {
self.visit_ty(t);
}
}
}
}
}
self.write_sub_paths_truncated(path);
}
fn process_struct_lit(
&mut self,
ex: &'l ast::Expr,
path: &'l ast::Path,
fields: &'l [ast::Field],
variant: &'l ty::VariantDef,
base: &'l Option<P<ast::Expr>>,
) {
if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) {
self.write_sub_paths_truncated(path);
down_cast_data!(struct_lit_data, RefData, ex.span);
if !generated_code(ex.span) {
self.dumper.dump_ref(struct_lit_data);
}
for field in fields {
if let Some(field_data) = self.save_ctxt.get_field_ref_data(field, variant) {
self.dumper.dump_ref(field_data);
}
self.visit_expr(&field.expr)
}
}
walk_list!(self, visit_expr, base);
}
fn process_method_call(
&mut self,
ex: &'l ast::Expr,
seg: &'l ast::PathSegment,
args: &'l [P<ast::Expr>],
) {
debug!("process_method_call {:?} {:?}", ex, ex.span);
if let Some(mcd) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(mcd, RefData, ex.span);
if !generated_code(ex.span) {
self.dumper.dump_ref(mcd);
}
}
// Explicit types in the turbo-fish.
if let Some(ref generic_args) = seg.args {
if let ast::GenericArgs::AngleBracketed(ref data) = **generic_args {
for arg in &data.args {
match arg {
ast::GenericArg::Type(ty) => self.visit_ty(ty),
_ => {}
}
}
}
}
// walk receiver and args
walk_list!(self, visit_expr, args);
}
fn process_pat(&mut self, p: &'l ast::Pat) {
match p.node {
PatKind::Struct(ref _path, ref fields, _) => {
// FIXME do something with _path?
let hir_id = self.tcx.hir().node_to_hir_id(p.id);
let adt = match self.save_ctxt.tables.node_type_opt(hir_id) {
Some(ty) => ty.ty_adt_def().unwrap(),
None => {
visit::walk_pat(self, p);
return;
}
};
let variant = adt.variant_of_res(self.save_ctxt.get_path_res(p.id));
for &Spanned { node: ref field, .. } in fields {
if let Some(index) = self.tcx.find_field_index(field.ident, variant) {
if !self.span.filter_generated(field.ident.span) {
let span = self.span_from_span(field.ident.span);
self.dumper.dump_ref(Ref {
kind: RefKind::Variable,
span,
ref_id: id_from_def_id(variant.fields[index].did),
});
}
}
self.visit_pat(&field.pat);
}
}
_ => visit::walk_pat(self, p),
}
}
fn process_var_decl_multi(&mut self, pats: &'l [P<ast::Pat>]) {
let mut collector = PathCollector::new();
for pattern in pats {
// collect paths from the arm's patterns
collector.visit_pat(&pattern);
self.visit_pat(&pattern);
}
// process collected paths
for (id, ident, immut) in collector.collected_idents {
match self.save_ctxt.get_path_res(id) {
Res::Local(hir_id) => {
let mut value = if immut == ast::Mutability::Immutable {
self.span.snippet(ident.span)
} else {
"<mutable>".to_owned()
};
let id = self.tcx.hir().hir_to_node_id(hir_id);
let typ = self.save_ctxt
.tables
.node_type_opt(hir_id)
.map(|t| t.to_string())
.unwrap_or_default();
value.push_str(": ");
value.push_str(&typ);
if !self.span.filter_generated(ident.span) {
let qualname = format!("{}${}", ident.to_string(), id);
let id = id_from_node_id(id, &self.save_ctxt);
let span = self.span_from_span(ident.span);
self.dumper.dump_def(
&Access {
public: false,
reachable: false,
},
Def {
kind: DefKind::Local,
id,
span,
name: ident.to_string(),
qualname,
value: typ,
parent: None,
children: vec![],
decl_id: None,
docs: String::new(),
sig: None,
attributes: vec![],
},
);
}
}
Res::Def(HirDefKind::Ctor(..), _) |
Res::Def(HirDefKind::Const, _) |
Res::Def(HirDefKind::AssocConst, _) |
Res::Def(HirDefKind::Struct, _) |
Res::Def(HirDefKind::Variant, _) |
Res::Def(HirDefKind::TyAlias, _) |
Res::Def(HirDefKind::AssocTy, _) |
Res::SelfTy(..) => {
self.dump_path_ref(id, &ast::Path::from_ident(ident));
}
def => error!(
"unexpected definition kind when processing collected idents: {:?}",
def
),
}
}
for (id, ref path) in collector.collected_paths {
self.process_path(id, path);
}
}
fn process_var_decl(&mut self, p: &'l ast::Pat, value: String) {
// The local could declare multiple new vars, we must walk the
// pattern and collect them all.
let mut collector = PathCollector::new();
collector.visit_pat(&p);
self.visit_pat(&p);
for (id, ident, immut) in collector.collected_idents {
let mut value = match immut {
ast::Mutability::Immutable => value.to_string(),
_ => String::new(),
};
let hir_id = self.tcx.hir().node_to_hir_id(id);
let typ = match self.save_ctxt.tables.node_type_opt(hir_id) {
Some(typ) => {
let typ = typ.to_string();
if !value.is_empty() {
value.push_str(": ");
}
value.push_str(&typ);
typ
}
None => String::new(),
};
// Rust uses the id of the pattern for var lookups, so we'll use it too.
if !self.span.filter_generated(ident.span) {
let qualname = format!("{}${}", ident.to_string(), id);
let id = id_from_node_id(id, &self.save_ctxt);
let span = self.span_from_span(ident.span);
self.dumper.dump_def(
&Access {
public: false,
reachable: false,
},
Def {
kind: DefKind::Local,
id,
span,
name: ident.to_string(),
qualname,
value: typ,
parent: None,
children: vec![],
decl_id: None,
docs: String::new(),
sig: None,
attributes: vec![],
},
);
}
}
}
/// Extracts macro use and definition information from the AST node defined
/// by the given NodeId, using the expansion information from the node's
/// span.
///
/// If the span is not macro-generated, do nothing, else use callee and
/// callsite spans to record macro definition and use data, using the
/// mac_uses and mac_defs sets to prevent multiples.
fn process_macro_use(&mut self, _span: Span) {
// FIXME if we're not dumping the defs (see below), there is no point
// dumping refs either.
// let source_span = span.source_callsite();
// if !self.macro_calls.insert(source_span) {
// return;
// }
// let data = match self.save_ctxt.get_macro_use_data(span) {
// None => return,
// Some(data) => data,
// };
// self.dumper.macro_use(data);
// FIXME write the macro def
// let mut hasher = DefaultHasher::new();
// data.callee_span.hash(&mut hasher);
// let hash = hasher.finish();
// let qualname = format!("{}::{}", data.name, hash);
// Don't write macro definition for imported macros
// if !self.mac_defs.contains(&data.callee_span)
// && !data.imported {
// self.mac_defs.insert(data.callee_span);
// if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) {
// self.dumper.macro_data(MacroData {
// span: sub_span,
// name: data.name.clone(),
// qualname: qualname.clone(),
// // FIXME where do macro docs come from?
// docs: String::new(),
// }.lower(self.tcx));
// }
// }
}
fn process_trait_item(&mut self, trait_item: &'l ast::TraitItem, trait_id: DefId) {
self.process_macro_use(trait_item.span);
let vis_span = trait_item.span.shrink_to_lo();
match trait_item.node {
ast::TraitItemKind::Const(ref ty, ref expr) => {
self.process_assoc_const(
trait_item.id,
trait_item.ident,
&ty,
expr.as_ref().map(|e| &**e),
trait_id,
respan(vis_span, ast::VisibilityKind::Public),
&trait_item.attrs,
);
}
ast::TraitItemKind::Method(ref sig, ref body) => {
self.process_method(
sig,
body.as_ref().map(|x| &**x),
trait_item.id,
trait_item.ident,
&trait_item.generics,
respan(vis_span, ast::VisibilityKind::Public),
trait_item.span,
);
}
ast::TraitItemKind::Type(ref bounds, ref default_ty) => {
// FIXME do something with _bounds (for type refs)
let name = trait_item.ident.name.to_string();
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(trait_item.id)));
if !self.span.filter_generated(trait_item.ident.span) {
let span = self.span_from_span(trait_item.ident.span);
let id = id_from_node_id(trait_item.id, &self.save_ctxt);
self.dumper.dump_def(
&Access {
public: true,
reachable: true,
},
Def {
kind: DefKind::Type,
id,
span,
name,
qualname,
value: self.span.snippet(trait_item.span),
parent: Some(id_from_def_id(trait_id)),
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&trait_item.attrs),
sig: sig::assoc_type_signature(
trait_item.id,
trait_item.ident,
Some(bounds),
default_ty.as_ref().map(|ty| &**ty),
&self.save_ctxt,
),
attributes: lower_attributes(trait_item.attrs.clone(), &self.save_ctxt),
},
);
}
if let &Some(ref default_ty) = default_ty {
self.visit_ty(default_ty)
}
}
ast::TraitItemKind::Macro(_) => {}
}
}
fn process_impl_item(&mut self, impl_item: &'l ast::ImplItem, impl_id: DefId) {
self.process_macro_use(impl_item.span);
match impl_item.node {
ast::ImplItemKind::Const(ref ty, ref expr) => {
self.process_assoc_const(
impl_item.id,
impl_item.ident,
&ty,
Some(expr),
impl_id,
impl_item.vis.clone(),
&impl_item.attrs,
);
}
ast::ImplItemKind::Method(ref sig, ref body) => {
self.process_method(
sig,
Some(body),
impl_item.id,
impl_item.ident,
&impl_item.generics,
impl_item.vis.clone(),
impl_item.span,
);
}
ast::ImplItemKind::Type(ref ty) => {
// FIXME: uses of the assoc type should ideally point to this
// 'def' and the name here should be a ref to the def in the
// trait.
self.visit_ty(ty)
}
ast::ImplItemKind::Existential(ref bounds) => {
// FIXME: uses of the assoc type should ideally point to this
// 'def' and the name here should be a ref to the def in the
// trait.
for bound in bounds.iter() {
if let ast::GenericBound::Trait(trait_ref, _) = bound {
self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path)
}
}
}
ast::ImplItemKind::Macro(_) => {}
}
}
/// Dumps imports in a use tree recursively.
///
/// A use tree is an import that may contain nested braces (RFC 2128). The `use_tree` parameter
/// is the current use tree under scrutiny, while `id` and `prefix` are its corresponding node
/// ID and path. `root_item` is the topmost use tree in the hierarchy.
///
/// If `use_tree` is a simple or glob import, it is dumped into the analysis data. Otherwise,
/// each child use tree is dumped recursively.
fn process_use_tree(&mut self,
use_tree: &'l ast::UseTree,
id: NodeId,
root_item: &'l ast::Item,
prefix: &ast::Path) {
let path = &use_tree.prefix;
// The access is calculated using the current tree ID, but with the root tree's visibility
// (since nested trees don't have their own visibility).
let hir_id = self.tcx.hir().node_to_hir_id(id);
let access = access_from!(self.save_ctxt, root_item, hir_id);
// The parent `DefId` of a given use tree is always the enclosing item.
let parent = self.save_ctxt.tcx.hir().opt_local_def_id_from_node_id(id)
.and_then(|id| self.save_ctxt.tcx.parent(id))
.map(id_from_def_id);
match use_tree.kind {
ast::UseTreeKind::Simple(alias, ..) => {
let ident = use_tree.ident();
let path = ast::Path {
segments: prefix.segments
.iter()
.chain(path.segments.iter())
.cloned()
.collect(),
span: path.span,
};
let sub_span = path.segments.last().unwrap().ident.span;
if !self.span.filter_generated(sub_span) {
let ref_id = self.lookup_def_id(id).map(|id| id_from_def_id(id));
let alias_span = alias.map(|i| self.span_from_span(i.span));
let span = self.span_from_span(sub_span);
self.dumper.import(&access, Import {
kind: ImportKind::Use,
ref_id,
span,
alias_span,
name: ident.to_string(),
value: String::new(),
parent,
});
self.write_sub_paths_truncated(&path);
}
}
ast::UseTreeKind::Glob => {
let path = ast::Path {
segments: prefix.segments
.iter()
.chain(path.segments.iter())
.cloned()
.collect(),
span: path.span,
};
// Make a comma-separated list of names of imported modules.
let def_id = self.tcx.hir().local_def_id_from_node_id(id);
let names = self.tcx.names_imported_by_glob_use(def_id);
let names: Vec<_> = names.iter().map(|n| n.to_string()).collect();
// Otherwise it's a span with wrong macro expansion info, which
// we don't want to track anyway, since it's probably macro-internal `use`
if let Some(sub_span) =
self.span.sub_span_of_token(use_tree.span, token::BinOp(token::Star))
{
if !self.span.filter_generated(use_tree.span) {
let span = self.span_from_span(sub_span);
self.dumper.import(&access, Import {
kind: ImportKind::GlobUse,
ref_id: None,
span,
alias_span: None,
name: "*".to_owned(),
value: names.join(", "),
parent,
});
self.write_sub_paths(&path);
}
}
}
ast::UseTreeKind::Nested(ref nested_items) => {
let prefix = ast::Path {
segments: prefix.segments
.iter()
.chain(path.segments.iter())
.cloned()
.collect(),
span: path.span,
};
for &(ref tree, id) in nested_items {
self.process_use_tree(tree, id, root_item, &prefix);
}
}
}
}
fn process_bounds(&mut self, bounds: &'l ast::GenericBounds) {
for bound in bounds {
if let ast::GenericBound::Trait(ref trait_ref, _) = *bound {
self.process_path(trait_ref.trait_ref.ref_id, &trait_ref.trait_ref.path)
}
}
}
}
impl<'l, 'tcx, 'll, O: DumpOutput + 'll> Visitor<'l> for DumpVisitor<'l, 'tcx, 'll, O> {
fn visit_mod(&mut self, m: &'l ast::Mod, span: Span, attrs: &[ast::Attribute], id: NodeId) {
// Since we handle explicit modules ourselves in visit_item, this should
// only get called for the root module of a crate.
assert_eq!(id, ast::CRATE_NODE_ID);
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(id)));
let cm = self.tcx.sess.source_map();
let filename = cm.span_to_filename(span);
let data_id = id_from_node_id(id, &self.save_ctxt);
let children = m.items
.iter()
.map(|i| id_from_node_id(i.id, &self.save_ctxt))
.collect();
let span = self.span_from_span(span);
self.dumper.dump_def(
&Access {
public: true,
reachable: true,
},
Def {
kind: DefKind::Mod,
id: data_id,
name: String::new(),
qualname,
span,
value: filename.to_string(),
children,
parent: None,
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(attrs),
sig: None,
attributes: lower_attributes(attrs.to_owned(), &self.save_ctxt),
},
);
self.nest_scope(id, |v| visit::walk_mod(v, m));
}
fn visit_item(&mut self, item: &'l ast::Item) {
use syntax::ast::ItemKind::*;
self.process_macro_use(item.span);
match item.node {
Use(ref use_tree) => {
let prefix = ast::Path {
segments: vec![],
span: DUMMY_SP,
};
self.process_use_tree(use_tree, item.id, item, &prefix);
}
ExternCrate(_) => {
let name_span = item.ident.span;
if !self.span.filter_generated(name_span) {
let span = self.span_from_span(name_span);
let parent = self.save_ctxt.tcx.hir().opt_local_def_id_from_node_id(item.id)
.and_then(|id| self.save_ctxt.tcx.parent(id))
.map(id_from_def_id);
self.dumper.import(
&Access {
public: false,
reachable: false,
},
Import {
kind: ImportKind::ExternCrate,
ref_id: None,
span,
alias_span: None,
name: item.ident.to_string(),
value: String::new(),
parent,
},
);
}
}
Fn(ref decl, .., ref ty_params, ref body) => {
self.process_fn(item, &decl, ty_params, &body)
}
Static(ref typ, _, ref expr) => self.process_static_or_const_item(item, typ, expr),
Const(ref typ, ref expr) => self.process_static_or_const_item(item, &typ, &expr),
Struct(ref def, ref ty_params) | Union(ref def, ref ty_params) => {
self.process_struct(item, def, ty_params)
}
Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
Impl(.., ref ty_params, ref trait_ref, ref typ, ref impl_items) => {
self.process_impl(item, ty_params, trait_ref, &typ, impl_items)
}
Trait(_, _, ref generics, ref trait_refs, ref methods) => {
self.process_trait(item, generics, trait_refs, methods)
}
Mod(ref m) => {
self.process_mod(item);
self.nest_scope(item.id, |v| visit::walk_mod(v, m));
}
Ty(ref ty, ref ty_params) => {
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(item.id)));
let value = ty_to_string(&ty);
if !self.span.filter_generated(item.ident.span) {
let span = self.span_from_span(item.ident.span);
let id = id_from_node_id(item.id, &self.save_ctxt);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(
&access_from!(self.save_ctxt, item, hir_id),
Def {
kind: DefKind::Type,
id,
span,
name: item.ident.to_string(),
qualname: qualname.clone(),
value,
parent: None,
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, &self.save_ctxt),
attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
},
);
}
self.visit_ty(&ty);
self.process_generic_params(ty_params, &qualname, item.id);
}
Existential(ref _bounds, ref ty_params) => {
let qualname = format!("::{}",
self.tcx.def_path_str(self.tcx.hir().local_def_id_from_node_id(item.id)));
// FIXME do something with _bounds
let value = String::new();
if !self.span.filter_generated(item.ident.span) {
let span = self.span_from_span(item.ident.span);
let id = id_from_node_id(item.id, &self.save_ctxt);
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
self.dumper.dump_def(
&access_from!(self.save_ctxt, item, hir_id),
Def {
kind: DefKind::Type,
id,
span,
name: item.ident.to_string(),
qualname: qualname.clone(),
value,
parent: None,
children: vec![],
decl_id: None,
docs: self.save_ctxt.docs_for_attrs(&item.attrs),
sig: sig::item_signature(item, &self.save_ctxt),
attributes: lower_attributes(item.attrs.clone(), &self.save_ctxt),
},
);
}
self.process_generic_params(ty_params, &qualname, item.id);
}
Mac(_) => (),
_ => visit::walk_item(self, item),
}
}
fn visit_generics(&mut self, generics: &'l ast::Generics) {
for param in &generics.params {
match param.kind {
ast::GenericParamKind::Lifetime { .. } => {}
ast::GenericParamKind::Type { ref default, .. } => {
self.process_bounds(&param.bounds);
if let Some(ref ty) = default {
self.visit_ty(&ty);
}
}
ast::GenericParamKind::Const { ref ty } => {
self.process_bounds(&param.bounds);
self.visit_ty(&ty);
}
}
}
for pred in &generics.where_clause.predicates {
if let ast::WherePredicate::BoundPredicate(ref wbp) = *pred {
self.process_bounds(&wbp.bounds);
self.visit_ty(&wbp.bounded_ty);
}
}
}
fn visit_ty(&mut self, t: &'l ast::Ty) {
self.process_macro_use(t.span);
match t.node {
ast::TyKind::Path(_, ref path) => {
if generated_code(t.span) {
return;
}
if let Some(id) = self.lookup_def_id(t.id) {
let sub_span = path.segments.last().unwrap().ident.span;
let span = self.span_from_span(sub_span);
self.dumper.dump_ref(Ref {
kind: RefKind::Type,
span,
ref_id: id_from_def_id(id),
});
}
self.write_sub_paths_truncated(path);
visit::walk_path(self, path);
}
ast::TyKind::Array(ref element, ref length) => {
self.visit_ty(element);
self.nest_tables(length.id, |v| v.visit_expr(&length.value));
}
_ => visit::walk_ty(self, t),
}
}
fn visit_expr(&mut self, ex: &'l ast::Expr) {
debug!("visit_expr {:?}", ex.node);
self.process_macro_use(ex.span);
match ex.node {
ast::ExprKind::Struct(ref path, ref fields, ref base) => {
let expr_hir_id = self.save_ctxt.tcx.hir().node_to_hir_id(ex.id);
let hir_expr = self.save_ctxt.tcx.hir().expect_expr(expr_hir_id);
let adt = match self.save_ctxt.tables.expr_ty_opt(&hir_expr) {
Some(ty) if ty.ty_adt_def().is_some() => ty.ty_adt_def().unwrap(),
_ => {
visit::walk_expr(self, ex);
return;
}
};
let node_id = self.save_ctxt.tcx.hir().hir_to_node_id(hir_expr.hir_id);
let res = self.save_ctxt.get_path_res(node_id);
self.process_struct_lit(ex, path, fields, adt.variant_of_res(res), base)
}
ast::ExprKind::MethodCall(ref seg, ref args) => self.process_method_call(ex, seg, args),
ast::ExprKind::Field(ref sub_ex, _) => {
self.visit_expr(&sub_ex);
if let Some(field_data) = self.save_ctxt.get_expr_data(ex) {
down_cast_data!(field_data, RefData, ex.span);
if !generated_code(ex.span) {
self.dumper.dump_ref(field_data);
}
}
}
ast::ExprKind::Closure(_, _, _, ref decl, ref body, _fn_decl_span) => {
let id = format!("${}", ex.id);
// walk arg and return types
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
// walk the body
self.nest_tables(ex.id, |v| {
v.process_formals(&decl.inputs, &id);
v.nest_scope(ex.id, |v| v.visit_expr(body))
});
}
ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) => {
let value = self.span.snippet(subexpression.span);
self.process_var_decl(pattern, value);
debug!("for loop, walk sub-expr: {:?}", subexpression.node);
self.visit_expr(subexpression);
visit::walk_block(self, block);
}
ast::ExprKind::Let(ref pats, ref scrutinee) => {
self.process_var_decl_multi(pats);
self.visit_expr(scrutinee);
}
ast::ExprKind::Repeat(ref element, ref count) => {
self.visit_expr(element);
self.nest_tables(count.id, |v| v.visit_expr(&count.value));
}
// In particular, we take this branch for call and path expressions,
// where we'll index the idents involved just by continuing to walk.
_ => visit::walk_expr(self, ex),
}
}
fn visit_mac(&mut self, mac: &'l ast::Mac) {
// These shouldn't exist in the AST at this point, log a span bug.
span_bug!(
mac.span,
"macro invocation should have been expanded out of AST"
);
}
fn visit_pat(&mut self, p: &'l ast::Pat) {
self.process_macro_use(p.span);
self.process_pat(p);
}
fn visit_arm(&mut self, arm: &'l ast::Arm) {
self.process_var_decl_multi(&arm.pats);
if let Some(expr) = &arm.guard {
self.visit_expr(expr);
}
self.visit_expr(&arm.body);
}
fn visit_path(&mut self, p: &'l ast::Path, id: NodeId) {
self.process_path(id, p);
}
fn visit_stmt(&mut self, s: &'l ast::Stmt) {
self.process_macro_use(s.span);
visit::walk_stmt(self, s)
}
fn visit_local(&mut self, l: &'l ast::Local) {
self.process_macro_use(l.span);
let value = l.init
.as_ref()
.map(|i| self.span.snippet(i.span))
.unwrap_or_default();
self.process_var_decl(&l.pat, value);
// Just walk the initialiser and type (don't want to walk the pattern again).
walk_list!(self, visit_ty, &l.ty);
walk_list!(self, visit_expr, &l.init);
}
fn visit_foreign_item(&mut self, item: &'l ast::ForeignItem) {
let hir_id = self.tcx.hir().node_to_hir_id(item.id);
let access = access_from!(self.save_ctxt, item, hir_id);
match item.node {
ast::ForeignItemKind::Fn(ref decl, ref generics) => {
if let Some(fn_data) = self.save_ctxt.get_extern_item_data(item) {
down_cast_data!(fn_data, DefData, item.span);
self.process_generic_params(generics, &fn_data.qualname, item.id);
self.dumper.dump_def(&access, fn_data);
}
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
}
ast::ForeignItemKind::Static(ref ty, _) => {
if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) {
down_cast_data!(var_data, DefData, item.span);
self.dumper.dump_def(&access, var_data);
}
self.visit_ty(ty);
}
ast::ForeignItemKind::Ty => {
if let Some(var_data) = self.save_ctxt.get_extern_item_data(item) {
down_cast_data!(var_data, DefData, item.span);
self.dumper.dump_def(&access, var_data);
}
}
ast::ForeignItemKind::Macro(..) => {}
}
}
}
You can’t perform that action at this time.