Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -13,129 +13,6 @@
#![allow(internal_features)]
#![feature(unsized_fn_params)]

// CHECK-LABEL: emptyfn:
#[no_mangle]
pub fn emptyfn() {
// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: array_char
#[no_mangle]
pub fn array_char(f: fn(*const char)) {
let a = ['c'; 1];
let b = ['d'; 3];
let c = ['e'; 15];

f(&a as *const _);
f(&b as *const _);
f(&c as *const _);

// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: array_u8_1
#[no_mangle]
pub fn array_u8_1(f: fn(*const u8)) {
let a = [0u8; 1];
f(&a as *const _);

// The 'strong' heuristic adds stack protection to functions with local
// array variables regardless of their size.

// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: array_u8_small:
#[no_mangle]
pub fn array_u8_small(f: fn(*const u8)) {
let a = [0u8; 2];
let b = [0u8; 7];
f(&a as *const _);
f(&b as *const _);

// Small arrays do not lead to stack protection by the 'basic' heuristic.

// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: array_u8_large:
#[no_mangle]
pub fn array_u8_large(f: fn(*const u8)) {
let a = [0u8; 9];
f(&a as *const _);

// Since `a` is a byte array with size greater than 8, the basic heuristic
// will also protect this function.

// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

#[derive(Copy, Clone)]
pub struct ByteSizedNewtype(u8);

// CHECK-LABEL: array_bytesizednewtype_9:
#[no_mangle]
pub fn array_bytesizednewtype_9(f: fn(*const ByteSizedNewtype)) {
let a = [ByteSizedNewtype(0); 9];
f(&a as *const _);

// Since `a` is a byte array in the LLVM output, the basic heuristic will
// also protect this function.

// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: local_var_addr_used_indirectly
#[no_mangle]
pub fn local_var_addr_used_indirectly(f: fn(bool)) {
let a = 5;
let a_addr = &a as *const _ as usize;
f(a_addr & 0x10 == 0);

// This function takes the address of a local variable taken. Although this
// address is never used as a way to refer to stack memory, the `strong`
// heuristic adds stack smash protection. This is also the case in C++:
// ```
// cat << EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// void f(void (*g)(bool)) {
// int32_t x;
// g((reinterpret_cast<uintptr_t>(&x) & 0x10U) == 0);
// }
// EOF
// ```

// all: __security_check_cookie
// strong: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: local_string_addr_taken
#[no_mangle]
pub fn local_string_addr_taken(f: fn(&String)) {
Expand Down Expand Up @@ -166,194 +43,3 @@ pub fn local_string_addr_taken(f: fn(&String)) {
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

pub trait SelfByRef {
fn f(&self) -> i32;
}

impl SelfByRef for i32 {
fn f(&self) -> i32 {
return self + 1;
}
}

// CHECK-LABEL: local_var_addr_taken_used_locally_only
#[no_mangle]
pub fn local_var_addr_taken_used_locally_only(factory: fn() -> i32, sink: fn(i32)) {
let x = factory();
let g = x.f();
sink(g);

// Even though the local variable conceptually has its address taken, as
// it's passed by reference to the trait function, the use of the reference
// is easily inlined. There is therefore no stack smash protection even with
// the `strong` heuristic.

// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

pub struct Gigastruct {
does: u64,
not: u64,
have: u64,
array: u64,
members: u64,
}

// CHECK-LABEL: local_large_var_moved
#[no_mangle]
pub fn local_large_var_moved(f: fn(Gigastruct)) {
let x = Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 };
f(x);

// Even though the local variable conceptually doesn't have its address
// taken, it's so large that the "move" is implemented with a reference to a
// stack-local variable in the ABI. Consequently, this function *is*
// protected. This is also the case for rvalue-references in C++,
// regardless of struct size:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// void f(void (*g)(uint64_t&&)) {
// uint64_t x;
// g(std::move(x));
// }
// EOF
// ```

// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: local_large_var_cloned
#[no_mangle]
pub fn local_large_var_cloned(f: fn(Gigastruct)) {
f(Gigastruct { does: 0, not: 1, have: 2, array: 3, members: 4 });

// A new instance of `Gigastruct` is passed to `f()`, without any apparent
// connection to this stack frame. Still, since instances of `Gigastruct`
// are sufficiently large, it is allocated in the caller stack frame and
// passed as a pointer. As such, this function is *also* protected, just
// like `local_large_var_moved`. This is also the case for pass-by-value
// of sufficiently large structs in C++:
// ```
// cat <<EOF | clang++ -O2 -fstack-protector-strong -S -x c++ - -o - | grep stack_chk
// #include <cstdint>
// #include <utility>
// struct Gigastruct { uint64_t a, b, c, d, e; };
// void f(void (*g)(Gigastruct)) {
// g(Gigastruct{});
// }
// EOF
// ```

// all: __security_check_cookie
// strong: __security_check_cookie
// basic: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

extern "C" {
// A call to an external `alloca` function is *not* recognized as an
// `alloca(3)` operation. This function is a compiler built-in, as the
// man page explains. Clang translates it to an LLVM `alloca`
// instruction with a count argument, which is also what the LLVM stack
// protector heuristics looks for. The man page for `alloca(3)` details
// a way to avoid using the compiler built-in: pass a -std=c11
// argument, *and* don't include <alloca.h>. Though this leads to an
// external alloca() function being called, it doesn't lead to stack
// protection being included. It even fails with a linker error
// "undefined reference to `alloca'". Example:
// ```
// cat<<EOF | clang -fstack-protector-strong -x c -std=c11 - -o /dev/null
// #include <stdlib.h>
// void * alloca(size_t);
// void f(void (*g)(void*)) {
// void * p = alloca(10);
// g(p);
// }
// int main() { return 0; }
// EOF
// ```
// The following tests demonstrate that calls to an external `alloca`
// function in Rust also doesn't trigger stack protection.

fn alloca(size: usize) -> *mut ();
}

// CHECK-LABEL: alloca_small_compile_time_constant_arg
#[no_mangle]
pub fn alloca_small_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(8) });

// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: alloca_large_compile_time_constant_arg
#[no_mangle]
pub fn alloca_large_compile_time_constant_arg(f: fn(*mut ())) {
f(unsafe { alloca(9) });

// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// CHECK-LABEL: alloca_dynamic_arg
#[no_mangle]
pub fn alloca_dynamic_arg(f: fn(*mut ()), n: usize) {
f(unsafe { alloca(n) });

// all: __security_check_cookie
// strong-NOT: __security_check_cookie
// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}

// The question then is: in what ways can Rust code generate array-`alloca`
// LLVM instructions? This appears to only be generated by
// rustc_codegen_ssa::traits::Builder::array_alloca() through
// rustc_codegen_ssa::mir::operand::OperandValue::store_unsized(). FWICT
// this is support for the "unsized locals" unstable feature:
// https://doc.rust-lang.org/unstable-book/language-features/unsized-locals.html.

// CHECK-LABEL: unsized_fn_param
#[no_mangle]
pub fn unsized_fn_param(s: [u8], l: bool, f: fn([u8])) {
let n = if l { 1 } else { 2 };
f(*Box::<[u8]>::from(&s[0..n])); // slice-copy with Box::from

// Even though slices are conceptually passed by-value both into this
// function and into `f()`, this is implemented with pass-by-reference
// using a suitably constructed fat-pointer (as if the functions
// accepted &[u8]). This function therefore doesn't need dynamic array
// alloca, and is therefore not protected by the `strong` or `basic`
// heuristics.

// We should have a __security_check_cookie call in `all` and `strong` modes but
// LLVM does not support generating stack protectors in functions with funclet
// based EH personalities.
// https://github.com/llvm/llvm-project/blob/37fd3c96b917096d8a550038f6e61cdf0fc4174f/llvm/lib/CodeGen/StackProtector.cpp#L103C1-L109C4
// all-NOT: __security_check_cookie
// strong-NOT: __security_check_cookie

// basic-NOT: __security_check_cookie
// none-NOT: __security_check_cookie
// missing-NOT: __security_check_cookie
}
Loading