Permalink
dhardy
Simplify ::test::rng function
8f715b0
Mar 29, 2019
Join GitHub today
GitHub is home to over 31 million developers working together to host and review code, manage projects, and build software together.
Sign up| // Copyright 2018 Developers of the Rand project. | |
| // Copyright 2013-2017 The Rust Project Developers. | |
| // | |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license | |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your | |
| // option. This file may not be copied, modified, or distributed | |
| // except according to those terms. | |
| //! Utilities for random number generation | |
| //! | |
| //! Rand provides utilities to generate random numbers, to convert them to | |
| //! useful types and distributions, and some randomness-related algorithms. | |
| //! | |
| //! # Quick Start | |
| //! | |
| //! To get you started quickly, the easiest and highest-level way to get | |
| //! a random value is to use [`random()`]; alternatively you can use | |
| //! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while | |
| //! the [`distributions`] and [`seq`] modules provide further | |
| //! functionality on top of RNGs. | |
| //! | |
| //! ``` | |
| //! use rand::prelude::*; | |
| //! | |
| //! if rand::random() { // generates a boolean | |
| //! // Try printing a random unicode code point (probably a bad idea)! | |
| //! println!("char: {}", rand::random::<char>()); | |
| //! } | |
| //! | |
| //! let mut rng = rand::thread_rng(); | |
| //! let y: f64 = rng.gen(); // generates a float between 0 and 1 | |
| //! | |
| //! let mut nums: Vec<i32> = (1..100).collect(); | |
| //! nums.shuffle(&mut rng); | |
| //! ``` | |
| //! | |
| //! # The Book | |
| //! | |
| //! For the user guide and futher documentation, please read | |
| //! [The Rust Rand Book](https://rust-random.github.io/book). | |
| #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", | |
| html_favicon_url = "https://www.rust-lang.org/favicon.ico", | |
| html_root_url = "https://rust-random.github.io/rand/")] | |
| #![deny(missing_docs)] | |
| #![deny(missing_debug_implementations)] | |
| #![doc(test(attr(allow(unused_variables), deny(warnings))))] | |
| #![cfg_attr(not(feature="std"), no_std)] | |
| #![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] | |
| #![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))] | |
| #[cfg(feature = "std")] extern crate core; | |
| #[cfg(all(feature = "alloc", not(feature="std")))] #[macro_use] extern crate alloc; | |
| #[cfg(feature="simd_support")] extern crate packed_simd; | |
| extern crate rand_jitter; | |
| #[cfg(feature = "rand_os")] | |
| extern crate rand_os; | |
| extern crate rand_core; | |
| extern crate rand_hc; | |
| extern crate rand_pcg; | |
| #[cfg(feature = "log")] #[macro_use] extern crate log; | |
| #[allow(unused)] | |
| #[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () } | |
| #[allow(unused)] | |
| #[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () } | |
| #[allow(unused)] | |
| #[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () } | |
| #[allow(unused)] | |
| #[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () } | |
| #[allow(unused)] | |
| #[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () } | |
| // Re-exports from rand_core | |
| pub use rand_core::{RngCore, CryptoRng, SeedableRng}; | |
| pub use rand_core::{ErrorKind, Error}; | |
| // Public exports | |
| #[cfg(feature="std")] pub use rngs::thread::thread_rng; | |
| // Public modules | |
| pub mod distributions; | |
| pub mod prelude; | |
| pub mod rngs; | |
| pub mod seq; | |
| use core::{mem, slice}; | |
| use distributions::{Distribution, Standard}; | |
| use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow}; | |
| /// An automatically-implemented extension trait on [`RngCore`] providing high-level | |
| /// generic methods for sampling values and other convenience methods. | |
| /// | |
| /// This is the primary trait to use when generating random values. | |
| /// | |
| /// # Generic usage | |
| /// | |
| /// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some | |
| /// things are worth noting here: | |
| /// | |
| /// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no | |
| /// difference whether we use `R: Rng` or `R: RngCore`. | |
| /// - The `+ ?Sized` un-bounding allows functions to be called directly on | |
| /// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without | |
| /// this it would be necessary to write `foo(&mut r)`. | |
| /// | |
| /// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some | |
| /// trade-offs. It allows the argument to be consumed directly without a `&mut` | |
| /// (which is how `from_rng(thread_rng())` works); also it still works directly | |
| /// on references (including type-erased references). Unfortunately within the | |
| /// function `foo` it is not known whether `rng` is a reference type or not, | |
| /// hence many uses of `rng` require an extra reference, either explicitly | |
| /// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the | |
| /// optimiser can remove redundant references later. | |
| /// | |
| /// Example: | |
| /// | |
| /// ``` | |
| /// # use rand::thread_rng; | |
| /// use rand::Rng; | |
| /// | |
| /// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { | |
| /// rng.gen() | |
| /// } | |
| /// | |
| /// # let v = foo(&mut thread_rng()); | |
| /// ``` | |
| pub trait Rng: RngCore { | |
| /// Return a random value supporting the [`Standard`] distribution. | |
| /// | |
| /// [`Standard`]: distributions::Standard | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// let x: u32 = rng.gen(); | |
| /// println!("{}", x); | |
| /// println!("{:?}", rng.gen::<(f64, bool)>()); | |
| /// ``` | |
| #[inline] | |
| fn gen<T>(&mut self) -> T | |
| where Standard: Distribution<T> { | |
| Standard.sample(self) | |
| } | |
| /// Generate a random value in the range [`low`, `high`), i.e. inclusive of | |
| /// `low` and exclusive of `high`. | |
| /// | |
| /// This function is optimised for the case that only a single sample is | |
| /// made from the given range. See also the [`Uniform`] distribution | |
| /// type which may be faster if sampling from the same range repeatedly. | |
| /// | |
| /// # Panics | |
| /// | |
| /// Panics if `low >= high`. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// let n: u32 = rng.gen_range(0, 10); | |
| /// println!("{}", n); | |
| /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); | |
| /// println!("{}", m); | |
| /// ``` | |
| /// | |
| /// [`Uniform`]: distributions::uniform::Uniform | |
| fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T | |
| where | |
| B1: SampleBorrow<T> + Sized, | |
| B2: SampleBorrow<T> + Sized, | |
| { | |
| T::Sampler::sample_single(low, high, self) | |
| } | |
| /// Sample a new value, using the given distribution. | |
| /// | |
| /// ### Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// use rand::distributions::Uniform; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// let x = rng.sample(Uniform::new(10u32, 15)); | |
| /// // Type annotation requires two types, the type and distribution; the | |
| /// // distribution can be inferred. | |
| /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); | |
| /// ``` | |
| fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { | |
| distr.sample(self) | |
| } | |
| /// Create an iterator that generates values using the given distribution. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// use rand::distributions::{Alphanumeric, Uniform, Standard}; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// | |
| /// // Vec of 16 x f32: | |
| /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect(); | |
| /// | |
| /// // String: | |
| /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect(); | |
| /// | |
| /// // Combined values | |
| /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5) | |
| /// .collect::<Vec<(f64, bool)>>()); | |
| /// | |
| /// // Dice-rolling: | |
| /// let die_range = Uniform::new_inclusive(1, 6); | |
| /// let mut roll_die = rng.sample_iter(&die_range); | |
| /// while roll_die.next().unwrap() != 6 { | |
| /// println!("Not a 6; rolling again!"); | |
| /// } | |
| /// ``` | |
| fn sample_iter<'a, T, D: Distribution<T>>( | |
| &'a mut self, distr: &'a D, | |
| ) -> distributions::DistIter<'a, D, Self, T> | |
| where Self: Sized { | |
| distr.sample_iter(self) | |
| } | |
| /// Fill `dest` entirely with random bytes (uniform value distribution), | |
| /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices | |
| /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). | |
| /// | |
| /// On big-endian platforms this performs byte-swapping to ensure | |
| /// portability of results from reproducible generators. | |
| /// | |
| /// This uses [`fill_bytes`] internally which may handle some RNG errors | |
| /// implicitly (e.g. waiting if the OS generator is not ready), but panics | |
| /// on other errors. See also [`try_fill`] which returns errors. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// let mut arr = [0i8; 20]; | |
| /// thread_rng().fill(&mut arr[..]); | |
| /// ``` | |
| /// | |
| /// [`fill_bytes`]: RngCore::fill_bytes | |
| /// [`try_fill`]: Rng::try_fill | |
| fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { | |
| self.fill_bytes(dest.as_byte_slice_mut()); | |
| dest.to_le(); | |
| } | |
| /// Fill `dest` entirely with random bytes (uniform value distribution), | |
| /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices | |
| /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). | |
| /// | |
| /// On big-endian platforms this performs byte-swapping to ensure | |
| /// portability of results from reproducible generators. | |
| /// | |
| /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In | |
| /// some cases errors may be resolvable; see [`ErrorKind`] and | |
| /// documentation for the RNG in use. If you do not plan to handle these | |
| /// errors you may prefer to use [`fill`]. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// # use rand::Error; | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// # fn try_inner() -> Result<(), Error> { | |
| /// let mut arr = [0u64; 4]; | |
| /// thread_rng().try_fill(&mut arr[..])?; | |
| /// # Ok(()) | |
| /// # } | |
| /// | |
| /// # try_inner().unwrap() | |
| /// ``` | |
| /// | |
| /// [`try_fill_bytes`]: RngCore::try_fill_bytes | |
| /// [`fill`]: Rng::fill | |
| fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { | |
| self.try_fill_bytes(dest.as_byte_slice_mut())?; | |
| dest.to_le(); | |
| Ok(()) | |
| } | |
| /// Return a bool with a probability `p` of being true. | |
| /// | |
| /// See also the [`Bernoulli`] distribution, which may be faster if | |
| /// sampling from the same probability repeatedly. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// println!("{}", rng.gen_bool(1.0 / 3.0)); | |
| /// ``` | |
| /// | |
| /// # Panics | |
| /// | |
| /// If `p < 0` or `p > 1`. | |
| /// | |
| /// [`Bernoulli`]: distributions::bernoulli::Bernoulli | |
| #[inline] | |
| fn gen_bool(&mut self, p: f64) -> bool { | |
| let d = distributions::Bernoulli::new(p); | |
| self.sample(d) | |
| } | |
| /// Return a bool with a probability of `numerator/denominator` of being | |
| /// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of | |
| /// returning true. If `numerator == denominator`, then the returned value | |
| /// is guaranteed to be `true`. If `numerator == 0`, then the returned | |
| /// value is guaranteed to be `false`. | |
| /// | |
| /// See also the [`Bernoulli`] distribution, which may be faster if | |
| /// sampling from the same `numerator` and `denominator` repeatedly. | |
| /// | |
| /// # Panics | |
| /// | |
| /// If `denominator == 0` or `numerator > denominator`. | |
| /// | |
| /// # Example | |
| /// | |
| /// ``` | |
| /// use rand::{thread_rng, Rng}; | |
| /// | |
| /// let mut rng = thread_rng(); | |
| /// println!("{}", rng.gen_ratio(2, 3)); | |
| /// ``` | |
| /// | |
| /// [`Bernoulli`]: distributions::bernoulli::Bernoulli | |
| #[inline] | |
| fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { | |
| let d = distributions::Bernoulli::from_ratio(numerator, denominator); | |
| self.sample(d) | |
| } | |
| } | |
| impl<R: RngCore + ?Sized> Rng for R {} | |
| /// Trait for casting types to byte slices | |
| /// | |
| /// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods. | |
| pub trait AsByteSliceMut { | |
| /// Return a mutable reference to self as a byte slice | |
| fn as_byte_slice_mut(&mut self) -> &mut [u8]; | |
| /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). | |
| fn to_le(&mut self); | |
| } | |
| impl AsByteSliceMut for [u8] { | |
| fn as_byte_slice_mut(&mut self) -> &mut [u8] { | |
| self | |
| } | |
| fn to_le(&mut self) {} | |
| } | |
| macro_rules! impl_as_byte_slice { | |
| ($t:ty) => { | |
| impl AsByteSliceMut for [$t] { | |
| fn as_byte_slice_mut(&mut self) -> &mut [u8] { | |
| if self.len() == 0 { | |
| unsafe { | |
| // must not use null pointer | |
| slice::from_raw_parts_mut(0x1 as *mut u8, 0) | |
| } | |
| } else { | |
| unsafe { | |
| slice::from_raw_parts_mut(&mut self[0] | |
| as *mut $t | |
| as *mut u8, | |
| self.len() * mem::size_of::<$t>() | |
| ) | |
| } | |
| } | |
| } | |
| fn to_le(&mut self) { | |
| for x in self { | |
| *x = x.to_le(); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| impl_as_byte_slice!(u16); | |
| impl_as_byte_slice!(u32); | |
| impl_as_byte_slice!(u64); | |
| #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(u128); | |
| impl_as_byte_slice!(usize); | |
| impl_as_byte_slice!(i8); | |
| impl_as_byte_slice!(i16); | |
| impl_as_byte_slice!(i32); | |
| impl_as_byte_slice!(i64); | |
| #[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(i128); | |
| impl_as_byte_slice!(isize); | |
| macro_rules! impl_as_byte_slice_arrays { | |
| ($n:expr,) => {}; | |
| ($n:expr, $N:ident, $($NN:ident,)*) => { | |
| impl_as_byte_slice_arrays!($n - 1, $($NN,)*); | |
| impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { | |
| fn as_byte_slice_mut(&mut self) -> &mut [u8] { | |
| self[..].as_byte_slice_mut() | |
| } | |
| fn to_le(&mut self) { | |
| self[..].to_le() | |
| } | |
| } | |
| }; | |
| (!div $n:expr,) => {}; | |
| (!div $n:expr, $N:ident, $($NN:ident,)*) => { | |
| impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); | |
| impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { | |
| fn as_byte_slice_mut(&mut self) -> &mut [u8] { | |
| self[..].as_byte_slice_mut() | |
| } | |
| fn to_le(&mut self) { | |
| self[..].to_le() | |
| } | |
| } | |
| }; | |
| } | |
| impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); | |
| impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); | |
| /// A convenience extension to [`SeedableRng`] allowing construction from fresh | |
| /// entropy. This trait is automatically implemented for any PRNG implementing | |
| /// [`SeedableRng`] and is not intended to be implemented by users. | |
| /// | |
| /// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then | |
| /// unwrapping the result. | |
| /// | |
| /// Since this is convenient and secure, it is the recommended way to create | |
| /// PRNGs, though two alternatives may be considered: | |
| /// | |
| /// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed | |
| /// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`; | |
| /// this will usually be faster and should also be secure, but requires | |
| /// trusting one extra component. | |
| /// | |
| /// ## Example | |
| /// | |
| /// ``` | |
| /// use rand::{Rng, FromEntropy}; | |
| /// use rand::rngs::StdRng; | |
| /// | |
| /// let mut rng = StdRng::from_entropy(); | |
| /// println!("Random die roll: {}", rng.gen_range(1, 7)); | |
| /// ``` | |
| /// | |
| /// [`EntropyRng`]: rngs::EntropyRng | |
| #[cfg(feature="std")] | |
| pub trait FromEntropy: SeedableRng { | |
| /// Creates a new instance, automatically seeded with fresh entropy. | |
| /// | |
| /// Normally this will use `OsRng`, but if that fails `JitterRng` will be | |
| /// used instead. Both should be suitable for cryptography. It is possible | |
| /// that both entropy sources will fail though unlikely; failures would | |
| /// almost certainly be platform limitations or build issues, i.e. most | |
| /// applications targetting PC/mobile platforms should not need to worry | |
| /// about this failing. | |
| /// | |
| /// # Panics | |
| /// | |
| /// If all entropy sources fail this will panic. If you need to handle | |
| /// errors, use the following code, equivalent aside from error handling: | |
| /// | |
| /// ``` | |
| /// # use rand::Error; | |
| /// use rand::prelude::*; | |
| /// use rand::rngs::EntropyRng; | |
| /// | |
| /// # fn try_inner() -> Result<(), Error> { | |
| /// // This uses StdRng, but is valid for any R: SeedableRng | |
| /// let mut rng = StdRng::from_rng(EntropyRng::new())?; | |
| /// | |
| /// println!("random number: {}", rng.gen_range(1, 10)); | |
| /// # Ok(()) | |
| /// # } | |
| /// | |
| /// # try_inner().unwrap() | |
| /// ``` | |
| fn from_entropy() -> Self; | |
| } | |
| #[cfg(feature="std")] | |
| impl<R: SeedableRng> FromEntropy for R { | |
| fn from_entropy() -> R { | |
| R::from_rng(rngs::EntropyRng::new()).unwrap_or_else(|err| | |
| panic!("FromEntropy::from_entropy() failed: {}", err)) | |
| } | |
| } | |
| /// Generates a random value using the thread-local random number generator. | |
| /// | |
| /// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for | |
| /// documentation of the entropy source and [`Standard`] for documentation of | |
| /// distributions and type-specific generation. | |
| /// | |
| /// # Examples | |
| /// | |
| /// ``` | |
| /// let x = rand::random::<u8>(); | |
| /// println!("{}", x); | |
| /// | |
| /// let y = rand::random::<f64>(); | |
| /// println!("{}", y); | |
| /// | |
| /// if rand::random() { // generates a boolean | |
| /// println!("Better lucky than good!"); | |
| /// } | |
| /// ``` | |
| /// | |
| /// If you're calling `random()` in a loop, caching the generator as in the | |
| /// following example can increase performance. | |
| /// | |
| /// ``` | |
| /// use rand::Rng; | |
| /// | |
| /// let mut v = vec![1, 2, 3]; | |
| /// | |
| /// for x in v.iter_mut() { | |
| /// *x = rand::random() | |
| /// } | |
| /// | |
| /// // can be made faster by caching thread_rng | |
| /// | |
| /// let mut rng = rand::thread_rng(); | |
| /// | |
| /// for x in v.iter_mut() { | |
| /// *x = rng.gen(); | |
| /// } | |
| /// ``` | |
| /// | |
| /// [`Standard`]: distributions::Standard | |
| #[cfg(feature="std")] | |
| #[inline] | |
| pub fn random<T>() -> T | |
| where Standard: Distribution<T> { | |
| thread_rng().gen() | |
| } | |
| #[cfg(test)] | |
| mod test { | |
| use rngs::mock::StepRng; | |
| use rngs::StdRng; | |
| use super::*; | |
| #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box; | |
| pub fn rng(seed: u64) -> impl RngCore { | |
| StdRng::seed_from_u64(seed) | |
| } | |
| #[test] | |
| fn test_fill_bytes_default() { | |
| let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); | |
| // check every remainder mod 8, both in small and big vectors. | |
| let lengths = [0, 1, 2, 3, 4, 5, 6, 7, | |
| 80, 81, 82, 83, 84, 85, 86, 87]; | |
| for &n in lengths.iter() { | |
| let mut buffer = [0u8; 87]; | |
| let v = &mut buffer[0..n]; | |
| r.fill_bytes(v); | |
| // use this to get nicer error messages. | |
| for (i, &byte) in v.iter().enumerate() { | |
| if byte == 0 { | |
| panic!("byte {} of {} is zero", i, n) | |
| } | |
| } | |
| } | |
| } | |
| #[test] | |
| fn test_fill() { | |
| let x = 9041086907909331047; // a random u64 | |
| let mut rng = StepRng::new(x, 0); | |
| // Convert to byte sequence and back to u64; byte-swap twice if BE. | |
| let mut array = [0u64; 2]; | |
| rng.fill(&mut array[..]); | |
| assert_eq!(array, [x, x]); | |
| assert_eq!(rng.next_u64(), x); | |
| // Convert to bytes then u32 in LE order | |
| let mut array = [0u32; 2]; | |
| rng.fill(&mut array[..]); | |
| assert_eq!(array, [x as u32, (x >> 32) as u32]); | |
| assert_eq!(rng.next_u32(), x as u32); | |
| } | |
| #[test] | |
| fn test_fill_empty() { | |
| let mut array = [0u32; 0]; | |
| let mut rng = StepRng::new(0, 1); | |
| rng.fill(&mut array); | |
| rng.fill(&mut array[..]); | |
| } | |
| #[test] | |
| fn test_gen_range() { | |
| let mut r = rng(101); | |
| for _ in 0..1000 { | |
| let a = r.gen_range(-4711, 17); | |
| assert!(a >= -4711 && a < 17); | |
| let a = r.gen_range(-3i8, 42); | |
| assert!(a >= -3i8 && a < 42i8); | |
| let a = r.gen_range(&10u16, 99); | |
| assert!(a >= 10u16 && a < 99u16); | |
| let a = r.gen_range(-100i32, &2000); | |
| assert!(a >= -100i32 && a < 2000i32); | |
| let a = r.gen_range(&12u32, &24u32); | |
| assert!(a >= 12u32 && a < 24u32); | |
| assert_eq!(r.gen_range(0u32, 1), 0u32); | |
| assert_eq!(r.gen_range(-12i64, -11), -12i64); | |
| assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); | |
| } | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_gen_range_panic_int() { | |
| let mut r = rng(102); | |
| r.gen_range(5, -2); | |
| } | |
| #[test] | |
| #[should_panic] | |
| fn test_gen_range_panic_usize() { | |
| let mut r = rng(103); | |
| r.gen_range(5, 2); | |
| } | |
| #[test] | |
| fn test_gen_bool() { | |
| let mut r = rng(105); | |
| for _ in 0..5 { | |
| assert_eq!(r.gen_bool(0.0), false); | |
| assert_eq!(r.gen_bool(1.0), true); | |
| } | |
| } | |
| #[test] | |
| fn test_rng_trait_object() { | |
| use distributions::{Distribution, Standard}; | |
| let mut rng = rng(109); | |
| let mut r = &mut rng as &mut RngCore; | |
| r.next_u32(); | |
| r.gen::<i32>(); | |
| assert_eq!(r.gen_range(0, 1), 0); | |
| let _c: u8 = Standard.sample(&mut r); | |
| } | |
| #[test] | |
| #[cfg(feature="alloc")] | |
| fn test_rng_boxed_trait() { | |
| use distributions::{Distribution, Standard}; | |
| let rng = rng(110); | |
| let mut r = Box::new(rng) as Box<RngCore>; | |
| r.next_u32(); | |
| r.gen::<i32>(); | |
| assert_eq!(r.gen_range(0, 1), 0); | |
| let _c: u8 = Standard.sample(&mut r); | |
| } | |
| #[test] | |
| #[cfg(feature="std")] | |
| fn test_random() { | |
| // not sure how to test this aside from just getting some values | |
| let _n : usize = random(); | |
| let _f : f32 = random(); | |
| let _o : Option<Option<i8>> = random(); | |
| let _many : ((), | |
| (usize, | |
| isize, | |
| Option<(u32, (bool,))>), | |
| (u8, i8, u16, i16, u32, i32, u64, i64), | |
| (f32, (f64, (f64,)))) = random(); | |
| } | |
| #[test] | |
| fn test_gen_ratio_average() { | |
| const NUM: u32 = 3; | |
| const DENOM: u32 = 10; | |
| const N: u32 = 100_000; | |
| let mut sum: u32 = 0; | |
| let mut rng = rng(111); | |
| for _ in 0..N { | |
| if rng.gen_ratio(NUM, DENOM) { | |
| sum += 1; | |
| } | |
| } | |
| // Have Binomial(N, NUM/DENOM) distribution | |
| let expected = (NUM * N) / DENOM; // exact integer | |
| assert!(((sum - expected) as i32).abs() < 500); | |
| } | |
| } |