
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330028721

Semi-Convex Hull Tree: Fast Nearest Neighbor Queries for Large Scale Data on

GPUs

Conference Paper · November 2018

DOI: 10.1109/ICDM.2018.00110

CITATIONS

2
READS

140

8 authors, including:

Some of the authors of this publication are also working on these related projects:

clustering for big data View project

Time series data mining View project

Yewang Chen

National Huaqiao University

25 PUBLICATIONS 166 CITATIONS

SEE PROFILE

Nizar Bouguila

Concordia University Montreal

325 PUBLICATIONS 3,394 CITATIONS

SEE PROFILE

Bineng Zhong

National Huaqiao University

115 PUBLICATIONS 1,274 CITATIONS

SEE PROFILE

Fei Wu

Shanghai Maritime University

194 PUBLICATIONS 2,406 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yewang Chen on 06 January 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/330028721_Semi-Convex_Hull_Tree_Fast_Nearest_Neighbor_Queries_for_Large_Scale_Data_on_GPUs?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/330028721_Semi-Convex_Hull_Tree_Fast_Nearest_Neighbor_Queries_for_Large_Scale_Data_on_GPUs?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/clustering-for-big-data?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Time-series-data-mining?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yewang_Chen?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yewang_Chen?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Huaqiao_University?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yewang_Chen?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar_Bouguila?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar_Bouguila?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar_Bouguila?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bineng_Zhong2?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bineng_Zhong2?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Huaqiao_University?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bineng_Zhong2?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Wu6?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Wu6?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shanghai_Maritime_University?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fei_Wu6?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yewang_Chen?enrichId=rgreq-ed48317c7ff17d0ba18119543e6e6a61-XXX&enrichSource=Y292ZXJQYWdlOzMzMDAyODcyMTtBUzo3MTE5MDA5ODM3MjE5ODlAMTU0Njc0MTgyOTcwNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Semi-Convex Hull Tree: Fast Nearest Neighbor
Queries for Large Scale Data on GPUs

Yewang Chen1, Lida Zhou1, Nizar Bouguila2, Bineng Zhong1,
Fei Wu3, Zhen Lei4, Cheng Wang1 Jixiang Du1, Hailin Li5

1College of Computer Science and Technology Huaqiao University, China, 361021, ywchen@hqu.edu.cn
2Engineering and Computer Science, Concordia University,Canada, H3G 2W1. nizar.bouguila@concordia.ca
3College of Computer Science and Technology, Zhejiang University, China, 310058, wufei@cs.zju.edu.cn

4CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190,China, zhen.lei@nlpr.ia.ac.cn
5College of Business Administration, Huaqiao University, Quanzhou 362021, China

Abstract—A fast exact nearest neighbor search algorithm over
large scale data is proposed based on semi-convex hull tree,
where each node represents a semi-convex hull, which is made
of a set of hyper planes. When performing the task of nearest
neighbor queries, unnecessary distance computations can be
greatly reduced by quadratic programming. GPUs are also used
to accelerate the query process. Experiments conducted on both
Intel(R) HD Graphics 4400 and Nvidia Geforce GTX1050 TI,
as well as theoretical analysis show that the proposed algorithm
yields significant improvements and outperforms current k-d tree
based nearest neighbor query algorithms and others.

I. INTRODUCTION

Nearest neighbors (NN) query is a fundamental problem
in computational geometry [13] and machine learning [15].
It plays an important role in various applications, including
data mining, document retrieval and data compression etc, in
which searching for the most similar matches is the most
computationally expensive part. For example, the key of
DBSCAN [7] is to retrieve core points whose first MinPts
nearest neighbors are all within a specified ϵ-neighborhood,
which is obviously a NN problem, and DCore [6] is similar.

There are some techniques used to boost neighbor query,
such as partition trees, graph methods[14] and hashing tech-
niques (e.g., ANN [18], LSH [1], FLANN [11]) etc. Among
them, partition trees are popular techniques that are used to
recursively split the search space into subspaces, where K-d
tree [3] is the most famous partition tree and widely used in
many applications. It has various variants, such as buffer k-d
trees [9], optimized k-d trees [16] and FRS[5]. However, it is
not suitable to deal with high-dimensional data, since a general
rule n >> 2d should be satisfied [8] in k-d tree, where d is
the dimensionality and n is the cardinality. In addition to k-d
tree, there are various other partitioning trees, such as cover
trees [4] , vocabulary tree [12] and ball-tree [10].

In this paper, a fast parallel algorithm for nearest neighbor
search over large scale data is proposed based on semi-convex
hull tree, and we mainly focus on comparing our algorithm
with buffer k-d tree and cover tree. Before starting, notations
used in this paper are listed as following:

Notations: Data points set is noted as P ⊂ Rd, where d
is the dimension; n is the cardinality; pi is the ith point;
dist(q, p) is the distance between point p and q; nodei is the

ith node, and node0 is the root. In fact, a node represents a
convex set H , and we use Hi as the convex set of nodei.

II. THE DRAWBACKS OF k-D TREE AND OUR IDEAS

Fig. 1 shows an example of the subdivision and structure of
a k-d tree. Each point is a node in k-d tree, and there exists a
minimum hyper-rectangle, which is called a cell, that covers
the point and all its descendants. For example, as shown in
Fig. 1, cell 1 is the cell of node f , which is a hyper-rectangle
that covers f and g. The cell of node i is cell 3 that covers
i, j and k.

During the task of NN search based on k-d tree, we have
to compare the current nearest distance with that of between
query point and splitting hyper plane. For example, q (the
red point) is a query point in Fig. 1, suppose point i is
current nearest neighbor, and dist(q, i) = r1, in order to check
whether there are closer neighbor points within node e, two
steps will be performed: (1) get the approximate min distance
r2 from q to the cell of e, in fact r2 = dq,q′ , which is the
distance from q to the splitting hyper plane (the green dash
line) of node e, where q′ is the projection of q on the hyper
plane. (2) Check e and its sub nodes if r1 <= r2.

However, we notice that each splitting hyper plane is axis-
parallel, and the approximate distance is simplified as the
distance from query point q to the splitting axis, which makes
it always far less than the distance from q to the real nearest
neighbor, especially in high dimension.

Our ideas: (1) As mentioned above, the disadvantage of
k-d tree is mainly caused by the axis-parallel hyper plane.
Our first is to divide data set into hierarchical nodes, each of
which is a convex set H , made by a set of non-axis-parallel
hyper planes (essentially a set of linear inequations). Since
the distance metric is usually convex, such as ∥ · ∥2, ∥ · ∥1
and ∥ · ∥∞ etc (in this paper, we only use ∥ · ∥2), and each
convex set H is made of a set of linear inequations. Then,
quadratic programming is applicable to retrieve the minimum
distance from a query point q to H , which is used as the
lower bound from q to all points in the node. Since the aim
is to filter unnecessary computations, it is obvious that the
smaller the convex set of each node, the better lower bound
we may obtain. Although, convex hull is the minimum convex

(a) subdivision (b) structure

Fig. 1. The subdivision and structure of a k-d tree. The 3 rectangles are the
cell of node f, e and i, respectively. The green dash line is the splitting hyper
plane of node e. The red dash line segment is the convex hull that covers
point e and m. Point q is a query point, r1 is the distance from q to point i.

Fig. 2. Nodei is made of 4 constraints (Ci,1, ..., Ci,4), and
HPi,1, ..., HPi,4 are the four constraint hyper planes; Pi = {v, w, x, y, z}
is the data point set within nodei; the shadow region is one semi-convex
hull of Nodei; dist(q,HPi,1) and dist(q,HPi,2) are the distance from q
to HPi,1 and HPi,2, respectively; dist(o, nodei) is the distance from q to
nodei.

set that covers all points within a node, it is nontrivial to build a
convex hull [2]. Therefore, semi-convex hull is optional for the
proposed method. (2) The second is to use GPUs to accelerate
distance computations which can not be filtered, because all
distance computations are independent.

III. THE SEMI-CONVEX HULL TREE

Definition 1. Linear Constraint: Ci,j = (αi,j , βi,j) is the jth

linear constraint on nodei where ∥αi,j∥ = 1 s.t. ∀x ∈ Hi

, α′
i,j ∗ x ≥ βi,j .

Obviously linear constraint is in fact a half space. Suppose
nodei has linear constraints (Ci,1, Ci,2, ...), then nodei rep-
resents a convex set, e.g., the shadow region in Fig. 2 is the
convex set Hi of nodei, which is actually a semi-convex hull.

We say a point p is within nodei or p ∈ Hi if ∀j s.t. α′
i,j ∗

p ≥ βi,j ; we also note Pi = {p|p ∈ P
∧
p ∈ Hi} is the

data point set within nodei, obviously Pi ⊂ Hi. In Fig. 2,
Pi = {v, w, x, y, z} is also within nodei.

Definition 2. Constraint Hyper Plane: {x|α′
i,j ∗ x = βi,j} is

the Constraint Hyper Plane of Ci,j , and noted as HPi,j .

Fig. 3. Semi-convex hull tree has two main parts: top tree and buffers (this
figure is revised from Figure. 1 in [9]). Each node has three kinds of basic
information: hierarchical location (index, left and right), constraints and node
center. Leaf node has additional buffer which is a set of data points.

In Fig. 2, HPi,1,HPi,2, HPi,3 and HPi,4 are the four con-
straint hyper planes of Ci,1, Ci,2, Ci,3 and Ci,4, respectively.
Then, we also note dist(HPi,j , q) = |α′

i,j ∗ x − βi,j | as the
distance from q to HPi,j .

Definition 3. Active Constraint: we say Ci,j is active w.r.t q
and nodei if α′

i,j ∗ q < βi,j .

In Fig. 2, Ci,1 and Ci,2 are both active constraints w.r.t
q and nodei. According to this definition, dist(HPi,j , q) =
βi,j − α′

i,j ∗ x if Ci,j is active w.r.t q and nodei, otherwise,
dist(HPi,j , q) = α′

i,j ∗x−βi,j . Hence, obviously, for a query
point q, there is at least one active constraint w.r.t q and nodei,
if q is not within nodei,.

Definition 4. Distance from q to a node: we note
dist(nodei, q) or dist(q, nodei) = min

x
(dist(x, q)) s.t. x ∈

Hi as the distance from q to nodei.

In Fig. 2, dist(q, nodei) = dist(o, q) is the distance from
q to nodei, where o = argmin

x
(dist(x, q)) s.t. x ∈ Hi .

Data structure: As shown in Fig. 3 semi-convex hull tree
has similar structure as buffer k-d tree, i.e., it has top tree and
buffers, buffers are a set of data points saved in leaf nodes.
Each node has some information, such as hierarchical location
(index, left and right), constraints and node center.

Building semi-convex hull tree: As mentioned above, we
use non-axis-parallel hyper planes to divide data points within
a node by two main steps:

(1) Determine a new hyper plane: Suppose Fig. 4 shows the
points distribution of Pi, we divide it as following:

(a) Select yellow point o randomly, find the farthest point p
from o, and then find the farthest point q from p, s.t. p, q ∈ Pi.

(b) Determine the hyper plane (red dash line) whose norm
vector is (p − q)/∥(p − q)∥2 and passes (p + q)/2. Sup-
pose the hyper plane equation is (p−q)′∗x

∥(p−q)∥2
+ b = 0, then

(p−q)′

∥(p−q)∥2
∗ (p−q)

2 + b = 0, and then b = −∥p−q∥2

2 , i.e., hyper

plane {x| (p−q)′∗x
∥(p−q)∥2

− ∥p−q∥2

2 = 0} divides Pi into two parts,
i.e., Pj and Pk within nodej and nodek, respectively.

(c) Find the nearest point s ∈ Pj to the red hyper plane
(red dashed line), and find the nearest point t ∈ Pk to the red

Fig. 4. Find a hyper plane (red dash line) to divide Pi into nodej and nodek ,
and refine it to be green line for nodej , because the green line is tightly close
to nodej . Similarly, the blue line is the constraint hyper plane for nodek .

hyper plane (red dashed line);
(d) In order to build semi-convex hulls that cover all points

in two sub nodes, respectively, it is necessary to move the red
dashed line parallelly to point s and t, respectively.

• For nodej , move the hyper plane parallelly such that it
passes point s, as the green line shows, which makes
the green line tightly close to the left child node. It is
also easy to determine the green hyper plane equation as:
(p−q)′∗x
∥(p−q)∥2

− (p−q)′∗s
∥(p−q)∥2

= 0. Therefore, the green line is the
constraint hyper plane for nodej , i.e., ∀x ∈ Pj , we have
(p−q)′∗x
∥(p−q)∥2

− (p−q)′∗s
∥(p−q)∥2

≥ 0, and Pj = {p, v, u, x, y, w, s}.
• Similarly, the blue line is the constraint hyper plane for

Pk, i.e., ∀x ∈ nodek, we have (q−p)′∗x
∥(q−p)∥2

− (q−p)′∗t
∥(q−p)∥2

≥ 0.
(2) Inherit all constraints from parent node and refine: Take

nodej for example again, suppose we have divided nodej into
two parts nodem and noden by the same way as mentioned
in step (1), and get the blue line as new constraint on nodem.
Because nodej is the parent node of nodem, then Pm ∈ Pj .
Therefore, constraints on nodej is also effective for nodem,
i.e., ∀x ∈ Hm, we have (p−q)′∗x

∥(p−q)∥2
− (p−q)′∗s

∥(p−q)∥2
≥ 0. However,

as we can see in Fig. 5, the green hyper plane is obviously
not tightly close to nodem, therefore we can refine it to be the
red hyper plane which pass point u, because u is the closest
point in Pm to the green line. Untill now, nodem has two
constraints, i.e. the red line and the blue line. While for noden
it is unnecessary to refine the green line, because the green
line still pass s ∈ Pn, and noden also has two constraints.
If nodej has more than one constraints, then all constraints
should be refined by the same way.

Algorithm 1 presents the process of building a semi-convex
hull tree. It builds tree recursively, both time and space
complexities are about O(n).

IV. SEMI-CONVEX HULL TREE BASED NN QUERY

Let Hi be the convex set on nodei, then dist(nodei, q) is:

min
x

dist(x, q) s.t.

α′
i,1 ∗ x ≥ βi,1

.....

α′
i,l ∗ x ≥ βi,l

(1)

Fig. 5. Red dash line is a new hyper plane that divides nodej into nodem
and noden, and blue line is refined from red dash line for nodem. Green line
is the constraint on nodej and should be refined to the red line for nodem.

Algorithm 1 Build Semi-Convex Hull Tree: build tree
1: Input: data P , min number of points for leaf node

MinPts, parent node pNode
2: Output: node : curNode
3: create a NODE curNode
4: inherit and refine all hyper planes (constraints) of pNode

for curNode
5: if length(P)> MinPts then
6: find a hyper plane {x|α′ ∗ x+ b = 0} to divide P
7: P1 = points within left node
8: leftNode=build tree(P1, MinPts, pNode)
9: curNode.left = leftNode

10: P2 = points within right node
11: rightNode=build tree(P2, MinPts, pNode)
12: curNode.right = rightNode
13: else
14: curNode.isLeaf = true
15: curNode.points = P % save points
16: end if
17: return curNode

where l is the number of constraints of nodei. Obviously, it is a
classic quadratic programming problem, and dist(nodei, q) ≤
min
p∈Pi

(dist(q, p)), because Pi ∈ Hi. Therefore, we can skip

nodei as well as all of its sub nodes, provided dist(nodei, q)
is larger than the current nearest distance. On CPU, we can
start from root node and recursively visit the tree, if one node
is skipped, all of its sub nodes are also filtered. However on
GPUs, there are two drawbacks to perform by this way, as
follows: (1) The original algorithm of quadratic programming
(e.g., Gaspero: http://www.diegm.uniud.it/digaspero) is too
complex to be implemented on GPUs directly, because Open-
CL [17] restricts many standard operations defined in C/C++,
e.g, new and malloc. (2) Recursively visiting tree and nodes
filtering cause pointer jumping which leads to a nonsatisfying
performance due to suboptimal memory accesses.

Therefore, we have to simplify quadratic programming so
that it can run on GPUs, and only visits leaf nodes by order.

Algorithm 2 Initialize kNNResult

1: Input: semi-convex hull tree nodes; query point q.
2: Output: kNNResult of q.
3: curNode = nodes[0]; %root is current search node
4: while curNode is not leaf do
5: leftDist = dist(q, curNode.left.center)
6: rightDist = dist(q, curNode.right.center)
7: result = curNode.left
8: if leftDist > right then
9: curNode = curNode.right

10: end if
11: end while
12: Find kNNResult from curNode %brute force

Simplified quadratic programming: Our goal is to resolve
the quadratic programming problem approximately, which
makes it as simple as possible.

Theorem 1. Let AHPi be a set that contains all active
constraint hyper planes w.r.t q and nodei, min

p∈Pi

dist(q, p) ≥
dist(nodei, q) ≥ max

HPi,j∈AHPi

dist(q,HPi,j).

Proof. (1) Suppose Ci,j ∈ AHPi, i.e., Ci,j is active w.r.t
q and nodei, then according to Definition 3 we know that
the separating hyper-plane HPi,j divides point q from half
space {x|α′

i,j ∗ x ≥ βi,j}, and dist(HPi,j , q) is the distance
from q to HPi,j , which also is the min distance from q
to the half space. And ∵ Hi ⊂ {x|α′

i,j ∗ x ≥ βi,j},
then dist(nodei, q) ≥ dist(q,HPi,j), ∴ dist(nodei, q) ≥

max
HPi,j∈AHPi

dist(q,HPi,j). (2) ∵ Pi is within nodei then

Pi ⊂ Hi, and then min
p∈Pi

dist(q, p) ≥ dist(q,HPi,j).

Take Fig. 2 for example again, suppose dist(q, Pi) =
dist(q, w) and dist(q,Hi,1) > dist(q,Hi,2), because both
Ci,1 and Ci,2 are active constraints w.r.t q and nodei, therefore,
dist(q, w) ≥ dist(q, nodei) ≥ dist(q,Hi,1) holds.

The simplified quadratic programming only finds the max
distance from q to all active constraint hyper planes, which has
low complexity. While k-d tree only uses the difference in the
splitting axis as the distance from q to a node (see Fig.1),
which is usually far less than the result got by simplified
quadratic programming, let alone dist(nodei, q). Thus, this
is one main advantage to k-d tree.

Initialize nearest neighbors: The first step of query nearest
neighbors is to initialize K-Nearest Neighbors kNNResult,
we perform this step on HOST which shown in Algorithm 2,
which runs in O(MinPts ∗ log(|nodes|)) where |nodes| is
nodes number.

Visiting leaf nodes by order: As mentioned above, it
is better for GPUs to visiting data by order, then we re-
sort the original data points according to the order of leaf
node. Suppose Pln1 , Pln2 , Pln3 ... are the point sets within
leaf nodes nodeln1 , nodeln2 , nodeln3 ..., respectively, where
ln1 < ln2 < ln3..., then the sorted data is SortP =
{Pln1

, Pln2
, Pln3

, ...}. Work units of GPUs perform queries

Algorithm 3 Fast K-Nearest Neighbor Query: fKNN

1: Input: sorted data SortP ; the number of K; query point
q; current K-Nearest Neighbors kNNResult of q; sorted
leaf node sets nodeln1 , nodeln2 , nodeln3 ...

2: Output: K-Nearest Neighbors kNNResult of q.
3: cur min dist = min distance from q to kNNResult
4: for each leaf node nodelni do
5: skip node=false
6: for each constraint Clni,j do
7: if Clni,j is active w.r.t q and nodelni then
8: if dist(q,HPlni,j) > cur min dist then
9: skip node=true

10: break
11: end if
12: end if
13: end for
14: if not skip node then
15: brute force compute distance from q to all points in

Plni , update kNNResult and cur min dist
16: end if
17: end for

independently in parallel, and the algorithm performed in each
work unit is shown in Algorithm 3. For each work unit,
the complexity is O(MinPts ∗ log(2n

MinPts)) given a fixed
intrinsic dimensionality. Therefore, the total complexity is
O(

MinPts∗log(2n
MinPts)

comp units num), where comp units num are thread
number and compute units number of GPUs.

V. EXPERIMENTS

In this section, we conduct experiments to evaluate the
proposed algorithms on Windows 10 64-bit with Intel(R) Core
(TM) i5-4590 CPU @3.30GHz 3.30GHz, 4 GB memory, and
make comparisons with buffer k-d tree, brute force (gpu)
and cover tree on different data sets. All codes of theses
algorithms were compiled in C++ on TDM-GCC-32. We set
MinPts = n ∗ percent for semi-convex hull tree where n
is the cardinality, and percent ∈ (0, 1]. The configurations
of GPU devices and OpenCL are the following: (1) Intel(R)
HD Graphics 4400 with 20 parallel compute units, and max
global memory size is 14,488 MB, OpenCL is Intel SDK
for OpenCL (windows) (2) Nvidia Geforce GTX 1050 TI, 2
GB memory with 6 multiprocessors + NVIDIA CUDA8.0 for
windows (OpenCL is included).

Data sets come from UCI (http-
s://archive.ics.uci.edu/ml/index.php), including PAM
(PAMPA2: dim=4, n=3,850,505), HOUSE (Household: dim=7,
n=2,049,280), USCENCUS 1990 (dim=8, n=3.65 ∗ 105),
HANDPOSTURE (dim=15, n=78,095), REACTION (dim=29,
n=33,913), APS (dim=70, n=60,000) and FONT which
includes BODONI (dim=70, n=3,964) and CALIBRI (dim=70,
n=16,364)). All same points are removed, all missing values
are set to be 0, and each dimension is normalized to [0, 105].

Fig. 6. Comparison of runtime for random 20,000 queries on PAM with K
varies at Intel GPU. (percent =0.1%; depth=6 for buffer k-d tree.)

Fig. 7. Comparison of runtime for random 20,000 queries on PAM with n
varies at Intel GPU. (K = 30; percent =0.1%; depth=6 for buffer k-d tree.)

A. Runtime comparisons

In this part, we compare the query time for 20,000 queries
with K varies on PAM, fix percent = 0.1% for the proposed
algoithm, and depth = 6 for buffer k-d tree. Each query is
generated by: (1) selected from source data set randomly; (2)
for each dimension, add a noise by ‘rand()/100’ in C++. (The
purpose of adding noise is to avoid duplicate queries).

As Fig. 6 show, we can see that both algorithms run
linearly with K increasing. However, it also addresses that
the proposed algorithm runs far faster than buffer k-d tree.

B. Distance computations comparisons

In order to compare distance computations, we con-
duct three experiments on whole HOUSE, PAM and
USCENCUS. The total distance computations of the pro-
posed algorithm includes two parts, (1) distance computations
from query points to constraints hyper planes, (2) normal
distance computations between two points. While buffer k-d
tree only counts normal distance computations.

As Tab. I shows, the proposed algorithm filter far more
distance computations than buffer k-d tree. In PAM , semi-
convex hull tree improves it greatly when K is small, e.g, the
speedup is more than 100 from K=9 to K=15. In HOUSE
the speedup also varies from 13.17 to 35.86 with K changing
from 30 to 90, and similar things happens in USCENCUS.

It is also inferred, due to the “curse of dimensionality” semi-
convex hull tree still works well in low dimension, and its
superiority to buffer k-d tree becomes weak in high dimension.

TABLE I
COMPARISONS OF DISTANCE COMPUTATIONS FOR RANDOM 20,000
QUERIES. (PERCENT =0.1%; DEPTH=9 FOR BUFFER k-D TREE). THE

TOTAL DISTANCE COMPUTATIONS OF SEMI-CONVEX HULL TREE = (1)
DISTANCE COMPUTATIONS FROM QUERY POINTS TO CONSTRAINTS HYPER

PLANES + (2) NORMAL DISTANCE COMPUTATIONS.

Data Set K semi-convex bufferkdtree speedup

PAM

9 201,808,076 22,871,116,448 113.33
15 234,965,281 25,675,140,084 109.27
21 366,390,416 28,007,582,503 76.44
30 2,230,881,456 31,056,015,629 13.92

HOUSE

30 401,557,607 14,400,253,026 35.86
50 656,272,039 14,624,010,688 22.28
70 700,681,446 14,624,010,688 20.87
90 1,135,037,232 14,950,763,584 13.17

USCENCUS

30 318,820,278 4,150,426,89 13.02
50 383,999,453 4,307,871,400 11.22
70 418,892,656 4,368,218,220 10.43
90 470,540,381 4,530,582,291 9.63

It is notable that the improvement of query time is not so
remarkable as that of distance computations, the reason is that
Algorithm 3 does not perfectly abide by the specification of
OpenCL, (e.g., data align, coalesced access and data vector-
ization etc.), which leads to a nonsatisfying performance due
to conditional computations and suboptimal memory accesses.
While buffer k-d tree solves this problem by reorganizing the
data structure, and utilizing a lazy strategy which firstly only
collects the leaf that needs to be processed next instead of push
all leaf to GPUs. Therefore, we will improve our algorithm by
similar way in future.

TABLE II
RUNTIME COMPARISONS OF 106 QUERIES ON DIFFERENT DATA SET AT
INTEL(R) HD GRAPHICS 4400, K=30. (BKT: BUFFER KD TREE; SCT:
SEMI-CONVEX TREE; BRUTE: BRUTE-FORCE; COVER: COVER TREE)

Data Set
Intel GPU CPU

BKT/depth=9 SCT/percent BRUTE COVER
PAM 85.64 49.07 /0.001 5595.35 54.86
HOUSE 148.39 95.22 /0.001 2989.04 126.69
USCENCUS 217.06 68.60 /0.005 331.87 81.86
HAND 342.35 85.92 /0.005 121 53.92
REACTION 583.47 90.20/0.005 76.78 642.56
APS 565.1 174.02/0.005 205.91 259.03
BODONI 1120.15 40.15/0.005 31.24 46.64
CALIBRI 694.9 96.88/0.005 87.62 53.54

C. Comparison of massive queries

(1) Run on Intel(R) HD Graphics 4400: We compare the
runtime of massive queries for all algorithms on several data
sets, as shown in Table II, K is fixed to 30, the depth of buffer
k-d tree and the leaf threshold percent of semi-convex hull
tree are both well chosen such that runtime in table is nearly
the best result, and it is observed: (a) On high dimensional
small data set (e.g, BODONI, REACTION and APS etc), the
performances of our algorithm and cover tree are close to brute
force (gpu), while buffer k-d tree doesn’t work well, that’s
because the general rule n >> 2d is not satisfied. (b) However,
on low dimensional massive data set (e.g, PAM, HOUSE),
buffer k-d tree, cover tree and our algorithm won brute force

algorithm a lot. The proposed algorithm outperforms buffer
k-d tree and cover tree on these data sets, and yields valuable
speedups over buffer k-d tree.

(2) Run on Nvidia Geforce GTX 1050 Ti: Due to the
memory limitation for each work unit on Nvidia Geforce GTX
1050 Ti, launching large scale queries with large K at one time
often yields out of resource for buffer k-d tree and the proposed
method, therefore we test the three methods on subsets of
PAM , HOUSE, USCENCUS and HANDPOSTURE
with a relative large K (200), respectively. In the case of K is
large, the results are shown in Tab. III, and it is observed: (a)
buffer k-d tree is quite inferior to cover tree and the proposed
method; (b) in the case of very low dimension, e.g 4 dim
(PAM) and 7 dim (HOUSE), semi-convex hull tree is close to
cover tree, however, the proposed algorithm outperforms cover
tree with dimension increasing, e.g, semi-convex hull tree has
obvious advantage to cover tree on HANDPOSTURE and
USCENCUS .

From all experiments in this subsection, we can see that the
proposed method can perform well and outperform buffer k-d
tree within about 15 dimension, but in high dimensional data
set semi-convex hull tree is close to GPU brute force.

TABLE III
RUNTIME COMPARISONS OF 1000 QUERIES WITH K=200 ON DIFFERENT
DATA SETS AT NVIDIA GEFORCE GTX 1050 TI. ALL PARAMETERS ARE

WELL CHOSEN FOR EACH ALGORITHM.

Data Set n bufferkdtree semi-convex cover tree

PAM
100,000 2.38 0.32 0.30
600,000 3.51 0.32 0.37

1,000,000 2.51 0.32 0.39

HOUSE
100,000 2.08 0.38 0.34
600,000 3.20 0.47 0.46

1,000,000 2.51 0.50 0.67

USCENCUS
36,000 1.43 0.26 0.38

216,000 2.49 0.25 0.78
360,000 3.35 0.29 0.93

HAND
POSTURE

7,800 0.66 0.16 0.33
46,800 1.76 0.31 1.35
78,000 2.12 0.31 2.39

VI. CONCLUSION

In this paper, we propose a novel data structure, semi-
convex hull tree, which is used to retrieve exact nearest
neighbors on GPUs for large scale queries. Each node rep-
resents a semi-convex hull which is made of a set of linear
inequations (non-axis-parallel hyper planes), and a leaf node
saves a set of data points within it. In order to perform the
task of querying nearest neighbors on GPUs, approximate
quadratic programming algorithm is invented and used to
filter unnecessary distance computations. We conduct a set
of experiments and prove that the proposed algorithm is
far superior to k-d tree in that it can greatly reduce many
unnecessary distance computations.

However, there is a main deficiency of the proposed method,
that is its data scheduling strategy on GPU does not perfectly
abide by specification of OpenCL or CUDA, which leads to
a nonsatisfying performance due to conditional computations

and suboptimal memory accesses, and yields that the runtime
of NN query is not as good as that of theoretical analysis (e.g,
Tab. I). Therefore, our future work is to go on improving the
proposed algorithm.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion of China (No.61673186,71771094,61572205); the Open
Project Program of the State Key Lab of CAD&CG(Grant
No.A1722), Zhejiang University; the Open Project Program
of the National Laboratory of Pattern Recognition (NLPR)
(NO. 201700002); the Natural Science Foundation of Fujian
Province (No.2016J01303); Project of science and technology
plan of Fujian Province of China (No.2017H01010065).

REFERENCES

[1] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Commun. ACM, vol. 51,
no. 1, p. 117C122, 2008.

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM Transactions on Mathematical Software
(TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[3] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[4] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 97–104.

[5] Y. Chen, J. P. Singh, L. Zhou, and N. Bouguila, “Frs: Fast range search
by pruning unnecessary distance computations based on k-d tree,” in
IEEE International Conference on Data Mining Workshops, 2017, pp.
1160–1165.

[6] Y. Chen, S. Tang, L. Zhou, C. Wang, J. Du, T. Wang, and S. Pei,
“Decentralized clustering by finding loose and distributed density cores,”
Information Sciences, vol. 433-434, pp. 510–526, 2018.

[7] Y. Chen, S. Tang, N. Bouguila, C. Wang, J. Du, and H. L. Li,
“A fast clustering algorithm based on pruning unnecessary distance
computations in dbscan for high-dimensional data,” Pattern Recognition,
2018 (https://doi.org/10.1016/j.patcog.2018.05.030.).

[8] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
“Computational geometry,” in Computational geometry. Springer, 2000,
pp. 1–17.

[9] F. Gieseke, J. Heinermann, C. E. Oancea, and C. Igel, “Buffer kd trees:
Processing massive nearest neighbor queries on gpus.” in ICML, 2014,
pp. 172–180.

[10] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and
matching for object class recognition.” in BMVC, 2006, pp. 789–798.

[11] D. G. L. Marius Muja, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE Transactions on Pattern Analysis And Machine
Intelligence, vol. 36, no. 11, pp. 2227–2240, 2014.

[12] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Computer vision and pattern recognition, 2006 IEEE computer
society conference on, vol. 2. Ieee, 2006, pp. 2161–2168.

[13] F. P. Preparata and M. Shamos, Computational geometry: an introduc-
tion. Springer Science & Business Media, 2012.

[14] T. B. Sebastian and B. B. Kimia, “Metric-based shape retrieval in large
databases,” in Pattern Recognition, 2002. Proceedings. 16th Internation-
al Conference on, vol. 3. IEEE, 2002, pp. 291–296.

[15] G. Shakhnarovich, P. Indyk, and T. Darrell, Nearest-neighbor methods
in learning and vision: theory and practice, 2006.

[16] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[17] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, pp. 66–73, 2010.

[18] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and X.-S. Hua,
“Trinary-projection trees for approximate nearest neighbor search,” IEEE
Transactions on Pattern Analysis And Machine Intelligence, vol. 36,
no. 2, pp. 388–403, 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/330028721

