Skip to content
Permalink
Browse files

Fix wrong link and typo

  • Loading branch information...
dongkwan-kim committed Aug 14, 2019
1 parent a03b309 commit c7f9424a774e4917df7786a3fa6da1be10308d99
Showing with 2 additions and 2 deletions.
  1. +1 −1 README.md
  2. +1 −1 torch_geometric/nn/models/autoencoder.py
@@ -99,7 +99,7 @@ In detail, the following methods are currently implemented:
* All variants of **[Graph Auto-Encoders](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.models.GAE)** from Kipf and Welling: [Variational Graph Auto-Encoders](https://arxiv.org/abs/1611.07308) (NIPS-W 2016) and Pan *et al.*: [Adversarially Regularized Graph Autoencoder for Graph Embedding](https://arxiv.org/abs/1802.04407) (IJCAI 2018)
* **[RENet](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.models.RENet)** from Jin *et al.*: [Recurrent Event Network for Reasoning over Temporal Knowledge Graphs](https://arxiv.org/abs/1904.05530) (ICLR-W 2019)
* **[GraphUNet](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.models.GraphUNet)** from Gao and Ji: [Graph U-Nets](https://arxiv.org/abs/1905.05178) (ICML 2019)
* **[NeighborSampler](https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.data.NeighborSampler)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017)
* **[NeighborSampler](https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html#torch_geometric.data.NeighborSampler)** from Hamilton *et al.*: [Inductive Representation Learning on Large Graphs](https://arxiv.org/abs/1706.02216) (NIPS 2017)
--------------------------------------------------------------------------------
@@ -41,7 +41,7 @@ class InnerProductDecoder(torch.nn.Module):
space produced by the encoder."""

def forward(self, z, edge_index, sigmoid=True):
r"""Decodes the latent variables :obj:`z` into edge probabilties for
r"""Decodes the latent variables :obj:`z` into edge probabilities for
the given node-pairs :obj:`edge_index`.
Args:

0 comments on commit c7f9424

Please sign in to comment.
You can’t perform that action at this time.