embed2learn
Embedding to Learn
Installation
Step 1
Checkout garage.
Follow the standard garage setup instructions.
If you want to run experiments with Sawyer environments, please also install sawyer package in your activated conda environment.
Step 2
Check out this repository as a submodule of the repository above, into
sandbox/embed2learn
.
git submodule add -f git@github.com:ryanjulian/embed2learn.git sandbox/embed2learn
Step 3
cd sandbox/embed2learn
git submodule init
git submodule update
Running experiements
Step 1
Activate the anaconda environment for garage
conda activate garage
Step 2
cd /your/garage/location
export PYTHONPATH=`pwd`
Step3
Train an embedding model and a multi-task policy with point mass environment.
python sandbox/embed2learn/launchers/ppo_point_embed.py
Train an embedding model and a multi-task policy with sawyer reacher environment.
python sandbox/embed2learn/launchers/sawyer_reach_embed.py
Citing This Work
If you use this code for scholarly work, please kindly cite our work using one of the Bibtex snippets below.
General
@inproceedings{julian2018scaling,
title={Scaling simulation-to-real transfer by learning composable robot skills},
author={Julian, Ryan and Heiden, Eric and He, Zhanpeng and Zhang, Hejia and Schaal, Stefan and Lim, Joseph and Sukhatme, Gaurav and Hausman, Karol},
booktitle={International Symposium on Experimental Robotics},
year={2018},
url={https://arxiv.org/abs/1809.10253}
}
MPC-in-latent space launchers and environments
@article{he2018zero,
title={Zero-Shot Skill Composition and Simulation-to-Real Transfer by Learning Task Representations},
author={He, Zhanpeng and Julian, Ryan and Heiden, Eric and Zhang, Hejia and Schaal, Stefan and Lim, Joseph and Sukhatme, Gaurav and Hausman, Karol},
journal={arXiv preprint arXiv:1810.02422},
year={2018},
url={https://arxiv.org/abs/1810.02422}
}