Permalink
Switch branches/tags
Nothing to show
Find file Copy path
2906afe Feb 19, 2014
319 lines (267 sloc) 10.2 KB
// 64-bit rANS encoder/decoder - public domain - Fabian 'ryg' Giesen 2014
//
// This uses 64-bit states (63-bit actually) which allows renormalizing
// by writing out a whole 32 bits at a time (b=2^32) while still
// retaining good precision and allowing for high probability resolution.
//
// The only caveat is that this version requires 64-bit arithmetic; in
// particular, the encoder approximation in the bottom half requires a
// fast way to obtain the top 64 bits of an unsigned 64*64 bit product.
//
// In short, as written, this code works on 64-bit targets only!
#ifndef RANS64_HEADER
#define RANS64_HEADER
#include <stdint.h>
#ifdef assert
#define Rans64Assert assert
#else
#define Rans64Assert(x)
#endif
// --------------------------------------------------------------------------
// This code needs support for 64-bit long multiplies with 128-bit result
// (or more precisely, the top 64 bits of a 128-bit result). This is not
// really portable functionality, so we need some compiler-specific hacks
// here.
#if defined(_MSC_VER)
#include <intrin.h>
static inline uint64_t Rans64MulHi(uint64_t a, uint64_t b)
{
return __umulh(a, b);
}
#elif defined(__GNUC__)
static inline uint64_t Rans64MulHi(uint64_t a, uint64_t b)
{
return (uint64_t) (((unsigned __int128)a * b) >> 64);
}
#else
#error Unknown/unsupported compiler!
#endif
// --------------------------------------------------------------------------
// L ('l' in the paper) is the lower bound of our normalization interval.
// Between this and our 32-bit-aligned emission, we use 63 (not 64!) bits.
// This is done intentionally because exact reciprocals for 63-bit uints
// fit in 64-bit uints: this permits some optimizations during encoding.
#define RANS64_L (1ull << 31) // lower bound of our normalization interval
// State for a rANS encoder. Yep, that's all there is to it.
typedef uint64_t Rans64State;
// Initialize a rANS encoder.
static inline void Rans64EncInit(Rans64State* r)
{
*r = RANS64_L;
}
// Encodes a single symbol with range start "start" and frequency "freq".
// All frequencies are assumed to sum to "1 << scale_bits", and the
// resulting bytes get written to ptr (which is updated).
//
// NOTE: With rANS, you need to encode symbols in *reverse order*, i.e. from
// beginning to end! Likewise, the output bytestream is written *backwards*:
// ptr starts pointing at the end of the output buffer and keeps decrementing.
static inline void Rans64EncPut(Rans64State* r, uint32_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
Rans64Assert(freq != 0);
// renormalize (never needs to loop)
uint64_t x = *r;
uint64_t x_max = ((RANS64_L >> scale_bits) << 32) * freq; // this turns into a shift.
if (x >= x_max) {
*pptr -= 1;
**pptr = (uint32_t) x;
x >>= 32;
Rans64Assert(x < x_max);
}
// x = C(s,x)
*r = ((x / freq) << scale_bits) + (x % freq) + start;
}
// Flushes the rANS encoder.
static inline void Rans64EncFlush(Rans64State* r, uint32_t** pptr)
{
uint64_t x = *r;
*pptr -= 2;
(*pptr)[0] = (uint32_t) (x >> 0);
(*pptr)[1] = (uint32_t) (x >> 32);
}
// Initializes a rANS decoder.
// Unlike the encoder, the decoder works forwards as you'd expect.
static inline void Rans64DecInit(Rans64State* r, uint32_t** pptr)
{
uint64_t x;
x = (uint64_t) ((*pptr)[0]) << 0;
x |= (uint64_t) ((*pptr)[1]) << 32;
*pptr += 2;
*r = x;
}
// Returns the current cumulative frequency (map it to a symbol yourself!)
static inline uint32_t Rans64DecGet(Rans64State* r, uint32_t scale_bits)
{
return *r & ((1u << scale_bits) - 1);
}
// Advances in the bit stream by "popping" a single symbol with range start
// "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits",
// and the resulting bytes get written to ptr (which is updated).
static inline void Rans64DecAdvance(Rans64State* r, uint32_t** pptr, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
uint64_t mask = (1ull << scale_bits) - 1;
// s, x = D(x)
uint64_t x = *r;
x = freq * (x >> scale_bits) + (x & mask) - start;
// renormalize
if (x < RANS64_L) {
x = (x << 32) | **pptr;
*pptr += 1;
Rans64Assert(x >= RANS64_L);
}
*r = x;
}
// --------------------------------------------------------------------------
// That's all you need for a full encoder; below here are some utility
// functions with extra convenience or optimizations.
// Encoder symbol description
// This (admittedly odd) selection of parameters was chosen to make
// RansEncPutSymbol as cheap as possible.
typedef struct {
uint64_t rcp_freq; // Fixed-point reciprocal frequency
uint32_t freq; // Symbol frequency
uint32_t bias; // Bias
uint32_t cmpl_freq; // Complement of frequency: (1 << scale_bits) - freq
uint32_t rcp_shift; // Reciprocal shift
} Rans64EncSymbol;
// Decoder symbols are straightforward.
typedef struct {
uint32_t start; // Start of range.
uint32_t freq; // Symbol frequency.
} Rans64DecSymbol;
// Initializes an encoder symbol to start "start" and frequency "freq"
static inline void Rans64EncSymbolInit(Rans64EncSymbol* s, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
Rans64Assert(scale_bits <= 31);
Rans64Assert(start <= (1u << scale_bits));
Rans64Assert(freq <= (1u << scale_bits) - start);
// Say M := 1 << scale_bits.
//
// The original encoder does:
// x_new = (x/freq)*M + start + (x%freq)
//
// The fast encoder does (schematically):
// q = mul_hi(x, rcp_freq) >> rcp_shift (division)
// r = x - q*freq (remainder)
// x_new = q*M + bias + r (new x)
// plugging in r into x_new yields:
// x_new = bias + x + q*(M - freq)
// =: bias + x + q*cmpl_freq (*)
//
// and we can just precompute cmpl_freq. Now we just need to
// set up our parameters such that the original encoder and
// the fast encoder agree.
s->freq = freq;
s->cmpl_freq = ((1 << scale_bits) - freq);
if (freq < 2) {
// freq=0 symbols are never valid to encode, so it doesn't matter what
// we set our values to.
//
// freq=1 is tricky, since the reciprocal of 1 is 1; unfortunately,
// our fixed-point reciprocal approximation can only multiply by values
// smaller than 1.
//
// So we use the "next best thing": rcp_freq=~0, rcp_shift=0.
// This gives:
// q = mul_hi(x, rcp_freq) >> rcp_shift
// = mul_hi(x, (1<<64) - 1)) >> 0
// = floor(x - x/(2^64))
// = x - 1 if 1 <= x < 2^64
// and we know that x>0 (x=0 is never in a valid normalization interval).
//
// So we now need to choose the other parameters such that
// x_new = x*M + start
// plug it in:
// x*M + start (desired result)
// = bias + x + q*cmpl_freq (*)
// = bias + x + (x - 1)*(M - 1) (plug in q=x-1, cmpl_freq)
// = bias + 1 + (x - 1)*M
// = x*M + (bias + 1 - M)
//
// so we have start = bias + 1 - M, or equivalently
// bias = start + M - 1.
s->rcp_freq = ~0ull;
s->rcp_shift = 0;
s->bias = start + (1 << scale_bits) - 1;
} else {
// Alverson, "Integer Division using reciprocals"
// shift=ceil(log2(freq))
uint32_t shift = 0;
uint64_t x0, x1, t0, t1;
while (freq > (1u << shift))
shift++;
// long divide ((uint128) (1 << (shift + 63)) + freq-1) / freq
// by splitting it into two 64:64 bit divides (this works because
// the dividend has a simple form.)
x0 = freq - 1;
x1 = 1ull << (shift + 31);
t1 = x1 / freq;
x0 += (x1 % freq) << 32;
t0 = x0 / freq;
s->rcp_freq = t0 + (t1 << 32);
s->rcp_shift = shift - 1;
// With these values, 'q' is the correct quotient, so we
// have bias=start.
s->bias = start;
}
}
// Initialize a decoder symbol to start "start" and frequency "freq"
static inline void Rans64DecSymbolInit(Rans64DecSymbol* s, uint32_t start, uint32_t freq)
{
Rans64Assert(start <= (1 << 31));
Rans64Assert(freq <= (1 << 31) - start);
s->start = start;
s->freq = freq;
}
// Encodes a given symbol. This is faster than straight RansEnc since we can do
// multiplications instead of a divide.
//
// See RansEncSymbolInit for a description of how this works.
static inline void Rans64EncPutSymbol(Rans64State* r, uint32_t** pptr, Rans64EncSymbol const* sym, uint32_t scale_bits)
{
Rans64Assert(sym->freq != 0); // can't encode symbol with freq=0
// renormalize
uint64_t x = *r;
uint64_t x_max = ((RANS64_L >> scale_bits) << 32) * sym->freq; // turns into a shift
if (x >= x_max) {
*pptr -= 1;
**pptr = (uint32_t) x;
x >>= 32;
}
// x = C(s,x)
uint64_t q = Rans64MulHi(x, sym->rcp_freq) >> sym->rcp_shift;
*r = x + sym->bias + q * sym->cmpl_freq;
}
// Equivalent to RansDecAdvance that takes a symbol.
static inline void Rans64DecAdvanceSymbol(Rans64State* r, uint32_t** pptr, Rans64DecSymbol const* sym, uint32_t scale_bits)
{
Rans64DecAdvance(r, pptr, sym->start, sym->freq, scale_bits);
}
// Advances in the bit stream by "popping" a single symbol with range start
// "start" and frequency "freq". All frequencies are assumed to sum to "1 << scale_bits".
// No renormalization or output happens.
static inline void Rans64DecAdvanceStep(Rans64State* r, uint32_t start, uint32_t freq, uint32_t scale_bits)
{
uint64_t mask = (1u << scale_bits) - 1;
// s, x = D(x)
uint64_t x = *r;
*r = freq * (x >> scale_bits) + (x & mask) - start;
}
// Equivalent to RansDecAdvanceStep that takes a symbol.
static inline void Rans64DecAdvanceSymbolStep(Rans64State* r, Rans64DecSymbol const* sym, uint32_t scale_bits)
{
Rans64DecAdvanceStep(r, sym->start, sym->freq, scale_bits);
}
// Renormalize.
static inline void Rans64DecRenorm(Rans64State* r, uint32_t** pptr)
{
// renormalize
uint64_t x = *r;
if (x < RANS64_L) {
x = (x << 32) | **pptr;
*pptr += 1;
Rans64Assert(x >= RANS64_L);
}
*r = x;
}
#endif // RANS64_HEADER