From 3605f59bac0cd7b4082754f9abfce5f71f621a14 Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 02:28:04 +0200 Subject: [PATCH 1/4] fibers or right orthogonal maps have unique extensions --- src/hott/11-homotopy-pullbacks.rzk.md | 33 ++-- src/simplicial-hott/03-extension-types.rzk.md | 183 ++++++++++++------ .../04-right-orthogonal.rzk.md | 110 ++++++++--- 3 files changed, 232 insertions(+), 94 deletions(-) diff --git a/src/hott/11-homotopy-pullbacks.rzk.md b/src/hott/11-homotopy-pullbacks.rzk.md index 124ebda2..56ef196f 100644 --- a/src/hott/11-homotopy-pullbacks.rzk.md +++ b/src/hott/11-homotopy-pullbacks.rzk.md @@ -590,26 +590,35 @@ product of all fibers. ### Fiber product with singleton type -The relative product of `β : B → A` with a map `Unit → A` corresponding to -`a : A` is nothing but the fiber `fib B A β a`. +The relative product of `f : B → A` with a map `Unit → A` corresponding to +`a : A` is nothing but the fiber `fib B A f a`. ```rzk -#def compute-relative-product-singleton - ( A B : U) - ( β : B → A) +#def compute-pullback-to-Unit + ( B A : U) + ( f : B → A) + ( a : A) + : Equiv (fib B A f a) (relative-product A B f Unit (\ unit → a)) + := + ( ( \ (b , p) → ((b , unit) , p)) + , ( ( ( ( \ ((b , unit) , p) → (b, p)) + , ( \ _ → refl)) + , ( ( \ ((b , unit) , p) → (b, p)) + , ( \ _ → refl))))) + +#def compute-map-pullback-to-Unit + ( B A : U) + ( f : B → A) ( a : A) : Equiv-of-maps - ( fib B A β a) (Unit) (\ _ → unit) - ( relative-product A B β Unit (\ unit → a)) - ( Unit) ( second-relative-product A B β Unit (\ unit → a)) + ( fib B A f a) (Unit) (\ _ → unit) + ( relative-product A B f Unit (\ unit → a)) + ( Unit) ( second-relative-product A B f Unit (\ unit → a)) := ( ( ( ( \ (b , p) → ((b , unit) , p)) , ( identity Unit)) , \ _ → refl) - , ( ( ( ( \ ((b , unit) , p) → (b, p)) - , ( \ _ → refl)) - , ( ( \ ((b , unit) , p) → (b, p)) - , ( \ _ → refl))) + , ( second (compute-pullback-to-Unit B A f a) , is-equiv-identity Unit)) ``` diff --git a/src/simplicial-hott/03-extension-types.rzk.md b/src/simplicial-hott/03-extension-types.rzk.md index 0cfaf9ec..7dc0b91d 100644 --- a/src/simplicial-hott/03-extension-types.rzk.md +++ b/src/simplicial-hott/03-extension-types.rzk.md @@ -723,66 +723,6 @@ retraction to `#!rzk ext-htpy-eq`. := first (first (extext I ψ ϕ A a f g)) ``` -### Functoriality properties of extension types - -By extension extensionality, fiberwise equivalences of extension types define -equivalences of extension types. For simplicity, we extend from `#!rzk BOT`. - -```rzk -#def equiv-extension-equiv-family uses (extext) - ( I : CUBE) - ( ψ : I → TOPE) - ( A B : ψ → U) - ( famequiv : (t : ψ) → (Equiv (A t) (B t))) - : Equiv ((t : ψ) → A t) ((t : ψ) → B t) - := - ( ( \ a t → (first (famequiv t)) (a t)) , - ( ( ( \ b t → (first (first (second (famequiv t)))) (b t)) , - ( \ a → - eq-ext-htpy - ( I) - ( ψ) - ( \ t → BOT) - ( A) - ( \ u → recBOT) - ( \ t → - first (first (second (famequiv t))) (first (famequiv t) (a t))) - ( a) - ( \ t → second (first (second (famequiv t))) (a t)))) , - ( ( \ b t → first (second (second (famequiv t))) (b t)) , - ( \ b → - eq-ext-htpy - ( I) - ( ψ) - ( \ t → BOT) - ( B) - ( \ u → recBOT) - ( \ t → - first (famequiv t) (first (second (second (famequiv t))) (b t))) - ( b) - ( \ t → second (second (second (famequiv t))) (b t)))))) -``` - -Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section -on extension types - -```rzk -#def has-section-extension-has-section-family uses (naiveextext) - ( I : CUBE) - ( ψ : I → TOPE) - ( A B : ψ → U) - ( f : ( t : ψ) → A t → B t) - ( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t)) - : has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t)) - := - ( ( \ b t → first (has-fiberwise-section-f t) (b t)) - , \ b → - ( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT) - ( \ t → f t (first (has-fiberwise-section-f t) (b t))) - ( \ t → b t) - ( \ t → second (has-fiberwise-section-f t) (b t)))) -``` - ### Homotopy extension property We have a homotopy extension property. @@ -1274,3 +1214,126 @@ The converse is of course trivial. #end general-extension-types ``` + +## Functoriality of extension types + +For simplicity, we only consider extesions of `#!rzk BOT`. + +For each map `f : A → B` and each shape inclusion `ϕ ⊂ ψ`, +we have a commutative square. + +``` +(ψ → A') → (ψ → A) + + ↓ ↓ + +(ϕ → A') → (ϕ → A) +``` + +We can view it as a map of maps either vertically or horizontally. + +```rzk +#def map-of-restriction-maps + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A B : ψ → U) + ( f : (t : ψ) → A t → B t) + : map-of-maps + ( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t) + ( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t) + := + ( ( ( \ a t → f t (a t)) + , ( \ a t → f t (a t))) + , \ _ → refl) + +#def map-of-map-extension-type + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A B : ψ → U) + ( f : (t : ψ) → A t → B t) + : map-of-maps + ( (t : ψ) → A t) ( (t : ψ) → B t) (\ a t → f t (a t)) + ( (t : ϕ) → A t) ( (t : ϕ) → B t) (\ a t → f t (a t)) + := + ( ( ( \ a t → a t) + , ( \ b t → b t)) + , \ _ → refl) +``` + +It follows from extension extensionality that if `f : A → B` is an equivalence, +then so is the map of maps `map-of-restriction-maps`. + +```rzk +#def is-equiv-extension-is-equiv-family uses (extext) + ( I : CUBE) + ( ψ : I → TOPE) + ( A B : ψ → U) + ( f : (t : ψ) → (A t) → (B t)) + ( is-equiv-f : (t : ψ) → is-equiv (A t) (B t) (f t)) + : is-equiv ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t)) + := ( ( ( \ b t → (first (first (is-equiv-f t))) (b t)) + , ( \ a → + eq-ext-htpy I ψ ( \ t → BOT) + ( A) + ( \ u → recBOT) + ( \ t → first (first (is-equiv-f t)) (f t (a t))) + ( a) + ( \ t → second (first (is-equiv-f t)) (a t)))) + , ( ( \ b t → first (second (is-equiv-f t)) (b t)) + , ( \ b → + eq-ext-htpy I ψ ( \ t → BOT) + ( B) + ( \ u → recBOT) + ( \ t → f t (first (second (is-equiv-f t)) (b t))) + ( b) + ( \ t → second (second (is-equiv-f t)) (b t))))) + +#def equiv-extension-equiv-family uses (extext) + ( I : CUBE) + ( ψ : I → TOPE) + ( A B : ψ → U) + ( famequiv : (t : ψ) → (Equiv (A t) (B t))) + : Equiv ((t : ψ) → A t) ((t : ψ) → B t) + := + ( ( \ a t → first ( famequiv t) (a t)) + , is-equiv-extension-is-equiv-family I ψ A B + ( \ t → first (famequiv t)) + ( \ t → second (famequiv t))) + +#def equiv-of-restriction-maps-equiv-family uses (extext) + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A B : ψ → U) + ( famequiv : (t : ψ) → (Equiv (A t) (B t))) + : Equiv-of-maps + ( (t : ψ) → A t) ( (t : ϕ) → A t) (\ a t → a t) + ( (t : ψ) → B t) ( (t : ϕ) → B t) (\ b t → b t) + := + ( map-of-restriction-maps I ψ ϕ A B (\ t → first (famequiv t)) + , ( second (equiv-extension-equiv-family I ψ A B famequiv) + , second ( equiv-extension-equiv-family I + (\ t → ϕ t) (\ t → A t) (\ t → B t) (\ t → famequiv t)))) +``` + +Similarly, a fiberwise section of a map `(t : ψ) → A t → B t` induces a section +on extension types. + +```rzk +#def has-section-extension-has-section-family uses (naiveextext) + ( I : CUBE) + ( ψ : I → TOPE) + ( A B : ψ → U) + ( f : ( t : ψ) → A t → B t) + ( has-fiberwise-section-f : (t : ψ) → has-section (A t ) (B t) (f t)) + : has-section ((t : ψ) → A t) ((t : ψ) → B t) ( \ a t → f t (a t)) + := + ( ( \ b t → first (has-fiberwise-section-f t) (b t)) + , \ b → + ( naiveextext I ψ (\ _ → BOT) B (\ _ → recBOT) + ( \ t → f t (first (has-fiberwise-section-f t) (b t))) + ( \ t → b t) + ( \ t → second (has-fiberwise-section-f t) (b t)))) +``` diff --git a/src/simplicial-hott/04-right-orthogonal.rzk.md b/src/simplicial-hott/04-right-orthogonal.rzk.md index 0b25eace..393c7e3c 100644 --- a/src/simplicial-hott/04-right-orthogonal.rzk.md +++ b/src/simplicial-hott/04-right-orthogonal.rzk.md @@ -24,8 +24,8 @@ For every shape inclusion `ϕ ⊂ ψ`, we obtain a fibrancy condition for a map `α : A' → A` in terms of unique extension along `ϕ ⊂ ψ`. This is a relative version of unique extension along `ϕ ⊂ ψ`. -We say that `α : A' → A` is _right orthogonal_ to the shape inclusion `ϕ ⊂ ψ`, -if the square +We say that `α : A' → A` is **right orthogonal** to the shape inclusion +`ϕ ⊂ ψ`, if the square ``` (ψ → A') → (ψ → A) @@ -38,8 +38,9 @@ if the square is homotopy cartesian. Equivalently, we can interpret this orthogonality as a cofibrancy condition on -the shape inclusion. We say that the shape inclusion `ϕ ⊂ ψ` is _left -orthogonal_ to the map `α`, if `α : A' → A` is right orthogonal to `ϕ ⊂ ψ`. +the shape inclusion. We say that the shape inclusion `ϕ ⊂ ψ` is +**left orthogonal** to the map `α`, +if `α : A' → A` is right orthogonal to `ϕ ⊂ ψ`. ```rzk title="BW23, Section 3" #def is-right-orthogonal-to-shape @@ -621,7 +622,7 @@ follows for the former. Then we can deduce that right orthogonal maps are preserved under pullback: ```rzk -#def is-right-orthoponal-pullback-to-shape uses (extext is-orth-ψ-ϕ-α) +#def is-right-orthogonal-pullback-to-shape uses (extext is-orth-ψ-ϕ-α B f) : is-right-orthogonal-to-shape I ψ ϕ ( relative-product A A' α B f) ( B) ( second-relative-product A A' α B f) @@ -728,16 +729,16 @@ equivalence. is-equiv (ψ → A) (ϕ → A) ( \ τ t → τ t) ``` -We can ask that the terminal map `A → Unit` is right orthogonal to `ϕ ⊂ ψ` +We can ask that the terminal map `A → Unit` is right orthogonal to `ϕ ⊂ ψ`. ```rzk -#def is-right-orthogonal-to-shape-terminal-map +#def is-right-orthogonal-terminal-map : U := is-right-orthogonal-to-shape I ψ ϕ A Unit (terminal-map A) ``` -### Proof of first alternative characterization +### Unique extensions types are local types The equivalence between `is-local-type` and `has-unique-extensions` follows straightforwardly from the fact that for every `σ : ϕ → A` we have an @@ -862,25 +863,49 @@ extensions for every shape inclusion `ϕ ⊂ ψ`. : has-unique-extensions I ψ ϕ Unit := has-unique-extensions-is-contr Unit is-contr-Unit +``` + +Unique extension types are closed under equivalence. + +```rzk +#def is-local-type-equiv-is-local-type uses (extext) + ( A' A : U) + ( A'≃A : Equiv A' A) + : is-local-type I ψ ϕ A → is-local-type I ψ ϕ A' + := + is-equiv-Equiv-is-equiv + ( ψ → A') ( ϕ → A') ( \ τ' t → τ' t) + ( ψ → A) ( ϕ → A) ( \ τ t → τ t) + ( equiv-of-restriction-maps-equiv-family extext I ψ ϕ + ( \ _ → A') ( \ _ → A) ( \ _ → A'≃A)) + +#def has-unique-extensions-equiv-has-unique-extensions uses (extext) + ( A' A : U) + ( (α , is-equiv-α) : Equiv A' A) + : has-unique-extensions I ψ ϕ A → has-unique-extensions I ψ ϕ A' + := + has-unique-extensions-right-orthogonal-has-unique-extensions A' A α + ( is-right-orthogonal-is-equiv-to-shape I ψ ϕ A' A α is-equiv-α) + #end stability-properties-local-types ``` -### Proof of second alternative characterization +### Unique extension types are types with right orthogonal terminal map Next we prove the logical equivalence between `has-unique-extensions` and -`is-right-orthogonal-to-shape-terminal-map`. This follows directly from the fact +`is-right-orthogonal-terminal-map`. This follows directly from the fact that `Unit` has unique extensions (using `weakextext : WeakExtExt`). ```rzk -#section is-right-orthogonal-to-shape-terminal-map +#section is-right-orthogonal-terminal-map #variable I : CUBE #variable ψ : I → TOPE #variable ϕ : ψ → TOPE #variable A : U -#def has-unique-extensions-is-right-orthogonal-to-shape-terminal-map +#def has-unique-extensions-is-right-orthogonal-terminal-map uses (weakextext) - ( is-orth-ψ-ϕ-tm-A : is-right-orthogonal-to-shape-terminal-map I ψ ϕ A) + ( is-orth-ψ-ϕ-tm-A : is-right-orthogonal-terminal-map I ψ ϕ A) : has-unique-extensions I ψ ϕ A := has-unique-extensions-right-orthogonal-has-unique-extensions @@ -888,31 +913,72 @@ that `Unit` has unique extensions (using `weakextext : WeakExtExt`). ( is-orth-ψ-ϕ-tm-A) ( has-unique-extensions-Unit I ψ ϕ) -#def is-right-orthogonal-to-shape-terminal-map-has-unique-extensions +#def has-unique-extensions-is-right-orthogonal-a-terminal-map + uses (weakextext) + ( tm : A → Unit) + ( is-orth-ψ-ϕ-tm : is-right-orthogonal-to-shape I ψ ϕ A Unit tm) + : has-unique-extensions I ψ ϕ A + := + has-unique-extensions-right-orthogonal-has-unique-extensions + I ψ ϕ A Unit tm + ( is-orth-ψ-ϕ-tm) + ( has-unique-extensions-Unit I ψ ϕ) + +#def is-right-orthogonal-terminal-map-has-unique-extensions uses (weakextext) ( has-ue-ψ-ϕ-A : has-unique-extensions I ψ ϕ A) - : is-right-orthogonal-to-shape-terminal-map I ψ ϕ A + : is-right-orthogonal-terminal-map I ψ ϕ A := is-right-orthogonal-have-unique-extensions I ψ ϕ A Unit ( has-ue-ψ-ϕ-A) ( has-unique-extensions-Unit I ψ ϕ) ( terminal-map A) -#def is-right-orthogonal-to-shape-terminal-map-is-local-type +#def is-right-orthogonal-terminal-map-is-local-type uses (weakextext) ( is-lt-ψ-ϕ-A : is-local-type I ψ ϕ A) - : is-right-orthogonal-to-shape-terminal-map I ψ ϕ A + : is-right-orthogonal-terminal-map I ψ ϕ A := - is-right-orthogonal-to-shape-terminal-map-has-unique-extensions + is-right-orthogonal-terminal-map-has-unique-extensions ( has-unique-extensions-is-local-type I ψ ϕ A is-lt-ψ-ϕ-A) -#def is-local-type-is-right-orthogonal-to-shape-terminal-map +#def is-local-type-is-right-orthogonal-terminal-map uses (weakextext) - ( is-orth-ψ-ϕ-tm-A : is-right-orthogonal-to-shape-terminal-map I ψ ϕ A) + ( is-orth-ψ-ϕ-tm-A : is-right-orthogonal-terminal-map I ψ ϕ A) : is-local-type I ψ ϕ A := is-local-type-has-unique-extensions I ψ ϕ A - ( has-unique-extensions-is-right-orthogonal-to-shape-terminal-map + ( has-unique-extensions-is-right-orthogonal-terminal-map ( is-orth-ψ-ϕ-tm-A)) -#end is-right-orthogonal-to-shape-terminal-map +#end is-right-orthogonal-terminal-map +``` + +## Fibers of right orthogonal maps + +Let `α : A' → A` be right orthogonal to `ϕ ⊂ ψ`. +Then every fiber of `α` has unique extensions along `ϕ ⊂ ψ`. +This follows immediately since the fibers of `α` +are just the relative products of `α : A' → A` +with the maps `a : Unit → A` from the unit type. + +```rzk +#def has-fiberwise-unique-extensions-is-right-orthogonal-to-shape + uses (extext weakextext) + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A' A : U) + ( α : A' → A) + ( is-orth-ψ-ϕ-α : is-right-orthogonal-to-shape I ψ ϕ A' A α) + ( a : A) + : has-unique-extensions I ψ ϕ (fib A' A α a) + := + has-unique-extensions-equiv-has-unique-extensions I ψ ϕ + ( fib A' A α a) + ( relative-product A A' α Unit (\ unit → a)) + ( compute-pullback-to-Unit A' A α a) + ( has-unique-extensions-is-right-orthogonal-terminal-map I ψ ϕ + ( relative-product A A' α Unit (\ unit → a)) + ( is-right-orthogonal-pullback-to-shape I ψ ϕ A' A α + ( is-orth-ψ-ϕ-α) ( Unit) (\ unit → a))) ``` From 214bd61fdce7843f072a62b869261eb40f85b2d0 Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 02:46:45 +0200 Subject: [PATCH 2/4] maps between ue-types have ue-fibers --- .../04-right-orthogonal.rzk.md | 21 +++++++++++++++++++ 1 file changed, 21 insertions(+) diff --git a/src/simplicial-hott/04-right-orthogonal.rzk.md b/src/simplicial-hott/04-right-orthogonal.rzk.md index 393c7e3c..fcbe9a4a 100644 --- a/src/simplicial-hott/04-right-orthogonal.rzk.md +++ b/src/simplicial-hott/04-right-orthogonal.rzk.md @@ -982,3 +982,24 @@ with the maps `a : Unit → A` from the unit type. ( is-right-orthogonal-pullback-to-shape I ψ ϕ A' A α ( is-orth-ψ-ϕ-α) ( Unit) (\ unit → a))) ``` + +Corollary: +Given two types `A'` and `A` with unique extensions w.r.t. `ϕ ⊂ ψ`, +every fiber of every map `α : A' → A` also has unique extensions. + +```rzk +#def has-fiberwise-unique-extensions-have-unique-extensions + uses (extext weakextext) + ( I : CUBE) + ( ψ : I → TOPE) + ( ϕ : ψ → TOPE) + ( A' A : U) + ( α : A' → A) + ( has-ue-ψ-ϕ-A' : has-unique-extensions I ψ ϕ A') + ( has-ue-ψ-ϕ-A : has-unique-extensions I ψ ϕ A) + : (a : A) → has-unique-extensions I ψ ϕ (fib A' A α a) + := + has-fiberwise-unique-extensions-is-right-orthogonal-to-shape I ψ ϕ A' A α + ( is-right-orthogonal-have-unique-extensions I ψ ϕ A' A + ( has-ue-ψ-ϕ-A') ( has-ue-ψ-ϕ-A) ( α)) +``` From 4457bc448f6880b063a76642af0ea00f74a995a5 Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 03:05:52 +0200 Subject: [PATCH 3/4] autoformat --- .../04-right-orthogonal.rzk.md | 25 ++++++++----------- 1 file changed, 11 insertions(+), 14 deletions(-) diff --git a/src/simplicial-hott/04-right-orthogonal.rzk.md b/src/simplicial-hott/04-right-orthogonal.rzk.md index fcbe9a4a..12154ce0 100644 --- a/src/simplicial-hott/04-right-orthogonal.rzk.md +++ b/src/simplicial-hott/04-right-orthogonal.rzk.md @@ -24,8 +24,8 @@ For every shape inclusion `ϕ ⊂ ψ`, we obtain a fibrancy condition for a map `α : A' → A` in terms of unique extension along `ϕ ⊂ ψ`. This is a relative version of unique extension along `ϕ ⊂ ψ`. -We say that `α : A' → A` is **right orthogonal** to the shape inclusion -`ϕ ⊂ ψ`, if the square +We say that `α : A' → A` is **right orthogonal** to the shape inclusion `ϕ ⊂ ψ`, +if the square ``` (ψ → A') → (ψ → A) @@ -38,9 +38,8 @@ We say that `α : A' → A` is **right orthogonal** to the shape inclusion is homotopy cartesian. Equivalently, we can interpret this orthogonality as a cofibrancy condition on -the shape inclusion. We say that the shape inclusion `ϕ ⊂ ψ` is -**left orthogonal** to the map `α`, -if `α : A' → A` is right orthogonal to `ϕ ⊂ ψ`. +the shape inclusion. We say that the shape inclusion `ϕ ⊂ ψ` is **left +orthogonal** to the map `α`, if `α : A' → A` is right orthogonal to `ϕ ⊂ ψ`. ```rzk title="BW23, Section 3" #def is-right-orthogonal-to-shape @@ -893,8 +892,8 @@ Unique extension types are closed under equivalence. ### Unique extension types are types with right orthogonal terminal map Next we prove the logical equivalence between `has-unique-extensions` and -`is-right-orthogonal-terminal-map`. This follows directly from the fact -that `Unit` has unique extensions (using `weakextext : WeakExtExt`). +`is-right-orthogonal-terminal-map`. This follows directly from the fact that +`Unit` has unique extensions (using `weakextext : WeakExtExt`). ```rzk #section is-right-orthogonal-terminal-map @@ -955,11 +954,10 @@ that `Unit` has unique extensions (using `weakextext : WeakExtExt`). ## Fibers of right orthogonal maps -Let `α : A' → A` be right orthogonal to `ϕ ⊂ ψ`. -Then every fiber of `α` has unique extensions along `ϕ ⊂ ψ`. -This follows immediately since the fibers of `α` -are just the relative products of `α : A' → A` -with the maps `a : Unit → A` from the unit type. +Let `α : A' → A` be right orthogonal to `ϕ ⊂ ψ`. Then every fiber of `α` has +unique extensions along `ϕ ⊂ ψ`. This follows immediately since the fibers of +`α` are just the relative products of `α : A' → A` with the maps `a : Unit → A` +from the unit type. ```rzk #def has-fiberwise-unique-extensions-is-right-orthogonal-to-shape @@ -983,8 +981,7 @@ with the maps `a : Unit → A` from the unit type. ( is-orth-ψ-ϕ-α) ( Unit) (\ unit → a))) ``` -Corollary: -Given two types `A'` and `A` with unique extensions w.r.t. `ϕ ⊂ ψ`, +Corollary: Given two types `A'` and `A` with unique extensions w.r.t. `ϕ ⊂ ψ`, every fiber of every map `α : A' → A` also has unique extensions. ```rzk From 7b9622889745cd5efb39d0260cdd568c779a5975 Mon Sep 17 00:00:00 2001 From: Tashi Walde Date: Sat, 14 Oct 2023 03:10:15 +0200 Subject: [PATCH 4/4] autoformat more --- src/simplicial-hott/03-extension-types.rzk.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/simplicial-hott/03-extension-types.rzk.md b/src/simplicial-hott/03-extension-types.rzk.md index 7dc0b91d..b96a608a 100644 --- a/src/simplicial-hott/03-extension-types.rzk.md +++ b/src/simplicial-hott/03-extension-types.rzk.md @@ -1219,8 +1219,8 @@ The converse is of course trivial. For simplicity, we only consider extesions of `#!rzk BOT`. -For each map `f : A → B` and each shape inclusion `ϕ ⊂ ψ`, -we have a commutative square. +For each map `f : A → B` and each shape inclusion `ϕ ⊂ ψ`, we have a commutative +square. ``` (ψ → A') → (ψ → A)