Shahryar Minhas, Peter D. Hoff, & Michael D. Ward
We introduce a Bayesian approach to conduct inferential analyses on dyadic data while accounting for interdependencies between observations through a set of additive and multiplicative effects (AME). The AME model is built on a generalized linear modeling framework and is thus flexible enough to be applied to a variety of contexts. We contrast the AME model to two prominent approaches in the literature: the latent space model (LSM) and the exponential random graph model (ERGM). Relative to these approaches, we show that the AME approach is a) to be easy to implement; b) interpretable in a general linear model framework; c) computationally straightforward; d) not prone to degeneracy; e) captures 1st, 2nd, and 3rd order network dependencies; and f) notably outperforms ERGMs and LSMs on a variety of metrics and in an out-of-sample context. In summary, AME offers a straightforward way to undertake nuanced, principled inferential network analysis for a wide range of social science questions.
Follow instructions in dataverseRepl directory. Any questions should be addressed to Shahryar Minhas.
Forthcoming in Political Analysis