

Zero-knowledge key-statement proofs

White Paper

WP0488

Zero-knowledge key-statement proofs

Page i COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Copyright
Information in this document is subject to change without notice, and is furnished under a license

agreement or nondisclosure agreement.

The information may only be used or copied in accordance with the terms of those agreements.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or any means electronic or mechanical, including photocopying and

recording for any purpose other than the purchaser’s personal use without the written permission of

nChain Limited.

The names of actual companies and products mentioned in this document may be trademarks of

their respective owners.

nChain Limited. accepts no responsibility or liability for any errors or inaccuracies that may appear

in this documentation.

Authors

Name Title

Tom Trevethan (thomas@ncrypt.com) R&D Specialist

Version history

Version Date Summary of changes

Related white papers

Reference Nature of relationship

mailto:thomas@ncrypt.com

Zero-knowledge key-statement proofs

Page ii COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Contents

1 Abstract .. 1

2 Introduction .. 2

3 Background .. 6

3.1 -Protocols.. 6

3.2 Pedersen Commitments ... 6

3.3 Proofs of arithmetic circuit satisfiability in zero knowledge .. 6

3.3.1 𝚺𝒛𝒆𝒓𝒐 protocol: ... 7

3.3.2 𝚺𝒑𝒓𝒐𝒅 protocol: .. 8

3.3.3 Circuit proofs ... 8

3.4 Efficient zero-knowledge arguments for arithmetic circuit satisfiability without pairings 9

4 Specification .. 10

4.1 Embodiment 1: Individual wire commitments ... 10

4.2 Embodiment 2: Batched vector commitments .. 12

4.3 Proof of equivalence of a hash pre-image and elliptic curve private key 13

5 Advantages .. 14

5.1 Comparison with zkSNARKs .. 14

5.2 The Fiat-Shamir heuristic ... 14

6 Application 1: Outsourced vanity address generation 16

7 Application 2: Privacy preserving cross-chain atomic swaps 18

8 References ... 20

Zero-knowledge key-statement proofs

Page 1 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

1 Abstract

This paper describes a method that enables the efficient zero knowledge verification of composite

statements that involve both arithmetic circuit satisfiability and dependent statements about the

validity of public keys (key-statement proofs) simultaneously. This is achieved by employing the

required public key elliptic curve specification within the homomorphic commitment function used to

prove circuit satisfiability, essentially proving public key statements corresponding to private keys

used as circuit inputs and/or outputs ‘for free’. This substantially reduces both the proof size and

computational expense of generating proofs for statements involving both circuit satisfiability and

elliptic curve key pairs. This method can be easily incorporated into existing discrete-log based

zero-knowledge proof protocols for circuit satisfiability which do not require the use of bilinear

pairing-friendly elliptic curves (and so is fully compatible with the Bitcoin secp256k1 standard).

We then describe two applications of this type of proof that relate to fair-exchange transactions

between two parties on the bitcoin blockchain. The first involves a zero-knowledge contingent

payment for the trust-less sale of an outsourced vanity address, which requires a zero-knowledge

proof of the equality of a SHA256 hash preimage and an elliptic curve (Bitcoin) secret key. The

second involves a privacy protecting cross-chain atomic swap, which requires a proof that a

SHA256 hash pre-image is equal to unknown private key (with a supplied public key) multiplied by

a supplied nonce.

xhliu
Highlight

xhliu
Highlight

xhliu
Underline

xhliu
Underline

Zero-knowledge key-statement proofs

Page 2 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

2 Introduction

The creation of Bitcoin, the first decentralised and permission-less global blockchain, has for the

first time enabled a solution to the problem of fair-exchange between two mutually un-trusting

parties without the need for third party arbitration or escrow. A general form of this type of fair

exchange for the sale of information (or digital goods) is embodied in a transaction protocol known

as a Zero-knowledge contingent payments (ZKCP) [Maxwell 2016]. In a ZKCP, specified data is

transferred from seller to buyer only if a payment is confirmed, and the payment from buyer to

seller is only completed if the specified data is valid according to the conditions of the sale. The

protocol is described in detail in [Campanelli 2017] but it is essentially based on the combination of

a hash-time-locked contract (HTLC) with a zero-knowledge proof which simultaneously verifies that

some encrypted information (the ‘digital good’) is valid/correct AND that the secret key to decrypt

this information is the pre-image of the hash in the HTLC that must be revealed on the blockchain

to claim the payment.

The central component of a ZKCP protocol is a zero-knowledge proof for a series of dependent

statements about data/information validity or correctness, key validity and its corresponding hash

value. Such complex composite statements require an efficient zero-knowledge proof system for

general computations: in essence this enables one party to run an arbitrary program with secret

inputs and then prove to another party that the program accepted the inputs as valid and was

executed correctly – without revealing anything about the secret inputs or the execution of the

program. In the ZKCP examples presented to date, the general purpose zero-knowledge proof

system employed has been based on the succinct non-interactive arguments of knowledge

(SNARKs) framework as implemented in the Pinocchio protocol [Parno 2016] and the C++ libsnark

[Libsnark 2016] library.

Zero knowledge SNARKs (zkSNARKs) provide a method of proving, in zero-knowledge, the validity

of arbitrary computations that can be expressed as arithmetic circuits. The two main distinguishing

properties of zkSNARKs are that they are non-interactive (the prover sends the proof to the verifier

in one move) and succinct (the proof is small and easy to verify). However, they have significant

limitations:

a) The proof generation is extremely computationally demanding.

b) The proving key is very large and proportional to the circuit size.

c) They depend on strong and un-tested cryptographic assumptions (i.e. the knowledge of

exponent assumption and pairing-based assumptions).

d) For any given program (circuit) they require a common reference string (CRS) to be

computed by a third party who must be trusted to delete the set-up parameters. Any party

with knowledge of the set-up parameters has the ability to create fake proofs.

In this paper, we describe a method to enable the proof a particular class of composite statements

that involve relationships with elliptic curve public/private key pairs (based on elliptic curve point

multiplications). The construction of zkSNARKs to prove statements that involve arbitrary

cryptographic elliptic curve key operations has not been attempted to date (in the literature), but

would likely consist of arithmetic circuits with many hundreds-of-thousands (if not millions) of gates

(resulting in proof generation times of minutes and proving keys of hundreds of MB in size). To

construct a much more efficient system, we propose a scheme where information on elliptic curve

public keys is extracted directly from the ‘homomorphic hiding’ (or commitment scheme) used in

the construction of proofs for generic circuit satisfiability. For this approach to work, the particular

type of elliptic curve involved in the statement must be identical to that used in the circuit

commitment scheme – however in the case of statements relating to Bitcoin public keys with zk-

SNARKs this is not possible since the SNARK method involves pairing operations and therefore

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 3 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

requires special bilinear pairing-friendly elliptic curves (and the Bitcoin secp256k1 curve is not

compatible). As a result, our approach is developed to be compatible with alternative protocols for

proving arithmetic circuit satisfiability that do not rely on parings and have fewer cryptographic

assumptions (see section 3.3). The resulting protocols additionally have the advantage of being

more efficient than zkSNAKS (in terms of both computation and aggregate key/proof size) for

trustless exchange applications.

Figure 1. Schematic of a composite circuit for statement 1, containing sub-circuits for both a hash function and
elliptic curve multiplication (internal gates are for illustrative purposes only – the real circuits would have 1000s
of gates). The circuit checks that the output of the hash is equal to the EC public key: the values highlighted in

blue are revealed to the verifier, all other values are encrypted.

An example of the type of statement that our approach is particularly suited and efficient for is as

follows:

Statement 1: “Given a hash function (𝐻) output ℎ and an elliptic curve point 𝑃 (the public

key), the pre-image of the hash 𝑠 (i.e. ℎ = 𝐻(𝑠)) is equal to the elliptic curve point multiplier

(the private key, i.e. 𝑃 = 𝑠 × 𝐺)1”

1 𝐺 is the elliptic curve generator point.

+

Out

x

In

++

x +

+ x x +

+x +

+ x

+

Hash

+

Out

x

In

++

x

x

x +

+x +

+ x

+ x+

x +

EC mult

h Ps

=
?

=
?+

Out

Inputs

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight
key stmt

xhliu
Underline

xhliu
Underline

xhliu
Underline

Zero-knowledge key-statement proofs

Page 4 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

The ability to prove this particular statement in zero-knowledge would enable a number of novel

applications, including the trust-less sale of outsourced bitcoin vanity addresses and anonymised,

value-hiding cross chain atomic swaps (see applications).

The verification of the truth of statement 1 could be performed by the following (pseudo-code)

function, that takes the inputs ℎ, 𝑃 and 𝑠 and outputs 1 if the statement is true and 0 otherwise:

int verify(h,P,s)

{

if(h == H(s) && P == s x G) {

return 1

}

else {

return 0

}

}

Verifying this statement in zero knowledge (i.e. where the prover keeps the value of 𝑠 secret from

the verifier) with the zkSNARK system would require arithmetic circuits for both the hash function

AND the elliptic curve point multiplication (see schematic in Fig 1). Arithmetic circuits for the SHA-

256 hash function are widely used and optimised, and typically contain less than 30,000

multiplication gates, however there are no examples of arithmetic circuits for cryptographic elliptic

curve point multiplication implemented the literature, and in any case they would be complex and

contain many more gates. In the method we propose, we only require a full arithmetic circuit for the

single hash function, and to explicitly prove (via circuit satisfiability) that 𝑠 hashes to ℎ. The fact that

𝑠 × 𝐺 also equals 𝑃 can be extracted from the circuit proof explicitly at negligible extra

computational cost by employing the required elliptic curve in the commitment scheme as part of

the proof protocol (see Fig 2). We call this operation a key-statement proof, which is achieved by a

new type of commitment opening procedure we call a key-opening.

The remainder of the paper is presented as follows: in the next section the relevant pieces of

technical background and prior art are described in detail, then the following section the technical

specification of the invention is presented. Finally, we present two potential applications that are

made possible by the use of the efficient key statement proof method.

xhliu
Highlight

xhliu
Highlight

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 5 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Figure 2. Schematic of an arithmetic circuit for the composite statement 1 employing a key-statement proof
and just one arithmetic circuit for the hash function. The circuit checks that the output of the hash is correct
and that the public key is equal to the EC encrypted input (a key-statement proof). The values highlighted in

blue are revealed to the verifier, all other values are encrypted.

+

Out

x

In

++

x +

+ x x +

+x +

+ x

+

Hash

h Ps

=
?

=
?+

Out

Inputs

s x G

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 6 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

3 Background

This sections details the state-of-the-art and technical background that is required for the

implementation of the proposed method.

3.1 -Protocols

 (Sigma) protocols are a type of interactive zero-knowledge proof system, that involve a number

of moves (communications) between the prover and verifier. Usually  protocols involve 3 moves:

the prover sends an initial commitment to the verifier (𝑎), the verifier then responds with a random

challenge (𝑥) and finally the prover answers with a final response, or ‘opening’ (𝑧). The verifier then

accepts or rejects the statement based on the transcript (𝑎, 𝑥, 𝑧).

 protocols can be used to prove knowledge of, or statements about, a witness (𝑤) that is known

only to the prover. The protocol is zero-knowledge if it does not reveal any information about the

witness to the verifier, except for the fact that a statement related to the witness is true [Bootle

2015].

3.2 Pedersen Commitments

Commitment schemes are a central part of many cryptographic protocols, and are a basic

component of interactive zero-knowledge protocols for circuit satisfiability. A commitment enables a

prover to commit to a secret value in advance, and then later verifiably reveal (open) the secret

value. A commitment scheme has two main properties: 1) it is hiding: that is the commitment keeps

the value secret, and 2) it is binding: the commitment can only be opened to the originally

committed value.

The scheme employed in this invention is the Pedersen Commitment [Bootle 2015]. This scheme

involves two elliptic curve generator points: 𝐺 and 𝐹 in the group 𝔾 of prime order 𝑝, known to all

parties. The committer generates a secure random number 𝑟 in the field ℤ𝑝, and then computes the

commitment (via elliptic curve addition/multiplication) to the secret value 𝑠: 2

𝐶𝑜𝑚(𝑠, 𝑟) = 𝑠 × 𝐺 + 𝑟 × 𝐹

The committer can at a later stage fully open the commitment (i.e. it can be verified), by providing

the values 𝑠 and 𝑟. The committer can also open the commitment in response to a specific

challenge value as part of a  protocol (without revealing 𝑠 or 𝑟).

A crucial property of Pedersen commitments is that they are additively homomorphic, meaning that

adding (on the elliptic curve) two commitments results in a commitment to the sum of the

committed values, i.e.:

(𝑠1 × 𝐺 + 𝑟1 × 𝐹) + (𝑠2 × 𝐺 + 𝑟2 × 𝐹) = (𝑠1 + 𝑠2) × 𝐺 + (𝑟1 + 𝑟2) × 𝐹

This homomorphic property is exploited in zero-knowledge proofs of arithmetic circuit satisfiability.

3.3 Proofs of arithmetic circuit satisfiability in zero knowledge

An arithmetic circuit (over a field ℤ𝑝) is a virtual construction of arithmetic gates that are connected

by wires (forming a directed acyclic graph), that is capable of performing an arbitrarily complex

2 Here, × denotes elliptic curve point multiplication.

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Underline

xhliu
Underline

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 7 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

computation3. Each gate has two input wires and one output wire and performs either a

multiplication (×) or addition (+) operation on the inputs. A complete circuit has free input wires and

free output wires that define the external (circuit) input and output values. We define a legal

assignment of the values of the wires as those which satisfy the circuit, i.e. each wire is assigned a

value where the output of each gate correctly corresponds to the product or sum of the inputs (i.e.

the gate is consistent).

Figure 3. a) Schematic of a multiplication gate with left (𝑤𝐿) and right (𝑤𝑅) wire inputs and one wire output

(𝑤𝑂). b) A simple arithmetic circuit with three gates, three input wires (𝑤1, 𝑤2, 𝑤3), one output wire (𝑤6) and two

internal wires (𝑤5, 𝑤6).

For a given arithmetic circuit, a prover can prove to a verifier that they know a legal assignment for

the circuit without revealing the wire values, by first committing to each wire value in the legal

assignment (with Pedersen commitments) and then performing special  protocols with the verifier

for each gate in the circuit (which can be performed in parallel), with the wire values as the witness.

These  protocols exploit the homomorphic properties of Pedersen commitments, as described

below.

To produce the proof (that a circuit is satisfied), initially the prover generates a commitment to each

wire 𝑤𝑖 in the circuit (𝑖 = 1, … , 𝑛 where 𝑛 is the number of wires) and sends these to the verifier:

𝑊𝑖 = 𝐶𝑜𝑚(𝑤𝑖, 𝑟𝑖)

3.3.1 𝚺𝒛𝒆𝒓𝒐 protocol:

For each addition gate in the circuit, the Σ𝑧𝑒𝑟𝑜 protocol is executed: this involves proving (in zero

knowledge) that 𝑤𝐿 +𝑤𝑅 − 𝑤𝑂 = 0 (i.e. that the addition gate is satisfied: the input wires 𝑤𝐿 and 𝑤𝑅

equal the output wire 𝑤𝑂).

1. The prover generates a commitment to zero: 𝐵 = 𝐶𝑜𝑚(0, 𝑟𝐵), and sends to the verifier.

2. The verifier responds with a random challenge value: 𝑥 ← ℤ𝑝

3. The prover then computes the opening value: 𝑧 = 𝑥(𝑟𝐿 + 𝑟𝑅 − 𝑟𝑂) + 𝑟𝐵 and sends it to the

verifier.

3 The computation is limited to integer operations and must have no data dependant loops or
mutable state.

x +

x

w1 w2 w3

w4 w5

w6

x

wL wR

wO

a b

xhliu
Comment on Text
w4 & w6

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 8 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

4. The verifier checks that 𝐶𝑜𝑚(0, 𝑧) = 𝑥 × (𝑊𝐿 +𝑊𝑅 −𝑊𝑂) + 𝐵 as proof that 𝑤𝐿 +𝑤𝑅 −

𝑤𝑂 = 0

3.3.2 𝚺𝒑𝒓𝒐𝒅 protocol:

For each multiplication gate the Σ𝑝𝑟𝑜𝑑 protocol is executed: this involves proving (in zero-

knowledge) for each multiplication gate that 𝑤𝐿 ∙ 𝑤𝑅 = 𝑤𝑂 (i.e. that the multiplication gate is

satisfied).

1. The prover generates 5 random blinding values: 𝑡1, 𝑡2, 𝑡3 , 𝑡4, 𝑡5 ← ℤ𝑝

2. The prover computes 𝐶1 = 𝐶𝑜𝑚(𝑡1, 𝑡3), 𝐶2 = 𝐶𝑜𝑚(𝑡2, 𝑡5) and 𝐶3 = 𝑡1 ×𝑊𝑅 + 𝑡4 × 𝐹

and then sends them to the verifier.

3. The verifier responds with a random challenge value: 𝑥 ← ℤ𝑝

4. The prover computes the opening values:

𝑒1 = 𝑤𝐿𝑥 + 𝑡1

𝑒2 = 𝑤𝑅𝑥 + 𝑡2

𝑧1 = 𝑟𝐿𝑥 + 𝑡3

𝑧2 = 𝑟𝑅𝑥 + 𝑡5

𝑧3 = (𝑟𝑂 − 𝑤𝐿𝑟𝑅)𝑥 + 𝑡4

 and sends them to the verifier.

5. The verifier then checks the following equalities:

𝐶𝑜𝑚(𝑒1, 𝑧1) = 𝑥 ×𝑊𝐿 + 𝐶1

𝐶𝑜𝑚(𝑒2, 𝑧2) = 𝑥 ×𝑊𝑅 + 𝐶2
𝑒1 ×𝑊𝑅 + 𝑧3 × 𝐹 = 𝑥 ×𝑊𝑂 + 𝐶3

 as proof that 𝑤𝐿 ∙ 𝑤𝑅 = 𝑤𝑂.

3.3.3 Circuit proofs

The Σ𝑧𝑒𝑟𝑜 and Σ𝑝𝑟𝑜𝑑 protocols can be operated in parallel for the verification of each gate in the

circuit, and the same verifier challenge value (𝑥) can be used for all gates.

As an example, consider the circuit in figure 3b: for a prover to prove in zero-knowledge to a verifier

that they know a legal assignment (i.e. the wire values satisfying the circuit), the prover initially

sends the wire commitments (𝑊1, … ,𝑊6) and the Σ protocol commitments for each gate to the

verifier (this is one additional commitment for each addition gate and five for each multiplication

gate).

The verifier then responds with the random challenge 𝑥 ← ℤ𝑝, and the prover computes the

opening values for each gate (one for each addition and five for each multiplication) and sends

them back to the verifier. The verifier then performs the Σ protocol checks to verify that:

𝑤1 ∙ 𝑤2 = 𝑤4

𝑤4 ∙ 𝑤5 = 𝑤6

𝑤2 + 𝑤3 = 𝑤5

and therefore that the commitments 𝑊1, … ,𝑊6 correspond to satisfying wire values 𝑤1, … , 𝑤6.

xhliu
Highlight

xhliu
Underline

Zero-knowledge key-statement proofs

Page 9 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

If the prover wants to show that, in addition to satisfying the circuit, a particular wire has a particular

value, they can fully open the commitments to the relevant wires. In the example, the prover can

additionally send the verifier the values 𝑤6 and 𝑟6 (the verifier can then confirm that 𝑊6 =

 𝐶𝑜𝑚(𝑤6, 𝑟6)) to demonstrate that 𝑤6 is the actual output from a particular legal assignment.

The example in figure 3b is a trivial circuit, in practice useful circuits consist of many more gates. Of

particular interest is an arithmetic circuit for the SHA-256 hash function - this circuit enables a

prover to demonstrate that they know the pre-image (input) to a SHA-256 function that hashes to a

particular (output) value, without revealing the pre-image. One of the most efficient

implementations of a circuit for the SHA-256 algorithm consists of 27,904 arithmetic gates [Zcash

2016]. To prove knowledge of a SHA-256 pre-image would then require the sending of ~5 MB of

data in both the initial commitment and opening rounds of the above protocol, and require

~200,000 elliptic curve operations for both the prover and verifier (taking a few seconds of

processor time each). As described in section 3.5, there are some recently published protocols for

substantially reducing these computational costs and proof sizes, without introducing any

restrictions on the nature of the commitments.

3.4 Efficient zero-knowledge arguments for arithmetic circuit

satisfiability without pairings

There are several methods that have been developed to significantly improve the performance of

the parallel Σ protocol approach to proving arithmetic circuit satisfiability described in section 3.3.

The approaches described in [Bootle 2016] and [Groth 2009] involve batching the commitments to

circuit wire values to substantially reduce the size of data that must be sent from the prover to the

verifier (i.e. reducing the communication complexity). These methods enable proof systems where

the communication complexity is reduced from 𝒪(𝑛) to 𝒪(√𝑛) or 𝒪(log (𝑛)).

Again, as a comparison for proving the satisfiability of the same SHA circuit, the protocol of [Bootle

2016] has a proving key size of just 5 KB and a key generation time of 180ms. The Proof size is

24KB and takes ~4 s to generate, and the proof also takes ~4 s to verify.

We do not describe these methods in full here, except to state that the main vector batching

protocol employed which is described below. This follows the same properties as the standard

Pedersen commitment, but committing to 𝑛 elements (𝐦 = 𝑚1, … ,𝑚𝑛) only requires the sending of

a single group element:

1. The prover and verifier agree on a group element 𝐹 ← 𝔾

2. The prover generates 𝑛 random numbers 𝑥1, … , 𝑥𝑛 ← ℤ𝑝

3. The prover computes the points 𝐾𝑖 = 𝑥𝑖 × 𝐹 (for 𝑖 = 1, … , 𝑛). These values form a proving key

𝑃𝑟𝐾 that is sent to the verifier.

4. The prover generates a random value: 𝑟 ← ℤ𝑝

5. The prover computes the commitment:

𝐶𝑜𝑚(𝐦) = 𝑟 × 𝐹 +∑𝑚𝑖 × 𝐾𝑖

𝑛

𝑖=1

and sends it to the verifier.

In the specification, we describe the method for extracting key-statements from both individual gate

 protocols (embodiment 1) and the batched circuit vector commitments described above

(embodiment 2). Therefore, our approach is compatible with each of the stated protocols.

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 10 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

4 Specification

This section describes the specifics of the invention, and its implementation for both batched and

un-batched commitment based zero-knowledge proof systems.

Two parties are involved in the zero-knowledge proof protocol: the prover (𝑃) and the verifier (𝑉).

The purpose of the protocol is for the prover to convince the verifier that a given statement (𝒮) is

true, while keeping information about the witness to the statement secret. The statement consists

of an arithmetic circuit (𝒞) with 𝑚 gates and 𝑛 wires, as well as dependent assertions about the

elliptic curve public key(s) corresponding to one (or more) of the circuit wire values: 𝑝𝑘𝑙 (where the

sub-script 𝑙 is the wire index of the key statement. In addition, the statement may also include

assertions about fully opened (public) wire values (i.e. public inputs/outputs of the circuit).

The elliptic curve public key(s) specified in the statement correspond to a target elliptic curve

specification (which is defined by the full set of elliptic curve parameters: 𝒯 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)). In

the case of Bitcoin script, these parameters are defined by the specification of secp256k1 [SEC

2010]. This specification includes the base generator point 𝐺.

In addition to the specifying the base point, the statement must also specify a second point 𝐹

(where 𝐹 = 𝑓 × 𝐺 and 𝑓 is an element of ℤ𝑝). The value of 𝑓 must be provably random (e.g. the

Bitcoin genesis block hash), or a ‘nothing up my sleeve’ number, such as the first 256 bits of the

binary representation of 𝜋4.

Figure 4. An example circuit with four gates and five wires. One input wire (w1) has its public key revealed
(‘opened’) from the wire commitment (W1) with the ‘key-opening’ value ko1.

4.1 Embodiment 1: Individual wire commitments

In this embodiment we describe key openings when a verifier has individual commitments to each

wire in the circuit (i.e. following the Σ protocols for arithmetic circuit satisfiability in section 3.3).

1. Each wire 𝑖 (𝑖 = 1, … , 𝑛) of the circuit is committed to with a Pedersen commitment:

4 Allowing the prover a free choice over 𝑓 could enable them to generate fake proofs.

x +

x

w1

w3 w4

w5

+g1

g2 g3

g4

w2

pk1 = W1 – ko1ko1

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 11 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

𝑊𝑖 = 𝐶𝑜𝑚(𝑤𝑖, 𝑟𝑖)

Where:

𝐶𝑜𝑚(𝑤, 𝑟) = 𝑤 × 𝐺 + 𝑟 × 𝐹

2. For the circuit wire 𝑙 that requires a proof of its corresponding public key (a key-statement

proof), the prover also sends a key-opening:

𝑘𝑜𝑙 = 𝑟𝑙 × 𝐹

3. If a circuit wire 𝑗 requires being publically revealed (a fully public wire), the prover sends the full

opening tuple:

(𝑤𝑗, 𝑟𝑗)

4. Each gate of the circuit is then proven satisfied in zero knowledge using the  protocols of

section 3.35.

5. Once the verifier has confirmed that the circuit is satisfied, the verifier then calculates the public

key for the wire 𝑙 via elliptic curve point subtraction:

𝑝𝑘𝑙 = 𝐶𝑜𝑚(𝑤𝑙 , 𝑟𝑙) − 𝑘𝑜𝑙

6. The verifier then confirms that each 𝑝𝑘𝑙 matches the key(s) specified in the statement (and that

the fully opened wires match specified values) to complete the validation.

An explicit example (detailing the individual commitments and validations) of this protocol for the

small example circuit shown in Fig. 4 is presented in Appendix 1.

5 This involves the prover computing and sending the Σ𝑧𝑒𝑟𝑜 and Σ𝑝𝑟𝑜𝑑 commitments (i.e. 𝐵 or

𝐶1, 𝐶2, 𝐶3 respectively) for each gate, the verifier replying with a challenge value (𝑥), the prover

the sending the opening values (𝑧 and 𝑒 values) and the verifier checking against the

commitments.

xhliu
Highlight

xhliu
Highlight

xhliu
Underline

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 12 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Figure 5. Protocol flow between prover (P) and verifier (V) for the proof of statement 𝒮 with embodiment 1.
The statement includes the circuit description and that wire l has public key pkl.

4.2 Embodiment 2: Batched vector commitments

In the case of the compressed proof systems for circuit satisfiability that involve the batching of

vector commitments [Bootle 2016, Groth 2009] (as described in section 3.5), the method described

below can be used to extract key-statement proofs from batched circuit wire commitments. Here,

we do not describe the full proof protocol, only the generation of the batched wire commitment and

the protocol to demonstrate it contains a specified public key.

A batched commitment is generated as follows, where the wire 𝑙 is to be supplied with a key

opening. 𝑛 wires are batched together in the vector commitment.

1. The prover generates 𝑛 − 1 random numbers 𝑥1, … , 𝑥𝑛−1 ← ℤ𝑝

2. The prover computes the elliptic curve points 𝐾𝑖 = 𝑥𝑖 × 𝐺 (for 𝑖 = 1, … , 𝑛 − 1). These values

plus 𝐾𝑛 = 𝐺 form a proving key 𝑃𝑟𝐾 that is sent to the verifier.

3. The prover generates a random value: 𝑟 ← ℤ𝑝

4. The prover computes the commitment to the vector 𝐰 of wire values 𝑤𝑖 (for 𝑖 = 1, … , 𝑛)

where 𝑤𝑛 is to be key-opened:

a

P V

Statement

𝑊𝑖 = 𝐶𝑜𝑚(𝑤𝑖 , 𝑟𝑖)

𝒮:

𝒞
𝑝𝑘𝑙 = 𝑤𝑙 × 𝐺

𝑘𝑜𝑙 = 𝑟𝑙 × 𝐹

a𝒞
𝑝𝑘𝑙 = 𝐶𝑜𝑚 𝑤𝑙 , 𝑟𝑙 − 𝑘𝑜𝑙

Verify:

 gate coms:

𝑥

𝑒𝑖 , 𝑧𝑖

Key opening

Wire commitments

Challenge

Challenge openings

𝐵 for sum

for each

gate

𝐶1 , 𝐶2 , 𝐶3 for prod

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 13 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

𝐶𝑜𝑚(𝐰) = 𝑟 × 𝐹 +∑𝑤𝑖 ×𝐾𝑖

𝑛−1

𝑖=1

+𝑤𝑛 × 𝐺

and sends it to the verifier as part of the protocol in [Bootle 2016].

5. The prover also sends the key opening for the vector commit:

𝑘𝑜𝑛 = 𝑟 × 𝐹 +∑𝑤𝑖 ×𝐾𝑖

𝑛−1

𝑖=1

6. The verifier calculates the public key opening of the key-statement wire, via elliptic curve

arithmetic:

𝑝𝑘𝑛 = 𝐶𝑜𝑚(𝐰) − 𝑘𝑜𝑛

4.3 Proof of equivalence of a hash pre-image and elliptic curve

private key

We here outline the construction of a specific example of a key-statement zero-knowledge proof

that can be utilised in the applications described in sections 6 and 7.

The statement 𝒮 is a more specific version of statement 1 given in section 2:

𝒮: “Given a SHA-256 hash function (𝐻) with a public output ℎ and a public point 𝑃 on the

secp256k1 elliptic curve, the secret pre-image of the hash, 𝑠 (i.e. ℎ = 𝐻(𝑠)) is equal to the

elliptic curve point multiplier (i.e. the corresponding private key, i.e. 𝑃 = 𝑠 × 𝐺)”

In the approach described above, this statement consists of a single arithmetic circuit for the SHA-

256 hash function 𝒞𝑆𝐻𝐴256 (with 𝑛 wires 𝑤𝑖 (𝑖 = 1,… , 𝑛) and 𝑚 gates) along with an assertion that

the input wire (𝑤1) is the private key for public point 𝑃 and that the output wire (𝑤𝑛) is equal to ℎ.

i.e.:

 𝒮: 𝒞𝑆𝐻𝐴256 is satisfied by the wires {𝑤𝑖}𝑖=1
𝑛 AND 𝑤1 × 𝐺 = 𝑃 AND 𝑤𝑛 = ℎ

Therefore, to fully verify this statement, the prover must demonstrate to the verifier that they know a

satisfying assignment to the SHA256 circuit using the secp256k1 based commitment scheme, and

then simply provide the key-opening for wire 1 (𝑘𝑜1) and the full opening for wire 𝑛 (𝑤𝑛, 𝑟𝑛). The

verifier does not learn the value of the input wire (𝑤1), or the values of any of the other wires except

for the fully opened output wire 𝑤𝑛.

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 14 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

5 Advantages

The methods described in the previous section enable the zero-knowledge proof of statements that

involve elliptic curve public-private key relationships simultaneously with general arithmetic circuit

satisfiability. This is achieved with negligible computational expense beyond proving satisfiability of

the arithmetic circuit, and avoids the requirement of creating explicit arithmetic circuits for elliptic

curve point multiplication operations which would increase the computational expense of the proof

substantially.

5.1 Comparison with zkSNARKs

Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) refer to an

implementation of a general purpose proof system for arithmetic circuit satisfiability. In the SNARK

framework, a statement encoded as an arithmetic circuit is converted into a construct called a

Quadratic Arithmetic Program (QAP), which consists of a set of polynomial equations. The

statement can them be proved by demonstrating the validity of this set of equations at a single

point. The main advantage of the SNARK method is that the verifier only needs to perform a few

elliptic curve (pairing) operations (taking a few ms) and the proof is very small (288 bytes) and

independent of the circuit size.

The very small proof and verification time achieved by the SNARK method comes at the expense

of a trusted set-up, non-standard cryptographic assumptions and a much heavier computational

burden placed upon the prover. The method also requires the use elliptic curve bi-linear pairings.

However, the use of computationally feasible bi-linear pairings requires the use of special ‘pairing-

friendly’ elliptic curves. This precludes the use of many standard cryptographic elliptic curve

parameter sets, including the Bitcoin secp256k1. Statements involving general elliptic curve point-

multiplications must then employ explicit circuits (which may be very large).

By way of comparison with the Σ protocol approach to proving SHA circuit satisfiability described in

the previous section, with the SNARK (Pinocchio) framework, the proving key would take ~10 s to

generate and be ~7 MB in size, and the proof would also take ~10 s to generate. The proof size

would however be 288 B and only take ~5 ms to verify [Bootle 2016]. Additionally incorporating an

explicit elliptic curve multiplication (key-statement) into the circuit, would multiply both the proving

key size and proof generation time by at least an order of magnitude.

5.2 The Fiat-Shamir heuristic

The protocols described in this paper are interactive proof systems, which require communications

to be passed back-and-forth between the prover and the verifier. This can be inconvenient for a

ZKCP where the seller and buyer might not be on-line at the same time, and the buyer may wish

for a proof to be publically verifiable (maybe as part of an advertisement for the digital goods). In

addition, the proofs are only strictly zero-knowledge in the perfect special-honest verifier model:

that is, we assume the verifier generates a genuine random number as the challenge, and does not

choose the challenge value to try and extract information about the witness.

To solve both of these problems, we can apply the Fiat-Shamir heuristic: this simply replaces the

random challenge value with the output of a hash of the commitments made by the prover. In the

random oracle model (where the output of a cryptographic hash function is considered truly

random), the prover cannot cheat, and the verifier can check the challenge value generated.

The Fiat-Shamir heuristic can then convert an interactive proof system into a non-interactive one,

and the prover can generate a proof that can be independently and publically verified, off-line.

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 15 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

In the case of the protocol described in section 4.1 and Figure 5, the challenge value (𝑥) is

replaced with a value computed by hashing (with for example SHA-256) the concatenation of all of

the commitments generated by the prover (i.e. all of the wire commitments and all of the 𝐵 and

𝐶1, 𝐶2, 𝐶3 commitments for sum and product gates respectively).

Zero-knowledge key-statement proofs

Page 16 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

6 Application 1: Outsourced vanity address

generation

This section describes an application of the specific proof described in section 4.3 to the ZKCP for

an outsourced bitcoin vanity address.

Bitcoin addresses are encoded in a human readable alpha-numeric format (Base58 encoding) in

order to make them easy to publish, copy and transcribe. The use of this format has led to the

popularity of so-called vanity addresses, where the key space is brute-force searched in order to

find a private key that results an address that contains a desired string (like a name).

Figure 6. Bitcoin main-net address with vanity pattern

Since deriving a vanity address with a significant pattern can be computationally expensive (for

example, the address in figure 6 required the generation of approximately 1013 different public

keys before a match was found) it is common for the search to be outsourced, and there are

several online marketplaces where vanity addresses are commissioned and sold. This can be done

securely using the homomorphic properties of elliptic curve point multiplication [JoelKatz 2012].

Although outsourcing the generation is secure, the sale of the vanity address is not trustless. Either
the buyer gets the required value before the seller gets paid, or the seller gets paid before
releasing the required value, or they must both trust an escrow service. By employing the proof
described in section 4.3, the trustless sale of a vanity address via a ZKCP is enabled.

The protocol for this ZKCP is detailed as follows, and involves two parties: The Buyer and the
Seller.

1. The Buyer and Seller agree on the required vanity pattern (𝑡𝑟) and the price (𝑎 BTC), and

establish a communication channel (which does not need to be secure).

2. The buyer generates a secure random secret key 𝑠𝑘𝐵 and corresponding elliptic curve

public key 𝑝𝑘𝐵 = 𝑠𝑘𝐵 × 𝐺

3. The buyer sends 𝑝𝑘𝐵 to the seller.

4. The seller then performs a search for the required pattern in the Base58 encoded address
derived from 𝑝𝑘 = 𝑝𝑘𝐵 + 𝑖 × 𝐺 by changing 𝑖.

5. When an address with the required pattern is found, the seller saves the value 𝑖, signals to

the buyer and sends them 𝑝𝑘𝑠 = 𝑖 × 𝐺 and the SHA256 hash 𝐻(𝑖).

6. The seller also provides a proof (as in section 4.3) to the buyer that the pre-image to 𝐻(𝑖)
is the private key corresponding to 𝑝𝑘𝑠 (as described in section 4.3).

7. The buyer verifies the proof, and also confirms that the address corresponding to 𝑝𝑘 =
𝑝𝑘𝐵 + 𝑝𝑘𝑠 matches the agreed pattern. At this point (by virtue of the proof), the buyer

knows that learning the value 𝑖 will enable them derive the full private key for the vanity

address (𝑠𝑘𝐵 + 𝑖), and that particular value 𝑖 hashes to ℎ = 𝐻(𝑖).

8. The buyer then constructs a HTLC transaction 𝑥1 which contains an output that contains

the agreed fee (𝑎). This output can be unlocked in in two ways:

1nChainRHtKNngkdXEeobR76b53LETtpyT

version
byte

vanity
pattern

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Underline

Zero-knowledge key-statement proofs

Page 17 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

i. With a signature from the seller and the hash pre-image, 𝑖, at any time.

ii. With a signature from the buyer after a specified time (OP_CLTV6)

9. The buyer then signs and broadcasts this transaction to the blockchain, where it is mined
into a block.

10. Once confirmed, the seller can claim the fee in the output of 𝑥1 by providing a transaction

 𝑥2 supplying their signature and the value 𝑖 to unlock the hash-lock, which is then

revealed on the blockchain.

11. The buyer can calculates the final vanity address private key 𝑠𝑘 = 𝑠𝑘𝐵 + 𝑖, where 𝑝𝑘 =
𝑠𝑘 × 𝐺

12. If the buyer fails to supply the value 𝑖 before a specified OP_CLTV time, then the seller can

provide their signature to re-claim the fee (to prevent the fee being lost due to an un-
cooperative buyer).

The transaction is then fully atomic and trustless: the buyer only gets paid if they provide a valid
value 𝑖 which is revealed publically on the blockchain. Due to the splitting of the private key, this

value is of no use to anyone else and does not compromise the security of the full private key.

6 The CHECKLOCKTIMEVERIFY script op code, which can be used to prevent an output from
being spent until a specified time (or block height).

Zero-knowledge key-statement proofs

Page 18 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

7 Application 2: Privacy preserving cross-chain

atomic swaps

A more straightforward type of trustless fair-exchange protocol that leverages blockchain

transaction features is the so-called cross-chain atomic swap or atomic trade. The protocol is used

to trade two different cryptocurrency tokens on two different blockchains without a third party

centralised exchange. The word ‘atomic’ in this context refers to the fair exchange property: either

the both parties complete their transactions or neither do.

The basic protocol is executed as follows. To be secure, both of the cryptocurrencies used in the

swap must have scripting functionality that enables hashed and time-locked contracts. The swap

involves two parties: Alice and Bob. In this example, Alice has 1 Bitcoin and has agreed to trade it

for Bob’s 100 Litecoins.

1. Alice generates a Litecoin public key 𝑃𝐴 which she sends to Bob

2. Bob generates a Bitcoin public key 𝑃𝐵 which he sends to Alice

3. Alice generates a secure random number 𝑥

4. Alice computes the SHA-256 hash of 𝑥: ℎ = 𝐻(𝑥)

5. Alice creates a Bitcoin transaction 𝑥𝐴 which:

i. Pays 1 Bitcoin to 𝑃𝐵 with a valid signature AND a value that hashes to ℎ

ii. OR pays 1 Bitcoin back to Alice after 24 hours.

6. Alice broadcasts the transaction to the Bitcoin network.

7. Once Bob observes 𝑥𝐴 is confirmed on the Bitcoin blockchain, he creates a Litecoin

transaction 𝑥𝐵 which:

i. Pays 100 Litecoin to 𝑃𝐴 with a valid signature AND a value that hashes

to ℎ

ii. OR pays 100 Litecoin back to Bob after 24 hours.

8. Bob broadcasts the transaction to the Litecoin network.

9. Once the transaction has confirmed, Alice can then claim the Litecoin output by

providing her signature and the value 𝑥.

10. Once Bob observes the value 𝑥 on the Litecoin blockchain and can then claim the

Bitcoin output by providing his signature and the value 𝑥.

The protocol is designed so that either both parties get their coins, or neither do. Alice generates

the hash value and only she knows the pre-image, but she is required to reveal this pre-image to

claim the coins, which then enables Bob to claim his coins. If either party does not follow the

protocol to completion, both of them can re-claim their coins after a lock-out period.

7.1 Anonymity with key-statement proofs

One significant feature of the protocol described above is that the transactions on both blockchains

are trivially linkable: once confirmed, the unique value 𝑥 is publically visible on both blockchains,

forever. This affects both the fungibility of the coins and the privacy of the transaction. In order to

un-link the two transactions, different keys must be used for the outputs on each chain, but in order

for the protocol to be secure and trustless, Bob must be given a proof by Alice that he will learn the

information needed to unlock his coin when she reveals her hash pre-image.

By employing the key-statement proof (section 4.3), the hash-locked output on the second

blockchain can be converted to a normal pay-to-public-key-hash (P2PKH) output, both disguising

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Underline

xhliu
Underline

Zero-knowledge key-statement proofs

Page 19 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

the nature of the transaction and breaking any possible link. This protocol would proceed as follows

(again, Alice has 1 Bitcoin and has agreed to trade it for Bob’s 100 Litecoins):

1. Alice generates a Litecoin public key 𝑃𝐴 (with private key 𝑠𝐴) which she sends to Bob

2. Bob generates a Bitcoin public key 𝑃𝐵 (with private key 𝑠𝐵) which he sends to Alice

3. Alice generates a secure random number 𝑥 ← ℤ𝑝

4. Alice computes the SHA-256 hash of 𝑥: ℎ = 𝐻(𝑥) and a the elliptic curve public key

corresponding to 𝑥: 𝑃𝑥 = 𝑥 × 𝐺

5. Alice securely sends both ℎ and 𝑃𝑥 to Bob.

6. Alice also sends a key-statement proof to Bob that the pre-image of ℎ is equal to the

private key that generated 𝑃𝑥 (as described in section 4.3).

7. Alice creates a Bitcoin transaction 𝑥𝐴 which:

i. Pays 1 Bitcoin to public key 𝑃𝐶 = 𝑃𝐵 + 𝑃𝑥

ii. OR pays 1 Bitcoin back to Alice after 24 hours.

8. Alice broadcasts the transaction to the Bitcoin network.

9. Once Bob observes 𝑥𝐴 is confirmed on the Bitcoin blockchain, he creates a Litecoin

transaction 𝑥𝐵 which:

i. Pays 100 Litecoin to 𝑃𝐴 with a valid signature AND a value that SHA-

256 hashes to ℎ

ii. OR pays 100 Litecoin back to Bob after 24 hours.

10. Bob broadcasts the transaction to the Litecoin network.

11. Once the transaction has confirmed, Alice can then claim the Litecoin output by

providing her signature and the value 𝑥.

12. Once Bob observes the value 𝑥 on the Litecoin blockchain and can then claim the

Bitcoin output by providing a signature using the private key for 𝑃𝐶, which is 𝑠𝐵 + 𝑥 from

the homomorphic properties of elliptic curve point multiplication.

xhliu
Underline

xhliu
Underline

xhliu
Underline

xhliu
Highlight

xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 20 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

8 References

Reference Author, date, name & location

[Campanelli 2017] Campanelli, Matteo, et al. "Zero-knowledge contingent payments
revisited: Attacks and payments for services." Commun. ACM (2017).

[Maxwell 2016] https://github.com/zcash-hackworks/pay-to-sudoku

[Parno 2016] Parno, Bryan, et al. "Pinocchio: Nearly practical verifiable
computation." Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013.

[Libsnark 2016] https://github.com/scipr-lab/libsnark

[Bootle 2015] Bootle, Jonathan, et al. "Efficient zero-knowledge proof systems."
Foundations of Security Analysis and Design VIII. Springer, Cham,
2015. 1-31.

[Groth 2009] Groth, Jens. "Linear Algebra with Sub-linear Zero-Knowledge
Arguments." CRYPTO. Vol. 5677. 2009.

[JoelKatz 2012] https://bitcointalk.org/index.php?topic=81865.msg901491#msg901491

[Bootle 2016] Bootle, Jonathan, et al. "Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting." Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, Berlin, Heidelberg, 2016.

[SEC 2010] Standards for Efficient Cryptography (SEC) (Certicom Research,
http://www.secg.org/sec2-v2.pd

http://www.secg.org/sec2-v2.pd
xhliu
Highlight

xhliu
Highlight

Zero-knowledge key-statement proofs

Page 21 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

9 Appendix 1

Here we describe in detail the protocol for verifying a satisfiability of a simple arithmetic circuit with

both a key-statement proof of one of the wires and a full revealing of another wire. The circuit 𝒞 is

shown in Fig. 7: it has 5 wires 𝑤𝑖 (𝑖 = 1, … ,5) and 4 gates 𝑔𝑗 (𝑗 = 1, … ,4). Gates 1 and 3 are addition

gates and gates 2 and 4 are multiplication gates.

The statement (𝒮) the prover wants to prove the truth of to the verifier is: “I know a satisfying

assignment to the circuit 𝒞 (i.e. wire values {𝑤𝑖}𝑖=1
5 that satisfy all the gates), where wire 1 has a

public key 𝑃 (i.e. 𝑃 = 𝑤1 × 𝐺) and wire 5 has a value ℎ (i.e. 𝑤𝑛 = ℎ)” without revealing the values of

wires 1 to 4.

Figure 7. Circuit 𝒞.

The prover and verifier agree on the statement (which includes the circuit, the value of wire 5 and

the public key of wire 1, along with the elliptic curve and commitment specification). The protocol

then proceeds as follows:

1. The prover generates 5 random blinding values (𝑟1, … , 𝑟5) and then calculates the 5 wire

commitments (𝑊1, … ,𝑊5) and sends these to the verifier.

2. The prover computes the key opening for wire 1: 𝑘𝑜1 = 𝑟1 × 𝐹 and sends it to the verifier.

3. The prover sends the full opening information for wire 5 (𝑤5, 𝑟5) to the verifier.

4. For the addition gates (𝑔1 and 𝑔3) the prover generates a commitment to zero (with a random

nonces 𝑟𝐵1 and 𝑟𝐵3) : 𝐵1 = 𝐶𝑜𝑚(0, 𝑟𝐵1) and 𝐵3 = 𝐶𝑜𝑚(0, 𝑟𝐵3) and sends them to the verifier.

5. For the multiplication gates (𝑔2 and 𝑔4) the prover generates the commitments as follows:

For gate 2: 𝐶12 = 𝐶𝑜𝑚(𝑡12, 𝑡32), 𝐶2 = 𝐶𝑜𝑚(𝑡22, 𝑡52) and 𝐶3 = 𝑡12 ×𝑊1 + 𝑡42 × 𝐹

For gate 4: 𝐶14 = 𝐶𝑜𝑚(𝑡14, 𝑡34), 𝐶2 = 𝐶𝑜𝑚(𝑡24, 𝑡54) and 𝐶3 = 𝑡14 ×𝑊3 + 𝑡44 × 𝐹

Where the 𝑡𝑥𝑥 values are random blinding nonces. The prover sends these commitments to the

verifier.

x +

x

w1

w3 w4

w5

+g1

g2 g3

g4

w2

Zero-knowledge key-statement proofs

Page 22 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

6. The verifier then generates a random challenge value 𝑥, and sends it to the prover. (OR the

prover can generate value 𝑥 by hashing a concatenation of all the commitments, via Fiat-

Shamir).

7. For the addition gates (𝑔1 and 𝑔3) the prover computes the following openings and sends them

to the verifier:

𝑧1 = 𝑥(𝑟1 + 𝑟1 − 𝑟2) + 𝑟𝐵1

𝑧3 = 𝑥(𝑟2 + 𝑟1 − 𝑟4) + 𝑟𝐵3

8. For the multiplication gates (𝑔2 and 𝑔4) the prover computes the following openings and sends

them to the verifier:

𝑒12 = 𝑤1𝑥 + 𝑡12

𝑒22 = 𝑤2𝑥 + 𝑡22

𝑧12 = 𝑟1𝑥 + 𝑡32

𝑧22 = 𝑟2𝑥 + 𝑡52

𝑧32 = (𝑟3 − 𝑤1𝑟2)𝑥 + 𝑡42

𝑒14 = 𝑤3𝑥 + 𝑡14

𝑒24 = 𝑤4𝑥 + 𝑡24

𝑧14 = 𝑟3𝑥 + 𝑡34

𝑧24 = 𝑟4𝑥 + 𝑡54

𝑧34 = (𝑟5 − 𝑤3𝑟4)𝑥 + 𝑡44

9. Finally, the verifier checks the equalities detailed in Figure 9. If these pass, then the proof is

verified.

Zero-knowledge key-statement proofs

Page 23 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Figure 8. Flow of the interaction between prover and verifier.

aP V

Statement 𝒮:

𝒞
𝑝𝑘1 = 𝑤1 × 𝐺

h = 𝑤5

𝑘𝑜1 = 𝑟1 × 𝐹

𝑥

(𝑤5 , 𝑟5)

Key opening

Wire opening

Challenge

Challenge openings

𝑔2: 𝐶12 , 𝐶22 , 𝐶32

𝑔1 : 𝐵1

𝑔4: 𝐶14 , 𝐶24 , 𝐶34

𝑔3: 𝐵3

Gate commitments

𝑊1 = 𝐶𝑜𝑚(𝑤1 , 𝑟1)

𝑊2 = 𝐶𝑜𝑚(𝑤2 , 𝑟2)
𝑊3 = 𝐶𝑜𝑚(𝑤3 , 𝑟3)

𝑊4 = 𝐶𝑜𝑚(𝑤4 , 𝑟4)
𝑊5 = 𝐶𝑜𝑚(𝑤5 , 𝑟5)

Wire commitments

𝑔2 : 𝑒12 , 𝑒22 , 𝑧12 , 𝑧22 𝑧32

𝑔1 : 𝑧1

𝑔4 : 𝑒14 , 𝑒24 , 𝑧14 , 𝑧24 𝑧34

𝑔3: 𝑧3

Zero-knowledge key-statement proofs

Page 24 COMMERCIAL IN CONFIDENCE
© nChain Limited.

WP0488

Figure 9. The checks required to verify the circuit is satisfied (grey box), that wire 1 has the required public key
and that wire 5 hash the required value.

a

a

𝒞 :

Verify:

𝑔2: 𝐶𝑜𝑚 𝑒12 , 𝑧12 = 𝑥 ×𝑊1 + 𝐶12
𝐶𝑜𝑚 𝑒22 , 𝑧22 = 𝑥 ×𝑊2 + 𝐶22
𝑒12 ×𝑊2 + 𝑧32 × 𝐹 = 𝑥 ×𝑊3 + 𝐶32

𝑔1: 𝐶𝑜𝑚(0,𝑧1) = 𝑥 × (𝑊1 + 𝑊1 −𝑊2) + 𝐵1

𝑔3: 𝐶𝑜𝑚(0, 𝑧3) = 𝑥 × (𝑊2 + 𝑊1 −𝑊4) + 𝐵3

𝑔4: 𝐶𝑜𝑚 𝑒14 , 𝑧14 = 𝑥 ×𝑊3 + 𝐶14
𝐶𝑜𝑚 𝑒24 , 𝑧24 = 𝑥 ×𝑊4 + 𝐶24
𝑒14 ×𝑊4 + 𝑧34 ×𝐹 = 𝑥 ×𝑊5 + 𝐶34

𝑝𝑘1 = 𝑊1 − 𝑘𝑜1

𝑊5 = ℎ × 𝐺 + 𝑟5 × 𝐹

	1 Abstract
	2 Introduction
	3 Background
	3.1 -Protocols
	3.2 Pedersen Commitments
	3.3 Proofs of arithmetic circuit satisfiability in zero knowledge
	3.3.1 ,𝚺-𝒛𝒆𝒓𝒐. protocol:
	3.3.2 ,𝚺-𝒑𝒓𝒐𝒅. protocol:
	3.3.3 Circuit proofs

	3.4 Efficient zero-knowledge arguments for arithmetic circuit satisfiability without pairings

	4 Specification
	4.1 Embodiment 1: Individual wire commitments
	4.2 Embodiment 2: Batched vector commitments
	4.3 Proof of equivalence of a hash pre-image and elliptic curve private key

	5 Advantages
	5.1 Comparison with zkSNARKs
	5.2 The Fiat-Shamir heuristic

	6 Application 1: Outsourced vanity address generation
	7 Application 2: Privacy preserving cross-chain atomic swaps
	7.1 Anonymity with key-statement proofs

	8 References
	9 Appendix 1

