Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

DCCS

Official PyTorch implementation for ECCV'20 paper: Deep Image Clustering with Category-Style Representation

Coming soon

  • A new clustering method which achieves 85.8% clustering accuracy on CIFAR-10 (with 0.8% standard deviations).

Package dependencies

  • python >= 3.6
  • pytorch == 1.2.0
  • torchvision == 0.4.0
  • scikit-learn == 0.21.3
  • tensorboardX
  • matplotlib
  • numpy
  • scipy

Create the environment with Anaconda

$ conda create -n dccs python=3.6
$ source activate dccs
$ conda install pytorch=1.2.0 torchvision=0.4.0 cudatoolkit=10.0 -c pytorch
$ conda install scikit-learn=0.21.3
$ pip install tensorboardX
$ conda install matplotlib

Prepare datasets

For MNIST, Fashion-MNIST, CIFAR-10 and STL-10, you can download the datasets using torchvision.

For example, you can download CIFAR-10 with

torchvision.datasets.CIFAR10('path/to/dataset', download=True)

For ImageNet-10, you can download ImageNet, select the images of 10 classes listed in './data/imagenet10_classes.txt', and resize the images to 96x96 pixels.

Command to run DCCS

You can run DCCS on MNIST with

$ CUDA_VISIBLE_DEVICES=0 python train.py --dataset-type=MNIST --dataset-path=path/to/dataset --beta-aug=2 

For CIFAR-10, you can use

$ CUDA_VISIBLE_DEVICES=0 python train.py --dataset-type=CIFAR10 --dataset-path=path/to/dataset --beta-aug=4 

Citation

If you are interested in our paper, please cite:

@inproceedings{zhao2020deep,
  title={Deep Image Clustering with Category-Style Representation},
  author={Zhao, Junjie and Lu, Donghuan and Ma, Kai and Zhang, Yu and Zheng, Yefeng},
  booktitle={European Conference on Computer Vision (ECCV)},
  year={2020}
}

About

Official PyTorch implementation for ECCV'20 paper: Deep Image Clustering with Category-Style Representation

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.