

REVISITING FACIAL KEY POINT
DETECTION - AN EFFICIENT APPROACH

USING DEEP NEURAL NETWORKS

* Prathima Dileep
1
, Bharath Kumar Bolla

2
, Sabeesh E

3

1Upgrad Education Pvt. Ltd., Mumbai, India

 1prathi8dec@gmail.com

 2Salesforce, Hyderabad, India

 2bolla111@gmail.com

 3Liverpool John Moore University, London
 3sabeesh90@yahoo.co.uk

Abstract Facial landmark detection is a widely researched field of deep
learning as this has a wide range of applications in many fields. These key points are
distinguishing characteristic points on the face, such as the eyes center, the eye's inner
and outer corners, the mouth center, and the nose tip from which human emotions and
intent can be explained. The focus of our work has been evaluating transfer learning
models such as MobileNetV2 and NasNetMobile, including custom CNN
architectures. The objective of the research has been to develop efficient deep learning
models in terms of model size, parameters, and inference time and to study the effect
of augmentation imputation and fine-tuning on these models. It was found that while
augmentation techniques produced lower RMSE scores than imputation techniques,
they did not affect the inference time. MobileNetV2 architecture produced the lowest
RMSE and inference time. Moreover, our results indicate that manually optimized
CNN architectures performed similarly to Auto Keras tuned architecture. However,
manually optimized architectures yielded better inference time and training curves.

Keywords: Inference Time, Efficient Transfer Learning, Deep Learning,
MobileNetV2, NasNetMobile, Custom CNN, Keras-autotuner

1 Introduction

The face is critical in visual communication. Numerous nonverbal messages, such
as human identity, intent, and emotion, can be automatically extracted from the face.
Localizations of facial key points are required in computer vision to extract
nonverbal cues of facial information automatically. The term "facial appearance"

mailto:1mohan.kingam@gmail.com
mailto:1mohan.kingam@gmail.com
mailto:2bolla111@gmail.com
mailto:3sabeesh90@yahoo.co.uk

2

refers to the distinct patterns of pixel intensity around or across facial landmarks or
key points. These key points represent those critical features on a human face, such
as the eyes, nose, eyebrows, lips, and nose from which information about a person’s
emotion or intent can be identified. Once correctly identified, they can be used to
train deep learning algorithms to perform various classification tasks. Their
applications include computer interaction, entertainment, drowsiness detection,
biometrics, emotion detection, security surveillance, and a range of medical
applications. However, the practical applications of these models depend on the
speed of inference of these models and their deployability on Edge and mobile
devices that have lower computational powers. This research aims to evaluate
various transfer learning and custom models in terms of inference time, model size
to test their deployability on Edge / mobile devices.

In this work, we used the Facial Key Point Detection dataset from Kaggle. The
dataset consists of the training variables and 15 target variables, the facial key points
representing various facial features. Deep learning models using custom and transfer
learning architectures such as Resnet50, MobileNetV2, NasnetMobile have been
built using baseline and by combining various augmentation techniques to identify
the ideal model. Additionally, the architectures have been evaluated in terms of
parameter count, disc requirements, and inference timings to determine their
suitability for deployment on computationally less intensive devices. We have
compared our results with other state-of-the-art architectures and found that our
models have higher efficiency, hence achieving the objective of this research.

2 Literature Review

Facial landmark detection algorithms can be classified into three broad categories
[1] based on how they model the facial appearance and shape: holistic, Constrained
Local Model (CLM), and regression based. Holistic methods mainly include Active
Appearance Models (AAM) [2] and fitting algorithms. AAM works on the principle
of learning from the whole face patch and involves the concept of PCA, wherein
learning takes place by calculating the difference “I” between the greyscale image
and an instance of the model. The error is reduced by learning the parameters like
any conventional machine learning algorithm. CLM methods are slightly better than
the holistic approaches as they learn from both the globalized face pattern and the
local appearance from the nearby facial key points. They can be probabilistic or
deterministic. They consist of two steps [3], the initial step where the landmarks are
located independent of the other landmarks. In this second step, while updating the
parameters, the location of all the landmarks is updated simultaneously. In
regression-based approaches, there is no initial localization of the landmark; instead,

3

the images are mapped directly to the co-coordinates of these landmarks, and the
learning is done directly. These methods may be direct or cascaded. However, with
the advent of deep learning algorithms, convolutional neural networks have replaced
conventional regression methods with state-of-the-art results. These methods are
faster and more efficient. Convolutional neural networks using LeNet have been
used in many state-of-the-art works. The principles of LeNet have been used to build
many custom architectures, which have shown reduced training time [4] and
reduced RMSE scores.

The performance of a machine learning model also depends mainly on the type of
algorithm being used. Some of the popular datasets [1] on which deep learning
algorithms have been used with promising results are BU-4DFE with 68 landmark
points (RMSE – 5.15), AFLW with 53 landmark points (RMSE-4.26), AFW with
five landmark points (RMSE – 8.2), LFPW with 68 landmark points (RMSE – 5.44),
Ibug 300-W with 67 landmark points (RMSE – 5.54). Most of the deep learning
algorithms have utilized methods such as Task constrained deep convolutional
network (TCDCN) [5], Hyperface [6], 3-Dimensional, Dense Face Alignment
(3DDFA) [7], Coarse to Fine Auto Encoder Techniques (CFAN) [8] in achieving
relatively higher accuracies.

Inception architecture [9] has been used on a similar Kaggle dataset achieving an
RMSE score of 2.91. Resnet has also been used in work done by [10], achieving an
RMSE of 2.23. Similar work done using the LeNet architecture [4] achieved an
RMSE score of 1.77. As more evidence was produced favouring custom
architectures, the focus was directed to build Custom CNN networks for facial key
point detection. A comparative study was done [11] using both custom and transfer
learning architectures. Custom architectures were able to achieve lower RMSE
scores (1.97). A similar custom model consisting of 14 layers [12] produced an
RMSE score of 1.75. As evident above, attaining higher accuracy by making deep
learning algorithms more efficient and precise has been the target of various studies.

Tuning of deep learning models is also critical in achieving high accuracies. The
Keras tuner library [13] has been widely used to achieve this. Fine-tuning efficiency
has been further established in the classification plant leaves disease [14], where
fine-tuning architectures such as Resnet50, DenseNet121, InceptionV4, and VGG16
have been used.

Lightweight models such as MobileNetV2 and NasnetMobile have been gaining
popularity recently due to the ease of their deployability. MobileNetV2[15] utilizes
the concept of depth-wise separable convolution to reduce the number of training
parameters without affecting the accuracy of a model. They are ideal for tasks such
as recognition of palm prints [16], breast mammogram classification [17], and the

4

identification of proper wearing of facemask [18]. Similar models like
MobileNetV2 have also been built to achieve similar accuracy with fewer
parameters, as in the case of PeleeNet [19].

3 Research Methodology

3.1 Dataset description

The dataset for this paper has been taken from the Kaggle competition [20]. There
are 7049 images in this dataset and 15 facial key points representing various parts
of the face such as eyebrows, eyes, nose, and lips in the training dataset. These facial
key points represent the target variables. The test dataset consists of 1783 images.
The dataset consists of images of 96x96 size with a one-channel dimension
(grayscale images). The distribution of null values is shown below in Figure 1.
69.64% of the data points contain at least one null value in the facial key points,
while 30.36% of the images consists of all key points

3.2 Image Pre-processing

Figure 2. Visualization of Images

Figure 1 . Class Imbalance

4909

69.64

2140

30.36

1

100

10000

Total Percentage

Distribution of dataset

Null value Non null value

5

As mentioned below in the models’ section, transfer learning architectures such as
MobileNetV2 and NASNetMobile are used on this dataset along with custom-
designed CNN architectures. These pre-trained networks require the input image to
be in a three-channel format, and NASNetMobile requires the image size to be
224x224x3. Hence the images are converted to the appropriate format. The raw
image, along with the corresponding facial key points, is shown in Figure 2.

3.3 Imputation techniques

Forward fill & K-Nearest Neighbour (KNN) imputation Forward fill is an
imputation technique where the subsequent null values are filled with the previous
valid observations. KNN works on imputing the missing value by predicting the
nearest neighbour to a particular datapoint.

3.4 Data Augmentation

Figure 3 depicts a few of the augmentations used in this paper, such as random
rotation, brightness, shift, and noise. These procedures were applied offline on the
dataset's non-null subset.

Figure 3. Rotation, Brightness, Shift and Random noise augmentation

3.5 Inference Time

The Inference times of various models have been calculated on 100 images. It can
be defined as shown in Equation 1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 100 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 =

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Equation 1. Inference Time Calculation

6

3.6 Loss functions

The current problem is framed as a regression model where the target variable is a
continuous numeric variable, the loss function used here is mean squared error. Mean
squared error is defined by the following equation.

𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟
𝑖𝑖=1

Equation 2. Mean Squared Error - Loss function

3.7 Evaluation metrics

The evaluation metric used in this regression problem is the root mean squared error
(RMSE) as shown in Equation 3

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

Equation 3. Root Mean Squared Error

3.8 Model Architecture

Two different models have been built here, Custom models and Transfer learning
models, namely MobileNetV2 and NasnetMobile. Tuning is done using the Keras
tuner library.

Table 1. Parameter / Model size comparison of all architectures
Custom Models Total parameters Model size (MB)

Baseline CNN model 1,890,366 7.6
Manually Optimized CNN 235,834 1.0

Keras Optimized CNN- No imputation 306,750 1.27
Keras Optimized CNN - Forward fill 246,478 1.03

Keras Optimized CNN - KNN imputed 246,062 1.58
Keras Optimized CNN - Augmentation 364,318 1.50

MobilenetV2 2,257,984 9.66
NasNetMobile 4,301,426 18.48

7

Custom Models. Three different custom models have been built using baseline
architecture, manual tuning, and Keras auto-tuning. The custom models are tuned
sequentially to arrive at the best-performing model in terms of RMSE scores. The
model's parameter count is listed in Table 1. Additionally, complete fine-tuning of
transfer learning architectures was performed—the model's tuning results in a
reduction in the number of parameters. Manually tuned Custom models have the
least parameters with an insignificant difference in RMSE scores, as seen in Figure
6. Further, the tuned model's size is lesser than non-tuned models, with manually
tuned models having the least size (1.0 MB). The model architecture of the manual
tuned and the Keras tuned model is shown below in Figure 4.

Figure 4. Manually Tuned CNN (Left) and Keras Tuned CNN architecture (Right)

MobileNetV2 and NASNetMobile. Transfer learning architectures such as
MobileNetV2 and NASNetMobile have been customized to solve our regression
problem. The original weights from the Imagenet classification have been used. The
topmost softmax classification has been replaced with a GAP + Regression (Dense
Layer) to predict the facial key points. The models are experimented with using the
original baseline weights of imagenet and by completely fine-tuning all the layers

8

of the architecture to evaluate the RMSE scores and inference time on prediction.
The model architectures are shown in Figure 5

4 Results

The results of the experiments have been explained in the following subsections
consisting of Evaluation of RMSE scores, model size, and number of parameters

Figure 5. MobilenetV2 (left) and NasnetMobile architecture (right)

4.1 Evaluation of RMSE scores

RMSE scores on the test dataset have been calculated for both custom and transfer
learning models, as shown in Figure 6 and Figure 7.

Huge Parameters of Baseline models. The initial baseline model was created using
the conventional architecture without tuning the layers among the custom models.
Figure 6 show that the Custom baseline model outperformed the manually
optimized and Keras fine tuner optimized models; however, manually optimized
models performed similarly to Keras fine tuner optimized models.

9

Figure 6. RMSE scores of Custom CNN models

It's worth noting that both fine-tuned MobileNetV2 and NASNetMobile trained on
augmented data exhibit a 4-5x improvement in RMSE scores compared to their non-
fine-tuned counterparts (Figure 7). Surprisingly, compared to its non-finetuned
counterpart, fine-tuned MobileNetV2 demonstrated a 2x improvement in RMSE on
KNN imputed data.

Figure 7. RMSE scores of Transfer Learning Models

Table 2. Comparison of RMSE performance of transfer learning models
Models No

İmputation
Forward fill
İmputation

KNN
imputation

Aug

MobileNetV2 baseline model Similar
performance

Similar
performance

+ +
MobileNetV2 fine tuned ++ +++

NasNet baseline model Similar
performance

Similar
performance

Similar
performance

+

NasNet Model fine-tuned +++

10

Supremacy of Models Trained on Augmented Data. As seen in Table 2 and Table
3, augmentation of custom models results in a significant increase in the
performance of the models. A sharp decrease in the RMSE scores on the fine-tuned
model shows that augmentation performs better than any imputation technique.

4.2 Evaluation of Model size and parameters

Among all the models built, manually tuned custom models have the least number
of parameters (235K) and least model size against Keras auto-tuned custom models
trained on different kinds of imputation techniques and augmentation (Figure 8).
However, in the case of augmentation, Keras auto-tuned models slightly outperform
custom models at the cost of increasing the number of parameters and model size.

Figure 8. Model parameters vs. Model Size – All Models

4.3 Inference time analysis

Table 3. Inference Time Analysis

Model
No impute

(sec)
Forward
Fill (sec)

KNN
Impute (sec) Aug(sec)

CNN Baseline model 1.99 1.97 1.98 2.01
CNN Manual tuned model 1.4 1.33 1.34 1.34
CNN Keras tuned 2.72 1.52 4.19 3.58
MobileNetV2 - Baseline 0.89 0.86 1 0.83
MobileNetV2 - Fine tuned 0.84 0.82 0.82 0.88
NasNetMobile - Baseline 8.46 8.4 8.17 7.87
NasNetMobile - Fine tuned 7.95 7.96 8.01 7.68

11

The ultimate performance depends on the speed at which an inference can be made
on the test dataset with the least computational requirements. Table 4 shows the
inference time on 100 images by various models on a Colab CPU.

Architectural efficiency in Inference Time. The inference time of a model
depends on both the number of parameters and the architecture. Among all models,
MobileNetV2 has the quickest inference. The enormous training parameters (twice
that of MobileNetV2) account for NASNetMobile's increased inference times.
Manually tuned models come in second. In contrast to custom CNN models,
MobileNetV2 has ten times the number of parameters and works two times faster.
Augmentation does not affect the inference time in a regression scenario, as seen
from the analysis.

4.4 Evaluation of Training Curves

Training curves for various models are shown below to identify the best performing
model in this scenario.

MobileNetV2 vs NasnetMobile. Figures 9 and 10 show that NASNetMobile has
better training curves than MobileNetV2 architecture for all imputation techniques
and augmentation. The better training curves may be attributed to higher parameters
of NASNetMobile. However, when considering inference times, RMSE scores, and
parameter counts, MobileNetV2 outperforms NASNetMobile.

Manual Tuning vs. Keras autotuning. Manually tuned models exhibit more
reliable model fitting training curves than Keras auto-tuned models, as illustrated in
Figure 11.

Figure 9. MobileNetV2 - No impute, Forward Fill, KNN impute, Augmentation (Top to bottom)

12

Figure 10. NASNetMobile - No impute, Forward Fill, KNN impute, Augmentation (Top to Bottom)

Figure 11. Custom CNN Manual Tuned (Left) Vs Custom CNN Keras Tuned (Right)

Figure 12. Facial Key Point Predictions by CNN manual tuned/Keras auto-tuned, MobilenetV2 and

NASNetMobile on Augmentation

13

4.5 Visualization of Test Images

Figure 12 shows various augmented models' predictions of facial key points.
Varying performances by different models are observed in the images below.
However, the images only represent a sample of the total test dataset, and hence no
meaningful conclusion can be drawn.

5 Conclusion

In this work, we conducted experiments on the facial key point detection dataset by
building custom CNN models optimized manually and using Keras fine-tuner.
Further transfer learning architectures, non-finetuned and fine-tuned MobileNetV2
and NasNetMobile were used as baselines to evaluate custom-built CNN
architecture. In addition, we compared the effectiveness of imputation and
augmentation. The following are the conclusions of our work which can be
summarized below.

- Manually optimized custom CNN models outperform or are comparable to
auto tuned Keras optimized models. On the other hand, manually tuned
custom CNN models may be ideal when considering training curves,
model size, and model parameters.

- MobileNetV2 outperforms all other models with the fastest inference times
but slightly compromises the model size and parameters.

- In both custom CNN and transfer learning models, augmented models have
lower RMSE scores, proving that augmentation is superior to imputation.

- Furthermore, there is no significant difference in performance between
baseline non-tuned and baseline completely fine-tuned models,
demonstrating that transfer learning models must be fine-tuned selectively
in terms of the number of layers for a given dataset.

- The experiments demonstrate that architectural efficiency significantly
impacts model performance and inference time, as demonstrated by the
MobileNetV2 architecture, which uses depth-wise separable convolutions.

- Moreover, our models have the lowest RMSE compared to other state-of-
the-art architectures ([4], [10], [11], [12]), and to our knowledge, this is
one of the very few studies that evaluated models on size, inference time,
parameters and RMSE

14

6 References

[1] Y. Wu and Q. Ji, “Facial Landmark Detection: A Literature Survey,”
International Journal of Computer Vision, vol. 127, no. 2, pp. 115–142,
Feb. 2019, doi: 10.1007/s11263-018-1097-z.

[2] T. F. Cooles, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 6, pp. 681–685, 2001, doi: 10.1109/34.927467.

[3] A. Zadeh, Y. C. Lim, T. Baltrušaitis, and L.-P. Morency, “Convolutional
Experts Constrained Local Model for 3D Facial Landmark Detection.”

[4] N. Agarwal, A. Krohn-Grimberghe, and R. Vyas, “Facial Key Points
Detection using Deep Convolutional Neural Network - NaimishNet,” pp. 1–
7, 2017, [Online]. Available: http://arxiv.org/abs/1710.00977

[5] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial Landmark Detection by
Deep Multi-task Learning.”

[6] R. Ranjan, V. M. Patel, and R. Chellappa, “HyperFace: A Deep Multi-task
Learning Framework for Face Detection, Landmark Localization, Pose
Estimation, and Gender Recognition,” Mar. 2016, [Online]. Available:
http://arxiv.org/abs/1603.01249

[7] X. Zhu, X. Liu, Z. Lei, and S. Z. Li, “Face Alignment in Full Pose Range:
A 3D Total Solution,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 1, pp. 78–92, Jan. 2019, doi:
10.1109/TPAMI.2017.2778152.

[8] J. Zhang, S. Shan, M. Kan, and X. Chen, “Coarse-to-Fine Auto-Encoder
Networks (CFAN) for Real-Time Face Alignment.”

[9] C. Mao, “Facial Keypoints Detection with Inception Structure,” pp. 3–5,
2016.

[10] S. Wu, J. Xu, S. Zhu, and H. Guo, “A Deep Residual convolutional neural
network for facial keypoint detection with missing labels,” Signal

 Processing, vol. 144, pp. 384–391, Mar. 2018, doi:
10.1016/j.sigpro.2017.11.003.

15

[11] S. Shi, “Facial Keypoints Detection,” pp. 1–28, 2017, [Online]. Available:
http://arxiv.org/abs/1710.05279

[12] R. Gao, “Facial Keypoints Detection with Deep Learning,” Journal of
 Computers, vol. 13, no. 12, pp. 1403–1410, 2018, doi:

10.17706/jcp.13.12.1403-1410.
[13] “Introduction to the Keras Tuner| TensorFlow Core.”

https://www.tensorflow.org/tutorials/keras/keras_tuner (accessed Nov. 24,
2020).

[14] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of
fine-tuning deep learning models for plant disease identification,”
Computers and Electronics in Agriculture, vol. 161, pp. 272–279, Jun.
2019, doi: 10.1016/j.compag.2018.03.032.

[15] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications,” 2017, [Online]. Available:
http://arxiv.org/abs/1704.04861

[16] A. Michele, V. Colin, and D. D. Santika, “Mobilenet convolutional neural
networks and support vector machines for palmprint recognition,” in
Procedia Computer Science, 2019, vol. 157, pp. 110–117. doi:
10.1016/j.procs.2019.08.147.

[17] “Transfer Learning in Breast Mammogram Abnormalities Classification
With Mobilenet and Nasnet.”

[18] B. Qin and D. Li, “Identifying facemask-wearing condition using image
super-resolution with classification network to prevent COVID-19,”
Sensors (Switzerland), vol. 20, no. 18, pp. 1–23, Sep. 2020, doi:
10.3390/s20185236.

[19] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A Real-Time Object Detection
System on Mobile Devices,” no. NeurIPS, pp. 1–10, 2018.

[20] “Facial Keypoints Detection | Kaggle.”
https://www.kaggle.com/c/facialkeypoints-detection/data (accessed Jun.
28, 2020).

	1 Introduction
	2 Literature Review
	3 Research Methodology
	3.1 Dataset description
	3.2 Image Pre-processing
	3.3 Imputation techniques
	3.4 Data Augmentation
	3.5 Inference Time
	3.6 Loss functions
	3.7 Evaluation metrics
	3.8 Model Architecture

	4 Results
	4.1 Evaluation of RMSE scores
	4.2 Evaluation of Model size and parameters
	4.3 Inference time analysis
	4.4 Evaluation of Training Curves
	4.5 Visualization of Test Images

	5 Conclusion
	6 References

