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Abstract Facial landmark detection is a widely researched field of deep 
learning as this has a wide range of applications in many fields. These key points are 
distinguishing characteristic points on the face, such as the eyes center, the eye's inner 
and outer corners, the mouth center, and the nose tip from which human emotions and 
intent can be explained. The focus of our work has been evaluating transfer learning 
models such as MobileNetV2 and NasNetMobile, including custom CNN 
architectures. The objective of the research has been to develop efficient deep learning 
models in terms of model size, parameters, and inference time and to study the effect 
of augmentation imputation and fine-tuning on these models. It was found that while 
augmentation techniques produced lower RMSE scores than imputation techniques, 
they did not affect the inference time. MobileNetV2 architecture produced the lowest 
RMSE and inference time. Moreover, our results indicate that manually optimized 
CNN architectures performed similarly to Auto Keras tuned architecture. However, 
manually optimized architectures yielded better inference time and training curves.  

Keywords: Inference Time, Efficient Transfer Learning, Deep Learning,  
MobileNetV2, NasNetMobile, Custom CNN, Keras-autotuner  

1 Introduction  

The face is critical in visual communication. Numerous nonverbal messages, such 
as human identity, intent, and emotion, can be automatically extracted from the face. 
Localizations of facial key points are required in computer vision to extract 
nonverbal cues of facial information automatically. The term "facial appearance" 
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refers to the distinct patterns of pixel intensity around or across facial landmarks or 
key points. These key points represent those critical features on a human face, such 
as the eyes, nose, eyebrows, lips, and nose from which information about a person’s 
emotion or intent can be identified. Once correctly identified, they can be used to 
train deep learning algorithms to perform various classification tasks. Their 
applications include computer interaction, entertainment, drowsiness detection, 
biometrics, emotion detection, security surveillance, and a range of medical 
applications. However, the practical applications of these models depend on the 
speed of inference of these models and their deployability on Edge and mobile 
devices that have lower computational powers. This research aims to evaluate 
various transfer learning and custom models in terms of inference time, model size 
to test their deployability on Edge / mobile devices.  

In this work, we used the Facial Key Point Detection dataset from Kaggle. The 
dataset consists of the training variables and 15 target variables, the facial key points 
representing various facial features. Deep learning models using custom and transfer 
learning architectures such as Resnet50, MobileNetV2, NasnetMobile have been 
built using baseline and by combining various augmentation techniques to identify 
the ideal model. Additionally, the architectures have been evaluated in terms of 
parameter count, disc requirements, and inference timings to determine their 
suitability for deployment on computationally less intensive devices. We have 
compared our results with other state-of-the-art architectures and found that our 
models have higher efficiency, hence achieving the objective of this research.  

2 Literature Review  

Facial landmark detection algorithms can be classified into three broad categories 
[1] based on how they model the facial appearance and shape: holistic, Constrained 
Local Model (CLM), and regression based. Holistic methods mainly include Active 
Appearance Models (AAM) [2] and fitting algorithms. AAM works on the principle 
of learning from the whole face patch and involves the concept of PCA, wherein 
learning takes place by calculating the difference “I” between the greyscale image 
and an instance of the model. The error is reduced by learning the parameters like 
any conventional machine learning algorithm. CLM methods are slightly better than 
the holistic approaches as they learn from both the globalized face pattern and the 
local appearance from the nearby facial key points. They can be probabilistic or 
deterministic. They consist of two steps [3], the initial step where the landmarks are 
located independent of the other landmarks. In this second step, while updating the 
parameters, the location of all the landmarks is updated simultaneously. In 
regression-based approaches, there is no initial localization of the landmark; instead, 
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the images are mapped directly to the co-coordinates of these landmarks, and the 
learning is done directly. These methods may be direct or cascaded. However, with 
the advent of deep learning algorithms, convolutional neural networks have replaced 
conventional regression methods with state-of-the-art results. These methods are 
faster and more efficient. Convolutional neural networks using LeNet have been 
used in many state-of-the-art works. The principles of LeNet have been used to build 
many custom architectures, which have shown reduced training time [4] and 
reduced RMSE scores.  

The performance of a machine learning model also depends mainly on the type of 
algorithm being used. Some of the popular datasets [1] on which deep learning 
algorithms have been used with promising results are BU-4DFE with 68 landmark 
points (RMSE – 5.15), AFLW with 53 landmark points (RMSE-4.26), AFW with 
five landmark points (RMSE – 8.2), LFPW with 68 landmark points (RMSE – 5.44), 
Ibug 300-W with 67 landmark points (RMSE – 5.54). Most of the deep learning 
algorithms have utilized methods such as Task constrained deep convolutional 
network (TCDCN) [5], Hyperface [6], 3-Dimensional, Dense Face Alignment 
(3DDFA) [7], Coarse to Fine Auto Encoder Techniques (CFAN) [8] in achieving 
relatively higher accuracies.  

Inception architecture [9] has been used on a similar Kaggle dataset achieving an 
RMSE score of 2.91. Resnet has also been used in work done by [10], achieving an 
RMSE of 2.23. Similar work done using the LeNet architecture [4] achieved an 
RMSE score of 1.77. As more evidence was produced favouring custom 
architectures, the focus was directed to build Custom CNN networks for facial key 
point detection. A comparative study was done [11] using both custom and transfer 
learning architectures. Custom architectures were able to achieve lower RMSE 
scores (1.97). A similar custom model consisting of 14 layers [12] produced an 
RMSE score of 1.75. As evident above, attaining higher accuracy by making deep 
learning algorithms more efficient and precise has been the target of various studies.  

Tuning of deep learning models is also critical in achieving high accuracies. The 
Keras tuner library [13] has been widely used to achieve this. Fine-tuning efficiency 
has been further established in the classification plant leaves disease [14], where 
fine-tuning architectures such as Resnet50, DenseNet121, InceptionV4, and VGG16 
have been used.  

Lightweight models such as MobileNetV2 and NasnetMobile have been gaining 
popularity recently due to the ease of their deployability. MobileNetV2[15] utilizes 
the concept of depth-wise separable convolution to reduce the number of training 
parameters without affecting the accuracy of a model. They are ideal for tasks such 
as recognition of palm prints [16], breast mammogram classification [17], and the 
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identification of proper wearing of facemask [18]. Similar models like 
MobileNetV2 have also been built to achieve similar accuracy with fewer 
parameters, as in the case of PeleeNet [19].  
 
3 Research Methodology  

3.1 Dataset description  

The dataset for this paper has been taken from the Kaggle competition [20]. There 
are 7049 images in this dataset and 15 facial key points representing various parts 
of the face such as eyebrows, eyes, nose, and lips in the training dataset. These facial 
key points represent the target variables. The test dataset consists of 1783 images. 
The dataset consists of images of 96x96 size with a one-channel dimension 
(grayscale images). The distribution of null values is shown below in Figure 1. 
69.64% of the data points contain at least one null value in the facial key points, 
while 30.36% of the images consists of all key points  
  

 

3.2 Image Pre-processing  

  
Figure 2. Visualization of Images  

  
Figure  1 . Class Imbalance   
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As mentioned below in the models’ section, transfer learning architectures such as 
MobileNetV2 and NASNetMobile are used on this dataset along with custom-
designed CNN architectures. These pre-trained networks require the input image to 
be in a three-channel format, and NASNetMobile requires the image size to be 
224x224x3. Hence the images are converted to the appropriate format. The raw 
image, along with the corresponding facial key points, is shown in Figure 2.  
 
3.3 Imputation techniques  

Forward fill & K-Nearest Neighbour (KNN) imputation Forward fill is an 
imputation technique where the subsequent null values are filled with the previous 
valid observations. KNN works on imputing the missing value by predicting the 
nearest neighbour to a particular datapoint.  

3.4 Data Augmentation   

Figure 3 depicts a few of the augmentations used in this paper, such as random 
rotation, brightness, shift, and noise. These procedures were applied offline on the 
dataset's non-null subset.  

  
Figure 3. Rotation, Brightness, Shift and Random noise augmentation  

3.5 Inference Time  

The Inference times of various models have been calculated on 100 images. It can 
be defined as shown in Equation 1  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜 100 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 =   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Equation 1. Inference Time Calculation  
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3.6 Loss functions  

The current problem is framed as a regression model where the target variable is a 
continuous numeric variable, the loss function used here is mean squared error. Mean 
squared error is defined by the following equation.  

𝑛𝑛 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟   
𝑖𝑖=1 

Equation 2. Mean Squared Error - Loss function  

3.7 Evaluation metrics  

The evaluation metric used in this regression problem is the root mean squared error  
(RMSE) as shown in Equation 3  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸   

Equation 3. Root Mean Squared Error  

3.8 Model Architecture  

Two different models have been built here, Custom models and Transfer learning 
models, namely MobileNetV2 and NasnetMobile. Tuning is done using the Keras 
tuner library.  

Table 1. Parameter / Model size comparison of all architectures  
Custom Models  Total parameters  Model size (MB)  

Baseline CNN model  1,890,366  7.6  
Manually Optimized CNN  235,834  1.0  

Keras Optimized CNN- No imputation  306,750  1.27  
Keras Optimized CNN - Forward fill  246,478  1.03  

Keras Optimized CNN - KNN imputed  246,062  1.58  
Keras Optimized CNN - Augmentation  364,318  1.50  

MobilenetV2  2,257,984  9.66  
NasNetMobile  4,301,426  18.48  
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Custom Models. Three different custom models have been built using baseline 
architecture, manual tuning, and Keras auto-tuning. The custom models are tuned 
sequentially to arrive at the best-performing model in terms of RMSE scores. The 
model's parameter count is listed in Table 1. Additionally, complete fine-tuning of 
transfer learning architectures was performed—the model's tuning results in a 
reduction in the number of parameters. Manually tuned Custom models have the 
least parameters with an insignificant difference in RMSE scores, as seen in Figure 
6. Further, the tuned model's size is lesser than non-tuned models, with manually 
tuned models having the least size (1.0 MB). The model architecture of the manual 
tuned and the Keras tuned model is shown below in Figure 4.  

  
Figure 4. Manually Tuned CNN (Left) and Keras Tuned CNN architecture (Right)  

MobileNetV2 and NASNetMobile. Transfer learning architectures such as 
MobileNetV2 and NASNetMobile have been customized to solve our regression 
problem. The original weights from the Imagenet classification have been used. The 
topmost softmax classification has been replaced with a GAP + Regression (Dense 
Layer) to predict the facial key points. The models are experimented with using the 
original baseline weights of imagenet and by completely fine-tuning all the layers 
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of the architecture to evaluate the RMSE scores and inference time on prediction. 
The model architectures are shown in Figure 5 
 
4 Results  

The results of the experiments have been explained in the following subsections 
consisting of Evaluation of RMSE scores, model size, and number of parameters  

  
 

Figure 5. MobilenetV2 (left) and NasnetMobile architecture (right)  

4.1 Evaluation of RMSE scores  

RMSE scores on the test dataset have been calculated for both custom and transfer 
learning models, as shown in Figure 6 and Figure 7.  

Huge Parameters of Baseline models. The initial baseline model was created using 
the conventional architecture without tuning the layers among the custom models. 
Figure 6 show that the Custom baseline model outperformed the manually 
optimized and Keras fine tuner optimized models; however, manually optimized 
models performed similarly to Keras fine tuner optimized models.  
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Figure 6. RMSE scores of Custom CNN models  
 

It's worth noting that both fine-tuned MobileNetV2 and NASNetMobile trained on 
augmented data exhibit a 4-5x improvement in RMSE scores compared to their non-
fine-tuned counterparts (Figure 7). Surprisingly, compared to its non-finetuned 
counterpart, fine-tuned MobileNetV2 demonstrated a 2x improvement in RMSE on 
KNN imputed data.  

  
Figure 7. RMSE scores of Transfer Learning Models  

Table 2. Comparison of RMSE performance of transfer learning models   
Models  No  

İmputation  
Forward fill 
İmputation  

KNN  
imputation  

Aug  

MobileNetV2 baseline model  Similar 
performance  

Similar 
performance  

+  +  
MobileNetV2 fine tuned  ++  +++  

NasNet baseline model  Similar 
performance  

Similar 
performance  

Similar 
performance  

+  

NasNet Model fine-tuned  +++  
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Supremacy of Models Trained on Augmented Data. As seen in Table 2 and Table 
3, augmentation of custom models results in a significant increase in the 
performance of the models. A sharp decrease in the RMSE scores on the fine-tuned 
model shows that augmentation performs better than any imputation technique. 
 
4.2 Evaluation of Model size and parameters  

Among all the models built, manually tuned custom models have the least number 
of parameters (235K) and least model size against Keras auto-tuned custom models 
trained on different kinds of imputation techniques and augmentation (Figure 8). 
However, in the case of augmentation, Keras auto-tuned models slightly outperform 
custom models at the cost of increasing the number of parameters and model size.  
 

  
Figure 8. Model parameters vs. Model Size – All Models  

4.3 Inference time analysis  

Table 3. Inference Time Analysis  

Model  
No impute  

(sec)  
Forward  
Fill (sec)  

KNN  
Impute (sec)  Aug(sec)  

CNN Baseline model  1.99  1.97  1.98  2.01  
CNN Manual tuned model  1.4  1.33  1.34  1.34  
CNN Keras tuned   2.72  1.52  4.19  3.58  
MobileNetV2 - Baseline  0.89  0.86  1  0.83  
MobileNetV2 - Fine tuned   0.84  0.82  0.82  0.88  
NasNetMobile - Baseline  8.46  8.4  8.17  7.87  
NasNetMobile - Fine tuned  7.95  7.96  8.01  7.68  
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The ultimate performance depends on the speed at which an inference can be made 
on the test dataset with the least computational requirements. Table 4 shows the 
inference time on 100 images by various models on a Colab CPU.  

Architectural efficiency in Inference Time. The inference time of a model 
depends on both the number of parameters and the architecture. Among all models, 
MobileNetV2 has the quickest inference. The enormous training parameters (twice 
that of MobileNetV2) account for NASNetMobile's increased inference times. 
Manually tuned models come in second. In contrast to custom CNN models, 
MobileNetV2 has ten times the number of parameters and works two times faster. 
Augmentation does not affect the inference time in a regression scenario, as seen 
from the analysis. 
  
4.4 Evaluation of Training Curves  

Training curves for various models are shown below to identify the best performing 
model in this scenario.  

MobileNetV2 vs NasnetMobile. Figures 9 and 10 show that NASNetMobile has 
better training curves than MobileNetV2 architecture for all imputation techniques 
and augmentation. The better training curves may be attributed to higher parameters 
of NASNetMobile. However, when considering inference times, RMSE scores, and 
parameter counts, MobileNetV2 outperforms NASNetMobile.  

Manual Tuning vs. Keras autotuning. Manually tuned models exhibit more 
reliable model fitting training curves than Keras auto-tuned models, as illustrated in 
Figure 11.  

  

  
Figure 9. MobileNetV2 - No impute, Forward Fill, KNN impute, Augmentation (Top to bottom)  
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Figure 10. NASNetMobile - No impute, Forward Fill, KNN impute, Augmentation (Top to Bottom)  

  
Figure 11. Custom CNN Manual Tuned (Left) Vs Custom CNN Keras Tuned (Right)  

 
Figure 12. Facial Key Point Predictions by CNN manual tuned/Keras auto-tuned, MobilenetV2 and  

NASNetMobile on Augmentation  
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4.5 Visualization of Test Images  

Figure 12 shows various augmented models' predictions of facial key points. 
Varying performances by different models are observed in the images below. 
However, the images only represent a sample of the total test dataset, and hence no 
meaningful conclusion can be drawn.  
 
5 Conclusion  

In this work, we conducted experiments on the facial key point detection dataset by 
building custom CNN models optimized manually and using Keras fine-tuner. 
Further transfer learning architectures, non-finetuned and fine-tuned MobileNetV2 
and NasNetMobile were used as baselines to evaluate custom-built CNN 
architecture. In addition, we compared the effectiveness of imputation and 
augmentation. The following are the conclusions of our work which can be 
summarized below.  

- Manually optimized custom CNN models outperform or are comparable to 
auto tuned Keras optimized models. On the other hand, manually tuned 
custom CNN models may be ideal when considering training curves, 
model size, and model parameters.  
  

- MobileNetV2 outperforms all other models with the fastest inference times 
but slightly compromises the model size and parameters.  
  

- In both custom CNN and transfer learning models, augmented models have 
lower RMSE scores, proving that augmentation is superior to imputation.  
  

- Furthermore, there is no significant difference in performance between 
baseline non-tuned and baseline completely fine-tuned models, 
demonstrating that transfer learning models must be fine-tuned selectively 
in terms of the number of layers for a given dataset.  
  

- The experiments demonstrate that architectural efficiency significantly 
impacts model performance and inference time, as demonstrated by the 
MobileNetV2 architecture, which uses depth-wise separable convolutions.  
  

- Moreover, our models have the lowest RMSE compared to other state-of-
the-art architectures ([4], [10], [11], [12]), and to our knowledge, this is 
one of the very few studies that evaluated models on size, inference time, 
parameters and RMSE  
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