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Abstract—Due to the limitations of imaging systems, satellite
hyperspectral imagery (HSI), which yields rich spectral informa-
tion in many channels, often suffers from poor spatial resolution.
HSI super-resolution (SR) refers to the fusion of high spatial
resolution multispectral imagery (MSI) and low spatial resolution
HSI to generate HSI that has both a high spatial and high spectral
resolution. However, most existing SR methods assume that the
two original images used are perfectly registered: in reality,
nonrigid deformation areas can exist locally in the two images
even if prior registration of the control points has been carried
out. To address this problem, we propose a novel unsupervised
spectral unmixing and image deformation correction network
– NonRegSRNet – with multi-modal and multi-task learning
that can be used for the joint registration of HSI and MSI
and to produce SR imagery. More specifically, NonRegSRNet
integrates the dense registration and SR tasks into a unified
model that includes a triplet convolutional neural network.
This allows these two tasks to complement each other so that
better registration and SR results can be achieved. Furthermore,
because the point spread function (PSF) and spectral response
function (SRF) are often unavailable, two special convolutional
layers are designed to adaptively learn the parameters of the
PSF and SRF, which makes the proposed model more adaptable.
Experimental results demonstrate that the proposed method has
the ability to produce highly accurate and stable reconstructed
images under complex non-rigid deformation conditions. (Code
available at https://github.com/saber-zero/NonRegSRNet)

Index Terms—Hyperspectral Image, Super-Resolution, Non-
rigid Registration, Convolutional Neural Network, Adaptive
Learning.

I. INTRODUCTION

HYperspectral imagery (HSI) corresponds to a data cube
that contains spatial information in hundreds of spectral

bands. In contrast to traditional imagery that consists of one
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Fig. 1. Comparison of ideal registration and non-rigid deformation showing
how the registration accuracy seriously affects the results of the SR recon-
struction. Here, CNMF [5] is used as the criterion for the comparison.

or only a few bands, the narrow bandwidths and wide spectral
coverage of HSI, mean that HSI can be widely used in many
applications, such as forestry, agriculture and environmental
monitoring.

However, due to the limitations of imaging system hard-
ware, the penalty for this high spectral resolution is a lower
ground sampling distance (GSD), which causes details to be
less visible and leads to pixel-mixing effects, thus causing
serious problems for the wider application of HSI [1]. By
comparison, multispectral imagery (MSI) consists of only a
few bands; however, it has a higher spatial resolution and im-
age quality. Naturally, a commonly used method of enhancing
the spatial resolution of HSI is to fuse it with high spatial
resolution MSI of the same region. This process is known as
HSI super-resolution (SR) – HSI SR combines the advantages
of the two types of imagery to generate imagery that has
both high spatial and spectral resolutions. Using the resulting
imagery, further detailed work, such as fine classification or
high-precision detection and monitoring can be carried out
[2]–[4].

Deformable image registration is of fundamental importance
to the fusion of HSI and MSI as the results of the fusion
are seriously affected by the accuracy of the registration
[6]. Deformable image registration means a dense, non-linear
correspondence is established between the HSI and MSI pairs.
From Fig. 1, it can be seen that image registration is essential
to help mitigate the effects of deformation and facilitate the
generation of better fusion results.
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A. Motivation

Recently, many HSI SR methods have been developed and
these can be used to produce highly accurate results. However,
most of these methods focus only on the fusion process and
assume that both the HSI and MSI have already been well
registered. Generally, HSI and MSI can be easily registered
using rigid registration methods if both types of imagery are
captured by the same satellite platform. However, in most
cases, the data acquired by different platforms tend to suffer
from the effects of complex noises or spectral variabilities
in the imaging process [7]. Further, the acquisition time and
satellite location for the two types of imagery are different,
usually, a non-rigid deformation may be comprised between
the two sets of data. This requires the multi-modal data [8]
to be transformed into a unified representation so that the
non-rigid registration can be achieved. When trying to unify
the data representation, the correlation between the HSI and
MSI is particularly important. The SR process involves finding
this relationship, meaning that a good SR method is of great
help in image registration. Good image registration is also an
important prerequisite for HSI SR, which means that we be-
lieve these two processes can complement each other and help
to achieve better registration and fusion results. Nevertheless,
there is little published research on the integration of image
registration and SR into a single model, especially in the case
of non-rigid registration. In this article, we will describe the
benefits of the integration of non-rigid registration and HSI
SR.

B. Challenges

The main challenges in combining non-rigid registration and
image fusion can be summarized as follows:

• Images. As they are acquired using different sensors, the
spatial and spectral differences between HSI and MSI are
large, which results in insufficient information sharing.

• Consistent space. As different sensors have very dif-
ferent spatial and spectral response characteristics, it is
necessary to transform arbitrary HSI and MSI inputs into
a uniform representation space to perform registration.

• Training strategy. In the case of remote sensing im-
agery, the lack of ground-truth deformations and real
reconstructed images means that supervised fusion and
registration methods serve no purpose. Even if simulated
deformations or images are used as the training set, the
performance will be restricted due to the limited quality
of the training data.

• Integration. As the registration and fusion process are
based on different principles, it is important to find a
way to integrate these two processes into a unified model
in which the two processes complement each other.

C. Contributions

The contribution of this paper can be summarized as fol-
lows:

• Inspired by the recent success of multi-modal and multi-
task deep learning networks, a novel unsupervised non-

rigid registration and SR network for HSI and MSI is
proposed.

• Registration is integrated into the SR network, and it is
shown that this effectively improves the reconstruction
accuracy under non-rigid deformation.

• The proposed network is capable of adaptively learning
spatial and spectral response functions to improve the
stability of the reconstructed imagery.

II. RELATED WORK

A. Related work on HSI SR

Currently used SR methods can be categorized into different
types [9]: component substitution-based (CS-based) method
[10], multiresolution analysis-based (MRA-based) methods
[11], sparse representation methods [12], Bayesian-based
methods [13], unmixing-based methods [5] and deep learning-
based methods [14].

CS-based and MRA-based methods are derived from pan-
sharpening methods and aim to adapt pansharpening tech-
niques to the HSI SR problem. CS-based methods attempt to
replace the intensity component of the HSI with the MSI. The
most commonly used of these methods is the adaptive Gram-
Schmidt algorithm (GSA) [10] which integrates the effect of
the spectral response function (SRF) into the Gram-Schmidt
algorithm. In the MRA-based methods, the spatial information
extracted from the MSI is injected into the HSI to enhance
spatial information [15]. Wavelet coefficient integration and
3-D inverse wavelet transform technology have also been
used to fuse HSI and MSI [16]. Selva et al. proposed an
MRA-based method called hypersharpening in which a high-
resolution image was reconstructed for every band of the HSI
by using linear regression to produce a linear combination
of MSI bands [17]. In general, pansharpening based methods
have a high computational efficiency but suffer from unreliable
reconstruction quality [18]. Bayesian-based methods maximize
the posterior probability density using prior constrains for the
HSI SR task [19]. Akhtar et al. [20] proposed a Bayesian
sparse representation framework to solve the HSI SR problem
that inferred the probability distributions for the spectral basis
and computed sparse codes for the high-resolution imagery.
Kawakami et al. [21] applied an unmixing algorithm to
estimate the representation of a spectral basis and then used
this representation in conjunction with the MSI to produce
the reconstructed image. Qi et al. [22] integrated a Sylvester
equation-based explicit solution into the Bayesian HSI SR task
– the resulting method was given the name ‘fast fusion based
on Sylvester equation’ (FUSE). As they are easily interpreted
and comprehensible, unmixing-based methods have attracted
considerable attention [5], [23]–[26]. Coupled non-negative
matrix factorization (CNMF) [5], which uses non-negative
matrix factorization to estimate the endmembers and their
abundances, is one of the mostly commonly used algorithms
for alternately unmixing the HSI and MSI. Similarly, the
method described by Lanaaras et al. [25], alternately updates
the endmembers and their abundances by solving two matrix
factorizations. HySure [24] integrates subspace HSI SR with
total variation regularization to minimize a convex objective
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function with respect to subspace coefficients. To extend
the matrix factorization, tensor factorization model has been
developed to the HSI SR problem [27]–[33]. Chang et al.
[27] propose a unified low-rank tensor recovery model by
treating the singular values differently for HSI restoration
tasks. Dian et al. [28] proposed a novel non-local sparse tensor
factorization based HSI SR by estimating sparse core tensor
and dictionaries.

In recent years, deep learning has been outperformed in
many computer vision tasks [34]–[36] and also been intro-
duced into HSI SR. Based on the number of input images,
deep learning based HSI SR methods can be classified into
two types: single HSI SR [37]–[43] and fusion based HSI
SR [14], [44]–[53]. Although there have many studies on
single HSI SR, compared with fusion-based HSI SR, using
single HSI SR, it is more difficult to reconstruct an image
with a large scale factor, especially for the low-resolution
HSI obtained by satellite sensors. Therefore, in this paper,
we focus on fusion-based HSI SR. Dian et al. propose an
innovative work [44] for the HSI and MSI fusion, which
effectively combines the imaging model of the fusion with the
powerful learning ability of CNN. Xie et al. [46] designed an
iterative algorithm to solve the fusion problem by exploiting
the proximal gradient method under the low-rankness prior
of the observation image. Taking consideration of the large
resolution difference in spatial domain of HSI and MSI, Han
et al. [45] designed a multi-level multi-scale fusion network
that gradually changed the feature sizes. Zhang et al. [47]
integrated residual channel attention and dense blocks to
learn spatial-spectral correlation for HSI reconstruction. Wei
et al. [49] proposed a deep recursive network to implicitly
incorporate the deep structure as the regularized prior.

Most of the deep learning based methods described above
are supervised learning algorithms that train the known high-
resolution HSI or degraded priors, which means that they are
difficult to apply in practice when the high-resolution HSI
is unavailable [51]. Qu et al. [14] proposed an unsupervised
deep learning network with sparse Dirichlet distribution for the
fusion of HSI and MSI. Zhang et al. [48] incorporated spatial
and spectral degeneration estimation into a deep blind HSI SR
network by utilizing an image-specific generator network to
produce the latent HSI. Wang et al. [54] also proposed a blind
deep SR network that iteratively and alternately optimized
estimates the observated data and the fusion process. Zhu et
al. [51] proposed a progressive zero-centric residual network
to learn high-resolution zero-centric residual imagery in a
progressive fashion. Zhang et al. [55] first implicitly learn a
general image prior using deep networks and then adapt it to
a special hyperspectral image to improve the generalization
of the model. Wei et al. [56] proposed an unsupervised
recurrence-based HSI SR network that used pixel-aware re-
finement and which utilized the intermediate reconstruction
results to self-supervise unsupervised learning.

B. Related work on Registration
Many remote sensing registration methods have been de-

veloped for over a decade [57]–[60]. These traditional reg-
istration algorithms commonly use an iterative approach to

progressively optimize the problem under constraint [61].
Traditional registration methods are computationally intensive,
which causes them to run slowly [62]. The recent great success
of deep learning has led to significant progress in image-
pair registration, especially for the registration of medical
image [63]. Most of these deep learning approaches can be
categorized as learning-based methods including supervised
and unsupervised methods. Supervised registration methods
[64]–[66] require the preparation of sufficiently large training
data sets for a fixed input and moving image pairs with the cor-
responding ground truth transformation;however, their perfor-
mance is limited by the amount of training data available [67].
For remote sensing data, the difficulty of acquiring reliable
ground truth also remains a significant obstacle. In contrast,
unsupervised methods only require a similarity measurement
between the fixed image and the warped moving image, which
is more similar to how traditional registration algorithms work
[68]. The optimization is driven by the similarity loss functions
– these functions learn the degree of similarity between the
image pairs and are more suitable for application to remote
sensing data.

The spatial transformer network (STN) [69] is a key in-
novation in unsupervised registration methods and can be
inserted anywhere in a deep-learning network to learn the
parameters of the transformation of the input feature map.
This means that the network then has the ability to learn the
translational invariance of the affine transformation. Li et al.
[70] introduced a full convolutional network (FCN) to perform
non-rigid registration of 3D brain magnetic resonance (MR)
imagery using self-supervision. Normalized cross correlation
(NCC) was used as the loss function to evaluate the similarity
between the warped and fixed images. Based on this idea,
de Vos et al. [71] used FCN to register 4D cardiac cine MR
data. Shu et al. [72] proposed a coarse-to-fine unsupervised
deformable registration method where the mean squared error
(MSE) was used as the loss function between the fixed and
warped moving images. Balakrishnan et al. [73], [74] proposed
an unsupervised learning-based method for medical image
registration – VoxelMorph – that could be used to predict a
dense deformation field. Zhao et al. [68] designed a recursive
cascaded network for performing progressive deformation for
the registration of deformable images.

C. Related work on HSI Registration and SR

Although the HSI SR problem has been studied by many
pioneering researchers, the simultaneously carrying out of SR
and registration tasks has been less well investigated. Yokoya
et al. [75] designed a cross-calibration and fusion method for
EO-1 and Terra data that can be considered an early method
for registration and fusion. However, using the correlation
coefficient is difficult to handle large-scale differences [6].
Recently, several methods that explicitly employ rigid regis-
tration operations to enhance the stability of the fusion process
have been developed. Lin et al. [76] made use of the spectral
sparsity to restore misaligned parts of high-resolution HSI
and simultaneously employed spectral and spectral structure
correlation to restore the aligned areas. Similarly, Fu et al.
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Fig. 2. Flowchart showing the details of our NonRegSRNet for HSI SR and registration. The network includes three sub-modules: the MSI autoencoder, the
HSI autoencoder and the registration module.

[77] also presented an approach for simultaneous HSI super-
resolution and geometric alignment of a pair of images with
drastically contrasting spatial resolutions. By incorporating a
spatial transformer network (STN), Nie et al. [78] proposed an
unsupervised deep learning network to simultaneously achieve
HSI SR and registration. However, the methods mentioned
above can only be applied to image pairs with affine transfor-
mation or rigid deformation.

To handle nonrigid deformation, Zhou et al. [6], [79]
proposed a registration method that minimized a least-squares
objective function by utilizing the point spread function (PSF).
After the registration, the fusion method utilized a low-
dimensional manifold invariant [80] with local linear transfor-
mations to achieve HSI SR. Overall, this approach consists of
two-steps: registration followed by image fusion. Qu et al. [81]
adopted mutual information to capture the non-linear statistical
dependencies between the representation from two input data.
By maximizing the mutual information, spatial correlations
can be characterized to reduce the spectral distortion.

III. PROPOSED APPROACH
A. Overview

The challenges that we faced in this study drive us to design
a network that incorporated both registration and fusion, had
the ability to carry out these functions successfully in a
balanced way and was robust. Fig. 2 shows the framework
of the proposed NonRegSRNet: it consists mainly of an HSI
autoencoder subnetwork, an MSI autoencoder subnetwork and
a registration subnetwork. Specifically, the input images to be
registered and fused are fed into the autoencoder networks to

solve the linear spectral unmixing with the same endmember
components. The registration network acts as a link that
re-establishes the spatial relations between the abundances,
whereas the spatial deformation correction is performed using
displacement field prediction and the spatial transformer net-
work. The outputs of each subnetwork and the corresponding
self-similar component parts are fed into the loss function to
drive the unsupervised learning.

B. HSI/MSI Autoencoder Networks

In the registration formulation, the moving image (also also
called as source image) is warped to register with the fixed
image (also called as target image) [74]. We can assume that
the high-resolution multispectral image is the fixed image
as it contains more detailed information about the spatial
features of the ground objects and that the low-resolution
hyperspectral image is the moving image. Let Ym and Zf
denote the input low-resolution hyperspectral image and high-
resolution multispectral image defined over 3-D domains re-
spectively: Ym ∈ Rm×n×L and Zf ∈ RM×N×l , where m
and n are the width and heigh of Ym, respectively, and L
is the number of spectral bands; and M,N are the width,
heigh of Zf , respectively and l is the number of bands. For
convenience, we call the low-resolution hyperspectral image
and high-resolution multispectral image as LrHSI and HrMSI,
respectively. The HSI SR aims to produce a high-resolution
HSI X ∈ RM×N×L(e.g. l ≤ L, n ≤ N and m ≤ M ). The
relation between X and the observations Ym and Zf can be
formulated as:

Ym = g(SX) +Es, (1)
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Fig. 3. Part of the registration module used to predict the displacement field θ. This part of the module can be represented by fθ(Am, PSF (Af )).

Zf = XR+Er, (2)

where S ∈ Rmn×MN denotes the spatial spread matrix
representing the transform of the PSF from high-resolution
image to low-resolution image. R ∈ RL×l denotes the spectral
response transform matrix representing the transform of SRF
from the hyperspectral sensor to the multispectral sensor. g()
denotes the spatial deformation transformation representing
image geometric distortion caused by the lens distortion, the
perspective of the sensor optics, the motion of the scanning
system or the platform altitude, etc. Es and Er are the
residuals.

In the HSI autoencoder, a set of 2-D convolutional layers
and ReLU layers are stacked so that Ym is mapped to its
corresponding low-resolution abundances Am ∈ Rm×n×p,
where p is the number of endmembers. In these layers, the
kernel sizes of the convolutional layer are set to 1 × 1 to
preserve the spatial structure of the input image. The number
of output channels for these layers is shown in Fig. 2, where
p is the output channels of the last convolutional layer. The
reason we define Am as the abundances is that a shared one-
layer convolutional layer - shown as the yellow layer in Fig. 2 -
is applied over Am to implement matrix multiplication, where
the kernel size of this convolutional layer is 1×1 and no bias is
defined in this convolutional layer. Each convolutional kernel
is element-wise product with each pixel of the abundance.
Therefore, the parameters of the convolutional layer can be
defined as the endmembers E ∈ Rp×1×1×L. The output of
the shared convolutional layer can be defined as:

Ym−rec = Am ×E, (3)

where Ym−rec ∈ Rm×n×L is the reconstruction of the input
Ym. This means that the linear spectral unmixing approach is
embedded into the reconstruction process.

Similarly, the input HrMSI Zf is fed into a group of con-
volutional layers and ReLU layers to generate high-resolution
abundances given by Af . After being processed by the shared
convolutional layer E, Af is transformed into the target HrHSI
X, which can be defined as:

X=Af ×E. (4)

In order to form a closed loop for unsupervised learning, a
convolutional layer with kernel size 1×1 and a normalization
layer are combined at the back of the target image X to act

as the SRF process - this is shown as purple layer in Fig. 2.
The output of this process is the reconstructed HrMSI Zf−rec,
which can be defined as:

Zf−rec = SRF (X), (5)

A more detailed explanation of SRF () is given below:

zi = SRF (xλ) =

λi,U∑
λ=λi,L

wi,λxλ

λi,U∑
λ=λi,L

wi,λ

, (6)

where wi,λ denotes the weights of the convolutional layer, xλ
is the band in X with wavelength λ, zi is the band in Z with
wavelength i, U and L are the spectral coverage upper and
lower bound of the i-th band of Z.

The PSF process gives the local spatial correlation between
the low-resolution image and the high-resolution image, which
means that, under the premise of the two images are well
registered, a pixel in the low-resolution image is a weighted
combination of the corresponding pixel and its neighboring
pixels in the high-resolution image. According to the results
of our previous work [53], the parameters of the PSF can
be learned by placing a convolutional layer with one input
channel and one output channel on the high-resolution image
to generate the low-resolution image. The kernel size and
the stride of this convolutional layer should be set equal to
the scale factor. This convolutional layer can be applied to
Af and X to transform the high-resolution abundances and
image into the low-resolution uniform representation space in
preparation for the registration. The Af processed using the
PSF is denoted by PSF (Af ) and the fixed reconstructed HSI
can be formulated as:

Yf−rec = PSF (X). (7)

C. Registration Module

In this section, we describe the registration module which
was used for dense matching of corresponding pixels. Gen-
erally, the full-frame registration of HSI and MSI can be
easily achieved using affine alignment methods that are applied
to large-scale remote sensing imagery. However, it is more
difficult to deal with local nonlinear deformation, such as the
deformation of an individual object or a local area. Therefore,
in this study, we assumed that Ym and Zf were affinely
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aligned during the preprocessing and that only nonlinear
deformation of the two images existed.

As shown in Fig. 3, the module function can be denoted by
fθ(Am, PSF (Af )), where θ are the parameters of the convo-
lutional layers and the module network that resembles UNet
[82]. The concatenated Am and PSF (Af ) are fed into fθ(),
where Am represents the required registration abundances
obtained using LrHSI autoencoder and PSF (Af ) is the output
of PSF process obtained from HrMSI autoencoder. The output
of this module is the displacement fields φ ∈ Rm×n×2, where
m and n are the width and height of φ, and 2 is the number
of feature maps for the x- and y-axes. Displacement fields
represent the displacement vectors for all the points of the
image that is displaced from Am to PSF (Af ). Displacement
fields can be formulated as:

φ=fθ(Am, PSF (Af )). (8)

In this module, the convolutional layers extract the hierar-
chical features of the input abundances pairs to generate the
displacement field, φ. Both the encoder and decoder consist of
a stacked convolutional layer, batch normalization layer and
LeakReLU layer. In the encoder part, as shown in Fig. 3, we
set the stride of convolutional layer to 2 to reduce the size
of the feature maps used for forming the multi-scale feature
representation. In the decoder part, a transposed convolutional
layer was used to increase the size of the feature maps
to restore them to their original size. However, to enhance
the feature diversity, similar to the image/feature pyramid,
concatenated skip connections were used to connect features
at different levels.

In order to register the deformed moving abundance Am,
we introduce spatial transformer network (STN) [74] to warp
Am using φ, where φ represents the offset of input pixels.
Firstly, we need to generate a standard mesh that is the same
as the size of the deformation field. Secondly, the standard
mesh plus the deformation field to form a sampling grid.
Thirdly, the grid values were normalized to [-1, 1] for the
next re-sampling. Finally, the normalized grid is used to re-
sample Am to generate the output moved image Am⊗φ. After
processing by the shared endmember convolutional layer, the
interpolated abundances can be transformed into the registered
LrHSI Ym−restored, which can be written as:

Ym−restored = Am ⊗ φ×E, (9)

where ⊗ denotes the grid sample, Am is the moving abun-
dance, φ is the displacement field, and E represents the
parameters of the shared convolutional layer.

D. Loss Functions

To train our model using an unsupervised method, we
defined several loss functions to constrain the registration and
SR tasks, which was also illustrated in Fig. 2.

1) Unsupervised Similarity: An unsupervised similarity
loss Lsim measures the similarity between the input data and
the outputs. We defined the L1 norm as our similarity function:

Lsim = ‖Ym −Ym−rec‖1 + α ‖Zf − Zf−rec‖1
+ β ‖Ym−restore −Yf−rec‖1 ,

(10)

where α and β are trade-off parameters used to balance the
contributions of different losses.

2) Correlation Coefficient: We used the correlation coef-
ficient to minimize the similarity between PSF (Af ) and
Am ⊗ φ:

Corr(PSF (Af ),Am ⊗ φ) =
Cov(PSF (Af ),Am ⊗ φ)√

V ar(PSF (Af ))V ar(Am ⊗ φ)))
,

(11)

where Cov is the covariance and V ar is the variance.
A higher correlation coefficient means a higher similarity.
Therefore the loss function used was:

Lcorr(PSF (Af ),Am ⊗ φ) = 1− Corr(PSF (Af ),Am ⊗ φ).
(12)

3) Smooth Constraint: Miniminzing the Lcorr may encour-
age φ to be non-smooth; therefore, we defined a diffusion
regularizer to smooth the displacement field φ:

Lsmooth(φ) =
∥∥∥∥∂φ∂x

∥∥∥∥
2

+

∥∥∥∥∂φ∂y
∥∥∥∥
2

, (13)

where the differences between neighboring pixels can be
used to compute the approximate spatial gradients: ∂φ

∂x ≈
φ(x+ 1, y)− φ(x, y), ∂φ∂y ≈ φ(x, y + 1)− φ(x, y).

4) Summation Constraint: Regarding the spectral unmixing
discussed in this paper, we wanted the abundance to satisfy
sum-to-one and non-negative constraints. To this end, we
introduced a summation constraint on the abundance Am,
PSF (Af ) and Af :

Lsum(Am, PSF (Af ),Af ) =

∥∥∥∥∥1−
P∑
i=1

Ai
m

∥∥∥∥∥
1

+

∥∥∥∥∥1−
P∑
i=1

Ai
f

∥∥∥∥∥
1

+

∥∥∥∥∥1−
P∑
i=1

PSF (Af )
i

∥∥∥∥∥
1

,

(14)
where P denotes the the number of endmembers. To satisfy

the non-negative constraint, a clamp function was added at the
back of the abundance Am and Af .

The parameters of the PSF layer, SRF and endmember
layers should also meet the non-negative constraint. Therefore,
we imposed a clamp function on these parameters after the
parameters were updated during each back-propagation to
force these weights to lie within the range [0, 1].

In summary, the final loss function for the proposed network
can be written as:

Ltotal = Lsim + γLcorr + δLsmooth + µLsum, (15)

where γ, δ and µ are the trade-off parameters.

IV. EXPERIMENTS AND RESULTS

In the section, we describe the application of our pro-
posed registration and SR method under different experimental
conditions. First, we describe the datasets used. To get an
accurate assessment of the quality of the registration and SR
tasks, we carried out simulation experiments. Following this,
we performed a sensitivity analysis in which we investigated
the performance of the hyperparameters and used an ablation



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXX, 2021 7

TABLE I
ABLATION STUDY.

MSI∗ HSI∗ registration∗ α β γ δ µ SAM ERGAS mPSNR

well-registerted

" " % " " " " " 36.894 79.243 22.993
" " " % " " " " 5.475 29.828 20.020
" " " " % " " " 36.992 828.916 21.281
" " " " " % " " 4.597 4.070 32.231
" " " " " " % " 4.438 3.232 38.187
" " " " " " " % 4.434 3.101 38.235
" " " " " " " " 4.420 3.037 38.475

2 pixels deformation

" " % " " " " " 39.488 161.913 22.527
" " " % " " " " 5.465 33.538 33.538
" " " " % " " " 53.989 2405.3 17.684
" " " " " % " " 4.989 5.833 29.779
" " " " " " % " 4.499 3.104 38.167
" " " " " " " % 4.477 3.056 38.231
" " " " " " " " 4.439 3.043 38.386

MSI∗, HSI∗ and registration∗ represents MSI-Autoencoder, HSI-Autoencoder and Registration module, respectively.

Fig. 4. Simulated Pavia University data with different maximal deformations
applied to simulate non-rigid transformations.

TABLE II
REGISTRATION QUANTITATIVE COMPARISON UNDER DIFFERENT

DEFORMATION MAGNITUDE.

Maximal Deformation Magnitude
1 pixel 2 pixels 3 pixels 4 pixels 5 pixels

Pa
v∗ LSQ 0.3193 0.6162 0.8556 1.1036 1.2236

Ours 0.3343 0.6016 0.8535 0.9943 1.1241

C
hi

∗ LSQ 0.6137 0.7679 0.8795 1.0177 1.1950
Ours 0.4468 0.6670 0.8228 1.0630 1.1765

W
a∗ LSQ 0.3100 0.5924 0.8155 1.0283 1.2007

Ours 0.3080 0.5316 0.7679 1.0102 1.1468
Pav∗, Chi∗ and Wa∗ represent Pavia University, Chikusei and Washington,

D.C. data, respectively.

study to verify the effectiveness of proposed method. Finally
in this section, comparisons with different registration and SR
methods are made.

Fig. 5. Simulated Chikusei data with different maximal deformations applied
to simulate non-rigid transformations.

A. Experimental Data and Implementation Details

Simulation data. Three widely used HSI datasets were
used as simulation data in our experiment. These were the
Pavia University dataset, Chikusei dataset and Washington,
D.C. dataset. The Pavia University dataset was acquired by
the ROSIS-3 sensor in 2003. The original Pavia data consist
of 610× 340 pixels in 115 bands covering the range 430 nm
to 840 nm with a GSD of 1.3m. We selected the top-left part
of the image consisting of 340 × 340 pixels and 103 bands
for use in our experiment. The Chikusei dataset was captured
by the Headwall airborne hyperspectral sensor over Chikusei,
Ibaraki, Japan. The original data comprise 2517×2335 pixels
and 128 bands in the spectral range from 363 nm to 1018
nm with a GSD of 2.5m. We used the top-right corner of the
HSI covering 512 × 512 pixels. The Washington, D.C. data
were acquired by the HYDICE sensor in 1995. This dataset
covers 1280 × 307 pixels in 210 bands in the spectral range
400 nm to 2500 nm and has a GSD of 2.5m. After removing
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Fig. 6. Simulated Washington, D.C. data with different maximal deformations
applied to simulate non-rigid transformations.

Fig. 7. 3D visualization diagram for deformation fields.

Fig. 8. Color composite of the GF2 and GF5 data.

Fig. 9. Results of the hyperparameter analysis for the trade-off weights α
and βbased on the Pavia University dataset.

the noisy bands, a 300 × 300 -pixel section with 191 bands
from the lower part of the image was selected for use in our
experiment.

Simulation details. The original HrHSI was used as a
reference for conducting the quality assessment. The LrHSI
was generated using an isotropic Gaussian PSF. The SR scale
ratios were set as 4, 8 and 4 for the Pavia University, Chiku-
sei, and Washington, D.C. datasets, respectively. We used

Fig. 10. Results of the sensitivity analysis for the parameters γ, δ and µ.

Fig. 11. Visualization of different learned PSF kernels.

the blue–green–red Landsat-8 SRF, the blue–green–red–near-
infrared SRF and the blue to SWIR2 SRF to generate the
HrMSI data for the Pavia University, Chikusei and HrMSI
Washington, D.C. datasets, respectively.

To simulate the non-rigid deformed LrHSI, we linearly
combine multiple Gaussian distributions to generate the de-
formation field. The non-linear transformation can be formed
as T (x) = x+ v(x) [6]. v(x) can be formulated as Gaussian
mixture distribution v(x) =

∑
k

ckN
(
x | µk, σ2

)
, where k is

the kth Gaussian component, ck is the kth mixture coefficient,
uk is the mean of the kth component and σ is the standard
deviation. The non-linear transformation was applied to the
spatially downsampled LrHSI (see Fig. 4, 5 and 6), where the
3D visualization diagrams of the deformation fields are shown
in Fig.7.

Real data. In this study, we have also verified the proposed
method on real data, where GF2 data and GF5 data were
used. The GF2 data was acquired by GF2-Panchromatic Mul-
tispectral (PMS) sensor on 13-Nov-2019 over Xuchang city,
Henan province, China. This data covers 7304 × 7304 pixels
with a GSD of 4m in 4 bands, including Blue-Green-Red-
NearIR bands. The GF5 data was acquired by GF5-Advanced
Hyperspectral Imager (AHSI) on 10-Nov-2019. It consists of
2083× 2008 pixels in 330 bands covering the range 390 nm
to 2500 nm with a GSD 30m. We used ENVI ROI tools to
select a part of two images for the experiment, where a part of
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Fig. 12. Visual comparison of the quality of the results obtained under a range of deformation conditions when applying different SR methods to the
Washington, D.C. data. The values in the error images are those of the MRAE. ‘well-registered’ means that the input data consist of simulated perfectly
registered data. “1 pixel” means that, first, the LSQ free-form method [6] is used to register the input data whose maximum deformation magnitude is 1 pixel;
different SR methods are then used to fuse the registered images. Similarly, “3 pixels” and “5 pixels” indicate that the maximum deformation magnitudes are
3 pixels and 5 pixels, respectively.

TABLE III
THE QUALITY ASSESSMENT COMPARISON ON WASHINGTONG, D.C. DATA. THE BEST RESULTS ARE SHOWN IN BOLD.

Maximal Deformation Magnitude
well-registration 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel

Quality SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR
GSA 1.7659 40.6485 3.2517 35.2123 3.9126 33.6086 4.1861 33.0094 4.3056 32.4682 4.9615 31.4813
FUSE 5.5815 28.8595 7.4453 26.4161 8.0423 25.8442 8.3183 25.5777 8.4248 25.3308 8.8301 24.9587

ICCV15 2.2644 36.9433 5.3499 31.0462 6.2442 29.9275 6.5231 29.6324 6.5053 29.4433 4.2015 30.1084
CNMF 2.0190 37.4056 3.9408 30.5595 4.7932 28.5659 5.4317 28.4536 5.3757 27.1936 6.4829 25.3495
HySure 5.9193 30.5364 7.1883 27.9395 6.9179 27.5599 6.9594 27.6011 7.2599 25.9982 7.4751 25.6595
uSDN 2.2519 36.5113 2.8438 35.3096 2.3976 35.0996 3.0334 35.0956 2.3594 35.5588 3.0230 34.4248

PixAwaRefin 2.7825 34.2016 7.6682 26.5661 8.4228 26.0796 8.9295 25.4634 8.9284 25.6152 9.4940 25.2611
CUCaNet 1.4873 40.7987 7.8772 26.1870 9.5363 24.3924 10.0328 24.0147 11.1339 23.5353 11.4123 23.1614
u2MDN 2.0566 35.7389 2.9347 32.2905 4.4656 31.2905 4.3619 31.3248 4.7136 31.3804 2.0352 37.1595
Proposed 1.4103 39.3093 1.4674 38.2439 1.6677 38.8564 1.7376 38.6041 1.7642 38.1867 1.6952 39.0536

600× 600 pixels section from the GF2 data was selected and
78×78 pixels section from GF5 was selected. In order to make
the scale factor be an integer, we upsampled the GF5 data to a
size of 100×100 pixels. In addition, we use relative radiation
normalization to linear normalize the spectrum of GF2 data
to the corresponding spectrum of GF5 data. The RGB images
are shown in Fig8

Experimental environment. The proposed network was
implemented on the PyTorch framework [83], and was trained
using an Adam optimizer set to its default parameters [84].
Kaiming parameter initialization was used for all the network
layers. The inital learning rate was set to 0.005 with linear
step decay schedules set from 2000 to 10000 epochs.

Quality assessment. For the experiment, we used several
widely used quality indices to compare the registration and
reconstruction quality: these included the mean pixel error,
spectral angle mapper (SAM), erreur relative globale adimen-
sionnelle de synthese (ERGAS), mean peak signal-to-noise
ratio (mPSNR), structural similarity index measure (SSIM),

mean square error (MSE) and mean relative absolute error
(MRAE) [6], [75].

B. Sensitivity Analysis

Ablation study. Our proposed method consists of three
basic modules: the HSI autoencoder, MSI autoencoder and
registration module. To investigate the performance of differ-
ent combinations of components under different deformation
conditions, we performed a simple experiment using the Pavia
University data. Table I shows the experimental results. It can
be seen that better performance is available only when the
three modules are combined. And we also test the ablation
study for the loss functions. The experiment shows that the
trade-off parameters α, β and γ play an important role in
improving the performance. In comparison, θ and µ also useful
to stabilize the result.

Analysis of hyperparameters. In the proposed method,
several trade-off parameters are used to balance the weights of
the different loss functions. As the autoencoder is driven by
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Fig. 13. Visual comparison of the quality of the results obtained under a range of deformation conditions when applying different SR methods to the Chikusei
data. “well-registered” means that the input data consist of simulated perfectly registered data. “1 pixel” means that, first, the LSQ free-form method [6] is
used to register the input data whose maximum deformation magnitude is 1 pixel; different SR methods are then used to fuse the registered images. Similarly,
“3 pixels” and “5 pixels” indicate that the maximum deformation magnitudes are 3 pixels and 5 pixels, respectively. to register the input data whose maximum
deformation magnitude is 1 pixel, and then different SR methods are used to fuse the registered images. Similarly, “3 pixel” and “5 pixel” indicate the
maximum deformation magnitude are 3 pixels and 5 pixels, respectively.

TABLE IV
THE QUALITY ASSESSMENT COMPARISON ON CHIKUSEI DATA. THE BEST RESULTS ARE SHOWN IN BOLD.

Maximal Deformation Magnitude
well-registration 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel

Quality SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR
GSA 3.8250 34.8901 4.2855 34.2813 4.5532 33.8065 5.0290 33.0524 5.3537 32.4267 5.7613 31.9719
FUSE 4.9040 27.3041 5.7819 26.2111 5.9671 26.0157 6.2546 25.7282 6.3768 25.5476 6.5955 25.3155

ICCV15 2.6857 35.4171 2.6720 35.4157 2.6929 35.1356 3.1156 34.0847 3.5472 32.5006 3.5619 31.9751
CNMF 3.1302 33.1852 3.3271 36.0164 3.245 35.9315 2.9832 34.8000 3.2396 32.8205 4.3615 32.5540
HySure 4.8299 32.2683 5.3104 31.7977 5.6831 31.2274 6.5563 30.1148 6.8996 29.5827 7.9536 28.4353
uSDN 2.5324 41.0687 2.6281 40.4927 2.7395 40.2941 4.9915 39.7581 3.3215 40.0190 4.9425 40.2180

PixAwaRefin 2.0827 40.2701 4.4631 32.2967 4.6216 31.4546 5.2675 31.1170 5.4171 30.4846 5.4102 30.0807
CUCaNet 2.6742 40.4798 4.8033 27.9320 5.1783 25.1761 5.3624 24.9317 6.1006 24.2003 6.4182 23.8122
u2MDN 2.5907 41.0254 2.6910 40.8319 2.7169 40.0414 3.3759 37.3539 2.8885 38.8059 4.0506 35.9707
Proposed 2.5688 41.1742 2.5704 41.2253 2.6054 40.8901 2.6158 40.5483 2.6124 40.5996 2.5925 40.3664

the reconstruction errors, we first compared the performance
of the model using different values of the parameters α and β
and with the remaining parameters set to 0.01 by default. A
grid search was used to find the optimal parameter values and
the results are shown in Fig.9. It can be found that good results
were obtained for the target image for small values of α and
β , with the best results being achieved when α = β = 1.

Fig. 10 shows the results of the sensitivity analysis for γ, δ
and µ. The reconstruction accuracy is relatively little affected
by γ and δ but is much more sensitive to µ. We set γ =
0.001, δ = 1, µ = 0.001 for the subsequent experiments.

Registration comparison. To compare the performance
of different non-rigid registration methods, we chose least-
squares non-rigid registration [6] as the benchmark method
for comparison. The registration errors obtained for different
deformation magnitudes using the three datasets are shown
in Table.II. Here, ‘LSQ’ denotes the LSQ free-form non-
rigid registration method. It can be seen that, in most cases,

a higher registration accuracy can be achieved using the
proposed method. This is because the proposed method is
combined with iterative estimation of the response function
and registration, which ensures more consistent registration
relative to other methods.

Point spread function. In order to verify the ability of the
proposed model to estimate the PSF, we used some regions
of Gaussian distribution as the simulated PSF, as shown in
the first row of Fig. 11. The region of the red grid is the
selected simulated PSF. The second row shows three different
simulated PSF kernels to generate LrHSI. Here, the Chikusei
data was used as the example and the PSF kernel size was 8.
The unsupervised estimated PSFs are visualized in Fig.11 as
‘learned PSF’. All the overall shapes of the estimated PSFs
appear to be very similar to those of the original PSFs. Locally,
the estimated values differ from the real ones, which causes
the learned PSFs to be slightly less smooth than the simulated
ones. This is because a slight error may induce irregularity
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Fig. 14. Visual comparison of the quality of the results obtained under a range of deformation conditions when applying different SR methods to the Pavia
University data. ”well-registered” means that the input data consist of simulated perfectly registered data. ”1 pixel” means that, first, the LSQ free-form method
[6] is used to register the input data whose maximum deformation magnitude is 1 pixel; different SR methods are then used to fuse the registered images.
Similarly, “3 pixels” and “5 pixels” indicate that the maximum deformation magnitudes are 3 pixels and 5 pixels, respectively.

TABLE V
THE QUALITY ASSESSMENT COMPARISON ON PAVIA UNIVERSITY DATA. THE BEST RESULTS ARE SHOWN IN BOLD.

Maximal Deformation Magnitude
well-registration 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel

Quality SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR SAM PSNR
GSA 3.8896 38.9235 4.4522 36.4441 4.5748 35.8442 4.7615 35.1957 7.3171 27.4971 7.1827 27.7433
FUSE 5.1997 28.8678 6.2619 27.1366 6.5061 26.8179 6.9164 26.4390 9.2621 23.5087 9.2382 23.6174

ICCV15 4.1506 36.7114 4.5927 34.8555 4.5268 34.2199 4.7780 33.7327 7.3236 25.9954 7.2962 26.0470
CNMF 4.3170 36.2256 4.4631 34.7291 4.6751 34.2358 5.1176 33.0868 10.2142 28.1299 12.2259 26.9543
HySure 6.7719 32.7940 8.3750 31.4689 8.7945 31.1361 8.7580 31.0591 10.6249 25.6221 11.1790 25.7066
uSDN 5.6939 36.5644 5.7492 35.4093 5.9451 35.6661 5.5216 36.0068 6.1332 34.8830 5.8769 35.5245

PixAwaRefin 3.4739 36.6302 5.4893 32.0982 5.7758 31.9425 6.3066 31.2817 9.0162 28.3988 8.7958 28.5164
CUCaNet 3.8272 39.7208 6.9915 26.5037 7.5346 25.9277 8.9666 24.1868 12.0766 20.9322 13.1459 20.4993
u2MDN 5.8040 36.1886 6.6152 32.5035 6.3940 33.9035 8.6036 29.8932 8.0481 31.2687 5.3330 36.4715
Proposed 3.6917 38.6478 4.3475 38.3214 4.2960 38.5405 4.3450 38.5491 4.3918 38.4520 4.3676 38.2425

in the shape due to the small original numerical values. Even
so, in general the estimated PSFs match the real PSFs very
closely.

C. Comparison with other methods
In this part, we first evaluate the performance on nine

SR methods by using well-registered input date. Secondly,
LSQ free-form non-rigid registration method [6] was used to
register the deformed images and the fusion results obtained
using different SR methods based on these registered images
were compared.

To fully compare the different SR methods, a set of baseline
methods were used for comparison: these included traditional
methods, e.g., GSA [10], FUSE [22], ICCV15 [25], CNMF
[5] and HySure [24]; and deep learning methods, e.g., uSDN
[14], PixAwaRefin [50], CUCaNet [52] and u2MDN [81]. The
parameters of all the compared methods were tuned to their
optimal values.

Washington, D.C. data. We first evaluated the visual
quality of the fused images obtained using the Washington,

D.C. data. Fig.12 shows the errors in the fused imagery
obtained using different methods under different deformation
conditions. The sizes of the errors are given using the MRAE.
The first row of Fig.12 shows the errors obtained under well-
registered conditions. It can be seen that most of the compared
algorithms produce good fusion results under such conditions
– the exceptions are FUSE and HySure, which produce serious
ground object boundary errors. Slight material-dependent er-
rors can be seen in the results for ICCV15, CNMF and uSDN.

The second to fourth rows in Fig.12 represent the SR results
after registration and fusion processing successively. The de-
formed images were first registered using the LSQ free-form
method [6] and then processed using different SR methods.
The proposed method was not included in this as it takes
the deformed image as the input and outputs the SR results
directly. Due to the limits of space, here, we only show the
performance results obtained under three sets of deformation
conditions: those with maximum deformations of 1 pixel, 3
pixels and 5 pixels. Compared to the well-registered input,
even though the input to the SR method was processed using
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Fig. 15. Reconstruction results of different comparison methods on the GF2 data and GF5 data. The first row shows the reconstruction results of the entire
image. The second row shows the local magnified images.

Fig. 16. Reconstructed spectral curve at different points for the comparison method on the GF2 and GF5 data.

the registration method, the fusion results obtained using the
different methods are very different. The results for CUCaNet
are markedly different because this method uses cross attention
to transfer cross-domain information between two stream
networks. Since there is still a certain degree of deformation
after image registration, the use of cross-domain information
will lead to a poor performance even if the deformation is
slight. The results obtained using uSDN exhibit material-
dependent errors that result in the reconstruction of some of the
ground objects being poor. The GSA results gradually become
poorer as the deformation magnitude increases. The results
obtained using the remaining methods are relatively poor. The
u2MDN shows excellent performance under the condition of 5
pixels maximum displacement benefited from adopting mutual
information to capture the non-linear statistical dependencies
between the input images. But the stability of this method is
weak when dealing with different deformations.

Table.III shows the quality measure results obtained using
the Washington, D.C. data under different conditions. The
results for GSA, CUCaNet, uSDN, u2MDN and the pro-
posed method show a better reconstruction accuracy than the
other methods under well-registered conditions; however, an
increase in deformation leads to a sudden worsening of the
performance of GSA and CUCaNet. Although the results for
uSDN are inferior to those obtained using GSA and CUCaNet,
the stability of uSDN is better, indicating that uSDN is less
sensitive to the deformation. However, from a comparison of
all of the methods, it can be seen that the proposed method
is the most stable and produces the best performance under a
range of deformation conditions.

Chikusei data. The visual quality comparison for the

Chikusei data is shown in Fig.13. Compared with the Wash-
ington, D.C. data, the reconstruction results obtained using
the GSA suffer degraded performance. This indicates that the
performance of the GSA is affected by the imaging device used
and the area that is imaged. In constrast, the visual reconstruc-
tion results obtained using PixAwaRefin and CUCaNet are
better than for the Washington, D.C. data. Compared with the
other methods, both uSDN and the proposed method produce
good, stable reconstruction results under varying deformation
conditions. Compared with Washington, D.C. data, the visual
results of u2MDN can not achieve stable results in this set of
data.

As shown in Table.IV, the results of the quality assess-
ment are similar to those of the visual quality comparison.
Under well-registered conditions, compared with Washington
D.C. data, the deep learning methods (uSDN, PixAwaRefin,
CUCaNet and the proposed method) produce significantly
improved results for the Chikusei data. However, it can clearly
be seen that the results of PixAwaRefin and CUCaNet have
a clear tendency to get worse as the deformation increases.
The main reason for this is that the use of uncorrected mutual
information results in a poorer performance. In the case of the
Washington, D.C. and Chikusei data, the reconstruction accu-
racy of FUSE and HySure is limited. Overall, the performance
of uSDN and the proposed method is good and stable.

Pavia University data. To make a further evaluation of the
different methods, we also carried out experiments using the
Pavia University data. The results of this are shown in Fig.14
and Table.V. The quantitative results are similar to those for
the Washington, D.C. data. Generally, it can be observed
that, under well-registered conditions, CUCaNet reconstructs
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spatial information well and that the overall performance drops
as soon as the amount of deformation starts to increase. Of all
the methods compared, the results for uSDN and the proposed
method are the most stable and accurate. The subspace-
based methods (ICCV15 and CNMF) produce reasonably good
performances but the results are not as good as those obtained
using the GSA. These results indicate that the proposed
method produces highly accurate and stable results under a
variety of deformation conditions.

GF2 data and GF5 data. We further evaluate the proposed
method on the GF2 data and GF5 data. It can be seen from
Fig.8 that the two input images are not completely aligned due
to registration errors caused by the spatial resolution differ-
ences. Since some comparison methods cannot generate stable
reconstruction results for this data, we only present the results
of comparison methods (FUSE [22], GSA [10], MAPSMM
[85], SFIMHS [86], PixAwaRefin [50] and u2MDN [81]) as
shown in Fig.15 and Fig. 16. Since there is no ground truth,
the result of the color-composite image and spectral curve is
present for a visual comparison in this experiment. It can be
found that GSA, u2MDN and the proposed method have better
spatial reconstruction capabilities. But GSA shows edge block
error distortion in Fig. 15. This is because GSA sharpens the
low-resolution image by directly adding spatial information
by calculating the difference between HrMSI and upsampled
LrHSI. In comparison, the proposed method shows a better
performance for preserving spatial and spectral information.

V. CONCLUSION

In this work, a novel end-to-end unsupervised HSI SR
network for reconstructing high-resolution HSI from unreg-
istered low-resolution HSI and high-resolution MSI using
multi-modal, multi-task learning was proposed. Specifically,
the proposed method integrates non-rigid registration and
SR into a unified model that includes a triple convolutional
neural network. The use of this network allows the SR and
registration to complement each other, which means that
better results are obtained for both processes. Furthermore, the
proposed network is capable of adaptively learning the spatial
and spectral response functions, which enables the model to
adapt to a variety of imaging conditions and to produce stable
reconstructed images. Extensive experiments conducted on
three simulated benchmark datasets and a pair of real data
demonstrated the effectiveness of the proposed method and
its ability to produce highly accurate and stable reconstructed
images under complex non-rigid deformation conditions.
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M. Staring, “Nonrigid image registration using multi-scale 3d convolu-
tional neural networks,” in Proc. MICCAI, pp. 232–239, Springer, 2017.

[67] N. J. Tustison, B. B. Avants, and J. C. Gee, “Learning image-based
spatial transformations via convolutional neural networks: A review,”
Magn. Reson. Imaging, vol. 64, pp. 142–153, 2019.

[68] S. Zhao, Y. Dong, E. I. Chang, Y. Xu, et al., “Recursive cascaded
networks for unsupervised medical image registration,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), pp. 10600–10610, 2019.

[69] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer
networks,” in Proc. Conf. Neural Information Processing Systems
(NeurIPS), pp. 2017–2025, 2015.

[70] H. Li and Y. Fan, “Non-rigid image registration using self-supervised
fully convolutional networks without training data,” in Proc. ISBI,
pp. 1075–1078, IEEE, 2018.

[71] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and
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