
2. Calculating Dimension

After deciding that one of our main goals in this thesis would be to determine the
dimension of products of orders, it became immediately apparent that we needed a
good way to calculate the dimension in order to test hypotheses and verify examples.
Yannakakis [30] showed that determining the order dimension of a partial order is
NP-Hard using a reduction from the graph coloring problem, hence finding an efÏcient
algorithm is difÏcult. Furthermore, there are few publicly available tools to calculate
poset dimension. The SageMath software system [24] does provide an implementation,
but this is often far too slow, even for comparatively small examples.

There have also been few published attempts at finding empirically fast algorithms.
Koppen [19] as well as Yáñez and Montero [29] have described potential algorithms,
but they neither seemed easy to implement, nor was it likely that they would greatly
outperform our methods. We have primarily considered two different approaches to this
problem. Both of them involve reductions to NP-Complete problems and then using
modern solving tools to calculate a solution.

2.1. Selecting Pairs with SAT

There is a sensible way to view the decision problem, whether an order admits a realizer
of size at most n, as an instance of SAT. This is best derived from the technical definition
of a poset. A total order is a reflexive, antisymmetric and transitive relation requiring
that for each pair exactly one of its orientations is chosen. To transfer this over to
a SAT instance, we can ignore the pairs obtained from reflexivity, as they are always
contained. Antisymmetry and the need to choose exactly one orientation for each pair
can be encoded by the variables themselves, as we have to make exactly one of two
choices for each variable in any assignment. Transitivity is then encoded by the clauses
of the SAT formula. Since transitivity constraints consist of simple implications on at
most three literals, this is an encoding that SAT is well-suited to.

The concrete formulation we came up with is as follows. Let P = (X,≤) be a poset.
Define a variable xab for each unordered incomparable pair {a, b} ⊆ X, a || b, where the
order of (a, b) is fixed arbitrarily. Let V be the set of these variables. For each ordered
pair (a, b) with a 6= b declare a corresponding literal

l(a, b) :=

{
xab if xab ∈ V

¬xba if xba ∈ V
.
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This describes the aforementioned choice for each pair. In order to make sure that these
choices obey transitivity constraints, add clauses

Cabc := ¬l(a, b) ∨ ¬l(b, c) ∨ l(a, c) for all {a, b, c} ⊆ X.

Solving just this SAT formula would return some permutation of the elements of X. To
find a linear extension of P now just fix the literals l(a, b) as 1 for all (a, b) with a ≤ b.
Fixing one such literal can be accomplished by adding an additional clause with just
l(a, b). Alternatively we can also perform some preprocessing manually. Essentially, one
ignores a clause C if l(a, b) ∈ C and remove ¬l(a, b) from C if ¬l(a, b) ∈ C. Let Ĉabc be
the clause after applying this reduction. Then we set

L :=
∧

a,b,c∈X

Ĉabc.

Now any satisfying assignment of L will correspond to a linear extension of P . Finding a
realizer of size k now requires little additional work. Let Li be an independent copy of L
for 1 ≤ i ≤ k and denote its literals by l(a, b, i). Introducing clauses

Cab = l(a, b, 1) ∨ · · · ∨ l(a, b, k)

for each (a, b) ∈ inc(P ) will ensure that each incomparable pair is covered by the realizer
at least once. Thus, the final formula is given by

Sk :=
k∧

i=1

Li ∧
∧

(a,b)∈inc(P )

Cab. (2.1)

If the formula is satisfiable, recovering the realizer from a satisfying assignment is not
hard. For fixed i, the comparable pairs of P form a total order with those a, b where
l(a, b, i) was set to 1. Calculating a topological order of the directed comparability graph
of P with the added (a, b) will then give the desired result. Finally, determining the
order dimension now just involves finding the minimal k such that Sk is satisfiable.

When implementing this approach, it is sensible to apply the SAT formula to a subposet
of P with the same dimension. The natural choice for this is the poset induced by
{x | (x, y) ∈ crit(P )} ∪ {y | (x, y) ∈ crit(P )}. This must have the same dimension as
P according to Fact 1.3. We did implement this, but did generally not see significant
performance gains. It seems probable that the SAT solver can learn which pairs are being
forced by other pairs from the given clauses and thus determine that mostly only the
critical pairs are important.

2.2. Digraph Coloring

In SageMath, order dimension is calculated by determining a coloring of the hypergraph
of incomparable pairs. As described by Felsner and Trotter [11], it is defined by G =
(inc(P ), E), with E defined as the set of S ⊆ inc(P ) that contain an alternating cycle but
where all subsets of S do not contain an alternating cycle. In general, this hypergraph
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