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ABSTRACT
In a traditional ciphertext-policy attribute-based encryption
(CP-ABE) scheme, an access structure, also refereed to as
ciphertext-policy, is sent along with a ciphertext explicitly,
and anyone who obtains a ciphertext can know the access
structure associated with the ciphertext. In certain appli-
cations, access structures contain sensitive information and
must be protected from everyone except the users whose
private key attributes satisfy the access structures.
In this paper, we first propose a new model for CP-ABE

with partially hidden access structures. In our model, each
attribute consists of two parts: an attribute name and its
value; if the private key attributes of a user do not satisfy
the access structure associated with a ciphertext, the specific
attribute values of the access structure are hidden, while
other information about the access structure is public.
Based on the CP-ABE scheme proposed by Lewko et al.

[14] recently, we then present an efficient construction of CP-
ABE with partially hidden access structures. Compared to
previous works in this field, our construction is more flexible
and expressive and is proven fully secure in the standard
model.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems; H.2.7
[Database Administration]: Security, Integrity, and Pro-
tection

General Terms
Design, Security

Keywords
Ciphertext-Policy Attribute-Based Encryption, Partially Hid-
den Access Structure, Dual System Encryption
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Many distributed applications require complex access- con-
trol mechanisms, where access decisions depend on attributes
of protected data and access control policies assigned to
users, or data owners can establish specific access control
policies on who can decrypt the protected data based on
users’ attributes. Sahai and Waters [26] addressed this is-
sue by introducing the concept of attribute-based encryption
(ABE). ABE enables public key based one-to-many encryp-
tion and is envisioned as a promising cryptographic primitive
for realizing scalable and fine-grained access control systems.
There are two kinds of ABE schemes [11], key-policy ABE
(KP-ABE) and ciphertext-policy ABE (CP-ABE) schemes.
This paper, our concern is on the latter.

In a CP-ABE scheme [2], every ciphertext is associated
with an access structure on attributes, and every user’s se-
cret key is associated with a set of attributes. A user will
be able to decrypt a ciphertext only if the set of attributes
associated with the user’s private key satisfies the access
structure associated with the ciphertext. In traditional CP-
ABE schemes [2, 9, 14, 30], an access structure is sent along
with a ciphertext explicitly; therefore anyone who obtains
the ciphertext is able to know the associated access struc-
ture. However, this property is not appropriate for certain
applications where access policies contain sensitive informa-
tion.

Consider the following cloud data storage scenario where
a data owner intends to outsource his data to the cloud and
wants to establish specific access control policies on who can
access the data. Before outsourcing his data, the data owner
encrypts it in order to prevent leakage of sensitive informa-
tion to the cloud service provider since the cloud is usually
operated by commercial firms outside of the data owner’s
trusted domain. Figure 1 depicts the system architecture of
a cloud storage for healthcare information. In healthcare,
it must meet the requirements of Health Insurance Porta-
bility and Accountability Act (HIPAA) for any use or dis-
closure of protected healthcare information; therefore, there
is no option but to keep medical data confidential against
cloud storage servers. Suppose that a data owner intends to
outsource a medical record to the cloud and specifies that
the medical record can only be accessed by a cardiologist
in University Park Hospital or by a patient with social se-
curity number 123-45-6789. The data owner encrypts the
record using a CP-ABE scheme in order to keep it confiden-
tial from the cloud service provider. If the data owner uses a
traditional CP-ABE scheme to encrypt the medical record,
everyone including the cloud service provider is able to know
the access policy associated with the ciphertext, and can in-



Figure 1: An example of cloud storage system ar-
chitecture

fer that someone with social security number 123-45-6789
suffers from a heart problem. This is clearly not acceptable
and shows the necessity of hiding the access policies from
prying eyes in certain applications.
One can construct CP-ABE with hidden access structures

from attribute-hiding Inner-product Predicate Encryption
(IPE) [12]. Predicate Encryption (PE) was presented by
Katz, Sahai and Waters [12] as a generalized (fine-grained)
notion of encryption that covers CP-ABE. In a PE scheme,
secret keys correspond to predicates and ciphertexts are as-
sociated with a set of attributes; a secret key SKf corre-
sponding to a predicate f can be used to decrypt a ci-
phertext associated with an attribute set I if and only if
f(I) = 1. Katz, Sahai, and Waters [12] also introduced
the idea of attribute-hiding, a security notion for PE that
is stronger than the basic security requirement of payload-
hiding. Roughly speaking, attribute-hiding requires that a
ciphertext conceal the associated attributes as well as the
plaintext, while payload-hiding only requires that a cipher-
text conceal the plaintext. The special case of inner product
predicates is obtained by having each attribute correspond
to a vector x⃗ and each predicate fv⃗ correspond to a vector
v⃗, where fv⃗(x⃗) = 1 iff x⃗ · v⃗ = 0. (x⃗ · v⃗ denotes the standard
inner-product.)
As mentioned in [14], in order to use inner product predi-

cates for CP-ABE, access structures must be written in CNF
or DNF form, which can cause a superpolynomial blowup in
size for arbitrary access structures. Since it is extremely in-
efficient to implement CP-ABE schemes with fully hidden
access structures derived from attribute-hiding IPE, we in-
vestigate how to trade off fully hidden access structures for
the efficiency of CP-ABE.

1.1 Our Contributions
In many applications, specific attribute values carry much

more sensitive information than the generic attribute names.
In Figure 1, “Cardiologist” and “123-45-6789” are more sen-
sitive than “Occupation” and “SS#”, respectively. This ob-
servation motivates us to consider a new model of CP-ABE
with partially hidden access structures. In this model, each
attribute includes two parts: attribute name and its value;
if the set of attributes associated with a user’s private key
does not satisfy the access structure associated with a ci-
phertext, attribute values in the access structure are hidden,
while other information, such as attribute names, about the
access structure is public. In the above-mentioned example,

Figure 2: An access structure (a) and the corre-
sponding partially hidden access structure (b)

if the data owner uses a CP-ABE scheme under this new
model to encrypt his medical record, anyone obtaining the
ciphertext only knows the following information about the
access policy:

SS# : ∗ OR (Affiliation : ∗ AND Occupation : ∗),

while the sensitive attribute values, such as“123-45-6789”,
“University Park Hospital” and “Cardiologist”, are hidden
from the public. Figure 2 shows graphically this example of
partially hidden access structure.

Based on the CP-ABE scheme proposed by Lewko et al.
[14] recently, we present an efficient construction of CP-
ABE with partially hidden access structures. In a CP-ABE
scheme, if the access structure associated with a ciphertext
is fully hidden, a user is not able to know which attribute
set satisfies the access structure, and this makes decryption
difficult. However, in the proposed CP-ABE with partially
hidden access structures, we avoid the problem by adding
some redundant components to a ciphertext, where if the
private key attributes of a user satisfy the access structure
associated with the ciphertext, the user is able to decide
which attribute set satisfies the access structure using the
redundant components of the ciphertext. Our scheme can
handle any access structure that can be expressed as a Lin-
ear Secret Sharing Scheme (LSSS), and its ciphertext size
scales linearly with the complexity of the access structure.
We prove that the proposed scheme is fully secure in the
standard model using the dual system encryption method-
ology in [29].

There are a few other works [22, 19, 13] on CP-ABE with
partially hidden access structures. However, their schemes
only support restricted access structures, which can be ex-
pressed as AND gates on multi-valued attributes with wild-
cards. Compared to these schemes, our scheme is more flex-
ible and expressive. An overview comparing our CP-ABE
scheme to those of other CP-ABE schemes with hidden ac-
cess structures is given in Table 1. The table shows that
our scheme is superior to the existing ones in the area of
CP-ABE with partially hidden access structures since it can
handle the most expressive access structures and is fully se-
cure in the standard model. Therefore, our proposed scheme
is most suitable for outsourcing data with sensitive attribute
values in access control policies.

1.2 Related Work
In this section, we summarize the major related works in

the areas of ABE, KP-ABE, PE, CP-ABE, CP-ABE with
partially hidden access structures, and dual system encryp-
tion technology.

Attribute-Based Encryption (ABE). The notion of ABE
was first introduced by Sahai and Waters as an application



Scheme Anonymity of Expressiveness of Security Ciphertext size
access structures access structures

CP-ABE [14] no LSSS fully secure linear
IPE⋆ [14] fully hidden inner product predicates fully secure linear
[22, 19] partially hidden AND-gates on multi-valued selectively secure linear

attributes with wildcards
[13] partially hidden AND-gates on multi-valued fully secure linear

attributes with wildcards
Ours partially hidden LSSS fully secure linear

Table 1: Comparison of CP-ABE schemes, where “linear” means that the size of ciphertext scales linearly
with the complexity of the access structure. ⋆In a CP-ABE scheme with fully hidden access structure which
is derived from attribute hiding IPE, the access structure must be converted to an inner-product predicate
and this causes a superpolynomial blowup in ciphertext size.

of their fuzzy identity-based encryption (IBE) scheme [26],
where both ciphertexts and secret keys are associated with
sets of attributes. The decryption of a ciphertext is enabled
if and only if the attribute set for the ciphertext and the
attribute set for the secret key overlap by at least a fixed
threshold value d.

KP-ABE. Goyal et al. [11] formulated two complimentary
forms of ABE: KP-ABE and CP-ABE. In a CP-ABE scheme,
decryption keys are associated with sets of attributes and
ciphertexts are associated with access structures. In a KP-
ABE scheme, the situation is reversed: decryption keys are
associated with access structures while ciphertexts are asso-
ciated with sets of attributes. There exists a general method
to transform KP-ABE to CP-ABE [10]. In terms of the
expressive power of access structures, Goyal et al. [11] pre-
sented the first KP-ABE supporting monotonic access struc-
tures. To enable more flexible access control policy, Os-
trovsky et al. [25] presented a KP-ABE system that sup-
ports the expression of non-monotone formulas in key poli-
cies. The problem of building KP-ABE systems with mul-
tiple authorities was investigated in [7, 20, 8]. Recently,
Lewko and Waters [18] proposed a KP-ABE scheme which
is “unbounded” in the sense that the public parameters do
not impose additional limitations on the functionality of the
scheme.

Predicate Encryption (PE). In this paragraph, we give a
brief introduction about the work on PE since CP-ABE can
be derived from inner-product PE. The notion of PE was
introduced by Katz et al. [12]. They also proposed the first
inner-product PE. Shi and Waters [28] presented a delega-
tion mechanism for a class of PE, in which the admissible
predicates of the system are more limited than inner-product
predicates. Okamota and Takashima [23] presented a (hi-
erarchical) delegation mechanism for an inner-product PE
scheme. Shen et al. [27] introduced a new security notion
of PE called predicate privacy and proposed a symmetric-
key inner-product PE, which achieves both plaintext privacy
and predicate privacy. These schemes were only proven se-
lectively secure. Lweko et al. [14] proposed the first fully
secure inner-product PE. Okamota and Takashima [24] pre-
sented a fully secure PE for a wide class of admissible predi-
cates, which are specified by non-monotone access structures
combined with inner-product predicates.

CP-ABE. The first CP-ABE construction proposed by Bethen-

court et al. [2] is proven secure under the generic group
model. Later, Cheung and Newport [9] proposed an CP-
ABE scheme that is secure under the standard model; how-
ever, the access structures in this scheme are restricted to
AND of different attributes. Recently, secure and expressive
CP-ABE schemes [30, 14] were proposed. CP-ABE schemes
with multiple authorities were also studied in [21, 17].

CP-ABE with Partially Hidden Access Structures. The no-
tion of CP-ABE with partially hidden access structures was
introduced by Nishide et al. [22], where the admissible ac-
cess structures are expressed as AND gates on multi-valued
attributes with wildcards. Li et al. [19] followed their work
and studied the problem of user accountability. All these
schemes are proven to be selectively secure only, which is a
weak security model analogous to the selective-ID model [5,
3] in IBE schemes. Recently, Lai et al. [13] proposed a fully
secure (cf. selectively secure) CP-ABE scheme with par-
tially hidden access structures; however, their scheme only
supports restricted access structures as in [22, 19]. Moving
one step forward, we propose a fully secure CP-ABE scheme
with partially hidden access structures that can be expressed
as an LSSS, which is more flexible and expressive than pre-
vious works [22, 19, 13].

Dual System Encryption Methodology. The dual system en-
cryption methodology, introduced by Waters in [29], will
be used in the security proofs of our construction. This
methodology has been leveraged to obtain constructions of
fully secure (H)IBE from simple assumptions [29], fully se-
cure (H)IBE with short ciphertexts [16], fully secure (H)IBE
and ABE with leakage resilience [15], fully secure ABE and
inner-product PE [14, 24].

1.3 Organization
The rest of the paper is organized as follows. In Section

2, we review some standard notations and cryptographic
definitions. In Section 3, we describe the security model for
CP-ABE with partially hidden access structures and propose
a concrete construction. Details of the security proofs of the
proposed construction are given in the Appendix. We state
our conclusion in Section 4.

2. PRELIMINARIES
If S is a set, then s

$← S denotes the operation of picking
an element s uniformly at random from S. Let N denote
the set of natural numbers. If λ ∈ N then 1λ denotes the



string of λ ones. Let z ← A(x, y, . . .) denote the operation
of running an algorithm A with inputs (x, y, . . .) and output
z. A function f(λ) is negligible if for every c > 0 there exists
a λc such that f(λ) < 1/λc for all λ > λc.

2.1 Access Structures

Definition 1 (Access Structure [1]). Let {P1, . . . , Pn}
be a set of parties. A collection A ⊆ 2{P1,...,Pn} is monotone
if ∀B,C : if B ∈ A and B ⊆ C, then C ∈ A. An access
structure (respectively, monotone access structure) is a col-
lection (respectively, monotone collection) A of non-empty

subsets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{∅}. The sets
in A are called authorized sets, and the sets not in A are
called unauthorized sets.

In our context, attributes play the role of parties and we
restrict our attention to monotone access structures. It is
possible to (inefficiently) realize general access structures us-
ing our techniques by treating the negation of an attribute
as a separate attribute.

2.2 Linear Secret Sharing Schemes
Our construction will employ linear secret-sharing schemes

(LSSS). We use the definition adapted from [1]:

Definition 2 (Linear Secret-Sharing Schemes). A
secret sharing scheme Π over a set of parties P is called lin-
ear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A with ℓ rows and n columns
called the share-generating matrix for Π. For all i =
1, . . . , ℓ, the ith row of A is labeled by a party ρ(i) (ρ
is a function from {1, . . . , ℓ} to P). When we consider
the column vector v = (s, r2, . . . , rn), where s ∈ Zp is
the secret to be shared, and r2, . . . , rn ∈ Zp are ran-
domly chosen, then Av is the vector of ℓ shares of the
secret s according to Π. The share (Av)i belongs to
party ρ(i).

It is shown in [1] that every linear secret-sharing scheme
according to the above definition also enjoys the linear re-
construction property, defined as follows. Suppose that Π
is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊂ {1, . . . , ℓ} be defined as I =
{i|ρ(i) ∈ S}. Then there exist constants {ωi ∈ Zp}i∈I such
that, if {λi} are valid shares of any secret s according to Π,
then

∑
i∈I ωiλi = s. Let Ai denotes the ith row of A, we

have
∑

i∈I ωiAi = (1, 0, . . . , 0). These constants {ωi} can be
found in time polynomial in the size of the share-generation
matrix A [1]. Note that, for unauthorized sets, no such con-
stants {ωi} exist.

Boolean Formulas Access structures might also be de-
scribed in terms of monotonic boolean formulas. Using stan-
dard techniques [1] one can convert any monotonic boolean
formula into an LSSS representation. We can represent the
boolean formula as an access tree. An access tree of ℓ nodes
will result in an LSSS matrix of ℓ rows. We refer the reader
to the appendix of [17] for a discussion on how to perform
this conversion.

2.3 Ciphertext-Policy Attribute-Based Encryp-
tion

A CP-ABE scheme consists of the following four algo-
rithms:

Setup(1λ, U) takes as input a security parameter λ and the
attribute universe description U . It outputs the public
parameters PK and a master secret key MSK.

KeyGen(PK,MSK,S) takes as input the public parameters
PK, the master secret key MSK and a set of attributes
S. It outputs a secret key SKS .

Encrypt(PK,M,A) takes as input the public parameters
PK, a messageM and an access structure A. It outputs
a ciphertext C.

Decrypt(PK,SKS , C) takes as input the public parameters
PK, a secret key SKS and a ciphertext C. It outputs
a message M .

Let (PK,MSK)← Setup(1λ, U), SKS ← KeyGen(PK,MSK,S),
C ← Encrypt(PK,M,A). For correctness, we require the fol-
lowing to hold:

1. If the set S of attributes satisfies the access structure
A, then M ← Decrypt(PK,SKS , C);

2. Otherwise, with overwhelming probability, Decrypt(PK,
SKS , C) outputs a random message.

2.4 Composite Order Bilinear Groups
We will construct our scheme in composite order bilinear

groups whose order is the product of four distinct primes.
Composite order bilinear groups were first introduced in [4].

Let G be an algorithm that takes as input a security
parameter 1λ and outputs a tuple (p1, p2, p3, p4,G,GT , e),
where p1, p2, p3, p4 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3p4, and e : G×G→ GT is a map
such that

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab;

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order
N in GT .

We further require that multiplication in G and GT , as
well as the bilinear map e, are computable in time poly-
nomial in λ. We use Gp1 ,Gp2 ,Gp3 ,Gp4 to denote the sub-
groups of G having order p1, p2, p3, p4, respectively. Observe
that G = Gp1 ×Gp2 ×Gp3 ×Gp4 . Note also that if g1 ∈ Gp1

and g2 ∈ Gp2 then e(g1, g2) = 1. A similar rule holds when-
ever e is applied to elements in distinct subgroups.

We now state the complexity assumptions we use. As-
sumptions 1, 2 and 3 are the same assumptions used in [14],
and we use it in the group whose order is a product of four
primes. Assumption 4 was used in [6].

Assumption 1. Let G be as above. We define the follow-
ing distribution:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

g
$← Gp1 , X3

$← Gp3 , X4
$← Gp4 ,

D = (G,GT , N, e, g,X3, X4),



T1
$← Gp1 ×Gp2 , T2

$← Gp1 .

The advantage of an algorithm A in breaking Assumption 1
is defined as

Adv1A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 3. we say G satisfies Assumption 1 if for any
polynomial time algorithm A, Adv1A is negligible.

Assumption 2. Let G be as above. We define the follow-
ing distribution:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

g,X1
$← Gp1 , X2, Y2

$← Gp2 , X3, Y3
$← Gp3 , X4

$← Gp4 ,

D = (G,GT , N, e, g,X1X2, Y2Y3,X3,X4),

T1
$← Gp1 ×Gp2 ×Gp3 , T2

$← Gp1 ×Gp3 .

The advantage of an algorithm A in breaking Assumption 2
is defined as

Adv2A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 4. we say G satisfies Assumption 2 if for any
polynomial time algorithm A, Adv2A is negligible.

Assumption 3. Let G be as above. We define the follow-
ing distribution:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

α, s ∈ ZN , g
$← Gp1 ,

g2, X2, Y2
$← Gp2 , X3

$← Gp3 , X4
$← Gp4 ,

D = (G,GT , N, e, g, g2, g
αX2, g

sY2, X3, X4),

T1 = e(g, g)αs, T2
$← GT .

The advantage of an algorithm A in breaking Assumption 3
is defined as

Adv3A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 5. we say G satisfies Assumption 3 if for any
polynomial time algorithm A, Adv3A is negligible.

Assumption 4. Let G be as above. We define the follow-
ing distribution:

(p1, p2, p3, p4,G,GT , e)← G(1λ), N = p1p2p3p4,

t′, r′ ∈ ZN , g, h
$← Gp1 , g2, X2, A2, B2, D2

$← Gp2 ,

X3
$← Gp3 , X4, Z,A4, D4

$← Gp4 ,

D = (G,GT , N, e, g, g2, g
t′B2, h

t′Y2, X3, X4, hZ, g
r′D2D4),

T = hr′A2A4, T2
$← Gp1 ×Gp2 ×Gp4 .

The advantage of an algorithm A in breaking Assumption 4
is defined as

Adv4A = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 6. we say G satisfies Assumption 4 if for any
polynomial time algorithm A, Adv4A is negligible.

3. CP-ABE WITH PARTIALLY HIDDEN AC-
CESS STRUCTURES

In this section, we first describe the security model for CP-
ABE with partially hidden access structures. Then, based
on the CP-ABE scheme proposed by Lewko et al. [14], we
propose a new CP-ABE scheme, which satisfies the security
definition of partially hidden access structures.

Similar to the scheme in [14], our proposed CP-ABE scheme
has the restriction that each attribute name can only be used
once in an access formula, which is called one-use CP-ABE.
We can obtain a secure CP-ABE scheme with partially hid-
den access structures where attribute names are used mul-
tiple times (up to a constant number of uses fixed at setup)
from a one-use scheme by applying the generic transforma-
tion given in Lewko et al. [14]. While the transformation
does incur some cost in key size, it does not increase the size
of the ciphertext.

Our construction supports arbitrary monotone access for-
mulas. As in [14], we express access formulas by an LSSS
matrixA over the attributes in the system, but with a signif-
icant difference. In our construction, each attribute includes
two parts: attribute name and its value. Without loss of gen-
erality, we assume that there are n categories of attributes
and every user has n attributes with each attribute belong-
ing to a different category. For notational purposes, let i
denote the attribute name of the ith category attribute. A
user’s attribute set S is parsed as (s1, . . . , sn), where si ∈ ZN

is the value of attribute i. We express an access formula by
(A, ρ, T ), where A is ℓ × n share-generating matrix, ρ is a
map from each row of A to an attribute name (i.e., ρ is a
function from {1, . . . , ℓ} to {1, . . . , n}), T can be parsed as
(tρ(1), . . . , tρ(ℓ)) and tρ(i) is the value of attribute ρ(i) speci-
fied by the access formula.

Using our notations, a user’s attribute set S = (s1, . . . , sn)
satisfies an access formula (A, ρ, T ) if and only if there exist
I ⊆ {1, . . . , ℓ} and constants {ωi}i∈I such that∑

i∈I

ωiAi = (1, 0, . . . , 0) and sρ(i) = tρ(i) for ∀i ∈ I,

where Ai denotes the ith row of A. We also say that I ⊆
{1, . . . , ℓ} satisfies (A, ρ) if there exist constants {ωi}i∈I
such that

∑
i∈I ωiAi = (1, 0, . . . , 0). We define IA,ρ as the

set of minimum subsets of {1, . . . , ℓ} that satisfies (A, ρ).
By “minimum”, we mean the subset cannot become smaller
while still satisfying (A, ρ).

Note that, in our construction to be presented below,
the specific attribute values (i.e., T ) of an access formula
(A, ρ, T ) is hidden, while other information about the ac-
cess formula (i.e., (A, ρ) is sent along with the ciphertext
explicitly.

3.1 Security Model for CP-ABE with Partially
Hidden Access Structures

We now give the security model for CP-ABE with par-
tially hidden access structures, described as a security game
between a challenger and an adversary A. The game pro-
ceeds as follows:

Setup The challenger runs Setup(1λ, U) to obtain the pub-
lic parameters PK and a master secret key MSK. It
gives the public parameters PK to the adversary A
and keeps MSK to itself.



Query phase 1 The adversary A adaptively queries the
challenger for secret keys corresponding to sets of at-
tributes S1, . . . ,Sq. In response, the challenger runs
SKSi ← KeyGen(PK,MSK,Si) and gives the secret key
SKSi to A, for 1 ≤ i ≤ q.

Challenge The adversary A submits two (equal length)
messages M0,M1 and two access structures (A, ρ, T0),
(A, ρ, T1), subject to the restriction that, (A, ρ, T0)
and (A, ρ, T1) cannot be satisfied by any of the queried
attribute sets. The challenger selects a random bit
β ∈ {0, 1}, sets C = Encrypt(PK,Mβ , (A, ρ, Tβ)) and
sends C to the adversary as its challenge ciphertext.

Note that, the LSSS matrix A and ρ are the same in
the two access structures provided by the adversary. In
a CP-ABE scheme with partially hidden access struc-
tures, one can distinguish the ciphertexts if the as-
sociated access structures have different (A, ρ), since
(A, ρ) is sent along with the ciphertext explicitly.

Query phase 2 The adversary continues to adaptively query
the challenger for secret keys corresponding to sets of
attributes with the added restriction that none of these
satisfies (A, ρ, T0) and (A, ρ, T1).

Guess The adversary A outputs its guess β′ ∈ {0, 1} for β
and wins the game if β = β′.

The advantage of the adversary in this game is defined as
|Pr[β = β′] − 1

2
| where the probability is taken over the

random bits used by the challenger and the adversary.

Definition 7. The access structures of a ciphertext-policy
attribute-based encryption scheme is partially hidden if all
polynomial time adversaries have at most a negligible ad-
vantage in this security game.

3.2 Our Construction
The proposed CP-ABE scheme consists of the following

algorithms:

Setup(1λ, U) The setup algorithm first runs G(1λ) to ob-
tain (p1, p2, p3, p4,G,GT , e) with G = Gp1 × Gp2 ×
Gp3 × Gp4 , where G and GT are cyclic groups of or-
der N = p1p2p3p4. The attribute universe descrip-
tion U = ZN . Next it chooses g, h, u1, . . . , un ∈ Gp1 ,
X3 ∈ Gp3 ,X4, Z ∈ Gp4 and α, a ∈ ZN uniformly at
random. The public parameters are published as

PK = (N, g, ga, e(g, g)α, u1, . . . , un, H = h · Z,X4).

The master secret key is MSK = (h,X3, α).

KeyGen(PK,MSK,S = (s1, . . . , sn)) The key generation al-
gorithm chooses t ∈ ZN and R,R′, R1, . . . , Rn ∈ Gp3

uniformly at random. The secret key SKS = (S, K,K ′,
{Ki}1≤i≤n) is computed as

K = gαgatR, K′ = gtR′, Ki = (usi
i h)tRi.

Encrypt(PK,M ∈ GT , (A, ρ, T )) A is an ℓ×n matrix, ρ is a
map from each row Ax of A to an attribute name and
T = (tρ(1), . . . , tρ(ℓ)) ∈ Zℓ

N . The encryption algorithm
chooses two random vectors v, v′ ∈ Zn

N , denoted v =
(s, v2, . . . , vn) and v′ = (s′, v′2, . . . , v

′
n). It also chooses

rx, r
′
x ∈ ZN and Z1,x, Z

′
1,x, Z2,x, Z

′
2,x ∈ Gp4 uniformly

at random, for 1 ≤ x ≤ ℓ. The ciphertext is C =

((A, ρ), C̃1, C
′
1, {C1,x, D1,x}1≤x≤ℓ, C̃2, C

′
2, {C2,x,

D2,x}1≤x≤ℓ), where

C̃1 = M · e(g, g)αs, C′
1 = gs,

C1,x = gaAx·v(u
tρ(x)

ρ(x) H)−rx · Z1,x, D1,x = grx · Z′
1,x,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′x · Z2,x, D2,x = gr
′
x · Z′

2,x.

Decrypt(PK,SKS , C) Let C = ((A, ρ), C̃1, C′
1, {C1,x,

D1,x}1≤x≤ℓ, C̃2, C
′
2, {C2,x, D2,x}1≤x≤ℓ), SKS = (S,

K, K ′, {Ki}1≤i≤n) and S = (s1, . . . , sn). The decryp-
tion algorithm first calculates IA,ρ from (A, ρ), where
IA,ρ denotes the set of minimum subsets of {1, . . . , ℓ}
that satisfies (A, ρ). It then checks if there exists an
I ∈ IA,ρ that satisfies

C̃2 = e(C′
2,K)/

(∏
i∈I

(e(C2,i,K
′) · e(D2,i,Kρ(i)))

ωi

)
,

where
∑

i∈I ωiAi = (1, 0, . . . , 0). If no element in IA,ρ

satisfies the above equation, it outputs ⊥. Otherwise,
it computes

e(C′
1,K)/

(∏
i∈I

(e(C1,i,K
′) · e(D1,i,Kρ(i)))

ωi

)

= e(g, g)αse(g, g)ats/

(∏
i∈I

e(g, g)atAi·v·ωi

)
= e(g, g)αs.

Then M can be recovered as C̃1/e(g, g)
αs.

In our construction, a ciphertext includes two parts: (C̃1, C
′
1,

{C1,x, D1,x}1≤x≤ℓ) and (C̃2, C′
2, {C2,x, D2,x}1≤x≤ℓ). The

first part is an encryption of the message M . The second
part is redundant, and can be viewed as an encryption of
1. If the private key attributes of a user satisfy the access
structure associated with the ciphertext, the redundant sec-
ond part will help the user decide which attribute set satisfies
the access structure; and then the user is able to use the in-
formation and his private key to decrypt the first part of the
ciphertext and recover the plaintext M . The CP-ABE con-
struction in [14] uses composite order bilinear groups whose
order is the product of three distinct primes, while our con-
struction uses groups whose order is the product of four dis-
tinct primes. Note that in our construction, component H of
the public parameters and components C1,x, D1,x, C2,x, D2,x

of the ciphertext all have an element from Gp4 as a factor.
This formation of H,C1,x, D1,x, C2,x, D2,x allows us to prove
that the access structures of our CP-ABE scheme is partially
hidden. We now state the security theorem of our CP-ABE
scheme.

Theorem 1. If Assumptions 1, 2, 3, and 4 hold, then
the access structures of the proposed CP-ABE is partially
hidden.

Proof. Following the approach by Lewko and Waters
[16], we define two additional structures: semi-functional ci-
phertexts and semi-functional keys. These will not be used
in the real system, but will be used in our proof.



Semi-functional Ciphertext Let g2 denote a generator
of the subgroup Gp2 . A semi-functional ciphertext is
created as follows. We first use the encryption algo-
rithm to form a normal ciphertext C′ = ((A, ρ), C̃′

1, C
′′
1 ,

{C′
1,x, D

′
1,x}1≤x≤ℓ, C̃

′
2, C

′′
2 , {C′

2,x, D
′
2,x}1≤x≤ℓ). Then,

we choose random exponents c, c′ ∈ ZN and two ran-
dom vectors w,w′ ∈ Zn

N . We also choose random val-
ues zi ∈ ZN associated to attributes, and random val-
ues γx, γ

′
x ∈ ZN associated to row x of the ℓ×n matrix

A. The semi-functional ciphertext C is set to be(
(A, ρ), C̃1 = C̃′

1, C′
1 = C′′

1 · gc2,

{C1,x = C′
1,x · g

Axw+γxzρ(x)

2 ,

D1,x = D′
1,x · g−γx

2 }1≤x≤ℓ,

C′
2 = C′′

2 · gc
′

2 ,

{C2,x = C′
2,x · g

Axw′+γ′
xzρ(x)

2 ,

D2,x = D′
2,x · g

−γ′
x

2 }1≤x≤ℓ

)
.

Semi-functional Key A semi-functional key will take on
one of three forms. To create a semi-functional key, we
first use the key generation algorithm to form a normal
key SK′

S = (S, K′,K′′, {K′
i}1≤i≤n). Then, we choose

random exponents d, d′, di ∈ ZN . The semi-functional
key of type 1 is set as

(S, K = K′·gd2 , K′ = K′′·gd
′

2 , {Ki = K′
i·gd

′zi
2 }1≤i≤n).

The semi-functional key of type 2 is set as

(S, K = K′ · gd2 , K′ = K′′, {Ki = K′
i}1≤i≤n).

The semi-functional key of type 3 is set as

(S, K = K′ ·gd2 , K′ = K′′ ·gd
′

2 , {Ki = K′
i ·gdi2 }1≤i≤n).

We will prove the security of our scheme from Assump-
tions 1, 2, 3 and 4 using a hybrid argument over a sequence
of games. The first game, Gamereal is the real security game
(the ciphertext and all the keys are normal). In the next
game, Game0, all of the keys will be normal, but the chal-
lenge ciphertext will be semi-functional. We let q denote the
number of key queries made by the attacker. For k from 1
to q, we define

Gamek,1 In this game, the challenge ciphertext is semi- func-
tional, the first k − 1 keys are semi-functional of type
3, the kth key is semi-functional of type 1, and the
remaining keys are normal.

Gamek,2 In this game, the challenge ciphertext is semi- func-
tional, the first k − 1 keys are semi-functional of type
3, the kth key is semi-functional of type 2, and the
remaining keys are normal.

Gamek,3 In this game, the challenge ciphertext is semi- func-
tional, the first k keys are semi-functional of type 3,
and the remaining keys are normal.

For notational purposes, we think of Game0,3 as another
way of denoting Game0. We note that in Gameq,3, all of
the keys are semi-functional of type 3. In the penultimate
game, GameFinal0 , all the keys are semi-functional, and the
ciphertext is a semi-functional encryption of a random mes-
sage, independent of the messages M0 and M1 provided by

the adversary. The final game, GameFinal1 , is the same as
GameFinal0 , except that in the challenge ciphertext, C1,x and
C2,x are chosen from Gp1 ×Gp2 ×Gp4 at random (thus the
ciphertext is independent from T0 and T1 provided by the
adversary). It is clear that in the final game, no adversary
can have advantage greater than 0.

We prove that these games are indistinguishable in six
lemmas, whose formal descriptions and proofs are given in
the Appendix. Therefore, we conclude that the advantage
of the adversary in Gamereal (i.e., the real security game) is
negligible. This completes the proof of Theorem 1.

4. CONCLUSIONS
In this paper, we presented an efficient CP-ABE scheme

with partially hidden access structures. Our scheme can
handle any access structure that can be expressed as an
LSSS. Previous CP-ABE schemes with partially hidden ac-
cess structures [22, 19, 13] only support restricted access
structures, which can be expressed as AND gates on multi-
valued attributes with wildcards; thus our scheme is more
flexible and expressive.

By applying the dual system encryption methodology [29],
we proved that our scheme is fully secure in the standard
model. The security of our scheme relies on some non-
standard complexity assumptions. A further direction is to
find expressive CP-ABE constructions with partially hidden
access structures from simple assumptions.
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APPENDIX
A. SECURITY PROOFS

Lemma 1. Suppose that G satisfies Assumption 1. Then
Gamereal and Game0 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distin-
guishes Gamereal and Game0. Then we can build an algo-
rithm B with non-negligible advantage in breaking Assump-
tion 1. B is given g,X3, X4, T and will simulate Gamereal
or Game0 with A. B chooses α, a, a0, a1, . . . , an ∈ ZN and
Z ∈ Gp4 uniformly at random. It then sets h = ga0 , u1 =
ga1 , . . . , un = gan , and sends A the public parameters:

PK = (N, g, ga, e(g, g)α, u1, . . . , un,H = h · Z,X4).

It can generate normal keys in response to A’s key requests
by using the key generation algorithm, since it knows the
MSK = (h,X3, α).

At some point, A sends B two (equal length) messages
M0,M1 and two access structures (A, ρ, T0), (A, ρ, T1). B
chooses β ∈ {0, 1} randomly and does the following.

1. B chooses random values ṽ2, . . . , ṽn, ṽ
′
2, . . . , ṽ

′
n ∈ ZN

and creates vectors ṽ = (1, ṽ2, . . . , ṽn), ṽ
′
n = (1, ṽ′2, . . . , ṽ

′
n).

2. B chooses random values r̃x, r̃
′
x ∈ ZN and Z̃1,x, Z

′
1,x, Z̃2,x,

Z′
2,x ∈ Gp4 for 1 ≤ x ≤ ℓ.

3. Let Tβ = (tρ(1), . . . , tρ(ℓ)). B chooses random exponent
s̃ ∈ ZN and computes

C̃1 = Mβ · e(gα, T ), C′
1 = T,

C1,x = T aAx·ṽ · T−(a0+aρ(x)tρ(x))r̃x · Z̃1,x,

D1,x = T r̃x · Z′
1,x,

C̃2 = e(gα, T s̃), C′
2 = T s̃,

C2,x = T s̃aAx·ṽ′
· T−(a0+aρ(x)tρ(x))r̃

′
x · Z̃2,x,

D2,x = T r̃′x · Z′
2,x.

4. B sets the challenge ciphertext as C = ((A, ρ), C̃1, C
′
1,

{C1,x, D1,x}1≤x≤ℓ, C̃2, C
′
2, {C2,x, D2,x}1≤x≤ℓ) and sends

it to A.

If T
$← Gp1 ×Gp2 , let T = gsgc2, then

C̃1 = Mβ · e(g, g)αs, C′
1 = gs · gc2,

C1,x = gaAx·v(u
tρ(x)

ρ(x) H)−rxZ1,x · g
Axw+γxzρ(x)

2 ,

D1,x = grxZ′
1,x · g−γx

2 ,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
· gc

′
2 ,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′xZ2,x · g
Axw′+γ′

xzρ(x)

2 ,

D2,x = gr
′
xZ′

2,x · g
−γ′

x
2 ,



where s′ = ss̃, c′ = cs̃, v = (s, sṽ2, . . . , sṽn), v
′ = (s′, s′ṽ′2,

. . . , s′ṽ′n), rx = sr̃x, r′x = sr̃′x, Z1,x = Z̃1,xZ
rx , Z2,x =

Z̃2,xZ
r′x , w = caṽ, w′ = cs̃aṽ′, γx = −cr̃x, γ′

x = −cr̃′x,
zρ(x) = a0 + aρ(x)tρ(x). This is a semi-functional cipher-
text and B simulates Game0. We note that the values of
a, a0, aρ(x), tρ(x), s̃, ṽ2, . . . , ṽn, ṽ

′
2, . . . , ṽ

′
n, r̃x, r̃

′
x modulo p1 are

uncorrelated from their values modulo p2, so this is properly

distributed. If T
$← Gp1 , it is easy to observe that this is a

normal ciphertext and B simulates Gamereal. Hence, B can
use the output of A to distinguish between these possibilities
for T .

Lemma 2. Suppose that G satisfies Assumption 2. Then
Gamek−1,3 and Gamek,1 are computationally indistinguish-
able.

Proof. Suppose there exists an algorithm A that distin-
guishes Gamek−1,3 and Gamek,1. Then we can build an algo-
rithm B with non-negligible advantage in breaking Assump-
tion 2. B is given g,X1X2, Y2Y3, X3, X4, T and will simulate
Gamek−1,3 or Gamek,1 withA. B chooses α, a, a0, a1, . . . , an ∈
ZN and Z ∈ Gp4 uniformly at random. It then sets h =
ga0 , u1 = ga1 , . . . , un = gan , and sends A the public param-
eters:

PK = (N, g, ga, e(g, g)α, u1, . . . , un, H = h · Z,X4).

Note that B knows the master secret key MSK = (h,X3, α)
associated with PK. Let us now explain how B answers the
j-th key query for S = (s1, . . . , sn).
For j < k, B creates a semi-functional key of type 3 by

choosing random exponents t, d̃, d̃′, d̃′1, . . . , d̃
′
n ∈ ZN , and set-

ting:

K = gαgat(Y2Y3)
d̃, K′ = gt(Y2Y3)

d̃′ ,

{Ki = (usi
i h)t(Y2Y3)

d̃′i}1≤i≤n.

We note that this is a properly distributed semi-functional
key of 3 because the values of d̃, d̃′, d̃′i modulo p2 are uncor-
related to their values modulo p3.
For j > k, B creates a normal key by running the key

generation algorithm since it knows the MSK.
To answer the k-th key quest for S = (s1, . . . , sn), B

chooses random elements R̃, R̃′, R̃1, . . . , R̃n ∈ Gp3 and sets:

K = gα · T a · R̃, K′ = T · R̃′, {Ki = T a0+aisi · R̃′
i}i≤i≤n.

We have the following observations. If T
$← Gp1×Gp2×Gp3 ,

then T can be written as gtgd
′

2 R̄, and

K = gαgatR · gd2 , K′ = gtR′ · gd
′

2 ,

{Ki = (usi
i h)tRi · gd

′zi
2 }i≤i≤n,

where R = R̄aR̃, d = ad′, R′ = R̄R̃′, Ri = R̄a0+aisiR̃′
i, zi =

a0 + aisi. This is a semi-function key of type 1. Note that
the values of a, a0, ai, si modulo p1 are uncorrelated from

their values modulo p2. If T
$← Gp1 ×Gp3 , this is a properly

distributed normal key.
At some point, A sends B two (equal length) messages

M0,M1 and two access structures (A, ρ, T0), (A, ρ, T1). B
chooses β ∈ {0, 1} randomly and does the following.

1. B chooses random values ṽ2, . . . , ṽn, ṽ
′
2, . . . , ṽ

′
n ∈ ZN

and creates vectors ṽ = (1, ṽ2, . . . , ṽn), ṽ
′
n = (1, ṽ′2, . . . , ṽ

′
n).

2. B chooses random values r̃x, r̃
′
x ∈ ZN and Z̃1,x, Z

′
1,x, Z̃2,x,

Z′
2,x ∈ Gp4 for 1 ≤ x ≤ ℓ.

3. Let Tβ = (tρ(1), . . . , tρ(ℓ)). B chooses random exponent
s̃ ∈ ZN and computes

C̃1 = Mβ · e(gα,X1X2), C′
1 = X1X2,

C1,x = (X1X2)
aAx·ṽ · (X1X2)

−(a0+aρ(x)tρ(x))r̃x · Z̃1,x,

D1,x = (X1X2)
r̃x · Z′

1,x,

C̃2 = e(gα, (X1X2)
s̃), C′

2 = (X1X2)
s̃,

C2,x = (X1X2)
s̃aAx·ṽ′

· (X1X2)
−(a0+aρ(x)tρ(x))r̃

′
x · Z̃2,x,

D2,x = (X1X2)
r̃′x · Z′

2,x.

4. B sets the challenge ciphertext as C = ((A, ρ), C̃1, C
′
1,

{C1,x, D1,x}1≤x≤ℓ, C̃2, C
′
2, {C2,x, D2,x}1≤x≤ℓ) and sends

it to A.
If we let X1X2 = gsgc2, then

C̃1 = Mβ · e(g, g)αs, C′
1 = gs · gc2,

C1,x = gaAx·v(u
tρ(x)

ρ(x) H)−rxZ1,x · g
Axw+γxzρ(x)

2 ,

D1,x = grxZ′
1,x · g−γx

2 ,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
· gc

′
2 ,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′xZ2,x · g
Axw′+γ′

xzρ(x)

2 ,

D2,x = gr
′
xZ′

2,x · g
−γ′

x
2 ,

where s′ = ss̃, c′ = cs̃, v = (s, sṽ2, . . . , sṽn), v
′ = (s′, s′ṽ′2, . . . ,

s′ṽ′n), rx = sr̃x, r
′
x = sr̃′x, Z1,x = Z̃1,xZ

rx , Z2,x = Z̃2,xZ
r′x ,

w = caṽ, w′ = cs̃aṽ′, γx = −cr̃x, γ′
x = −cr̃′x, zρ(x) = a0 +

aρ(x)tρ(x). This is a semi-functional ciphertext. Note that
the values of a, a0, aρ(x), tρ(x), s̃, ṽ2, . . . , ṽn, ṽ

′
2, . . . , ṽ

′
n, r̃x, r̃

′
x

modulo p1 are uncorrelated from their values modulo p2.
Similar to the analysis in the proof of Lemma 2 of Lewko

et al.’s CP-ABE scheme [14], the kth key and ciphertext are

properly distributed. We can thus conclude that, if T
$←

Gp1 ×Gp2 ×Gp3 , then B has properly simulated Gamek,1. If

T
$← Gp1 × Gp3 , then B has properly simulated Gamek−1,3.

Hence, B can use the output of A to distinguish between
these possibilities for T .

Lemma 3. Suppose that G satisfies Assumption 2. Then
Gamek,1 and Gamek,2 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distin-
guishes Gamek,1 and Gamek,2. Then we can build an algo-
rithm B with non-negligible advantage in breaking Assump-
tion 2. B is given g,X1X2, Y2Y3,X3,X4, T and will simulate
Gamek,1 or Gamek,2 with A. B chooses α, a, a0, a1, . . . , an ∈
ZN and Z ∈ Gp4 uniformly at random. It then sets h =
ga0 , u1 = ga1 , . . . , un = gan , and sends A the public param-
eters:

PK = (N, g, ga, e(g, g)α, u1, . . . , un,H = h · Z,X4).

The first k − 1 semi-functional keys of type 3, the nor-
mal keys > k, and the challenge ciphertext are constructed
exactly as in the Lemma 2.

To answer the k-th key quest for S = (s1, . . . , sn), B pro-
ceeds as it did in the Lemma 2, but B additionally chooses
a random exponent δ ∈ ZN and sets:

K = gα · T a · R̃ · (Y2Y3)
δ, K′ = T · R̃′,

{Ki = T a0+aisi · R̃′
i}i≤i≤n,



The only change we have made here is adding the (Y2Y3)
δ

term, which randomizes the Gp2 part of K. If T
$← Gp1 ×

Gp2 ×Gp3 , this is a properly distributed semi-functional key

of type 1. If T
$← Gp1 × Gp3 , this is a properly distributed

semi-functional key of type 2.

We can conclude that, if T
$← Gp1×Gp2×Gp3 , then B has

properly simulated Gamek,1. If T
$← Gp1 ×Gp3 , then B has

properly simulated Gamek,2. Hence, B can use the output
of A to distinguish between these possibilities for T .

Lemma 4. Suppose that G satisfies Assumption 2. Then
Gamek,2 and Gamek,3 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distin-
guishes Gamek,2 and Gamek,3. Then we can build an algo-
rithm B with non-negligible advantage in breaking Assump-
tion 2. B is given g,X1X2, Y2Y3, X3, X4, T and will simulate
Gamek,2 or Gamek,3 with A. B chooses α, a, a0, a1, . . . , an ∈
ZN and Z ∈ Gp4 uniformly at random. It then sets h =
ga0 , u1 = ga1 , . . . , un = gan , and sends A the public param-
eters:

PK = (N, g, ga, e(g, g)α, u1, . . . , un, H = h · Z,X4).

The first k − 1 semi-functional keys of type 3, the nor-
mal keys > k, and the challenge ciphertext are constructed
exactly as in the Lemma 2.
To answer the k-th key quest for S = (s1, . . . , sn), B

chooses a random exponent δ ∈ ZN , random elements R̃,
R̃′, R̃1, . . . , R̃n ∈ Gp3 and sets:

K = gα · T a · R̃ · (Y2Y3)
δ, K′ = T · R̃′,

{Ki = T a0+aisi · R̃′
i}i≤i≤n.

We have the following observations. If T
$← Gp1×Gp2×Gp3 ,

then T can be written as gtgd
′

2 R̄, and

K = gαgatR · gd2 , K′ = gtR′ · gd
′

2 ,

{Ki = (usi
i h)tRi · gdi2 }i≤i≤n,

whereR = R̄aR̃Y δ
3 , g

d
2 = gad

′
2 Y δ

2 , R
′ = R̄R̃′, Ri = R̄a0+aisiR̃′

i,
di = d′(a0 + aisi). This is a semi-functional key of type 3.
Note that the values of δ modulo p2 are uncorrelated from

their values modulo p3. If T
$← Gp1 ×Gp3 , this is a properly

distributed semi-functional key of type 2.
Similar to the analysis in the proof of Lemma 2 of Lewko

et al.’s CP-ABE scheme [14], the kth key and ciphertext

are properly distributed. We can conclude that, if T
$←

Gp1 × Gp2 × Gp3 , then B has properly simulated Gamek,3.

If T
$← Gp1 × Gp3 , then B has properly simulated Gamek,2.

Hence, B can use the output of A to distinguish between
these possibilities for T .

Lemma 5. Suppose that G satisfies Assumption 3. Then
Gameq,3 and GameFinal0 are computationally indistinguish-
able.

Proof. Suppose there exists an algorithm A that distin-
guishes Gameq,3 and GameFinal0 . Then we can build an algo-
rithm B with non-negligible advantage in breaking Assump-
tion 3. B is given g, g2, g

αX2, g
sY2, X3, X4, T and will simu-

late Gameq,3 or GameFinal0 withA. B chooses a, a0, a1, . . . , an ∈
ZN and Z ∈ Gp4 uniformly at random. It then sets h =

ga0 , u1 = ga1 , . . . , un = gan , and sends A the public param-
eters:

PK = (N, g, ga, e(g, gαX2) = e(g, g)α,

u1, . . . , un, H = h · Z,X4).

Each time B is asked to provide a key for S = (s1, . . . , sn),
B creates a semi-functional key of type 3 by choosing ran-
dom exponents t, d̃, d′, d1, . . . , dn ∈ ZN , random elements
R,R′, R1, . . . , Rn ∈ Gp3 , and setting:

K = (gαX2)g
atR · gd̃2 , K′ = gtR′ · gd

′
2 ,

{Ki = (usi
i h)tRi · gdi2 }1≤i≤n.

We note that K can be written as gαgatR · gd2 , where gd2 =

X2g
d̃
2 , so this is a properly distributed semi-functional key

of type 3.
At some point, A sends B two (equal length) messages

M0,M1 and two access structures (A, ρ, T0), (A, ρ, T1). B
chooses β ∈ {0, 1} randomly and does the following.

1. B chooses random values ṽ2, . . . , ṽn ∈ ZN and creates
the vector ṽ = (1, ṽ2, . . . , ṽn). B also chooses two ran-
dom vectors v′ = (s′, v′2, . . . , v

′
n), w

′ = (w′
1, . . . , w

′
n) ∈

Zn
N .

2. B chooses random values r̃x, r
′
x, γ

′
x ∈ ZN and Z̃1,x, Z

′
1,x,

Z2,x, Z
′
2,x ∈ Gp4 for 1 ≤ x ≤ ℓ.

3. Let Tβ = (tρ(1), . . . , tρ(ℓ)). B chooses random exponent
c′ ∈ ZN and computes

C̃1 = Mβ · T, C′
1 = gsY2,

C1,x = (gsY2)
aAx·ṽ(gsY2)

−(a0+aρ(x)tρ(x))r̃x Z̃1,x,

D1,x = (gsY2)
r̃x · Z′

1,x,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
gc

′
2 ,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′xZ2,xg
Axw′+γ′

x(a0+aρ(x)tρ(x))

2 ,

D2,x = gr
′
xZ′

2,x · g
−γ′

x
2 .

4. B sets the challenge ciphertext as C = ((A, ρ), C̃1, C
′
1,

{C1,x, D1,x}1≤x≤ℓ, C̃2, C
′
2, {C2,x, D2,x}1≤x≤ℓ) and sends

it to A.
Let gsY2 = gsgc2, then

C̃1 = Mβ · T, C′
1 = gs · gc2,

C1,x = gaAx·v(u
tρ(x)

ρ(x) H)−rxZ1,x · g
Axw+γxzρ(x)

2 ,

D1,x = grxZ′
1,x · g−γx

2 ,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
· gc

′
2 ,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′xZ2,x · g
Axw′+γ′

xzρ(x)

2 ,

D2,x = gr
′
xZ′

2,x · g
−γ′

x
2 ,

where v = (s, sṽ2, . . . , sṽn), rx = sr̃x, Z1,x = Z̃1,xZ
rx , w =

caṽ, γx = −cr̃x, zρ(x) = a0 + aρ(x)tρ(x). Note that the values
of a, a0, aρ(x), tρ(x), ṽ2, . . . , ṽn, r̃x modulo p1 are uncorrelated
from their values modulo p2.

If T = e(g, g)αs, this is a properly distributed semi-functional
encryption of Mβ and B simulates Gameq,3. Otherwise, this
is a properly distributed semi-functional encryption of a ran-
dom message in GT and B simulates GameFinal0 . Hence, B
can use the output of A to distinguish between these possi-
bilities for T .



Lemma 6. Suppose that G satisfies Assumption 4. Then
GameFinal0 and GameFinal1 are computationally indistinguish-
able.

Proof. Suppose there exists an algorithm A that dis-
tinguishes GameFinal0 and GameFinal1 . Then we can build an
algorithm B with non-negligible advantage in breaking As-

sumption 4. B is given (g, g2, g
t′B2, h

t′Y2, X3, X4, hZ,

gr
′
D2D4, T ) and will simulate GameFinal0 or GameFinal1 with

A. B chooses a, α, a1, . . . , an ∈ ZN and Z ∈ Gp4 uniformly
at random. It then sets u1 = ga1 , . . . , un = gan , and sends
A the public parameters:

PK = (N, g, ga, e(g, g)α, u1, . . . , un, H = hZ,X4).

Each time B is asked to provide a key for S = (s1, . . . , sn),
B creates a semi-functional key by choosing a random expo-
nent t̃ ∈ ZN , random elements R,R′, R1, . . . , Rn ∈ Gp3 , and
setting:

K = gα(gt
′
B2)

at̃R, K′ = (gt
′
B2)

t̃R′,

{Ki = (gt
′
B2)

aisi t̃(ht′Y2)
t̃Ri}1≤i≤n.

We observe that

K = gαgatR · gd2 , K′ = gtR′ · gd
′

2 ,

{Ki = (usi
i h)tRi · gdi2 }1≤i≤n,

where t = t′t̃, gd2 = Bat̃
2 , gd

′
2 = B t̃

2, g
di
2 = Baisi t̃

2 Y t̃
2 . This is a

properly distributed semi-functional key of type 3 because
the values of t̃, a, ai, si modulo p2 is uncorrelated to their
values modulo p1.
At some point, A sends B two (equal length) messages

M0,M1 and two access structures (A, ρ, T0), (A, ρ, T1). B
chooses β ∈ {0, 1} randomly and does the following.

1. B chooses random vectors v = (s, v2, . . . , vn), v′ =
(s′, v′2, . . . , v

′
n), w,w′ ∈ Zn

N .

2. B chooses random values r̃x, r̃
′
x ∈ ZN and Z̃1,x, Z̃2,x ∈

Gp4 for 1 ≤ x ≤ ℓ.

3. Let Tβ = (tρ(1), . . . , tρ(ℓ)). B chooses random exponents
c, c′ ∈ ZN and sets

C̃1
$← GT , C′

1 = gsgc2,

C1,x = gaAx·v(gr
′
D2D4)

−r̃xaρ(x)tρ(x)T−r̃xgAxw
2 Z̃1,x,

D1,x = (gr
′
D2D4)

r̃x ,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
gc

′
2 ,

C2,x = gaAx·v′
(gr

′
D2D4)

−r̃′xaρ(x)tρ(x)T−r̃′xgAxw′

2 Z̃2,x,

D2,x = (gr
′
D2D4)

r̃′x .

4. B sets the challenge ciphertext as C = ((A, ρ), C̃1, C
′
1,

{C1,x, D1,x}1≤x≤ℓ, C̃2, C
′
2, {C2,x, D2,x}1≤x≤ℓ) and sends

it to A.
If T = hr′A2A4, let D2 = gγ2 and A2 = gγδ2 , we have

C̃1
$← GT , C′

1 = gs · gc2,

C1,x = gaAx·v(u
tρ(x)

ρ(x) H)−rxZ1,x · g
Axw+γxzρ(x)

2 ,

D1,x = grxZ′
1,x · g−γx

2 ,

C̃2 = e(g, g)αs′ , C′
2 = gs

′
· gc

′
2 ,

C2,x = gaAx·v′
(u

tρ(x)

ρ(x) H)−r′xZ2,x · g
Axw′+γ′

xzρ(x)

2 ,

D2,x = gr
′
xZ′

2,x · g
−γ′

x
2 ,

where rx = r′r̃x, Z1,x = Zrx Z̃1,xA
−r̃x
4 D

−r̃xaρ(x)tρ(x)

4 , γx =

−γr̃x, zρ(x) = δ+aρ(x)tρ(x), Z
′
1,x = Dr̃x

4 , Z2,x = Zr′x Z̃2,xA
−r̃′x
4

D
−r̃′xaρ(x)tρ(x)

4 , γ′
x = −γr̃′x, Z′

2,x = D
r̃′x
4 . This is a properly

distributed semi-functional encryption of a random message
in GT because the values of r̃x, r̃

′
x, aρ(x), tρ(x) modulo p1

and p2 are uncorrelated from their values modulo p4. If

T
$← Gp1 × Gp2 × Gp4 , this is a properly distributed semi-

functional ciphertext with C̃1 random in GT , and C1,x, C2,x

random in Gp1 ×Gp2 ×Gp4 .

We can conclude that, if T = hr′A2A4, then B has prop-

erly simulated GameFinal0 . If T
$← Gp1 × Gp2 × Gp4 , then

B has properly simulated GameFinal1 . Hence, B can use the
output of A to distinguish between these possibilities for
T .
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