

Efficient Offline Policy Optimization with a Learned Model

Zichen Liu 1,2 , Siyi Li 1 , Wee Sun Lee 2 , Shuicheng Yan 1 , Zhongwen Xu 1

Background

q We work on the intersection of **model-based RL** and **offline RL**

\Box offline RL

 \square avoid environment interaction, which can be costly or unsafe

- \Box model-based RL
	- \Box data-efficiency
	- \Box richer supervision signals
	- \Box helps policy and value learning

Environment Model

\square Learning an explicit or latent model about the environment dynamics?

Model in latent space advantages

o Helps representation learning (Schrittwieser,

o Computational efficiency

2020; Hessel, 2021)

- \square Representation function h_{θ}
- \Box Dynamics function g_{θ}
- \Box Prediction function f_{θ}

Eleventh International Conference on Learning Representations

ICLR2023

Monte-Carlo Tree Search as Improvement

 \Box (1)Action selection using the pUCT rule

$$
a^{k} = \arg \max_{a} \left[Q(s, a) + \pi_{\text{prior}}(s, a) \cdot \frac{\sqrt{\sum_{b} n(s, b)}}{1 + n(s, a)} \cdot \left(c_1 + \log \left(\frac{\sum_{b} n(s, b) + c_2 + 1}{c_2} \right) \right) \right]
$$

□ ⁽²⁾Node expansion and ⁽³⁾backup to update Q and n statistics *^b n*(*s, b*) + *c*² + 1

^b n(*s*⁰ *z*MCTS(*st*) = *ⁿ* and *n-step return* ion budget, output *normaliz ^b n*(*s*⁰ □ After exhausting simulation budget, output *normalized visit count*

$$
p_{\text{MCTS}}(a|s_t) = \frac{n(s_t^0, a)^{1/T}}{\sum_b n(s_t^0, b)^{1/T}},
$$

$$
z_{\text{MCTS}}(s_t) = \gamma^n \sum_a \left(\frac{n(s_{t+n}^0, a)}{\sum_b n(s_{t+n}^0, b)}\right) Q(s_{t+n}^0, a) + \sum_{t'=t}^{t+n-1} \gamma^{t'-t} r_{t'}^{\text{env}}.
$$

$$
\begin{array}{c}\n\text{Exparson} \\
\begin{array}{c}\n\end{array}\n\end{array}
$$

$$
\ell_t(\theta) = \sum_{k=0}^K \ell^v \left(v_t^k, \boxed{z_{t+k}}\right) + \ell^{\pi} \left(\pi_t^k, \boxed{p_{t+k}}\right)
$$

Monte-Carlo Tree Search as Improvement

 \Box (1)Action selection using the pUCT rule

$$
a^{k} = \arg \max_{a} \left[Q(s, a) + \pi_{\text{prior}}(s, a) \cdot \frac{\sqrt{\sum_{b} n(s, b)}}{1 + n(s, a)} \cdot \left(c_1 + \log \left(\frac{\sum_{b} n(s, b) + c_2 + 1}{c_2}\right)\right)\right]
$$

□ ⁽²⁾Node expansion and ⁽³⁾backup to update Q and n statistics *^b n*(*s, b*) + *c*² + 1

^b n(*s*⁰ *^t , b*)1*/T , z*MCTS(*st*) = *ⁿ* and *n-step return* ion budget, output *normaliz ^b n*(*s*⁰ □ After exhausting simulation budget, output *normalized visit count*

$$
p_{\text{MCTS}}(a|s_t) = \frac{n(s_t^0, a)^{1/T}}{\sum_b n(s_t^0, b)^{1/T}},
$$

$$
z_{\text{MCTS}}(s_t) = \gamma^n \sum_a \left(\frac{n(s_{t+n}^0, a)}{\sum_b n(s_{t+n}^0, b)}\right) Q(s_{t+n}^0, a) + \sum_{t'=t}^{t+n-1} \gamma^{t'-t} r_{t'}^{\text{env}}.
$$

 \Box and achieves SoTA in offline RL (Schrittwieser, 2021) **Action and its algorithmic applications.** The proof of the \Box Used as the improvement operator in MuZero (Schrittwieser, 2020)

SELECTION

MCTS Deficiencies

□ Compounding model errors outside the coverage of the offline data

Offline data coverage

MCTS Deficiencies

Upper-bounding Scheduling of Distributed Algorithms

□ **Compounding model errors** outside the coverage of the offline data

 \Box Limited expressiveness when simulation budget is low q Theoretically justified by Grill (2020) *a* **)** essiveness wher pP *^b n*(*s, b*) 1 + *n*(*s, a*) *· c*₁ budget is low

Q Computational burden while increasing simulation budget

□ In model-based RL, *short-horizon* rollout is shown to be better (Janner, 2019; Hessel, 2021)

□ In model-based RL, *short-horizon* rollout is shown to be better (Janner, 2019; Hessel, 2021)

$$
\ell^p = -\mathbf{p}^\top \log \boldsymbol{\pi}
$$

□ In model-based RL, *short-horizon* rollout is shown to be better (Janner, 2019; Hessel, 2021)

$$
\ell^p = -\mathbf{p}^\top \log \pi
$$

$$
p_{\text{mcts}}(a|s) = \frac{n(s, a)}{\sum_b n(s, b)}
$$

□ In model-based RL, *short-horizon* rollout is shown to be better (Janner, 2019; Hessel, 2021)

$$
\ell^{p} = -\mathbf{p}^{\top} \log \pi
$$

$$
p_{\text{mcts}}(a|s) = \frac{n(s, a)}{\sum_{b} n(s, b)}
$$

$$
p_{\text{os}}(a|s) = \frac{\pi_{\text{prior}}(a|s) \exp(\text{adv}_{g}(s, a))}{Z(s)}
$$

□ In model-based RL, *short-horizon* rollout is shown to be better (Janner, 2019; Hessel, 2021)

 \Box We propose to utilize the learned latent dynamics model for *one-step look-ahead*

$$
\ell^{p} = -\mathbf{p}^{\top} \log \pi
$$

$$
p_{\text{mcts}}(a|s) = \frac{n(s, a)}{\sum_{b} n(s, b)}
$$

$$
p_{\text{os}}(a|s) = \frac{\pi_{\text{prior}}(a|s) \exp(\text{adv}_{g}(s, a))}{Z(s)}
$$

advantage function

$$
{\rm adv}_g(s,a) = q_g(s,a) - v(s)
$$

one-step model rollout

$$
r_g, s_g'=g_\theta(s, a)
$$

definition of action-value $q_g(s,a) = r_g + \gamma f_{\theta,v} (s'_g)$

Proposal 2/2: Behavior Regularization

 \Box Constrain the policy towards behavior policy (inferred from the dataset) is a key technique in offline RL (Levine, 2020)

 \Box We propose to perform a filtered behavior cloning

$$
\ell_{\pi}^{\text{reg}}(\theta) = \mathbb{E}_{(s,a)\sim\mathcal{D}} \left[-\log \pi(a \mid s) \cdot H \left(\text{adv}_g(s, a) \right) \right]
$$

$$
H(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}
$$

Desiderata Revisited

\Box Combat with model errors

- \square One-step unrolling limits model expansion depth up to 1
- \Box Behavior regularization ensures policy not go far from data coverage

 \Box Computational efficiency \square No need for expensive MCTS

Desiderata Revisited

s_t s_{t+1} s_{t+2} s_t^1 $\mathbf{1}$ s_t^2 $\overline{2}$ s_t^2 % … . . . \tilde{g}_θ π_{θ} , $v_{\theta} = f_{\theta}$ s_t s_{t+1} s_{t+2} s_t^1 … … s_t^1 $\mathbf{1}$ \Box Combat with model errors \square One-step unrolling limits model expansion depth up to 1 \Box Behavior regularization ensures policy not go far from data coverage MCTS Ours \Box Computational efficiency \square No need for expensive MCTS \square Sampling is available when action space is too large

$$
\ell_{\text{os}}^{\pi} \approx -\frac{1}{N} \sum_{i=1}^{N} \left[\frac{\exp(\text{adv}_g(s, a^{(i)}))}{Z(s)} \log \pi (a^{(i)} | s) \right], a^{(i)} \sim \pi_{\text{prior}} (s)
$$

Desiderata Revisited

s_t s_{t+1} s_{t+2} s_t^1 $\mathbf{1}$ s_t^2 $\overline{2}$ s_t^2 % … . . . \tilde{g}_θ π_{θ} , $v_{\theta} = f_{\theta}$ s_t s_{t+1} s_{t+2} s_t^1 … … s_t^1 $\mathbf{1}$ \Box Combat with model errors \Box One-step unrolling limits model expansion depth up to 1 \Box Behavior regularization ensures policy not go far from data coverage MCTS Ours \Box Computational efficiency \square No need for expensive MCTS \square Sampling is available when action space is too large

$$
\ell_{\text{os}}^{\pi} \approx -\frac{1}{N} \sum_{i=1}^{N} \left[\frac{\exp(\text{adv}_g(s, a^{(i)}))}{Z(s)} \log \pi\left(a^{(i)} | s\right) \right], \ a^{(i)} \sim \pi_{\text{prior}}\left(s\right)
$$

 \square ROSMO: a Regularized One-Step Model-based algorithm for Offline reinforcement learning

Experiment Settings

\Box Training is on the offline datasets

- \Box Usually, pre-collected and stored as static data
- □ Small-scale **BSuite** dataset for detailed analysis and comparison
- **□ Large-scale Atari dataset for benchmarking**

 \Box Evaluation is done by testing the learned agent in corresponding online environments \Box IQM normalized score (Agarwal, 2021) is adopted as a robust performance measure

Small-scale BSuite Dataset

 \Box We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

- \Box Lightweight, low-dimension, less demanding for neural network representation learning
- \Box Containing environments: catch, cartpole, mountain car

Small-scale BSuite Dataset

 \Box We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

 \Box Observation 1: Limited data coverage shrinks the safe region, leading to erroneous estimations as searching outside the region

Small-scale BSuite Dataset

 \Box We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

 \Box Observation 2: MCTS is sensitive to simulation budget and search depth

Eleventh International Conference on Learning Representations ICLR2023

 \square We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

- \Box Pixel-based, challenging for perception
- \Box A set of games where players use joystick to control the agent to solve for different tasks
- \Box Widely used by the community

 \square We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 \Box Main result: Ours achieves the best final performance as well as learning efficiency

 \square We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 \Box Ablation 1: Performance on limited simulation budget (N=4)

$$
\pi^{\text{ROSMO}} = \frac{\pi_{\text{prior}}(a|s) \exp(\text{adv}_g(s, a))}{Z(s)}
$$

$$
\pi^{\text{MZU-Q}} \propto \pi_{\theta} \cdot \exp\left(Q^{\text{MCTS}}/\tau\right) \text{ (Grill, 2020)}
$$

$$
\pi^{\text{MZU}} = \frac{n(s, a)}{\sum_b n(s, b)}
$$

Eleventh International Conference on Learning Representations

ICLR2023

 \square We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 \Box Ablation 2: Robustness on the training with different unroll lengths

 \Box We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 \Box Ablation 2: Robustness on the training with different unroll lengths

 \square We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 \Box Ablation 2: Robustness on the training with different unroll lengths

Summary

\Box In this work, we

- □ Scrutinize the MCTS, which is the core of SoTA MuZero (Schritt RL settings
- \square Propose a simple, efficient yet strong agent that is more robus
- **Q** Open source the research codes: https://github.com/sail-sg/ros

References

- Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. *nature*, *⁵²⁹*(7587), 484-489.
- Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., ... & Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning. *arXiv preprint arXiv:1912.06680*.
- Liu, Z., Li, S., Lee, W. S., Yan, S., & Xu, Z. (2023). Efficient Offline Policy Optimization with a Learned Model. *ICLR*.
- Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., ... & Silver, D. (2020). Mastering atari, go, chess and shogi by planning with a learned model. *Nature*, *⁵⁸⁸*(7839), 604-609.
- Hessel, M., Danihelka, I., Viola, F., Guez, A., Schmitt, S., Sifre, L., ... & Van Hasselt, H. (2021, July). Muesli:
Combining improvements in policy optimization. In *International conference on machine learning* (pp. 42
- Schrittwieser, J., Hubert, T., Mandhane, A., Barekatain, M., Antonoglou, I., & Silver, D. (2021). Online and offline reinforcement learning by planning with a learned model. Advances in Neural Information Processing Syst
- Grill, J. B., Altché, F., Tang, Y., Hubert, T., Valko, M., Antonoglou, I., & Munos, R. (2020, November). Monte-Carlo tree search as regularized policy optimization. In International Conference on Machine Learning (pp. 3769-3778). PMLR.
- Janner, M., Fu, J., Zhang, M., & Levine, S. (2019). When to trust your model: Model-based policy optimization. Advances in neural information processing systems, 32.
- Levine, S., Kumar, A., Tucker, G., & Eu, J. (2020). Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.
- Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., & Bellemare, M. (2021). Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information processing systems, 34, 29304-29320.