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Background

q We work on the intersection of model-based RL and offline RL

q model-based RL
q data-efficiency
q richer supervision signals
q helps policy and value learning

q offline RL
q avoid environment interaction, which can be costly or unsafe
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Environment Model

q Learning an explicit or latent model about the environment dynamics?

Observation 
space

Latent 
space

Model in latent space advantages
o Computational efficiency
o Helps representation learning (Schrittwieser, 

2020; Hessel, 2021)
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Latent Dynamics Model

q Representation function

q Dynamics function

q Prediction function
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Monte-Carlo Tree Search as Improvement

q (1)Action selection using the pUCT rule
Upper-bounding Scheduling of Distributed Algorithms
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q (2)Node expansion and (3)backup to update Q and n statistics
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q Used as the improvement operator in MuZero (Schrittwieser, 2020) 
and achieves SoTA in offline RL (Schrittwieser, 2021)
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MCTS Deficiencies
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Offline data coverage

q Compounding model errors outside the coverage of the offline data
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Offline data coverage

q Compounding model errors outside the coverage of the offline data

q Limited expressiveness when simulation budget is low
q Theoretically justified by Grill (2020)

q Computational burden while increasing simulation budget
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computation

expressiveness

MCTS
Our goal
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Proposal 1/2: One-step Look-ahead

q In model-based RL, short-horizon rollout is shown to be better 
(Janner, 2019; Hessel, 2021)

q We propose to utilize the learned latent dynamics model for 
one-step look-ahead
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Proposal 1/2: One-step Look-ahead

q In model-based RL, short-horizon rollout is shown to be better 
(Janner, 2019; Hessel, 2021)

q We propose to utilize the learned latent dynamics model for 
one-step look-ahead

advantage function

one-step model rollout

definition of action-value
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Proposal 2/2: Behavior Regularization

q Constrain the policy towards behavior policy (inferred from the 
dataset) is a key technique in offline RL (Levine, 2020)

q We propose to perform a filtered behavior cloning 
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Desiderata Revisited
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q Combat with model errors
q One-step unrolling limits model expansion depth up to 1 
q Behavior regularization ensures policy not go far from data coverage

MCTS Ours
q Computational efficiency

q No need for expensive MCTS
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q Combat with model errors
q One-step unrolling limits model expansion depth up to 1 
q Behavior regularization ensures policy not go far from data coverage

MCTS Ours
q Computational efficiency

q No need for expensive MCTS
q Sampling is available when action space is too large

q ROSMO: a Regularized One-Step Model-based algorithm for Offline reinforcement learning
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Experiment Settings

q Training is on the offline datasets
q Usually, pre-collected and stored as static data
q Small-scale BSuite dataset for detailed analysis and comparison
q Large-scale Atari dataset for benchmarking

q Evaluation is done by testing the learned agent in corresponding online environments
q IQM normalized score (Agarwal, 2021) is adopted as a robust performance measure
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Small-scale BSuite Dataset

q We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset
q Lightweight, low-dimension, less demanding for neural network representation learning
q Containing environments: catch, cartpole, mountain car
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Small-scale BSuite Dataset

q We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

q Observation 1: Limited data coverage shrinks the safe region, leading to erroneous estimations as 
searching outside the region 

!!
!!"#

!!"$

!!#
!!$!!%

…

…

!!

"!	, %! = '!

Offline data coverage
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Small-scale BSuite Dataset

q We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

q Observation 2: MCTS is sensitive to simulation budget and search depth
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Large-scale Atari Benchmark

q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark
q Pixel-based, challenging for perception
q A set of games where players use joystick to control the agent to solve for different tasks
q Widely used by the community



Eleventh International Conference on Learning Representations   
ICLR2023

28

Large-scale Atari Benchmark

q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

q Main result: Ours achieves the best final performance as well as learning efficiency

5.6% wall-clock time
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q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

q Ablation 1: Performance on limited simulation budget (N=4)

Large-scale Atari Benchmark

(Grill, 2020)
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Large-scale Atari Benchmark

q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

q Ablation 2: Robustness on the training with different unroll lengths
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Large-scale Atari Benchmark

q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

q Ablation 2: Robustness on the training with different unroll lengths
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Large-scale Atari Benchmark

q We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

q Ablation 2: Robustness on the training with different unroll lengths
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Summary

q In this work, we
q Scrutinize the MCTS, which is the core of SoTA MuZero (Schrittwieser, 2021) algorithm, in offline 

RL settings
q Propose a simple, efficient yet strong agent that is more robust and achieves new SoTA
q Open source the research codes: https://github.com/sail-sg/rosmo

https://github.com/sail-sg/rosmo
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