73 ICLR

Efficient Offline Policy Optimization
with a Learned Mode

Zichen Liu'-2, Siyi Li', Wee Sun Lee?, Shuicheng Yan'!, Zhongwen Xu’

1

aaaaaaaaaaaaaaaaaa
of Singapore

O sea Allab

%

nnnnnnnnnnnnnnnnn




Background

] We work on the intersection of model-based RL and offline RL
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] offline RL
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Model-based Offline Agent
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@ Environment

Logged Interactions

 avoid environment interaction, which can be costly or unsafe

J model-based RL
 data-efficiency
d richer supervision signals
d helps policy and value learning
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Environment Model

] Learning an explicit or latent model about the environment dynamics?

Observation
space

g@(Ot ‘ Ot—lw u \_/ Model in latent space advantages

o Computational efficiency
o Helps representation learning (Schrittwieser,

. . 2020; Hessel, 2021)
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Latent Dynamics Model

[ Representation function /1y
[ Dynamics function gp
Q Prediction function [y
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Latent Dynamics Model
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Latent Dynamics Model
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Latent Dynamics Model
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Latent Dynamics Model
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Monte-Carlo Tree Search as Improvement

SELECTION

[ WAction selection using the pUCT rule
7b 7b
o = arg max | Q(s, ) + Tyrir(5,)- E;?Zs(fa)) | <01 + log (an(s c)2+ - 1»] m
O

 @)Node expansion and ®)backup to update Q and n statistics ExpANSION BACKPROPAGATION

 After exhausting simulation budget, output normalized visit count
and n-step return
’I’L(St, )I/T
pmers(alsy) = S n(s0, b1/

t+n7 t'—t
ZMCTS St =7 Z <Z ) St—|—n? + Z Y T?/nv.
b
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(St—i—n? b)
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Monte-Carlo Tree Search as Improvement

SELECTION

[ WAction selection using the pUCT rule
7b 7b
o = arg max | Q(s, ) + Tyrir(5,)- E;?Zs(fa)) | <Cl + log (Ebn(s c)2+ - 1)>] m
O

 @)Node expansion and ®)backup to update Q and n statistics ExpANSION BACKPROPAGATION
 After exhausting simulation budget, output normalized visit count

and n-step return })

TL(St, )I/T
8 ) t+n—1
ZMCTS St =7 Z (Zb t(—;:—;n, >> St—|—n? + Z ,Yt trflnv.
K
1 Used as the improvement operator in MuZero (Schrittwieser, 2020) / v (. k . m( k .
. . . . . ! t(e): 0 vy lz k‘"—g TPtk
and achieves SoTA in offline RL (Schrittwieser, 2021) ,;Z:O ( t a) ( ! )
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MCTS Deficiencies

[ Compounding model errors outside the coverage of the offline data
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MCTS Deficiencies

[ Compounding model errors outside the coverage of the offline data

d Limited expressiveness when simulation budget is low
O Theoretically justified by Grill (2020)

J Computational burden while increasing simulation budget

1/T

n(s?, a
puers(als) = Zb(nt(sg ,)b)l/ T

expressiveness

A

Our goal
MCTS

»
»

computation
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Proposal 1/2: One-step Look-ahead

[ In model-based RL, short-horizon rollout is shown to be better
(Janner, 2019; Hessel, 2021)

[ We propose to utilize the learned latent dynamics model for
one-step look-ahead
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Proposal 1/2: One-step Look-ahead

[ In model-based RL, short-horizon rollout is shown to be better
(Janner, 2019; Hessel, 2021)

[ We propose to utilize the learned latent dynamics model for
one-step look-ahead

P =_—pllogm

Eleventh International Conference on Learning Representations
ICLR2023

15



Proposal 1/2: One-step Look-ahead

[ In model-based RL, short-horizon rollout is shown to be better
(Janner, 2019; Hessel, 2021)

[ We propose to utilize the learned latent dynamics model for
one-step look-ahead
P =_—pllogm

n(s,a)

Pmcts(als) = an(s, b)
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Proposal 1/2: One-step Look-ahead

[ In model-based RL, short-horizon rollout is shown to be better
(Janner, 2019; Hessel, 2021)

[ We propose to utilize the learned latent dynamics model for
one-step look-ahead
P =_—pllogm

n(s,a)

Pmcts(als) = an(s, b)

als) = Mprior (als) exp (advg(s, a))
Pos(als) = Z5)
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Proposal 1/2: One-step Look-ahead

[ In model-based RL, short-horizon rollout is shown to be better
(Janner, 2019; Hessel, 2021)

[ We propose to utilize the learned latent dynamics model for
one-step look-ahead

advantage function

P —=—phl
P Ogﬂ- adVg(S, Cl) — C]g<37 a’) T U(S>

(als) = n(s,a)
Pmets B Zb n(s, b) one-step model rollout
/
Tprior (als) exp (advg(Sa CL)) "9 g 9ols: @)
p05<a’8) — Z(S) definition of action-value

qg(s,a) =19+ 7fo (3;)
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Proposal 2/2: Behavior Regularization

M Constrain the policy towards behavior policy (inferred from the
dataset) is a key technique in offline RL (Levine, 2020)

J We propose to perform a filtered behavior cloning

lro(6) = E(s,a)~D [—logm(a | s)- H (adv(s, a))]

.

1, z>0
Hiz)=1, I:o
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Desiderata Revisited

J Combat with model errors

0 One-step unrolling limits model expansion depth up to 1
Q) Behavior regularization ensures policy not go far from data coverage

 Computational efficiency
O No need for expensive MCTS
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Desiderata Revisited

J Combat with model errors

0 One-step unrolling limits model expansion depth up to 1
Q) Behavior regularization ensures policy not go far from data coverage

 Computational efficiency
O No need for expensive MCTS MCTS
0 Sampling is available when action space is too large
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Desiderata Revisited

-~

)

3 Combat with model errors S

ST

—

)

0 One-step unrolling limits model expansion depth up to 1 ot =l
Q) Behavior regularization ensures policy not go far from data coverage

 Computational efficiency
O No need for expensive MCTS MCTS Ours
0 Sampling is available when action space is too large

- N exp(adv s¢ﬁ” i '
gos ~ _% 1=1 ( Zg(:g) >> 1Og7T (CL( )‘8) ! CL(Z) ~ 7Tp1‘10r (S>

(J ROSMO: a Regularized One-Step Model-based algorithm for Offline reinforcement learning
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Experiment Settings

M Training is on the offline datasets

0O Usually, pre-collected and stored as static data
O Small-scale BSuite dataset for detailed analysis and comparison
0 Large-scale Atari dataset for benchmarking

 Evaluation is done by testing the learned agent in corresponding online environments
O IQM normalized score (Agarwal, 2021) is adopted as a robust performance measure
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Small-scale BSuite Dataset

J We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

O Lightweight, low-dimension, less demanding for neural network representation learning
0 Containing environments: catch, cartpole, mountain car
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Small-scale BSuite Dataset

J We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

1 Observation 1: Limited data coverage shrinks the safe region, leading to erroneous estimations as
searching outside the region
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Small-scale BSuite Dataset

J We validate our method and compare it with MuZero (which bases on MCTS) on the BSuite dataset

 Observation 2: MCTS is sensitive to simulation budget and search depth
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Large-scale Atari Benchmark

d We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark
U Pixel-based, challenging for perception
O A set of games where players use joystick to control the agent to solve for different tasks
O Widely used by the community
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Large-scale Atari Benchmark

d We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

[ Main result: Ours achieves the best final performance as well as learning efficiency
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Large-scale Atari Benchmark

d We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

 Ablation 1: Performance on limited simulation budget (N=4)
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Large-scale Atari Benchmark

d We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

J Ablation 2: Robustness on the training with different unroll lengths
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Large-scale Atari Benchmark

 We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

O Ablation 2: Robustness on the training with different unroll lengths
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Large-scale Atari Benchmark

d We benchmark our algorithm (ROSMO) with prior offline RL methods on the offline Atari benchmark

J Ablation 2: Robustness on the training with different unroll lengths
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Summary

4 In this work, we

 Scrutinize the MCTS, which is the core of SOTA MuZero (Schrittwieser, 2021) algorithm, in offline
RL settings

L Propose a simple, efficient yet strong agent that is more robust and achieves new SoTA
U Open source the research codes: https://github.com/sail-sg/rosmo



https://github.com/sail-sg/rosmo
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