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Abstract: Protein phase separation is implicated in formation of membraneless organelles, 

signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and 

their target motifs can drive phase separation. However, forces promoting the more common 

phase separation of intrinsically disordered regions are less understood, with suggested roles for 

multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-

separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-

interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups 

are widespread, underestimated by force-fields used in structure calculations and correlated with 

solvation and lack of regular secondary structure, properties associated with disordered regions. 

We present a phase separation predictive algorithm based on pi interaction frequency, 

highlighting proteins involved in biomaterials and RNA processing. 

 

One Sentence Summary: Statistics on the frequencies of pi interactions in folded protein 

structures enable successful prediction of intrinsically disordered protein phase separation.  
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Introduction:  

 

Protein phase separation has important implications for cellular organization and 

signaling (1-3), RNA processing (4), biological materials (5) and pathological aggregation (6). 

For some systems, multivalent interactions between modular binding domains and cognate 

peptide motifs underlie phase-separation (7, 8). However, many phase-separating proteins 

contain large intrinsically disordered protein regions (IDRs) with low complexity sequences that 

do not form stable folded structure (reviewed in (1, 9)), including the Nephrin intracellular 

domain (NICD) (10), polyglutamine tracts (11), tropoelastin (5), FUS (12, 13), Ddx4 and the 

homologous LAF-1 (14, 15) and FG-repeat nucleoporins (16). The underlying physical 

principles and chemical interactions that drive phase separation in these IDRs are not well 

understood. Multivalent (7, 17) electrostatic (10, 18) and cation-pi (14, 19, 20) interactions and 

the hydrophobic effect (5) have all been proposed to contribute to IDR phase separation, the 

latter suggested to be dominant for tropoelastin (21). For Ddx4, electrostatic interactions between 

charge blocks has been demonstrated (14, 18). The abundance of Phe-Gly/Gly-Phe and Arg-

Gly/Gly-Arg dipeptides in Ddx4 and the fact that Phe to Ala mutations inhibit phase separation 

also point to pi-pi and/or cation-pi interactions. The Phe-Gly repeats in FG nucleoporins 

similarly indicate pi-pi interactions, but the lack of aromatics in elastins and designed phase-

separating sequences (22) seems to suggest that they are not essential. Clearly a number of 

physical interactions may be sufficient for driving phase separation without being universally 

necessary, and a better understanding of these interactions is needed to define the balance of 

forces biological systems use for driving protein phase transitions. 
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Although pi-pi interactions are commonly associated with aromatic rings, where 

interaction energy is thought to involve induced quadrupolar electrostatic interactions (20), π (pi) 

orbitals of bonded sp2-hybridized atoms are also found in peptide backbone amide groups and 

sidechain amide, carboxyl, or guanidinium groups. Sidechains with pi bonds include Tyr, Phe, 

Trp, His, Gln, Asn, Glu, Asp, and Arg. Small residues with relatively exposed backbone peptide 

bonds include Gly, Ser, Thr and Pro. Notably, low complexity IDRs implicated in phase 

separation of FUS, EWS, hnRNPA1, TIA-1, TDP-43 and the RNA Pol II C-terminal domain  

(CTD) (1, 6, 13) are very enriched in these residues that have high potential for formation of pi-

pi interactions, relative to average occurrence in the proteome. Even elastins, which lack 

sidechain pi groups but have Val-Pro-Gly-Xxx-Gly repeats (5), are highly enriched in Pro and 

Gly residues with exposed pi-containing peptide backbones. 

Given the high frequency of aromatic residues, arginine and glutamine in many phase 

separating sequences, we were motivated to investigate the structural behavior of pi-pi 

interactions in order to better understand how their observed physical behavior relates to their 

potential role in phase separation. We first characterized the frequency and correlations of pi 

interactions in a non-redundant protein set from the RCSB protein data bank (PDB) of folded 

proteins (23). We discovered that planar pi-pi contacts involving a non-aromatic group, including 

those involving the backbone amide group, are the predominant form of pi-pi interaction, and we 

showed that planar pi-contact rates can be predicted from sequence. Then we tested the relevance 

of these planar pi-pi interactions to phase separation by training a phase separation predictor 

using only these expected pi-contact rates. We then demonstrated that three of the predicted 

proteins, FMR1, a multifunctional RNA-binding protein and a neuronal granule component(24), 

engrailed-2, a DNA binding homeobox protein, and the pAP isoform of the Human 
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cytomegalovirus capsid scaffolding protein, phase separate in isolation in vitro. Analysis of 

predictions for the full human proteome suggests strong phase-separation propensities for 

proteins involved in biomaterials and RNA processing, with likely regulation by splicing and 

post-translational modifications (PTMs). 

Results: 

Prevalence of Pi contacts in the PDB 

To determine the frequency of pi-pi interactions and better understand their nature and 

physical properties, we performed a bioinformatics analysis of folded proteins. We searched the 

PDB for pi-pi interactions by measuring contact distances between planar surfaces and 

comparing planar orientations (see Methods), choosing to focus on interactions involving pi-

orbital planar surfaces as this category shows the most enrichment over expectations, both in 

terms of overall frequency (Appendix-figure 1) and in relation to resolution. Face-to-face planar 

pi-pi contacts were defined using a simple distance- and orientation-based metric designed to 

consistently capture this enrichment across diverse sp2 containing groups (Appendix-figure 

1A,B,C).  

Our analysis was originally intended to explore the known interactions of aromatic 

sidechains with each other and with arginine, but in order to provide a control group we defined 

our contact parameters in a way that allowed us to treat all sp2 groups in the same fashion. In 

high resolution (≤1.8 Å) and low R-factor (≤0.18) protein crystal structures (N=5718), we found 

that planar pi-pi stacking interactions involving non-aromatic atoms outnumber aromatic-

aromatic stacking interactions by approximately 13 to 1 (Figure 1A and Appendix-table 1) 

suggesting that, while aromatic sidechains may be enriched in stacking interactions relative to 

their frequency, there is a more general role for pi-contacts that involve non-aromatic atoms. The 
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vast majority of planar pi-orbital contacts in proteins involve one of five non-aromatic sp2-

hybridized sidechains or the peptide bond itself. Fully 36% of observed pi-pi stacking 

interactions do not involve an aromatic partner, with face-to-face planar contacts between 

different backbone peptide bonds occurring as often as aromatic face-to-face contacts (Figure 

1A). Across the high-resolution set we observe that 58% of heavy atoms are sp2, of which 10.5% 

are involved in pi-stacking. Furthermore, 28% of heavy atoms that are not directly involved in 

pi-stacking are found within van der Waals (VDW) contact distance (4.9Å) of atoms that are. 

Thus, planar pi-pi interactions form a common feature of the protein chemical environment. 

Comparisons to previous work showing that aromatic-aromatic interactions in proteins are 

instead biased towards face-to-edge or parallel displaced geometries (25, 26) are complicated by 

the observations that VDW contacts between aromatic sidechains coincide with face-to-face pi-

pi stacking to a third sp2 hybridized group 49% of the time, and that parallel displacement often 

accommodates an additional non-aromatic pi-contact to the same planar surface. 

Analysis of protein structures showed that the frequencies of planar pi interactions 

strongly correlate with the power of the experimental data to constrain the structure and with the 

fit to the data. We identified a linear relationship between contact frequencies and the resolution 

of crystal structures (Figure 1A). We identify a similar dependence of contact frequency on the 

relative number of sidechain-specific distance constraints in NMR structures (Appendix-figure 

2A), and confirm that the dependence on resolution persists for identical sequences solved 

multiple times at different resolutions (Appendix-figure 2B). These data suggest that the relative 

importance of pi-pi interactions are underestimated in the force-fields that are used in the 

structure calculations and thus appear more frequently in structures that are heavily constrained 

by experimental observations. In addition, pi-pi contact frequencies for amino acid and other 
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small sp2-containing ligands bound to proteins (including non-aromatic ligands) are higher than 

the frequencies observed for the same chemical group found within proteins, despite or perhaps 

because of their relative freedom of movement (Appendix-table 2).  

To examine whether sp2 containing sidechains engage in stacking behavior beyond what 

could be expected for average contact frequencies and overall packing considerations, we 

determined sidechain contacts to backbone peptide groups, focusing on the percentage of VDW 

contacts (with two or more pairs of atoms within 4.9Å) which satisfy our planar-pi criterion, and 

then compared the frequencies observed for sp2 sidechain groups to those observed for planar 

surfaces on the terminal end of sp3 sidechains, using atom groups as listed in the Methods 

section. This metric addresses the issue of amino acid composition effects by taking advantage of 

the even distribution of backbone groups and allows for normalization of contact frequency for 

sidechains of different size. Enrichment of sp2 planar contacts relative to sp3 is clearly observed 

for all sp2 sidechains except Asn and Gln, which our previous analysis showed are more likely to 

form contacts with their backbone than with their sidechains (Figure 1 – figure supplement 1). 

Further analysis of the relative frequency of planar pi VDW contacts to other VDW contacts as a 

function of resolution demonstrates that for some contact types the increased pi-contact 

frequencies with increasing resolution (lower values in Å) are at the expense of decrease in other 

VDW contacts, suggesting that these contacts represent a specific geometric constraint present in 

the experimental data, rather than an overall increase in VDW contact frequency at higher 

resolution (Figure 1 – figure supplement 2). 

Aromatic groups are known to have favorable interactions with other aromatics, with the 

peptide backbone (27), and with charged groups. We observed that the guanidine group of 

arginine is either the first or second most likely planar pi-stacking partner for any given aromatic 



 7

sidechain, a phenomenon previously described as cation-pi (20, 26). However, we also observed 

planar stacking interactions between non-aromatic groups of all kinds, including both anion-to-

anion and cation-to-cation, with relative frequencies shown in Figure 1B,C. Surprisingly, 3.6% 

of arginine sidechains are found in direct, parallel pi-stacking contact with another arginine, 

despite repulsive charges (Figure 1 – figure supplement 2), suggesting that these guanidinium 

interactions are better described as pi-pi, rather than cation-pi (example shown in Figure 2A). 

Modeling and analysis of protein structures typically involves the use of coarse-grained 

energy functions. To test the degree to which contact frequencies in solved structures derive 

from experimental constraints, rather than the force fields used, we explored how well planar pi 

interactions are captured by the simple energy functions used in certain protein modeling 

protocols. We examined a few different modeling protocols by either running available methods 

or downloading pre-computed datasets (see Methods). In general, planar pi-pi contacts were lost 

during simulations (Appendix-figure 3A) and energy minimization (Appendix-figure 3B). In one 

older molecular dynamics simulation of folded proteins, made available for 100 proteins via 

Dynameomics (28), 90% of the planar pi-pi contacts found in the starting structures were lost 

during simulation, with the majority being lost within the first few simulation steps. Similarly, 

modeling of the energetic effect of mutations, the ∆∆G of unfolding, using both FOLDX (29) 

and Rosetta(30),  shows decreased prediction accuracy at positions involved in pi-contacts 

(Appendix-figure 3C-F), based on comparison to a reference set of ∆∆G measurements (31). 

These observed issues in modeling pi-contacts may be overcome by more recent and 

sophisticated energy functions, but our results are consistent with the inherent energetic 

importance of planar pi interactions, rather than their observation being due to simple force fields 

used in refining protein structures.  
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Enrichment of pi-pi contacts in catalytic, capping and RNA-binding sites 

For exploring the contribution of pi contacts to general structural and functional 

properties of proteins, we examined contact enrichment for sp2 groups found in a diverse range 

of interactions. We observe increased frequency of pi-pi contacts at positions with known 

catalytic function (32), with enrichment of 1.87 ± 0.07 overall and 1.42 ± 0.07 when normalized 

by residue type (Appendix-table 3), with pi-pi contacts often playing a role in defining the 

geometry of the active site (Figure 2B) or forming networks of pi-pi contacts. We find that 

hydrogen bond frequency increases at sp2 sidechains involved in pi-contacts (Appendix-figure 

4), and when sp2 groups hydrogen bond each other we observe increased frequencies of a third 

sp2 group being found in simultaneous pi-stacking to both the donor and acceptor groups of the 

hydrogen bond (Appendix-figure 1F and Figure 2C), suggesting potential cooperativity via the 

electrostatic and geometric stabilization of the bond. We also observe up to 20-fold enrichment 

at the ends of secondary structure elements, relative to the median backbone contact rate of 

1.7%, with enriched positions often involving the last hydrogen bond made within a helix or at 

the end of a strand (Figure 2D and Appendix-figure 5), commonly placing them in the context of 

local capping motifs thought to stabilize secondary structure (33). Finally, we find that protein-

RNA interactions typically involve pi-pi contacts, especially with arginine. A detailed 

description of these observations is included in Appendix 1. 

 

Correlation of pi-pi contacts with solvation and lack of regular structure 



 9

Interactions at the surface of a protein are typically in competition with solvent and their 

enthalphic contribution often decreases with solvent exposure, as for protein-protein hydrogen 

bonds (34). Planar pi-pi interactions, in contrast, cannot be formed with water, but often involve 

groups with hydrogen bond acceptors and donors; thus, we predicted that the frequency of pi-pi 

interactions in proteins could be increased in more solvated environments. To test this, we 

identified high-resolution structures with an abundance of solved water and then counted the 

observed solvent interactions by the number of water oxygen atoms within a broad VDW contact 

radius (4.9Å) to each residue. We saw an unambiguous positive correlation between the number 

of water contacts and the probability that a residue is involved in a planar pi-pi-contact, with a 

significant increase in average probability observed for each additional water contact (Figure 

3A,B), climbing even as the average number of protein:protein VDW contacts declines. This 

relationship is true for the general case (unspecified residue identity) and is also individually true 

for each of the 9 residues with pi orbital-containing sidechains. However, both the contact 

frequencies and the amino acid frequencies themselves increase with a greater dependence on 

solvation for non-aromatic residues, especially for the charged amino acids Arg, Glu and Asp, 

such that non-aromatic contacts become the dominant form of interaction at high solvation levels 

(Figure 3 – figure supplement 1). The relative increase is highest for contacts involving 

sidechains of like-charge, especially arginine (Figure 3 – figure supplement 2), suggesting that 

solvation plays a role in the strength of the interactions. 

Of relevance to intrinsically disordered protein regions that mediate interactions, we find 

that planar pi-pi interactions occur more often at positions with properties associated with 

disorder; they are more prevalent in proteins having overall less rigid secondary structure (with 

contacts for coil/loop/turn > strand > helix), especially disulfide bond containing proteins (Figure 
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2F), and in sequences that are locally enriched in residue types associated with backbone 

flexibility or breaking secondary structure (Gly, Ser, Thr, Pro) (Appendix-figure 6). Considering 

planar pi-pi contact frequencies as a function of the sequence position relative to secondary 

structure elements, we find that the frequency is highest in long loops, showing a sigmoidal 

relationship when transitioning from order to disorder that goes from 9.5% probability for 

residues >7 positions away from the closest loop/turn to 16% for residues >7 positions away 

from the closest helix/strand (Figure 3C,D). 

 

Pi-pi contacts in protein interactions 

 To test whether these interactions are compatible with the multivalent interactions 

involved in phase separation, we examined contact statistics for protein interactions, comparing 

sidechain pi-pi interaction frequencies within a chain to those between chains. We classified 

interfaces as sequence- or complex-specific (between different chains of a crystal structure) and 

opportunistic (at crystal packing interfaces). In both cases we defined interface residues as those 

with sidechains having at least one VDW contact to any atom in a different chain. We found that 

both the overall contact frequencies at interface positions and local (<5 residue) contact 

frequencies remain similar to the frequencies observed at non-interface positions, but that there is 

a significant exchange of long range (≥5 residue sequence separation) inter-chain to intra-chain 

contacts (Figure 4). This exchange is also observed for the residues in interfaces involved in 

crystal packing interaction, demonstrating that long range planar pi interactions are not specific 

to particular protein folds, but are common features of protein-protein interactions. These results 

suggest that non-local pi-pi contact propensity could play a general role in mediating protein 

interactions, including those driving phase separation.  
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Importance of pi-pi contacts for phase separation 

In our bioinformatics analyses, we identified a type of interaction, planar pi-pi, which is 

more prevalent for solvated residues, RNA-binding interactions and regions lacking regular 

secondary structure. These properties are also associated with the emerging functional class of 

intrinsically disordered phase-separating proteins that coalesce through fluid, multivalent 

interactions to form protein-dense cellular bodies or membraneless organelles involved in RNA 

processing (1), the nuclear pore (16) and extracellular biological materials (5). The currently 

known phase-separating proteins are diverse, both in sequence and function (1, 9), but many are 

enriched in motifs we can now associate with high planar pi-pi contact frequencies (i.e., Pro-Gly, 

Phe-Gly, Ser-Arg, Tyr-Gly and Arg-Gly repeats) (1, 14, 35).  

While phase separation of some proteins has been suggested to be driven by the potential 

for multivalent aromatic stacking and cation-pi interactions (14, 36), our observations show (i) 

that planar pi-pi interactions are a much more broadly distributed phenomenon in proteins than 

previously considered, especially in solvated protein regions, (ii) that aromatic residues are not 

required, (iii) that backbone pi groups make significant contributions, and (iv) that  protein 

sequence can have distinct effects on both long range contact propensity and local contact 

propensity. These led us to hypothesize that the number of pi orbitals available to make long 

range multivalent contacts is an important feature in determining whether a disordered protein 

region can phase separate and, thus, that the sp2-hybridization of the arginine sidechain is more 

important to phase separation than its charge. We tested this hypothesis using the N-terminal 236 

residues of Ddx4, an intrinsically disordered region that contains both Arg-Gly and Phe-Gly 

dipeptide sequences and that can phase separate (14). We removed pi-character while leaving 
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charge intact by replacing all 24 Arg residues with Lys. Matching our expectation, this protein 

region fails to phase separate under the conditions characterized for the wild type Ddx4 

sequence, even at concentrations of 400 mg/ml, 200 times higher than the lowest concentration 

for which phase separation is observed for the wild type, and 4 times higher than observed for 

constructs with an equivalent mass change from mutating 9 phenylalanine residues to alanine 

(Appendix-table 4). We note that arginine is likely key for the phase-separation, association and 

toxicity of C9orf72, which can encode Gly-Arg and Pro-Arg dipeptide repeat sequences (37).  

 

Prediction of phase separation using pi-pi contacts 

Given this supportive experimental evidence for the role of pi interactions in phase 

separation and our observation that opportunistic non-local pi interactions are commonly found 

at protein crystal contacts, we chose to test the importance of these interactions for phase 

separation by determining the degree to which it is possible to predict general phase separation 

behavior using solely the pi-pi contact propensity of a protein sequence. We recognize that 

multiple physical interactions can contribute to driving phase separation(36), but our goal was 

not to predict subtle differences in phase separation propensity or quantitative phase diagrams. 

Instead, we aimed to merely classify proteins as having the potential to self-associate under 

particular biological conditions or not, as a test of our hypothesis of the involvement of planar pi 

interactions. In this exercise, we define phase separating proteins as those that for presumed 

functional reasons self-associate in a way that is at least transiently reversible and dynamic, 

allowing for the protein to self-concentrate as a function of available protein concentration, 

temperature or other condition. This basic definition does not cover the complexity of the phase 

diagram, merely the ability to reversibly self-concentrate, and does not consider competing 
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transitions, such as irreversible aggregation and precipitation, which have typically been selected 

against in the natural sequences on which the predictor is designed to be used. 

Using this definition we applied a constrained training approach divided into two stages. 

In the first stage, we required accurate prediction of contact propensities for folded proteins, 

using sequence propensities for both local and non-local contacts. For this aim, we developed a 

statistical method for predicting the expected number of contacts given a protein sequence, using 

frequencies taken from the PDB, splitting observations by distinct residue pairs with varying 

sequence separation and applying a statistical comparison of the full list of pairs associated with 

a given sp2 group to calculate expectations (see Methods). The reliability of these predictions 

against folded proteins is given in Figure 5A. We then predicted the number of pi-pi contacts for 

a list of 11 proteins containing IDRs that have been shown to be sufficient for phase separation 

behavior in vitro (Figure 5-source data 1A), finding that 8 out of the 11 have a predicted number 

of planar pi-pi contacts per residue in the 99th percentile relative to folded proteins found in the 

RCSB PDB (Figure 5B). 

For the second stage, we developed a phase separation predictor that ranks sequences 

only by the weighted combinations of pi-contact frequency predictions, without any other 

interaction or observational data. We used a stochastic optimization approach to find optimal 

weights and sequence window normalizations for converting pi-contact frequency predictions 

into a score function able to discriminate known phase-separating proteins from sequences found 

in the PDB. The individual components weighted and normalized include: (i) short and long 

range contacts as defined by residue pair sequence separation ≤4 or >4, respectively, (ii) 

sidechain groups vs. the backbone peptide bond, (iii) absolute predicted frequency vs. normalized 

frequency compared to the specific group, and (iv) number of carbon atoms in the specific group. 
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In constraining this stage of the test, we defined the fixed goal for optimization as the PDB 

normalized z-score difference between the highest scoring 1% of the PDB and the lowest scoring 

member of the phase separation training set. We then trained until reaching a plateau, and at that 

point we finalized the score, running a single validation test against a testing set of 62 proteins 

directly associated with phase separation in the literature. This testing set can be divided into 

three subsets by the nature of the evidence available: (i) sufficient for in-vitro phase separation as 

a purified single component (which matches the training set), (ii) evidence of in-vitro phase 

separation involving a multi-component system (e.g., phase separates on the addition of RNA), 

without evidence of independent phase separation, and (iii) direct evidence of in cell phase 

separation (where the protein itself has been labeled and dynamic exchange demonstrated by 

FRAP or similar methods) without evidence of in-vitro phase separation or sufficiency. 

We used receiver operating characteristic (ROC) plots comparing predictions of phase-

separating proteins within the test set against predictions of phase-separating proteins in the 

human proteome to assay the ability of the predictor to rank known positives against the 

members of a set that we assume is primarily negative; the area under the curve (AUC) 

measurement describes the ability to discriminate between sets. For the human proteome as the 

negative set, we show an AUC of 0.88 ± 0.02 measured using the entire testing set as a positive, 

0.93 ± 0.01 if we exclude sequences which only phase separate in complex with other polymers, 

and 0.96 ± 0.01 if we restrict to the 32 test set sequences that match the sufficiency criteria used 

for selecting the training set (Figure 5C and Appendix-figure 7A). These measurements are 

complicated by the potential for homology between test set and training set proteins. To control 

for this, we also measured discrimination using another positive set of the 59 artificial sequences 

designed and shown to phase separate by the Chilkoti lab (22, 38, 39) (details in Figure 5-source 
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data 1C), showing an AUC of 0.86 ± 0.03 against the human proteome as a negative set 

(Appendix-figure 7B).  

Interpreting these AUC values is complicated by the fact that the true positive rate of the 

human proteome is unknown, and our analysis will treat unknown phase-separating proteins as 

false positives, inaccurately decreasing the area under the curve. Similar analysis against protein 

sets with less expected phase separation results in higher AUCs, going from 0.88 ± 0.02 for 

human to 0.92 ± 0.01 for C. elegans, 0.93 ± 0.02 for S. cerevisiae, 0.98 ± 0.01 for E. coli, and 

0.97 ± 0.01 for our PDB testing set. Within the comparisons to E. coli and S. cerevisiae 

proteomes, we show examples of the proteome-dependent score distributions underlying the 

analysis (Appendix-figure 7C,D). Using a defined standard confidence threshold of ≥ 4.0 

standard deviations from the PDB average for the propensity score (PScore) captures 0.3%, 

2.2%, and 5.1% of the E. coli, S. cerevisiae, and human proteome sets, respectively, as compared 

to 0.1% of our full PDB set and 81% (26/32) of the self-sufficient for in vitro phase separation 

test set (dropping to 36/62 for the entire proteomic test set and to 35/59 for the synthetic test set). 

When compared to the unweighted pi-contact predictions, the trained PScore confirms 

the training results, with the number of test set proteins that fall within or above the top 1% range 

of the PDB increasing from 11/30 to 29/30 (Figure 5D). This increase is matched by an increase 

in the percentage of human proteins in the same range, from 2.3% to 13.1%. Even though the 

score is trained for discrimination against folded proteins we do not see a systematic increase in 

the scores of all disordered human proteins. Comparison against a top performing sequence 

homology-based disorder predictor (Disopred3, (40)) and a physics-based disorder predictor 

(IUPRED-Long(41)) shows that disorder predictors are better at discriminating disordered 

proteins from the PDB and the human proteome, while the PScore is consistently better at 
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identifying phase-separating proteins (Appendix-table 5). The majority of the proteins in our 

phase separation test set show disordered character, and the analysis shows that while PScore 

does correlate with disorder it only highlights a subset of disordered proteins, and does not 

reflect a general disorder prediction (Figure 5 – figure supplement 1). As a direct test of this 

discrimination, we note that using the subset of human proteins with known intrinsic disorder 

(42) as the phase separation negative set shows similar results as using the human proteome as 

the negative, at AUC:0.84 ± 0.03 for the full test set and AUC:0.93 ± 0.02 for the in-vitro 

sufficient set.  

We note that the optimization methodology used for developing our predictor, 

specifically training for discrimination against the PDB, was intended to exclude phase 

separation involving multivalent binding properties of folded proteins with multiple binding 

surfaces (17, 43) or multiple folded modular binding domains that interact with multiple linear 

sequence motifs (7, 8). Thus, we expect and find a lower success rate for prediction of phase 

separation of proteins using these mechanisms. We also note that the goal of the prediction 

experiment is to see whether observed phase separation can be predicted exclusively from 

contact probabilities as a test of the hypothesis that pi interactions are important for phase 

separation, but that our method uses probabilities found in the PDB, was trained on natural 

sequences, and was tested using sequences that are either found in nature or were designed based 

on sequences that are. The ability to predict contacts is expected to decrease for sequences not 

observed in nature and for sequences relying to a greater degree on other energetic contributions. 
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Mechanistic implications of the optimized phase separation predictor 

In order to identify the contact features that play the largest role in the optimized 

predictor we did a retrospective analysis testing the predictive power of different scoring 

algorithms produced during the training process, and explored potential mechanistic implications 

by testing the power of individual score components, grouping contact predictions into long 

range vs. short range and backbone vs. sidechain (Appendix-table 6).  Our analysis shows that, 

while training did improve the predictor, a comparable result can be obtained by using only the 

long-range contact rate predictions for the peptide backbone (Figure 5 – figure supplement 2, as 

further described in Appendix 1). This property significantly upweights the role of residues, 

especially Gly and Pro, that are associated with high overall backbone pi-pi contact frequencies 

and with lower short-range contact frequencies for local sidechain groups, and is especially 

important for predicting elastin-like proteins, which often have very few sp2-containing 

sidechains. Thus, these results highlight the increased availability of sp2 groups for non-local pi-

interactions as a key driving force behind the phase separation predictions and is consistent with 

highly multivalent weak interactions leading to phase separation, both in non-polar structural 

proteins like elastin and highly charged RNA-binding proteins like FUS or Ddx4. 

Many high contact frequency residue types are also associated with disordered proteins in 

general, so to control for that potential role we took a selection of 3501 human proteins predicted 

to have long disordered regions (as described in the methods), split them by PScore into high 

(PScore ≥4) and low (PScore <1) subsets, and compared the sequence characteristics 

distinguishing high PScore and low PScore sequences (Appendix-figure 8A). We find that non-

phase separating intrinsically disordered proteins are actually depleted in Gly and Pro, especially 

relative to the enrichment seen in phase separating sequences and sequences predicted to phase 
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separate. Conversely, they are most enriched in Lys, which on average is depleted in phase 

separating sequences.  

While the division of the predictor into two distinct protocols was used to avoid scores 

that simply describe sequence similarity to the training set, it is still possible that the training 

process picked up on specific sequence features in the training set. To explore the contribution of 

sequence similarity to the score we made a measurement of sequence profile similarity based on 

dipeptide composition (neighboring residue pair frequencies). We compared the high scoring 

regions selected by the predictor to each of the sequences used in the training set (Appendix-

table 7, see methods). This analysis, shown in Appendix-figure 8B, finds that high scoring 

(PScore ≥4.0) human proteins are, on average, more similar to the training set than are human 

proteins in general, but that the majority fall within the normal range. Comparison to a set of 

1000 BLAST-level sequence homologs of the training set suggests that the majority of the 

similarity is compositional preference, not homology. 

Both sequence similarity and compositional behavior can also be related to the bias 

towards disorder regions observed in phase separating proteins. To characterize this, we again 

took the high and low PScore subsets of our set of 3501 human proteins predicted to have long 

disordered regions and then compared their sequence profiles. It has previously been observed 

that disordered proteins have a Shannon’s entropy (a measurement of sequence complexity) that 

is lower, but significantly overlapping with ordered proteins(44). We find here that the high 

PScore set has a Shannon’s entropy that is far lower than the range seen for low PScore 

disordered proteins, which have Shannon entropies that fall in the range observed for folded 

proteins (Appendix-figure 8C). Comparing our phase separation test set with the human disprot 
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set we can confirm that this bias towards lower complexity sequences is observed in known 

phase-separating sequences. 

 

Analysis and validation of predictions of phase separation 

Given the favorable characteristics of our predictor, we investigated correlations of phase 

separation scores with protein interactions, various biological mechanisms that may regulate 

phase separation and GO terms. The principle of sequences with high propensity for non-local 

pi-pi contact being more likely to self-associate implies that different proteins with high phase-

separation propensity scores would be more likely to interact with one another. By comparing 

score pairs from protein interactions taken from the I2D metadatabase (45), we confirm that 

high-scoring proteins and low-scoring proteins are both over two-fold more likely to interact 

with proteins of similar score, relative to expectations (Figure 6A). This holds true even when 

comparing interactions between largely hydrophobic or cytoskeletal proteins (such as elastin and 

collagen) and highly polar RNA binding proteins (like Ddx4 and FUS).  

This like-score interaction propensity is predicted by a model of phase separation in 

which multivalent but individually low-affinity interactions between proteins of similar character 

coordinate the formation of large, dynamic complexes. To test this aspect of the score we looked 

at large complex formation and interaction propensity by examining the background 

“contamination” rates observed in affinity purification coupled with mass spectrometry (AP-

MS). Large complex formation is measured by the number of negative control experiments in 

which each human protein appears, over a set of 411 experiments involving non-specific affinity 

purification steps performed without the specific affinity tag (46). Within this dataset, we 

observe that 26/28 of our known human phase separating proteins show up as a contaminant in at 
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least one experiment (O/E = 3.5l), and 17/28 show up more than 10% of the time (O/E = 14.9), 

confirming that phase-separating proteins show the expected behavior.  By binning proteins by 

prediction scores, we show that this is also a trend for high PScore proteins in general (Figure 

6B), suggesting that the pi contacts driving this score may play a general role in localizing 

proteins to large complexes. 

Phase separation behavior could potentially be modulated by the addition, modification, 

or removal of even small segments with high phase separating propensity, leading to regulation 

of phase separation by alternative splicing and post-translational modification (47, 48). To test 

the possible regulation by splicing, we ran our predictor against human sequences in the 

UniProtKB/Swiss-Prot (49) variable splicing database. We found that 40 ± 2% of included 

proteins strongly predicted to phase separate (PScore ≥ 4) have alternative splice variants which 

either remove the prediction or significantly change the score (ΔPScore >1), often having 

multiple splice variants spanning a wide range of scores (Figure 6C). By comparison, an overall 

rate of significant changes in score (ΔPScore >1) of 23.0 ± 0.4% is observed for all proteins in 

the set. 

To examine post-translational modifications (PTMs), we analyzed our scores against the 

database of known PTMs curated by PhosphoSitePlus (50). We tested the relationship between 

predicted propensities and number of PTM sites, controlling for protein length by taking PTM 

counts from the maximum number of annotations observed for any 100 residue window in a 

sequence. By comparing populations with an above average number of sites (greater than the 

average plus one standard deviation) against the baseline frequency, we see enrichment in high 

PScores (≥ 4) for a variety of PTM site annotations, including literature annotations of disease 

relevance and known regulatory function (Appendix-table 8). We also observe that for 
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phosphorylation and methylation the absolute number of PTMs correlates with the average 

PScores observed, with methylation having a stronger effect than phosphorylation, and 

ubiquitination shown as a negative control (Figure 6D).  

Next, we compared our phase separation predictions to known localization or function, as 

annotated in the gene ontology (GO) database (Figure 7A,B,C). Ranking GO terms by 

enrichment of proteins with prediction values above our threshold (PScore ≥ 4) enabled us to 

generate a list of terms associated with significant enrichment of pi-pi contacts (p < 0.000001 

and 5-50 fold observed over expected); this list includes 4.1% of the 27342 GO terms tested. 

This subset of the GO database demonstrates enrichment for phase-separation propensity in 

known phase-separated compartments (stress granules, Cajal bodies, post-synaptic density (51)), 

in RNA processing (transcription, splicing, modification, transport, and stability), in the 

assembly and plasticity of structural components (cytoskeletal organization, extracellular matrix 

assembly), and in signaling, regulation, and development (Notch signaling, NF-κB, Wnt). We 

note that the sequence property predicted here is a physical behavior that occurs on a cellular 

scale, so the observation of a similar score distribution for a specific biological process, as 

observed for annotations involving localization to known phase-separating bodies, is an implicit 

prediction that phase separation is one of the physical mechanisms involved in the process. 

Consistent with that, we see similar score distributions for many processes involving 

organization of structural components, signaling, and cell-fate commitment. The property of 

phase separation is also strongly associated with the regulation and development of multicellular 

cooperation and neurogenesis. In contrast, the vast majority of GO terms (77.2%) show no 

enrichment in phase separation propensity, with significantly lower enrichment in categories 

involving metabolic processes and enzymatic catalysis. A selection of high-scoring human 
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proteins associated with enriched functions are shown with per-residue scores and PTM 

annotations in Appendix-figure 9, with examples chosen from the highest scoring protein in any 

given gene ontology function/localization annotation related to neuronal plasticity or behavior in 

A, cytoskeletal biomaterials in B, signaling in C, and extracellular biomaterials in D.  

Within the testing set there exist some proteins which have not been shown to be capable 

of independent phase separation (52), and which may associate with phase separated bodies 

without sharing the same behavior. One of these, synaptic functional regulator FMR1 (24), also 

known as fragile X syndrome protein FMRP, has a PScore of 4.7, and is involved in RNA 

binding, neurological development and regulation of translation, all GO terms enriched in high 

PScores. FMR1 is a multifunctional polyribosome-associated protein, which is highly expressed 

in the brain and in the testes, and is known to localize to granular bodies with two other proteins 

(FXR1 and FXR2) (24) that are also predicted with high PScores (at 2.9 and 5.3). In order to 

validate that high PScore predicts sufficiency for phase separation and not associated properties 

like miscibility in the separated phases of other proteins, or other interactions with phase 

separating proteins, we purified the highest scoring region (residues 445-632) and confirmed the 

ability to spontaneously undergo liquid phase separation at low temperature and high 

concentrations in physiological buffer conditions (Figure 8A). The concentration required for 

visual confirmation of liquid phase separation behavior is quite high, at 1mM FMRP-LCR, but 

can be reduced through the use of crowding reagents (Figure 8 – figure supplement 1A). To 

confirm the relevance of pi-character, we then replaced all 28 Arg residues with Lys, which 

resulted in a loss of phase separation behavior (Appendix-table 4). 

To test whether or not the predictor is applicable to sequences that do not share motifs or 

functions with any of our training set proteins we did a manual search for predictions with 



 23 

sequence properties and functions dissimilar from the training set proteins and selected two 

proteins, human engrailed-2 (UID: P19622, PScore 5.0), a DNA binding homeobox protein, and 

the pAP isoform of the Human cytomegalovirus capsid scaffolding protein (UID: P16753-2, 

PScore 3.8), a protein that plays an essential structural role in assembling the viral capsid, a 

novel function relative to those known to involve phase separation. Both sequences have little 

overlap with any of the sequence motifs found in our training set (Appendix-table 7), aside from 

general enrichment in glycine and proline residues. Experimentally we observe reversible liquid 

phase separation of pAP protein with increasing temperature, with viscoelastic properties similar 

to the complex coacervation of elastins (Figure 8C). We did not observe phase separation of 

engrailed-2 under the same buffer conditions, even at 1mM protein concentration, but did 

observe temperature dependent liquid droplet formation in the presence of a crowding reagent 

(20mg/ml ficol) (Figure 8 – figure supplement 1B). While these observations do not represent a 

robust or comprehensive test of prediction quality, they do suggest that the predictions provide a 

useful tool for selecting natural proteins capable of self-sufficient liquid demixing.  

 

Discussion: 

We tested the potential role played by pi-contacts in mediating phase separation by using 

the single property of pi-contact frequency to train a simplistic predictor of phase separation 

behavior found in natural sequences, finding that the single property of long-range pi-contact 

propensity is sufficient for marking the majority of known phase-separating proteins as outliers 

relative to the proteome, supporting the hypothesis that this sequence property is commonly 

associated with phase-separating proteins. While this association is demonstrably useful for 

identifying phase separating proteins in proteomic datasets, these contacts may not be the 
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predominant interaction driving the physical process of phase separation for each case, and could 

instead reflect a modulatory role since it is not exclusive of other interactions like hydrogen 

bonds and charge interactions. However, tests showing that arginine to lysine mutations abrogate 

phase separation behavior do provide evidence of the importance of planar sp2 groups for phase 

separating systems.  

The finding that a single contact potential can generate a reasonably accurate classifier of 

phase separation behavior suggests that a sequence-based prediction of phase separation 

behavior is a tractable problem, and that future development of an algorithm that can predict the 

complexities of the phase transition, environmental effects and concentration requirements is a 

reasonable goal. This goal could potentially be addressed by introducing the range of phase 

separation associated sequence properties that were intentionally excluded by our empirical test 

of the pi-contact association, including the electrostatic effects of charge patterning(14, 18, 53), 

multivalency of PTM sites and PTM binding motifs, and transient structural interactions, 

including strand formation(54) and coil-coil interactions(55). There is also a role for 

incorporating predictions of competing states, the irreversible aggregation propensity of a 

sequence or its amyloidogenic potential. Incorporating annotation data associated with phase 

separating proteins could be another avenue for generating a physiological classifier in a more 

comprehensive predictor. 

The physical nature of pi-pi contacts and their underlying mechanistic relationship to 

phase separation are not revealed by the simple contact frequency measurements used in our 

predictions. These contacts are observed in folded proteins, both internally and near solvated 

interfaces and, while that suggests they play a general role in the energetics of protein-protein 

interactions, the nature of that role is not clear. There is potential for electrostatic or induced 
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dipole and quadrupolar interactions, especially in the context of other dipole interactions and 

hydrogen bonds, but the flat surfaces of sp2 groups could also enable solvation to drive contacts 

and lead to entropic contributions due to the relative freedom of movement inherent in packing 

flat plates, compared to the more rigid shape complementation involved in packing aliphatic 

groups. It is interesting to note that these proposed mechanisms could be affected by temperature 

in opposite ways, and that our predictor using pi contact frequencies is useful in identifying 

phase separating proteins regardless of whether they associate more readily as temperatures 

decrease (such as Ddx4)(14) or increase (such as elastin)(5). 

As part of characterizing the proteomic associations highlighted by our empirical 

prediction test, we point out that manual inspection of our prediction results across the human 

proteome suggests that planar pi-contact associated phase separation likely facilitates a wide 

range of cellular functions. To highlight this we selected a range of examples by taking the 

highest scoring member of gene ontology categories we found to be generally enriched in high 

PScore proteins. We see enrichment of phase-separating propensity in proteins associated with 

cytoskeletal organization. These include proteins with known structural roles such as the 

cytoskeletal intermediate filament proteins desmin and vimentin (PScores 4.3 and 4.4) as well as 

keratins 8 and 18 (PScores 5.9 & 5.4), with scores deriving primarily from the disordered head 

and tail domains (Appendix-figure 9). Intermediate filaments form through dynamic processes(5) 

consistent with a model in which phase separation-induced condensation concentrates proteins 

prior to the formation of (often fibrillar) structure(5). Interestingly, helical domain mutations 

impeding structure formation cause these four proteins to instead accumulate in protein-rich 

membraneless inclusions such as Mallory-Denk bodies (56-58). We also predict high PScores for 

non-structural proteins involved in regulating cytoskeletal organization and in binding some of 
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the previously mentioned cytoskeletal proteins, including focal adhesion kinase 1 (PScore 4.2) 

and DNAJB homolog 6 (PScore 8.8), the latter of which is also a chaperone that can prevent 

huntingtin aggregation(59-61). 

 Many of the high PScore predictions involve proteins that are both involved in signaling 

pathways and known to either localize to membraneless organelles or interact with phase-

separating proteins. For example, adenomatous polyposis coli protein (APC) (PScore 3.2) and 

axin1 (PScore 2.2), involved in the Wnt signaling pathway, interact in a dynamic fashion in the 

large and multimeric β-catenin destruction complex (62), and we find high PScores for other 

critical members of the complex, including b-catenin (PScore 5.5) and GSK3α (PScore 6.4). The 

β-catenin destruction complex formation is regulated by GSK3 phosphorylation, and we note 

that the predictor shows a difference between the two human GSK3 orthologs, with GSK3β  

having a PScore of 2.2. These orthologs are often functionally interchangeable(63), but there is 

evidence of isoform specific roles for GSK3α(64) and the predicted differences could reflect a 

difference in modulating phase separation behavior.  

In conclusion, we have shown that planar pi-pi interactions are more prevalent in protein 

structures than previously described, with potential roles in structural motifs, catalysis and RNA 

binding. Planar pi-pi contact frequencies are increased in protein segments that lack regular 

secondary structure or have increased solvent exposure, pointing to their relevance for disordered 

protein regions. This, together with the enrichment of pi-containing groups in protein regions 

known to phase separate, provided an impetus for development of a phase-separation predictor 

based on the likelihood of forming non-local planar pi-pi contacts. The performance of the 

predictor supports the hypothesis that these pi-pi interactions can drive phase separation. While 

experimental data and computational work suggest other contributions(5, 10, 14, 18, 19, 36), 
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including the hydrophobic effect, electrostatics and multivalent binding of folded protein 

domains, our prediction test shows that an algorithm focused solely on pi-interactions performs 

well for the majority of proteins that we identified as phase-separating from the literature (Figure 

5C, Figure 5-source data 1B). These results strongly suggest that most phase-separating proteins 

can make significant non-local planar pi-interactions, even in cases where there are other 

dominant or required forces driving phase separation. Thus, this represents a valuable tool for the 

currently expanding field of protein phase separation and its link to biological function and 

disease(1, 55, 65, 66). In particular, the association of neurological diseases with proteins 

comprising RNA processing bodies(66), including those known to phase separate, highlights the 

importance of predictive methods for facilitating mechanistic studies of the underlying biology 

and pathology. 
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Materials and Methods: 

 

Key Resources 
Table     

Reagent type 
(species) or 

resource 
Designation 

Source or 
reference 

Identifiers Additional information 

recombinant 
DNA reagent 

His-SUMO-
Ddx4 1-236 

PMID 
25747659 

  
Expression vector (His-Sumo tagged) 
for Ddx4 residues 1-236, sequence from 
UID: Q9NQI0-1 (uniprot identification) 

recombinant 
DNA reagent His-SUMO-

Ddx4 1-236(9FtoA) 

PMID 
25747659 

  

Expression vector (His-Sumo tagged) 
for Ddx4 residues 1-236, sequence from 
UID: Q9NQI0-1, 9 out of 14 
phenylalanines mutated to alanine 

recombinant 
DNA reagent 

His-SUMO-
Ddx4 1-

236(14FtoA) 

PMID 
28894006 

  

Expression vector (His-Sumo tagged) 
for Ddx4 residues 1-236, sequence from 
UID: Q9NQI0-1, all phenylalanine 
mutated to alanine 

recombinant 
DNA reagent His-SUMO-

Ddx4 1-236(RtoK) 

PMID 
28894006 

  

Expression vector (His-Sumo tagged) 
for Ddx4 residues 1-236, sequence from 
UID: Q9NQI0-1, all arginines mutated 
to lysine 

recombinant 
DNA reagent 

His-SUMO-
FMR1445-632 

this paper   
Expression vector (His-Sumo tagged) 
for FMR1 residues 445-632, sequence 
from UID: Q06787-1 

recombinant 
DNA reagent 

His-SUMO-
FMR1445-

632(RtoK) 

this paper   

Expression vector (His-Sumo tagged) 
for FMR1 residues 445-632, sequence 
from UID: Q06787-1, all arginines 
mutated to lysine 

recombinant 
DNA reagent His-SUMO-

pAPA341Q 

this paper   

Expression vector (His-Sumo tagged) 
for SCAF isoform pAP, sequence from 
UID: P16753-2, alanine 341 mutated to 
glutamine 

recombinant 
DNA reagent 

His-SUMO-
EN2 

this paper   
Expression vector (His-Sumo tagged) 
for Engrailed-2, sequence from UID: 
P19622-1 

 

I. Analysis of pi-pi Interactions 

 

Structures used for Primary Analysis 

Protein structures determined by X-ray crystallography were downloaded from the PDB 

based on lists compiled using the Pisces web server(67), May 7 2015, which identified 23074 

non-redundant chains based on cutoffs of < 60%, < 5.0, and < 0.5 for sequence identity, 

resolution, and R-factor, respectively. For calculating statistics, high-resolution structures were 

defined as a subset of 5718 structures with resolution ≤1.8 and R-factor ≤ 0.18. For structures 

determined using distance restraints from nuclear magnetic resonance spectroscopy, we took the 
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full list of 2949 PDBs with distance constraints available from the BMRB(68) database of 

converted restraints (DOCR)(69) as of July 3rd, 2015. 

 

Contact definition 

To probe contact geometries we read each set of coordinates into custom python scripts, 

filtering input data by ignoring sp2 systems that lack any of the expected heavy atoms (<0.1%) 

and only taking the first set of coordinates when represented by multiple conformations. The sp2 

systems were defined by atom names for each of 9 sidechain groups (from W,F,Y,H,R,Q,N,E,D), 

the backbone peptide bond, and the C-terminal carboxyl group. Planar axes were defined as 

normal vectors by using the cross product method against defined lists of three sequential atoms. 

VDW contacts between sp2 groups were determined by the full set of heavy atom (C, N, O) 

distance measurements, using a threshold of ≤4.9Å to define contacts. This represents the upper 

range of VDW contacts between sp2 groups (Appendix-figure 1E), because we intended to 

compare contact frequencies by data resolution and did not want to introduce arbitrary energetic 

cutoffs for atoms with potentially unreliable positions. 

In analyzing the planar orientations of sp2 groups found in VDW contact, we found 

enrichment of in-plane contacts, predominantly face-to-face, so we devised a simple system for 

identifying them that can be generalized across groups with variable numbers of atoms. These 

planar surface contacts were defined first by requiring at least two different pairs of atoms to be 

in VDW contact. Contact distances were further restricted by requiring that surfaces 1.7 Å above 

the sp2 plane be ≤1.5 Å apart (as shown in Appendix-figure 1B). This planar-surface distance 

requirement is used to ensure contacts that put the pi-orbitals in proximity to one another, and we 

note that while this threshold will accept atom-atom contacts as far as 4.9Å apart the majority 

end up below 4.0 Å (Appendix-figure 1E, in purple). To restrict contacts to planar contacts, the 

dot product of the planar normal vectors were required to have an absolute value ≥0.8 

(equivalent to an orientation difference from 0° to ~37°).  This threshold retains >80% of the 

contacts identified by distance, and was chosen because interactions between planar groups show 

a noticeable enrichment relative to random orientation in this range (Appendix-figure 1D). 

Annotation data for the full non-redundant set of PDBs analyzed is included in files Figure 

1-source data 1 and 2, and scripts for creating contact annotations from a PDB is included in 

supplemental file Source Code S1. 
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Planar pi-pi contact frequency 

Comprehensive lists of planar pi-pi contacts were computed for each chain and were stored 

in a database. Contact frequencies were calculated as the total number of observed contacts 

divided by the total number of residues considered. Residues were counted only for each non-

redundant chain, and contacts include both the ones made within that chain and the ones that 

chain makes to any other chains present in the PDB (except when noted otherwise). Contacts to 

crystal symmetry partners were also measured but were kept separate and, except where 

specifically investigated to probe inter-chain contacts, were excluded from analysis based on the 

observation that VDW contacts made to symmetry partners can contain a small (<1%) 

population of extreme clashes (atoms <1 Å from one another). 

 

Pi-contact frequency vs. resolution 

PDBs were sorted into 77 non-overlapping bins first by exact resolution and then by rolling 

any bins with less than 100 PDBs into the next acceptable bin within 0.25 Å. This method rounds 

up the small populations of resolution values while retaining as much resolution information as 

possible. Correlation values and lines of best fit were estimated using linear regression (inherited 

from the scipy python package, version 0.12.1) against bin averages, with bins weighted by 

sample size. 

 

Involvement of amino acid types in planar pi-pi contacts 

In order to compare frequency of contacts involving all 20 common amino acids, we 

defined involvement based on the participation of any atom from that residue in a planar contact. 

For most sequence positions this means at least one contact made to either one of the flanking 

peptide bonds or, for the nine amino acids that have them, the sidechain group. By this 

definition, backbone planar contacts involve both flanking residues. 

 

Sp3 Controls 

To provide a prior expectation control for enrichment of planar pi-pi contacts we took the 

exposed heavy-atom planar surfaces from fully sp3 hybridized sidechains, using the following 

PDB atom names to define each planar group: Leucine: CD1, CG, CD2; Valine: CG1, CB, CG2; 
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Methionine: CE, SD, CG; Isoleucine: CD1, CG1, CB; Cysteine: SG, CB, CA; Serine: OG, CB, 

CA; Threonine: OG1, CB, CG2; and Lysine: NZ, CE, CD. 

   

Small molecule datasets 

The PDB was screened for crystallographic structures containing either amino acids or other 

small molecules as free ligands, with the other small molecules being restricted to those that 1) 

are present in more than 100 structures, 2) have a single sp2 group, and 3) have all heavy atoms 

(C,N,O) falling within the sp2 plane. These structures were then filtered for resolution (≤ 3.0Å) 

and redundancy (≤ 90% identity) by using the Pisces web server. Contact frequencies were 

determined across the full list of ligands in these non-redundant sets, with contacts to amino acid 

ligands being divided into backbone carboxyl and sidechain sp2 groups. As an internal control 

for amino acid contact frequencies, contact frequencies were determined for each amino acid 

based on the same set of structures used to define the ligand frequency. For sidechain groups the 

controls are their direct equivalents found within the protein, and for the amino carboxyl groups, 

we used the protein C-terminal carboxyl groups as the control. Population statistics are 

summarized in Appendix-table 2. 

 

Catalytic sites 

We defined catalytic sites based on direct literature annotation as described in the Catalytic 

Site Atlas(32), with 2914 residue positions identified over 928 protein structures. The full 

population of residues across the annotated chains was split into 40 bins according to identity 

and annotation status. Relative contact involvement frequencies, catalytic vs. non-catalytic, were 

obtained for each amino acid type. For each catalytic residue we then identified the total number 

of VDW contacts made to any other residue, identified which VDW contacts fall into the subset 

defined by our pi-contact rules, and then, for the 2377 catalytic residues with at least one VDW 

contact to another catalytic residue, we computed the frequency of VDW contacts that are also 

pi-contacts. 

 

External measurements and secondary structure 

Hydrogen bond data were calculated using PHENIX(70), with amino sidechains allowed to 

flip 180deg to maximize the number of donor/acceptor pairs. DSSP(71) was used to define 
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backbone secondary structures. Water contacts were defined by direct distance measurements, 

with the full set of water molecules, including symmetry partners, extracted using the 

SYMPEXP function from pymol(72). NMR restraints were obtained for 2949 structures from the 

Database Of Converted Restraints(69). For defining short secondary structure motifs we used the 

simplified one letter definitions provided by DSSP (‘H’, ‘B’, ‘E’, ‘G’, ‘I’, ‘T’, ‘S’, and ‘ ‘), in 

order to maintain adequate sample size when comparing enrichment across motifs. For 

comparing ordered and disordered residues, clear helices and strands (‘H’ for -helix, ‘G’ for 310 

helix, and ‘E’ for -strand) were defined as the ordered assignments, representing regular 

secondary structure. 

 

II. Predictor Training and Bioinformatics 

 

Pi-contact prediction for structures in the PDB 

We trained a statistical potential for predicting pi-contact frequency from protein sequence 

for individual sp2 groups, with contacts split by sequence separation into short range (≤ 4 

residues apart) and long range (≥5 residues apart, or different chains). We trained against an 80% 

random cut of the 17388 proteins in our non-redundant crystal structure subset of the PDB, 

leaving the remaining 20% as a testing set for a single final test of the predictor. The final 

predictor, covered in detail in Appendix 2, operates by first averaging the frequencies observed 

for sp2 groups found in specific sequence contexts (with context defined as all residues within 40 

amino acids of a given residue) and then comparing the average values to the distributions 

observed for sp2 groups with the same sequence identity (with 9 sequence identities for sidechain 

sp2 systems, and 400 distinct identities for the peptide backbone), where the final prediction is 

the contact frequency observed at matching positions in the PDB. 

 

 

Phase separation prediction benchmark 

To develop a predictor for the phase separation propensity of a given protein sequence, we 

started by defining a set of 11 proteins which have been shown, in the literature, to phase 

separate in vitro as single purified components due to interactions involving intrinsically 

disordered regions of the protein. We also defined a leave out set of 62 proteins associated with 
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phase separation in the literature by combining proteins matching three distinct criteria. “In vitro 

sufficient”, (N=32) proteins satisfying the criteria used to select the test set, “In vitro 

insufficient”, (N=18) proteins for which the literature contains evidence of in vitro phase 

separation in complex with other proteins or with RNA but phase separation as a single 

component not observed and “in cellulo associated” (N=12), proteins without in vitro 

characterization, but with evidence of phase separation in live cells, as determined both by 

localization to a known dynamic protein body and by a direct measurement of dynamic 

character, typically involving FRAP recovery of a fluorescent tag. These benchmark sets are 

included in supplemental file Figure 5-source data 1A, B & C. 

Over these datasets we only found 8 proteins less than 300 residues in length, with the 

smallest protein sequence observed (RBM3_HUMAN) being 157 residues long. To avoid 

extrapolating our predictions onto an unobserved class of proteins, we decided to restrict testing 

to sequences ≥140 residues in length. To define additional control and training sets we applied 

this sequence cutoff to a series of datasets, including the PDB sets used for developing the pi-

contact predictor, with 13388/17388 training set and 3406/4347 test set sequences retained after 

restricting by length ≥140, the UniProt human reference proteome (September 2016, 

18582/21047 sequences used), and the subset of the human proteome with known disorder, as 

defined by the DISPROT database (42) (205/249 sequences).  

 

Phase separation predictor training 

The phase separation propensity predictor starts by inheriting a table of 8 pi-contact 

prediction values per sp2 group in the sequence, splitting contacts by i) short range (≤ 4 sequence 

separation) vs. long range (> 4), sidechain vs. backbone, and absolute predicted frequency vs. 

relative difference from sp2 groups with the same identity (with 9 sidechain sp2 groups and 400 

backbone groups, split by their associated sequence). Sequences are then scored by a series of 

weighted sequence window averages. Weights, window length, and normalization parameters 

were refined using a stochastic optimization process to maximize the score difference between 

the lowest scoring member of our 11 member training set, and the average score of the highest 

scoring 1% of the PDB training set. A full training history and details of the final predictor are 

described in Appendix 2. AUC values at different stages of training the predictor are tabulated in 

Appendix-table 6. Standard error of the mean values for AUC calculations were estimated by 
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bootstrap using sampling with replacement (10,000 iterations) against both the test and human 

sets. 

The final predictor consists of a single python script and associated database files, with 

the state at time of submission included in supplemental file Source Code S1. 

 

Proteome analysis 

Phase separation scores for analyzed proteins were considered with respect to known 

interactions, and functional annotations, using the gene ontology database (release Oct-04-2016), 

UniProt’s Swiss-Prot and TREMBL sequence databases, including the reference proteome 

annotations, vertebrate protein sequence list, and variant splicing data (release 11-May-2016) 

(49, 73-75), PTM data from PhosphoSitePlus (release Dec-16-2011) (76) human protein-protein 

interactions collated under the Interologous Interactions Database (I2D) (version 2.9) (77), and 

background AP-MS detection rates from the Contaminant Repository for Affinity Purification 

Mass Spectrometry Database (CRAPome version 1.1) (46).  

GO term enrichment data over the full range of propensity scores were analyzed against all 

proteins with UniProt codes contained within both the vertebrate reference sequences and the 

gene ontology database. Enrichment scores and p-values for individual GO terms were obtained 

for a defined 4 sigma cut against the human proteome by using PANTHER (78-80) analysis. 

 

Disorder Prediction 

 Per residue disorder predictions were obtained using Disopred3.16 (40) (standard 

command line and Refseq database) and IUPRED-Long(41, 81) against the phase separation test 

and training sets, the PDB test set, the human Disprot set, and a random selection of 7397 

sequences from the human proteome. To convert these into per-sequence scores for comparison 

to the PScore we then used the optimized window averaging method developed during training 

of the predictor, where the window is defined as all residues within five sequence positions of 

the highest scoring sixty. These scores can be used to classify whether or not a given sequence 

has a number of disordered residues comparable to the length of a folded domain, either 

concentrated in a single large region or distributed throughout the sequence.  
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Sequence analysis 

 Sequence similarity to the proteins within the training set was measured by computing 

dipeptide sequence profiles (the frequencies of all 400 possible i,i+1 amino acid combinations in 

a sequence), calculating block L1 distances between a query dipeptide profile and each of the 

training set profiles, and then returning the lowest observed distance. Comparison to the 

sequence similarity of direct homologs was observed against a set of 1100 sequences obtained 

via BLAST by using the phase separation training set sequences used as queries against the seq 

database (E = 0.0000001). 

 Shannon entropy values were calculated for amino acid profiles of sequences by the 

standard equation(82), and comparisons of high and low scoring disordered proteins were 

obtained from the subset of human sequences with Disopred3 predictions >0.80, using the 

window averaging method described previously (N = 3501 out of 7397 sequences). High and 

low PScore sets were defined by PScore ≥ 4.0 (N = 310) and PScore < 1.0 (N = 1044), 

corresponding to our standard phase separation confidence threshold and scores less than one 

standard deviation above the PDB average, respectively. 

 

III. Experimental Methods 

 

Protein expression and purification 

Ddx4: Constructs for Ddx4 1-236 wild type sequence (UID: Q9NQI0-1) and mutants were 

synthesized and subcloned into a pET Sumo vector (Genscript) to produce His-SUMO-Ddx41-

236(14), His-SUMO-Ddx41-236(9FtoA) (14), His-SUMO-Ddx41-236(14FtoA) (83), and His-SUMO-

Ddx41-236(RtoK) (83). Protein was overexpressed in E. coli and purified as described previously 

(14). Phase separation was induced at 24 °C by dialysis of a high concentration of Ddx4 in 20 

mM Na2PO4, 1 M NaCl, 5 mM TCEP, pH 6.5 into a buffer containing 20 mM Na2PO4, 100 mM 

NaCl, 5 mM TCEP, pH 6.5. Concentrations were measured by spectrophotometry, using an 

extinction coefficient of 23950 M-1cm-1 at 280 nm. 

FMR1: His-SUMO-FMR1445-632 (FMR1 from UID: Q06787-1) and His-SUMO-FMR1445-

632(RtoK) were transformed into E. coli BL21-CodonPlus(DE3) RIL cells. Bacteria were grown in 

Luria Both at 37 °C and protein expression was induced with 0.5 mM IPTG at OD600 nm of ~ 0.6-

0.8, followed by overnight growth at 24 °C. Cells were harvested by centrifugation and pellets 
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were stored at -20 °C. Protein pellets were re-suspended in lysis buffer containing 50 mM NaPO4 

pH 8.0, 6 M guanidinium chloride (GdmCl), 500 mM NaCl, 20 mM imidazole and 2 mM DTT. 

Cells were then lysed via sonication and lysates were cleared by centrifugation at 39,000 g for 30 

mins at 4 °C. The supernatant was loaded onto a HisTrap column equilibrated with the lysis 

buffer followed by extensive washing with the same buffer (10 CV). The GdmCl was removed 

by washing the column with buffer containing 50 mM Na2PO4 pH 8.0, 500 mM NaCl, 20 mM 

imidazole and 2 mM DTT (10 CV). The protein was then eluted in the same buffer supplemented 

with 300 mM imidazole. The His-SUMO tag was cleaved with the SUMO protease, Ulp, while 

dialyzing against 50 mM NaPO4 pH 8.0, 500 mM NaCl, 20 mM imidazole, and 10 mM DTT at 4 

°C over night. The dialysate was loaded again onto a HisTrap column equilibrated with dialysis 

buffer to separate the His-SUMO tag and the His-tagged Ulp from the FMR1445-632 protein. All 

fractions were analyzed by SDS-PAGE, and fractions containing the protein of interest were 

combined and concentrated with ultrafiltration. Concentrated samples were passed over a 

Superdex 75 gel filtration column into a final buffer of 50 mM NaPO4 pH 8.0, 2 M GdmCl, 200 

mM NaCl, and 2 mM DTT. Protein identity was confirmed by mass spectrometry and frozen at -

80 °C until use. Concentrations were determined from the absorbance at 280 nm using a molar 

extinction coefficient of 9970 M-1cm-1. 

pAP: His-SUMO-pAPA341Q (SCAF Isoform pAP from UID: P16753-2, with a single 

mutation A341Q added to confer protease resistance(84)), was transformed, grown, induced, and 

purified following the protocol for FMR1, but with growth post-induction done for 4 hours at 37 

°C, and with an additional Superdex 75 gel filtration step added between the first HisTrap step 

and the Ulp cleavage step. Concentrations were determined from the absorbance at 280 nm using 

a molar extinction coefficient of 35870 M-1cm-1. 

Engrailed-2: The expression and purification steps of engrailed-2 (UID: P19622) from His-

SUMO-EN2 were similar to the protocols used for FMR1, but with growth post-induction done 

for 4 hours at 25 °C, and addition of a HiTrap SP XL (GE Healthcare) ion exchange 

chromatography step between the Ulp cleavage step and a Superdex 75 gel filtration step for 

removing His-SUMO by increasing NaCl concentration from 50 to 1000 mM in 50 mM NaPO4, 

2 mM DTT at pH 7.4. Concentrations were determined from the absorbance at 280 nm using a 

molar extinction coefficient of 22460 M-1cm-1. 
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Phase separation test and differential interference contrast imagining 

For Figure 8A, concentrated FMR1 protein samples were dialyzed against 20 

mM NaPO4 pH 7.4 and 2 mM DTT overnight at 4 °C and then diluted with the same buffer to 

the desired protein concentrations for imaging. Samples were incubated on ice for 5 minutes 

before placing them onto a glass cover slip. For Figure 8 – figure supplement 1A, FMR1 protein 

samples were instead dialyzed against 100mM NaCl, 20mM NaPO4 pH 7.0 and 5 mM DTT, with 

20mg/ml ficol added prior to imaging.  

Concentrated pAP and engrailed-2 protein samples were dialyzed against 100mM NaCl, 20 

mM NaPO4 pH 7.0 and 5 mM DTT overnight at 4 °C and then either diluted with the same 

buffer to the desired protein concentrations for imaging (pAP, Figure 8C) or with the addition of 

20mg/ml ficol (engrailed-2, Figure 8 – figure supplement 1B). Droplet images were acquired 

using differential interference contrast with 40X, 63X or 100X objectives on either a Zeiss 

Axiovert 200M Epifluorescence microscope or a Zeiss Axio Observer. Temperatures were 

controlled using a PE100-ZAL inverted Peltier system from Linkam Scientific. 

 

 

IV. Statistical Analysis 

 

Standard error estimated for measured population parameters was obtained by bootstrap 

analysis using random sampling with replacement, with 10,000 iterations. For measurements 

involving populations of features found within the PDB we split observation data into dependent 

blocks by sampling against the list of PDBs used in calculating the parameter rather than by 

against the list of observed features. Statistics for many of these calculations are tabulated in 

Appendix-table 1. ROC curves were calculated as non-parametric step functions by empirical 

cumulative distributions, and AUC was estimated by direct measurement of the area under the 

curve, without smoothing. AUC values are tabulated in Appendix-table 6. 
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Figure 1. PDB statistics for planar pi-pi interactions. (A), Average number of sp2 groups 

involved in planar pi-pi contacts per 100 protein residues binned by crystal structure resolution. 

Values are shown for contacts defined by the nature of the involved sp2 groups, with all groups 

in black, aromatic to non-aromatic sp2 in blue, non-aromatic to non-aromatic in pink, backbone 

to backbone in gray, and aromatic to aromatic in orange. Error bars show bootstrap SEM. (B), 

Planar pi-pi contact interaction frequencies for each residue type, with the average across all 

residue types shown as a red line, and (C), frequency of each residue type in contributing to 

planar pi-pi interactions, with bars showing overall frequency colored proportionally by the 

nature of the contact partners. Figure 1-source data 1 & 2. 
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Figure 1 – figure supplement 1. Proportion of sidechain to backbone VDW contacts that satisfy 

planar contact criterion. To examine relative contact enrichment, sidechain contacts to the 

backbone are normalized against the total number of contacts satisfying the same VDW criterion 

(two pairs of atoms within 4.9Å), with comparison between (left) planar sp2 sidechain groups 

(for W, F, Y, H, R, Q, N, E & D) and (right) selected sp3 planar surfaces (for C, S, M, T, K, L, V, 

I). The sp3 planar surfaces were chosen as a control by taking sets of atoms describing exposed 

planar surfaces, as described in the Methods. Comparing relative planar contact frequency, we 

observe the majority of sp2 sidechain types show clear enrichment relative to the sp3 controls.  
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Figure 1 – figure supplement 2. Selected sidechain to sidechain contact frequencies by 

resolution.  Percentage of residues involved in planar contacts are shown in red, and percentage 

in any other non-planar VDW contact are shown in blue, with panels showing contacts by 

sidechain group (for panels A-F: R to R, R to K, H to R, H to K, Q to R, and Q to K). We 

observe that the increase in planar pi-pi contacts to arginine at higher resolution comes at the 

expense of non-planar VDW contacts (panels A, C and E). In contrast, contacts made to an 

arbitrary surface plane at the end of lysine sidechains do not show this increase in planar 

orientation with resolution (panels B, D and F). 
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Figure 2. Examples of planar pi-pi contacts in folded protein structures. Pi-pi interactions shown 

using rods to describe the normal vector of the plane. Rods extend to a carbon VDW radius of 

1.7Å, colored by category with sidechain groups in purple, backbone in blue, small molecule 

ligands in orange, and RNA in gray. Ligand molecules are green, with relevant water molecules 

shown as red spheres and hydrogen bonds as yellow lines. (A), Arginine ladder motif in Porin P 

(PDB:2o4v). (B), Catalytic site from arginine kinase (PDB:1m15). (C), Network of interactions 

in nitrogenase (PDB: 3u7q). (D), Backbone/sidechain contacts at the ends of secondary structure 

elements (PDB:4b93). (E), RNA-binding interactions (PDB: 4lgt). (F), Interaction network 

stacked between disulfide bonds (PDB: 4v2a).  

  



 50 

 

Figure 3. Correlation of planar pi-pi interactions with solvent and lack of secondary structure. 

(A), Contact frequency for sidechain groups (red) and backbone (blue) increases with the total 

number of solved water molecules within 4.9Å of the residue, based on structures with >1 water 

oxygen per residue, including all molecules within 8Å of the chain of interest, including 

symmetry partners. (B), Representative example of a pi-stacked sidechain in contact with 11 

water molecules (PDB:4u98), showing how the interaction does not appear to compete with 

solvent. (C), Mean contact frequency vs. sequence distance from regular secondary structure and 

loop/turn regions. (D), Example of the range of interactions found >10 residues from loop/turn 

secondary structure (PDB:4b4h). 
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Figure 3 – figure supplement 1. Effect of solvation on pi-pi category frequencies. Effects of 

solvation, measured by the total number of water molecules within 4.9Å of a given residue, on 

the overall frequency of different types of interactions, categorizing contacts by the identities of 

the solvent contact tested residue and its partner, where the solvated residue is listed first (green 

for aromatic to aromatic, blue for aromatic to non-aromatic, orange for non-aromatic to aromatic, 

and pink for non-aromatic to non-aromatic). Note that non-aromatic includes backbone 

interactions. 
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Figure 3 – figure supplement 2: Enrichment of pi-pi contacts, relative to overall VDW 

contacts, as a function of the number of interactions with water. Water contacts are measured to 

residue A, and the percentage of pi-pi contacts per VDW contact is measured for all contacts 

from residue A to residue B. Panel A shows the change in percentage of pi-pi contacts per VDW 

contact by number of waters for each sidechain-sidechain interaction, with pi-contact enrichment 

with solvation being a consistent property of the majority of interactions involving at least one 

non-aromatic sidechain. Panels B-F show slope measurements for a selection of examples, Phe 

to Phe, Arg to Arg, Phe to Arg, Arg to Glu, and Phe to Glu, respectively. 
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Figure 4. Sidechain contacts at interface positions. Contact frequencies are shown for the nine 

sp2 containing sidechain types, split into three bars based on interface proximity. From left to 

right these bars are i) no other chain within 4.9 Å of any sidechain atom, ii) within 4.9 Å VDW 

contact distance of any atoms in a different chain within the unit cell of the crystal, iii) within 4.9 

Å of any atoms in a chain from a neighboring unit cell, as determined by crystal symmetry data. 

Bars are colored by the proportion of total contacts contributed by three categories, bottom/black 

corresponding to local (sequence separation ≤ 4 residues ) intrachain contacts, middle/blue to 

non-local intrachain contacts, and top/pink to interchain contacts, showing that overall contact 

frequencies and local contact frequencies remain similar and that the non-local contacts do not 

discriminate between intra and interchain. 
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Figure 5. Prediction of phase separation based on planar pi-pi interactions. (A), Reliability plot 

showing average predicted and observed contact frequencies for percentile bins by pi-pi contact 

prediction for proteins in the PDB, with PDB sequences used for training in blue and the leave 

out set in red. Bars show SEM. (B), Highest number of contacts predicted, by window, for two 

phase separation predictor training sets and three test sets, for the unoptimized predictor. (C), 

Modified ROC curve showing the final predictor’s performance on three test sets vs. the human 

proteome, with the full set in pink (N=62), the full set minus the insufficient for phase separation 

set shown in green (N=44), and the sufficient for phase separation set in blue (N=32). (D), 

Results for the final predictor (as for panel b) plotted with the predictor’s phase separation 

propensity scores (PScore). Data underlying B-D included in Figure 5-source data 1 and Figure 

5-source data 2. 
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Figure 5 – figure supplement 1: Contrasting behavior of disorder prediction algorithms and the 

phase separation prediction. Disopred3(40) derived disorder predictions are shown on the y axis 

and PScores are shown on the x axis for four different test sets, (A) our PDB test set, 

representing a negative set for both phase separation and disorder, (B) a random sample of 4385 

sequences from the human proteome, (C) the subset of the human proteome annotated as 

containing disorder in the Disprot database (42), representing a positive set for disorder, and (D) 

our full phase separation test set. Results are split into four categories separated by PScore = 4 

and Disorder = 0.8, with the percentage of sequences in each category inset in blue. The majority 

of known phase-separating proteins are associated with disorder, and are predicted to be 

disordered, but sequences predicted to phase separate represent a small subset of both the known 

and the predicted disordered proteins. 
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Figure 5 – figure supplement 2. Comparison of scores used in generating phase separation 

predictions. (A) Highest number of short range backbone contacts predicted, by window, for the 

PDB test set, the human proteome, the set of disordered human proteins from Disprot, and the 

full phase separation test set (N=121), where percentile ranges are shown in colored boxes. (B), 

Highest number of long range backbone contacts predicted, as for panel a. (C), Results for the 

final predictor plotted with the predictor’s phase separation propensity scores (PScore). 

Prediction of long range backbone contacts provides the majority of the discrimination seen in 

the final predictor. 
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Figure 6. Association of phase separation propensity scores with protein interactions, splice 

isoforms, PTMs, and GO localization, process, and function terms. (A), Protein-protein 

interaction enrichment by the PScore of partner 1 vs. the PScore of partner 2. The color gradient 

shows the natural logarithm of the observed over expected ratio. (B), Percentage of human 

proteins at each PScore range that are detected in more than 10% of AP-MS negative control 

experiments. (C), Score ranges for alternative splicing variants shown as vertical lines sorted by 

reference sequence values. (D), Number of PTMs vs. average relative PScore, with methylation 

shown in red, phosphorylation in green, and ubiquitination in blue.  
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Figure 7. PScore enrichment by gene ontology annotation for subcellular localization (A), 

biological process (B), and molecular function (C). The color gradient shows the natural 

logarithm of the observed over expected ratio. Heatmaps show enrichment in vertebrate 

sequences across six defined score ranges, with the highest score range (PScore ≥ 4) labeled with 

human enrichment values calculated using PANTHER (see Methods).   
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Figure 8. Visual confirmation of phase separation. (A), Test tubes containing transparent or 

turbid solutions of 1 mM FMR1 C-terminus (residues 445-632) along with their corresponding 

DIC microscopy images taken at room temperature or 4 °C, respectively. (B), 1 mM FMR1 C-

terminus forms droplets exhibiting liquid fusion properties at 4 °C. (C), 40 µM solutions of 

Human Cytalomegalovirus pAP along with corresponding microscopy images taken at room 

temperature or 80 °C, respectively.  
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Figure 8 – figure supplement 1. Visual confirmation of phase separation, using 20mg/ml ficol 

as a crowding agent. (A) 200 µM FMR1 C-terminus shows reversible droplet formation between 

2 °C and RT (B), 220 µM engrailed-2 shows reversible droplet formation between 2 °C and 35 

°C. DIC Images taken at 63x magnification, where shading reflects the differences in position 

relative to the focal plane of the free floating droplets. Scale shown as black bars sized to 10 µm. 
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Appendix-figure 1. Contact definitions. (A) Contacts are identified first as sp2 planes in which 
at least two pairs of atoms come within 4.9Å of one another, and then by restricting to the subset 
with (B) planar surfaces (at the carbon VDW radius of 1.7 Å) with points along the planar 
normal vectors coming within 1.5 Å of one another and (C) a planar orientations for which the 
absolute value of the dot product of normal vectors is ≥ 0.8. (D) Shows the rational for these 
restrictions, where binning sidechain-sidechain interactions by the relative orientation between 
planes shows that planar (same-orientation) interactions, primarily in the 0.8 to 1.0 range (angles 
between the planes from 0deg to 36deg), show enrichment relative to the uniform distribution 
expected for random orientations. Of these, interactions with only one atom-atom pair within 
VDW contact (shown in blue) have no bias. Enrichment comes entirely from contacts with either 
two pairs of planar surfaces within 1.5 Å of each other (shown in purple) or at two distinct pairs 
of atoms within 4.9Å but without the planar surface contact (shown in green). (E) Minimum 
distance measurements between pairs of atoms found in separate sp2 groups, measured from the 
closest pairing for each atom. Gray shows all sidechain-sidechain measurements, and 
green/purple show distances corresponding to the groups in D. (F) Representative examples of 
sidechain-sidechain and sidechain-backbone pi-contacts are shown as sticks (PDB: 1gde), with 
carbon atoms in gray, oxygen in red, and nitrogen in blue. Planar normal vectors extended to the 
carbon VDW radius, representing pi-orbital locations, are shown as purple rods for sidechain 
groups and blue rods for backbone groups, and the yellow line denotes a hydrogen bond where 
both donor and acceptor atoms are in pi-contact distance to a third sidechain. (G) A space-filling 
representation of the sp2 atoms in F, with gray lines between normal vector rods used to show the 
planar surface measurements taken for defining pi-contacts.  
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Appendix-figure 2. Cross validation against NMR restraints and X-ray structure resolution. (A), 
The relationship between contact frequency and experimental data quality is not unique to 
crystallography, as shown by the effect of increasing the number of restraints on sidechain 
specific contact frequencies over 2589 structures solved by NMR. For each sidechain/protein 
combination we calculated the average number of distance restraints involving sidechain atoms 
(from the first sp2 atom onward), and then binned residues into 5 categories, with red for 
structures without any sidechain distance restraints for that residue type, and ranking quartiles 
from light gray to black by order of increasing restraints, where the consistent increase in contact 
frequency from left to right confirms that more restraints result in higher planar pi-contact 
frequencies. For Glu and Asp, less than 1% of the structures were derived using distance 
restraints to the carboxyl's lone carbon atom so we did not split them into quartiles. (B), To 
control for potential sample bias we also tested the relationship between resolution and contact 
frequency for crystallographic structures that have been solved at least three different times at 
different resolutions, with bars showing contact frequencies over identical populations of 
residues for the highest (blue), median (black), and lowest resolution (red) structures. Error bars 
show standard error of the mean (SEM). 
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Appendix-figure 3. Pi-pi interactions underestimated by some energy functions. (A), Contact 
frequency during molecular dynamics simulations of 100 proteins, made available through 
Dynameomics(28), shows a rapid initial loss of >80% of sidechain pi-contacts which continues 
to decline throughout the simulation (blue points). By comparison, sidechain hydrogen bonding 
shows a stable loss of only 20% of interactions (red points). (B), Minimization of 762 crystal 
structures against the Talaris2014 energy function by Rosetta3.4(85, 86), with starting contact 
frequencies (left bars) decreasing after minimization (right bars). (C-F), Analysis of the 
relationship between the energetic effects of point mutations (G) and pi-contacts for 
experimental Gs (blue bars) and Gs predicted by simulation against the FOLDX force 
field(29) (C,E) and Rosetta (D,F). Panels C,D show predicted G values vs observation for 
residues that are not involved in pi-contacts in black, and residues that are involved in pi-contacts 
in blue, with lines of best fit colored the same. Panels E,F show how correlation values change as 
outliers are removed, with correlation consistently worse for mutations involving pi-contacts 
(blue lines) relative to those that don’t (black lines). 
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Appendix-figure 4. Hydrogen bonding correlates with planar-pi contacts. Percentage of 
sidechains involved in at least one hydrogen bond is shown for sidechains that are not in a 
planar-pi contact in black, and for sidechains that are in a planar-pi contact in green, with panel 
(A) showing the hydrogen bond frequency across all groups, including ligands and water, (B) 
showing the hydrogen bond frequency to backbone atoms, and (C) showing the frequency of 
hydrogen bonding to a sidechain. Hydrogen bond frequency consistently increases with planar 
pi-pi contacts for all sidechains but Trp and Tyr. 



 65 

 
 
Appendix-figure 5. Backbone pi-pi contacts in secondary structure motifs. Examples of 
secondary structure motifs showing enrichment for local backbone pi-contacts (contacts made to 
sidechains within 5 residues of the peptide bond) are displayed. Bar graphs show contact 
frequency at each position in a motif, as defined by DSSP(71) abbreviated residue class ('E', 'S', 
'T', 'H', 'G', & ' '), with bars colored by the associated residues, with green for peptide bonds 
between two residues classified as turns, blue for bonds in strands, red in helices, and black for 
bonds that are either unclassified or present at the transition point between classifications. Gray 
horizontal lines represent the decile values across all backbone contact frequencies, showing that 
the bonds most likely to end up in the top decile come primarily from transition points between 
secondary structures (ranging from 2x to 20x enrichment, relative to the median of 1.7%). 
Protein structures show representative examples of each motif with contacts found at the most 
enriched position, taken from (A), PDB:1aap, (B), PDB:1gte, (C), PDB:1k5c, (D), PDB:1nhc, 
(E), PDB:1k3i, (F), PDB:1i8k, (G), PDB:2c4w, and (H), PDB:1kwf.  
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Appendix-figure 6. Peptide sequence effects on contact frequency. Heatmaps show enrichment 
in the total proportion of planar pi-pi contact involvements observed for peptide bonds between 
two residues (the first, N-terminal residue on the x-axis and the second, C-terminal residue on 
the y-axis) relative to the proportion of peptide bonds. Enrichment for (A) short range contacts 
(sequence separation < 5) and (B) long range contacts (separation ≥5 or a different chain), 
respectively, to the peptide bond itself. (C), Enrichment for finding residues within 5 residues of 
a sidechain that makes a pi-contact to any group in the structure, demonstrating general sequence 
effects on the contact propensity of neighboring residues. The color gradient shows the natural 
logarithm of the observed over expected ratio. 
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Appendix-figure 7. Phase Separation Propensity Predictor Testing. (A), ROC curve 
comparisons of predictor quality for scores made at different points during the training process, 
measuring ranking against the full test set (N=62) vs. the human proteome (only sequences with 
length ≥ 140) with green showing the results for the highest number of pi-contacts predicted for 
any 100 residue window, without any weighting for type (AUC:0.82 ± 0.03), pink and orange 
showing the same measurement split between long range (AUC:0.85 ± 0.03) and short range 
contacts (AUC:0.62 ± 0.04), respectively, and blue showing the final predictor, which uses 
weighted combinations of both short and long range contact predictions (AUC: 0.88 ± 0.02). (B), 
the final score tested against 59 phase separating sequences designed by the Chilkoti lab (22, 38, 
39). (Detailed in Figure 5-source data 1C), with comparisons against the full set shown (N=59) 
in blue (AUC: 0.86 ± 0.03), and then split into green for 18 proteins shown to phase separate 
from soluble to insoluble as temperature decreases (AUC:0.99 ± 0.01) and pink for the remaining 
41 proteins which phase separate from soluble to insoluble as temperature increases (AUC:0.80 
± 0.04). (C), Fraction of sequences at or above a given PScore, with the combined pool of phase 
separation test set proteins (N=121), in black, being compared to three reference proteome sets, 
with human in pink, S. cerevisiae in blue, and E. coli in green. (D), Enrichment plot for data 
shown in C, with ≥PScore frequency for the test set shown relative to proteome frequencies. 
Analysis based on Figure 5-source sata 1 and 2. 
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Appendix-figure 8. Sequence comparisons of high PScore proteins. Panel (A) shows 
compositional bias, relative to the human average, for the high PScore disordered proteins (x-
axis) and low PScore disordered proteins (y-axis) used in panel B. High PScore disordered 
proteins are enriched primarily in Pro and Gly, while low PScore disordered proteins are not 
enriched in either, but enriched primarily in Lys and Glu, matching our observation that Arg to 
Lys mutations abrogate phase separation propensity. Panel (B) shows similarity to the training 
set measured by minimum dipeptide profile distance to any training set protein, as described in 
the methods. High PScore (≥ 4.0) human sequences (in pink) are on average closer to the training 
set than are all human proteins (in black) or PDB sequences (in green), but the range overlaps 
with both, and is distinct from the similarity seen in blast level homologs of the training set (in 
blue). Panel (C) shows Shannon entropy distributions of the human proteome (in black), the PDB 
(in green), and of a set of human proteins proteins predicted to have long stretches of disorder 
(Disprot3 ≥ 0.8) split into those with high PScore (≥4, N=310) (in pink) and low PScore (< 1.0, 
N=1044) (in orange), showing that PScore but not disorder results in a bias towards lower 
sequence entropy, suggesting a compositional bias in phase-separating sequences. Panel (D) 
shows Shannon entropy values for our natural-protein phase separation test set (N=62) in pink 
and the disorder containing human proteins found in Disprot (N=205) in orange, confirming the 
observation in panel C that lower Shannon entropy sequences are associated with phase 
separation.  
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Appendix-figure 9. Prediction Examples. Per-residue PScores used to calculate the final full 
sequence PScore are shown for a selection of human proteins, with residues colored from purple 
(PScore ≤ -2) to white (PScore = 0) to green (PScore ≥ 4.0). Black triangles denote residues 
annotated by PhosphoSitePlus as targets of PTMs, blue triangles denote modification sites with 
known regulatory significance, and red circles denote modification sites with known disease 
relevance. Proteins are annotated with the percentage of gene ontology terms (with at least 10 
human proteins) and high PScore enriched GO terms (Panther analysis, PScore ≥ 4, with O/E > 
1) of which the protein is a member, as well as the total number of each for which the annotated 
protein has the highest PScore in the set. Examples are grouped by (A), involvement in synaptic 
plasticity and neuronal behavior, showing synaptic functional regulator FMR1, and 
synaptophysin; (B), intracellular biomaterials and related structural proteins, showing focal 
adhesion kinase 1, vimentin, and keratin type I cytoskeletal 10; (C), proteins involved in 
signaling pathways, showing CCR4-NOT transcription complex subunit 3, beta-catenin, vitamin 
D3 receptor, and Smoothened homolog; and (D), proteins involved in extracellular biomaterials, 
showing fibrinogen alpha chain and dentin sialophosphoprotein. (E) The cystic fibrosis 
transmembrane conductance regulator is shown as an example of a negative prediction, even 
though containing a large region of intrinsic disorder (residues ~650-840).  
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Appendix-table 1. Contact statistics in high resolution, low R-factor protein structures. 

 
Measurement  Value N 

Residues   
 Pi-Contacts per 100 residues, averaged over PDBs 6.06 ± 2.5* 5,718 PDBs 
 Pi-Contacts per 100 residues, averaged over all residues 6.27 ± 0.03 1,384,228 residues 
    
Atom Contact Probabilities ( % )   
 Heavy Atoms in a Pi-Contact 6.10 ± 0.03 10,836,487 atoms 
 sp2 Heavy Atoms in a Pi-Contact 10.52 ± 0.05 6,283,150 atoms 
 Heavy Atoms within 4.9Å of any Pi-Contact 32.1 ± 0.1  10,836,487 atoms 
    
Sidechain-Sidechain Contact Proportions ( % )  25,930 contacts 
 Aromatic to Aromatic 24.73 ± 0.29 “ 
 Aromatic to Non-Aromatic 53.24 ± 0.33 “ 
 Non-Aromatic to Non-Aromatic 22.03 ± 0.28 “ 
    
All Contact Proportions ( % )  86,860 contacts 
 Sidechain to Sidechain 29.85 ± 0.17 “ 
 Aromatic Sidechain to Backbone 40.41 ± 0.20 “ 
 Non-Aromatic Sidechain to Backbone 22.80 ± 0.16 “ 
 Backbone to Backbone 6.94 ± 0.09 “ 
    

 Aromatic to Aromatic 7.38 ± 0.10 “ 

  outnumbered by Aromatic to Non-Aromatic 7.6 ± 0.1 to 1 “ 

  outnumbered by Non-Aromatic to Non-Aromatic 3.9 ± 0.1 to 1 “ 

    

Arginine Sidechain Contacts (per 100 residues)  61,877 residues 

 Contact to Aromatic 9.74 ± 0.13  “ 

 Contact to Backbone 10.6 ± 0.13 “ 

 Contact to Glutamine/Asparagine Sidechain 1.96 ± 0.06 “ 

 Contact to Glutamate/Aspartate Sidechain 1.49 ± 0.05 “ 

 Contact to Arginine Sidechain 3.63 ± 0.11 “ 

*This error range shows the standard deviation between PDBs, other error ranges show standard 
error of the mean for averages computed over all PDBs. 
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Appendix-table 2. Small molecule contact frequencies.  

 
Amino Acid sp2 
Group* 

# PDBs # Ligand 
Groups 

Ligand  
Pi-Pi-Contact 

Frequency (%) 

# Protein 
Groups 

Protein 
Contact 

Frequency 
(%) 

O/E 
(Ligand/Protein) 

GLU Sidechain 84 209 16.3 ± 4.1 5353 5.0 ± 0.4 3.3 ± 0.8   
HIS Sidechain 36 80 42.5 ± 8.0 530 17.4 ± 2.7 2.4 ± 0.7   
PHE Sidechain 36 93 53.8 ± 9.0 1389 28.4 ± 2.3 1.9 ± 0.3   
ARG Sidechain      61 145 43.9 ± 6.0 2878 15.9 ± 0.9 2.8 ± 0.5   
TYR Sidechain 30 68 58.8 ± 12.2 806 19.9 ± 1.9 3.0 ± 0.7   
GLN Sidechain 21 50 22.0 ± 8.9 800 13.0 ± 2.3 1.8 ± 0.8   
ASP Sidechain 39 86 3.5 ± 2.0 2153 4.5 ± 0.8 0.8 ± 0.5   
TRP Sidechain 43 109 50.5 ± 8.0 377 28.9 ± 2.3 1.7 ± 0.3   
ASN Sidechain 11 32 6.3 ± 7.3 466 8.6 ± 1.9 0.7 ± 0.9   
       
Amino Carboxyl 688 1704 8.9 ± 1.1 976 5.7 ± 1.2 1.5 ± 0.4 
 
Small Molecule** # PDBs # Free 

Ligands 
Ligand  

Pi-Pi-Contact 
Frequency (%) 

# sp2 
Atoms 

RCSB 
Ligand ID 

Isomeric SMILES 

Ethanal  44 76 3.9 ± 2.9 2 ACE CC=O 
Formic Acid 444 2093  11.0 ± 0.8 3 FMT OC=O 
Acetate Ion 1664 4794 12.9 ± 0.6 3 ACT CC([O-])=O   
Acetic Acid 403 1133 13.5 ± 1.5 3 ACY CC(O)=O 
Nitrate Ion 225 852 15.3 ± 1.7 4 NO3 [O-][N+]([O-])=O 
Guanidine 32 115 15.7 ± 4.7 4 GAI NC(N)=N 
Urea 23 91 16.5 ± 4.0 4 URE NC(N)=O 
Imidazole 279 684 26.6 ± 2.4 5 IMD C1C[NH+]C[NH]1 

*Entries containing amino acids or small sp2 containing planar molecules as free ligands were 
downloaded from the PDB (filtered to maximum sequence redundancy of 90% and 3Å 
resolution) and pi-pi contact frequencies for ligands and their corresponding protein based 
equivalents were determined. 
 
The majority of amino acids are more likely to form pi-pi contacts to protein when found as non-
covalently bound ligands, rather than as residues within a protein, confirming that pi-pi contacts 
are a consistent property of amino acid interactions involving protein. 
 
**In order to avoid bias due to the constrained geometries of functional binding sites we also 
analyzed the contact frequencies of a variety of common buffer components, with contact 
frequencies found to increase with number of sp2-hybridized atoms. 
 
Ranges show standard error of the mean. 
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Appendix-table 3. Pi-pi contact enrichment for catalytic residues. Frequency of involvement in 
contacts, at either backbone or sidechain sp2 groups, is shown for individual residue types, 
residue independent (ANY), and residue type normalized (AVG), where catalytic residue contact 
frequency shows values for residues annotated as catalytic in the catalytic site atlas(32) and non-
catalytic residue contact frequency shows values for all other residues in the same structures. To 
normalize for possible differences in the number of contacts made by catalytic residues we also 
show number of pi-pi contacts divided by total number of VDW contacts, labeled as percent of 
VDW, and the percent of VDW ratio shows enrichment by dividing the catalytic percent of 
VDW value by the non-catalytic value. Error values are obtained by our standard bootstrap 
analysis (see methods), and enrichment values of greater than two standard deviations are shown 
in bold.  

 
Residue 
Type 

Non-
catalytic 
contact 

frequency 
(%) 

Catalytic 
Residue 
Contact 

Frequency 
(%) 

N Catalytic Enrichment Non-
catalytic 

percent of 
VDW (%) 

Catalytic 
Residue 

percent of 
VDW (%) 

Percent of 
VDW Ratio 
(cat. / non) 

ANY 13.1 ± 0.1 24.5 ± 0.9 2914 1.87 ± 0.07 1.91 ± 0.09 3.94 ± 0.40 2.06 ± 0.23 

HIS 31.9 ± 0.9 35.9 ± 2.3 471 1.12 ± 0.06 3.01 ± 0.26 4.33 ± 0.84 1.45 ± 0.31 

ASP 12.9 ± 0.5 21.2 ± 2.0 448 1.65 ± 0.14 1.71 ± 0.22 3.08 ± 0.81 1.83 ± 0.54 

GLU 11.7 ± 0.4 32.2 ± 2.5 370 2.75 ± 0.18 2.44 ± 0.31 6.57 ± 1.38 2.74 ± 0.71 

ARG 26.7 ± 0.8 30.3 ± 3.2 287 1.14 ± 0.12 1.77 ± 0.29 7.85 ± 1.48 4.57 ± 1.26 

LYS 6.2 ± 0.4 9.7 ± 2.0 259 1.56 ± 0.35 0.82 ± 0.20 0.37 ± 0.37 0.48 ± 0.52 

TYR 36.1 ± 1.2 30.4 ± 3.7 171 0.84 ± 0.10 2.69 ± 0.39 4.62 ± 1.38 1.75 ± 0.59 

SER 8.8 ± 0.5 13.0 ± 2.6 169 1.48 ± 0.28 0.83 ± 0.23 1.39 ± 0.70 1.84 ± 1.20 

CYS 8.5 ± 1.3 14.7 ± 2.9 150 1.73 ± 0.26 1.45 ± 0.33 0.92 ± 0.66 0.68 ± 0.54 

ASN 18.9 ± 1.1 26.6 ± 4.3 109 1.41 ± 0.20 1.88 ± 0.42 6.11 ± 1.76 3.42 ± 1.29 

GLY 12.0 ± 0.7 16.2 ± 4.5 99 1.35 ± 0.41 1.26 ± 0.48 5.87 ± 1.92 5.72 ± 4.33 

THR 6.8 ± 0.6 4.7 ± 2.3 86 0.69 ± 0.38 0.34 ± 0.18 0.88 ± 0.87 3.42 ± 4.17 

GLN 18.0 ± 1.6 40.3 ± 7.3 62 2.24 ± 0.34 3.12 ± 0.53 1.88 ± 1.30 0.61 ± 0.44 

ALA 7.8 ± 0.9 7.0 ± 3.3 57 0.91 ± 0.48 0.85 ± 0.43 1.28 ± 1.28 2.04 ± 2.75 

PHE 34.2 ± 2.1 35.9 ± 7.1 53 1.05 ± 0.23 2.52 ± 0.64 4.92 ± 2.39 2.10 ± 1.27 

TRP 46.2 ± 3.2 45.1 ± 7.5 51 0.98 ± 0.14 3.57 ± 0.73 2.88 ± 2.00 0.87 ± 0.68 

AVG 18.7 ± 0.4 24.2 ± 1.2 N/A 1.42 ± 0.07    
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Appendix-table 4. Effect of sp2 sidechain mutations on phase separation. Phase separation 
critical concentration values for the N-terminus (1-236) of human Ddx4 and three mutants, 
9FtoA and 14FtoA, as reported in (14), and RtoK, where all arginine residues have been mutated 
to lysine, as well as for the C-terminus (445-632) of human FMR1 and one mutant with all 
arginine residues mutated to lysine. 

 
Sample Concentration at which 

phase separation is observed 
(conditions) 

# F  # R  Total # Mw (Da) 

Ddx4 1-236 (24 °C, 20 mM Na2PO4 pH 6.5, 100 mM NaCl)     

WT ~2 mg/mL 14 24 236 25430 

9FtoA ~100 mg/mL 5 24 236 24745 

14FtoA ~350 mg/mL 0 24 236 24364 

RtoK Not observed up to 400 mg/mL 14 0 236 24758 

FMR1 445-632 (4 °C, 20 mM Na2PO4 pH 7.4, 2 mM DTT)     

WT ~ 16 mg/mL 2 28 188 20573 

RtoK Not observed up to 216 mg/mL 2 0 188 19789 
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Appendix-table 5. Comparison of Phase Separation Prediction and Disorder Prediction. Two 
disorder predictors were tested on matched positive and negative sets to the phase separation 
predictor, comparing the relative discrimination of known phase-separating and known 
disordered proteins from the PDB, the human proteome, and the same set of known disordered 
proteins. AUC values are highlighted in blue for AUC > 0.8, and red for AUC < 0.7. Error values 
were obtained by bootstrap analysis. 

 
Positive Set  AUC 

(vs. PDB) 
AUC 

(vs. Human) 
AUC 

(vs. Disprot) 

Disopred3 (Disorder Predictor) 

Phase Separation Test Set 0.982 ± 0.005 0.72 ± 0.03 0.58 ± 0.02 

Disprot Set 0.977 ± 0.007 0.66 ± 0.03 N/A 

IUPRED-Long (Disorder Predictor) 

Phase Separation Test Set 0.893 ± 0.007 0.70 ± 0.03 0.60 ± 0.02 

Disprot Set 0.89 ± 0.01 0.64 ± 0.03 N/A 

PScore (Phase Separation Predictor) 

Phase Separation Test Set 0.961 ± 0.005 0.88 ± 0.01 0.84 ± 0.01 

Disprot Set 0.79 ± 0.02 0.58 ± 0.03 N/A 
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Appendix-table 6. Retrospective analysis of predictor quality at different stages during the 
training process. AUC values for distinguishing proteomic phase separating sequences from the 
human proteome are shown for prediction scores made from pi-contact frequencies (average 
contacts predicted per residue) obtained at each training step of the protocol in order of their 
sequential development, with prediction scores calculated as the highest number of contacts 
predicted for any given 100 residue window in each sequence. Analysis of the relative effects of 
different contact types was added by excluding contacts from each score and retesting. Standard 
error of the mean (SEM), by bootstrap analysis, is consistently in the range from 0.021 to 0.039. 

 
Training Step AUC 

at 
training 

step 

Sidechain 
Contacts 

Only 

Backbone 
Contacts 

Only 

Short-
Range 

Sidechain 
Only 

Long-
Range 

Sidechain 
Only 

Short-
Range 

Backbone 
Only  

Long-
Range 

Backbone 
Only 

1) Baseline 
Frequencies 0.57 0.51 0.84 0.52 0.50 0.73 0.80 

2) Context-
Averaged 
Frequencies 

0.57 0.51 0.86 0.53 0.51 0.77 0.83 

3) Smoothed 
Frequency 
Predictions 

0.82 0.64 0.89 0.59 0.65 0.71 0.85 

4) Weight 
Optimized  
Final Predictor 

0.88 N/A N/A N/A N/A N/A N/A 
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Appendix-table 7. Sequence Similarity Comparison. Frequencies of dipeptides (pairs of 
neighboring amino residues) were computed for phase-separating proteins and the human 
proteome, and enrichment was measured by the percentage of human proteins with lower 
frequency than found in a given sequence. The fifteen dipeptides enriched (≥99%) in the most 
sequences within the phase separation test sets are shown in the table vs. enrichment values 
obtained for the phase separation training set and three experimentally verified proteins. Values 
in the top fifth percentile are shown in bold. 
 
Protein 
Name 

Dipeptide Enrichment (Percentage of human proteome with lower frequency) 
GV VG VP PG FG RG GR GG YG GS SG GA GF GD DS 

 
Training Set Proteins 

Elastin 100 100 100 100 97 31 32 99 99 20 20 100 89 38 30 
Nsp1 30 34 31 26 100 31 30 75 52 90 38 99 60 66 68 
TIA1 73 75 46 26 86 31 86 77 99 29 53 26 84 54 30 
LAF1 30 78 65 29 67 99 99 100 77 88 97 65 78 97 32 
EIF4H 30 65 31 52 98 99 95 99 52 99 42 79 99 98 89 
Ddx3x 51 70 34 43 89 98 97 96 93 93 95 68 96 59 78 
hnRNPA1 30 55 31 44 100 99 99 100 99 99 98 44 99 60 79 
DDX4 33 77 48 53 98 96 91 89 59 87 96 29 98 96 45 
FUS 30 31 31 83 78 100 99 100 100 98 99 33 93 91 57 
EWS 52 31 35 97 51 100 99 100 100 72 61 30 97 91 48 
TAF15 36 38 31 30 53 100 99 100 100 92 99 26 71 100 94 

 
Experimentally Verified Proteins 

FMR1 69 89 93 44 43 96 94 83 62 62 34 70 48 41 67 
SCAF pAP 75 50 89 91 43 49 73 97 75 92 96 96 40 36 44 
Engrailed-2 30 31 31 97 70 78 90 100 52 99 91 99 40 95 97 
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Appendix-table 8. High PScore enrichment for human proteins with a greater than average 
number of post-translational modification (PTM) site annotations in Phosphosite+. PTM counts 
are controlled for protein length by taking the maximum number observed in any 100 residue 
window, and the threshold for an above average PTM count is defined as greater than the 
average plus one standard deviation. Errors show SEM by bootstrap analysis. 

 
Phosphosite+ 
PTM Annotation Type 

PTM Count 
Threshold 

Above 
Threshold (N) 

PScore > 4 
(%) 

Enrichment 

O-GlcNAc 1 158 17 ± 3 3.4 

Methyl 2 2051 13.3 ± 0.7 2.7 

Phosphate 10 2485 10.8 ± 0.8 2.2 

O-GalNAc 1 456 10.1 ± 0.1 2.0 

Sumo 1 1999 9.0 ± 0.7 1.8 

Acetyl 3 1543 8.0 ± 0.7 1.6 

Ubiquitin 4 1875 6.3 ± 0.5 1.3 

     

Disease Relevant 1 298 11 ± 2 2.1 

Regulatory Function 2 1087 7.6 ± 0.8 1.5 

     

Database Baseline 0 18582 5.0 ± 0.2 1.0 
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Figure 1-source data 1. Pi-Pi Contact Annotations for the Full PDB Set 

Text file listing the pi-pi contacts observed across our non-redundant PDB set, with contact types 
shown by residue annotations where single amino acid names refer to sidechains and pairs of 
amino acids refer to the backbone peptide bond between residue i and residue i+1. 

 

Figure 1-source data 2. Residue and Amino Acid Counts for the Full PDB Set 

Text file listing the residues assessed in each individual PDB chain, used for calculating contact 
frequencies. 

 

Figure 5-source data 1. Phase Separation Training, Testing and Designed Protein Test Sets. 

Excel table containing identification and literature references for proteins in the phase separation 
test and training sets, with sheet 1 showing the training set proteins, 2 showing proteomic test set 
proteins, and 3 showing synthetic test set proteins.  

 

Figure 5-source data 2. Additional Phase Separation Propensity Scores used in Final ROC 
Analysis 

Excel table containing protein IDs and predicted propensity scores, with different datasets on 
each sheet. Sheets 1-3 have full predictions for the human, E. coli, S. cerevisiae proteomes, 
respectively. Sheet 4 repeats the subset of human proteins found in the DisProt database. Sheet 5 
shows scores for the protein sequences found in our non-redundant PDB set, and sheet 6 repeats 
the subset of PDB sequences withheld from predictor training. 

 

Source Code S1. Python Scripts for Identifying PDB Contacts 

Pi-pi contact identification scripts suitable for reproducing the annotation data contained in 
Figure 1-source data files 1 and 2. 

 

Source Code S2. Final Predictor Code Package 

Python script and associated database files for the final phase separation propensity predictor. 
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Appendix 1 

 

Supplementary Results 

 

Catalytic sites 

To investigate the functional relevance of planar pi-pi interactions, we examined the contact 

frequencies at positions with known enzymatic function. We observe that residues in our non-

redundant protein set which are annotated as being catalytic in the Catalytic Site Atlas(32) 

(N=912 PDBs, 2914 catalytic residues) are more likely to be involved in planar pi-pi contacts 

than expected by the contact frequency of the given residue type, at 1.87 ± 0.07 times 

expectation overall and 1.42 ± 0.07 when normalized by catalytic residue frequency (Appendix-

table 3) , with Glu, Gln, Asn, and Asp having the largest increases, going from 12-19% average 

contact frequency to 21-39% in catalytic positions. In addition, by normalizing contact frequency 

by the number of van der Waals contacts each residue is involved in we observe that catalytic 

residues are 2.1 ± 0.2 times more likely to have pi-pi stacking interactions with their VDW 

contacts that are also annotated as being catalytic than they are to non-catalytic neighbors, 

suggesting that the contacts themselves play a role in defining the constrained geometries of the 

active site. This analysis only covers the protein-protein interactions made within the binding 

pocket, and does not cover the nature of the contacts made by catalytic residues to ligands, 

which, judging from our small molecule binding data (Appendix-table 2) could significantly 

increase the overall rate. (An example of a catalytic side with both protein-protein and protein-

ligand pi-pi contacts is shown in Figure 2B.). We note that the effect of these interactions may 

involve some energetic cooperativity with other interactions, as they are often found in large 

networks, and commonly involve sidechains stacked simultaneously to both the donor and 

acceptor groups of an sp2-sp2 hydrogen bond (Figure 2C). 

 

Backbone interactions 

Roughly half of the observed pi-pi contacts involve the peptide backbone and seem to be 

particularly important in defining structure at the termini of strands and helices (Figure 2D). We 

found that contact frequency increases at backbone positions located at the transition points 

between different types of secondary structure, with up to a 3-4 fold increase in contact 
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frequency around the terminal positions in strands and helices (Appendix-figure 5) primarily 

involving local sidechain contacts to the last peptide bond involved in hydrogen bonding. We 

further observed that many of these contacts are directly involved in motifs known to be 

important for stabilizing secondary structure during folding, including beta-hairpins and helix-

caps(87, 88). These interactions have previously been recognized for aromatic sidechains(27), 

but we find that non-aromatic sp2 sidechains are, in aggregate, more likely to form these 

backbone contacts (Figure 1C). 

To examine the relevance of these backbone contacts in defining structural motifs we 

searched for examples of specific motifs with exceptionally high contact frequencies. We present 

our top examples in Appendix-figure 5. Appendix-figure 5A shows a β-hairpin with DSSP 

assignment(71) “ETTTTE", a motif found in 14.4±0.5% of the structures in our high resolution 

PDB set (N=822/5718). Across these observations we find a planar pi-pi contact frequency at the 

peptide position involved in the hydrogen bond defining the turn 38± 2% of the time 

(N=401/1051), ~22 times the median contact frequency (of 1.7%) over all backbone groups, 

suggesting that these pi-pi contacts play a role in defining the motif. 

As a way of providing a sidechain specific test that excludes aromatic interactions and 

cation-pi, we looked at arginine residues and found that when arginine is in a helix (≥ 4 residues 

from the N-terminal position, by DSSP) the sidechain group ends up forming a pi-pi contact to 

the peptide bond between residues i-3 and i-2 on average 9.2% of the time (N=18507), where the 

arginine is effectively stacking to the surface of the helix. When looking at sidechains found 

closer to the helix N-terminus we find that this frequency then increases to 13.6% for the 

position where the i-3/i-2 peptide group forms the terminal hydrogen bond (N=2495), and then 

drops to 0.14% when it is no longer part of the helix (N=1438). 

 

RNA binding 

We also examined the planar pi-pi contact frequencies in RNA/protein complexes, using 94 

X-ray structures with at least 10 RNA bases from our non-redundant proteins set. Overall, 

9.2±1.4% (N=3847) of RNA bases in these RNA/protein complexes form planar pi-pi 

interactions with protein. This is heavily biased towards bases that are not already stacking to 

other bases. Thus, bases that have no base stacking interactions (16.2±1.8 of all bases) have 

planar pi-pi contacts to protein 31.2±4.4% of the time, and those that only stack to RNA on one 
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side (17.3±1.1%of all bases) have planar pi-pi contacts to protein 17.7±2.6% of the time. This 

often situates the protein/RNA interface at positions for which the RNA secondary structure is 

disrupted. 

Arginine sidechains are the largest contributor to RNA/protein planar pi-pi interactions, 

found in 35.0±3.3% of cases, compared to 34.7±4.0% involving any of the four aromatic 

sidechains (Phe, Tyr, His, Trp) and 21.9±2.8% the peptide backbone. Arginine’s role in binding 

RNA is well known and can also be explained by its abilities to form charge interactions with the 

phosphate backbone and hydrogen bonds to base pairs. We observe that arginine residues in 

VDW contact with RNA form planar pi-pi interactions 28% of the time, and that planar pi-pi 

contacts are, relative to other arginine to RNA VDW contacts, more likely to be found in 

simultaneous contact to the phosphate group. Thus, arginine in VDW contact with RNA has a 

36% and 9% chance of being in contact with PO4 or hydrogen bonded to a base, respectively, 

while arginine with a pi-pi contact to RNA has a 63% and 15% chance of being in contact with 

PO4 or hydrogen bonded to a base, demonstrating that these interactions do not compete and may 

be synergistic or cooperative (Figure 2E).  

 
Appendix 2: 
 
Prediction Experiment 

 

Experimental Design 

The protocol for developing the final phase separation predictor was conceived as an 

empirical test of the hypothesis that pi-contacts have relevance to phase separation, with the 

logic being that if pi-contacts play a functional or energetic role in mediating protein phase 

separation then an accurate prediction of pi-contact rates (contacts formed per residue) should 

often be sufficient for predicting phase separation behavior. To this end, we defined strict 

training sets, with 11 phase separating sequences as the positive standard and sequences in our 

PDB sets as our negative standard, we kept the testing sets internally blind until choosing an 

arbitrary point to finalize the predictor, and we intentionally excluded any analysis of sequence 

features, such as charge patterns, amyloid propensity, and direct homology, that could improve 

predictor quality without testing this hypothesis.  

Our protocol was split into four design steps and one test step, as follows. 1) We defined 

sequence dependent contact rates for different sp2 groups by taking statistics from the PDB, 2) 
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we measured average frequencies observed for groups found in specific sequence contacts, 3) we 

used the context data to train a sequence-based pi-contact rate predictor against the PDB, 4) we 

then optimized a weighting function for combining pi-contact predictions against the ability to 

discriminate the phase separation training set proteins from the PDB, and 5) we finalized the 

weight optimized predictor and tested it against the phase separation test set and proteomic test 

sets a single time, shown in the main text, with supplemental analysis of predictor quality 

throughout the design process done as a retrospective analysis.    

 

Step 1: Pi-contact rate measurement  

From the non-redundant PDB chains previously used for structure analysis we selected 

nonredundant structures into the training set by randomly selecting 17388 structures. The 

remaining 4347 structures were taken as the leave out set, being removed and held for the final 

testing step. Independence of the two sets is restrained only by the 60% identity cutoff used in 

obtaining the full list, which prevents broadly identical proteins from showing up in both sets. 

The ability to further guarantee independence is limited by the nature of homology, and was 

considered outside of the scope of this manuscript. 

Sequences were extracted from the PDB REFSEQ annotations and then mapped to residues 

found in the structure, with missing density annotated as such. Pi-contact observations were then 

mapped to their involved residues with contacts split by sequence separation into long range (≥ 5 

or different chain) and short range (≤ 4 residue). Contact rates were determined for individual sp2 

groups using 9 residue identities for the sidechain groups and 400 residue identities for backbone 

groups, with backbone groups defined by both flanking residues. To measure local sequence 

effects we also calculated rates for non-flanking residue pairs, up to 40 residues apart, which 

when combined with the backbone groups produced 16400 residue pair types (20 n-terminal 

residues x 40 sequence separation distances x 20 C-terminal residues), which are observed in the 

training set at a median sample size of N=8622, ranging from N=563 to N=41796 from the least 

to most populated. 

 

Step 2: Pi-contact averaged frequencies 

For the initial sequence based pi-contact predictor contact rate observations for pairs of 

residues found within a fixed window length were averaged to produce a context dependent 
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estimate. To account for sampling error in rare sequence pairs we estimated the standard error of 

these measurements by a limited bootstrap analysis, using 200 randomly sampled (without 

replacement) 70% cut subsets of the training set. To average observation values, a given sp2 

system was first defined by its residue type (a single amino acid for sidechain groups or the 

sequential amino acids for backbone groups). Next, residues less than 40 residues away in the 

primary sequence (both sides) were compared to our precomputed database, to obtain a 

comprehensive list of rate values for all residue-distance-residue pairings found in this window. 

These values were then averaged using a sampling error correction, intended to weight 

observations by confidence, using the following equation, where R is the error weighted contact 

frequency at position x as obtained by averaging over the closest l positions, P is the database 

frequency observed for x a given residue pair (x and x+y), and σ is the standard error of the mean 

obtained for that database frequency. 

 

Equation 1:  
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This average value, which represents a very limited sequence based prediction, does not 

contain information on whether or not local sequence increases or decreases the group’s contact 

rate relative to what is expected by the nature of the group on its own. This was calculated by 

comparing it against values obtained by equation 1 for every instance of the matched system 

found in the training set, using the precomputed data to convert the average into a z-score. 

 

Equation 2: 
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We next tested the effect of sequence window size on the ability to predict total number of 

contacts for a given sequence by iteratively adding two more adjacent flanking residues in order 
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to find an optimal window. While analyzing these scores for their ability to predict contact rates, 

we observed that the separate z-scores for long range and short range contacts, each derived from 

distinct non-overlapping sets of observations, are not independent; they each contain information 

on the probability expectation of the other, with sequence dependent correlations that could 

contain data on competition and cooperation.  

 

Step 3: Pi-contact predictor 

To capitalize on the observation that short range and long rate contact rates carry 

information on each other we added an additional rate prediction step where the previous 

averaged rates are used in tandem short-range/long-range pairs to extract matching observation 

data from the original rate database. To do this we created a system of lookup tables in which our 

training set observations are tallied in two-dimensional arrays by half z-score bins. To obtain 

frequency values using these lookup tables we calculate the pair of z-scores for the query group 

and match them to a corresponding bin in the lookup tables.  

Splitting observations into bins is problematic at extreme z-scores, as it significantly 

increases sampling error. To address this problem, we developed a smoothing method involving 

iterative sampling across a range of window-length dependent tables in order to use the natural 

random variance of the database to average the observations.  

This method starts with the initial z-score calculation on a window of sequences covering 

the group itself and up to one flanking residue on either side, collecting values for observed 

contacts and total number of database entries from a look up table built using the same window 

size. We then add additional flanking residues, re-calculate the corresponding z-scores for the 

new window length, and then add the observed contacts and total entry numbers for that window 

size to the previous observation. From here, additional residues are added iteratively, one 

flanking residue and window specific score calculation at a time, up to a maximum window 

length of 40 residues on either side. The final frequency is determined by the total number of pi-

contacts observed for similar groups in the database, summed over all windows, divided by the 

total number of similar groups found in the database. This is defined in the following equation, 

where F is the contact frequency for position x, O is the number of database pi-pi contacts 

observed within a bin defined by a pair of long range (LR) and short range (SR) Z scores 

calculated for window length i, and T is the total number of groups observed for the same bin. 
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Equation 3: 
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Our selection criteria in developing this method, for determining scores, window lengths, 

grid spacing, and other details, was to test options against one another by filling statistical 

databases from defined 70% cuts of the training set and then testing how well the sum of 

frequency predictions made for each protein in the remaining 30% correlated with the total 

number of contacts found in each protein. Once our final pi-contact rate prediction method was 

selected we then filled our final databases using the full training set and did a single prediction 

quality test against the leave out database. 

 

Step 4: Phase separation prediction 

As a starting point, we ran the pi-contact predictor developed for the PDB on each sequence 

in the PDB and in our 11 protein phase-separating protein training set and returned the highest 

number of contacts predicted for any 100 residue window. These contact frequency predictions 

showed a reasonably normal distribution for the PDB (skew and kurtosis of 0.22 and 0.62, as 

calculated using the scipy.stats python package) and above PDB-average predictions for our set 

of 11 phase separating proteins (8/11 in the 99th percentile). Additional analysis showed that this 

enrichment was higher for long range contact predictions than for short range contacts. As an 

aside, the phase separating protein with the lowest contact frequency, elastin, also has fewer 

sidechain groups and a lower average mass per residue. However, elastin still has a predicted 

contact frequency greater than the PDB average because of very high contact frequency 

predictions for its backbone. 

Since different categories of contacts utilized in our predictor could have different effects 

on phase separation propensity, we trained a phase separation predictor by optimizing contact 

prediction weights and normalization methods against the ability to discriminate the lowest 

scoring member of the phase separation training set from the highest scoring members (the top 

percentile) of the non-redundant PDB set, by using a single score value per protein, as defined in 
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the following equation where D is the relative discrimination score and S is the score function 

being tested. 

 

 

 

Equation 4: 
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We then ran the pi-contact predictor on every sequence with ≥140 residues (based on the 

length of the smallest phase separating protein in our training set) and stored prediction values 

for 4 contact frequencies (long range/short range vs. sidechain/backbone) and 4 corresponding 

relative frequencies (the average identity normalized z-scores produced as intermediate values 

during the contact prediction protocol).  

To optimize weights against these 8 values, we built a machine learning toolbox for 

stochastic optimization against our discrimination function. Both random and manual sampling 

of score functions and weights were tested, with weights determined by brute force sampling 

against a Metropolis Monte Carlo acceptance criterion, and score function changes tested by 

branching the weight optimization into parallel runs tested against the same criterion.   

In terms of the general flow through, we started with score functions that were a weight 

averaging of contact predictions over fixed window sizes throughout each sequence with the 

sequence score being the highest score observed. We used the optimization toolbox to test 

window sizes against one another, with each weight starting at the same value and allowed to 

deviate by sequential rounds of small random additions and subtractions. In order to avoid 

scoring the full set of PDB sequences for every small weight change we added fast 

diversification screening steps, where we introduced sub-optimization rounds against a small 

select subsets of the PDB (100-2000 sequences), returning new weight sets to the primary 

optimization protocol for re-scoring against the full PDB and the primary acceptance/rejection 

step.  
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After the first few thousand rounds this results in a diverse population of weights associated 

with similar performance, which can be mined to capture the range of values that are acceptable 

for any given weight. At this point, we introduce weight changes using random selections from 

that population, instead of by random addition and subtraction, which allows for more aggressive 

sampling (how many weights can change per step, and how far they can change) at a lower 

observed rejection rate. This weight resampling method also allowed for better parallel 

computing, as the most successful weight combination were able to automatically propagate 

between processes. 

During this process weight optimization was entirely stochastic, but we also tested a variety 

of score formulations and window lengths by parallel competition. This branched optimization 

strategy added a series of changes to the base protocol, including normalizing window averages 

by the number of carbon atoms in the window, adding multiple overlapping window lengths to 

allow for weights to differ by sequence distance, and finally, by changing how the final score is 

determined per sequence, which went from the top scoring position in the sequence, to the top 

decile position, and then to an average over all positions within 5 residues of the top scoring 60.  

The final propensity score can be described as the following steps. Raw contact prediction 

numbers are generated for each residue in the sequence as an initial step. For every residue in the 

sequence, we then start iterating over the flanking residues while summing up values for 8 

contact prediction terms (long/shot range vs. backbone/sidechain vs. frequency/z-score) as well 

as 1 residue based term (number of carbon atoms), with final sums being kept for three windows, 

defined as the closest 40, 80, and 120 flanking residues. Each set of window sums is then scored 

by the following equation, using the final set of 27 optimized weights, where S is the window 

score associated with residue x, spanning the closest residues from i=x to i=N, w is a weight 

constant, C is the number of carbon atoms in a residue, and F and Z are the pi-contact frequency 

and Z-score values from equations 3 and 2 
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Finally, the full list of scores is then sorted, the top scoring 60 residues are identified, and an 

average score ( T ) for regions of the sequence associated with this high-scoring subset is 

obtained by summing over all positions found within 5 residues of the top 60. This value is then 

scaled by conversion to a z-score relative to our non-redundant PDB set. 

 

 

Equation 6: 
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Step 5: Retrospective analysis 

One of the key limitations in designing the predictor is that phase separation in biological 

systems is not a fully defined phenomenon, and calculating true/false positive or negative rates 

are limited by the fact that there are very few gold standard positives to train against and there is 

no gold standard negative set. The vast majority of proteomic sequences are simply untested. Our 

experimental design attempts to address this by limiting training to a single test approach, 

validated against proteomic data a single time, but this setup meant that many design decisions 

were made blind, and the relative final impact of the different steps in the protocol remain 

untested. 

To address this, we went through each step, creating matched predictors using the frequency 

and weight data available at the time, with new score functions returning the highest contact 

prediction sum observed over any 100 residue window. Results are shown in Appendix-table 6, 

demonstrating an increase in performance against the final test set for each training step. 

We then compared the relative effects of different types of contacts, short range vs. long 

range and sidechain vs. backbone, by testing scores made from each side of the comparison, 

excluding the contact rates from the other. This analysis, also shown in Appendix-table 6, 

identifies baseline backbone pi-contact rates as being sufficient for the majority of the 

predictions, where the baseline observed rates for our 400 backbone peptide group definitions 

split the phase separation test set from the human proteome at an AUC of 0.841±0.027, 

compared to 0.881±0.021 for the final predictor. Score distributions demonstrating the 
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sufficiency of long range backbone contact predictions in recapitulating the phase separation 

predictions of the final predictor are shown in Figure 5 – figure supplement 2, with panel A and 

B corresponding to training step 3, short range backbone only and long range backbone only, 

respectively, and panel C corresponding to the final predictor. 


