
5.3 C source code for computing bin number and overlapping bins

The following functions compute bin numbers and overlaps for a BAI-style binning scheme with 6 levels and
a minimum bin size of 214 bp. See the CSI specification for generalisations of these functions designed for
binning schemes with arbitrary depth and sizes.

/* calculate bin given an alignment covering [beg,end) (zero-based, half-closed-half-open) */
int reg2bin(int beg, int end)
{

--end;
if (beg>>14 == end>>14) return ((1<<15)-1)/7 + (beg>>14);
if (beg>>17 == end>>17) return ((1<<12)-1)/7 + (beg>>17);
if (beg>>20 == end>>20) return ((1<<9)-1)/7 + (beg>>20);
if (beg>>23 == end>>23) return ((1<<6)-1)/7 + (beg>>23);
if (beg>>26 == end>>26) return ((1<<3)-1)/7 + (beg>>26);
return 0;

}
/* calculate the list of bins that may overlap with region [beg,end) (zero-based) */
#define MAX_BIN (((1<<18)-1)/7)
int reg2bins(int beg, int end, uint16_t list[MAX_BIN])
{

int i = 0, k;
--end;
list[i++] = 0;
for (k = 1 + (beg>>26); k <= 1 + (end>>26); ++k) list[i++] = k;
for (k = 9 + (beg>>23); k <= 9 + (end>>23); ++k) list[i++] = k;
for (k = 73 + (beg>>20); k <= 73 + (end>>20); ++k) list[i++] = k;
for (k = 585 + (beg>>17); k <= 585 + (end>>17); ++k) list[i++] = k;
for (k = 4681 + (beg>>14); k <= 4681 + (end>>14); ++k) list[i++] = k;
return i;

}

5.4 The SBI index format for BGZF files

The SBI format is a binary file format to provide random access to records in files that have been block
compressed with BGZF.

SBI facilitates parallel processing of BGZF data files. Since records are indexed by their virtual file o↵set
rather than position in the genome, unlike the BAI and CSI formats, SBI does not su↵er from skew due to
uneven distribution of records across the genome. Furthermore, SBI does not require that the data file is
coordinate sorted.

SBI is a linear index that contains virtual file o↵sets of record start positions. The granularity of the
index indicates the number of records between subsequent o↵sets in the index. A granularity of �1 means
that there is not a fixed number of records between subsequent o↵sets in the index.

SBI filenames have a .sbi extension added to the name of the file it is an index for. For example,
foo.bam.sbi is the SBI filename for foo.bam. Index files contain a header followed by a sorted list of virtual
file o↵sets in ascending order.

Field Description Type Value
magic Magic string char[4] SBI\1
file length Length of the BGZF file in bytes uint64 t
n records Total number of records uint64 t
first o↵set Virtual file o↵set of the start of the first record uint64 t
end o↵set Virtual file o↵set of the end of the last record uint64 t
granularity Number of records between o↵sets, or �1 if unspecified int32 t
n o↵sets Number of virtual file o↵sets int32 t

List of o↵sets (n=n o↵sets)
o↵set Virtual file o↵set of the start of the record uint64 t

18



In the unlikely event the data file has no records, first o↵set and end o↵set will both be equal to the the
virtual file o↵set of the end of the header, or, equivalently, the virtual file o↵set of the start of the footer of
the file. In this case, n o↵sets will be 0, and the list of virtual file o↵sets will be empty.

The main uses for the index are:

• Splitting a file for parallel processing. To find the records for a split that covers a byte range [beg, end)
use the index to find the smallest virtual file o↵set, v1, that falls in this range, and the smallest virtual
file o↵set, v2, that is greater than or equal to end. If v1 does not exist, then the split has no records.
Otherwise, it has records that start in the range [v1, v2). This method will map a set of contiguous,
non-overlapping file ranges that cover the whole data file to a set of contiguous, non-overlapping virtual
file ranges that cover the whole data file.

• Finding the nth record in a file. For an index with granularity g, find the virtual file o↵set at position
bn/gc in the index. Seek to the record in the data file at this position, and then read a further n mod g
records to find the desired record.

19


	The SAM Format Specification
	An example
	Terminologies and Concepts
	The header section
	Reference MD5 calculation

	The alignment section: mandatory fields
	The alignment section: optional fields

	Recommended Practice for the SAM Format
	Guide for Describing Assembly Sequences in SAM
	Unpadded versus padded representation
	Padded SAM

	The BAM Format Specification
	The BGZF compression format
	Random access
	End-of-file marker

	The BAM format
	BIN field calculation
	N_CIGAR_OP field
	SEQ encoding
	Auxiliary data encoding


	Indexing BAM
	Algorithm
	Basic binning index
	Reducing small chunks
	Combining with linear index
	A conceptual example

	The BAI index format for BAM files
	C source code for computing bin number and overlapping bins
	Splitting BAM

	SAM Version History

