DeePy Learning
A lightweight deep learning library written in Python.
Notes
-
Python 3.6
-
NumPy 1.17.1
-
Scipy 1.2.0
-
Matplotlib 3.0.2
Usage
Example 1:
from models import *
from layers.activations import *
from layers.layers import *
from optim import *
from costs import *
from utils.data import *
data = load_mnist()
data = list(data)
#test data
test_data = list(load_mnist(dataset='testing'))
test_data = list(zip(*test_data))
testX, testY = test_data[1], one_hot(list(test_data[0]))
testX = np.array(testX)
layers = [
FC(512),
ReLU(),
Batchnorm(),
FC(32),
ReLU(),
FC(10),
SoftMax()
]
optimizer = Nesterov(learning_rate=2e-2, momentum=0.95)
loss = cross_entropy_softmax()
nn_mnist = Classifier(784, 10, layers=layers, optimizer=optimizer, loss_function=loss)
nn_mnist.train(data, epochs=40, testX=testX/255, testY=testY, batch_size=32, test_rate=50)
Example 2:
from vae import VAE
from utils.data import *
data = load_mnist()
data = list(data)
#test data
test_data = list(load_mnist(dataset='testing'))
test_data = list(zip(*test_data))
testX, testY = test_data[1], one_hot(list(test_data[0]))
testX = np.array(testX)
vae_mn = VAE(data[0][1].shape, latent_dim=32, output_dim=784)
vae_mn.train(data, 10, testX/255, testY, batch_size=128, test_rate=5)
Disclaimer
This is primarily an educational tool.