
Paul Bakker
Sander Mak

Luminis Technologies

- @pbakker
- @sander_mak

Provisioning the IoT

1. Put IoT provisioning into context

2. Demo: modular provisioning

3. Apache ACE

Today's goals

Provisioning spectrum

Provisioning spectrum

servers

Cloud/SaaS:

‣ full control
‣ reliable network
‣ VM/Containers

Provisioning spectrum

servers

Cloud/SaaS:

‣ full control
‣ reliable network
‣ VM/Containers

mobile

App stores:

‣ walled garden
‣ semi-reliable

network
‣ full binaries

Provisioning spectrum

IoT

?

Provisioning?

'Just download latest binaries over
FTP at system startup'

Provisioning wishlist

Modularity

Efficiency

Automation

Security

Feature composition
Remotely toggle features
Bandwidth efficient
Avoid unnecessary updates
Manage many devices
Insight: what runs where?
Not just any device

IoT != IoT

We are not talking about millions of devices:

IoT != IoT

We are not talking about millions of devices:

This talk is not about device management

IoT Provisioning standards

Mostly about device management

Device

OS

Firmware

Application
Vendors

Operators
OMA-DM (cellular)
LWM2M (ip-based)

?

Demo time!

Provisioning demo

Target:  
Car 1

ACE Car Entertainment

Target:  
Car 2

NUC 1

NUC 2

Laptop
ACE

Provisioning
Server

Budget
Edition

Deluxe
Edition

All modules &
configuration

Us

Modular systems

Feature Y

Monolithic deployment: installation

Feature X

Deployment package

Target

Modular systems

Feature Y

Monolithic deployment: update

Feature X

Deployment package

Target

Limited connectivity
Bandwidth inefficient

Feature W

Modular systems

Feature Y

Modular deployment: installation

Feature X

Deployment package

Target

Modular systems

Feature Y

Modular deployment: update

Feature X

Deployment package

Target

Feature W

Modular systems

Feature Y

Differentiate with ease

Feature X

Target 2

Feature W

Target 1

Feature Y

Feature X

Modular systems
How?

De facto standard for Java modularity

Small footprint

Dynamic service model

phone
v1.0.0

OSGi runtime (it's just Java!)

JVM

music
v1.0.0

dashboard
v1.0.0

phone
v2.0.0

OSGi runtime (it's just Java!)

JVM

music
v1.0.0

dashboard
v1.0.0

Hot-swap bundles

Dependencies explicit
in bundle metadata

phone
v2.0.0

OSGi runtime (it's just Java!)

JVM

music
v1.0.0

dashboard
v1.0.0

Service registry
App? PhoneApp

phone
v2.0.0

OSGi runtime (it's just Java!)

JVM

music
v1.0.0

dashboard
v1.0.0

Modular systems
Demo code

Code @ bit.ly/carprov

Ace
client

Ace
Server

Artifact
Repository

Device 1

Device 2

Device n

Build
server

Architecture

Model

Bundle A

Bundle B

Bundle C

Feature A

Feature B

Distribution A

Targets

Device/target

JVM/OSGi
framework

Operating
System

Management
agent bundle

Polls ACE server for updates

‣ Any JVM capable device
‣ Target has unique id
‣ Configure server location

Deployment packages sent back

‣ Explicit target registration
‣ HTTP auth or SSL Client Certificates

Security:

Process:
‣ Manual update approval
‣ Custom properties
‣ Audit logs

ACE Server

Target 1 Target 2

logs

Scripting
REST

Java API

scriptable OSGi shell, calls (low-
level) Java API

Gogo script

GET /work/{id}/feature

workspaceMgr.cw().lf()

Deployment packages
Structure

GET /deployment/car1/versions/3.0.0

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: car1
DeploymentPackage-Version: 3.0.0

Name: carprov.dashboard.impl-1.0.0.jar
Bundle-SymbolicName: carprov.dashboard.impl
Bundle-Version: 1.0.0

Name: org.apache.felix.dependencymanager-3.1.0.jar
Bundle-SymbolicName:
org.apache.felix.dependencymanager
Bundle-Version: 3.1.0
…

META-INF/MANIFEST.MF

Deployment packages
Installation on target

‣ Transactional: retries and rollback

‣ Installation status in audit log

‣ Unreliable networks:
‣ Download instead of stream
‣ Resumable downloads
‣ Custom update strategies

ACE Extensibility

‣ Built on modular OSGi architecture

‣ Different repository implementations

‣ Custom update strategies on targets

‣ Multiple topologies (e.g. relay server)

‣ ResourceProcessors for new artifact
types

ACE Extensibility
ResourceProcessor

‣ Recognizes your artifact type

‣ Handles installation on target

‣ Upload ResourceProcessor to ACE

ACE Extensibility
Configuration ResourceProcessor

‣ Handles XML (MetaType) configs

‣ Placeholders replaced with target tags

...
 <Value>${context.mySpecificProperty}</Value>
...

On server:

...
 <Value>mySpecificValue</Value>
...

On target:

In summary

Modular applications rock!

 Modular deployment is worth your while

Apache ACE simplifies IoT deployments

Thank you!

Paul Bakker
Sander Mak

- @pbakker
- @sander_mak

Code @
bit.ly/carprov

