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1 Control Co-Design Framework

I am trying to solve a control co-design problem for wave energy. This means
simultaneously optimizing the physical device design and the controller behav-
ior. The design variables, x, can be split into several categories. 6 refers to
decision variables related to the static (constant in time) WEC design. This
includes 6y, the limit variables (ie max force, position, power, and velocity),
Opto the variables defining the PTO impedance (generator type, generator re-
sistance/inductance, gear ratio, drivetrain inertia/stiffness), and 0,,ccn any re-
maining variables, mainly mechanical (ie hydrodynamic architecture, geometric
dimensions, structural thicknesses, material choice). Meanwhile, x5 and u are
the fourier coefficients for the WEC velocity and powertrain force respectively,
which are the decision variables related to the WEC dynamic response.
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The objective is broken up into Jgiatic and Jaynamic- 1f the total objective
Jiotar Were to minimize LCOE for example, then the dynamic objective would
be electrical power and the static objective would be cost. I am optimizing
NVOE and net eco-value instead of LCOE, so it will be slightly different, but
let’s assume LCOE for the sake of understanding the problem structure.

The objectives have the following dependence on the design variables:

Jtotal = Jt(Jstati07 denamic) (2)
Jstatic = Js (elima aptoa amech) (3)
denamic = Jd(eptoa ‘%27 '&) (4)

1.1 Different CCD Structures

In the paper “Towards a Fair Comparison between the Nested and Simulta-
neous Control Co-Design Methods using an Active Suspension Case Study,”
Sundarrajan and Herber describe two possible strategies for control co-design
and their pros and cons. In the nested strategy, the control is solved as an inner
suboptimization within each iteration of the outer design optimization. In the
simultaneous strategy, the control and design problem are solved in a single
larger optimization.

Nested makes sense when the control sub-problem has appealing properties
like convexity that enable a fast solution, which would not be possible if the
problems were solved simultaneously because of nonconvexities in the design
problem. A downside of nested is that the control subproblem can be infeasible
for some designs, and the subproblem can interfere with derivatives. In the case



study in the aforementioned paper, simultaneous was preferable when analytic
gradients were available.
Question: is the outer nonlinear design problem in that paper convex? Why
are they fixating on linear vs nonlinear instead of convex vs nonconvex?
Question: in my problem, are there any plant designs where the control
problem would be infeasible? Maybe if the limits are too low.

1.2 Option 1: Nested
Inner (WecOptTool):

min Jt(Js(elim79ptoa9mech)a Jd(epto,.’EQ,U))

Tr2,u
st h(Omech, 2, u) =0 (dynamics) (5)
91 (Orim, z2,u) <0 (control limits)
Outer:
min Jt(Js (elima eptoa 9mech)7

gli'm, 79pt0797nech

Jd(eptm l‘; (elimv eptov emech)a U* (elima eptoa Gmech)) (6)
s.t. g2(0iim, Optos Omecn) <0 (design constraints)

the * refers to the optimal value that results from performing the inner
optimization.

1.2.1 Option 1la

Same as above but the objective for the inner optimization is just J; instead
of J;. These are essentially equivalent when optimizing LCOE, but could be
different when optimizing net value. This could potentially create convexity
for the inner problem, but would result in a suboptimal solution if J; is not
monotonic wrt Jy.

1.3 Option 2: Simultaneous
min Jt(Js(elimveptovemech)aJd(eptmx?vu))

Orim 79pto Omech,T2,u

st. W(Omech, T2,u) =0 (dynamics)
91(Otim, 2,u) <0 (control limits)
92(01im, Optos mech) <0 (design constraints)

(7)

1.4 Conclusion

It is not clear whether to go with 1, 1a, or 2. It could really depend on the
convexity of each problem. It may be necessary to try both/all methods (for a



smaller subset of the problem) and compare empirically to see which one takes
less time and achieves the most optimal solution. Still, let’s analyze convexity
to understand if we even expect any of these problems to be convex.

2  WecOptTool Convexity

2.1 Motivation

It is highly desirable for optimization problems to be convex. In particular, if the
WecOptTool problem can be made convex, it motivates that WEC DECIDER
perhaps should be a nested optimization structure (option 1 above), where the
inner problem is convex and the outer problem is nonconvex. With a convex
inner problem, we can automatically get sensitivities, which act as derivatives to
aid the convergence of the outer problem. It also guarantees a global optimum
instead of a local optimum. It also is generally faster to solve.

2.2 Requirements for Convexity

There are three requirements to guarantee convexity in a disciplined convex
programming framework:

1. The objective must either minimize a convex function or maximize a con-
cave function.

2. The equality constraints must be affine = affine.

3. The inequality constraints must be convex < concave and/or concave >
convex.

“Note that any constant expression is also affine, and any affine expression
is convex and concave” https://www.cvxpy.org/tutorial/dcp/index.html#
dcp-problems

2.3 Complex Variables

The design variables x5 and u are real-valued and represent the cos and sin (real
and imaginary) Fourier coefficients of the complex velocity and powertrain force.
In WecOptTool, the definition is as follows, for any generic set of real-valued
coefficients z:

A
Re(Zl)
]Irn(Zl)
= | 0
Re(Zn;,.,-1)

]Im(Zmeq_l)
L Re(Zny,.,) |



https://www.cvxpy.org/tutorial/dcp/index.html#dcp-problems
https://www.cvxpy.org/tutorial/dcp/index.html#dcp-problems

so z has length 2Ny,., because the first element (DC gain) and last element
(highest frequency) have zero imaginary part.

In the equations in the following sections, instead of the real-valued coeffi-
cients z (the design variables x5 and u), we need to use the complex values 2
(Z2 and ), defined as follows:

Zy Zy
Z1 Re(Zl) + 15 ]Im(Zl)
5= : = : (9)
ZNfreq—1 Re(Zn;,eq—1) + 1jIm(Zy,,,, 1)
ZNqu Re(ZNfreq)

where 1j is the imaginary unit and 2 has length Nygpq + 1.
The following matrix equation is used to transfer between 2z and Z2:

10 0 0 O 0
01 1 0 0 0

2=Azwhere A= |0 0 0 1 1j 0 (10)
0 0 0 0 O 1

and A has size Nyreq +1 X 2Nppeq.

2.4 Guaranteed Convexity in Giorgio’s Paper

2.4.1 Objective

In Giorgio’s paper Numerical Optimal Control of Wave Energy Converters, he
assumes linear dynamics. This means the WEC velocity &5 is a linear function
of the control and excitation 4 and é (eqn 36 from that paper):

Gig =1 +¢ (11)

This can be substituted into the mechanical power objective (eqn 26) JV =

—Z4" %5 to get (eqn 39)

T T
JVN = ——aTc ta— =atG e (12)
2 2
This objective is convex with respect to the decision variables 4 because all
diagonal elements of G are positive (the radiation damping). See his paper for
further details. This meets requirement 1.

2.4.2 Constraints

Because the dynamics are incorporated into the objective by construction, there
is no need for any equality constraints. This meets requirement 2.



The inequality constraints applied are limits on the position and force (equs
47 and 49):
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which are both linear (affine) with respect to the decision variable @, which
satisfies requirement 3.

Not only is this problem convex, it is a convex quadratic program, which is
even easier to solve than a general convex problem.

2.5 Nonconvexity in WecOptTool
2.5.1 Objective

The objective in WecOptTool is electrical power, rather than mechanical power,
which makes the objective more complicated. From the WecOptTool IEEE CCD
paper eq 29 and 11, with variables renamed to match the conventions used above:

(14)
Plugging in:

2 U U
(15)
_ 1 €2 g * r7% 01 T2
= §Re <|:U:| A abed |:O 0:| Zabch |:u

So we see that the objective is quadratic, but asymmetric. Using the prop-

T

erty "Mz = xT%
version:

x VY, M, we equivalently write the symmetricalized

_ 1 zo " 0 1 T
Pelec = ZRQ <|:UZ:| A” ;bcd |:1 0:| Zabch |:UQ:|> (16)

This can be rewritten as a quadratic problem:

_ P R 1 0 1
Pee = |: 2:| Q |:’LL2:| where Q = ERQ (A* ;bcd |:1 0:| Zabch) (17)

u

Unfortunately, the eigenvalues of {(1) (1)] are -1 and 1, so the matrix @ is

neither positive semidefinite nor negative semidefinite, and the objective is not
convex.



2.5.2 Constraints

WecOptTool does not assume linear dynamics, so we don’t solve for Zs as a
linear function of the control and excitation. Instead we enforce the dynamics
as an equality constraint (eqn 4.96 of Giorgio’s thesis, which I have split up to
better match the organization of WecOptTool source code):

Iy(I)jD¢SE2 + thdro(tj) + Fadd(tj) =0 (18)

This time domain equation states that the mass/inertia times acceleration (ma)
equals the sum of forces. This equation is enforced separately at each timestep
t;, so it is actually Nyimesteps sSeparate equality constraints.

Fhyaro encompasses friction, radiation, hydrostatic, and excitation (Froude-
Krylov and diffraction) forces, which are all linear:

thdro(tj) = Bvlq)jfg + q)jGi’Q + Sh@j.’il — ’)/e(tj) (19)

and F,qq encompasses the powertrain force (linear) plus any user-defined
forces (potentially nonlinear). In Giorgio’s thesis, quadratic drag is used as the
nonlinear user-defined force:

Foqa(t;) = =Pt + By, Prdo| Prio| (20)

This equality constraint only meets requirement 2 if there are no nonlinear
terms in Fl44.

Inequality constraints are up to the user to add. Typical constraints will
be force and position limits, which are linear the same way they were in the
previous section, along with peak power limits and a generator force limit which
is only active above certain speeds, which are quadratic and linear respectively,
the latter requiring the addition of a binary indicator decision variable for each
timestep, which makes it a mixed integer problem. The force, position, and
conditional force limit are convex (affine), but the power limit is not (nonconvex
quadratic).

In summary, the general WecOptTool problem has a nonconvex quadratic
objective, nonconvex quadratic inequality constraints, and potentially nonlin-
ear equality constraints. It meets none of the three requirements for convex-
ity. If no nonlinear force terms are used, it could be solved as a nonconvex
MI-QCQP (mixed integer quadratically constrained quadratic program), but
otherwise must be solved as a general NLP. The current WecOptTool uses the
SLSQP NLP algorithm from scipy.optimize.

2.6 Convexifying WecOptTool

I would like to explore how to convexity this problem for the reasons mentioned
in the motivation section.



2.6.1 Equality Constraint

Let’s start with the dynamics equality constraint in the case where a nonlinear
Fyqq term is used. Recall that for convexity, equality constraints must be affine
in the decision variables. I can think of two ways to do this:

1. Replace nonlinear dynamics terms with Fourier coefficients (decision vari-
ables) and add convex inequality constraints to those coefficients

2. Replace nonlinear dynamics terms with Fourier coefficients (constants)
and add nonconvex constraints to those coefficients in the outer problem

Item 1 would only be possible when the F,4q terms are still convex even
though they are not affine, and where an inequality constraint would be tight and
therefore equivalent to the equality constraint. An example of this is drag. Drag
is quadratic in the velocity x2, and because drag involves power dissipation it is
reasonable to assume that an inequality constraint of the form Fg.qg > 23 Cxy
would be tight because drag should always decrease the power generation. (Need
to check this assumption more rigorously, what if there is some case where the
drag is helpful because it helps stay under some max speed constraint?) The
downside of this would be that we have added more design variables to the inner
problem, in the form of the Fourier coefficients of drag deg, but it will likely
still be more computationally efficient to solve a large convex problem than a
small nonconvex one.

Question: is this equivalent to just relaxing the equality constraint to an
inequality? Then I wouldn’t need to add design variables. I think it’s not
equivalent though.

Item 2 is the alternative for when the F,4q cannot be written convexly or
would not be tight as an inequality. This would blur the lines between the inner
and outer problems, essentially making some of the dynamics a part of the outer
problem. The downside here is that now we have added more design variables to
the outer problem, which is worse than doing so for the inner problem because
the outer problem is nonconvex. It is unclear whether this strategy would even
be beneficial, compared to keeping both problems nonconvex but small (without
any extra decision variables).

The main nonlinear F,4q relevant to wave energy are drag, mooring forces,
and second order hydrodynamic forces. Drag can be handled with the first
option, and I don’t know enough about the form of the other two forces to know
whether they can, but it seems plausible that they can at least be approximated
convexly, so for now I will assume it can be done. With the equality constraints
now effectively affine, I will move onto the objective and inequalities.

2.6.2 Objective

At this point with the equality affine, we officially have a nonconvex MI-QCQP.
This can be solved as-is and would be more efficient than NLP, but I'm not sure
whether it would have the global optimality and especially the sensitivities that



are possible to get with a convex program. So, here are four ideas to make it
convex:

1. Add more constraints so that the problem is convex in the entire feasible
region

2. Assume positive fourier coefficients variables and use SOCP
3. Log-log transform (Geometric programming)

4. Solve the now-linear equality constraint and plug it into the objective to
make the QP convex, like it was in Giorgio’s paper

Item 1’s concept is based on work by Zhong and Yeung 2018 (OMAE) that
shows that constraining the slew rate of PTO force can guarantee convexity
for a single WEC, and Zhong and Yeung 2022 (Ocean Engineering) shows that
constraining reactive power to zero (pure damping control) can guarantee con-
vexity for an array. Constraining PTO force slew rate is reasonable because the
low-level controllers will have finite bandwidth, but constraining reactive power
is rather limiting. Their formulation is model predictive control rather than
pseudo-spectral method, so I'm not sure if these constraints would also make
my problem convex. I have not looked into it extensively. It seems like CVXPy
would not count this as convex, even if it is, because CVXPy looks for convexity
over the whole domain, not just the feasible region. I could veryify it by hand
and then plug directly into a solver without CVXPy, but CVXPy is the tool
that provides the sensitivities that I want, so this is not ideal. Maybe there are
other tools out there that provide sensitivities of QPs.

Item 2 - I have implemented it (see code here) and gotten it to work on a toy
problem that maximizes mechanical power only for a single frequency. Rather
than maximize power, I maximize the square root of power, using CVXPy’s
geo_mean function. It is nonlinear, but CVXPy recognizes it as convex and
solves it as a second order cone program SOCP. This requires that all Fourier
coefficients are positive. If the design variables were Tand V directly that would
be true, but because they are the mechanical variables rather than the electrical
variables, I'm not sure if that’s an appropriate assumption. I think the criterion
would be that Z,;.q needs to be positive semidefinite for it to be true. From
the WecOptTool CCD paper:

~Zp1 Zry Zpi

- _ 21
Zvu = ZviZpiZru ZviZpg 1)

Zabcd =

Zrr and Zyy are real negative values. Zpy has a negative real part and an

imaginary part that can be of either sign. Zy; has a positive real part and a

positive imaginary part. I am not sure how to tell from these signs whether
Zabed 18 positive semidefinite.

If Z,peq isn’t positive semidefinite, I suppose tl}ere would always be the

possibility of changing the design variables to I and V, and then using Zgpcq to
rewrite the constraints in terms of I and V.


https://github.com/symbiotic-engineering/WEC-DECIDER/blob/rgm-optim-formulation/convex_attempt.ipynb

The only downside of this idea is that it’s a SOCP instead of a QP, but I
don’t think this is a very big deal.

Edit: actually, this might not extend to multiple frequencies (my toy problem
was only a single frequency). Because /P + Py # /P; + /P, ie the powers
from different frequencies do not sum correctly in this case. Need to investigate,
could be a dealbreaker.

Item 3 seems plausible at first, because power is a posynomial (a sum
of positive products), but the problem here comes from the constraints. Only
posynomial inequality constraints are allowed, but the velocity-conditioned force
limit is polynomial (it has a negative term). This constraint could possibly be
reformulated but I'm not sure. Plus, only monomial equality constraints are
allowed, but I have a posynomial (or perhaps polynomial) equality constraint.
This constraint would have to be relaxed to an inequality constraint, and if
there are any nonpositive terms it’s pretty much game over.

Item 4 is appealing because if the substitution made the matrix positive
definite, it would make the objective a convex quadratic program, which is even
easier to solve than the convex SOCP which we got in item 2. We know from
Giorgio’s paper that it is convex in the case of maximizing mechanical power,
but I am not sure if this is still true when we are maximizing mechanical power.
It seems like Z,p.q being positive semidefinite would also be the criterion here.
A downside of this approach would be more implementation effort, because it
would require solving a matrix equation for the dynamics where previously there
was an equality constraint.

In summary, item 1 would yield a non-CVXPy-compatible convex QP and
requires more investigation to see if it is possible. Item 2 yields a convex SOCP
and is possible if either Z,p.q is positive semidefinite or the design variables are
changed (edit: and if I confirm whether it extends to multiple frequencies!). Item
3 would yield a convex GP and requires relaxing the dynamics to an inequality
and has potential sign issues in the constraints. Item 4 would yield a convex
QP and requires Z,;.q positive semidefinite.

2.6.3 Inequality Constraint

The only inequality constraint of issue is the peak power constraint, which
is quadratic. Potentially some of the same tricks for the objective could be
employed, as described in the previous section. Otherwise this constraint could
simply be approximated as linear, or even as a series of conditionally-active
linear constraints to get a bit tighter, which seems acceptable given that real
torque-speed curves don’t perfectly limit mechanical power anyway, especially
when there is no field weakening (which is already assumed given the linear
generator impedance model). I have no other ideas.

2.7 Next steps

e Check whether maximizing the square root of power (or simliar SOCP)
extends to multiple frequencies

10



2.8

Check whether Z,p.q is positive semi-definite

Confirm whether drag constraint would be tight and whether making drag
an inequality is equivalent relaxing the entire dynamics constraint

Check whether there are other ways besides CVXPy to get sensitivities,
for the convex-only-where-feasible MIQP

Confirm that a nonconvex QP is more difficult to solve than a convex
SOCP with potentially larger size. Can nonconvex QP give a global opti-
mum or sensitivities?

Check whether GP constraints are valid (negatives)

Investigate convexity if I used optimize for net value instead of LCOE
See if the outer problem was convex in Dan Herber’s CCD case study
Are there any plant designs where the control problem is infeasible?

Think about whether mooring and second order hydro forces are con-
vex/tight like drag probably is

Look into which of these problems are DPP (differential parametric pro-
gramming) compliant, which is a requirement for CVXPy to provide the
sensitivities

Implementation

Solvers that are accessible from CVXPy and can solve MISOCPs (mixed-integer
second order cone programs) and MIQPs (mixed-integer quadratic programs):

SCIP (open source, what I'm using now)

ECOS-BB (open source, not recommended due to correctness issues)
CPLEX (commercial, free license for academia)

GUROBI (commercial, free license for academia)

MOSEK (commercial, free license for academia)

XPRESS (commercial, free community edition if variables + constraints j
5000)
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