100 numpy exercises (83/100 actually)
Clone or download
Pull request Compare This branch is 1 commit ahead, 117 commits behind rougier:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
100 Numpy Exercises.ipynb
Makefile
README.html
README.rst
numpy.css
reset.css

README.rst

100 numpy exercises

A joint effort of the numpy community

The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:

#. Find indices of non-zero elements from [1,2,0,0,4,0]

   .. code:: python

      # Author: Somebody

      print(np.nonzero([1,2,0,0,4,0]))

Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html

Repository is at: https://github.com/rougier/numpy-100

Thanks to Michiaki Ariga, there is now a Julia version.

  1. Import the numpy package under the name np (★☆☆)

    import numpy as np
  2. Print the numpy version and the configuration (★☆☆)

    print(np.__version__)
    np.show_config()
  3. Create a null vector of size 10 (★☆☆)

    Z = np.zeros(10)
    print(Z)
  4. How to get the documentation of the numpy add function from the command line ? (★☆☆)

    python -c "import numpy; numpy.info(numpy.add)"
  5. Create a null vector of size 10 but the fifth value which is 1 (★☆☆)

    Z = np.zeros(10)
    Z[4] = 1
    print(Z)
  6. Create a vector with values ranging from 10 to 49 (★☆☆)

    Z = np.arange(10,50)
    print(Z)
  7. Reverse a vector (first element becomes last) (★☆☆)

    Z = np.arange(50)
    Z = Z[::-1]
  8. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)

    Z = np.arange(9).reshape(3,3)
    print(Z)
  9. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)

    nz = np.nonzero([1,2,0,0,4,0])
    print(nz)
  10. Create a 3x3 identity matrix (★☆☆)

    Z = np.eye(3)
    print(Z)
  11. Create a 3x3x3 array with random values (★☆☆)

    Z = np.random.random((3,3,3))
    print(Z)
  12. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)

    Z = np.random.random((10,10))
    Zmin, Zmax = Z.min(), Z.max()
    print(Zmin, Zmax)
  13. Create a random vector of size 30 and find the mean value (★☆☆)

    Z = np.random.random(30)
    m = Z.mean()
    print(m)
  14. Create a 2d array with 1 on the border and 0 inside (★☆☆)

    Z = np.ones((10,10))
    Z[1:-1,1:-1] = 0
  15. What is the result of the following expression ? (★☆☆)

    0 * np.nan
    np.nan == np.nan
    np.inf > np.nan
    np.nan - np.nan
    0.3 == 3 * 0.1
  16. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)

    Z = np.diag(1+np.arange(4),k=-1)
    print(Z)
  17. Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)

    Z = np.zeros((8,8),dtype=int)
    Z[1::2,::2] = 1
    Z[::2,1::2] = 1
    print(Z)
  18. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?

    print(np.unravel_index(100,(6,7,8)))
  19. Create a checkerboard 8x8 matrix using the tile function (★☆☆)

    Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
    print(Z)
  20. Normalize a 5x5 random matrix (★☆☆)

    Z = np.random.random((5,5))
    Zmax, Zmin = Z.max(), Z.min()
    Z = (Z - Zmin)/(Zmax - Zmin)
    print(Z)
  21. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)

    Z = np.dot(np.ones((5,3)), np.ones((3,2)))
    print(Z)
  22. Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)

    # Author: Evgeni Burovski
    
    Z = np.arange(11)
    Z[(3 < Z) & (Z <= 8)] *= -1
  23. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)

    Z = np.zeros((5,5))
    Z += np.arange(5)
    print(Z)
  24. Consider a generator function that generates 10 integers and use it to build an array (★☆☆)

    def generate():
        for x in xrange(10):
            yield x
    Z = np.fromiter(generate(),dtype=float,count=-1)
    print(Z)
  25. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)

    Z = np.linspace(0,1,12,endpoint=True)[1:-1]
    print(Z)
  26. Create a random vector of size 10 and sort it (★★☆)

    Z = np.random.random(10)
    Z.sort()
    print(Z)
  27. How to sum a small array faster than np.sum ? (★★☆)

    # Author: Evgeni Burovski
    
    Z = np.arange(10)
    np.add.reduce(Z)
  28. Consider two random array A anb B, check if they are equal (★★☆)

    A = np.random.randint(0,2,5)
    B = np.random.randint(0,2,5)
    equal = np.allclose(A,B)
    print(equal)
  29. Make an array immutable (read-only) (★★☆)

    Z = np.zeros(10)
    Z.flags.writeable = False
    Z[0] = 1
  30. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)

    Z = np.random.random((10,2))
    X,Y = Z[:,0], Z[:,1]
    R = np.sqrt(X**2+Y**2)
    T = np.arctan2(Y,X)
    print(R)
    print(T)
  31. Create random vector of size 10 and replace the maximum value by 0 (★★☆)

    Z = np.random.random(10)
    Z[Z.argmax()] = 0
    print(Z)
  32. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)

    Z = np.zeros((10,10), [('x',float),('y',float)])
    Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
                                 np.linspace(0,1,10))
    print(Z)
  33. Given two arrays, X and Y, construct the Cauchy matrix C (Cij = 1/(xi - yj))

    # Author: Evgeni Burovski
    
    X = np.arange(8)
    Y = X + 0.5
    C = 1.0 / np.subtract.outer(X, Y)
    print(np.linalg.det(C))
  34. Print the minimum and maximum representable value for each numpy scalar type (★★☆)

    for dtype in [np.int8, np.int32, np.int64]:
       print(np.iinfo(dtype).min)
       print(np.iinfo(dtype).max)
    for dtype in [np.float32, np.float64]:
       print(np.finfo(dtype).min)
       print(np.finfo(dtype).max)
       print(np.finfo(dtype).eps)
  35. How to print all the values of an array ? (★★☆)

    np.set_printoptions(threshold=np.nan)
    Z = np.zeros((25,25))
    print(Z)
  36. How to find the closest value (to a given scalar) in an array ? (★★☆)

    Z = np.arange(100)
    v = np.random.uniform(0,100)
    index = (np.abs(Z-v)).argmin()
    print(Z[index])
  37. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)

     Z = np.zeros(10, [ ('position', [ ('x', float, 1),
                                       ('y', float, 1)]),
                        ('color',    [ ('r', float, 1),
                                       ('g', float, 1),
                                       ('b', float, 1)])])
    print(Z)
  38. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)

    Z = np.random.random((10,2))
    X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
    D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
    print(D)
    
    # Much faster with scipy
    import scipy
    # Thanks Gavin Heverly-Coulson (#issue 1)
    import scipy.spatial
    
    Z = np.random.random((10,2))
    D = scipy.spatial.distance.cdist(Z,Z)
    print(D)
  39. How to convert a float (32 bits) array into an integer (32 bits) in place ?

    Z = np.arange(10, dtype=np.int32)
    Z = Z.astype(np.float32, copy=False)
  40. Consider the following file:

    1,2,3,4,5
    6,,,7,8
    ,,9,10,11
    

    How to read it ? (★★☆)

    Z = np.genfromtxt("missing.dat", delimiter=",")
  41. What is the equivalent of enumerate for numpy arrays ? (★★☆)

    Z = np.arange(9).reshape(3,3)
    for index, value in np.ndenumerate(Z):
        print(index, value)
    for index in np.ndindex(Z.shape):
        print(index, Z[index])
  42. Generate a generic 2D Gaussian-like array (★★☆)

    X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
    D = np.sqrt(X*X+Y*Y)
    sigma, mu = 1.0, 0.0
    G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
    print(G)
  43. How to randomly place p elements in a 2D array ? (★★☆)

    # Author: Divakar
    
    n = 10
    p = 3
    Z = np.zeros((n,n))
    np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
  44. Subtract the mean of each row of a matrix (★★☆)

    # Author: Warren Weckesser
    
    X = np.random.rand(5, 10)
    
    # Recent versions of numpy
    Y = X - X.mean(axis=1, keepdims=True)
    
    # Older versions of numpy
    Y = X - X.mean(axis=1).reshape(-1, 1)
  45. How to I sort an array by the nth column ? (★★☆)

    # Author: Steve Tjoa
    
    Z = np.random.randint(0,10,(3,3))
    print(Z)
    print(Z[Z[:,1].argsort()])
  46. How to tell if a given 2D array has null columns ? (★★☆)

    # Author: Warren Weckesser
    
    Z = np.random.randint(0,3,(3,10))
    print((~Z.any(axis=0)).any())
  47. Find the nearest value from a given value in an array (★★☆)

    Z = np.random.uniform(0,1,10)
    z = 0.5
    m = Z.flat[np.abs(Z - z).argmin()]
    print(m)
  48. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)

    # Author: Brett Olsen
    
    Z = np.ones(10)
    I = np.random.randint(0,len(Z),20)
    Z += np.bincount(I, minlength=len(Z))
    print(Z)
  49. How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)

    # Author: Alan G Isaac
    
    X = [1,2,3,4,5,6]
    I = [1,3,9,3,4,1]
    F = np.bincount(I,X)
    print(F)
  50. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)

    # Author: Nadav Horesh
    
    w,h = 16,16
    I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
    F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
    n = len(np.unique(F))
    print(np.unique(I))
  51. Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)

    A = np.random.randint(0,10,(3,4,3,4))
    sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
    print(sum)
  52. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)

    # Author: Jaime Fernández del Río
    
    D = np.random.uniform(0,1,100)
    S = np.random.randint(0,10,100)
    D_sums = np.bincount(S, weights=D)
    D_counts = np.bincount(S)
    D_means = D_sums / D_counts
    print(D_means)
  53. How to get the diagonal of a dot product ? (★★★)

    # Author: Mathieu Blondel
    
    # Slow version
    np.diag(np.dot(A, B))
    
    # Fast version
    np.sum(A * B.T, axis=1)
    
    # Faster version
    np.einsum("ij,ji->i", A, B).
  54. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)

    # Author: Warren Weckesser
    
    Z = np.array([1,2,3,4,5])
    nz = 3
    Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
    Z0[::nz+1] = Z
    print(Z0)
  55. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)

    A = np.ones((5,5,3))
    B = 2*np.ones((5,5))
    print(A * B[:,:,None])
  56. How to swap two rows of an array ? (★★★)

    # Author: Eelco Hoogendoorn
    
    A = np.arange(25).reshape(5,5)
    A[[0,1]] = A[[1,0]]
    print(A)
  57. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)

    # Author: Nicolas P. Rougier
    
    faces = np.random.randint(0,100,(10,3))
    F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
    F = F.reshape(len(F)*3,2)
    F = np.sort(F,axis=1)
    G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
    G = np.unique(G)
    print(G)
  58. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)

    # Author: Jaime Fernández del Río
    
    C = np.bincount([1,1,2,3,4,4,6])
    A = np.repeat(np.arange(len(C)), C)
    print(A)
  59. How to compute averages using a sliding window over an array ? (★★★)

    # Author: Jaime Fernández del Río
    
    def moving_average(a, n=3) :
        ret = np.cumsum(a, dtype=float)
        ret[n:] = ret[n:] - ret[:-n]
        return ret[n - 1:] / n
    Z = np.arange(20)
    print(moving_average(Z, n=3))
  60. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)

    # Author: Joe Kington / Erik Rigtorp
    from numpy.lib import stride_tricks
    
    def rolling(a, window):
        shape = (a.size - window + 1, window)
        strides = (a.itemsize, a.itemsize)
        return stride_tricks.as_strided(a, shape=shape, strides=strides)
    Z = rolling(np.arange(10), 3)
    print(Z)
  61. How to negate a boolean, or to change the sign of a float inplace ? (★★★)

    # Author: Nathaniel J. Smith
    
    Z = np.random.randint(0,2,100)
    np.logical_not(arr, out=arr)
    
    Z = np.random.uniform(-1.0,1.0,100)
    np.negative(arr, out=arr)
  62. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)

    def distance(P0, P1, p):
        T = P1 - P0
        L = (T**2).sum(axis=1)
        U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
        U = U.reshape(len(U),1)
        D = P0 + U*T - p
        return np.sqrt((D**2).sum(axis=1))
    
    P0 = np.random.uniform(-10,10,(10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p  = np.random.uniform(-10,10,( 1,2))
    print(distance(P0, P1, p))
  63. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)

    # Author: Italmassov Kuanysh
    # based on distance function from previous question
    P0 = np.random.uniform(-10, 10, (10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p = np.random.uniform(-10, 10, (10,2))
    print np.array([distance(P0,P1,p_i) for p_i in p])
  64. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)

    # Author: Nicolas Rougier
    
    Z = np.random.randint(0,10,(10,10))
    shape = (5,5)
    fill  = 0
    position = (1,1)
    
    R = np.ones(shape, dtype=Z.dtype)*fill
    P  = np.array(list(position)).astype(int)
    Rs = np.array(list(R.shape)).astype(int)
    Zs = np.array(list(Z.shape)).astype(int)
    
    R_start = np.zeros((len(shape),)).astype(int)
    R_stop  = np.array(list(shape)).astype(int)
    Z_start = (P-Rs//2)
    Z_stop  = (P+Rs//2)+Rs%2
    
    R_start = (R_start - np.minimum(Z_start,0)).tolist()
    Z_start = (np.maximum(Z_start,0)).tolist()
    R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
    Z_stop = (np.minimum(Z_stop,Zs)).tolist()
    
    r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
    z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
    R[r] = Z[z]
    print(Z)
    print(R)
  65. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★)

    # Author: Stefan van der Walt
    
    Z = np.arange(1,15,dtype=uint32)
    R = stride_tricks.as_strided(Z,(11,4),(4,4))
    print(R)
  66. Compute a matrix rank (★★★)

    # Author: Stefan van der Walt
    
    Z = np.random.uniform(0,1,(10,10))
    U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
    rank = np.sum(S > 1e-10)
  67. How to find the most frequent value in an array ?

    Z = np.random.randint(0,10,50)
    print(np.bincount(Z).argmax())
  68. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★)

    # Author: Chris Barker
    
    Z = np.random.randint(0,5,(10,10))
    n = 3
    i = 1 + (Z.shape[0]-3)
    j = 1 + (Z.shape[1]-3)
    C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
    print(C)
  69. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★)

    # Author: Eric O. Lebigot
    # Note: only works for 2d array and value setting using indices
    
    class Symetric(np.ndarray):
        def __setitem__(self, (i,j), value):
            super(Symetric, self).__setitem__((i,j), value)
            super(Symetric, self).__setitem__((j,i), value)
    
    def symetric(Z):
        return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
    
    S = symetric(np.random.randint(0,10,(5,5)))
    S[2,3] = 42
    print(S)
  70. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★)

    # Author: Stefan van der Walt
    
    p, n = 10, 20
    M = np.ones((p,n,n))
    V = np.ones((p,n,1))
    S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
    print(S)
    
    # It works, because:
    # M is (p,n,n)
    # V is (p,n,1)
    # Thus, summing over the paired axes 0 and 0 (of M and V independently),
    # and 2 and 1, to remain with a (n,1) vector.
  71. Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★)

    # Author: Robert Kern
    
    Z = np.ones(16,16)
    k = 4
    S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
                                           np.arange(0, Z.shape[1], k), axis=1)
  72. How to implement the Game of Life using numpy arrays ? (★★★)

    # Author: Nicolas Rougier
    
    def iterate(Z):
        # Count neighbours
        N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
             Z[1:-1,0:-2]                + Z[1:-1,2:] +
             Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])
    
        # Apply rules
        birth = (N==3) & (Z[1:-1,1:-1]==0)
        survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
        Z[...] = 0
        Z[1:-1,1:-1][birth | survive] = 1
        return Z
    
    Z = np.random.randint(0,2,(50,50))
    for i in range(100): Z = iterate(Z)
  73. How to get the n largest values of an array (★★★)

    Z = np.arange(10000)
    np.random.shuffle(Z)
    n = 5
    
    # Slow
    print (Z[np.argsort(Z)[-n:]])
    
    # Fast
    print (Z[np.argpartition(-Z,n)[:n]])
  74. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★)

    # Author: Stefan Van der Walt
    
    def cartesian(arrays):
        arrays = [np.asarray(a) for a in arrays]
        shape = (len(x) for x in arrays)
    
        ix = np.indices(shape, dtype=int)
        ix = ix.reshape(len(arrays), -1).T
    
        for n, arr in enumerate(arrays):
            ix[:, n] = arrays[n][ix[:, n]]
    
        return ix
    
    print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
  75. How to create a record array from a regular array ? (★★★)

    Z = np.array([("Hello", 2.5, 3),
                  ("World", 3.6, 2)])
    R = np.core.records.fromarrays(Z.T,
                                   names='col1, col2, col3',
                                   formats = 'S8, f8, i8')
  76. Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★)

    Author: Ryan G.
    
    x = np.random.rand(5e7)
    
    %timeit np.power(x,3)
    1 loops, best of 3: 574 ms per loop
    
    %timeit x*x*x
    1 loops, best of 3: 429 ms per loop
    
    %timeit np.einsum('i,i,i->i',x,x,x)
    1 loops, best of 3: 244 ms per loop
  77. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★)

    # Author: Gabe Schwartz
    
    A = np.random.randint(0,5,(8,3))
    B = np.random.randint(0,5,(2,2))
    
    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    print(rows)
  78. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★)

    # Author: Robert Kern
    
    Z = np.random.randint(0,5,(10,3))
    E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
    U = Z[~E]
    print(Z)
    print(U)
  79. Convert a vector of ints into a matrix binary representation (★★★)

    # Author: Warren Weckesser
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
    B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
    print(B[:,::-1])
    
    # Author: Daniel T. McDonald
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
    print(np.unpackbits(I[:, np.newaxis], axis=1))
  80. Given a two dimensional array, how to extract unique rows ? (★★★)

    # Author: Jaime Fernández del Río
    
    Z = np.random.randint(0,2,(6,3))
    T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    _, idx = np.unique(T, return_index=True)
    uZ = Z[idx]
    print(uZ)
  81. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★)

    # Author: Alex Riley
    # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
    
    np.einsum('i->', A)       # np.sum(A)
    np.einsum('i,i->i', A, B) # A * B
    np.einsum('i,i', A, B)    # np.inner(A, B)
    np.einsum('i,j', A, B)    # np.outer(A, B)
  82. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★) ?

    # Author: Bas Swinckels
    
    phi = np.arange(0, 10*np.pi, 0.1)
    a = 1
    x = a*phi*np.cos(phi)
    y = a*phi*np.sin(phi)
    
    dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
    r = np.zeros_like(x)
    r[1:] = np.cumsum(dr)                # integrate path
    r_int = np.linspace(0, r.max(), 200) # regular spaced path
    x_int = np.interp(r_int, r, x)       # integrate path
    y_int = np.interp(r_int, r, y)
  83. Given an integer n and a 2D array X, select from X the rows which can be interpreted as draws from a multinomial distribution with n degrees, i.e., the rows which only contain integers and which sum to n. (★★★)

    # Author: Evgeni Burovski
    
    X = np.asarray([[1.0, 0.0, 3.0, 8.0],
                    [2.0, 0.0, 1.0, 1.0],
                    [1.5, 2.5, 1.0, 0.0]])
    n = 4
    M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
    M &= (X.sum(axis=-1) == n)
    print(X[M])