Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

MOT-sGPLDA-SRE14

Multiobjective Optimization Training of PLDA for Speaker Verification

  1. prepare data, make directory ./data and ./temp
    put NIST SRE14 i-vector challenge offical data on "./data/", there are "development_data_labels.csv, dev_ivectors.csv, ivec14_sre_segment_key_release.tsv, ivec14_sre_trial_key_release.tsv, model_ivectors.csv, target_speaker_models.csv, test_ivectors.csv"

  2. run ./python/sre14_preprocess.py.
    It will generate "./temp/sre14.mat"

  3. run ./matlab/gplda_demo.m
    The script will read "./temp/sre14.mat", and the results are
    2.347, 2.456 (Development dataset, EER), 2.307 (Evaluation dataset, EER),
    0.264, 0.269 (Development dataset, MDCF), 0.261 (Evaluation dataset, MDCF).

  4. run ./matlab/moplda_demo.m
    The script will read "./temp/sre14.mat", and the results are
    2.040, 2.193 (Development dataset, EER), 1.931 (Evaluation dataset, EER),
    0.233, 0.239 (Development dataset, MDCF), 0.229 (Evaluation dataset, MDCF).

  5. some experiment results.

A. train lambda with development and train vectors

  1. factor experiment,
    A EER, D EER, E EER, A DCF, D DCF, E DCF, factor
  2. 2.531, 2.794, 2.354, 0.272, 0.277, 0.267, 1.1
  3. 2.554, 2.825, 2.336, 0.269, 0.272, 0.266, 1.2
  4. 2.456, 2.677, 2.176, 0.250, 0.255, 0.247, 1.3
  5. 2.331, 2.579, 2.199, 0.238, 0.241, 0.235, 1.4
  6. 2.207, 2.399, 2.099, 0.233, 0.235, 0.230, 1.5
  7. 2.082, 2.272, 1.940, 0.230, 0.235, 0.225, 1.6
  8. 2.040, 2.193, 1.931, 0.233, 0.239, 0.229, 1.7
  9. 2.057, 2.180, 1.973, 0.238, 0.244, 0.232, 1.8
  10. 2.136, 2.241, 2.049, 0.244, 0.250, 0.238, 1.9
  11. 2.108, 2.261, 1.995, 0.242, 0.249, 0.237, 2.0

B. train lambda with development vectors

  1. factor experiment,
    A EER, D EER, E EER, A DCF, D DCF, E DCF, factor
  2. 2.182, 2.426, 1.994, 0.241, 0.244, 0.237, 1.1
  3. 2.257, 2.438, 2.099, 0.237, 0.243, 0.232, 1.2
  4. 2.369, 2.487, 2.225, 0.240, 0.245, 0.236, 1.3
  5. 2.307, 2.426, 2.210, 0.238, 0.245, 0.233, 1.4
  6. 2.481, 2.610, 2.330, 0.264, 0.273, 0.257, 1.5
  7. 2.340, 2.425, 2.254, 0.253, 0.260, 0.246, 1.6
  8. 2.347, 2.487, 2.267, 0.253, 0.260, 0.247, 1.7
  9. 2.337, 2.395, 2.301, 0.264, 0.272, 0.257, 1.8
  10. 2.406, 2.456, 2.351, 0.266, 0.274, 0.260, 1.9
  11. 2.506, 2.549, 2.435, 0.275, 0.281, 0.269, 2.0

C. train lambda with development and train vectors

  1. dimension experiment,
    A EER, D EER, E EER, A DCF, D DCF, E DCF, dimension
  2. 3.522, 3.556, 3.505, 0.498, 0.507, 0.491, 50
  3. 2.306, 2.329, 2.267, 0.288, 0.294, 0.284, 100
  4. 2.032, 2.241, 1.919, 0.239, 0.245, 0.234, 150
  5. 2.040, 2.193, 1.931, 0.233, 0.239, 0.229, 200
  6. 2.070, 2.260, 1.918, 0.234, 0.240, 0.229, 250

PS:

  1. The sGPLDA demo was downloaded from https://github.com/wangwei2009/MSR-Identity-Toolkit-v1.0
  2. Anaconda3, Python3, require sklearn
  3. Matlab R2016a
  4. A EER: NIST SRE14 i-vector challenge all data EER
    D EER: NIST SRE14 i-vector challenge Development dataset EER
    E EER: NIST SRE14 i-vector challenge Evaluation dataset EER
  5. A DCF: NIST SRE14 i-vector challenge all data MinDCF14
    D DCF: NIST SRE14 i-vector challenge Development dataset MinDCF14
    E DCF: NIST SRE14 i-vector challenge Evaluation dataset MinDCF14

About

Multiobjective Optimization Training of PLDA for Speaker Verification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published