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Section Starter Question

In a coin-flipping game, do you expect the lead to change often? Graphically,
how would you recognize a change in lead? What does the Weak Law of Large
Numbers have to say about the lead changing often? What does the Central
Limit Theorem have to say about the lead changing often?

Key Concepts

1. The Arcsine Law, (sometimes known as the law of long leads), says
that in a coin-tossing games, a surprisingly large fraction of sample
paths leave one player in the lead almost all the time, and in very few
cases will the lead change sides and fluctuate in the manner that is
naively expected of a well-behaved coin.

2. Interpreted geometrically as random walks, the path crosses the x-
axis rarely, and with increasing duration of the walk, the frequency of
crossings decreases, and the lengths of the “leads” on one side of the
axis increase in length.

Vocabulary

1. The Arcsine Law, (sometimes known as the law of long leads) says

lim
n→∞

Pn [Vn < nα] =
1

π

∫ α

0

1√
x(1− x)

dx =
2

π
arcsin

√
α.
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Mathematical Ideas

Heuristics for the Arcsine Law

Consider Tn = Y1 + · · · + Yn summing independent, identically distributed
coin-toss random variables Yi, each of which assumes the value +1 with
probability 1/2, and value −1 with probability 1/2.

Recall that the stochastic process Tn is a function of two variables: the
time n and the sample point ω. The Central Limit Theorem and the Moder-
ate Deviations Theorem, give asymptotic results in n about the probability,
that is, the proportion of ω values with an specific excess of heads over
tails at that fixed n. That event could be expressed in terms of the event
{ω : Tn(ω) > s(n)} for some s. Now we are going to take a somewhat com-
plementary point of view, asking about an event that counts the amount of
time that the net fortune or walk is positive.

We say that the fortune spends the time from k − 1 to k on the positive
side if at least one of the two values Tk−1 and Tk is positive (in which case
the other is positive or at worst, 0). Geometrically, the broken line path of
the fortune lies above the horizontal axis over the interval (k − 1, k).

For notation, let

u2n =

(
2n

n

)
2−2n.

Then u2n is the binomial probability for exactly n heads and n tails in 2n
flips of a fair coin.

Proposition 1. Let p2k,2n be the probability that in the time interval from
0 to 2n, the particle spends 2k time units on the positive side and therefore
2n− 2k on the negative side. Then

p2k,2n = u2ku2n−2k
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We feel intuitively that the fraction k/n of the total time spent on the
positive side is most likely to be 1/2. However, the opposite is true! The
middle values of k/n are least probable and the extreme values k/n = 0 and
k/n = 1 are most probable in terms of frequency measured by the probability
distribution!

The formula of the Proposition is exact, but not intuitively revealing. To
make more sense, Stirling’s Formula shows that

u2n ∼
√

2π(2n) (2n)2n e−2n(√
2πnnne−n

)2 1

22n
=

1√
πn

as n → ∞. Note that this application of Stirling’s formula says the proba-
bility of n heads and n tails in 2n flips of a fair coin goes to 0 at the rate
1/
√
n as n gets large.

It then follows that

p2k,2n ≈
1

π
√
k(n− k)

as k → ∞ and (n − k) → ∞. The fraction of time that the fortune spends
on the positive side is then k/n and the probability the fortune is on this
positive side this fraction of the time is p2k,2n. We can look at the cumulative
probability that the fraction of time spent on the positive side is less than α
(with α ≤ 1) namely,∑

k<αn

p2k,2n ≈
1

π

∑
k<αn

1√
(k/n)(1− k/n)

1

n

On the right side we recognize a Riemann sum approximating the integral:

1

π

∫ α

0

1√
x(1− x)

dx =
2

π
arcsin(

√
α) dx .

For reasons of symmetry, the probability that k/n ≤ 1/2 tends to 1/2 as
n→∞. Adding this to the integral, we get:

Theorem 2 (Arcsine Law). For fixed α with 0 < α < 1 and n → ∞, the
probability that the fortune Tn spends a fraction of time k/n on the positive
side is less than α tends to:

1

π

∫ α

0

1√
x(1− x)

=
2

π
arcsin(

√
α)
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The Arcsine Law for Bernoulli Trials

Recall that Yi is a sequence of independent random variables that take values
1 with probability 1/2 and −1 with probability 1/2. This is a mathematical
model of a fair coin flip game where a 1 results from “heads” on the ith
coin toss and a −1 results from “tails”. Define T = (T0, . . . , Tn) by setting
Tn =

∑n
i=0 Yi with T0 = 0.

A common interpretation of this probability game is to imagine it as a
random walk. That is, we imagine an individual on a number line, starting
at some position T0. The person takes a step to the right to T0 + 1 with
probability p and takes a step to the left to T0 − 1 with probability q and
continues this random process. Then instead of the total fortune at any time,
we consider the geometric position on the line at any time.

Create a common graphical representation of the game. A continuous
piecewise linear curve in R2 consisting of a finite union of segments of the
form [(i, j), (i+1, j+1)] or [(i, j), (i+1, j−1)] where i, j are integers is called
a path. A path has an origin (a, b) and an endpoint (c, d) that are points
on the curve with integer coordinates satisfying a ≤ i ≤ c for all (i, j) on the
curve. The length of the path is c − a. (Note that the Euclidean length of
the path is (c− a)

√
2.) To each element ω ∈ Ωn (see Binomial Distribution),

we associate a path
⋃n−1
k=0 [(i, Ti(ω)), (i + 1, Ti+1(ω))] with origin (0, 0) and

endpoint (n, Tn(ω)).

Definition. Set
Vn = |{k : 0 ≤ k ≤ n, Tk > 0}| .

This is the number of tosses in which the Heads player is ahead or winning.
Let V ′n = |{k : 1 ≤ k ≤ n, Tk > 0 or Tk−1 > 0}|. This is the number of inte-
gers, or steps, between 1 and n inclusive such that there were more Heads
than Tails in the first k or k − 1 tosses of the coin.

Line segments of a path are in the upper half plane if and only if T2k−1 > 0.
Thus, we can say

V ′2n = 2 |{k : 1 ≤ k ≤ n and T2k−1 > 0}| .

Proposition 1. For each n > 0 and 0 ≤ k ≤ n, then

P2n [V ′2n = 2k] = 2−2n
(

2k

k

)(
2(n− k)

n− k

)
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Proof. Note that

P2n [V ′2n = 2n] = P2n [Tk ≥ 0, k ∈ {1, . . . , 2n}] = 2−2n
(

2n

n

)
.

by the Nonnegative Walks Theorem (Theorem 3 in Positive Walks Theorem).
Prove the general statement of the current Proposition by induction. The
base case where n = 1 is that

P2 [V ′2 = 0] = 2−2(1)
(

2(0)

0

)(
2(1− 0)

1

)
=

1

2

which is clearly true since P2 [V ′2 ] = P2 [T2 > 0 or T1 > 0].
Fix N > 1, our inductive hypothesis is that the proposition is true for all

n ≤ N − 1 and for all 0 ≤ k ≤ n. Note that if k = 0, we have

P2n [V ′2n = 0] = P2n [Tk ≤ 0, 1 ≤ k ≤ N ] = 2−2N
(

2N

N

)
again by the Nonnegative Walks Theorem (Theorem 3 in Positive Walks
Theorem). If 0 < V ′2N < 2N , then there exists j with 1 ≤ j ≤ N so that
T2j = 0. For each ω ∈ Ω2N such that 0 < V ′2n(ω) < 2N , the first time back
to 0 is given by

v(ω) = min{j > 0 : T2j(ω) = 0}.
Fix k ∈ {1, . . . , N − 1}. Then

P2N [V ′2N = 2k] =
N∑
j=1

P2N [V ′2N = 2k, v(ω) = 2j, T1 > 0]

+
N∑
j=1

P2N [V ′2N = 2k, v(ω) = 2j, T1 < 0]

If j > k, then note that

{V ′2N = 2k, v(ω) = 2j, T1 > 0} = ∅.

6

http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/PositiveWalks/positivewalks.html
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/PositiveWalks/positivewalks.html
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/BernoulliTrials/PositiveWalks/positivewalks.html


Note that

|{V ′2N = 2k, v(ω) = 2j, T1 > 0}|
= (number of paths (0, 0) to (2j, 0) with Ti > 0 for i > 1)

× (number of paths starting at (2j, 0) and length 2(N − j)
with 2(k − j) elementary segments in the upper half plane)

The first term in the product is given by Corollary 1 in Positive Walks The-
orem and is 1

j

(
2j−2
j−1
)

and the second term is

22(N−j)P2N

[
V ′2(N−j) = 2(k − j)

]
=

(
2(k − j)
k − j

)(
2(N − k)

N − k

)
.

Thus, we see that

P2N [V ′2N = 2k, t(ω) = 2j, T1 > 0] =
1

j22N

(
2j − 2

j − 1

)(
2(k − j)
k − j

)(
2(N − k)

N − k

)
.

Now combining the results we have

P2N [V ′2N = 2k]

=
k∑
j=1

1

2j2N

(
2j − 2

j − 1

)(
2(k − j)
k − j

)(
2(N − k)

N − k

)

+
N−k∑
j=1

1

2j2N

(
2j − 2

j − 1

)(
2k

k

)(
2(N − j − k)

N − j − k

)

=

[
1

22N

(
2(N − k)

N − k

)] k∑
j=1

1

j

(
2j − 2

j − 1

)(
2(k − j)
k − j

)

+

[
1

22N

(
2k

k

)] k∑
j=1

1

j

(
2j − 2

j − 1

)(
2(N − j − k)

N − j − k

)
=

[
1

22N

(
2(N − k)

N − k

)](
1

2

)(
2k

k

)
+

[
1

22N

(
2k

k

)](
1

2

)(
2(N − k)

N − k

)
=

1

22N

(
2k

k

)(
2(N − k)

N − k

)
,

which means that induction holds and so we have proven the Proposition
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p

x

1
π

1√
x(1−x)

Figure 1: Illustration of the Arcsine Law using a simulation with 200 trials
of random walks of length n = 100.

Theorem 3 (Arcsine Law). For each α ∈ (0, 1),

lim
n→∞

Pn [Vn < nα] =
1

π

∫ α

0

1√
x(1− x)

dx =
2

π
arcsin

√
α.

Proposition 4. For all a, b with 0 ≤ a ≤ b ≤ 1, then

lim
n→∞

P2n [2na ≤ V ′2n ≤ 2nb] =
1

π

∫ b

a

1√
x(1− x)

dx .

Proof. 1. First, if we have 0 < a < b < 1, then by Proposition 1 and
Stirling’s Approximation tell us

P2n [V ′2n = 2k] =
1

π

1√
k(n− k)

(1 + ε(k)) (1 + ε(n− k))

=
1

π

1√
k(n− k)

(1 + ε(n, k)) .

with limn→∞ ε(n, k) = 0 uniformly in k ∈ Z for na ≤ k ≤ nb. Thus, we
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have

P2n [2na ≤ V ′2n ≤ 2nb] =
∑

na≤k≤nb
P2n [V ′2n = 2k]

∼
∑
a≤ k

n
≤b

1

π

1√
k(n− k)

=
∑
a≤ k

n
≤b

1

π

1√
n2
(
k
n

) (
1− k

n

)
=

n∑
k=0

(
χ[a,b]

(
k

n

))
1

π

1

n

1√(
k
n

) (
1− k

n

)
=

1

nπ

n∑
k=0

(
χ[a,b]

(
k

n

))
1√(

k
n

) (
1− k

n

)
→ 1

π

∫ 1

0

χ[a,b]
1√

x(1− x)
dx

=
1

π

∫ b

a

1√
x(1− x)

dx .

Note that here we actually have a Riemann sum since we have a
bounded function when we keep a 6= 0 and b 6= 1. The rest of this
proof is to allow a = 0 and b = 1.

2. Fix ε > 0. There exists an a so that 1
π

∫ a
0

1√
x(1−x)

dx < ε and 1
π

∫ 1

1−a
1√

x(1−x)
dx <

ε. From part 1 of the proof, we have∣∣∣∣∣ 1π
∫ 1−a

a

1√
x(1− x)

dx−P2n [2na ≤ V ′2n ≤ 2n(1− a)]

∣∣∣∣∣ < ε

for n sufficiently large.

3. Note that P2n [V ′2n < 2na]+P2n [2na ≤ V ′2n ≤ 2n(1− a)]+P2n [V ′2n > 2n(1− a)] =

1. Note also that 1
π

∫ 1

0
1√

x(1−x)
dx = 1. Together these imply that

1

π

∫ 1−a

a

1√
x(1− x)

dx = 1−
∫ a

0

1√
x(1− x)

dx−
∫ 1

1−a

1√
x(1− x)

dx,
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or in other words,

P2n [2na ≤ V ′2n ≤ 2n(1− a)] = 1−P2n [V ′2n < 2na]−P2n [V ′2n > 2n(1− a)] .

From these facts and part 2 we have∣∣∣∣∣
(

1

π

∫ a

0

1√
x(1− x)

dx

+
1

π

∫ 1

1−a

1√
x(1− x)

dx−1

)
+ (1− P2n [V ′2n < 2na]− P2n [V ′2n > 2n(1− a)])|

for sufficiently large n. Thus, for sufficiently large n have

|PP [2n]V ′2n < 2na+ P2n [V ′2n > 2n(1− a)]| < 3ε.

So there exists a > 0 so that P2n [V ′2n < 2na] < 3ε for sufficiently
large n. Since P2n [V ′2n < 2na] is increasing in a for fixed n, we get
lima→∞ P2n [V ′2n < 2na] = 0 uniformly in n.

4. By parts 1 and2, we have

lim
n→∞

Pn [V ′2n ≤ 2nb] =
1

π

∫ b

0

1√
x(1− x)

dx

for b ∈ (0, 1). By symmetry, the proposition holds.

Proof of the Arcsine Law. The proof uses the relationship between the ran-
dom variables V2n and V ′2n. Since V2n := V ′2n−|{k : 1 ≤ k ≤ n, T2k−1 > 0, T2k = 0}|,
it follows that

|V2n − V ′2n| ≤ |{k : 1 ≤ k ≤ n, T2k = 0}| = U2n. (1)

Note that

E2n [U2n] = E2n

[
n∑
k=1

χ[T2k=0]

]

=
n∑
k=1

P2n [T2k = 0]

=
n∑
k=1

2−2k
(

2k

k

)
.
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By Markov’s Inequality,

P2n [U2n > 2nε] ≤ E2n [U2n]

2nε

=
1

2nε

n∑
k=1

2−2k
(

2k

k

)
.

By Stirling’s Approximation, we have limk→∞ 2−2k
(
2k
k

)
= 0 at the same rate

as 1√
n
. Cesáro’s Principle gives

lim
n→∞

P2n [U2n > 2nε] = 0. (2)

Now note that

[V2n < 2nα] ⊂ [|V2n − V ′2n| > 2nε] ∪ [V ′2n ≤ 2n(α + ε)] .

Thus, we have

P2n [V2n < 2nα] ≤ P2n [|V2n − V ′2n| > 2nε] + P2n [V ′2n ≤ 2n(α + ε)] . (3)

For the first probability on the right

P2n [|V2n − V ′2n| > 2nε] ≤ P2n [U2n > 2nε]→ 0.

as n → ∞. For the second probability on the right in Equation (3), note
that Proposition 4 says that

lim
n→∞

P2n [V ′2n ≤ 2n(α + ε)] = lim
n→∞

P2n [V ′2n ≤ 2n(α + ε)]

=
1

π

∫ α+ε

0

1√
x(1− x)

dx,

and ε→ 0 gives

lim
ε→0

1

π

∫ α+ε

0

1√
x(1− x)

dx =
1

π

∫ α

0

1√
x(1− x)

dx .

Therefore going back to the left hand side of equation (3), we have

lim sup
n→∞

P2n [V2n < 2nα] ≤ 1

π

∫ α

0

1√
x(1− x)

dx .
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Since V2n ≤ V ′2n, Proposition 4 says that

lim inf
n→∞

P2n [V2n < 2nα] ≥ 1

π

∫ α

0

1√
x(1− x)

dx .

Thus limn→∞ P2n [V2n < 2nα] = 1
π

∫ α
0

1√
x(1−x)

dx. To complete, note that

P2n [V2n+1 < (2n+ 1)α] ≤ P2n [V2n < (2n+ 1)α]

and similarly,

P2n [V2n+2 < (2n+ 2)α] ≥ P2n [V2n+1 < (2n+ 2)] .

Examples and Illustration

Illustration 1

Example. Consider the probability that Heads is in the lead at least 85% of
the time:

lim
n→∞

Pn [Vn ≥ 0.85n] = lim
n→∞

(1− Pn [Vn < 0.85n]) = 1− 2

π
arcsin

√
0.85 = 0.25318.

The probability is more than 25%, surprisingly higher than most would an-
ticipate.

Illustration 2

In practice, the formula provides a good approximation even for values of n
as small as 20. The table below illustrates the approximation.

Illustration 3

An investment firm sends you an advertisement for their new investment
plan. The ad claims that their investment plan, while subject to the “random
fluctuations of the market”, yields a net fortune which is on the positive side
at least 75% of the time. The company provides a graph of the plan’s outcome
to “prove” their claim.
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2n = 20 k p2k,2n cdf k/n (2/π) arcsin(
√
α)

0 0.1762 0.1762 0 0.0000
2 0.0927 0.2689 0.1 0.2048
4 0.0736 0.3426 0.2 0.2952
6 0.0655 0.4080 0.3 0.3690
8 0.0617 0.4697 0.4 0.4359
10 0.0606 0.5303 0.5 0.5000
12 0.0617 0.5920 0.6 0.5641
14 0.0655 0.6574 0.7 0.6310
16 0.0736 0.7311 0.8 0.7048
18 0.0927 0.8238 0.9 0.7952
20 0.1762 1.0000 1 1.0000

2n = 40 2k
0 0.1254 0.1254 0 0.0000
2 0.0643 0.1897 0.05 0.1436
4 0.0495 0.2392 0.1 0.2048
6 0.0424 0.2816 0.15 0.2532
8 0.0383 0.3199 0.2 0.2952
10 0.0356 0.3555 0.25 0.3333

Figure 2: A comparison of exact and arcsine probability distributions
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However, you should be suspicious. Even under the simple null hypothesis
that their investment plan will yield a gain of 1 unit with probability 1/2
and will lose a unit with probability 1/2, the arcsine law tells us that the
resulting fortune would spend 75% to 100% of its time on the positive side
with probability:

2

π
arcsin(

√
1)− 2

π
arcsin(

√
0.75) = 0.33333

That is, “just by chance” the seemingly impressive result could occur about
1/3 of the time. Not enough evidence has been provided to convince us of
the claim!

History and Comments

The Arcsine Law was first proved by P. Lévy in 1939 for Brownian motion.
Then Erdös and Kac proved the Arcsine Law in 1947 for sums of independent
random variables using an Invariance Principle. In 1954 Sparre Andersen
proved the Arcsine Law with a combinatorial argument. There are several
other ways to prove the Arcsine Law, which means that the Arcsine Law has
a surprising variety of proofs.

Sources

This section is adapted from: This section is adapted from: Heads or Tails,
by Emmanuel Lesigne, Student Mathematical Library Volume 28, American
Mathematical Society, [2]. Providence, 2005, Chapter 10.4. Some ideas are
adapted from Chapter XIV of the classic text by Feller, [1].

14



Algorithms, Scripts, Simulations

Algorithm

ArcsineLaw-Simulation

Comment Post: Empirical probability of random walks being positive at most 100α%.
Comment Post: Theoretical Arcsine Law probability 2

π
arcsin(

√
α)

1 Set probability of success p
2 Set length of random walk n
3 Set number of trials k
4 Set Arcsine Law parameter α
5 Initialize and fill k × n matrix of random walks
6 Use vectorization to find where each walk is positive
7 Use vectorization to sum the Boolean vector, findposwalks
8 Count how many walks are positive on < nα of the steps, longleads
9 return Empirical probability longleads/k

10 return Theoretical probability 2
π

arcsin(
√
α)

Scripts

Scripts

R R script for the Arcsine Law

p <− 0 .5
n <− 100
k <− 200

alpha <− 0 .85

walks <− matrix (0 , nrow = k , ncol = n + 1)
rw <− t (apply (2 ∗ matrix ( ( runif (n ∗ k ) <= p ) , k , n) − 1 , 1 , cumsum) )
walks [ , 1 : n + 1 ] <− rw

f indposwa lks <− apply (0 + ( walks [ , 1 : n + 1 ] > 0) , 1 , sum)
l o n g l e a d s <− sum(0 + ( f indposwa lks < n ∗ alpha ) )

prob <− l on g l e a d s/k
t h e o r e t i c a l <− (2/pi ) ∗ asin ( sqrt ( alpha ) )

15
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cat ( s p r i n t f ( ” Empir ica l p r o b a b i l i t y : %f \n” , prob ) )
cat ( s p r i n t f ( ” P o s i t i v e Walks Theorem p r o b a b i l i t y : %f \n” , t h e o r e t i c a l ) )

Octave Octave script for Arcsine Law

p = 0 . 5 ;
n = 100 ;
k = 200 ;

alpha = 0 . 8 5 ;

walks = zeros (k , n+1);
walks ( : , 2 : n+1) = cumsum( (2 ∗ (rand (k , n ) <= p) − 1) , 2 ) ;

f indposwa lks = sum( walks ( : , 2 : n+1) > 0 , 2 ) ;
l o n g l e a d s = sum( f indposwa lks < n∗alpha ) ;

prob = lo ng l e ad s /k ;
t h e o r e t i c a l = (2/pi )∗ asin ( sqrt ( alpha ) ) ;

disp ( ” Empir ica l p r o b a b i l i t y : ” ) , disp ( prob )
disp ( ” Arcs ine Law p r o b a b i l i t y : ” ) , disp ( t h e o r e t i c a l )

Perl Perl PDL script for the Arcsine Law.

use PDL : : N i c e S l i c e ;

$p = 0 . 5 ;
$n = 100 ;
$k = 200 ;

$alpha = 0 . 8 5 ;

$walks = ze ro s ( $n + 1 , $k ) ;
$rw = cumusumover ( 2 ∗ ( random ( $n , $k ) <= $p ) − 1 ) ;
$walks ( 1 : $n , 0 : $k − 1 ) .= $rw ;

$ f indposwa lks = sumover ( $walks ( 1 : $n , 0 : $k − 1 ) > 0 ) ;

16
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$poswalks = sum( $ f indposwa lks < $n ∗ $alpha ) ;

$prob = $poswalks / $k ;

use PDL : : Constants qw( PI ) ;
use PDL : : Math ;
$ t h e o r e t i c a l = ( 2 . / PI ) ∗ a s in ( sqrt ( $alpha ) ) ;

print ” Empir ica l p r o b a b i l i t y ” , $prob ,
”\n” ;
print ” P o s i t i v e Walks Theorem p r o b a b i l i t y ” , $ t h e o r e t i c a l , ”\n” ;

SciPy Scientific Python script for the Arcsine Law.

import s c ipy

p = 0 .5
n = 100
k = 200

alpha = 0.85

walks = sc ipy . z e r o s ( ( k , n + 1) , dtype=int )
rw = sc ipy . cumsum(2 ∗ ( s c ipy . random . random ( ( k , n ) ) <= p) − 1 , a x i s =1)
walks [ : , 1 : n + 1 ] = rw

f indposwa lks = 0 + ( walks [ : , 1 : n + 1 ] > 0)
poswalks = sc ipy .sum( s c ipy .sum( f indposwalks , a x i s =1) < n ∗ alpha )

prob = f loat ( poswalks ) / f loat ( k )
t h e o r e t i c a l = 2 .0 / s c ipy . p i ∗ s c ipy . a r c s i n ( s c ipy . s q r t ( alpha ) )

print ’ Empir ica l p r o b a b i l i t y : ’ , prob
print ’ P o s i t i v e Walks Theorem p r o b a b i l i t y : ’ , t h e o r e t i c a l
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Problems to Work for Understanding

1. Show that
1

π

∫ α

0

1√
x(1− x)

dx =
2

π
arcsin

√
α.

2. Adapt the scripts with a larger number of trials and longer walks to
create an empirical histogram of the Arcsine Law, comparing it with
the theoretical density as in Figure 1. Use an increased number of
histogram intervals to create a finer representation.

Reading Suggestion:
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Outside Readings and Links:

I check all the information on each page for correctness and typographical
errors. Nevertheless, some errors may occur and I would be grateful if you would
alert me to such errors. I make every reasonable effort to present current and
accurate information for public use, however I do not guarantee the accuracy or
timeliness of information on this website. Your use of the information from this
website is strictly voluntary and at your risk.

I have checked the links to external sites for usefulness. Links to external
websites are provided as a convenience. I do not endorse, control, monitor, or
guarantee the information contained in any external website. I don’t guarantee
that the links are active at all times. Use the links here with the same caution as
you would all information on the Internet. This website reflects the thoughts, in-
terests and opinions of its author. They do not explicitly represent official positions
or policies of my employer.

Information on this website is subject to change without notice.

Steve Dunbar’s Home Page, http://www.math.unl.edu/~sdunbar1
Email to Steve Dunbar, sdunbar1 at unl dot edu
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