1 Some properties of the RSI formula

The value of RSI over some period w is:

$$
R S I=100-\frac{100}{1+\frac{g \text { gins }}{\text { Losses }}}
$$

Where gains $=\frac{\sum \text { daily gains }}{\text { count of daily gains }}$, losses $=\frac{\sum \text { daily losses }}{\text { count of daily losses }}$, are both positive values.
We observe that

$$
\begin{aligned}
& \sum \text { daily gains }=\frac{1}{2} \times\left(\sum \mid \text { daily move } \mid+\sum \text { daily move }\right) \\
& \sum \text { daily losses }=\frac{1}{2} \times\left(\sum \mid \text { daily move } \mid-\sum \text { daily move }\right)
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\frac{\sum \text { daily gains }}{\sum \text { daily losses }}=\frac{\sum \mid \text { daily move } \mid+\sum \text { daily move }}{\sum \mid \text { daily move } \mid-\sum \text { daily move }} \\
\frac{\sum \text { daily gains }}{\sum \text { daily losses }}=\frac{1+\frac{\sum \text { dailymove }}{\sum \mid \text { dailymove } \mid}}{1-\frac{\sum \text { dailymove }}{\sum \mid \text { dailymove } \mid}}
\end{gathered}
$$

And because $\sum_{\sum \text { daily move }}^{\sum \text { daily movel }}$ is approximately $C_{0} \times \sqrt{\operatorname{length}(w)} \times \frac{\text { return }}{\text { volatility }}$, we get:
$\frac{\sum \text { daily gains }}{\sum \text { daily losses }} \approx \frac{1+C_{1} \times \text { sharpe ratio }}{1-C_{1} \times \text { sharpe ratio }}$

We can verify this by running a simulation for 10000 samples and a 90 day window:

count of daily gains $=\sum \frac{\mid \text { daily move } \mid+ \text { daily move }}{2 \times \mid \text { daily move } \mid}$
count of daily losses $=\sum \frac{\mid \text { daily move } \mid- \text { daily move }}{2 \times \mid \text { daily move } \mid}$

$$
\frac{\text { count of daily losses }}{\text { count of daily gains }}=\frac{\sum 1-\frac{\text { daily move }}{\text { (daily movel }}}{\sum 1+\frac{\text { daily move }}{\text { (daily move| }}}=\frac{N-\sum \frac{\text { daily move }}{\mid \text { daily movel }}}{N+\sum \frac{N-\sum \operatorname{sign}(\text { daily move })}{\mid \text { daily move move| }}}=\frac{1-\overline{\overline{\operatorname{sign}(\text { daily move })}}}{1+\overline{\operatorname{sign}(\text { daily move })}}
$$

Where N is the window size

We can verify this by running a simulation for 10000 samples and a 90 day window:

Combining these two observations we get an expression for $\frac{\text { gains }}{\text { losses }}$ which can be computed using averages of statistics over the whole window, i.e. all divisors are the same and equal to N, the number of days in the window:
$\frac{\text { gains }}{\text { losses }} \approx \frac{1+C_{1} \times \text { sharpe ratio }}{1-C_{1} \times \text { sharpe ratio }} \times \frac{1-\overline{\operatorname{sign}(\text { daily move })}}{1+\overline{\operatorname{sign}(\text { daily move })}}$
in conclusion, the ratio $\frac{\text { gains }}{\text { losses }}$ of average gains/losses is the product of two factors. These factors are functions of the sharpe ratio and the average sign. The functional form is such that the ratio is:

- an increasing function of the sharpe ratio over the window
- a decreasing function of the average sign over the window

A plot of these factor values and a simulation nicely illustrate this finding:
$\frac{\text { gains }}{\text { losses }}$ factor values

14-day sharpe, mean sign and RSI for simulated returns

