

Making Games with

Python & Pygame

By Al Sweigart

Email questions to the author: al@inventwithpython.com

Copyright © 2012 by Albert Sweigart

Some Rights Reserved. ―Making Games with Python & Pygame‖) is licensed under a Creative

Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

You are free:

 To Share — to copy, distribute, display, and perform the work

 To Remix — to make derivative works

Under the following conditions:

 Attribution — You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).

(Visibly include the title and author's name in any excerpts of this work.)

 Noncommercial — You may not use this work for commercial purposes.

 Share Alike — If you alter, transform, or build upon this work, you may distribute

the resulting work only under the same or similar license to this one.

This summary is located here: http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Your fair use and other rights are in no way affected by the above. There is a human-readable

summary of the Legal Code (the full license), located here:

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Book Version 2

If you've downloaded this book from a torrent, it’s probably out of date. Go

to http://inventwithpython.com/pygame to download the latest version.

ISBN (978-1469901732)

1st Edition

For Calvin Chaos

Email questions to the author: al@inventwithpython.com

Who is this book for? i

WHO IS THIS BOOK FOR?
When you get down to it, programming video games is just about lighting up pixels to make

pretty pictures appear on the screen in response to keyboard and mouse input.

And there are very few things that are as fun.

This book will teach you how to make graphical computer games in the Python programming

language using the Pygame library. This book assumes you know a little bit about Python or

programming in general. If you don’t know how to program, you can learn by downloading the

free book ―Invent Your Own Computer Games with Python‖ from http://inventwithpython.com.

Or you can jump right into this book and mostly pick it up along the way.

This book is for the intermediate programmer who has learned what variables and loops are, but

now wants to know, ―What do actual game programs look like?‖ There was a long gap after I first

learned programming but didn’t really know how to use that skill to make something cool. It’s

my hope that the games in this book will give you enough ideas about how programs work to

provide a foundation to implement your own games.

The full text of this book is available in HTML or PDF format at

http://inventwithpython.com/pygame.

-Al Sweigart

ii http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

ABOUT THIS BOOK
Hello! This book will teach you how to make graphical computer games with the Pygame

framework (also called the Pygame library) in the Python programming language. Pygame makes

it easy to create programs with 2D graphics. Both Python and the Pygame framework can be

downloaded for free from http://python.org and http://pygame.org. All you need is a computer

and this book to begin making your own games.

This book is an intermediate programming book. If you are completely new to programming,

you can still try to follow along with the source code examples and figure out how programming

works. However, it might be easier to learn how to program in Python first. ―Invent Your Own

Computer Games with Python‖ is a book that is available completely for free from

http://inventwithpython.com. That book teaches programming by making non-graphical, text-

based games for complete beginners, and also has a few chapters about using the Pygame library.

However, if you already know how to program in Python (or even some other language, since

Python is so easy to pick up) and want to start making games beyond just text, then this is the

book for you. The book starts with a short introduction to how the Pygame library works and the

functions it provides. Then it provides the complete source code for some actual games and

explains how the code works, so you can understand how actual game programs make use of

Pygame.

This book features seven different games that are clones of popular games that you’ve probably

already played. The games are a lot more fun and interactive than the text-based games in ―Invent

with Python‖, but are still fairly short. All of the programs are less than 600 lines long. This is

pretty small when you consider that professional games you download or buy in a store can be

hundreds of thousands of lines long. These games require an entire team of programmers and

artists working with each other for months or years to make.

The website for this book is http://inventwithpython.com/pygame. All the programs and files

mentioned in this book can be downloaded for free from this website, including this book itself.

Programming is a great creative activity, so please share this book as widely as possible. The

Creative Commons license that this book is released under gives you the right to copy and

duplicate this book as much as you want (as long as you don’t charge money for it).

If you ever have questions about how these programs work, feel free to email me at

al@inventwithpython.com.

About This Book iii

TABLE OF CONTENTS
Who is this book for? .. i

About This Book .. ii

Chapter 1 – Installing Python and Pygame .. 1

What You Should Know Before You Begin .. 1

Downloading and Installing Python ... 1

Windows Instructions .. 1

Mac OS X Instructions ... 2

Ubuntu and Linux Instructions .. 2

Starting Python... 2

Installing Pygame... 3

How to Use This Book ... 4

The Featured Programs .. 4

Downloading Graphics and Sound Files .. 4

Line Numbers and Spaces .. 4

Text Wrapping in This Book ... 5

Checking Your Code Online .. 6

More Info Links on http://invpy.com ... 6

Chapter 2 – Pygame Basics .. 7

GUI vs. CLI ... 7

Source Code for Hello World with Pygame .. 7

Setting Up a Pygame Program ... 8

Game Loops and Game States ... 10

pygame.event.Event Objects ... 11

The QUIT Event and pygame.quit() Function .. 12

Pixel Coordinates ... 13

iv http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

A Reminder About Functions, Methods, Constructor Functions, and Functions in Modules (and

the Difference Between Them) .. 14

Surface Objects and The Window ... 15

Colors ... 16

Transparent Colors ... 17

pygame.Color Objects .. 18

Rect Objects ... 18

Primitive Drawing Functions ... 20

pygame.PixelArray Objects .. 23

The pygame.display.update() Function .. 24

Animation .. 24

Frames Per Second and pygame.time.Clock Objects ... 27

Drawing Images with pygame.image.load() and blit() .. 28

Fonts ... 28

Anti-Aliasing.. 30

Playing Sounds... 31

Summary .. 32

Chapter 3 – Memory Puzzle .. 33

How to Play Memory Puzzle ... 33

Nested for Loops ... 33

Source Code of Memory Puzzle .. 34

Credits and Imports .. 42

Magic Numbers are Bad .. 42

Sanity Checks with assert Statements ... 43

Telling If a Number is Even or Odd .. 44

Crash Early and Crash Often! .. 44

Making the Source Code Look Pretty .. 45

Using Constant Variables Instead of Strings ... 46

Making Sure We Have Enough Icons .. 47

Tuples vs. Lists, Immutable vs. Mutable ... 47

About This Book v

One Item Tuples Need a Trailing Comma ... 48

Converting Between Lists and Tuples ... 49

The global statement, and Why Global Variables are Evil.. 49

Data Structures and 2D Lists ... 51

The ―Start Game‖ Animation ... 52

The Game Loop ... 52

The Event Handling Loop .. 53

Checking Which Box The Mouse Cursor is Over ... 54

Handling the First Clicked Box ... 55

Handling a Mismatched Pair of Icons .. 56

Handling If the Player Won ... 56

Drawing the Game State to the Screen .. 57

Creating the ―Revealed Boxes‖ Data Structure ... 58

Creating the Board Data Structure: Step 1 – Get All Possible Icons ... 58

Step 2 – Shuffling and Truncating the List of All Icons .. 59

Step 3 – Placing the Icons on the Board .. 59

Splitting a List into a List of Lists.. 60

Different Coordinate Systems .. 61

Converting from Pixel Coordinates to Box Coordinates ... 62

Drawing the Icon, and Syntactic Sugar .. 63

Syntactic Sugar with Getting a Board Space’s Icon’s Shape and Color 64

Drawing the Box Cover ... 64

Handling the Revealing and Covering Animation ... 65

Drawing the Entire Board .. 66

Drawing the Highlight ... 67

The ―Start Game‖ Animation ... 67

Revealing and Covering the Groups of Boxes ... 68

The ―Game Won‖ Animation .. 68

Telling if the Player Has Won ... 69

vi http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Why Bother Having a main() Function? .. 69

Why Bother With Readability? .. 70

Summary, and a Hacking Suggestion .. 74

Chapter 4 – Slide Puzzle .. 77

How to Play Slide Puzzle ... 77

Source Code to Slide Puzzle .. 77

Second Verse, Same as the First .. 85

Setting Up the Buttons ... 86

Being Smart By Using Stupid Code .. 87

The Main Game Loop .. 88

Clicking on the Buttons ... 89

Sliding Tiles with the Mouse ... 90

Sliding Tiles with the Keyboard .. 90

―Equal To One Of‖ Trick with the in Operator .. 91

WASD and Arrow Keys .. 91

Actually Performing the Tile Slide .. 92

IDLE and Terminating Pygame Programs ... 92

Checking for a Specific Event, and Posting Events to Pygame’s Event Queue 92

Creating the Board Data Structure ... 93

Not Tracking the Blank Position .. 94

Making a Move by Updating the Board Data Structure .. 94

When NOT to Use an Assertion .. 95

Getting a Not-So-Random Move ... 96

Converting Tile Coordinates to Pixel Coordinates .. 97

Converting from Pixel Coordinates to Board Coordinates .. 97

Drawing a Tile ... 97

The Making Text Appear on the Screen .. 98

Drawing the Board ... 99

Drawing the Border of the Board ... 99

About This Book vii

Drawing the Buttons .. 100

Animating the Tile Slides .. 100

The copy() Surface Method ... 101

Creating a New Puzzle ... 103

Animating the Board Reset .. 104

Time vs. Memory Tradeoffs .. 105

Nobody Cares About a Few Bytes ... 106

Nobody Cares About a Few Million Nanoseconds .. 107

Summary .. 107

Chapter 5 – Simulate .. 108

How to Play Simulate .. 108

Source Code to Simulate .. 108

The Usual Starting Stuff .. 114

Setting Up the Buttons ... 115

The main() Function ... 115

Some Local Variables Used in This Program .. 116

Drawing the Board and Handling Input ... 117

Checking for Mouse Clicks ... 118

Checking for Keyboard Presses ... 118

The Two States of the Game Loop .. 119

Figuring Out if the Player Pressed the Right Buttons .. 119

Epoch Time .. 121

Drawing the Board to the Screen ... 122

Same Old terminate() Function ... 122

Reusing The Constant Variables .. 123

Animating the Button Flash ... 123

Drawing the Buttons .. 126

Animating the Background Change ... 126

The Game Over Animation .. 127

viii http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Converting from Pixel Coordinates to Buttons .. 129

Explicit is Better Than Implicit .. 129

Chapter 6 – Wormy .. 131

How to Play Wormy .. 131

Source Code to Wormy .. 131

The Grid ... 137

The Setup Code .. 137

The main() Function ... 138

A Separate runGame() Function .. 139

The Event Handling Loop .. 139

Collision Detection .. 140

Detecting Collisions with the Apple .. 141

Moving the Worm .. 142

The insert() List Method... 142

Drawing the Screen .. 143

Drawing ―Press a key‖ Text to the Screen ... 143

The checkForKeyPress() Function .. 143

The Start Screen ... 144

Rotating the Start Screen Text ... 145

Rotations Are Not Perfect .. 146

Deciding Where the Apple Appears .. 147

Game Over Screens .. 147

Drawing Functions ... 148

Don’t Reuse Variable Names ... 151

Chapter 7 - Tetromino .. 153

How to Play Tetromino .. 153

Some Tetromino Nomenclature ... 153

Source Code to Tetromino ... 154

The Usual Setup Code ... 166

About This Book ix

Setting up Timing Constants for Holding Down Keys .. 166

More Setup Code ... 166

Setting Up the Piece Templates ... 168

Splitting a ―Line of Code‖ Across Multiple Lines ... 171

The main() Function ... 172

The Start of a New Game ... 173

The Game Loop ... 174

The Event Handling Loop .. 174

Pausing the Game .. 174

Using Movement Variables to Handle User Input ... 175

Checking if a Slide or Rotation is Valid .. 175

Finding the Bottom .. 178

Moving by Holding Down the Key.. 179

Letting the Piece ―Naturally‖ Fall .. 182

Drawing Everything on the Screen .. 182

makeTextObjs(), A Shortcut Function for Making Text .. 183

The Same Old terminate() Function .. 183

Waiting for a Key Press Event with the checkForKeyPress() Function 183

showTextScreen(), A Generic Text Screen Function ... 184

The checkForQuit() Function .. 185

The calculateLevelAndFallFreq() Function .. 185

Generating Pieces with the getNewPiece() Function ... 188

Adding Pieces to the Board Data Structure ... 189

Creating a New Board Data Structure .. 189

The isOnBoard() and isValidPosition() Functions ... 190

Checking for, and Removing, Complete Lines .. 192

Convert from Board Coordinates to Pixel Coordinates ... 195

Drawing a Box on the Board or Elsewhere on the Screen ... 195

Drawing Everything to the Screen ... 196

x http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Drawing the Score and Level Text .. 196

Drawing a Piece on the Board or Elsewhere on the Screen ... 197

Drawing the ―Next‖ Piece .. 197

Summary .. 198

Chapter 8 – Squirrel Eat Squirrel ... 200

How to Play Squirrel Eat Squirrel.. 200

The Design of Squirrel Eat Squirrel ... 200

Source Code to Squirrel Eat Squirrel ... 201

The Usual Setup Code ... 211

Describing the Data Structures .. 212

The main() Function ... 213

The pygame.transform.flip() Function .. 214

A More Detailed Game State than Usual ... 214

The Usual Text Creation Code... 215

Cameras ... 215

The ―Active Area‖ ... 217

Keeping Track of the Location of Things in the Game World .. 218

Starting Off with Some Grass .. 219

The Game Loop ... 219

Checking to Disable Invulnerability .. 219

Moving the Enemy Squirrels ... 219

Removing the Far Away Grass and Squirrel Objects .. 221

When Deleting Items in a List, Iterate Over the List in Reverse ... 221

Adding New Grass and Squirrel Objects ... 223

Camera Slack, and Moving the Camera View ... 223

Drawing the Background, Grass, Squirrels, and Health Meter .. 224

The Event Handling Loop .. 226

Moving the Player, and Accounting for Bounce .. 228

Collision Detection: Eat or Be Eaten ... 229

About This Book xi

The Game Over Screen .. 231

Winning ... 232

Drawing a Graphical Health Meter .. 232

The Same Old terminate() Function .. 232

The Mathematics of the Sine Function .. 233

Backwards Compatibility with Python Version 2 .. 236

The getRandomVelocity() Function .. 237

Finding a Place to Add New Squirrels and Grass .. 237

Creating Enemy Squirrel Data Structures .. 238

Flipping the Squirrel Image ... 239

Creating Grass Data Structures .. 239

Checking if Outside the Active Area ... 240

Summary .. 241

Chapter 9 – Star Pusher .. 242

How to Play Star Pusher .. 242

Source Code to Star Pusher .. 242

The Initial Setup ... 256

Data Structures in Star Pusher ... 271

The ―Game State‖ Data Structure .. 271

The ―Map‖ Data Structure ... 271

The ―Levels‖ Data Structure .. 272

Reading and Writing Text Files ... 272

Text Files and Binary Files .. 272

Writing to Files .. 273

Reading from Files ... 274

About the Star Pusher Map File Format .. 274

Recursive Functions ... 280

Stack Overflows ... 281

Preventing Stack Overflows with a Base Case .. 283

xii http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The Flood Fill Algorithm ... 284

Drawing the Map ... 285

Checking if the Level is Finished .. 287

Summary .. 288

Chapter 10 – Four Extra Games ... 289

Flippy, an ―Othello‖ Clone .. 290

Source Code for Flippy .. 292

Ink Spill, a ―Flood It‖ Clone .. 305

Source Code for Ink Spill .. 305

Four-In-A-Row, a ―Connect Four‖ Clone .. 317

Source Code for Four-In-A-Row ... 317

Gemgem, a ―Bejeweled‖ Clone ... 327

Source Code for Gemgem .. 327

Summary .. 340

Glossary ... 342

About the Author ... 347

About This Book xiii

This page intentionally left blank.

…except for the above text.

And the above text.

And the above text.

And the above text.

And the above text.

And the above text.

And the above text.

And the above text.

And the above text.

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in blankpage

 def blankpage(): blankpage()

RuntimeError: maximum recursion depth exceeded

xiv http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Chapter 1 – Installing Python and Pygame 1

CHAPTER 1 – INSTALLING

PYTHON AND PYGAME

What You Should Know Before You Begin
It might help if you know a bit about Python programming (or how to program in another

language besides Python) before you read through this book; however even if you haven’t you

can still read this book anyway. Programming isn’t nearly as hard as people think it is. If you ever

run into some trouble, you can read the free book ―Invent Your Own Computer Games with

Python‖ online at http://inventwithpython.com or look up a topic that you find confusing on the

Invent with Python wiki at http://inventwithpython.com/wiki.

You don’t need to know how to use the Pygame library before reading this book. The next

chapter is a brief tutorial on all of Pygame’s major features and functions.

Just in case you haven’t read the first book and already installed Python and Pygame on your

computer, the installation instructions are in this chapter. If you already have installed both of

these then you can skip this chapter.

Downloading and Installing Python
Before we can begin programming you'll need to install software called the Python interpreter on

your computer. (You may need to ask an adult for help here.) The interpreter is a program that

understands the instructions that you’ll write (or rather, type out) in the Python language. Without

the interpreter, your computer won't be able to run your Python programs. We'll just refer to ―the

Python interpreter‖ as ―Python‖ from now on.

The Python interpreter software can be downloaded from the official website of the Python

programming language, http://www.python.org. You might want the help of someone else to

download and install the Python software. The installation is a little different depending on if

your computer’s operating system is Windows, Mac OS X, or a Linux OS such as Ubuntu. You

can also find videos online of people installing the Python software on their computers at

http://invpy.com/installing.

Windows Instructions
When you get to http://python.org, you should see a list of links on the left (such as ―About‖,

―News‖, ―Documentation‖, ―Download‖, and so on). Click on the Download link to go to the

2 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

download page, then look for the file called ―Python 3.2 Windows Installer (Windows binary --

does not include source)‖ and click on its link to download Python for Windows.

Double-click on the python-3.2.msi file that you've just downloaded to start the Python installer.

(If it doesn’t start, try right-clicking the file and choosing Install.) Once the installer starts up,

just keep clicking the Next button and just accept the choices in the installer as you go (no need

to make any changes). When the install is finished, click Finish.

Mac OS X Instructions
Mac OS X 10.5 comes with Python 2.5.1 pre-installed by Apple. Currently, Pygame only

supports Python 2 and not Python 3. However, the programs in this book work with both Python

2 and 3.

The Python website also has some additional information about using Python on a Mac at

http://docs.python.org/dev/using/mac.html.

Ubuntu and Linux Instructions
Pygame for Linux also only supports Python 2, not Python 3. If your operating system is Ubuntu,

you can install Python by opening a terminal window (from the desktop click on Applications >

Accessories > Terminal) and entering ―sudo apt-get install python2.7‖ then

pressing Enter. You will need to enter the root password to install Python, so ask the person who

owns the computer to type in this password if you do not know it.

You also need to install the IDLE software. From the terminal, type in ―sudo apt-get

install idle‖. The root password is also needed to install IDLE (ask the owner of your

computer to type in this password for you).

Starting Python
We will be using the IDLE software to type in our programs and run them. IDLE stands for

Interactive DeveLopment Environment. The development environment is software that makes it

easy to write Python programs, just like word processor software makes it easy to write books.

If your operating system is Windows XP, you should be able to run Python by clicking the Start

button, then selecting Programs, Python 3.1, IDLE (Python GUI). For Windows Vista or

Windows 7, just click the Windows button in the lower left corner, type ―IDLE‖ and select

―IDLE (Python GUI)‖.

If your operating system is Max OS X, start IDLE by opening the Finder window and click on

Applications, then click Python 3.2, then click the IDLE icon.

Chapter 1 – Installing Python and Pygame 3

If your operating system is Ubuntu or Linux, start IDLE by opening a terminal window and then

type ―idle3‖ and press Enter. You may also be able to click on Applications at the top of the

screen, and then select Programming, then IDLE 3.

The window that appears when you first run IDLE is called the interactive shell. A shell is a

program that lets you type instructions into the computer. The Python shell lets you type Python

instructions, and the shell sends these instructions to the Python interpreter to perform.

Installing Pygame
Pygame does not come with Python. Like Python, Pygame is available for free. You will have to

download and install Pygame, which is as easy as downloading and installing the Python

interpreter. In a web browser, go to the URL http://pygame.org and click on the ―Downloads‖

link on the left side of the web site. This book assumes you have the Windows operating system,

but Pygame works the same for every operating system. You need to download the Pygame

installer for your operating system and the version of Python you have installed.

You do not want to download the ―source‖ for Pygame, but rather the Pygame ―binary‖ for your

operating system. For Windows, download the pygame-1.9.1.win32-py3.2.msi file. (This is

Pygame for Python 3.2 on Windows. If you installed a different version of Python (such as 2.7 or

2.6) download the .msi file for your version of Python.) The current version of Pygame at the

time this book was written is 1.9.1. If you see a newer version on the website, download and

install the newer Pygame.

For Mac OS X, download the .zip or .dmg file for the version of Python you have and run it.

For Linux, open a terminal and run ―sudo apt-get install python-pygame‖.

On Windows, double click on the downloaded file to install Pygame. To check that Pygame is

install correctly, type the following into the interactive shell:

>>> import pygame

4 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

If nothing appears after you hit the Enter key, then you know Pygame has successfully been

installed. If the error ImportError: No module named pygame appears, then try to

install Pygame again (and make sure you typed import pygame correctly).

This chapter has five small programs that demonstrate how to use the different features that

Pygame provides. In the last chapter, you will use these features for a complete game written in

Python with Pygame.

A video tutorial of how to install Pygame is available from this book's website at

http://invpy.com/videos.

How to Use This Book
―Making Games with Python & Pygame‖ is different from other programming books because it

focuses on the complete source code for several game programs. Instead of teaching you

programming concepts and leaving it up to you to figure out how to make programs with those

concepts, this book shows you some programs and then explains how they are put together.

In general, you should read these chapters in order. There are many concepts that are used over

and over in these games, and they are only explained in detail in the first game they appear in.

But if there is a game you think is interesting, go ahead and jump to that chapter. You can always

read the previous chapters later if you got ahead of yourself.

The Featured Programs
Each chapter focuses on a single game program and explain how different parts of the code work.

It is very helpful to copy these programs by typing in the code line by line from this book.

However, you can also download the source code file from this book's website. In a web browser,

go to the URL http://invpy.com/source and follow the instructions to download the source code

file. But typing in the code yourself really helps you learn the code better.

Downloading Graphics and Sound Files
While you can just type in the code you read out of this book, you will need to download the

graphics and sound files used by the games in this book from http://invpy.com/downloads. Make

sure that these image and sound files are located in the same folder as the .py Python file

otherwise your Python program will not be able to find these files.

Line Numbers and Spaces
When entering the source code yourself, do not type the line numbers that appear at the beginning

of each line. For example, if you see this in the book:

Chapter 1 – Installing Python and Pygame 5

1. number = random.randint(1, 20)

2. spam = 42

3. print('Hello world!')

You do not need to type the ―1.‖ on the left side, or the space that immediately follows it. Just

type it like this:

number = random.randint(1, 20)

spam = 42

print('Hello world!')

Those numbers are only used so that this book can refer to specific lines in the code. They are not

a part of the actual program.

Aside from the line numbers, be sure to enter the code exactly as it appears. Notice that some of

the lines don’t begin at the leftmost edge of the page, but are indented by four or eight or more

spaces. Be sure to put in the correct number of spaces at the start of each line. (Since each

character in IDLE is the same width, you can count the number of spaces by counting the number

of characters above or below the line you're looking at.)

For example in the code below, you can see that the second line is indented by four spaces

because the four characters (―whil‖) on the line above are over the indented space. The third line

is indented by another four spaces (the four characters, ―if n‖ are above the third line's indented

space):

while spam < 10:

 if number == 42:

 print('Hello')

Text Wrapping in This Book
Some lines of code are too long to fit on one line on the pages in this book, and the text of the

code will wrap around to the next line. When you type these lines into the file editor, enter the

code all on one line without pressing Enter.

You can tell when a new line starts by looking at the line numbers on the left side of the code. For

example, the code below has only two lines of code, even though the first line wraps around:

1. print('This is the first line! xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxx’)

2. print('This is the second line, not the third line.')

6 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Checking Your Code Online
Some of the programs in this book are a little long. Although it is very helpful to learn Python by

typing out the source code for these programs, you may accidentally make typos that cause your

programs to crash. It may not be obvious where the typo is.

You can copy and paste the text of your source code to the online diff tool on the book’s website.

The diff tool will show any differences between the source code in the book and the source code

you’ve typed. This is an easy way of finding any typos in your program.

Copying and pasting text is a very useful computer skill, especially for computer programming.

There is a video tutorial on copying and pasting at this book’s website at

http://invpy.com/copypaste.

The online diff tool is at this web page: http://invpy.com/diff/pygame. There is also a video

tutorial on how to use this tool on the book’s website.

More Info Links on http://invpy.com
There is a lot that you can learn about programming. But you don’t need to learn all of it now.

There are several times in this book where you might like to learn these additional details and

explanations, but if I included them in this book then it would add many more pages. If this

larger, heavier book accidentally fell on you the weight of these many additional pages would

crush you, resulting in death. Instead, I have included ―more info‖ links in this book that you can

follow on this book’s website. You do not have to read this additional information to understand

anything in this book, but it is there if you are curious. These (and other) links have been

shortened and begin with http://invpy.com.

All of the information from these ―more info‖ links can also be downloaded from

http://invpy.com/pygamemoreinfo.

Even though this book is not dangerously heavy, please do not let it fall on you anyway.

Chapter 2 – Pygame Basics 7

CHAPTER 2 – PYGAME BASICS
Just like how Python comes with several modules like random, math, or time that provide

additional functions for your programs, the Pygame framework includes several modules with

functions for drawing graphics, playing sounds, handling mouse input, and other things.

This chapter will cover the basic modules and functions that Pygame provides and assumes you

already know basic Python programming. If you have trouble with some of the programming

concepts, you can read through the ―Invent Your Own Computer Games with Python‖ book

online at http://invpy.com/book. This book is aimed at complete beginners to programming.

The ―Invent with Python‖ book also has a few chapters covering Pygame. You can read them

online at http://invpy.com/chap17.

Once you learn more about Pygame, you can view the other modules that Pygame provides from

the online documentation at http://pygame.org/docs.

GUI vs. CLI
The Python programs that you can write with Python’s built-in functions only deal with text

through the print() and input() functions. Your program can display text on the screen and

let the user type in text from the keyboard. This type of program has a command line interface,

or CLI (which is pronounced like the first part of ―climb‖ and rhymes with ―sky‖). These

programs are somewhat limited because they can’t display graphics, have colors, or use the

mouse. These CLI programs only get input from the keyboard with the input() function and

even then user must press Enter before the program can respond to the input. This means real-

time (that is, continuing to run code without waiting for the user) action games are impossible to

make.

Pygame provides functions for creating programs with a graphical user interface, or GUI

(pronounced, ―gooey‖). Instead of a text-based CLI, programs with a graphics-based GUI can

show a window with images and colors.

Source Code for Hello World with Pygame
Our first program made with Pygame is a small program that makes a window that says ―Hello

World!‖ appear on the screen. Open a new file editor window by clicking on IDLE’s File menu,

then New Window. Type in the following code into IDLE’s file editor and save it as

blankpygame.py. Then run the program by pressing F5 or selecting Run > Run Module from the

menu at the top of the file editor.

8 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Remember, do not type the numbers or the periods at the beginning of each line (that’s just for

reference in this book).

 1. import pygame, sys

 2. from pygame.locals import *

 3.

 4. pygame.init()

 5. DISPLAYSURF = pygame.display.set_mode((400, 300))

 6. pygame.display.set_caption('Hello World!')

 7. while True: # main game loop

 8. for event in pygame.event.get():

 9. if event.type == QUIT:

10. pygame.quit()

11. sys.exit()

12. pygame.display.update()

When you run this program, a black window like this will appear:

Yay! You’ve just made the world’s most boring video game! It’s just a blank window with ―Hello

World!‖ at the top of the window (in what is called the window’s title bar, which holds the

caption text). But creating a window is the first step to making graphical games. When you click

on the X button in the corner of the window, the program will end and the window will disappear.

Calling the print() function to make text appear in the window won’t work because

print() is a function for CLI programs. The same goes for input() to get keyboard input

from the user. Pygame uses other functions for input and output which are explained later in this

chapter. For now, let’s look at each line in our ―Hello World‖ program in more detail.

Setting Up a Pygame Program
The first few lines of code in the Hello World program are lines that will begin almost every

program you write that uses Pygame.

 1. import pygame, sys

Chapter 2 – Pygame Basics 9

Line 1 is a simple import statement that imports the pygame and sys modules so that our

program can use the functions in them. All of the Pygame functions dealing with graphics, sound,

and other features that Pygame provides are in the pygame module.

Note that when you import the pygame module you automatically import all the modules that

are in the pygame module as well, such as pygame.images and pygame.mixer.music.

There’s no need to import these modules-inside-modules with additional import statements.

 2. from pygame.locals import *

Line 2 is also an import statement. However, instead of the import modulename format, it

uses the from modulename import * format. Normally if you want to call a function that

is in a module, you must use the modulename.functionname() format after importing the

module. However, with from modulename import *, you can skip the modulename.

portion and simply use functionname() (just like Python’s built-in functions).

The reason we use this form of import statement for pygame.locals is because

pygame.locals contains several constant variables that are easy to identify as being in the

pygame.locals module without pygame.locals. in front of them. For all other modules,

you generally want to use the regular import modulename format. (There is more

information about why you want to do this at http://invpy.com/namespaces.)

 4. pygame.init()

Line 4 is the pygame.init() function call, which always needs to be called after importing

the pygame module and before calling any other Pygame function. You don’t need to know what

this function does, you just need to know that it needs to be called first in order for many Pygame

functions to work. If you ever see an error message like pygame.error: font not

initialized, check to see if you forgot to call pygame.init() at the start of your

program.

 5. DISPLAYSURF = pygame.display.set_mode((400, 300))

Line 5 is a call to the pygame.display.set_mode() function, which returns the

pygame.Surface object for the window. (Surface objects are described later in this chapter.)

Notice that we pass a tuple value of two integers to the function: (400, 300). This tuple tells

the set_mode() function how wide and how high to make the window in pixels. (400,

300) will make a window with a width of 400 pixels and height of 300 pixels.

10 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Remember to pass a tuple of two integers to set_mode(), not just two integers themselves. The

correct way to call the function is like this: pygame.display.set_mode((400, 300)).

A function call like pygame.display.set_mode(400, 300) will cause an error that

looks like this: TypeError: argument 1 must be 2-item sequence, not int.

The pygame.Surface object (we will just call them Surface objects for short) returned is

stored in a variable named DISPLAYSURF.

 6. pygame.display.set_caption('Hello World!')

Line 6 sets the caption text that will appear at the top of the window by calling the

pygame.display.set_caption() function. The string value 'Hello World!' is

passed in this function call to make that text appear as the caption:

Game Loops and Game States

 7. while True: # main game loop

 8. for event in pygame.event.get():

Line 7 is a while loop that has a condition of simply the value True. This means that it never

exits due to its condition evaluating to False. The only way the program execution will ever

exit the loop is if a break statement is executed (which moves execution to the first line after the

loop) or sys.exit() (which terminates the program). If a loop like this was inside a function,

a return statement will also move execution out of the loop (as well as the function too).

The games in this book all have these while True loops in them along with a comment calling

it the ―main game loop‖. A game loop (also called a main loop) is a loop where the code does

three things:

1. Handles events.

2. Updates the game state.

3. Draws the game state to the screen.

The game state is simply a way of referring to a set of values for all the variables in a game

program. In many games, the game state includes the values in the variables that tracks the

player’s health and position, the health and position of any enemies, which marks have been

made on a board, the score, or whose turn it is. Whenever something happens like the player

Chapter 2 – Pygame Basics 11

taking damage (which lowers their health value), or an enemy moves somewhere, or something

happens in the game world we say that the game state has changed.

If you’ve ever played a game that let you saved, the ―save state‖ is the game state at the point that

you’ve saved it. In most games, pausing the game will prevent the game state from changing.

Since the game state is usually updated in response to events (such as mouse clicks or keyboard

presses) or the passage of time, the game loop is constantly checking and re-checking many times

a second for any new events that have happened. Inside the main loop is code that looks at which

events have been created (with Pygame, this is done by calling the pygame.event.get()

function). The main loop also has code that updates the game state based on which events have

been created. This is usually called event handling.

pygame.event.Event Objects
Any time the user does one of several actions (they are listed later in this chapter) such as

pressing a keyboard key or moving the mouse on the program’s window, a

pygame.event.Event object is created by the Pygame library to record this ―event‖. (This is

a type of object called Event that exists in the event module, which itself is in the pygame

module.) We can find out which events have happened by calling the pygame.event.get()

function, which returns a list of pygame.event.Event objects (which we will just call Event

objects for short).

The list of Event objects will be for each event that has happened since the last time the

pygame.event.get() function was called. (Or, if pygame.event.get() has never been

called, the events that have happened since the start of the program.)

12 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 7. while True: # main game loop

 8. for event in pygame.event.get():

Line 8 is a for loop that will iterate over the list of Event objects that was returned by

pygame.event.get(). On each iteration through the for loop, a variable named event

will be assigned the value of the next event object in this list. The list of Event objects returned

from pygame.event.get() will be in the order that the events happened. If the user clicked

the mouse and then pressed a keyboard key, the Event object for the mouse click would be the

first item in the list and the Event object for the keyboard press would be second. If no events

have happened, then pygame.event.get() will return a blank list.

The QUIT Event and pygame.quit() Function

 9. if event.type == QUIT:

10. pygame.quit()

11. sys.exit()

Event objects have a member variable (also called attributes or properties) named type

which tells us what kind of event the object represents. Pygame has a constant variable for each

of possible types in the pygame.locals modules. Line 9 checks if the Event object’s type is

equal to the constant QUIT. Remember that since we used the from pygame.locals

import * form of the import statement, we only have to type QUIT instead of

pygame.locals.QUIT.

If the Event object is a quit event, then the pygame.quit() and sys.exit() functions are

called. The pygame.quit() function is sort of the opposite of the pygame.init()

function: it runs code that deactivates the Pygame library. Your programs should always call

pygame.quit() before they call sys.exit() to terminate the program. Normally it doesn’t

really matter since Python closes it when the program exits anyway. But there is a bug in IDLE

that causes IDLE to hang if a Pygame program terminates before pygame.quit() is called.

Since we have no if statements that run code for other types of Event object, there is no event-

handling code for when the user clicks the mouse, presses keyboard keys, or causes any other

type of Event objects to be created. The user can do things to create these Event objects but it

doesn’t change anything in the program because the program does not have any event-handling

code for these types of Event objects. After the for loop on line 8 is done handling all the Event

objects that have been returned by pygame.event.get(), the program execution continues

to line 12.

12. pygame.display.update()

Chapter 2 – Pygame Basics 13

Line 12 calls the pygame.display.update() function, which draws the Surface object

returned by pygame.display.set_mode() to the screen (remember we stored this object

in the DISPLAYSURF variable). Since the Surface object hasn’t changed (for example, by some

of the drawing functions that are explained later in this chapter), the same black image is redrawn

to the screen each time pygame.display.update() is called.

That is the entire program. After line 12 is done, the infinite while loop starts again from the

beginning. This program does nothing besides make a black window appear on the screen,

constantly check for a QUIT event, and then redraws the unchanged black window to the screen

over and over again. Let’s learn how to make interesting things appear on this window instead of

just blackness by learning about pixels, Surface objects, Color objects, Rect objects, and the

Pygame drawing functions.

Pixel Coordinates
The window that the ―Hello World‖ program creates is just composed of little square dots on your

screen called pixels. Each pixel starts off as black but can be set to a different color. Imagine that

instead of a Surface object that is 400 pixels wide and 300 pixels tall, we just had a Surface object

that was 8 pixels by 8 pixels. If that tiny 8x8 Surface was enlarged so that each pixel looks like a

square in a grid, and we added numbers for the X and Y axis, then a good representation of it

could look something like this:

We can refer to a specific pixel by using a Cartesian Coordinate system. Each column of the X-

axis and each row of the Y-axis will have an ―address‖ that is an integer from 0 to 7 so that we

can locate any pixel by specifying the X and Y axis integers.

For example, in the above 8x8 image, we can see that the pixels at the XY coordinates (4, 0), (2,

2), (0, 5), and (5, 6) have been painted black, the pixel at (2, 4) has been painted gray, while all

the other pixels are painted white. XY coordinates are also called points. If you’ve taken a math

class and learned about Cartesian Coordinates, you might notice that the Y-axis starts at 0 at the

top and then increases going down, rather than increasing as it goes up. This is just how Cartesian

Coordinates work in Pygame (and almost every programming language).

14 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The Pygame framework often represents Cartesian Coordinates as a tuple of two integers, such as

(4, 0) or (2, 2). The first integer is the X coordinate and the second is the Y coordinate. (Cartesian

Coordinates are covered in more detail in chapter 12 of ―Invent Your Own Computer Games with

Python‖ at http://invpy.com/chap12)

A Reminder About Functions, Methods, Constructor Functions, and

Functions in Modules (and the Difference Between Them)
Functions and methods are almost the same thing. They can both be called to execute the code in

them. The difference between a function and a method is that a method will always be attached to

an object. Usually methods change something about that particular object (you can think of the

attached object as a sort of permanent argument passed to the method).

This is a function call of a function named foo():

foo()

This is a method call of a method also named foo(), which is attached to an object stored in a

variable named duckie:

duckie.foo()

A call to a function inside of a module may look like a method call. To tell the difference, you

need to look at the first name and see if it is the name of a module or the name of a variable that

contains an object. You can tell that sys.exit() is a call to function inside of a module,

because at the top of the program will be an import statement like import sys.

A constructor function is the same thing as a normal function call, except that its return value is

a new object. Just by looking at source code, a function and constructor function look the same.

Constructor functions (also called simply a ―constructor‖ or sometimes ―ctor‖ (―see-tor‖) for

short) are just a name given to functions that return a new object. But usually ctors start with a

capital letter. This is why when you write your own programs, your function names should only

begin with a lowercase letter.

For example, pygame.Rect() and pygame.Surface() are both constructor functions

inside the pygame module that return new Rect and Surface objects. (These objects are

described later.)

Here’s an example of a function call, a method call, and a call to a function inside a module:

import whammy

fizzy()

Chapter 2 – Pygame Basics 15

egg = Wombat()

egg.bluhbluh()

whammy.spam()

Even though these names are all made up, you can tell which is a function call, a method call, and

a call to a function inside a method. The name whammy refers to a module, since you can see it is

being imported on the first line. The fizzy name has nothing before it and parentheses after it,

so you know it is a function call.

Wombat() is also a function call, in this case it is a constructor function that returns an object.

(The capital letter that it starts with isn’t a guarantee that it’s a constructor function rather than a

regular function, but it is a safe bet.) The object is stored in a variable named egg. The

egg.bluhbluh() call is a method call, which you can tell because bluhbluh is attached to a

variable with an object in it.

Meanwhile, whammy.spam() is a function call, not a method call. You can tell it is not a

method because the name whammy was imported as a module earlier.

Surface Objects and The Window
Surface objects are objects that represent a rectangular 2D image. The pixels of the Surface object

can be changed by calling the Pygame drawing functions (described later in this chapter) and then

displayed on the screen. The window border, title bar, and buttons are not part of the display

Surface object.

In particular, the Surface object returned by pygame.display.set_mode() is called the

display Surface. Anything that is drawn on the display Surface object will be displayed on the

window when the pygame.display.update() function is called. It is a lot faster to draw

on a Surface object (which only exists in the computer’s memory) than it is to draw a Surface

object to the computer screen. Computer memory is much faster to change than pixels on a

monitor.

Often your program will draw several different things to a Surface object. Once you are done

drawing everything on the display Surface object for this iteration of the game loop (called a

frame, just like a still image on a paused DVD is called) on a Surface object, it can be drawn to

the screen. The computer can draw frames very quickly, and our programs will often run around

30 frames per second (that is, 30 FPS). This is called the ―frame rate‖ and is explained later in

this chapter.

Drawing on Surface objects will be covered in the ―Primitive Drawing Functions‖ and ―Drawing

Images‖ sections later this chapter.

16 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Colors
There are three primary colors of light: red, green and blue. (Red, blue, and yellow are the

primary colors for paints and pigments, but the computer monitor uses light, not paint.) By

combining different amounts of these three colors you can form any other color. In Pygame, we

represent colors with tuples of three integers. The first value in the tuple is how much red is in the

color. An integer value of 0 means there is no red in this color, and a value of 255 means there is

the maximum amount of red in the color. The second value is for green and the third value is for

blue. These tuples of three integers used to represent a color are often called RGB values.

Because you can use any combination of 0 to 255 for each of the three primary colors, this

means Pygame can draw 16,777,216 different colors (that is, 256 x 256 x 256 colors). However,

if try to use a number larger than 255 or a negative number, you will get an error that looks like

―ValueError: invalid color argument‖.

For example, we will create the tuple (0, 0, 0) and store it in a variable named BLACK. With

no amount of red, green, or blue, the resulting color is completely black. The color black is the

absence of any color. The tuple (255, 255, 255) for a maximum amount of red, green, and

blue to result in white. The color white is the full combination of red, green, and blue. The tuple

(255, 0, 0) represents the maximum amount of red but no amount of green and blue, so the

resulting color is red. Similarly, (0, 255, 0) is green and (0, 0, 255) is blue.

You can mix the amount of red, green, and blue to form other colors. Here are the RGB values for

a few common colors:

Color RGB Values

Aqua (0, 255, 255)

Black (0, 0, 0)

Blue (0, 0, 255)

Fuchsia (255, 0, 255)

Gray (128, 128, 128)

Green (0, 128, 0)

Lime (0, 255, 0)

Maroon (128, 0, 0)

Navy Blue (0, 0, 128)

Olive (128, 128, 0)

Purple (128, 0, 128)

Red (255, 0, 0)

Silver (192, 192, 192)

Teal (0, 128, 128)

White (255, 255, 255)

Yellow (255, 255, 0)

Chapter 2 – Pygame Basics 17

Transparent Colors
When you look through a glass window that has a deep red tint, all of the colors behind it have a

red shade added to them. You can mimic this effect by adding a fourth 0 to 255 integer value to

your color values.

This value is known as the alpha value. It is a measure of how opaque (that is, not transparent) a

color is. Normally when you draw a pixel onto a surface object, the new color completely

replaces whatever color was already there. But with colors that have an alpha value, you can

instead just add a colored tint to the color that is already there.

For example, this tuple of three integers is for the color green: (0, 255, 0). But if we add a

fourth integer for the alpha value, we can make this a half transparent green color: (0, 255,

0, 128). An alpha value of 255 is completely opaque (that is, not transparency at all). The

colors (0, 255, 0) and (0, 255, 0, 255) look exactly the same. An alpha value of 0

means the color is completely transparent. If you draw any color that has an alpha value of 0 to a

surface object, it will have no effect, because this color is completely transparent and invisible.

In order to draw using transparent colors, you must create a Surface object with the

convert_alpha() method. For example, the following code creates a Surface object that

transparent colors can be drawn on:

anotherSurface = DISPLAYSURF.convert_alpha()

Once things have been drawn on the Surface object stored in anotherSurface, then

anotherSurface can be ―blitted‖ (that is, copied) to DISPLAYSURF so it will appear on the

screen. (See the ―Drawing Images with pygame.image.load() and blit()‖ section later

in this chapter.)

It’s important to note that you cannot use transparent colors on Surface objects not returned from

a convert_alpha() call, including the display Surface that was returned from

pygame.display.set_mode().

If we were to create a color tuple to draw the legendary Invisible Pink Unicorn, we would use

(255, 192, 192, 0), which ends up looking completely invisible just like any other color

that has a 0 for its alpha value. It is, after all, invisible.

18 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

(Above is a screenshot of a drawing of the Invisible Pink Unicorn.)

pygame.Color Objects
You need to know how to represent a color because Pygame’s drawing functions need a way to

know what color you want to draw with. A tuple of three or four integers is one way. Another

way is as a pygame.Color object. You can create Color objects by calling the

pygame.Color() constructor function and passing either three or four integers. You can store

this Color object in variables just like you can store tuples in variables. Try typing the following

into the interactive shell:

>>> import pygame

>>> pygame.Color(255, 0, 0)

(255, 0, 0, 255)

>>> myColor = pygame.Color(255, 0, 0, 128)

>>> myColor == (255, 0, 0, 128)

True

>>>

Any drawing function in Pygame (which we will learn about in a bit) that has a parameter for

color can have either the tuple form or Color object form of a color passed for it. Even though

they are different data types, a Color object is equal to a tuple of four integers if they both

represent the same color (just like how 42 == 42.0 will evaluate to True).

Now that you know how to represent colors (as a pygame.Color object or a tuple of three or

four integers for red, green, blue, and optionally alpha) and coordinates (as a tuple of two integers

for X and Y), let’s learn about pygame.Rect objects so we can start using Pygame’s drawing

functions.

Rect Objects
Pygame has two ways to represent rectangular areas (just like there are two ways to represent

colors). The first is a tuple of four integers:

1. The X coordinate of the top left corner.

Chapter 2 – Pygame Basics 19

2. The Y coordinate of the top left corner.

3. The width (in pixels) of the rectangle.

4. Then height (in pixels) of the rectangle.

The second way is as a pygame.Rect object, which we will call Rect objects for short. For

example, the code below creates a Rect object with a top left corner at (10, 20) that is 200 pixels

wide and 300 pixels tall:

>>> import pygame

>>> spamRect = pygame.Rect(10, 20, 200, 300)

>>> spamRect == (10, 20, 200, 300)

True

The handy thing about this is that the Rect object automatically calculates the coordinates for

other features of the rectangle. For example, if you need to know the X coordinate of the right

edge of the pygame.Rect object we stored in the spamRect variable, you can just access the

Rect object’s right attribute:

>>> spamRect.right

210

The Pygame code for the Rect object automatically calculated that if the left edge is at the X

coordinate 10 and the rectangle is 200 pixels wide, then the right edge must be at the X

coordinate 210. If you reassign the right attribute, all the other attributes are automatically

recalculated:

>>> spam.right = 350

>>> spam.left

150

Here’s a list of all the attributes that pygame.Rect objects provide (in our example, the

variable where the Rect object is stored in a variable named myRect):

20 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Attribute Name Description

myRect.left The int value of the X-coordinate of the left side of the rectangle.

myRect.right The int value of the X-coordinate of the right side of the rectangle.

myRect.top The int value of the Y-coordinate of the top side of the rectangle.

myRect.bottom The int value of the Y-coordinate of the bottom side.

myRect.centerx The int value of the X-coordinate of the center of the rectangle.

myRect.centery The int value of the Y-coordinate of the center of the rectangle.

myRect.width The int value of the width of the rectangle.

myRect.height The int value of the height of the rectangle.

myRect.size A tuple of two ints: (width, height)

myRect.topleft A tuple of two ints: (left, top)

myRect.topright A tuple of two ints: (right, top)

myRect.bottomleft A tuple of two ints: (left, bottom)

myRect.bottomright A tuple of two ints: (right, bottom)

myRect.midleft A tuple of two ints: (left, centery)

myRect.midright A tuple of two ints: (right, centery)

myRect.midtop A tuple of two ints: (centerx, top)

myRect.midbottom A tuple of two ints: (centerx, bottom)

Primitive Drawing Functions
Pygame provides several different functions for drawing different shapes onto a surface object.

These shapes such as rectangles, circles, ellipses, lines, or individual pixels are often called

drawing primitives. Open IDLE’s file editor and type in the following program, and save it as

drawing.py.

 1. import pygame, sys

 2. from pygame.locals import *

Chapter 2 – Pygame Basics 21

 3.

 4. pygame.init()

 5.

 6. # set up the window

 7. DISPLAYSURF = pygame.display.set_mode((500, 400), 0, 32)

 8. pygame.display.set_caption('Drawing')

 9.

10. # set up the colors

11. BLACK = (0, 0, 0)

12. WHITE = (255, 255, 255)

13. RED = (255, 0, 0)

14. GREEN = (0, 255, 0)

15. BLUE = (0, 0, 255)

16.

17. # draw on the surface object

18. DISPLAYSURF.fill(WHITE)

19. pygame.draw.polygon(DISPLAYSURF, GREEN, ((146, 0), (291, 106), (236, 277),

(56, 277), (0, 106)))

20. pygame.draw.line(DISPLAYSURF, BLUE, (60, 60), (120, 60), 4)

21. pygame.draw.line(DISPLAYSURF, BLUE, (120, 60), (60, 120))

22. pygame.draw.line(DISPLAYSURF, BLUE, (60, 120), (120, 120), 4)

23. pygame.draw.circle(DISPLAYSURF, BLUE, (300, 50), 20, 0)

24. pygame.draw.ellipse(DISPLAYSURF, RED, (300, 250, 40, 80), 1)

25. pygame.draw.rect(DISPLAYSURF, RED, (200, 150, 100, 50))

26.

27. pixObj = pygame.PixelArray(DISPLAYSURF)

28. pixObj[480][380] = BLACK

29. pixObj[482][382] = BLACK

30. pixObj[484][384] = BLACK

31. pixObj[486][386] = BLACK

32. pixObj[488][388] = BLACK

33. del pixObj

34.

35. # run the game loop

36. while True:

37. for event in pygame.event.get():

38. if event.type == QUIT:

39. pygame.quit()

40. sys.exit()

41. pygame.display.update()

When this program is run, the following window is displayed until the user closes the window:

22 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Notice how we make constant variables for each of the colors. Doing this makes our code more

readable, because seeing GREEN in the source code is much easier to understand as representing

the color green than (0, 255, 0) is.

The drawing functions are named after the shapes they draw. The parameters you pass these

functions tell them which Surface object to draw on, where to draw the shape (and what size), in

what color, and how wide to make the lines. You can see how these functions are called in the

drawing.py program, but here is a short description of each function:

 fill(color) – The fill() method is not a function but a method of pygame.Surface

objects. It will completely fill in the entire Surface object with whatever color value you pass

as for the color parameter.

 pygame.draw.polygon(surface, color, pointlist, width) – A polygon is shape made up of

only flat sides. The surface and color parameters tell the function on what surface to

draw the polygon, and what color to make it.

The pointlist parameter is a tuple or list of points (that is, tuple or list of two-integer

tuples for XY coordinates). The polygon is drawn by drawing lines between each point and

the point that comes after it in the tuple. Then a line is drawn from the last point to the first

point. You can also pass a list of points instead of a tuple of points.

The width parameter is optional. If you leave it out, the polygon that is drawn will be filled

in, just like our green polygon on the screen is filled in with color. If you do pass an integer

value for the width parameter, only the outline of the polygon will be drawn. The integer

represents how many pixels width the polygon’s outline will be. Passing 1 for the width

parameter will make a skinny polygon, while passing 4 or 10 or 20 will make thicker

polygons. If you pass the integer 0 for the width parameter, the polygon will be filled in

(just like if you left the width parameter out entirely).

All of the pygame.draw drawing functions have optional width parameters at the end,

and they work the same way as pygame.draw.polygon()’s width parameter.

Probably a better name for the width parameter would have been thickness, since that

parameter controls how thick the lines you draw are.

Chapter 2 – Pygame Basics 23

 pygame.draw.line(surface, color, start_point, end_point, width) – This function draws a

line between the start_point and end_point parameters.

 pygame.draw.lines(surface, color, closed, pointlist, width) – This function draws a series

of lines from one point to the next, much like pygame.draw.polygon(). The only

difference is that if you pass False for the closed parameter, there will not be a line from

the last point in the pointlist parameter to the first point. If you pass True, then it will

draw a line from the last point to the first.

 pygame.draw.circle(surface, color, center_point, radius, width) – This function draws a

circle. The center of the circle is at the center_point parameter. The integer passed for

the radius parameter sets the size of the circle.

The radius of a circle is the distance from the center to the edge. (The radius of a circle is

always half of the diameter.) Passing 20 for the radius parameter will draw a circle that

has a radius of 20 pixels.

 pygame.draw.ellipse(surface, color, bounding_rectangle, width) – This function draws an

ellipse (which is like a squashed or stretched circle). This function has all the usual

parameters, but in order to tell the function how large and where to draw the ellipse, you must

specify the bounding rectangle of the ellipse. A bounding rectangle is the smallest rectangle

that can be drawn around a shape. Here’s an example of an ellipse and its bounding rectangle:

The bounding_rectangle parameter can be a pygame.Rect object or a tuple of four

integers. Note that you do not specify the center point for the ellipse like you do for the

pygame.draw.circle() function.

 pygame.draw.rect(surface, color, rectangle_tuple, width) – This function draws a

rectangle. The rectangle_tuple is either a tuple of four integers (for the XY coordinates

of the top left corner, and the width and height) or a pygame.Rect object can be passed

instead. If the rectangle_tuple has the same size for the width and height, a square will

be drawn.

pygame.PixelArray Objects
Unfortunately, there isn’t a single function you can call that will set a single pixel to a color

(unless you call pygame.draw.line() with the same start and end point). The Pygame

framework needs to run some code behind the scenes before and after drawing to a Surface

object. If it had to do this for every single pixel you wanted to set, your program would run much

slower. (By my quick testing, drawing pixels this way is two or three times slower.)

Instead, you should create a pygame.PixelArray object (we’ll call them PixelArray objects

for short) of a Surface object and then set individual pixels. Creating a PixelArray object of a

Surface object will ―lock‖ the Surface object. While a Surface object is locked, the drawing

24 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

functions can still be called on it, but it cannot have images like PNG or JPG images drawn on it

with the blit() method. (The blit() method is explained later in this chapter.)

If you want to see if a Surface object is locked, the get_locked() Surface method will return

True if it is locked and False if it is not.

The PixelArray object that is returned from pygame.PixelArray() can have individual

pixels set by accessing them with two indexes. For example, line 28’s pixObj[480][380] =

BLACK will set the pixel at X coordinate 480 and Y coordinate 380 to be black (remember that

the BLACK variable stores the color tuple (0, 0, 0)).

To tell Pygame that you are finished drawing individual pixels, delete the PixelArray object with

a del statement. This is what line 33 does. Deleting the PixelArray object will ―unlock‖ the

Surface object so that you can once again draw images on it. If you forget to delete the

PixelArray object, the next time you try to blit (that is, draw) an image to the Surface the program

will raise an error that says, ―pygame.error: Surfaces must not be locked

during blit‖.

The pygame.display.update() Function
After you are done calling the drawing functions to make the display Surface object look the way

you want, you must call pygame.display.update() to make the display Surface actually

appear on the user’s monitor.

The one thing that you must remember is that pygame.display.update() will only make

the display Surface (that is, the Surface object that was returned from the call to

pygame.display.set_mode()) appear on the screen. If you want the images on other

Surface objects to appear on the screen, you must ―blit‖ them (that is, copy them) to the display

Surface object with the blit() method (which is explained next in the ―Drawing Images‖

section).

Animation
Now that we know how to get the Pygame framework to draw to the screen, let’s learn how to

make animated pictures. A game with only still, unmoving images would be fairly dull. (Sales of

my game ―Look At This Rock‖ have been disappointing.) Animated images are the result of

drawing an image on the screen, then a split second later drawing a slightly different image on the

screen. Imagine the program’s window was 6 pixels wide and 1 pixel tall, with all the pixels

white except for a black pixel at 4, 0. It would look like this:

Chapter 2 – Pygame Basics 25

If you changed the window so that 3, 0 was black and 4,0 was white, it would look like this:

To the user, it looks like the black pixel has ―moved‖ over to the left. If you redrew the window

to have the black pixel at 2, 0, it would continue to look like the black pixel is moving left:

It may look like the black pixel is moving, but this is just an illusion. To the computer, it is just

showing three different images that each just happen to have one black pixel. Consider if the

three following images were rapidly shown on the screen:

To the user, it would look like the cat is moving towards the squirrel. But to the computer, they’re

just a bunch of pixels. The trick to making believable looking animation is to have your program

draw a picture to the window, wait a fraction of a second, and then draw a slightly different

picture.

Here is an example program demonstrating a simple animation. Type this code into IDLE’s file

editor and save it as catanimation.py. It will also require the image file cat.png to be in the same

folder as the catanimation.py file. You can download this image from http://invpy.com/cat.png.

This code is available at http://invpy.com/catanimation.py.

26 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 1. import pygame, sys

 2. from pygame.locals import *

 3.

 4. pygame.init()

 5.

 6. FPS = 30 # frames per second setting

 7. fpsClock = pygame.time.Clock()

 8.

 9. # set up the window

10. DISPLAYSURF = pygame.display.set_mode((400, 300), 0, 32)

11. pygame.display.set_caption('Animation')

12.

13. WHITE = (255, 255, 255)

14. catImg = pygame.image.load('cat.png')

15. catx = 10

16. caty = 10

17. direction = 'right'

18.

19. while True: # the main game loop

20. DISPLAYSURF.fill(WHITE)

21.

22. if direction == 'right':

23. catx += 5

24. if catx == 280:

25. direction = 'down'

26. elif direction == 'down':

27. caty += 5

28. if caty == 220:

29. direction = 'left'

30. elif direction == 'left':

31. catx -= 5

32. if catx == 10:

33. direction = 'up'

34. elif direction == 'up':

35. caty -= 5

36. if caty == 10:

37. direction = 'right'

38.

39. DISPLAYSURF.blit(catImg, (catx, caty))

40.

41. for event in pygame.event.get():

42. if event.type == QUIT:

43. pygame.quit()

44. sys.exit()

45.

46. pygame.display.update()

Chapter 2 – Pygame Basics 27

47. fpsClock.tick(FPS)

Look at that animated cat go! This program will be much more of a commercial success than my

game, ―Look At This Rock 2: A Different Rock‖.

Frames Per Second and pygame.time.Clock Objects
The frame rate or refresh rate is the number of pictures that the program draws per second, and

is measured in FPS or frames per second. (On computer monitors, the common name for FPS is

hertz. Many monitors have a frame rate of 60 hertz, or 60 frames per second.) A low frame rate in

video games can make the game look choppy or jumpy. If the program has too much code to run

to draw to the screen frequently enough, then the FPS goes down. But the games in this book are

simple enough that this won’t be issue even on old computers.

A pygame.time.Clock object can help us make sure our program runs at a certain maximum

FPS. This Clock object will ensure that our game programs don’t run too fast by putting in

small pauses on each iteration of the game loop. If we didn’t have these pauses, our game

program would run as fast as the computer could run it. This is often too fast for the player, and

as computers get faster they would run the game faster too. A call to the tick() method of a

Clock object in the game loop can make sure the game runs at the same speed no matter how

fast of a computer it runs on. The Clock object is created on line 7 of the catanimation.py

program.

7. fpsClock = pygame.time.Clock()

The Clock object’s tick() method should be called at the very end of the game loop, after the

call to pygame.display.update(). The length of the pause is calculated based on how

long it has been since the previous call to tick(), which would have taken place at the end of

the previous iteration of the game loop. (The first time the tick() method is called, it doesn’t

pause at all.) In the animation program, is it run on line 47 as the last instruction in the game loop.

All you need to know is that you should call the tick() method once per iteration through the

game loop at the end of the loop. Usually this is right after the call to

pygame.display.update().

47. fpsClock.tick(FPS)

Try modifying the FPS constant variable to run the same program at different frame rates. Setting

it to a lower value would make the program run slower. Setting it to a higher value would make

the program run faster.

28 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Drawing Images with pygame.image.load() and blit()
The drawing functions are fine if you want to draw simple shapes on the screen, but many games

have images (also called sprites). Pygame is able to load images onto Surface objects from PNG,

JPG, GIF, and BMP image files. The differences between these image file formats is described at

http://invpy.com/formats.

The image of the cat was stored in a file named cat.png. To load this file’s image, the string

'cat.png' is passed to the pygame.image.load() function. The

pygame.image.load() function call will return a Surface object that has the image drawn

on it. This Surface object will be a separate Surface object from the display Surface object, so we

must blit (that is, copy) the image’s Surface object to the display Surface object. Blitting is

drawing the contents of one Surface onto another. It is done with the blit() Surface object

method.

If you get an error message like ―pygame.error: Couldn't open cat.png‖ when

calling pygame.image.load(), then make sure the cat.png file is in the same folder as the

catanimation.py file before you run the program.

39. DISPLAYSURF.blit(catImg, (catx, caty))

Line 39 of the animation program uses the blit() method to copy catImg to DISPLAYSURF.

There are two parameters for blit(). The first is the source Surface object, which is what will

be copied onto the DISPLAYSURF Surface object. The second parameter is a two-integer tuple

for the X and Y values of the topleft corner where the image should be blitted to.

If catx and caty were set to 100 and 200 and the width of catImg was 125 and the height

was 79, this blit() call would copy this image onto DISPLAYSURF so that the top left corner

of the catImg was at the XY coordinate (100, 200) and the bottom right corner’s XY coordinate

was at (225, 279).

Note that you cannot blit to a Surface that is currently ―locked‖ (such as when a PixelArray object

has been made from it and not yet been deleted.)

The rest of the game loop is just changing the catx, caty, and direction variables so that

the cat moves around the window. There is also a call to pygame.event.get() to handle the

QUIT event.

Fonts
If you want to draw text to the screen, you could write several calls to pygame.draw.line()

to draw out the lines of each letter. This would be a headache to type out all those

Chapter 2 – Pygame Basics 29

pygame.draw.line() calls and figure out all the XY coordinates, and probably wouldn’t

look very good.

The above message would take forty one calls to the pygame.draw.line() function to

make. Instead, Pygame provides some much simpler functions for fonts and creating text. Here is

a small Hello World program using Pygame’s font functions. Type it into IDLE’s file editor and

save it as fonttext.py:

 1. import pygame, sys

 2. from pygame.locals import *

 3.

 4. pygame.init()

 5. DISPLAYSURF = pygame.display.set_mode((400, 300))

 6. pygame.display.set_caption('Hello World!')

 7.

 8. WHITE = (255, 255, 255)

 9. GREEN = (0, 255, 0)

10. BLUE = (0, 0, 128)

11.

12. fontObj = pygame.font.Font('freesansbold.ttf', 32)

13. textSurfaceObj = fontObj.render('Hello world!', True, GREEN, BLUE)

14. textRectObj = textSurfaceObj.get_rect()

15. textRectObj.center = (200, 150)

16.

17. while True: # main game loop

18. DISPLAYSURF.fill(WHITE)

19. DISPLAYSURF.blit(textSurfaceObj, textRectObj)

20. for event in pygame.event.get():

21. if event.type == QUIT:

22. pygame.quit()

23. sys.exit()

24. pygame.display.update()

There are six steps to making text appear on the screen:

1. Create a pygame.font.Font object. (Like on line 12)

2. Create a Surface object with the text drawn on it by calling the Font object’s render()

method. (Line 13)

3. Create a Rect object from the Surface object by calling the Surface object’s

get_rect() method. (Line 14) This Rect object will have the width and height

correctly set for the text that was rendered, but the top and left attributes will be 0.

30 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

4. Set the position of the Rect object by changing one of its attributes. On line 15, we set the

center of the Rect object to be at 200, 150.

5. Blit the Surface object with the text onto the Surface object returned by

pygame.display.set_mode(). (Line 19)

6. Call pygame.display.update() to make the display Surface appear on the screen.

(Line 24)

The parameters to the pygame.font.Font() constructor function is a string of the font file to

use, and an integer of the size of the font (in points, like how word processors measure font size).

On line 12, we pass 'freesansbold.ttf' (this is a font that comes with Pygame) and the

integer 32 (for a 32-point sized font).

See http://invpy.com/usingotherfonts for more info on using other fonts.

The parameters to the render() method call are a string of the text to render, a Boolean value

to specify if we want anti-aliasing (explained later in this chapter), the color of the text, and the

color of the background. If you want a transparent background, then simply leave off the

background color parameter in the method call.

Anti-Aliasing
Anti-aliasing is a graphics technique for making text and shapes look less blocky by adding a

little bit of blur to their edges. It takes a little more computation time to draw with anti-aliasing,

so although the graphics may look better, your program may run slower (but only just a little).

If you zoom in on an aliased line and an anti-aliased line, they look like this:

To make Pygame’s text use anti-aliasing, just pass True for the second parameter of the

render() method. The pygame.draw.aaline() and pygame.draw.aalines()

functions have the same parameters as pygame.draw.line() and

Chapter 2 – Pygame Basics 31

pygame.draw.lines(), except they will draw anti-aliased (smooth) lines instead of aliased

(blocky) lines.

Playing Sounds
Playing sounds that are stored in sound files is even simpler than displaying images from image

files. First, you must create a pygame.mixer.Sound object (which we will call Sound objects

for short) by calling the pygame.mixer.Sound() constructor function. It takes one string

parameter, which is the filename of the sound file. Pygame can load WAV, MP3, or OGG files.

The difference between these audio file formats is explained at http://invpy.com/formats.

To play this sound, call the Sound object’s play() method. If you want to immediately stop the

Sound object from playing call the stop() method. The stop() method has no arguments.

Here is some sample code:

soundObj = pygame.mixer.Sound('beeps.wav')

soundObj.play()

import time

time.sleep(1) # wait and let the sound play for 1 second

soundObj.stop()

You can download the beeps.wav file from http://invpy.com/beeps.wav.

The program execution continues immediately after play() is called; it does not wait for the

sound to finish playing before moving on to the next line of code.

The Sound objects are good for sound effects to play when the player takes damage, slashes a

sword, or collects a coin. But your games might also be better if they had background music

playing regardless of what was going on in the game. Pygame can only load one music file to

play in the background at a time. To load a background music file, call the

pygame.mixer.music.load() function and pass it a string argument of the sound file to

load. This file can be WAV, MP3, or MIDI format.

To begin playing the loaded sound file as the background music, call the

pygame.mixer.music.play(-1, 0.0) function. The -1 argument makes the

background music forever loop when it reaches the end of the sound file. If you set it to an integer

0 or larger, then the music will only loop that number of times instead of looping forever. The

0.0 means to start playing the sound file from the beginning. If you pass a larger integer or float,

the music will begin playing that many seconds into the sound file. For example, if you pass

13.5 for the second parameter, the sound file with begin playing at the point 13.5 seconds in

from the beginning.

32 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

To stop playing the background music immediately, call the pygame.mixer.music.stop()

function. This function has no arguments.

Here is some example code of the sound methods and functions:

Loading and playing a sound effect:

soundObj = pygame.mixer.Sound('beepingsound.wav')

soundObj.play()

Loading and playing background music:

pygame.mixer.music.load(backgroundmusic.mp3')

pygame.mixer.music.play(-1, 0.0)

...some more of your code goes here...

pygame.mixer.music.stop()

Summary
This covers the basics of making graphical games with the Pygame framework. Of course, just

reading about these functions probably isn’t enough to help you learn how to make games using

these functions. The rest of the chapters in this book each focus on the source code for a small,

complete game. This will give you an idea of what complete game programs ―look like‖, so you

can then get some ideas for how to code your own game programs.

Unlike the ―Invent Your Own Computer Games with Python‖ book, this book assumes that you

know the basics of Python programming. If you have trouble remembering how variables,

functions, loops, if-else statements, and conditions work, you can probably figure it out just

by seeing what’s in the code and how the program behaves. But if you are still stuck, you can

read the ―Invent with Python‖ book (it’s for people who are completely new to programming) for

free online at http://inventwithpython.com.

Chapter 3 – Memory Puzzle 33

CHAPTER 3 – MEMORY

PUZZLE

How to Play Memory Puzzle
In the Memory Puzzle game, several icons are covered up by white boxes. There are two of each

icon. The player can click on two boxes to see what icon is behind them. If the icons match, then

those boxes remain uncovered. The player wins when all the boxes on the board are uncovered.

To give the player a hint, the boxes are quickly uncovered once at the beginning of the game.

Nested for Loops
One concept that you will see in Memory Puzzle (and most of the games in this book) is the use

of a for loop inside of another for loop. These are called nested for loops. Nested for loops

are handy for going through every possible combination of two lists. Type the following into the

interactive shell:

>>> for x in [0, 1, 2, 3, 4]:

... for y in ['a', 'b', 'c']:

... print(x, y)

...

0 a

0 b

0 c

1 a

1 b

1 c

2 a

34 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

2 b

2 c

3 a

3 b

3 c

4 a

4 b

4 c

>>>

There are several times in the Memory Puzzle code that we need to iterate through every possible

X and Y coordinate on the board. We’ll use nested for loops to make sure that we get every

combination. Note that the inner for loop (the for loop inside the other for loop) will go

through all of its iterations before going to the next iteration of the outer for loop. If we reverse

the order of the for loops, the same values will be printed but they will be printed in a different

order. Type the following code into the interactive shell, and compare the order it prints values to

the order in the previous nested for loop example:

>>> for y in ['a', 'b', 'c']:

... for x in [0, 1, 2, 3, 4]:

... print(x, y)

...

0 a

1 a

2 a

3 a

4 a

0 b

1 b

2 b

3 b

4 b

0 c

1 c

2 c

3 c

4 c

>>>

Source Code of Memory Puzzle
This source code can be downloaded from http://invpy.com/memorypuzzle.py.

Go ahead and first type in the entire program into IDLE’s file editor, save it as memorypuzzle.py,

and run it. If you get any error messages, look at the line number that is mentioned in the error

Chapter 3 – Memory Puzzle 35

message and check your code for any typos. You can also copy and paste your code into the web

form at http://invpy.com/diff/memorypuzzle to see if the differences between your code and the

code in the book.

You’ll probably pick up a few ideas about how the program works just by typing it in once. And

when you’re done typing it in, you can then play the game for yourself.

 1. # Memory Puzzle

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Released under a "Simplified BSD" license

 5.

 6. import random, pygame, sys

 7. from pygame.locals import *

 8.

 9. FPS = 30 # frames per second, the general speed of the program

 10. WINDOWWIDTH = 640 # size of window's width in pixels

 11. WINDOWHEIGHT = 480 # size of windows' height in pixels

 12. REVEALSPEED = 8 # speed boxes' sliding reveals and covers

 13. BOXSIZE = 40 # size of box height & width in pixels

 14. GAPSIZE = 10 # size of gap between boxes in pixels

 15. BOARDWIDTH = 10 # number of columns of icons

 16. BOARDHEIGHT = 7 # number of rows of icons

 17. assert (BOARDWIDTH * BOARDHEIGHT) % 2 == 0, 'Board needs to have an even

number of boxes for pairs of matches.'

 18. XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * (BOXSIZE + GAPSIZE))) / 2)

 19. YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * (BOXSIZE + GAPSIZE))) / 2)

 20.

 21. # R G B

 22. GRAY = (100, 100, 100)

 23. NAVYBLUE = (60, 60, 100)

 24. WHITE = (255, 255, 255)

 25. RED = (255, 0, 0)

 26. GREEN = (0, 255, 0)

 27. BLUE = (0, 0, 255)

 28. YELLOW = (255, 255, 0)

 29. ORANGE = (255, 128, 0)

 30. PURPLE = (255, 0, 255)

 31. CYAN = (0, 255, 255)

 32.

 33. BGCOLOR = NAVYBLUE

 34. LIGHTBGCOLOR = GRAY

 35. BOXCOLOR = WHITE

 36. HIGHLIGHTCOLOR = BLUE

 37.

 38. DONUT = 'donut'

36 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 39. SQUARE = 'square'

 40. DIAMOND = 'diamond'

 41. LINES = 'lines'

 42. OVAL = 'oval'

 43.

 44. ALLCOLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE, CYAN)

 45. ALLSHAPES = (DONUT, SQUARE, DIAMOND, LINES, OVAL)

 46. assert len(ALLCOLORS) * len(ALLSHAPES) * 2 >= BOARDWIDTH * BOARDHEIGHT,

"Board is too big for the number of shapes/colors defined."

 47.

 48. def main():

 49. global FPSCLOCK, DISPLAYSURF

 50. pygame.init()

 51. FPSCLOCK = pygame.time.Clock()

 52. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 53.

 54. mousex = 0 # used to store x coordinate of mouse event

 55. mousey = 0 # used to store y coordinate of mouse event

 56. pygame.display.set_caption('Memory Game')

 57.

 58. mainBoard = getRandomizedBoard()

 59. revealedBoxes = generateRevealedBoxesData(False)

 60.

 61. firstSelection = None # stores the (x, y) of the first box clicked.

 62.

 63. DISPLAYSURF.fill(BGCOLOR)

 64. startGameAnimation(mainBoard)

 65.

 66. while True: # main game loop

 67. mouseClicked = False

 68.

 69. DISPLAYSURF.fill(BGCOLOR) # drawing the window

 70. drawBoard(mainBoard, revealedBoxes)

 71.

 72. for event in pygame.event.get(): # event handling loop

 73. if event.type == QUIT or (event.type == KEYUP and event.key ==

K_ESCAPE):

 74. pygame.quit()

 75. sys.exit()

 76. elif event.type == MOUSEMOTION:

 77. mousex, mousey = event.pos

 78. elif event.type == MOUSEBUTTONUP:

 79. mousex, mousey = event.pos

 80. mouseClicked = True

 81.

 82. boxx, boxy = getBoxAtPixel(mousex, mousey)

Chapter 3 – Memory Puzzle 37

 83. if boxx != None and boxy != None:

 84. # The mouse is currently over a box.

 85. if not revealedBoxes[boxx][boxy]:

 86. drawHighlightBox(boxx, boxy)

 87. if not revealedBoxes[boxx][boxy] and mouseClicked:

 88. revealBoxesAnimation(mainBoard, [(boxx, boxy)])

 89. revealedBoxes[boxx][boxy] = True # set the box as

"revealed"

 90. if firstSelection == None: # the current box was the first

box clicked

 91. firstSelection = (boxx, boxy)

 92. else: # the current box was the second box clicked

 93. # Check if there is a match between the two icons.

 94. icon1shape, icon1color = getShapeAndColor(mainBoard,

firstSelection[0], firstSelection[1])

 95. icon2shape, icon2color = getShapeAndColor(mainBoard,

boxx, boxy)

 96.

 97. if icon1shape != icon2shape or icon1color !=

icon2color:

 98. # Icons don't match. Re-cover up both selections.

 99. pygame.time.wait(1000) # 1000 milliseconds = 1 sec

100. coverBoxesAnimation(mainBoard,

[(firstSelection[0], firstSelection[1]), (boxx, boxy)])

101. revealedBoxes[firstSelection[0]][firstSelection

[1]] = False

102. revealedBoxes[boxx][boxy] = False

103. elif hasWon(revealedBoxes): # check if all pairs found

104. gameWonAnimation(mainBoard)

105. pygame.time.wait(2000)

106.

107. # Reset the board

108. mainBoard = getRandomizedBoard()

109. revealedBoxes = generateRevealedBoxesData(False)

110.

111. # Show the fully unrevealed board for a second.

112. drawBoard(mainBoard, revealedBoxes)

113. pygame.display.update()

114. pygame.time.wait(1000)

115.

116. # Replay the start game animation.

117. startGameAnimation(mainBoard)

118. firstSelection = None # reset firstSelection variable

119.

120. # Redraw the screen and wait a clock tick.

121. pygame.display.update()

38 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

122. FPSCLOCK.tick(FPS)

123.

124.

125. def generateRevealedBoxesData(val):

126. revealedBoxes = []

127. for i in range(BOARDWIDTH):

128. revealedBoxes.append([val] * BOARDHEIGHT)

129. return revealedBoxes

130.

131.

132. def getRandomizedBoard():

133. # Get a list of every possible shape in every possible color.

134. icons = []

135. for color in ALLCOLORS:

136. for shape in ALLSHAPES:

137. icons.append((shape, color))

138.

139. random.shuffle(icons) # randomize the order of the icons list

140. numIconsUsed = int(BOARDWIDTH * BOARDHEIGHT / 2) # calculate how many

icons are needed

141. icons = icons[:numIconsUsed] * 2 # make two of each

142. random.shuffle(icons)

143.

144. # Create the board data structure, with randomly placed icons.

145. board = []

146. for x in range(BOARDWIDTH):

147. column = []

148. for y in range(BOARDHEIGHT):

149. column.append(icons[0])

150. del icons[0] # remove the icons as we assign them

151. board.append(column)

152. return board

153.

154.

155. def splitIntoGroupsOf(groupSize, theList):

156. # splits a list into a list of lists, where the inner lists have at

157. # most groupSize number of items.

158. result = []

159. for i in range(0, len(theList), groupSize):

160. result.append(theList[i:i + groupSize])

161. return result

162.

163.

164. def leftTopCoordsOfBox(boxx, boxy):

165. # Convert board coordinates to pixel coordinates

166. left = boxx * (BOXSIZE + GAPSIZE) + XMARGIN

Chapter 3 – Memory Puzzle 39

167. top = boxy * (BOXSIZE + GAPSIZE) + YMARGIN

168. return (left, top)

169.

170.

171. def getBoxAtPixel(x, y):

172. for boxx in range(BOARDWIDTH):

173. for boxy in range(BOARDHEIGHT):

174. left, top = leftTopCoordsOfBox(boxx, boxy)

175. boxRect = pygame.Rect(left, top, BOXSIZE, BOXSIZE)

176. if boxRect.collidepoint(x, y):

177. return (boxx, boxy)

178. return (None, None)

179.

180.

181. def drawIcon(shape, color, boxx, boxy):

182. quarter = int(BOXSIZE * 0.25) # syntactic sugar

183. half = int(BOXSIZE * 0.5) # syntactic sugar

184.

185. left, top = leftTopCoordsOfBox(boxx, boxy) # get pixel coords from

board coords

186. # Draw the shapes

187. if shape == DONUT:

188. pygame.draw.circle(DISPLAYSURF, color, (left + half, top + half),

half - 5)

189. pygame.draw.circle(DISPLAYSURF, BGCOLOR, (left + half, top +

half), quarter - 5)

190. elif shape == SQUARE:

191. pygame.draw.rect(DISPLAYSURF, color, (left + quarter, top +

quarter, BOXSIZE - half, BOXSIZE - half))

192. elif shape == DIAMOND:

193. pygame.draw.polygon(DISPLAYSURF, color, ((left + half, top), (left

+ BOXSIZE - 1, top + half), (left + half, top + BOXSIZE - 1), (left, top +

half)))

194. elif shape == LINES:

195. for i in range(0, BOXSIZE, 4):

196. pygame.draw.line(DISPLAYSURF, color, (left, top + i), (left +

i, top))

197. pygame.draw.line(DISPLAYSURF, color, (left + i, top + BOXSIZE

- 1), (left + BOXSIZE - 1, top + i))

198. elif shape == OVAL:

199. pygame.draw.ellipse(DISPLAYSURF, color, (left, top + quarter,

BOXSIZE, half))

200.

201.

202. def getShapeAndColor(board, boxx, boxy):

203. # shape value for x, y spot is stored in board[x][y][0]

40 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

204. # color value for x, y spot is stored in board[x][y][1]

205. return board[boxx][boxy][0], board[boxx][boxy][1]

206.

207.

208. def drawBoxCovers(board, boxes, coverage):

209. # Draws boxes being covered/revealed. "boxes" is a list

210. # of two-item lists, which have the x & y spot of the box.

211. for box in boxes:

212. left, top = leftTopCoordsOfBox(box[0], box[1])

213. pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, BOXSIZE,

BOXSIZE))

214. shape, color = getShapeAndColor(board, box[0], box[1])

215. drawIcon(shape, color, box[0], box[1])

216. if coverage > 0: # only draw the cover if there is an coverage

217. pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top, coverage,

BOXSIZE))

218. pygame.display.update()

219. FPSCLOCK.tick(FPS)

220.

221.

222. def revealBoxesAnimation(board, boxesToReveal):

223. # Do the "box reveal" animation.

224. for coverage in range(BOXSIZE, (-REVEALSPEED) - 1, - REVEALSPEED):

225. drawBoxCovers(board, boxesToReveal, coverage)

226.

227.

228. def coverBoxesAnimation(board, boxesToCover):

229. # Do the "box cover" animation.

230. for coverage in range(0, BOXSIZE + REVEALSPEED, REVEALSPEED):

231. drawBoxCovers(board, boxesToCover, coverage)

232.

233.

234. def drawBoard(board, revealed):

235. # Draws all of the boxes in their covered or revealed state.

236. for boxx in range(BOARDWIDTH):

237. for boxy in range(BOARDHEIGHT):

238. left, top = leftTopCoordsOfBox(boxx, boxy)

239. if not revealed[boxx][boxy]:

240. # Draw a covered box.

241. pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top,

BOXSIZE, BOXSIZE))

242. else:

243. # Draw the (revealed) icon.

244. shape, color = getShapeAndColor(board, boxx, boxy)

245. drawIcon(shape, color, boxx, boxy)

246.

Chapter 3 – Memory Puzzle 41

247.

248. def drawHighlightBox(boxx, boxy):

249. left, top = leftTopCoordsOfBox(boxx, boxy)

250. pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, (left - 5, top - 5,

BOXSIZE + 10, BOXSIZE + 10), 4)

251.

252.

253. def startGameAnimation(board):

254. # Randomly reveal the boxes 8 at a time.

255. coveredBoxes = generateRevealedBoxesData(False)

256. boxes = []

257. for x in range(BOARDWIDTH):

258. for y in range(BOARDHEIGHT):

259. boxes.append((x, y))

260. random.shuffle(boxes)

261. boxGroups = splitIntoGroupsOf(8, boxes)

262.

263. drawBoard(board, coveredBoxes)

264. for boxGroup in boxGroups:

265. revealBoxesAnimation(board, boxGroup)

266. coverBoxesAnimation(board, boxGroup)

267.

268.

269. def gameWonAnimation(board):

270. # flash the background color when the player has won

271. coveredBoxes = generateRevealedBoxesData(True)

272. color1 = LIGHTBGCOLOR

273. color2 = BGCOLOR

274.

275. for i in range(13):

276. color1, color2 = color2, color1 # swap colors

277. DISPLAYSURF.fill(color1)

278. drawBoard(board, coveredBoxes)

279. pygame.display.update()

280. pygame.time.wait(300)

281.

282.

283. def hasWon(revealedBoxes):

284. # Returns True if all the boxes have been revealed, otherwise False

285. for i in revealedBoxes:

286. if False in i:

287. return False # return False if any boxes are covered.

288. return True

289.

290.

291. if __name__ == '__main__':

42 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

292. main()

Credits and Imports

 1. # Memory Puzzle

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Released under a "Simplified BSD" license

 5.

 6. import random, pygame, sys

 7. from pygame.locals import *

At the top of the program are comments about what the game is, who made it, and where the user

could find more information. There’s also a note that the source code is freely copyable under a

―Simplified BSD‖ license. The Simplified BSD license is more appropriate for software than the

Creative Common license (which this book is released under), but they basically mean the same

thing: People are free to copy and share this game. More info about licenses can be found at

http://invpy.com/licenses.

This program makes use of many functions in other modules, so it imports those modules on line

6. Line 7 is also an import statement in the from (module name) import * format,

which means you do not have to type the module name in front of it. There are no functions in the

pygame.locals module, but there are several constant variables in it that we want to use such

as MOUSEMOTION, KEYUP, or QUIT. Using this style of import statement, we only have to

type MOUSEMOTION rather than pygame.locals.MOUSEMOTION.

Magic Numbers are Bad

 9. FPS = 30 # frames per second, the general speed of the program

 10. WINDOWWIDTH = 640 # size of window's width in pixels

 11. WINDOWHEIGHT = 480 # size of windows' height in pixels

 12. REVEALSPEED = 8 # speed boxes' sliding reveals and covers

 13. BOXSIZE = 40 # size of box height & width in pixels

 14. GAPSIZE = 10 # size of gap between boxes in pixels

The game programs in this book use a lot of constant variables. You might not realize why

they’re so handy. For example, instead of using the BOXSIZE variable in our code we could just

type the integer 40 directly in the code. But there are two reasons to use constant variables.

First, if we ever wanted to change the size of each box later, we would have to go through the

entire program and find and replace each time we typed 40. By just using the BOXSIZE

constant, we only have to change line 13 and the rest of the program is already up to date. This is

Chapter 3 – Memory Puzzle 43

much better, especially since we might use the integer value 40 for something else besides the

size of the white boxes, and changing that 40 accidentally would cause bugs in our program.

Second, it makes the code more readable. Go down to the next section and look at line 18. This

sets up a calculation for the XMARGIN constant, which is how many pixels are on the side of the

entire board. It is a complicated looking expression, but you can carefully piece out what it

means. Line 18 looks like this:

XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * (BOXSIZE + GAPSIZE))) / 2)

But if line 18 didn’t use constant variables, it would look like this:

XMARGIN = int((640 – (10 * (40 + 10))) / 2)

Now it becomes impossible to remember what exactly the programmer intended to mean. These

unexplained numbers in the source code are often called magic numbers. Whenever you find

yourself entering magic numbers, you should consider replacing them with a constant variable

instead. To the Python interpreter, both of the previous lines are the exact same. But to a human

programmer who is reading the source code and trying to understand how it works, the second

version of line 18 doesn’t make much sense at all! Constants really help the readability of source

code.

Of course, you can go too far replacing numbers with constant variables. Look at the following

code:

ZERO = 0

ONE = 1

TWO = 99999999

TWOANDTHREEQUARTERS = 2.75

Don’t write code like that. That’s just silly.

Sanity Checks with assert Statements

 15. BOARDWIDTH = 10 # number of columns of icons

 16. BOARDHEIGHT = 7 # number of rows of icons

 17. assert (BOARDWIDTH * BOARDHEIGHT) % 2 == 0, 'Board needs to have an even

number of boxes for pairs of matches.'

 18. XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * (BOXSIZE + GAPSIZE))) / 2)

 19. YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * (BOXSIZE + GAPSIZE))) / 2)

44 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The assert statement on line 15 ensures that the board width and height we’ve selected will

result in an even number of boxes (since we will have pairs of icons in this game). There are three

parts to an assert statement: the assert keyword, an expression which, if False, results in

crashing the program. The third part (after the comma after the expression) is a string that appears

if the program crashes because of the assertion.

The assert statement with an expression basically says, ―The programmer asserts that this

expression must be True, otherwise crash the program.‖ This is a good way of adding a sanity

check to your program to make sure that if the execution ever passes an assertion we can at least

know that that code is working as expected.

Telling If a Number is Even or Odd
If the product of the board width and height is divided by two and has a remainder of 0 (the %

modulus operator evaluates what the remainder is) then the number is even. Even numbers

divided by two will always have a remainder of zero. Odd numbers divided by two will always

have a remainder of one. This is a good trick to remember if you need your code to tell if a

number is even or odd:

>>> isEven = someNumber % 2 == 0

>>> isOdd = someNumber % 2 != 0

In the above case, if the integer in someNumber was even, then isEven will be True. If it was

odd, then isOdd will be True.

Crash Early and Crash Often!
Having your program crash is a bad thing. It happens when your program has some mistake in the

code and cannot continue. But there are some cases where crashing a program early can avoid

worse bugs later.

If the values we chose for BOARDWIDTH and BOARDHEIGHT that we chose on line 15 and 16

result in a board with an odd number of boxes (such as if the width were 3 and the height were 5),

then there would always be one left over icon that would not have a pair to be matched with. This

would cause a bug later on in the program, and it could take a lot of debugging work to figure out

that the real source of the bug is at the very beginning of the program. In fact, just for fun, try

commenting out the assertion so it doesn’t run, and then setting the BOARDWIDTH and

BOARDHEIGHT constants both to odd numbers. When you run the program, it will immediately

show an error happening on a line 149 in memorypuzzle.py, which is in

getRandomizedBoard() function!

Traceback (most recent call last):

Chapter 3 – Memory Puzzle 45

 File "C:\book2svn\src\memorypuzzle.py", line 292, in <module>

 main()

 File "C:\book2svn\src\memorypuzzle.py", line 58, in main

 mainBoard = getRandomizedBoard()

 File "C:\book2svn\src\memorypuzzle.py", line 149, in getRandomizedBoard

 columns.append(icons[0])

IndexError: list index out of range

We could spend a lot of time looking at getRandomizedBoard() trying to figure out what’s

wrong with it before realizing that getRandomizedBoard() is perfectly fine: the real source

of the bug was on line 15 and 16 where we set the BOARDWIDTH and BOARDHEIGHT constants.

The assertion makes sure that this never happens. If our code is going to crash, we want it to

crash as soon as it detects something is terribly wrong, because otherwise the bug may not

become apparent until much later in the program. Crash early!

You want to add assert statements whenever there is some condition in your program that

must always, always, always be True. Crash often! You don’t have to go overboard and put

assert statements everywhere, but crashing often with asserts goes a long way in detecting the

true source of a bug. Crash early and crash often!

(In your code that is. Not, say, when riding a pony.)

Making the Source Code Look Pretty

 21. # R G B

 22. GRAY = (100, 100, 100)

 23. NAVYBLUE = (60, 60, 100)

 24. WHITE = (255, 255, 255)

 25. RED = (255, 0, 0)

 26. GREEN = (0, 255, 0)

 27. BLUE = (0, 0, 255)

 28. YELLOW = (255, 255, 0)

 29. ORANGE = (255, 128, 0)

 30. PURPLE = (255, 0, 255)

 31. CYAN = (0, 255, 255)

 32.

 33. BGCOLOR = NAVYBLUE

 34. LIGHTBGCOLOR = GRAY

 35. BOXCOLOR = WHITE

 36. HIGHLIGHTCOLOR = BLUE

Remember that colors in Pygame are represented by a tuple of three integers from 0 to 255.

These three integers represent the amount of red, green, and blue in the color which is why these

46 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

tuples are called RGB values. Notice the spacing of the tuples on lines 22 to 31 are such that the

R, G, and B integers line up. In Python the indentation (that is, the space at the beginning of the

line) is needs to be exact, but the spacing in the rest of the line is not so strict. By spacing the

integers in the tuple out, we can clearly see how the RGB values compare to each other. (More

info on spacing and indentation is as http://invpy.com/whitespace.)

It is a nice thing to make your code more readable this way, but don’t bother spending too much

time doing it. Code doesn’t have to be pretty to work. At a certain point, you’ll just be spending

more time typing spaces than you would have saved by having readable tuple values.

Using Constant Variables Instead of Strings

 38. DONUT = 'donut'

 39. SQUARE = 'square'

 40. DIAMOND = 'diamond'

 41. LINES = 'lines'

 42. OVAL = 'oval'

The program also sets up constant variables for some strings. These constants will be used in the

data structure for the board, tracking which spaces on the board have which icons. Using a

constant variable instead of the string value is a good idea. Look at the following code, which

comes from line 187:

 if shape == DONUT:

The shape variable will be set to one of the strings 'donut', 'square', 'diamond',

'lines', or 'oval' and then compared to the DONUT constant. If we made a typo when

writing line 187, for example, something like this:

 if shape == DUNOT:

Then Python would crash, giving an error message saying that there is no variable named DUNOT.

This is good. Since the program has crashed on line 187, when we check that line it will be easy

to see that the bug was caused by a typo. However, if we were using strings instead of constant

variables and made the same typo, line 187 would look like this:

 if shape == 'dunot':

This is perfectly acceptable Python code, so it won’t crash at first when you run it. However, this

will lead to weird bugs later on in our program. Because the code does not immediately crash

where the problem is caused, it can be much harder to find it.

Chapter 3 – Memory Puzzle 47

Making Sure We Have Enough Icons

 44. ALLCOLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE, CYAN)

 45. ALLSHAPES = (DONUT, SQUARE, DIAMOND, LINES, OVAL)

 46. assert len(ALLCOLORS) * len(ALLSHAPES) * 2 >= BOARDWIDTH * BOARDHEIGHT,

"Board is too big for the number of shapes/colors defined."

In order for our game program to be able to create icons of every possible color and shape

combination, we need to make a tuple that holds all of these values. There is also another

assertion on line 46 to make sure that there are enough color/shape combinations for the size of

the board we have. If there isn’t, then the program will crash on line 46 and we will know that we

either have to add more colors and shapes, or make the board width and height smaller. With 7

colors and 5 shapes, we can make 35 (that is, 7 x 5) different icons. And because we’ll have a pair

of each icon, that means we can have a board with up to 70 (that is, 35 x 2, or 7 x 5 x 2) spaces.

Tuples vs. Lists, Immutable vs. Mutable
You might have noticed that the ALLCOLORS and ALLSHAPES variables are tuples instead of

lists. When do we want to use tuples and when do we want to use lists? And what’s the difference

between them anyway?

Tuples and lists are the same in every way except two: tuples use parentheses instead of square

brackets, and the items in tuples cannot be modified (but the items in lists can be modified). We

often call lists mutable (meaning they can be changed) and tuples immutable (meaning they

cannot be changed).

For an example of trying to change values in lists and tuples, look at the following code:

>>> listVal = [1, 1, 2, 3, 5, 8]

>>> tupleVal = (1, 1, 2, 3, 5, 8)

>>> listVal[4] = 'hello!'

>>> listVal

[1, 1, 2, 3, 'hello!', 8]

>>> tupleVal[4] = 'hello!'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

>>> tupleVal

(1, 1, 2, 3, 5, 8)

>>> tupleVal[4]

5

Notice that when we try to change the item at index 2 in the tuple, Python gives us an error

message saying that tuple objects do not support ―item assignment‖.

48 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

There is a silly benefit and an important benefit to tuple’s immutability. The silly benefit is that

code that uses tuples is slightly faster than code that uses lists. (Python is able to make some

optimizations knowing that the values in a tuple will never change.) But having your code run a

few nanoseconds faster is not important.

The important benefit to using tuples is similar to the benefit of using constant variables: it’s a

sign that the value in the tuple will never change, so anyone reading the code later will be able to

say, ―I can expect that this tuple will always be the same. Otherwise the programmer would have

used a list.‖ This also lets a future programmer reading your code say, ―If I see a list value, I

know that it could be modified at some point in this program. Otherwise, the programmer who

wrote this code would have used a tuple.‖

You can still assign a new tuple value to a variable:

>>> tupleVal = (1, 2, 3)

>>> tupleVal = (1, 2, 3, 4)

The reason this code works is because the code isn’t changing the (1, 2, 3) tuple on the

second line. It is assigning an entirely new tuple (1, 2, 3, 4) to the tupleVal, and

overwriting the old tuple value. You cannot however, use the square brackets to modify an item

in the tuple.

Strings are also an immutable data type. You can use the square brackets to read a single

character in a string, but you cannot change a single character in a string:

>>> strVal = 'Hello'

>>> strVal[1]

'e'

>>> strVal[1] = 'X'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

One Item Tuples Need a Trailing Comma
Also, one minor details about tuples: if you ever need to write code about a tuple that has one

value in it, then it needs to have a trailing comma in it, such as this:

oneValueTuple = (42,)

Chapter 3 – Memory Puzzle 49

If you forget this comma (and it is very easy to forget), then Python won’t be able to tell the

difference between this and a set of parentheses that just change the order of operations. For

example, look at the following two lines of code:

variableA = (5 * 6)

variableB = (5 * 6,)

The value that is stored in variableA is just the integer 30. However, the expression for

variableB’s assignment statement is the single-item tuple value (30,). Blank tuple values

do not need a comma in them, they can just be a set of parentheses by themselves: ().

Converting Between Lists and Tuples
You can convert between list and tuple values just like you can convert between string and

integer values. Just pass a tuple value to the list() function and it will return a list form of that

tuple value. Or, pass a list value to the tuple() function and it will return a tuple form of that

list value. Try typing the following into the interactive shell:

>>> spam = (1, 2, 3, 4)

>>> spam = list(spam)

>>> spam

[1, 2, 3, 4]

>>> spam = tuple(spam)

>>> spam

(1, 2, 3, 4)

>>>

The global statement, and Why Global Variables are Evil

 48. def main():

 49. global FPSCLOCK, DISPLAYSURF

 50. pygame.init()

 51. FPSCLOCK = pygame.time.Clock()

 52. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 53.

 54. mousex = 0 # used to store x coordinate of mouse event

 55. mousey = 0 # used to store y coordinate of mouse event

 56. pygame.display.set_caption('Memory Game')

This is the start of the main() function, which is where (oddly enough) the main part of the

game code is. The functions called in the main() function will be explained later in this chapter.

Line 49 is a global statement. The global statement is the global keyword followed by a

comma-delimited list of variable names. These variable names are then marked as global

50 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

variables. Inside the main() function, those names are not for local variables that might just

happen to have the same name as global variables. They are the global variables. Any values

assigned to them in the main() function will persist outside the main() function. We are

marking the FPSCLOCK and DISPLAYSURF variables as global because they are used in several

other functions in the program. (More info is at http://invpy.com/scope.)

There are four simple rules to determine if a variable is local or global:

1. If there is a global statement for a variable at the beginning of the function, then the

variable is global.

2. If the name of a variable in a function has the same name as a global variable and the

function never assigns the variable a value, then that variable is the global variable.

3. If the name of a variable in a function has the same name as a global variable and the

function does assign the variable a value, then that variable is a local variable.

4. If there isn't a global variable with the same name as the variable in the function, then

that variable is obviously a local variable.

You generally want to avoid using global variables inside functions. A function is supposed to be

like a mini-program inside your program with specific inputs (the parameters) and an output (the

return value). But a function that reads and writes to global variables has additional inputs and

output. Since the global variable could have been modified in many places before the function

was called, it can be tricky to track down a bug involving a bad value set in the global variable.

Having a function as a separate mini-program that doesn’t use global variables makes it easier to

find bugs in your code, since the parameters of the function are clearly known. It also makes

changing the code in a function easier, since if the new function works with the same parameters

and gives the same return value, it will automatically work with the rest of the program just like

the old function.

Basically, using global variables might make it easier to write your program but they generally

make it harder to debug.

In the games in this book, global variables are mostly used for variables that would be global

constants that never change, but need the pygame.init() function called first. Since this

happens in the main() function, they are set in the main() function and must be global for

other functions to see them. But the global variables are used as constants and don’t change, so

they are less likely to cause confusing bugs.

If you don’t understand this, don’t worry. Just write your code so that you pass in values to

functions rather than have the functions read global variables as a general rule.

Chapter 3 – Memory Puzzle 51

Data Structures and 2D Lists

 58. mainBoard = getRandomizedBoard()

 59. revealedBoxes = generateRevealedBoxesData(False)

The getRandomizedBoard() function returns a data structure that represents the state of the

board. The generateRevealedBoxesData() function returns a data structure that

represents which boxes are covered, respectively. The return values of these functions are two

dimensional (2D) lists, or lists of lists. A list of lists of lists of values would be a 3D list. Another

word for two or more dimensional lists is a multidimensional list.

If we have a list value stored in a variable named spam, we could access a value in that list with

the square brackets, such as spam[2] to retrieve the third value in the list. If the value at

spam[2] is itself a list, then we could use another set of square brackets to retrieve a value in

that list. This would look like, for example, spam[2][4], which would retrieve the fifth value

in the list that is the third value in spam. Using the this notation of lists of lists makes it easy to

map a 2D board to a 2D list value. Since the mainBoard variable will store icons in it, if we

wanted to get the icon on the board at the position (4, 5) then we could just use the expression

mainBoard[4][5]. Since the icons themselves are stored as two-item tuples with the shape

and color, the complete data structure is a list of list of two-item tuples. Whew!

Here’s an small example. Say the board looked like this:

The corresponding data structure would be:

mainBoard = [[(DONUT, BLUE), (LINES, BLUE), (SQUARE, ORANGE)], [(SQUARE,

GREEN), (DONUT, BLUE), (DIAMOND, YELLOW)], [(SQUARE, GREEN), (OVAL, YELLOW),

(SQUARE, ORANGE)], [(DIAMOND, YELLOW), (LINES, BLUE), (OVAL, YELLOW)]]

(If your book is in black and white, you can see a color version of the above picture at

http://invpy.com/memoryboard.) You’ll notice that mainBoard[x][y] will correspond to the

icon at the (x, y) coordinate on the board.

52 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Meanwhile, the ―revealed boxes‖ data structure is also a 2D list, except instead of two-item tuples

like the board data structure, it has Boolean values: True if the box at that x, y coordinate is

revealed, and False if it is covered up. Passing False to the

generateRevealedBoxesData() function sets all of the Boolean values to False. (This

function is explained in detail later.)

These two data structures are used to keep track of the state of the game board.

The “Start Game” Animation

 61. firstSelection = None # stores the (x, y) of the first box clicked.

 62.

 63. DISPLAYSURF.fill(BGCOLOR)

 64. startGameAnimation(mainBoard)

Line 61 sets up a variable called firstSelection with the value None. (None is the value

that represents a lack of a value. It is the only value of the data type, NoneType. More info at

http://invpy.com/None) When the player clicks on an icon on the board, the program needs to

track if this was the first icon of the pair that was clicked on or the second icon. If

firstSelection is None, the click was on the first icon and we store the XY coordinates in

the firstSelection variable as a tuple of two integers (one for the X value, the other for Y).

On the second click the value will be this tuple and not None, which is how the program tracks

that it is the second icon click. Line 63 fills the entire surface with the background color. This will

also paint over anything that used to be on the surface, which gives us a clean slate to start

drawing graphics on.

If you’ve played the Memory Puzzle game, you’ll notice that at the beginning of the game, all of

the boxes are quickly covered and uncovered randomly to give the player a sneak peek at which

icons are under which boxes. This all happens in the startGameAnimation() function,

which is explained later in this chapter.

It’s important to give the player this sneak peek (but not long enough of a peek to let the player

easily memorize the icon locations), because otherwise they would have no clue where any icons

are. Blindly clicking on the icons isn’t as much fun as having a little hint to go on.

The Game Loop

 66. while True: # main game loop

 67. mouseClicked = False

 68.

 69. DISPLAYSURF.fill(BGCOLOR) # drawing the window

 70. drawBoard(mainBoard, revealedBoxes)

Chapter 3 – Memory Puzzle 53

The game loop is an infinite loop that starts on line 66 that keeps iterating for as long as the game

is in progress. Remember that the game loop handles events, updates the game state, and draws

the game state to the screen.

The game state for the Memory Puzzle program is stored in the following variables:

 mainBoard

 revealedBoxes

 firstSelection

 mouseClicked

 mousex

 mousey

On each iteration of the game loop in the Memory Puzzle program, the mouseClicked variable

stores a Boolean value that is True if the player has clicked the mouse during this iteration

through the game loop. (This is part of keeping track of the game state.)

On line 69, the surface is painted over with the background color to erase anything that was

previously drawn on it. The program then calls drawBoard() to draw the current state of the

board based on the board and ―revealed boxes‖ data structures that we pass it. (These lines of

code are part of drawing and updating the screen.)

Remember that our drawing functions only draw on the in-memory display Surface object. This

Surface object will not actually appear on the screen until we call

pygame.display.update(), which is done at the end of the game loop on line 121.

The Event Handling Loop

 72. for event in pygame.event.get(): # event handling loop

 73. if event.type == QUIT or (event.type == KEYUP and event.key ==

K_ESCAPE):

 74. pygame.quit()

 75. sys.exit()

 76. elif event.type == MOUSEMOTION:

 77. mousex, mousey = event.pos

 78. elif event.type == MOUSEBUTTONUP:

 79. mousex, mousey = event.pos

 80. mouseClicked = True

The for loop on line 72 executes code for every event that has happened since the last iteration

of the game loop. This loop is called the event handling loop (which is different from the game

loop, although the event handling loop is inside of the game loop) and iterates over the list of

pygame.Event objects returned by the pygame.event.get() call.

54 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

If the event object was a either a QUIT event or a KEYUP event for the Esc key, then the program

should terminate. Otherwise, in the event of a MOUSEMOTION event (that is, the mouse cursor

has moved) or MOUSEBUTTONUP event (that is, a mouse button was pressed earlier and now the

button was let up), the position of the mouse cursor should be stored in the mousex and mousey

variables. If this was a MOUSEBUTTONUP event, mouseClicked should also be set to True.

Once we have handled all of the events, the values stored in mousex, mousey, and

mouseClicked will tell us any input that player has given us. Now we should update the game

state and draw the results to the screen.

Checking Which Box The Mouse Cursor is Over

 82. boxx, boxy = getBoxAtPixel(mousex, mousey)

 83. if boxx != None and boxy != None:

 84. # The mouse is currently over a box.

 85. if not revealedBoxes[boxx][boxy]:

 86. drawHighlightBox(boxx, boxy)

The getBoxAtPixel() function will return a tuple of two integers. The integers represent the

XY board coordinates of the box that the mouse coordinates are over. How getBoxAtPixel()

does this is explained later. All we have to know for now is that if the mousex and mousey

coordinates were over a box, a tuple of the XY board coordinates are returned by the function and

stored in boxx and boxy. If the mouse cursor was not over any box (for example, if it was off to

the side of the board or in a gap in between boxes) then the tuple (None, None) is returned by

the function and boxx and boxy will both have None stored in them.

We are only interested in the case where boxx and boxy do not have None in them, so the next

several lines of code are in the block following the if statement on line 83 that checks for this

case. If execution has come inside this block, we know the user has the mouse cursor over a box

(and maybe has also clicked the mouse, depending on the value stored in mouseClicked).

The if statement on line 85 checks if the box is covered up or not by reading the value stored in

revealedBoxes[boxx][boxy]. If it is False, then we know the box is covered.

Whenever the mouse is over a covered up box, we want to draw a blue highlight around the box

to inform the player that they can click on it. This highlighting is not done for boxes that are

already uncovered. The highlight drawing is handled by our drawHighlightBox() function,

which is explained later.

 87. if not revealedBoxes[boxx][boxy] and mouseClicked:

 88. revealBoxesAnimation(mainBoard, [(boxx, boxy)])

Chapter 3 – Memory Puzzle 55

 89. revealedBoxes[boxx][boxy] = True # set the box as

"revealed"

On line 87, we check if the mouse cursor is not only over a covered up box but if the mouse has

also been clicked. In that case, we want to play the ―reveal‖ animation for that box by calling our

revealBoxesAnimation() function (which is, as with all the other functions main() calls,

explained later in this chapter). You should note that calling this function only draws the

animation of the box being uncovered. It isn’t until line 89 when we set

revealedBoxes[boxx][boxy] = True that the data structure that tracks the game state

is updated.

If you comment out line 89 and then run the program, you’ll notice that after clicking on a box

the reveal animation is played, but then the box immediately appears covered up again. This is

because revealedBoxes[boxx][boxy] is still set to False, so on the next iteration of the

game loop, the board is drawn with this box covered up. Not having line 89 would cause quite an

odd bug in our program.

Handling the First Clicked Box

 90. if firstSelection == None: # the current box was the first

box clicked

 91. firstSelection = (boxx, boxy)

 92. else: # the current box was the second box clicked

 93. # Check if there is a match between the two icons.

 94. icon1shape, icon1color = getShapeAndColor(mainBoard,

firstSelection[0], firstSelection[1])

 95. icon2shape, icon2color = getShapeAndColor(mainBoard,

boxx, boxy)

Before the execution entered the game loop, the firstSelection variable was set to None.

Our program will interpret this to mean that no boxes have been clicked, so if line 90’s condition

is True, that means this is the first of the two possibly matching boxes that was clicked. We

want to play the reveal animation for the box and then keep that box uncovered. We also set the

firstSelection variable to a tuple of the box coordinates for the box that was clicked.

If this is the second box the player has clicked on, we want to play the reveal animation for that

box but then check if the two icons under the boxes are matching. The getShapeAndColor()

function (explained later) will retrieve the shape and color values of the icons. (These values will

be one of the values in the ALLCOLORS and ALLSHAPES tuples.)

56 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Handling a Mismatched Pair of Icons

 97. if icon1shape != icon2shape or icon1color !=

icon2color:

 98. # Icons don't match. Re-cover up both selections.

 99. pygame.time.wait(1000) # 1000 milliseconds = 1 sec

100. coverBoxesAnimation(mainBoard,

[(firstSelection[0], firstSelection[1]), (boxx, boxy)])

101. revealedBoxes[firstSelection[0]][firstSelection

[1]] = False

102. revealedBoxes[boxx][boxy] = False

The if statement on line 97 checks if either the shapes or colors of the two icons don’t match. If

this is the case, then we want to pause the game for 1000 milliseconds (which is the same as 1

second) by calling pygame.time.wait(1000) so that the player has a chance to see that the

two icons don’t match. Then the ―cover up‖ animation plays for both boxes. We also want to

update the game state to mark these boxes as not revealed (that is, covered up).

Handling If the Player Won

103. elif hasWon(revealedBoxes): # check if all pairs found

104. gameWonAnimation(mainBoard)

105. pygame.time.wait(2000)

106.

107. # Reset the board

108. mainBoard = getRandomizedBoard()

109. revealedBoxes = generateRevealedBoxesData(False)

110.

111. # Show the fully unrevealed board for a second.

112. drawBoard(mainBoard, revealedBoxes)

113. pygame.display.update()

114. pygame.time.wait(1000)

115.

116. # Replay the start game animation.

117. startGameAnimation(mainBoard)

118. firstSelection = None # reset firstSelection variable

Otherwise, if line 97’s condition was False, then the two icons must be a match. The program

doesn’t really have to do anything else to the boxes at that point: it can just leave both boxes in

the revealed state. However, the program should check if this was the last pair of icons on the

board to be matched. This is done inside our hasWon() function, which returns True if the

board is in a winning state (that is, all of the boxes are revealed).

Chapter 3 – Memory Puzzle 57

If that is the case, we want to play the ―game won‖ animation by calling

gameWonAnimation(), then pause slightly to let the player revel in their victory, and then

reset the data structures in mainBoard and revealedBoxes to start a new game.

Line 117 plays the ―start game‖ animation again. After that, the program execution will just loop

through the game loop as usual, and the player can continue playing until they quit the program.

No matter if the two boxes were matching or not, after the second box was clicked line 118 will

set the firstSelection variable back to None so that the next box the player clicks on will

be interpreted as the first clicked box of a pair of possibly matching icons.

Drawing the Game State to the Screen

120. # Redraw the screen and wait a clock tick.

121. pygame.display.update()

122. FPSCLOCK.tick(FPS)

At this point, the game state has been updated depending on the player’s input, and the latest

game state has been drawn to the DISPLAYSURF display Surface object. We’ve reached the end

of the game loop, so we call pygame.display.update() to draw the DISPLAYSURF

Surface object to the computer screen.

Line 9 set the FPS constant to the integer value 30, meaning we want the game to run (at most) at

30 frames per second. If we want the program to run faster, we can increase this number. If we

want the program to run slower, we can decrease this number. It can even be set to a float value

like 0.5, which will run the program at half a frame per second, that is, one frame per two

seconds.

In order to run at 30 frames per second, each frame must be drawn in 1/30
th
 of a second. This

means that pygame.display.update() and all the code in the game loop must execute in

under 33.3 milliseconds. Any modern computer can do this easily with plenty of time left over.

To prevent the program from running too fast, we call the tick() method of the

pygame.Clock object in FPSCLOCK to have to it pause the program for the rest of the 33.3

milliseconds.

Since this is done at the very end of the game loop, it ensures that each iteration of the game loop

takes (at least) 33.3 milliseconds. If for some reason the pygame.display.update() call

and the code in the game loop takes longer than 33.3 milliseconds, then the tick() method will

not wait at all and immediately return.

58 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

I’ve kept saying that the other functions would be explained later in the chapter. Now that we’ve

gone over the main() function and you have an idea for how the general program works, let’s

go into the details of all the other functions that are called from main().

Creating the “Revealed Boxes” Data Structure

125. def generateRevealedBoxesData(val):

126. revealedBoxes = []

127. for i in range(BOARDWIDTH):

128. revealedBoxes.append([val] * BOARDHEIGHT)

129. return revealedBoxes

The generateRevealedBoxesData() function needs to create a list of lists of Boolean

values. The Boolean value will just be the one that is passed to the function as the val parameter.

We start the data structure as an empty list in the revealedBoxes variable.

In order to make the data structure have the revealedBoxes[x][y] structure, we need to

make sure that the inner lists represent the vertical columns of the board and not the horizontal

rows. Otherwise, the data structure will have a revealedBoxes[y][x] structure.

The for loop will create the columns and then append them to revealedBoxes. The columns

are created using list replication, so that the column list has as many val values as the

BOARDHEIGHT dictates.

Creating the Board Data Structure: Step 1 – Get All Possible Icons

132. def getRandomizedBoard():

133. # Get a list of every possible shape in every possible color.

134. icons = []

135. for color in ALLCOLORS:

136. for shape in ALLSHAPES:

137. icons.append((shape, color))

The board data structure is just a list of lists of tuples, where each tuple has a two values: one for

the icon’s shape and one for the icon’s color. But creating this data structure is a little

complicated. We need to be sure to have exactly as many icons for the number of boxes on the

board and also be sure there are two and only two icons of each type.

The first step to do this is to create a list with every possible combination of shape and color.

Recall that we have a list of each color and shape in ALLCOLORS and ALLSHAPES, so nested

for loops on lines 135 and 136 will go through every possible shape for every possible color.

These are each added to the list in the icons variable on line 137.

Chapter 3 – Memory Puzzle 59

Step 2 – Shuffling and Truncating the List of All Icons

139. random.shuffle(icons) # randomize the order of the icons list

140. numIconsUsed = int(BOARDWIDTH * BOARDHEIGHT / 2) # calculate how many

icons are needed

141. icons = icons[:numIconsUsed] * 2 # make two of each

142. random.shuffle(icons)

But remember, there may be more possible combinations than spaces on the board. We need to

calculate the number of spaces on the board by multiplying BOARDWIDTH by BOARDHEIGHT.

Then we divide that number by 2 because we will have pairs of icons. On a board with 70 spaces,

we’d only need 35 different icons, since there will be two of each icon. This number will be

stored in numIconsUsed.

Line 141 uses list slicing to grab the first numIconsUsed number of icons in the list. (If you’ve

forgotten how list slicing works, check out http://invpy.com/slicing.) This list has been shuffled

on line 139, so it won’t always be the same icons each game. Then this list is replicated by using

the * operator so that there are two of each of the icons. This new doubled up list will overwrite

the old list in the icons variable. Since the first half of this new list is identical to the last half,

we call the shuffle() method again to randomly mix up the order of the icons.

Step 3 – Placing the Icons on the Board

144. # Create the board data structure, with randomly placed icons.

145. board = []

146. for x in range(BOARDWIDTH):

147. column = []

148. for y in range(BOARDHEIGHT):

149. column.append(icons[0])

150. del icons[0] # remove the icons as we assign them

151. board.append(column)

152. return board

Now we need to create a list of lists data structure for the board. We can do this with nested for

loops just like the generateRevealedBoxesData() function did. For each column on the

board, we will create a list of randomly selected icons. As we add icons to the column, on line

149 we will then delete them from the front of the icons list on line 150. This way, as the

icons list gets shorter and shorter, icons[0] will have a different icon to add to the columns.

To picture this better, type the following code into the interactive shell. Notice how the del

statement changes the myList list.

>>> myList = ['cat', 'dog', 'mouse', 'lizard']

60 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

>>> del myList[0]

>>> myList

['dog', 'mouse', 'lizard']

>>> del myList[0]

>>> myList

['mouse', 'lizard']

>>> del myList[0]

>>> myList

['lizard']

>>> del myList[0]

>>> myList

[]

>>>

Because we are deleting the item at the front of the list, the other items shift forward so that the

next item in the list becomes the new ―first‖ item. This is the same way line 150 works.

Splitting a List into a List of Lists

155. def splitIntoGroupsOf(groupSize, theList):

156. # splits a list into a list of lists, where the inner lists have at

157. # most groupSize number of items.

158. result = []

159. for i in range(0, len(theList), groupSize):

160. result.append(theList[i:i + groupSize])

161. return result

The splitIntoGroupsOf() function (which will be called by the

startGameAnimation() function) splits a list into a list of lists, where the inner lists have

groupSize number of items in them. (The last list could have less if there are less than

groupSize items left over.)

The call to range() on line 159 uses the three-parameter form of range(). (If you are

unfamiliar with this form, take a look at http://invpy.com/range.) Let’s use an example. If the

length of the list is 20 and the groupSize parameter is 8, then range(0,

len(theList), groupSize) evaluates to range(0, 20, 8). This will give the i

variable the values 0, 8, and 16 for the three iterations of the for loop.

The list slicing on line 160 with theList[i:i + groupSize] creates the lists that are

added to the result list. On each iteration where i is 0, 8, and 16 (and groupSize is 8), this

list slicing expression would be theList[0:8], then theList[8:16] on the second

iteration, and then theList[16:24] on the third iteration.

Chapter 3 – Memory Puzzle 61

Note that even though the largest index of theList would be 19 in our example,

theList[16:24] won’t raise an IndexError error even though 24 is larger than 19. It will

just create a list slice with the remaining items in the list. List slicing doesn’t destroy or change

the original list stored in theList. It just copies a portion of it to evaluate to a new list value.

This new list value is the list that is appended to the list in the result variable on line 160. So

when we return result at the end of this function, we are returning a list of lists.

Different Coordinate Systems

164. def leftTopCoordsOfBox(boxx, boxy):

165. # Convert board coordinates to pixel coordinates

166. left = boxx * (BOXSIZE + GAPSIZE) + XMARGIN

167. top = boxy * (BOXSIZE + GAPSIZE) + YMARGIN

168. return (left, top)

You should be familiar with Cartesian Coordinate systems. (If you’d like a refresher on this topic,

read http://invpy.com/coordinates.) In most of our games we will be using multiple Cartesian

Coordinate systems. One system of coordinates that is used in the Memory Puzzle game is for the

pixel or screen coordinates. But we will also be using another coordinate system for the boxes.

This is because it will be easier to use (3, 2) to refer to the 4
th
 box from the left and 3

rd
 from the

top (remember that the numbers start with 0, not 1) instead of using the pixel coordinate of the

box’s top left corner, (220, 165). However, we need a way to translate between these two

coordinate systems.

Here’s a picture of the game and the two different coordinate systems. Remember that the

window is 640 pixels wide and 480 pixels tall, so (639, 479) is the bottom right corner (because

the top left corner’s pixel is (0, 0), and not (1, 1)).

62 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The leftTopCoordsOfBox() function will take box coordinates and return pixel

coordinates. Because a box takes up multiple pixels on the screen, we will always return the

single pixel at the top left corner of the box. This value will be returned as a two-integer tuple.

The leftTopCoordsOfBox() function will often be used when we need pixel coordinates for

drawing these boxes.

Converting from Pixel Coordinates to Box Coordinates

171. def getBoxAtPixel(x, y):

172. for boxx in range(BOARDWIDTH):

173. for boxy in range(BOARDHEIGHT):

174. left, top = leftTopCoordsOfBox(boxx, boxy)

175. boxRect = pygame.Rect(left, top, BOXSIZE, BOXSIZE)

176. if boxRect.collidepoint(x, y):

177. return (boxx, boxy)

178. return (None, None)

We will also need a function to convert from pixel coordinates (which the mouse clicks and

mouse movement events use) to box coordinates (so we can find out over which box the mouse

event happened). Rect objects have a collidepoint() method that you can pass X and Y

coordinates too and it will return True if the coordinates are inside (that is, collide with) the Rect

object’s area.

Chapter 3 – Memory Puzzle 63

In order to find which box the mouse coordinates are over, we will go through each box’s

coordinates and call the collidepoint() method on a Rect object with those coordinates.

When collidepoint() returns True, we know we have found the box that was clicked on or

moved over and will return the box coordinates. If none of them return True, then the

getBoxAtPixel() function will return the value (None, None). This tuple is returned

instead of simply returning None because the caller of getBoxAtPixel() is expecting a tuple

of two values to be returned.

Drawing the Icon, and Syntactic Sugar

181. def drawIcon(shape, color, boxx, boxy):

182. quarter = int(BOXSIZE * 0.25) # syntactic sugar

183. half = int(BOXSIZE * 0.5) # syntactic sugar

184.

185. left, top = leftTopCoordsOfBox(boxx, boxy) # get pixel coords from

board coords

The drawIcon() function will draw an icon (with the specified shape and color) at the

space whose coordinates are given in the boxx and boxy parameters. Each possible shape has a

different set of Pygame drawing function calls for it, so we must have a large set of if and elif

statements to differentiate between them. (These statements are on lines 187 to 198.)

The X and Y coordinates of the left and top edge of the box can be obtained by calling the

leftTopCoordsOfBox() function. The width and height of the box are both set in the

BOXSIZE constant. However, many of the shape drawing function calls use the midpoint and

quarter-point of the box as well. We can calculate this and store it in the variables quarter and

half. We could just as easily have the code int(BOXSIZE * 0.25) instead of the variable

quarter, but this way the code becomes easier to read since it is more obvious what quarter

means rather than int(BOXSIZE * 0.25).

Such variables are an example of syntactic sugar. Syntactic sugar is when we add code that

could have been written in another way (probably with less actual code and variables), but does

make the source code easier to read. Constant variables are one form of syntactic sugar. Pre-

calculating a value and storing it in a variable is another type of syntactic sugar. (For example, in

the getRandomizedBoard() function, we could have easily made the code on lines 140 and

line 141 into a single line of code. But it’s easier to read as two separate lines.) We don’t need to

have the extra quarter and half variables, but having them makes the code easier to read.

Code that is easy to read is easy to debug and upgrade in the future.

186. # Draw the shapes

187. if shape == DONUT:

64 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

188. pygame.draw.circle(DISPLAYSURF, color, (left + half, top + half),

half - 5)

189. pygame.draw.circle(DISPLAYSURF, BGCOLOR, (left + half, top +

half), quarter - 5)

190. elif shape == SQUARE:

191. pygame.draw.rect(DISPLAYSURF, color, (left + quarter, top +

quarter, BOXSIZE - half, BOXSIZE - half))

192. elif shape == DIAMOND:

193. pygame.draw.polygon(DISPLAYSURF, color, ((left + half, top), (left

+ BOXSIZE - 1, top + half), (left + half, top + BOXSIZE - 1), (left, top +

half)))

194. elif shape == LINES:

195. for i in range(0, BOXSIZE, 4):

196. pygame.draw.line(DISPLAYSURF, color, (left, top + i), (left +

i, top))

197. pygame.draw.line(DISPLAYSURF, color, (left + i, top + BOXSIZE

- 1), (left + BOXSIZE - 1, top + i))

198. elif shape == OVAL:

199. pygame.draw.ellipse(DISPLAYSURF, color, (left, top + quarter,

BOXSIZE, half))

Each of the donut, square, diamond, lines, and oval functions require different drawing primitive

function calls to make.

Syntactic Sugar with Getting a Board Space’s Icon’s Shape and Color

202. def getShapeAndColor(board, boxx, boxy):

203. # shape value for x, y spot is stored in board[x][y][0]

204. # color value for x, y spot is stored in board[x][y][1]

205. return board[boxx][boxy][0], board[boxx][boxy][1]

The getShapeAndColor() function only has one line. You might wonder why we would

want a function instead of just typing in that one line of code whenever we need it. This is done

for the same reason we use constant variables: it improves the readability of the code.

It’s easy to figure out what a code like shape, color = getShapeAndColor() does.

But if you looked a code like shape, color = board[boxx][boxy][0],

board[boxx][boxy][1], it would be a bit more difficult to figure out.

Drawing the Box Cover

208. def drawBoxCovers(board, boxes, coverage):

209. # Draws boxes being covered/revealed. "boxes" is a list

210. # of two-item lists, which have the x & y spot of the box.

211. for box in boxes:

Chapter 3 – Memory Puzzle 65

212. left, top = leftTopCoordsOfBox(box[0], box[1])

213. pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, BOXSIZE,

BOXSIZE))

214. shape, color = getShapeAndColor(board, box[0], box[1])

215. drawIcon(shape, color, box[0], box[1])

216. if coverage > 0: # only draw the cover if there is an coverage

217. pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top, coverage,

BOXSIZE))

218. pygame.display.update()

219. FPSCLOCK.tick(FPS)

The drawBoxCovers() function has three parameters: the board data structure, a list of (X, Y)

tuples for each box that should have the cover drawn, and then the amount of coverage to draw

for the boxes.

Since we want to use the same drawing code for each box in the boxes parameter, we will use a

for loop on line 211 so we execute the same code on each box in the boxes list. Inside this

for loop, the code should do three things: draw the background color (to paint over anything that

was there before), draw the icon, then draw however much of the white box over the icon that is

needed. The leftTopCoordsOfBox() function will return the pixel coordinates of the top

left corner of the box. The if statement on line 216 makes sure that if the number in coverage

happens to be less than 0, we won’t call the pygame.draw.rect() function.

When the coverage parameter is 0, there is no coverage at all. When the coverage is set to

20, there is a 20 pixel wide white box covering the icon. The largest size we’ll want the

coverage set to is the number in BOXSIZE, where the entire icon is completely covered.

drawBoxCovers() is going to be called from a separate loop than the game loop. Because of

this, it needs to have its own calls to pygame.display.update() and

FPSCLOCK.tick(FPS) to display the animation. (This does mean that while inside this loop,

there is no code being run to handle any events being generated. That’s fine, since the cover and

reveal animations only take a second or so to play.)

Handling the Revealing and Covering Animation

222. def revealBoxesAnimation(board, boxesToReveal):

223. # Do the "box reveal" animation.

224. for coverage in range(BOXSIZE, (-REVEALSPEED) - 1, - REVEALSPEED):

225. drawBoxCovers(board, boxesToReveal, coverage)

226.

227.

228. def coverBoxesAnimation(board, boxesToCover):

229. # Do the "box cover" animation.

66 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

230. for coverage in range(0, BOXSIZE + REVEALSPEED, REVEALSPEED):

231. drawBoxCovers(board, boxesToCover, coverage)

Remember that an animation is simply just displaying different images for brief moments of time,

and together they make it seem like things are moving on the screen. The

revealBoxesAnimation() and coverBoxesAnimation() only need to draw an icon

with a varying amount of coverage by the white box. We can write a single function called

drawBoxCovers() which can do this, and then have our animation function call

drawBoxCovers() for each frame of animation. As we saw in the last section,

drawBoxCovers() makes a call to pygame.display.update() and

FPSCLOCK.tick(FPS) itself.

To do this, we’ll set up a for loop to make decreasing (in the case of

revealBoxesAnimation()) or increasing (in the case of coverBoxesAnimation())

numbers for the converage parameter. The amount that the coverage variable will

decrease/increase by is the number in the REVEALSPEED constant. On line 12 we set this

constant to 8, meaning that on each call to drawBoxCovers(), the white box will

decrease/increase by 8 pixels on each iteration. If we increase this number, then more pixels will

be drawn on each call, meaning that the white box will decrease/increase in size faster. If we set it

to 1, then the white box will only appear to decrease or increase by 1 pixel on each iteration,

making the entire reveal or cover animation take longer.

Think of it like climbing stairs. If on each step you take, you climbed one stair, then it would take

a normal amount of time to climb the entire staircase. But if you climbed two stairs at a time on

each step (and the steps took just as long as before), you could climb the entire staircase twice as

fast. If you could climb the staircase 8 stairs at a time, then you would climb the entire staircase 8

times as fast.

Drawing the Entire Board

234. def drawBoard(board, revealed):

235. # Draws all of the boxes in their covered or revealed state.

236. for boxx in range(BOARDWIDTH):

237. for boxy in range(BOARDHEIGHT):

238. left, top = leftTopCoordsOfBox(boxx, boxy)

239. if not revealed[boxx][boxy]:

240. # Draw a covered box.

241. pygame.draw.rect(DISPLAYSURF, BOXCOLOR, (left, top,

BOXSIZE, BOXSIZE))

242. else:

243. # Draw the (revealed) icon.

244. shape, color = getShapeAndColor(board, boxx, boxy)

Chapter 3 – Memory Puzzle 67

245. drawIcon(shape, color, boxx, boxy)

The drawBoard() function makes a call to drawIcon() for each of the boxes on the board.

The nested for loops on lines 236 and 237 will loop through every possible X and Y coordinate

for the boxes, and will either draw the icon at that location or draw a white square instead (to

represent a covered up box).

Drawing the Highlight

248. def drawHighlightBox(boxx, boxy):

249. left, top = leftTopCoordsOfBox(boxx, boxy)

250. pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, (left - 5, top - 5,

BOXSIZE + 10, BOXSIZE + 10), 4)

To help the player recognize that they can click on a covered box to reveal it, we will make a blue

outline appear around a box to highlight it. This outline is drawn with a call to

pygame.draw.rect() to make a rectangle with a width of 4 pixels.

The “Start Game” Animation

253. def startGameAnimation(board):

254. # Randomly reveal the boxes 8 at a time.

255. coveredBoxes = generateRevealedBoxesData(False)

256. boxes = []

257. for x in range(BOARDWIDTH):

258. for y in range(BOARDHEIGHT):

259. boxes.append((x, y))

260. random.shuffle(boxes)

261. boxGroups = splitIntoGroupsOf(8, boxes)

The animation that plays at the beginning of the game gives the player a quick hint as to where all

the icons are located. In order to make this animation, we have to reveal and cover up groups of

boxes one group after another. To do this, first we’ll create a list of every possible space on the

board. The nested for loops on lines 257 and 258 will add (X, Y) tuples to a list in the boxes

variable.

We will reveal and cover up the first 8 boxes in this list, then the next 8, then the next 8 after that,

and so on. However, since the order of the (X, Y) tuples in boxes would be the same each time,

then the same order of boxes would be displayed. (Try commenting out line 260 and then running

to program a few times to see this effect.)

To change up the boxes each time a game starts, we will call the random.shuffle() function

to randomly shuffle the order of the tuples in the boxes list. Then when we reveal and cover up

68 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

the first 8 boxes in this list (and each group of 8 boxes afterwards), it will be random group of 8

boxes.

To get the lists of 8 boxes, we call our splitIntoGroupsOf() function, passing 8 and the

list in boxes. The list of lists that the function returns will be stored in a variable named

boxGroups.

Revealing and Covering the Groups of Boxes

263. drawBoard(board, coveredBoxes)

264. for boxGroup in boxGroups:

265. revealBoxesAnimation(board, boxGroup)

266. coverBoxesAnimation(board, boxGroup)

First, we draw the board. Since every value in coveredBoxes is set to False, this call to

drawBoard() will end up drawing only covered up white boxes. The

revealBoxesAnimation() and coverBoxesAnimation() functions will draw over the

spaces of these white boxes.

The for loop will go through each of the inner lists in the boxGroups lists. We pass these to

revealBoxesAnimation(), which will perform the animation of the white boxes being

pulled away to reveal the icon underneath. Then the call to coverBoxesAnimation() will

animate the white boxes expanding to cover up the icons. Then the for loop goes to the next

iteration to animate the next set of 8 boxes.

The “Game Won” Animation

269. def gameWonAnimation(board):

270. # flash the background color when the player has won

271. coveredBoxes = generateRevealedBoxesData(True)

272. color1 = LIGHTBGCOLOR

273. color2 = BGCOLOR

274.

275. for i in range(13):

276. color1, color2 = color2, color1 # swap colors

277. DISPLAYSURF.fill(color1)

278. drawBoard(board, coveredBoxes)

279. pygame.display.update()

280. pygame.time.wait(300)

When the player has uncovered all of the boxes by matching every pair on the board, we want to

congratulate them by flashing the background color. The for loop will draw the color in the

color1 variable for the background color and then draw the board over it. However, on each

iteration of the for loop, the values in color1 and color2 will be swapped with each other

Chapter 3 – Memory Puzzle 69

on line 276. This way the program will alternate between drawing two different background

colors.

Remember that this function needs to call pygame.display.update() to actually make the

DISPLAYSURF surface appear on the screen.

Telling if the Player Has Won

283. def hasWon(revealedBoxes):

284. # Returns True if all the boxes have been revealed, otherwise False

285. for i in revealedBoxes:

286. if False in i:

287. return False # return False if any boxes are covered.

288. return True

The player has won the game when all of the icon pairs have been matched. Since the ―revealed‖

data structure gets values in it set to True as icons have been matched, we can simply loop

through every space in revealedBoxes looking for a False value. If even one False value

is in revealedBoxes, then we know there are still unmatched icons on the board.

Note that because revealedBoxes is a list of lists, the for loop on line 285 will set the inner

list as the values of i. But we can use the in operator to search for a False value in the entire

inner list. This way we don’t need to write an additional line of code and have two nested for

loops like this:

for x in revealedBoxes:

 for y in revealedBoxes[x]:

 if False == revealedBoxes[x][y]:

 return False

Why Bother Having a main() Function?

291. if __name__ == '__main__':

292. main()

It may seem pointless to have a main() function, since you could just put that code in the global

scope at the bottom of the program instead, and the code would run the exact same. However,

there are two good reasons to put them inside of a main() function.

First, this lets you have local variables whereas otherwise the local variables in the main()

function would have to become global variables. Limiting the number of global variables is a

good way to keep the code simple and easier to debug. (See the ―Why Global Variables are Evil‖

section in this chapter.)

70 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Second, this also lets you import the program so that you can call and test individual functions. If

the memorypuzzle.py file is in the C:\Python32 folder, then you can import it from the interactive

shell. Type the following to test out the splitIntoGroupsOf() and getBoxAtPixel()

functions to make sure they return the correct return values:

>>> import memorypuzzle

>>> memorypuzzle.splitIntoGroupsOf(3, [0,1,2,3,4,5,6,7,8,9])

[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

>>> memorypuzzle.getBoxAtPixel(0, 0)

(None, None)

>>> memorypuzzle.getBoxAtPixel(150, 150)

(1, 1)

When a module is imported, all of the code in it is run. If we didn’t have the main() function,

and had its code in the global scope, then the game would have automatically started as soon as

we imported it, which really wouldn’t let us call individual functions in it.

That’s why the code is in a separate function that we have named main(). Then we check the

built-in Python variable __name__ to see if we should call the main() function or not. This

variable is automatically set by the Python interpreter to the string '__main__' if the program

itself is being run and 'memorypuzzle' if it is being imported. This is why the main()

function is not run when we executed the import memorypuzzle statement in the interactive

shell.

This is a handy technique for being able to import the program you are working on from the

interactive shell and make sure individual functions are returning the correct values by testing

them one call at a time.

Why Bother With Readability?
A lot of the suggestions in this chapter haven’t been about how to write programs that computers

can run so much as how to write programs that programmers can read. You might not understand

why this is important. After all, as long as the code works, who cares if it is hard or easy for

human programmers to read?

However, the important thing to realize about software is that it is rarely ever left alone. When

you are creating your own games, you will rarely be ―done‖ with the program. You will always

get new ideas for game features you want add, or find new bugs with the program. Because of

this, it is important that your program is readable so that you can look at the code and understand

it. And understanding the code is the first step to changing it to add more code or fix bugs.

As an example, here is an obfuscated version of the Memory Puzzle program that was made

entirely unreadable. If you type it in (or download it from

Chapter 3 – Memory Puzzle 71

http://invpy.com/memorypuzzle_obfuscated.py) and run it you will find it runs exactly the same

as the code at the beginning of this chapter. But if there was a bug with this code, it would be

impossible to read the code and understand what’s going on, much less fix the bug.

The computer doesn’t mind code as unreadable as this. It’s all the same to it.

import random, pygame, sys

from pygame.locals import *

def hhh():

 global a, b

 pygame.init()

 a = pygame.time.Clock()

 b = pygame.display.set_mode((640, 480))

 j = 0

 k = 0

 pygame.display.set_caption('Memory Game')

 i = c()

 hh = d(False)

 h = None

 b.fill((60, 60, 100))

 g(i)

 while True:

 e = False

 b.fill((60, 60, 100))

 f(i, hh)

 for eee in pygame.event.get():

 if eee.type == QUIT or (eee.type == KEYUP and eee.key == K_ESCAPE):

 pygame.quit()

 sys.exit()

 elif eee.type == MOUSEMOTION:

 j, k = eee.pos

 elif eee.type == MOUSEBUTTONUP:

 j, k = eee.pos

 e = True

 bb, ee = m(j, k)

 if bb != None and ee != None:

 if not hh[bb][ee]:

 n(bb, ee)

 if not hh[bb][ee] and e:

 o(i, [(bb, ee)])

 hh[bb][ee] = True

 if h == None:

 h = (bb, ee)

 else:

 q, fff = s(i, h[0], h[1])

 r, ggg = s(i, bb, ee)

72 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 if q != r or fff != ggg:

 pygame.time.wait(1000)

 p(i, [(h[0], h[1]), (bb, ee)])

 hh[h[0]][h[1]] = False

 hh[bb][ee] = False

 elif ii(hh):

 jj(i)

 pygame.time.wait(2000)

 i = c()

 hh = d(False)

 f(i, hh)

 pygame.display.update()

 pygame.time.wait(1000)

 g(i)

 h = None

 pygame.display.update()

 a.tick(30)

def d(ccc):

 hh = []

 for i in range(10):

 hh.append([ccc] * 7)

 return hh

def c():

 rr = []

 for tt in ((255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 128,

0), (255, 0, 255), (0, 255, 255)):

 for ss in ('a', 'b', 'c', 'd', 'e'):

 rr.append((ss, tt))

 random.shuffle(rr)

 rr = rr[:35] * 2

 random.shuffle(rr)

 bbb = []

 for x in range(10):

 v = []

 for y in range(7):

 v.append(rr[0])

 del rr[0]

 bbb.append(v)

 return bbb

def t(vv, uu):

 ww = []

 for i in range(0, len(uu), vv):

 ww.append(uu[i:i + vv])

 return ww

def aa(bb, ee):

 return (bb * 50 + 70, ee * 50 + 65)

def m(x, y):

Chapter 3 – Memory Puzzle 73

 for bb in range(10):

 for ee in range(7):

 oo, ddd = aa(bb, ee)

 aaa = pygame.Rect(oo, ddd, 40, 40)

 if aaa.collidepoint(x, y):

 return (bb, ee)

 return (None, None)

def w(ss, tt, bb, ee):

 oo, ddd = aa(bb, ee)

 if ss == 'a':

 pygame.draw.circle(b, tt, (oo + 20, ddd + 20), 15)

 pygame.draw.circle(b, (60, 60, 100), (oo + 20, ddd + 20), 5)

 elif ss == 'b':

 pygame.draw.rect(b, tt, (oo + 10, ddd + 10, 20, 20))

 elif ss == 'c':

 pygame.draw.polygon(b, tt, ((oo + 20, ddd), (oo + 40 - 1, ddd + 20),

(oo + 20, ddd + 40 - 1), (oo, ddd + 20)))

 elif ss == 'd':

 for i in range(0, 40, 4):

 pygame.draw.line(b, tt, (oo, ddd + i), (oo + i, ddd))

 pygame.draw.line(b, tt, (oo + i, ddd + 39), (oo + 39, ddd + i))

 elif ss == 'e':

 pygame.draw.ellipse(b, tt, (oo, ddd + 10, 40, 20))

def s(bbb, bb, ee):

 return bbb[bb][ee][0], bbb[bb][ee][1]

def dd(bbb, boxes, gg):

 for box in boxes:

 oo, ddd = aa(box[0], box[1])

 pygame.draw.rect(b, (60, 60, 100), (oo, ddd, 40, 40))

 ss, tt = s(bbb, box[0], box[1])

 w(ss, tt, box[0], box[1])

 if gg > 0:

 pygame.draw.rect(b, (255, 255, 255), (oo, ddd, gg, 40))

 pygame.display.update()

 a.tick(30)

def o(bbb, cc):

 for gg in range(40, (-8) - 1, -8):

 dd(bbb, cc, gg)

def p(bbb, ff):

 for gg in range(0, 48, 8):

 dd(bbb, ff, gg)

def f(bbb, pp):

 for bb in range(10):

 for ee in range(7):

 oo, ddd = aa(bb, ee)

 if not pp[bb][ee]:

 pygame.draw.rect(b, (255, 255, 255), (oo, ddd, 40, 40))

74 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 else:

 ss, tt = s(bbb, bb, ee)

 w(ss, tt, bb, ee)

def n(bb, ee):

 oo, ddd = aa(bb, ee)

 pygame.draw.rect(b, (0, 0, 255), (oo - 5, ddd - 5, 50, 50), 4)

def g(bbb):

 mm = d(False)

 boxes = []

 for x in range(10):

 for y in range(7):

 boxes.append((x, y))

 random.shuffle(boxes)

 kk = t(8, boxes)

 f(bbb, mm)

 for nn in kk:

 o(bbb, nn)

 p(bbb, nn)

def jj(bbb):

 mm = d(True)

 tt1 = (100, 100, 100)

 tt2 = (60, 60, 100)

 for i in range(13):

 tt1, tt2 = tt2, tt1

 b.fill(tt1)

 f(bbb, mm)

 pygame.display.update()

 pygame.time.wait(300)

def ii(hh):

 for i in hh:

 if False in i:

 return False

 return True

if __name__ == '__main__':

 hhh()

Never write code like this. If you program like this while facing the mirror in a bathroom with the

lights turned off, the ghost of Ada Lovelace will come out of the mirror and throw you into the

jaws of a Jacquard loom.

Summary, and a Hacking Suggestion
This chapter covers the entire explanation of how the Memory Puzzle program works. Read over

the chapter and the source code again to understand it better. Many of the other game programs in

this book make use of the same programming concepts (like nested for loops, syntactic sugar,

Chapter 3 – Memory Puzzle 75

and different coordinate systems in the same program) so they won’t be explained again to keep

this book short.

One idea to try out to understand how the code works is to intentionally break it by commenting

out random lines. Doing this to some of the lines will probably cause a syntactic error that will

prevent the script from running at all. But commenting out other lines will result in weird bugs

and other cool effects. Try doing this and then figure out why a program has the bugs it does.

This is also the first step in being able to add your own secret cheats or hacks to the program. By

breaking the program from what it normally does, you can learn how to change it to do something

neat effect (like secretly giving you hints on how to solve the puzzle). Feel free to experiment.

You can always save a copy of the unchanged source code in a different file if you want to play

the regular game again.

In fact, if you’d like some practice fixing bugs, there are several versions of this game’s source

code that have small bugs in them. You can download these buggy versions from

http://invpy.com/buggy/memorypuzzle. Try running the program to figure out what the bug is,

and why the program is acting that way.

76 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Chapter 4 – Slide Puzzle 77

CHAPTER 4 – SLIDE PUZZLE

How to Play Slide Puzzle
The board is a 4x4 grid with fifteen tiles (numbered 1 through 15 going left to right) and one

blank space. The tiles start out in random positions, and the player must slide tiles around until

the tiles are back in their original order.

Source Code to Slide Puzzle
This source code can be downloaded from http://invpy.com/slidepuzzle.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

http://invpy.com/diff/slidepuzzle to see if the differences between your code and the code in the

book.

 1. # Slide Puzzle

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import pygame, sys, random

 7. from pygame.locals import *

 8.

 9. # Create the constants (go ahead and experiment with different values)

 10. BOARDWIDTH = 4 # number of columns in the board

 11. BOARDHEIGHT = 4 # number of rows in the board

 12. TILESIZE = 80

78 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 13. WINDOWWIDTH = 640

 14. WINDOWHEIGHT = 480

 15. FPS = 30

 16. BLANK = None

 17.

 18. # R G B

 19. BLACK = (0, 0, 0)

 20. WHITE = (255, 255, 255)

 21. BRIGHTBLUE = (0, 50, 255)

 22. DARKTURQUOISE = (3, 54, 73)

 23. GREEN = (0, 204, 0)

 24.

 25. BGCOLOR = DARKTURQUOISE

 26. TILECOLOR = GREEN

 27. TEXTCOLOR = WHITE

 28. BORDERCOLOR = BRIGHTBLUE

 29. BASICFONTSIZE = 20

 30.

 31. BUTTONCOLOR = WHITE

 32. BUTTONTEXTCOLOR = BLACK

 33. MESSAGECOLOR = WHITE

 34.

 35. XMARGIN = int((WINDOWWIDTH - (TILESIZE * BOARDWIDTH + (BOARDWIDTH - 1))) /

2)

 36. YMARGIN = int((WINDOWHEIGHT - (TILESIZE * BOARDHEIGHT + (BOARDHEIGHT -

1))) / 2)

 37.

 38. UP = 'up'

 39. DOWN = 'down'

 40. LEFT = 'left'

 41. RIGHT = 'right'

 42.

 43. def main():

 44. global FPSCLOCK, DISPLAYSURF, BASICFONT, RESET_SURF, RESET_RECT,

NEW_SURF, NEW_RECT, SOLVE_SURF, SOLVE_RECT

 45.

 46. pygame.init()

 47. FPSCLOCK = pygame.time.Clock()

 48. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 49. pygame.display.set_caption('Slide Puzzle')

 50. BASICFONT = pygame.font.Font('freesansbold.ttf', BASICFONTSIZE)

 51.

 52. # Store the option buttons and their rectangles in OPTIONS.

 53. RESET_SURF, RESET_RECT = makeText('Reset', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 90)

Chapter 4 – Slide Puzzle 79

 54. NEW_SURF, NEW_RECT = makeText('New Game', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 60)

 55. SOLVE_SURF, SOLVE_RECT = makeText('Solve', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 30)

 56.

 57. mainBoard, solutionSeq = generateNewPuzzle(80)

 58. SOLVEDBOARD = getStartingBoard() # a solved board is the same as the

board in a start state.

 59. allMoves = [] # list of moves made from the solved configuration

 60.

 61. while True: # main game loop

 62. slideTo = None # the direction, if any, a tile should slide

 63. msg = '' # contains the message to show in the upper left corner.

 64. if mainBoard == SOLVEDBOARD:

 65. msg = 'Solved!'

 66.

 67. drawBoard(mainBoard, msg)

 68.

 69. checkForQuit()

 70. for event in pygame.event.get(): # event handling loop

 71. if event.type == MOUSEBUTTONUP:

 72. spotx, spoty = getSpotClicked(mainBoard, event.pos[0],

event.pos[1])

 73.

 74. if (spotx, spoty) == (None, None):

 75. # check if the user clicked on an option button

 76. if RESET_RECT.collidepoint(event.pos):

 77. resetAnimation(mainBoard, allMoves) # clicked on

Reset button

 78. allMoves = []

 79. elif NEW_RECT.collidepoint(event.pos):

 80. mainBoard, solutionSeq = generateNewPuzzle(80) #

clicked on New Game button

 81. allMoves = []

 82. elif SOLVE_RECT.collidepoint(event.pos):

 83. resetAnimation(mainBoard, solutionSeq + allMoves)

clicked on Solve button

 84. allMoves = []

 85. else:

 86. # check if the clicked tile was next to the blank spot

 87.

 88. blankx, blanky = getBlankPosition(mainBoard)

 89. if spotx == blankx + 1 and spoty == blanky:

 90. slideTo = LEFT

 91. elif spotx == blankx - 1 and spoty == blanky:

80 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 92. slideTo = RIGHT

 93. elif spotx == blankx and spoty == blanky + 1:

 94. slideTo = UP

 95. elif spotx == blankx and spoty == blanky - 1:

 96. slideTo = DOWN

 97.

 98. elif event.type == KEYUP:

 99. # check if the user pressed a key to slide a tile

100. if event.key in (K_LEFT, K_a) and isValidMove(mainBoard,

LEFT):

101. slideTo = LEFT

102. elif event.key in (K_RIGHT, K_d) and

isValidMove(mainBoard, RIGHT):

103. slideTo = RIGHT

104. elif event.key in (K_UP, K_w) and isValidMove(mainBoard,

UP):

105. slideTo = UP

106. elif event.key in (K_DOWN, K_s) and isValidMove(mainBoard,

DOWN):

107. slideTo = DOWN

108.

109. if slideTo:

110. slideAnimation(mainBoard, slideTo, 'Click tile or press arrow

keys to slide.', 8) # show slide on screen

111. makeMove(mainBoard, slideTo)

112. allMoves.append(slideTo) # record the slide

113. pygame.display.update()

114. FPSCLOCK.tick(FPS)

115.

116.

117. def terminate():

118. pygame.quit()

119. sys.exit()

120.

121.

122. def checkForQuit():

123. for event in pygame.event.get(QUIT): # get all the QUIT events

124. terminate() # terminate if any QUIT events are present

125. for event in pygame.event.get(KEYUP): # get all the KEYUP events

126. if event.key == K_ESCAPE:

127. terminate() # terminate if the KEYUP event was for the Esc key

128. pygame.event.post(event) # put the other KEYUP event objects back

129.

130.

131. def getStartingBoard():

132. # Return a board data structure with tiles in the solved state.

Chapter 4 – Slide Puzzle 81

133. # For example, if BOARDWIDTH and BOARDHEIGHT are both 3, this function

134. # returns [[1, 4, 7], [2, 5, 8], [3, 6, None]]

135. counter = 1

136. board = []

137. for x in range(BOARDWIDTH):

138. column = []

139. for y in range(BOARDHEIGHT):

140. column.append(counter)

141. counter += BOARDWIDTH

142. board.append(column)

143. counter -= BOARDWIDTH * (BOARDHEIGHT - 1) + BOARDWIDTH - 1

144.

145. board[BOARDWIDTH-1][BOARDHEIGHT-1] = None

146. return board

147.

148.

149. def getBlankPosition(board):

150. # Return the x and y of board coordinates of the blank space.

151. for x in range(BOARDWIDTH)):

152. for y in range(BOARDHEIGHT):

153. if board[x][y] == None:

154. return (x, y)

155.

156.

157. def makeMove(board, move):

158. # This function does not check if the move is valid.

159. blankx, blanky = getBlankPosition(board)

160.

161. if move == UP:

162. board[blankx][blanky], board[blankx][blanky + 1] =

board[blankx][blanky + 1], board[blankx][blanky]

163. elif move == DOWN:

164. board[blankx][blanky], board[blankx][blanky - 1] =

board[blankx][blanky - 1], board[blankx][blanky]

165. elif move == LEFT:

166. board[blankx][blanky], board[blankx + 1][blanky] = board[blankx +

1][blanky], board[blankx][blanky]

167. elif move == RIGHT:

168. board[blankx][blanky], board[blankx - 1][blanky] = board[blankx -

1][blanky], board[blankx][blanky]

169.

170.

171. def isValidMove(board, move):

172. blankx, blanky = getBlankPosition(board)

173. return (move == UP and blanky != len(board[0]) - 1) or \

174. (move == DOWN and blanky != 0) or \

82 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

175. (move == LEFT and blankx != len(board) - 1) or \

176. (move == RIGHT and blankx != 0)

177.

178.

179. def getRandomMove(board, lastMove=None):

180. # start with a full list of all four moves

181. validMoves = [UP, DOWN, LEFT, RIGHT]

182.

183. # remove moves from the list as they are disqualified

184. if lastMove == UP or not isValidMove(board, DOWN):

185. validMoves.remove(DOWN)

186. if lastMove == DOWN or not isValidMove(board, UP):

187. validMoves.remove(UP)

188. if lastMove == LEFT or not isValidMove(board, RIGHT):

189. validMoves.remove(RIGHT)

190. if lastMove == RIGHT or not isValidMove(board, LEFT):

191. validMoves.remove(LEFT)

192.

193. # return a random move from the list of remaining moves

194. return random.choice(validMoves)

195.

196.

197. def getLeftTopOfTile(tileX, tileY):

198. left = XMARGIN + (tileX * TILESIZE) + (tileX - 1)

199. top = YMARGIN + (tileY * TILESIZE) + (tileY - 1)

200. return (left, top)

201.

202.

203. def getSpotClicked(board, x, y):

204. # from the x & y pixel coordinates, get the x & y board coordinates

205. for tileX in range(len(board)):

206. for tileY in range(len(board[0])):

207. left, top = getLeftTopOfTile(tileX, tileY)

208. tileRect = pygame.Rect(left, top, TILESIZE, TILESIZE)

209. if tileRect.collidepoint(x, y):

210. return (tileX, tileY)

211. return (None, None)

212.

213.

214. def drawTile(tilex, tiley, number, adjx=0, adjy=0):

215. # draw a tile at board coordinates tilex and tiley, optionally a few

216. # pixels over (determined by adjx and adjy)

217. left, top = getLeftTopOfTile(tilex, tiley)

218. pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left + adjx, top + adjy,

TILESIZE, TILESIZE))

219. textSurf = BASICFONT.render(str(number), True, TEXTCOLOR)

Chapter 4 – Slide Puzzle 83

220. textRect = textSurf.get_rect()

221. textRect.center = left + int(TILESIZE / 2) + adjx, top + int(TILESIZE

/ 2) + adjy

222. DISPLAYSURF.blit(textSurf, textRect)

223.

224.

225. def makeText(text, color, bgcolor, top, left):

226. # create the Surface and Rect objects for some text.

227. textSurf = BASICFONT.render(text, True, color, bgcolor)

228. textRect = textSurf.get_rect()

229. textRect.topleft = (top, left)

230. return (textSurf, textRect)

231.

232.

233. def drawBoard(board, message):

234. DISPLAYSURF.fill(BGCOLOR)

235. if message:

236. textSurf, textRect = makeText(message, MESSAGECOLOR, BGCOLOR, 5,

5)

237. DISPLAYSURF.blit(textSurf, textRect)

238.

239. for tilex in range(len(board)):

240. for tiley in range(len(board[0])):

241. if board[tilex][tiley]:

242. drawTile(tilex, tiley, board[tilex][tiley])

243.

244. left, top = getLeftTopOfTile(0, 0)

245. width = BOARDWIDTH * TILESIZE

246. height = BOARDHEIGHT * TILESIZE

247. pygame.draw.rect(DISPLAYSURF, BORDERCOLOR, (left - 5, top - 5, width +

11, height + 11), 4)

248.

249. DISPLAYSURF.blit(RESET_SURF, RESET_RECT)

250. DISPLAYSURF.blit(NEW_SURF, NEW_RECT)

251. DISPLAYSURF.blit(SOLVE_SURF, SOLVE_RECT)

252.

253.

254. def slideAnimation(board, direction, message, animationSpeed):

255. # Note: This function does not check if the move is valid.

256.

257. blankx, blanky = getBlankPosition(board)

258. if direction == UP:

259. movex = blankx

260. movey = blanky + 1

261. elif direction == DOWN:

262. movex = blankx

84 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

263. movey = blanky - 1

264. elif direction == LEFT:

265. movex = blankx + 1

266. movey = blanky

267. elif direction == RIGHT:

268. movex = blankx - 1

269. movey = blanky

270.

271. # prepare the base surface

272. drawBoard(board, message)

273. baseSurf = DISPLAYSURF.copy()

274. # draw a blank space over the moving tile on the baseSurf Surface.

275. moveLeft, moveTop = getLeftTopOfTile(movex, movey)

276. pygame.draw.rect(baseSurf, BGCOLOR, (moveLeft, moveTop, TILESIZE,

TILESIZE))

277.

278. for i in range(0, TILESIZE, animationSpeed):

279. # animate the tile sliding over

280. checkForQuit()

281. DISPLAYSURF.blit(baseSurf, (0, 0))

282. if direction == UP:

283. drawTile(movex, movey, board[movex][movey], 0, -i)

284. if direction == DOWN:

285. drawTile(movex, movey, board[movex][movey], 0, i)

286. if direction == LEFT:

287. drawTile(movex, movey, board[movex][movey], -i, 0)

288. if direction == RIGHT:

289. drawTile(movex, movey, board[movex][movey], i, 0)

290.

291. pygame.display.update()

292. FPSCLOCK.tick(FPS)

293.

294.

295. def generateNewPuzzle(numSlides):

296. # From a starting configuration, make numSlides number of moves (and

297. # animate these moves).

298. sequence = []

299. board = getStartingBoard()

300. drawBoard(board, '')

301. pygame.display.update()

302. pygame.time.wait(500) # pause 500 milliseconds for effect

303. lastMove = None

304. for i in range(numSlides):

305. move = getRandomMove(board, lastMove)

306. slideAnimation(board, move, 'Generating new puzzle...',

int(TILESIZE / 3))

Chapter 4 – Slide Puzzle 85

307. makeMove(board, move)

308. sequence.append(move)

309. lastMove = move

310. return (board, sequence)

311.

312.

313. def resetAnimation(board, allMoves):

314. # make all of the moves in allMoves in reverse.

315. revAllMoves = allMoves[:] # gets a copy of the list

316. revAllMoves.reverse()

317.

318. for move in revAllMoves:

319. if move == UP:

320. oppositeMove = DOWN

321. elif move == DOWN:

322. oppositeMove = UP

323. elif move == RIGHT:

324. oppositeMove = LEFT

325. elif move == LEFT:

326. oppositeMove = RIGHT

327. slideAnimation(board, oppositeMove, '', int(TILESIZE / 2))

328. makeMove(board, oppositeMove)

329.

330.

331. if __name__ == '__main__':

332. main()

Second Verse, Same as the First
Much of the code in Wormy is similar to the previous games we’ve looked at, especially the

constants being set at the start of the code.

 1. # Slide Puzzle

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import pygame, sys, random

 7. from pygame.locals import *

 8.

 9. # Create the constants (go ahead and experiment with different values)

 10. BOARDWIDTH = 4 # number of columns in the board

 11. BOARDHEIGHT = 4 # number of rows in the board

 12. TILESIZE = 80

 13. WINDOWWIDTH = 640

86 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 14. WINDOWHEIGHT = 480

 15. FPS = 30

 16. BLANK = None

 17.

 18. # R G B

 19. BLACK = (0, 0, 0)

 20. WHITE = (255, 255, 255)

 21. BRIGHTBLUE = (0, 50, 255)

 22. DARKTURQUOISE = (3, 54, 73)

 23. GREEN = (0, 204, 0)

 24.

 25. BGCOLOR = DARKTURQUOISE

 26. TILECOLOR = GREEN

 27. TEXTCOLOR = WHITE

 28. BORDERCOLOR = BRIGHTBLUE

 29. BASICFONTSIZE = 20

 30.

 31. BUTTONCOLOR = WHITE

 32. BUTTONTEXTCOLOR = BLACK

 33. MESSAGECOLOR = WHITE

 34.

 35. XMARGIN = int((WINDOWWIDTH - (TILESIZE * BOARDWIDTH + (BOARDWIDTH - 1))) /

2)

 36. YMARGIN = int((WINDOWHEIGHT - (TILESIZE * BOARDHEIGHT + (BOARDHEIGHT -

1))) / 2)

 37.

 38. UP = 'up'

 39. DOWN = 'down'

 40. LEFT = 'left'

 41. RIGHT = 'right'

This code at the top of the program just handles all the basic importing of modules and creating

constants. This is just like the beginning of the Memory Puzzle game from the last chapter.

Setting Up the Buttons

 43. def main():

 44. global FPSCLOCK, DISPLAYSURF, BASICFONT, RESET_SURF, RESET_RECT,

NEW_SURF, NEW_RECT, SOLVE_SURF, SOLVE_RECT

 45.

 46. pygame.init()

 47. FPSCLOCK = pygame.time.Clock()

 48. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 49. pygame.display.set_caption('Slide Puzzle')

 50. BASICFONT = pygame.font.Font('freesansbold.ttf', BASICFONTSIZE)

 51.

Chapter 4 – Slide Puzzle 87

 52. # Store the option buttons and their rectangles in OPTIONS.

 53. RESET_SURF, RESET_RECT = makeText('Reset', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 90)

 54. NEW_SURF, NEW_RECT = makeText('New Game', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 60)

 55. SOLVE_SURF, SOLVE_RECT = makeText('Solve', TEXTCOLOR, TILECOLOR,

WINDOWWIDTH - 120, WINDOWHEIGHT - 30)

 56.

 57. mainBoard, solutionSeq = generateNewPuzzle(80)

 58. SOLVEDBOARD = getStartingBoard() # a solved board is the same as the

board in a start state.

Just like in the last chapter, the functions called from the main() function calls will be

explained later in the chapter. For now, you just need to know what they do and what values they

return. You don’t need to know how they work.

The first part of the main() function will handle creating the window, Clock object, and Font

object. The makeText() function is defined later in the program, but for now you just need to

know that it returns a pygame.Surface object and pygame.Rect object which can be used

to make clickable buttons. The Slide Puzzle game will have three buttons: a ―Reset‖ button that

will undo any moves the player has made, a ―New‖ button that will create a new slide puzzle, and

a ―Solve‖ button that will solve the puzzle for the player.

We will need to have two board data structures for this program. One board will represent the

current game state. The other board will have its tiles in the ―solved‖ state, meaning that all the

tiles are lined up in order. When the current game state’s board is exactly the same as the solved

board, then we know the player has won. (We won’t ever change this second one. It’ll just be

there to compare the current game state board to.)

The generateNewPuzzle() will create a board data structure that started off in the ordered,

solved state and then had 80 random slide moves performed on it (because we passed the integer

80 to it. If we want the board to be even more jumbled, then we can pass a larger integer to it).

This will make the board into a randomly jumbled state that the player will have to solve (which

will be stored in a variable named mainBoard). The generateNewBoard() also returns a

list of all the random moves that were performed on it (which will be stored in a variable named

solutionSeq).

Being Smart By Using Stupid Code

 59. allMoves = [] # list of moves made from the solved configuration

88 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Solving a slide puzzle can be really tricky. We could program the computer to do it, but that

would require us to figure out an algorithm that can solve the slide puzzle. That would be very

difficult and involve a lot of cleverness and effort to put into this program.

Fortunately, there’s an easier way. We could just have the computer memorize all the random

slides it made when it created the board data structure, and then the board can be solved just by

performing the opposite slide. Since the board originally started in the solved state, undoing all

the slides would return it to the solved state.

For example, below we perform a ―right‖ slide on the board on the left side of the page, which

leaves the board in the state that is on the right side of the page:

After the right slide, if we do the opposite slide (a left slide) then the board will be back in the

original state. So to get back to the original state after several slides, we just have to do the

opposite slides in reverse order. If we did a right slide, then another right slide, then a down slide,

we would have to do an up slide, left slide, and left slide to undo those first three slides. This is

much easier than writing a function that can solve these puzzles simply by looking at the current

state of them.

The Main Game Loop

 61. while True: # main game loop

 62. slideTo = None # the direction, if any, a tile should slide

 63. msg = '' # contains the message to show in the upper left corner.

 64. if mainBoard == SOLVEDBOARD:

 65. msg = 'Solved!'

 66.

 67. drawBoard(mainBoard, msg)

In the main game loop, the slideTo variable will track which direction the player wants to slide

a tile (it starts off at the beginning of the game loop as None and is set later) and the msg

variable tracks what string to display at the top of the window. The program does a quick check

on line 64 to see if the board data structure has the same value as the solved board data structure

stored in SOLVEDBOARD. If so, then the msg variable is changed to the string 'Solved!'.

Chapter 4 – Slide Puzzle 89

This won’t appear on the screen until drawBoard() has been called to draw it to the

DISPLAYSURF Surface object (which is done on line 67) and pygame.display.update()

is called to draw the display Surface object on the actual computer screen (which is done on line

291 at the end of the game loop).

Clicking on the Buttons

 69. checkForQuit()

 70. for event in pygame.event.get(): # event handling loop

 71. if event.type == MOUSEBUTTONUP:

 72. spotx, spoty = getSpotClicked(mainBoard, event.pos[0],

event.pos[1])

 73.

 74. if (spotx, spoty) == (None, None):

 75. # check if the user clicked on an option button

 76. if RESET_RECT.collidepoint(event.pos):

 77. resetAnimation(mainBoard, allMoves) # clicked on

Reset button

 78. allMoves = []

 79. elif NEW_RECT.collidepoint(event.pos):

 80. mainBoard, solutionSeq = generateNewPuzzle(80) #

clicked on New Game button

 81. allMoves = []

 82. elif SOLVE_RECT.collidepoint(event.pos):

 83. resetAnimation(mainBoard, solutionSeq + allMoves)

clicked on Solve button

 84. allMoves = []

Before going into the event loop, the program calls checkForQuit() on line 69 to see if any

QUIT events have been created (and terminates the program if there have). Why we have a

separate function (the checkForQuit() function) for handling the QUIT events will be

explained later. The for loop on line 70 executes the event handling code for any other event

created since the last time pygame.event.get() was called (or since the program started, if

pygame.event.get() has never been called before).

If the type of event was a MOUSEBUTTONUP event (that is, the player had released a mouse

button somewhere over the window), then we pass the mouse coordinates to our

getSpotClicked() function which will return the board coordinates of the spot on the board

the mouse release happened. The event.pos[0] is the X coordinate and event.pos[1] is

the Y coordinate.

If the mouse button release did not happen over one of the spaces on the board (but obviously still

happened somewhere on the window, since a MOUSEBUTTONUP event was created), then

getSpotClicked() will return None. If this is the case, we want to do an additional check to

90 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

see if the player might have clicked on the Reset, New, or Solve buttons (which are not located on

the board).

The coordinates of where these buttons are on the window are stored in the pygame.Rect

objects that are stored in the RESET_RECT, NEW_RECT, and SOLVE_RECT variables. We can

pass the mouse coordinates from the Event object to the collidepoint() method. This

method will return True if the mouse coordinates are within the Rect object’s area and False

otherwise.

Sliding Tiles with the Mouse

 85. else:

 86. # check if the clicked tile was next to the blank spot

 87.

 88. blankx, blanky = getBlankPosition(mainBoard)

 89. if spotx == blankx + 1 and spoty == blanky:

 90. slideTo = LEFT

 91. elif spotx == blankx - 1 and spoty == blanky:

 92. slideTo = RIGHT

 93. elif spotx == blankx and spoty == blanky + 1:

 94. slideTo = UP

 95. elif spotx == blankx and spoty == blanky - 1:

 96. slideTo = DOWN

If getSpotClicked() did not return (None, None), then it will have returned a tuple of

two integer values that represent the X and Y coordinate of the spot on the board that was clicked.

Then the if and elif statements on lines 89 to 96 check if the spot that was clicked is a tile that

is next to the blank spot (otherwise the tile will have no place to slide).

Our getBlankPosition() function will take the board data structure and return the X and Y

board coordinates of the blank spot, which we store in the variables blankx and blanky. If the

spot the user clicked on was next to the blank space, we set the slideTo variable with the value

that the tile should slide.

Sliding Tiles with the Keyboard

 98. elif event.type == KEYUP:

 99. # check if the user pressed a key to slide a tile

100. if event.key in (K_LEFT, K_a) and isValidMove(mainBoard,

LEFT):

101. slideTo = LEFT

102. elif event.key in (K_RIGHT, K_d) and

isValidMove(mainBoard, RIGHT):

103. slideTo = RIGHT

Chapter 4 – Slide Puzzle 91

104. elif event.key in (K_UP, K_w) and isValidMove(mainBoard,

UP):

105. slideTo = UP

106. elif event.key in (K_DOWN, K_s) and isValidMove(mainBoard,

DOWN):

107. slideTo = DOWN

We can also let the user slide tiles by pressing keyboard keys. The if and elif statements on

lines 100 to 107 let the user set the slideTo variable by either pressing the arrow keys or the

WASD keys (explained later). Each if and elif statement also has a call to isValidMove()

to make sure that the tile can slide in that direction. (We didn’t have to make this call with the

mouse clicks because the checks for the neighboring blank space did the same thing.)

“Equal To One Of” Trick with the in Operator
The expression event.key in (K_LEFT, K_a) is just a Python trick to make the code

simpler. It is a way of saying ―evaluate to True if event.key is equal to one of K_LEFT or

K_a‖. The following two expressions will evaluate the exact same way:

event.key in (K_LEFT, K_a)

event.key == K_LEFT or event.key == K_a

You can really save on some space by using this trick when you have to check if a value is equal

to one of multiple values. The following two expressions will evaluate the exact same way:

spam == 'dog' or spam == 'cat' or spam == 'mouse' or spam == 'horse' or spam ==

42 or spam == 'dingo'

spam in ('dog', 'cat', 'mouse', 'horse', 42, 'dingo')

WASD and Arrow Keys
The W, A, S, and D keys (together called the WASD keys, pronounced ―waz-dee‖) are

commonly used in computer games to do the same thing as the arrow keys, except the player can

use their left hand instead (since the WASD keys are on the left side of the keyboard). W is for

up, A is for left, S is for down, and D is for right. You can easily remember this because the

WASD keys have the same layout as the arrow keys:

92 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Actually Performing the Tile Slide

109. if slideTo:

110. slideAnimation(mainBoard, slideTo, 'Click tile or press arrow

keys to slide.', 8) # show slide on screen

111. makeMove(mainBoard, slideTo)

112. allMoves.append(slideTo) # record the slide

113. pygame.display.update()

114. FPSCLOCK.tick(FPS)

Now that the events have all been handled, we should update the variables of the game state and

display the new state on the screen. If slideTo has been set (either by the mouse event or

keyboard event handling code) then we can call slideAnimation() to perform the sliding

animation. The parameters are the board data structure, the direction of the slide, a message to

display while sliding the tile, and the speed of the sliding.

After it returns, we need to update the actual board data structure (which is done by the

makeMove() function) and then add the slide to the allMoves list of all the slides made so

far. This is done so that if the player clicks on the ―Reset‖ button, we know how to undo all the

player’s slides.

IDLE and Terminating Pygame Programs

117. def terminate():

118. pygame.quit()

119. sys.exit()

This is a function that we can call that calls both the pygame.quit() and sys.exit()

functions. This is a bit of syntactic sugar, so that instead of remembering to make both of these

calls, there is just a single function we can call instead.

Checking for a Specific Event, and Posting Events to Pygame’s Event

Queue

122. def checkForQuit():

123. for event in pygame.event.get(QUIT): # get all the QUIT events

124. terminate() # terminate if any QUIT events are present

Chapter 4 – Slide Puzzle 93

125. for event in pygame.event.get(KEYUP): # get all the KEYUP events

126. if event.key == K_ESCAPE:

127. terminate() # terminate if the KEYUP event was for the Esc key

128. pygame.event.post(event) # put the other KEYUP event objects back

The checkForQuit() function will check for QUIT events (or if the user has pressed the Esc

key) and then call the terminate() function. But this is a bit tricky and requires some

explanation.

Pygame internally has its own list data structure that it creates and appends Event objects to as

they are made. This data structure is called the event queue. When the

pygame.event.get() function is called with no parameters, the entire list is returned.

However, you can pass a constant like QUIT to pygame.event.get() so that it will only

return the QUIT events (if any) that are in the internal event queue. The rest of the events will

stay in the event queue for the next time pygame.event.get() is called.

You should note that Pygame’s event queue only stores up to 127 Event objects. If your program

does not call pygame.event.get() frequently enough and the queue fills up, then any new

events that happen won’t be added to the event queue.

Line 123 pulls out a list of QUIT events from Pygame’s event queue and returns them. If there

are any QUIT events in the event queue, the program terminates.

Line 125 pulls out all the KEYUP events from the event queue and checks if any of them are for

the Esc key. If one of the events is, then the program terminates. However, there could be KEYUP

events for keys other than the Esc key. In this case, we need to put the KEYUP event back into

Pygame’s event queue. We can do this with the pygame.event.post() function, which adds

the Event object passed to it to the end of the Pygame event queue. This way, when line 70 calls

pygame.event.get() the non-Esc key KEYUP events will still be there. Otherwise calls to

checkForQuit() would ―consume‖ all of the KEYUP events and those events would never be

handled.

The pygame.event.post() function is also handy if you ever want your program to add

Event objects to the Pygame event queue.

Creating the Board Data Structure

131. def getStartingBoard():

132. # Return a board data structure with tiles in the solved state.

133. # For example, if BOARDWIDTH and BOARDHEIGHT are both 3, this function

134. # returns [[1, 4, 7], [2, 5, 8], [3, 6, None]]

135. counter = 1

94 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

136. board = []

137. for x in range(BOARDWIDTH):

138. column = []

139. for y in range(BOARDHEIGHT):

140. column.append(counter)

141. counter += BOARDWIDTH

142. board.append(column)

143. counter -= BOARDWIDTH * (BOARDHEIGHT - 1) + BOARDWIDTH - 1

144.

145. board[BOARDWIDTH-1][BOARDHEIGHT-1] = None

146. return board

The getStartingBoard() data structure will create and return a data structure that

represents a ―solved‖ board, where all the numbered tiles are in order and the blank tile is in the

lower right corner. This is done with nested for loops, just like the board data structure in the

Memory Puzzle game was made.

However, notice that the first column isn’t going to be [1, 2, 3] but instead [1, 4, 7].

This is because the numbers on the tiles increase by 1 going across the row, not down the column.

Going down the column, the numbers increase by the size of the board’s width (which is stored in

the BOARDWIDTH constant). We will use the counter variable to keep track of the number that

should go on the next tile. When the numbering of the tiles in the column is finished, then we

need to set counter to the number at the start of the next column.

Not Tracking the Blank Position

149. def getBlankPosition(board):

150. # Return the x and y of board coordinates of the blank space.

151. for x in range(BOARDWIDTH)):

152. for y in range(BOARDHEIGHT):

153. if board[x][y] == None:

154. return (x, y)

Whenever our code needs to find the XY coordinates of the blank space, instead of keeping track

of where the blank space is after each slide, we can just create a function that goes through the

entire board and finds the blank space coordinates. The None value is used in the board data

structure to represent the blank space. The code in getBlankPosition() simply uses nested

for loops to find which space on the board is the blank space.

Making a Move by Updating the Board Data Structure

157. def makeMove(board, move):

158. # This function does not check if the move is valid.

Chapter 4 – Slide Puzzle 95

159. blankx, blanky = getBlankPosition(board)

160.

161. if move == UP:

162. board[blankx][blanky], board[blankx][blanky + 1] =

board[blankx][blanky + 1], board[blankx][blanky]

163. elif move == DOWN:

164. board[blankx][blanky], board[blankx][blanky - 1] =

board[blankx][blanky - 1], board[blankx][blanky]

165. elif move == LEFT:

166. board[blankx][blanky], board[blankx + 1][blanky] = board[blankx +

1][blanky], board[blankx][blanky]

167. elif move == RIGHT:

168. board[blankx][blanky], board[blankx - 1][blanky] = board[blankx -

1][blanky], board[blankx][blanky]

The data structure in the board parameter is a 2D list that represents where all the tiles are.

Whenever the player makes a move, the program needs to update this data structure. What

happens is that the value for the tile is swapped with the value for the blank space.

The makeMove() function doesn’t have to return any values, because the board parameter has

a list reference passed for its argument. This means that any changes we make to board in this

function will be made to the list value that was passed to makeMove(). (You can review the

concept of references at http://invpy.com/references.)

When NOT to Use an Assertion

171. def isValidMove(board, move):

172. blankx, blanky = getBlankPosition(board)

173. return (move == UP and blanky != len(board[0]) - 1) or \

174. (move == DOWN and blanky != 0) or \

175. (move == LEFT and blankx != len(board) - 1) or \

176. (move == RIGHT and blankx != 0)

The isValidMove() function is passed a board data structure and a move the player would

want to make. The return value is True if this move is possible and False if it is not. For

example, you cannot slide a tile to the left one hundred times in a row, because eventually the

blank space will be at the edge and there are no more tiles to slide to the left.

Whether a move is valid or not depends on where the blank space is. This function makes a call to

getBlankPosition() to find the X and Y coordinates of the blank spot. Lines 173 to 176

are a return statement with a single expression. The \ slashes at the end of the first three lines

tells the Python interpreter that that is not the end of the line of code (even though it is at the end

96 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

of the line). This will let us split up a ―line of code‖ across multiple lines to look pretty, rather

than just have one very long unreadable line.

Because the parts of this expression in parentheses are joined by or operators, only one of them

needs to be True for the entire expression to be True. Each of these parts checks what the

intended move is and then sees if the coordinate of the blank space allows that move.

Getting a Not-So-Random Move

179. def getRandomMove(board, lastMove=None):

180. # start with a full list of all four moves

181. validMoves = [UP, DOWN, LEFT, RIGHT]

182.

183. # remove moves from the list as they are disqualified

184. if lastMove == UP or not isValidMove(board, DOWN):

185. validMoves.remove(DOWN)

186. if lastMove == DOWN or not isValidMove(board, UP):

187. validMoves.remove(UP)

188. if lastMove == LEFT or not isValidMove(board, RIGHT):

189. validMoves.remove(RIGHT)

190. if lastMove == RIGHT or not isValidMove(board, LEFT):

191. validMoves.remove(LEFT)

192.

193. # return a random move from the list of remaining moves

194. return random.choice(validMoves)

At the beginning of the game, we start with the board data structure in the solved, ordered state

and create the puzzle by randomly sliding around tiles. To decide which of the four directions we

should slide, we’ll call our getRandomMove() function. Normally we could just use the

random.choice() function and pass it a tuple (UP, DOWN, LEFT, RIGHT) to have

Python simply randomly choose a direction value for us. But the Sliding Puzzle game has a small

restriction that prevents us from choosing a purely random number.

If you had a slide puzzle and slid a tile to left, and then slid a tile to the right, you would end up

with the exact same board you had at the start. It’s pointless to make a slide followed by the

opposite slide. Also, if the blank space is in the lower right corner than it is impossible to slide a

tile up or to the left.

The code in getRandomMove() will take these factors into account. To prevent the function

from selecting the last move that was made, the caller of the function can pass a directional value

for the lastMove parameter. Line 181 starts with a list of all four directional values stored in

the validMoves variable. The lastMove value (if not set to None) is removed from

Chapter 4 – Slide Puzzle 97

validMoves. Depending on if the blank space is at the edge of the board, lines 184 to 191 will

remove other directional values from the lastMove list.

Of the values that are left in lastMove, one of them is randomly selected with a call to

random.choice() and returned.

Converting Tile Coordinates to Pixel Coordinates

197. def getLeftTopOfTile(tileX, tileY):

198. left = XMARGIN + (tileX * TILESIZE) + (tileX - 1)

199. top = YMARGIN + (tileY * TILESIZE) + (tileY - 1)

200. return (left, top)

The getLeftTopOfTile() function converts board coordinates to pixel coordinates. For the

board XY coordinates that are passed in, the function calculates and returns the pixel XY

coordinates of the pixel at the top left of that board space.

Converting from Pixel Coordinates to Board Coordinates

203. def getSpotClicked(board, x, y):

204. # from the x & y pixel coordinates, get the x & y board coordinates

205. for tileX in range(len(board)):

206. for tileY in range(len(board[0])):

207. left, top = getLeftTopOfTile(tileX, tileY)

208. tileRect = pygame.Rect(left, top, TILESIZE, TILESIZE)

209. if tileRect.collidepoint(x, y):

210. return (tileX, tileY)

211. return (None, None)

The getSpotClicked() function does the opposite of getLeftTopOfTile() and

converts from pixel coordinates to board coordinates. The nested loops on lines 205 and 206 go

through every possible XY board coordinate, and if the pixel coordinates that were passed in are

within that space on the board, it returns those board coordinates. Since all of the tiles have a

width and height that is set in the TILESIZE constant, we can create a Rect object that

represents the space on the board by getting the pixel coordinates of the top left corner of the

board space, and then use the collidepoint() Rect method to see if the pixel coordinates are

inside that Rect object’s area.

If the pixel coordinates that were passed in were not over any board space, then the value

(None, None) is returned.

Drawing a Tile

214. def drawTile(tilex, tiley, number, adjx=0, adjy=0):

98 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

215. # draw a tile at board coordinates tilex and tiley, optionally a few

216. # pixels over (determined by adjx and adjy)

217. left, top = getLeftTopOfTile(tilex, tiley)

218. pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left + adjx, top + adjy,

TILESIZE, TILESIZE))

219. textSurf = BASICFONT.render(str(number), True, TEXTCOLOR)

220. textRect = textSurf.get_rect()

221. textRect.center = left + int(TILESIZE / 2) + adjx, top + int(TILESIZE

/ 2) + adjy

222. DISPLAYSURF.blit(textSurf, textRect)

The drawTile() function will draw a single numbered tile on the board. The tilex and

tiley parameters are the board coordinates of the tile. The number parameter is a string of the

tile’s number (like '3' or '12'). The adjx and adjy keyword parameters are for making

minor adjustments to the position of the tile. For example, passing 5 for adjx would make the

tile appear 5 pixels to the right of the tilex and tiley space on the board. Passing -10 for

adjx would make the tile appear 10 pixels to the left of the space.

These adjustment values will be handy when we need to draw the tile in the middle of sliding. If

no values are passed for these arguments when drawTile() is called, then by default they are

set to 0. This means they will be exactly on the board space given by tilex and tiley.

The Pygame drawing functions only use pixel coordinates, so first line 217 converts the board

coordinates in tilex and tiley to pixel coordinates, which we will store in variables left

and top (since getLeftTopOfTile() returns the top left corner’s coordinates). We draw the

background square of the tile with a call to pygame.draw.rect() while adding the adjx

and adjy values to left and top in case the code needs to adjust the position of the tile.

Lines 219 to 222 then create the Surface object that has the number text drawn on it. A Rect

object for the Surface object is positioned, and then used to blit the Surface object to the display

Surface. The drawTile() function doesn’t call pygame.display.update() function,

since the caller of drawTile() probably will want to draw more tiles for the rest of the board

before making them appear on the screen.

The Making Text Appear on the Screen

225. def makeText(text, color, bgcolor, top, left):

226. # create the Surface and Rect objects for some text.

227. textSurf = BASICFONT.render(text, True, color, bgcolor)

228. textRect = textSurf.get_rect()

229. textRect.topleft = (top, left)

230. return (textSurf, textRect)

Chapter 4 – Slide Puzzle 99

The makeText() function handles creating the Surface and Rect objects for positioning text on

the screen. Instead of doing all these calls each time we want to make text on the screen, we can

just call makeText() instead. This saves us on the amount of typing we have to do for our

program. (Though drawTile() makes the calls to render() and get_rect() itself

because it positions the text Surface object by the center point rather than the topleft point and

uses a transparent background color.)

Drawing the Board

233. def drawBoard(board, message):

234. DISPLAYSURF.fill(BGCOLOR)

235. if message:

236. textSurf, textRect = makeText(message, MESSAGECOLOR, BGCOLOR, 5,

5)

237. DISPLAYSURF.blit(textSurf, textRect)

238.

239. for tilex in range(len(board)):

240. for tiley in range(len(board[0])):

241. if board[tilex][tiley]:

242. drawTile(tilex, tiley, board[tilex][tiley])

This function handles drawing the entire board and all of its tiles to the DISPLAYSURF display

Surface object. The fill() method on line 234 completely paints over anything that used to be

drawn on the display Surface object before so that we start from scratch.

Line 235 to 237 handles drawing the message at the top of the window. We use this for the

―Generating new puzzle…‖ and other text we want to display at the top of the window.

Remember that if statement conditions consider the blank string to be a False value, so if

message is set to '' then the condition is False and lines 236 and 237 are skipped.

Next, nested for loops are used to draw each tile to the display Surface object by calling the

drawTile() function.

Drawing the Border of the Board

244. left, top = getLeftTopOfTile(0, 0)

245. width = BOARDWIDTH * TILESIZE

246. height = BOARDHEIGHT * TILESIZE

247. pygame.draw.rect(DISPLAYSURF, BORDERCOLOR, (left - 5, top - 5, width +

11, height + 11), 4)

Lines 244 to 247 draw a border around the tiles. The top left corner of the boarder will be 5 pixels

to the left and 5 pixels above the top left corner of the tile at board coordinates (0, 0). The width

and height of the border are calculated from the number of tiles wide and high the board is (stored

100 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

in the BOARDWIDTH and BOARDHEIGHT constants) multiplied by the size of the tiles (stored in

the TILESIZE constant).

The rectangle we draw on line 247 will have a thickness of 4 pixels, so we will move the boarder

5 pixels to the left and above where the top and left variables point so the thickness of the line

won’t overlap the tiles. We will also add 11 to the width and length (5 of those 11 pixels are to

compensate for moving the rectangle to the left and up).

Drawing the Buttons

249. DISPLAYSURF.blit(RESET_SURF, RESET_RECT)

250. DISPLAYSURF.blit(NEW_SURF, NEW_RECT)

251. DISPLAYSURF.blit(SOLVE_SURF, SOLVE_RECT)

Finally, we draw the buttons off to the slide of the screen. The text and position of these buttons

never changes, which is why they were stored in constant variables at the beginning of the

main() function.

Animating the Tile Slides

254. def slideAnimation(board, direction, message, animationSpeed):

255. # Note: This function does not check if the move is valid.

256.

257. blankx, blanky = getBlankPosition(board)

258. if direction == UP:

259. movex = blankx

260. movey = blanky + 1

261. elif direction == DOWN:

262. movex = blankx

263. movey = blanky - 1

264. elif direction == LEFT:

265. movex = blankx + 1

266. movey = blanky

267. elif direction == RIGHT:

268. movex = blankx - 1

269. movey = blanky

The first thing our tile sliding animation code needs to calculate is where the blank space is and

where the moving tile is. The comment on line 255 reminds us that the code that calls

slideAnimation() should make sure that the slide it passes for the direction parameter is a

valid move to make.

Chapter 4 – Slide Puzzle 101

The blank space’s coordinates come from a call to getBlankPosition(). From these

coordinates and the direction of the slide, we can figure out the XY board coordinates of the tile

that will slide. These coordinates will be stored in the movex and movey variables.

The copy() Surface Method

271. # prepare the base surface

272. drawBoard(board, message)

273. baseSurf = DISPLAYSURF.copy()

274. # draw a blank space over the moving tile on the baseSurf Surface.

275. moveLeft, moveTop = getLeftTopOfTile(movex, movey)

276. pygame.draw.rect(baseSurf, BGCOLOR, (moveLeft, moveTop, TILESIZE,

TILESIZE))

The copy() method of Surface objects will return a new Surface object that has the same image

drawn to it. But they are two separate Surface objects. After calling the copy() method, if we

draw on one Surface object using blit() or the Pygame drawing functions, it will not change

the image on the other Surface object. We store this copy in the baseSurf variable on line 273.

Next, we paint another blank space over the tile that will slide. This is because when we draw

each frame of the sliding animation, we will draw the sliding tile over different parts of the

baseSurf Surface object. If we didn’t blank out the moving tile on the baseSurf Surface,

then it would still be there as we draw the sliding tile. In that case, here is what the baseSurf

Surface would look like:

And then what it would look like when we draw the ―9‖ tile sliding upwards on top of it:

102 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

You can see this for yourself by commenting out line 276 and running the program.

278. for i in range(0, TILESIZE, animationSpeed):

279. # animate the tile sliding over

280. checkForQuit()

281. DISPLAYSURF.blit(baseSurf, (0, 0))

282. if direction == UP:

283. drawTile(movex, movey, board[movex][movey], 0, -i)

284. if direction == DOWN:

285. drawTile(movex, movey, board[movex][movey], 0, i)

286. if direction == LEFT:

287. drawTile(movex, movey, board[movex][movey], -i, 0)

288. if direction == RIGHT:

289. drawTile(movex, movey, board[movex][movey], i, 0)

290.

291. pygame.display.update()

292. FPSCLOCK.tick(FPS)

In order to draw the frames of the sliding animation, we must draw the baseSurf surface on the

display Surface, then on each frame of the animation draw the sliding tile closer and closer to its

final position where the original blank space was. The space between two adjacent tiles is the

same size as a single tile, which we have stored in TILESIZE. The code uses a for loop to go

from 0 to TILESIZE.

Normally this would mean that we would draw the tile 0 pixels over, then on the next frame draw

the tile 1 pixel over, then 2 pixels, then 3, and so on. Each of these frames would take 1/30
th
 of a

second. If you have TILESIZE set to 80 (as the program in this book does on line 12) then

sliding a tile would take over two and a half seconds, which is actually kind of slow.

Chapter 4 – Slide Puzzle 103

So instead we will have the for loop iterate from 0 to TILESIZE by several pixels each frame.

The number of pixels it jumps over is stored in animationSpeed, which is passed in when

slideAnimation() is called. For example, if animationSpeed was set to 8 and the

constant TILESIZE was set to 80, then the for loop and range(0, TILESIZE,

animationSpeed) would set the i variable to the values 0, 8, 16, 24, 32, 40, 48, 56, 64,

72. (It does not include 80 because the range() function goes up to, but not including, the

second argument.) This means the entire sliding animation would be done in 10 frames, which

would mean it is done in 10/30
th
 of a second (a third of a second) since the game runs at 30 FPS.

Lines 282 to 289 makes sure that we draw the tile sliding in the correct direction (based on what

value the direction variable has). After the animation is done, then the function returns.

Notice that while the animation is happening, any events being created by the user are not being

handled. Those events will be handled the next time execution reaches line 70 in the main()

function or the code in the checkForQuit() function.

Creating a New Puzzle

295. def generateNewPuzzle(numSlides):

296. # From a starting configuration, make numSlides number of moves (and

297. # animate these moves).

298. sequence = []

299. board = getStartingBoard()

300. drawBoard(board, '')

301. pygame.display.update()

302. pygame.time.wait(500) # pause 500 milliseconds for effect

The generateNewPuzzle() function will be called at the start of each new game. It will

create a new board data structure by calling getStartingBoard() and then randomly

scramble it. The first few lines of generateNewPuzzle() get the board and then draw it to

the screen (freezing for half a second to let the player see the fresh board for a moment).

303. lastMove = None

304. for i in range(numSlides):

305. move = getRandomMove(board, lastMove)

306. slideAnimation(board, move, 'Generating new puzzle...',

int(TILESIZE / 3))

307. makeMove(board, move)

308. sequence.append(move)

309. lastMove = move

310. return (board, sequence)

The numSlides parameter will show tell the function how many of these random moves to

make. The code for doing a random move is the getRandomMove() call on line 305 to get the

104 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

move itself, then call slideAnimation() to perform the animation on the screen. Because

doing the slide animation does not actually update the board data structure, we update the board

by calling makeMove() on line 307.

We need to keep track of each of the random moves that was made so that the player can click the

―Solve‖ button later and have the program undo all these random moves. (The ―Being Smart By

Using Stupid Code‖ section talks about why and how we do this.) So the move is appended to the

list of moves in sequence on line 308.

Then we store the random move in a variable called lastMove which will be passed to

getRandomMove() on the next iteration. This prevents the next random move from undoing

the random move we just performed.

All of this needs to happen numSlides number of times, so we put lines 305 to 309 inside a

for loop. When the board is done being scrambled, then we return the board data structure and

also the list of the random moves made on it.

Animating the Board Reset

313. def resetAnimation(board, allMoves):

314. # make all of the moves in allMoves in reverse.

315. revAllMoves = allMoves[:] # gets a copy of the list

316. revAllMoves.reverse()

317.

318. for move in revAllMoves:

319. if move == UP:

320. oppositeMove = DOWN

321. elif move == DOWN:

322. oppositeMove = UP

323. elif move == RIGHT:

324. oppositeMove = LEFT

325. elif move == LEFT:

326. oppositeMove = RIGHT

327. slideAnimation(board, oppositeMove, '', int(TILESIZE / 2))

328. makeMove(board, oppositeMove)

When the player clicks on ―Reset‖ or ―Solve‖, the Slide Puzzle game program needs to undo all

of the moves that were made to the board. The list of directional values for the slides will be

passed as the argument for the allMoves parameter.

Line 315 uses list slicing to create a duplicate of the allMoves list. Remember that if you don’t

specify a number before the :, then Python assumes the slice should start from the very

beginning of the list. And if you don’t specify a number after the :, then Python assumes the slice

should keep going to the very end of the list. So allMoves[:] creates a list slice of the entire

Chapter 4 – Slide Puzzle 105

allMoves list. This makes a copy of the actual list to store in revAllMoves, rather than just a

copy of the list reference. (See http://invpy.com/references for details.)

To undo all the moves in allMoves, we need to perform the opposite move of the moves in

allMoves, and in reverse order. There is a list method called reverse() which will reverse

the order of the items in a list. We call this on the revAllMoves list on line 316.

The for loop on line 318 iterates over the list of directional values. Remember, we want the

opposite move, so the if and elif statements from line 319 to 326 set the correct directional

value in the oppositeMove variable. Then we call slideAnimation() to perform the

animation, and makeMove() to update the board data structure.

331. if __name__ == '__main__':

332. main()

Just like in the Memory Puzzle game, after all the def statements have been executed to create

all the functions, we call the main() function to begin the meat of the program.

That’s all there is to the Slide Puzzle program! But let’s talk about some general programming

concepts that came up in this game.

Time vs. Memory Tradeoffs
Of course, there are a few different ways to write the Slide Puzzle game so that it looks and acts

the exact same way even though the code is different. There are many different ways the a

program that does a task could be written. The most common differences are making tradeoffs

between execution time and memory usage.

Usually, the faster a program can run, the better it is. This is especially true with programs that

need to do a lot of calculations, whether they are scientific weather simulators or games with a

large amount of detailed 3D graphics to draw. It’s also good to use the least amount of memory

possible. The more variables and the larger the lists your program uses, the more memory it takes

up. (You can find out how to measure your program’s memory usage and execution time at

http://invpy.com/profiling.)

Right now, the programs in this book aren’t big and complicated enough where you have to

worry about conserving memory or optimizing the execution time. But it can be something to

consider as you become a more skilled programmer.

For example, consider the getBlankPosition() function. This function takes time to run,

since it goes through all the possible board coordinates to find where the blank space is. Instead,

we could just have a blankspacex and blankspacey variable which would have these XY

106 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

coordinates so we would not have to look through the entire board each time we want to know

where it was. (We would also need code that updates the blankspacex and blankspacey

variables whenever a move is done. This code could go in makeMove().) Using these variables

would take up more memory, but they would save you on execution time so your program would

run faster.

Another example is that we keep a board data structure in the solved state in the SOLVEDBOARD

variable, so that we can compare the current board to SOLVEDBOARD to see if the player has

solved the puzzle. Each time we wanted to do this check, we could just call the

getStartingBoard() function and compare the returned value to the current board. Then

we would not need the SOLVEDBOARD variable. This would save us a little bit of memory, but

then our program would take longer to run because it is re-creating the solved-state board data

structure each time we do this check.

There is one thing you must remember though. Writing code that is readable is a very important

skill. Code that is ―readable‖ is code that is easy to understand, especially by programmers who

did not write the code. If another programmer can look at your program’s source code and figure

out what it does without much trouble, then that program is very readable. Readability is

important because when you want to fix bugs or add new features to your program (and bugs and

ideas for new features always come up), then having a readable program makes those tasks much

easier.

Nobody Cares About a Few Bytes
Also, there is one thing that might seem kind of silly to say in this book because it seem obvious,

but many people wonder about it. You should know that using short variable names like x or num

instead of longer, more descriptive variable names like blankx or numSlides does not save

you any memory when your program actually runs. Using these longer variable names is better

because they’ll make your program more readable.

You might also come up with some clever tricks that do save a few bytes of memory here and

there. One trick is that when you no longer need a variable, you can reuse that variable name for a

different purpose instead of just using two differently named variables.

Try to avoid the temptation to do this. Usually, these tricks reduce code readability and make it

harder to debug your programs. Modern computers have billions of bytes of memory, and saving

a few bytes here and there really isn’t worth making the code more confusing for human

programmers.

Chapter 4 – Slide Puzzle 107

Nobody Cares About a Few Million Nanoseconds
Similarly, there are times when you can rearrange your code in some way to make it slightly

faster by a few nanoseconds. These tricks also usually make the code harder to read. When you

consider that several billion nanoseconds have passed in the time it takes you to read this

sentence, saving a few nanoseconds of execution time in your program won’t be noticed by the

player.

Summary
This chapter hasn’t introduced any new Pygame programming concepts that the Memory Puzzle

game didn’t use, aside from using the copy() method of Surface objects. Just knowing a few

different concepts will let you create completely different games.

For practice, you can download buggy versions of the Sliding Puzzle program from

http://invpy.com/buggy/slidepuzzle.

108 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

CHAPTER 5 – SIMULATE

How to Play Simulate
Simulate is a clone of the game Simon. There are four colored buttons on the screen. The buttons

light up in a certain random pattern, and then the player must repeat this pattern by pressing the

buttons in the correct order. Each time the player successfully simulates the pattern, the pattern

gets longer. The player tries to match the pattern for as long as possible.

Source Code to Simulate
This source code can be downloaded from http://invpy.com/simulate.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

http://invpy.com/diff/simulate to see if the differences between your code and the code in the

book.

You can download the four sound files that this program uses from:

 http://invpy.com/beep1.ogg

 http://invpy.com/beep2.ogg

 http://invpy.com/beep3.ogg

 http://invpy.com/beep4.ogg

 1. # Simulate (a Simon clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

Chapter 5 – Simulate 109

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, time, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

 12. FLASHSPEED = 500 # in milliseconds

 13. FLASHDELAY = 200 # in milliseconds

 14. BUTTONSIZE = 200

 15. BUTTONGAPSIZE = 20

 16. TIMEOUT = 4 # seconds before game over if no button is pushed.

 17.

 18. # R G B

 19. WHITE = (255, 255, 255)

 20. BLACK = (0, 0, 0)

 21. BRIGHTRED = (255, 0, 0)

 22. RED = (155, 0, 0)

 23. BRIGHTGREEN = (0, 255, 0)

 24. GREEN = (0, 155, 0)

 25. BRIGHTBLUE = (0, 0, 255)

 26. BLUE = (0, 0, 155)

 27. BRIGHTYELLOW = (255, 255, 0)

 28. YELLOW = (155, 155, 0)

 29. DARKGRAY = (40, 40, 40)

 30. bgColor = BLACK

 31.

 32. XMARGIN = int((WINDOWWIDTH - (2 * BUTTONSIZE) - BUTTONGAPSIZE) / 2)

 33. YMARGIN = int((WINDOWHEIGHT - (2 * BUTTONSIZE) - BUTTONGAPSIZE) / 2)

 34.

 35. # Rect objects for each of the four buttons

 36. YELLOWRECT = pygame.Rect(XMARGIN, YMARGIN, BUTTONSIZE, BUTTONSIZE)

 37. BLUERECT = pygame.Rect(XMARGIN + BUTTONSIZE + BUTTONGAPSIZE, YMARGIN,

BUTTONSIZE, BUTTONSIZE)

 38. REDRECT = pygame.Rect(XMARGIN, YMARGIN + BUTTONSIZE + BUTTONGAPSIZE,

BUTTONSIZE, BUTTONSIZE)

 39. GREENRECT = pygame.Rect(XMARGIN + BUTTONSIZE + BUTTONGAPSIZE, YMARGIN +

BUTTONSIZE + BUTTONGAPSIZE, BUTTONSIZE, BUTTONSIZE)

 40.

 41. def main():

 42. global FPSCLOCK, DISPLAYSURF, BASICFONT, BEEP1, BEEP2, BEEP3, BEEP4

 43.

 44. pygame.init()

 45. FPSCLOCK = pygame.time.Clock()

 46. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

110 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 47. pygame.display.set_caption('Simulate')

 48.

 49. BASICFONT = pygame.font.Font('freesansbold.ttf', 16)

 50.

 51. infoSurf = BASICFONT.render('Match the pattern by clicking on the

button or using the Q, W, A, S keys.', 1, DARKGRAY)

 52. infoRect = infoSurf.get_rect()

 53. infoRect.topleft = (10, WINDOWHEIGHT - 25)

 54. # load the sound files

 55. BEEP1 = pygame.mixer.Sound('beep1.ogg')

 56. BEEP2 = pygame.mixer.Sound('beep2.ogg')

 57. BEEP3 = pygame.mixer.Sound('beep3.ogg')

 58. BEEP4 = pygame.mixer.Sound('beep4.ogg')

 59.

 60. # Initialize some variables for a new game

 61. pattern = [] # stores the pattern of colors

 62. currentStep = 0 # the color the player must push next

 63. lastClickTime = 0 # timestamp of the player's last button push

 64. score = 0

 65. # when False, the pattern is playing. when True, waiting for the

player to click a colored button:

 66. waitingForInput = False

 67.

 68. while True: # main game loop

 69. clickedButton = None # button that was clicked (set to YELLOW,

RED, GREEN, or BLUE)

 70. DISPLAYSURF.fill(bgColor)

 71. drawButtons()

 72.

 73. scoreSurf = BASICFONT.render('Score: ' + str(score), 1, WHITE)

 74. scoreRect = scoreSurf.get_rect()

 75. scoreRect.topleft = (WINDOWWIDTH - 100, 10)

 76. DISPLAYSURF.blit(scoreSurf, scoreRect)

 77.

 78. DISPLAYSURF.blit(infoSurf, infoRect)

 79.

 80. checkForQuit()

 81. for event in pygame.event.get(): # event handling loop

 82. if event.type == MOUSEBUTTONUP:

 83. mousex, mousey = event.pos

 84. clickedButton = getButtonClicked(mousex, mousey)

 85. elif event.type == KEYDOWN:

 86. if event.key == K_q:

 87. clickedButton = YELLOW

 88. elif event.key == K_w:

 89. clickedButton = BLUE

Chapter 5 – Simulate 111

 90. elif event.key == K_a:

 91. clickedButton = RED

 92. elif event.key == K_s:

 93. clickedButton = GREEN

 94.

 95.

 96.

 97. if not waitingForInput:

 98. # play the pattern

 99. pygame.display.update()

100. pygame.time.wait(1000)

101. pattern.append(random.choice((YELLOW, BLUE, RED, GREEN)))

102. for button in pattern:

103. flashButtonAnimation(button)

104. pygame.time.wait(FLASHDELAY)

105. waitingForInput = True

106. else:

107. # wait for the player to enter buttons

108. if clickedButton and clickedButton == pattern[currentStep]:

109. # pushed the correct button

110. flashButtonAnimation(clickedButton)

111. currentStep += 1

112. lastClickTime = time.time()

113.

114. if currentStep == len(pattern):

115. # pushed the last button in the pattern

116. changeBackgroundAnimation()

117. score += 1

118. waitingForInput = False

119. currentStep = 0 # reset back to first step

120.

121. elif (clickedButton and clickedButton != pattern[currentStep])

or (currentStep != 0 and time.time() - TIMEOUT > lastClickTime):

122. # pushed the incorrect button, or has timed out

123. gameOverAnimation()

124. # reset the variables for a new game:

125. pattern = []

126. currentStep = 0

127. waitingForInput = False

128. score = 0

129. pygame.time.wait(1000)

130. changeBackgroundAnimation()

131.

132. pygame.display.update()

133. FPSCLOCK.tick(FPS)

134.

112 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

135.

136. def terminate():

137. pygame.quit()

138. sys.exit()

139.

140.

141. def checkForQuit():

142. for event in pygame.event.get(QUIT): # get all the QUIT events

143. terminate() # terminate if any QUIT events are present

144. for event in pygame.event.get(KEYUP): # get all the KEYUP events

145. if event.key == K_ESCAPE:

146. terminate() # terminate if the KEYUP event was for the Esc key

147. pygame.event.post(event) # put the other KEYUP event objects back

148.

149.

150. def flashButtonAnimation(color, animationSpeed=50):

151. if color == YELLOW:

152. sound = BEEP1

153. flashColor = BRIGHTYELLOW

154. rectangle = YELLOWRECT

155. elif color == BLUE:

156. sound = BEEP2

157. flashColor = BRIGHTBLUE

158. rectangle = BLUERECT

159. elif color == RED:

160. sound = BEEP3

161. flashColor = BRIGHTRED

162. rectangle = REDRECT

163. elif color == GREEN:

164. sound = BEEP4

165. flashColor = BRIGHTGREEN

166. rectangle = GREENRECT

167.

168. origSurf = DISPLAYSURF.copy()

169. flashSurf = pygame.Surface((BUTTONSIZE, BUTTONSIZE))

170. flashSurf = flashSurf.convert_alpha()

171. r, g, b = flashColor

172. sound.play()

173. for start, end, step in ((0, 255, 1), (255, 0, -1)): # animation loop

174. for alpha in range(start, end, animationSpeed * step):

175. checkForQuit()

176. DISPLAYSURF.blit(origSurf, (0, 0))

177. flashSurf.fill((r, g, b, alpha))

178. DISPLAYSURF.blit(flashSurf, rectangle.topleft)

179. pygame.display.update()

180. FPSCLOCK.tick(FPS)

Chapter 5 – Simulate 113

181. DISPLAYSURF.blit(origSurf, (0, 0))

182.

183.

184. def drawButtons():

185. pygame.draw.rect(DISPLAYSURF, YELLOW, YELLOWRECT)

186. pygame.draw.rect(DISPLAYSURF, BLUE, BLUERECT)

187. pygame.draw.rect(DISPLAYSURF, RED, REDRECT)

188. pygame.draw.rect(DISPLAYSURF, GREEN, GREENRECT)

189.

190.

191. def changeBackgroundAnimation(animationSpeed=40):

192. global bgColor

193. newBgColor = (random.randint(0, 255), random.randint(0, 255),

random.randint(0, 255))

194.

195. newBgSurf = pygame.Surface((WINDOWWIDTH, WINDOWHEIGHT))

196. newBgSurf = newBgSurf.convert_alpha()

197. r, g, b = newBgColor

198. for alpha in range(0, 255, animationSpeed): # animation loop

199. checkForQuit()

200. DISPLAYSURF.fill(bgColor)

201.

202. newBgSurf.fill((r, g, b, alpha))

203. DISPLAYSURF.blit(newBgSurf, (0, 0))

204.

205. drawButtons() # redraw the buttons on top of the tint

206.

207. pygame.display.update()

208. FPSCLOCK.tick(FPS)

209. bgColor = newBgColor

210.

211.

212. def gameOverAnimation(color=WHITE, animationSpeed=50):

213. # play all beeps at once, then flash the background

214. origSurf = DISPLAYSURF.copy()

215. flashSurf = pygame.Surface(DISPLAYSURF.get_size())

216. flashSurf = flashSurf.convert_alpha()

217. BEEP1.play() # play all four beeps at the same time, roughly.

218. BEEP2.play()

219. BEEP3.play()

220. BEEP4.play()

221. r, g, b = color

222. for i in range(3): # do the flash 3 times

223. for start, end, step in ((0, 255, 1), (255, 0, -1)):

224. # The first iteration in this loop sets the following for loop

225. # to go from 0 to 255, the second from 255 to 0.

114 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

226. for alpha in range(start, end, animationSpeed * step): #

animation loop

227. # alpha means transparency. 255 is opaque, 0 is invisible

228. checkForQuit()

229. flashSurf.fill((r, g, b, alpha))

230. DISPLAYSURF.blit(origSurf, (0, 0))

231. DISPLAYSURF.blit(flashSurf, (0, 0))

232. drawButtons()

233. pygame.display.update()

234. FPSCLOCK.tick(FPS)

235.

236.

237.

238. def getButtonClicked(x, y):

239. if YELLOWRECT.collidepoint((x, y)):

240. return YELLOW

241. elif BLUERECT.collidepoint((x, y)):

242. return BLUE

243. elif REDRECT.collidepoint((x, y)):

244. return RED

245. elif GREENRECT.collidepoint((x, y)):

246. return GREEN

247. return None

248.

249.

250. if __name__ == '__main__':

251. main()

The Usual Starting Stuff

 1. # Simulate (a Simon clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, time, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

 12. FLASHSPEED = 500 # in milliseconds

 13. FLASHDELAY = 200 # in milliseconds

 14. BUTTONSIZE = 200

 15. BUTTONGAPSIZE = 20

 16. TIMEOUT = 4 # seconds before game over if no button is pushed.

Chapter 5 – Simulate 115

 17.

 18. # R G B

 19. WHITE = (255, 255, 255)

 20. BLACK = (0, 0, 0)

 21. BRIGHTRED = (255, 0, 0)

 22. RED = (155, 0, 0)

 23. BRIGHTGREEN = (0, 255, 0)

 24. GREEN = (0, 155, 0)

 25. BRIGHTBLUE = (0, 0, 255)

 26. BLUE = (0, 0, 155)

 27. BRIGHTYELLOW = (255, 255, 0)

 28. YELLOW = (155, 155, 0)

 29. DARKGRAY = (40, 40, 40)

 30. bgColor = BLACK

 31.

 32. XMARGIN = int((WINDOWWIDTH - (2 * BUTTONSIZE) - BUTTONGAPSIZE) / 2)

 33. YMARGIN = int((WINDOWHEIGHT - (2 * BUTTONSIZE) - BUTTONGAPSIZE) / 2)

Here we set up the usual constants for things that we might want to modify later such as the size

of the four buttons, the shades of color used for the buttons (the bright colors are used when the

buttons light up) and the amount of time the player has to push the next button in the sequence

before the game times out.

Setting Up the Buttons

 35. # Rect objects for each of the four buttons

 36. YELLOWRECT = pygame.Rect(XMARGIN, YMARGIN, BUTTONSIZE, BUTTONSIZE)

 37. BLUERECT = pygame.Rect(XMARGIN + BUTTONSIZE + BUTTONGAPSIZE, YMARGIN,

BUTTONSIZE, BUTTONSIZE)

 38. REDRECT = pygame.Rect(XMARGIN, YMARGIN + BUTTONSIZE + BUTTONGAPSIZE,

BUTTONSIZE, BUTTONSIZE)

 39. GREENRECT = pygame.Rect(XMARGIN + BUTTONSIZE + BUTTONGAPSIZE, YMARGIN +

BUTTONSIZE + BUTTONGAPSIZE, BUTTONSIZE, BUTTONSIZE)

Just like the buttons in the Sliding Puzzle games for ―Reset‖, ―Solve‖ and ―New Game‖, the

Simulate game has four rectangular areas and code to handle when the player clicks inside of

those areas. The program will need Rect objects for the areas of the four buttons so it can call the

collidepoint() method on them. Lines 36 to 39 set up these Rect objects with the

appropriate coordinates and sizes.

The main() Function

 41. def main():

 42. global FPSCLOCK, DISPLAYSURF, BASICFONT, BEEP1, BEEP2, BEEP3, BEEP4

116 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 43.

 44. pygame.init()

 45. FPSCLOCK = pygame.time.Clock()

 46. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 47. pygame.display.set_caption('Simulate')

 48.

 49. BASICFONT = pygame.font.Font('freesansbold.ttf', 16)

 50.

 51. infoSurf = BASICFONT.render('Match the pattern by clicking on the

button or using the Q, W, A, S keys.', 1, DARKGRAY)

 52. infoRect = infoSurf.get_rect()

 53. infoRect.topleft = (10, WINDOWHEIGHT - 25)

 54. # load the sound files

 55. BEEP1 = pygame.mixer.Sound('beep1.ogg')

 56. BEEP2 = pygame.mixer.Sound('beep2.ogg')

 57. BEEP3 = pygame.mixer.Sound('beep3.ogg')

 58. BEEP4 = pygame.mixer.Sound('beep4.ogg')

The main() function will implement the bulk of the program and call the other functions as they

are needed. The usual Pygame setup functions are called to initialize the library, create a Clock

object, create a window, set the caption, and create a Font object that will be used to display the

score and the instructions on the window. The objects that are created by these function calls will

be stored in global variables so that they can be used in other functions. But they are basically

constants since the value in them is never changed.

Lines 55 to 58 will load sound files so that Simulate can play sound effects as the player clicks on

each button. The pygame.mixer.Sound() constructor function will return a Sound object,

which we store in the variables BEEP1 to BEEP4 which were made into global variables on line

42.

Some Local Variables Used in This Program

 60. # Initialize some variables for a new game

 61. pattern = [] # stores the pattern of colors

 62. currentStep = 0 # the color the player must push next

 63. lastClickTime = 0 # timestamp of the player's last button push

 64. score = 0

 65. # when False, the pattern is playing. when True, waiting for the

player to click a colored button:

 66. waitingForInput = False

The pattern variable will be a list of color values (either YELLOW, RED, BLUE, or GREEN) to

keep track of the pattern that the player must memorize. For example, if the value of pattern was

[RED, RED, YELLOW, RED, BLUE, BLUE, RED, GREEN] then the player would

Chapter 5 – Simulate 117

have to first click the red button twice, then the yellow button, then the red button, and so on until

the final green button. As the player finishes each round, a new random color is added to the end

of the list.

The currentStep variable will keep track of which color in the pattern list the player has to

click next. If currentStep was 0 and pattern was [GREEN, RED, RED, YELLOW],

then the player would have to click the green button. If they clicked on any other button, the code

will cause a game over.

There is a TIMEOUT constant that makes the player click on next button in the pattern within a

number of seconds, otherwise the code causes a game over. In order to check if enough time has

passed since the last button click, the lastClickTime variable needs to keep track of the last

time the player clicked on a button. (Python has a module named time and a time.time()

function to return the current time. This will be explained later.)

It may be hard to believe, but the score variable keeps track of the score. Inconceivable!

There are also two modes that our program will be in. Either the program is playing the pattern of

buttons for the player (in which case, waitingForInput is set to False), or the program has

finished playing the pattern and is waiting for the user to click the buttons in the correct order (in

which case, waitingForInput is set to True).

Drawing the Board and Handling Input

 68. while True: # main game loop

 69. clickedButton = None # button that was clicked (set to YELLOW,

RED, GREEN, or BLUE)

 70. DISPLAYSURF.fill(bgColor)

 71. drawButtons()

 72.

 73. scoreSurf = BASICFONT.render('Score: ' + str(score), 1, WHITE)

 74. scoreRect = scoreSurf.get_rect()

 75. scoreRect.topleft = (WINDOWWIDTH - 100, 10)

 76. DISPLAYSURF.blit(scoreSurf, scoreRect)

 77.

 78. DISPLAYSURF.blit(infoSurf, infoRect)

Line 68 is the start of the main game loop. The clickedButton will be reset to None at the

beginning of each iteration. If a button is clicked during this iteration, then clickedButton

will be set to one of the color values to match the button (YELLOW, RED, GREEN, or BLUE).

118 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The fill() method is called on line 70 to repaint the entire display Surface so that we can start

drawing from scratch. The four colored buttons are drawn with a call to the drawButtons()

(explained later). Then the text for the score is created on lines 73 to 76.

There will also be text that tells the player what their current score is. Unlike the call to the

render() method on line 51 for the instruction text, the text for the score changes. It starts off

as 'Score: 0' and then becomes 'Score: 1' and then 'Score: 2' and so on. This is

why we create new Surface objects by calling the render() method on line 73 inside the game

loop. Since the instruction text (―Match the pattern by…‖) never changes, we only need one call

to render() outside the game loop on line 50.

Checking for Mouse Clicks

 80. checkForQuit()

 81. for event in pygame.event.get(): # event handling loop

 82. if event.type == MOUSEBUTTONUP:

 83. mousex, mousey = event.pos

 84. clickedButton = getButtonClicked(mousex, mousey)

Line 80 does a quick check for any QUIT events, and then line 81 is the start of the event

handling loop. The XY coordinates of any mouse clicks will be stored in the mousex and

mousey variables. If the mouse click was over one of the four buttons, then our

getButtonClicked() function will return a Color object of the button clicked (otherwise it

returns None).

Checking for Keyboard Presses

 85. elif event.type == KEYDOWN:

 86. if event.key == K_q:

 87. clickedButton = YELLOW

 88. elif event.key == K_w:

 89. clickedButton = BLUE

 90. elif event.key == K_a:

 91. clickedButton = RED

 92. elif event.key == K_s:

 93. clickedButton = GREEN

Lines 85 to 93 check for any KEYDOWN events (created when the user presses a key on the

keyboard). The Q, W, A, and S keys correspond to the buttons because they are arranged in a

square shape on the keyboard.

The Q key is in the upper left of the four keyboard keys, just like the yellow button on the screen

is in the upper left, so we will make pressing the Q key the same as clicking on the yellow button.

Chapter 5 – Simulate 119

We can do this by setting the clickedButton variable to the value in the constant variable

YELLOW. We can do the same for the three other keys. This way, the user can play Simulate with

either the mouse or keyboard.

The Two States of the Game Loop

 97. if not waitingForInput:

 98. # play the pattern

 99. pygame.display.update()

100. pygame.time.wait(1000)

101. pattern.append(random.choice((YELLOW, BLUE, RED, GREEN)))

102. for button in pattern:

103. flashButtonAnimation(button)

104. pygame.time.wait(FLASHDELAY)

105. waitingForInput = True

There are two different ―modes‖ or ―states‖ that the program can be in. When

waitingForInput is False, the program will be displaying the animation for the pattern.

When waitingForInput is True, the program will be waiting for the user to select buttons.

Lines 97 to 105 will cover the case where the program displays the pattern animation. Since this

is done at the start of the game or when the player finishes a pattern, line 101 will add a random

color to the pattern list to make the pattern one step longer. Then lines 102 to 104 loops through

each of the values in the pattern list and calls flashButtonAnimation() which makes that

button light up. After it is done lighting up all the buttons in the pattern list, the program sets the

waitingForInput variable to True.

Figuring Out if the Player Pressed the Right Buttons

106. else:

107. # wait for the player to enter buttons

108. if clickedButton and clickedButton == pattern[currentStep]:

109. # pushed the correct button

110. flashButtonAnimation(clickedButton)

111. currentStep += 1

112. lastClickTime = time.time()

If waitingForInput is True, then the code in line 106’s else statement will execute. Line

108 checks if the player has clicked on a button during this iteration of the game loop and if that

button was the correct one. The currentStep variable keeps track of the index in the pattern

list for the button that the player should click on next.

120 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

For example, if pattern was set to [YELLOW, RED, RED] and the currentStep variable

was set to 0 (like it would be when the player first starts the game), then the correct button for the

player to click would be pattern[0] (the yellow button).

If the player has clicked on the correct button, we want to flash the button the player clicked by

calling flashButtonAnimation() then, increase the currentStep to the next step, and

then update the lastClickTime variable to the current time. (The time.time() function

returns a float value of the number of seconds since January 1
st
, 1970, so we can use it to keep

track of time.)

114. if currentStep == len(pattern):

115. # pushed the last button in the pattern

116. changeBackgroundAnimation()

117. score += 1

118. waitingForInput = False

119. currentStep = 0 # reset back to first step

Lines 114 to 119 are inside the else statement that started on line 106. If the execution is inside

that else statement, we know the player clicked on a button and also it was the correct button.

Line 114 checks if this was the last correct button in the pattern list by checking if the integer

stored in currentStep is equal to the number of values inside the pattern list.

If this is True, then we want to change the background color by calling our

changeBackgroundAnimation(). This is a simple way to let the player know they have

entered the entire pattern correctly. The score is incremented, currentStep is set back to 0,

and the waitingForInput variable is set to False so that on the next iteration of the game

loop the code will add a new Color value to the pattern list and then flash the buttons.

121. elif (clickedButton and clickedButton != pattern[currentStep])

or (currentStep != 0 and time.time() - TIMEOUT > lastClickTime):

If the player did not click on the correct button, the elif statement on line 121 handles the case

where either the player clicked on the wrong button or the player has waited too long to click on a

button. Either way, we need to show the ―game over‖ animation and start a new game.

The (clickedButton and clickedButton != pattern[currentStep]) part of

the elif statement’s condition checks if a button was clicked and was the wrong button to click.

You can compare this to line 108’s if statement’s condition clickedButton and

clickedButton == pattern[currentStep] which evaluates to True if the player

clicked a button and it was the correct button to click.

Chapter 5 – Simulate 121

The other part of line 121’s elif condition is (currentStep != 0 and time.time()

- TIMEOUT > lastClickTime). This handles making sure the player did not ―time out‖.

Notice that this part of the condition has two expressions connected by an and keyword. That

means both sides of the and keyword need to evaluate to True.

In order to ―time out‖, it must not be the player’s first button click. But once they’ve started to

click buttons, they must keep clicking the buttons quickly enough until they’ve entered the entire

pattern (or have clicked on the wrong pattern and gotten a ―game over‖). If currentStep !=

0 is True, then we know the player has begun clicking the buttons.

Epoch Time
Also in order to ―time out‖, the current time (returned by time.time()) minus four seconds

(because 4 is stored in TIMEOUT) must be greater than the last time clicked a button (stored in

lastClickTime). The reason why time.time() - TIMEOUT > lastClickTime

works has to do with how epoch time works. Epoch time (also called Unix epoch time) is the

number of seconds it has been since January 1
st
, 1970. This date is called the Unix epoch.

For example, when I run time.time() from the interactive shell (don’t forget to import the

time module first), it looks like this:

>>> import time

>>> time.time()

1320460242.118

What this number means is that the moment the time.time() function was called was a little

over 1,320,460,242 seconds since midnight of January 1
st
, 1970. (This translates to November 4

th
,

2011 at 7:30:42pm. You can learn how to convert from Unix epoch time to regular English time

at http://invpy.com/epochtime)

If I call time.time() from the interactive shell a few seconds later, it might look like this:

>>> time.time()

1320460261.315

1320460261.315 seconds after midnight of the Unix epoch is November 4
th
, 2011 at 7:31:01pm.

(Actually, it’s 7:31 and 0.315 seconds if you want to be precise.)

Dealing with time would be difficult if we had to deal with strings. It’s hard to tell that 19

seconds have passed if we only had the string values '7:30:42 PM' and '7:31:01 PM' to

compare. But with epoch time, it’s just a matter of subtracting the integers 1320460261.315

- 1320460242.118, which evaluates to 19.197000026702881. This value is the number

122 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

of seconds between those two times. (The extra 0.000026702881 comes from very small

rounding errors that happen when you do math with floating point numbers. They only happen

sometimes and are usually too tiny to matter. You can learn more about floating point rounding

errors at http://invpy.com/roundingerrors.)

Going back to line 121, if time.time() - TIMEOUT > lastClickTime evaluates to

True, then it has been longer than 4 seconds since time.time() was called and stored in

lastClickTime. If it evaluates to False, then it has been less than 4 seconds.

122. # pushed the incorrect button, or has timed out

123. gameOverAnimation()

124. # reset the variables for a new game:

125. pattern = []

126. currentStep = 0

127. waitingForInput = False

128. score = 0

129. pygame.time.wait(1000)

130. changeBackgroundAnimation()

If either the player clicked on the wrong button or has timed out, the program should play the

―game over‖ animation and then reset the variables for a new game. This involves setting the

pattern list to a blank list, currentStep to 0, waitingForInput to False, and then

score to 0. A small pause and a new background color will be set to indicate to the player the

start of a new game, which will begin on the next iteration of the game loop.

Drawing the Board to the Screen

132. pygame.display.update()

133. FPSCLOCK.tick(FPS)

Just like the other game programs, the last thing done in the game loop is drawing the display

Surface object to the screen and calling the tick() method.

Same Old terminate() Function

136. def terminate():

137. pygame.quit()

138. sys.exit()

139.

140.

141. def checkForQuit():

142. for event in pygame.event.get(QUIT): # get all the QUIT events

143. terminate() # terminate if any QUIT events are present

144. for event in pygame.event.get(KEYUP): # get all the KEYUP events

Chapter 5 – Simulate 123

145. if event.key == K_ESCAPE:

146. terminate() # terminate if the KEYUP event was for the Esc key

147. pygame.event.post(event) # put the other KEYUP event objects back

The terminate() and checkForQuit() functions were used and explained in the Sliding

Puzzle chapter, so we will skip describing them again.

Reusing The Constant Variables

150. def flashButtonAnimation(color, animationSpeed=50):

151. if color == YELLOW:

152. sound = BEEP1

153. flashColor = BRIGHTYELLOW

154. rectangle = YELLOWRECT

155. elif color == BLUE:

156. sound = BEEP2

157. flashColor = BRIGHTBLUE

158. rectangle = BLUERECT

159. elif color == RED:

160. sound = BEEP3

161. flashColor = BRIGHTRED

162. rectangle = REDRECT

163. elif color == GREEN:

164. sound = BEEP4

165. flashColor = BRIGHTGREEN

166. rectangle = GREENRECT

Depending on which Color value is passed as an argument for the color parameter, the sound,

color of the bright flash, and rectangular area of the flash will be different. Line 151 to 166 sets

three local variables differently depending on the value in the color parameter: sound,

flashColor, and rectangle.

Animating the Button Flash

168. origSurf = DISPLAYSURF.copy()

169. flashSurf = pygame.Surface((BUTTONSIZE, BUTTONSIZE))

170. flashSurf = flashSurf.convert_alpha()

171. r, g, b = flashColor

172. sound.play()

The process of animating the button flash is simple: On each frame of the animation, the normal

board is drawn and then on top of that, the bright color version of the button that is flashing is

drawn over the button. The alpha value of the bright color starts off at 0 for the first frame of

animation, but then on each frame after the alpha value is slowly increased until it is fully opaque

124 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

and the bright color version completely paints over the normal button color. This will make it

look like the button is slowly brightening up.

The brightening up is the first half of the animation. The second half is the button dimming. This

is done with the same code, except that instead of the alpha value increasing for each frame, it

will be decreasing. As the alpha value gets lower and lower, the bright color painted on top will

become more and more invisible, until only the original board with the dull colors is visible.

To do this in code, line 168 creates a copy of the display Surface object and stores it in

origSurf. Line 169 creates a new Surface object the size of a single button and stores it in

flashSurf. The convert_alpha() method is called on flashSurf so that the Surface

object can have transparent colors drawn on it (otherwise, the alpha value in the Color objects we

use will be ignored and automatically assumed to be 255). In your own game programs, if you are

having trouble getting color transparency to work, make sure that you have called the

convert_alpha() method on any Surface objects that have transparent colors painted on

them.

Line 171 creates individual local variables named r, g, and b to store the individual RGB values

of the tuple stored in flashColor. This is just some syntactic sugar that makes the rest of the

code in this function easier to read. Before we begin animating the button flash, line 172 will play

the sound effect for that button. The program execution keeps going after the sound effect has

started to play, so the sound will be playing during the button flash animation.

173. for start, end, step in ((0, 255, 1), (255, 0, -1)): # animation loop

174. for alpha in range(start, end, animationSpeed * step):

175. checkForQuit()

176. DISPLAYSURF.blit(origSurf, (0, 0))

177. flashSurf.fill((r, g, b, alpha))

178. DISPLAYSURF.blit(flashSurf, rectangle.topleft)

179. pygame.display.update()

180. FPSCLOCK.tick(FPS)

181. DISPLAYSURF.blit(origSurf, (0, 0))

Remember that to do the animation, we want to first draw the flashSurf with color that has

increasing alpha values from 0 to 255 to do the brightening part of the animation. Then to do the

dimming, we want the alpha value to go from 255 to 0. We could do that with code like this:

 for alpha in range(0, 255, animationSpeed): # brightening

 checkForQuit()

 DISPLAYSURF.blit(origSurf, (0, 0))

 flashSurf.fill((r, g, b, alpha))

 DISPLAYSURF.blit(flashSurf, rectangle.topleft)

Chapter 5 – Simulate 125

 pygame.display.update()

 FPSCLOCK.tick(FPS)

 for alpha in range(255, 0, -animationSpeed): # dimming

 checkForQuit()

 DISPLAYSURF.blit(origSurf, (0, 0))

 flashSurf.fill((r, g, b, alpha))

 DISPLAYSURF.blit(flashSurf, rectangle.topleft)

 pygame.display.update()

 FPSCLOCK.tick(FPS)

But notice that the code inside the for loops handles drawing the frame and are identical to each

other. If we wrote the code like the above, then the first for loop would handle the brightening

part of the animation (where the alpha value goes from 0 to 255) and the second for loop would

handle the dimming part of the animation (where the alpha values goes from 255 to 0). Note that

for the second for loop, the third argument to the range() call is a negative number.

Whenever we have identical code like this, we can probably shorten our code so we don’t have to

repeat it. This is what we do with the for loop on line 173, which supplies different values for

the range() call on line 174:

173. for start, end, step in ((0, 255, 1), (255, 0, -1)): # animation loop

174. for alpha in range(start, end, animationSpeed * step):

On the first iteration of line 173’s for loop, start is set to 0, end is set to 255, and step is

set to 1. This way, when the for loop on line 174 is executed, it is calling range(0, 255,

animationSpeed). (Note that animationSpeed * 1 is the same as animationSpeed.

Multiplying a number by 1 gives us the same number.)

Line 174’s for loop then executes and performs the brightening animation.

On the second iteration of line 173’s for loop (there are always two and only two iterations of

this inner for loop), start is set to 255, end is set to 0, and step is set to -1. When the line

174’s for loop is executed, it is calling range(255, 0, -animationSpeed). (Note that

animationSpeed * -1 evaluates to -animationSpeed, since multiplying any number

by -1 returns the negative form of that same number.)

This way, we don’t have to have two separate for loops and repeat all the code that is inside of

them. Here’s the code again that is inside line 174’s for loop:

175. checkForQuit()

176. DISPLAYSURF.blit(origSurf, (0, 0))

177. flashSurf.fill((r, g, b, alpha))

126 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

178. DISPLAYSURF.blit(flashSurf, rectangle.topleft)

179. pygame.display.update()

180. FPSCLOCK.tick(FPS)

181. DISPLAYSURF.blit(origSurf, (0, 0))

We check for any QUIT events (in case the user tried to close the program during the animation),

then blit the origSurf Surface to the display Surface. Then we paint the flashSurf Surface

by calling fill() (supplying the r, g, b values of the color we got on line 171 and the alpha

value that the for loop sets in the alpha variable). Then the flashSurf Surface is blitted to

the display Surface.

Then, to make the display Surface appear on the screen, pygame.display.update() is

called on line 179. To make sure the animation doesn’t play as fast as the computer can draw it,

we add short pauses with a call to the tick() method. (If you want to see the flashing animation

play very slowly, put a low number like 1 or 2 as the argument to tick() instead of FPS.)

Drawing the Buttons

184. def drawButtons():

185. pygame.draw.rect(DISPLAYSURF, YELLOW, YELLOWRECT)

186. pygame.draw.rect(DISPLAYSURF, BLUE, BLUERECT)

187. pygame.draw.rect(DISPLAYSURF, RED, REDRECT)

188. pygame.draw.rect(DISPLAYSURF, GREEN, GREENRECT)

Since each of the buttons is just a rectangle of a certain color in a certain place, we just make four

calls to pygame.draw.rect() to draw the buttons on the display Surface. The Color object

and the Rect object we use to position them never change, which is why we stored them in

constant variables like YELLOW and YELLOWRECT.

Animating the Background Change

191. def changeBackgroundAnimation(animationSpeed=40):

192. global bgColor

193. newBgColor = (random.randint(0, 255), random.randint(0, 255),

random.randint(0, 255))

194.

195. newBgSurf = pygame.Surface((WINDOWWIDTH, WINDOWHEIGHT))

196. newBgSurf = newBgSurf.convert_alpha()

197. r, g, b = newBgColor

198. for alpha in range(0, 255, animationSpeed): # animation loop

199. checkForQuit()

200. DISPLAYSURF.fill(bgColor)

201.

202. newBgSurf.fill((r, g, b, alpha))

Chapter 5 – Simulate 127

203. DISPLAYSURF.blit(newBgSurf, (0, 0))

204.

205. drawButtons() # redraw the buttons on top of the tint

206.

207. pygame.display.update()

208. FPSCLOCK.tick(FPS)

209. bgColor = newBgColor

The background color change animation happens whenever the player finishes entering the entire

pattern correctly. On each iteration through the loop which starts on line 198 the entire display

Surface has to be redrawn (blended with a less and less transparent new background color, until

the background is completely covered by the new color). The steps done on each iteration of the

loop are:

 Line 200 fills in the entire display Surface (stored in DISPLAYSURF) with the old

background color (which is stored in bgColor).

 Line 202 fills in a different Surface object (stored in newBgSurf) with the new

background color’s RGB values (and the alpha transparency value changes on each

iteration since that is what the for loop on line 198 does).

 Line 203 then draws the newBgSurf Surface to the display Surface in DISPLAYSURF.

The reason we didn’t just paint our semitransparent new background color on

DISPLAYSURF to begin with is because the fill() method will just replace the color

on the Surface, whereas the blit() method will blend the colors.

 Now that we have the background the way we want it, we’ll draw the buttons over it with

a call to drawButtons() on line 205.

 Line 207 and 208 then just draws the display Surface to the screen and adds a pause.

The reason there is a global statement at the beginning of the

changeBackgroundAnimation() function is for the bgColor variable is because this

function modifies the content of the variable with an assignment statement on line 209. Any

function can read the value of a global variable without specifying the global statement.

If that function assigns a value to a global variable without a global statement, then Python

considers that variable to be a local variable that just happens to have the same name as a global

variable. The main() function uses the bgColor variable but doesn’t need a global statement

for it because it only reads the contents of the bgColor the main() function never assigns

bgColor a new value. This concept is explained in more detail at http://invpy.com/global.

The Game Over Animation

212. def gameOverAnimation(color=WHITE, animationSpeed=50):

128 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

213. # play all beeps at once, then flash the background

214. origSurf = DISPLAYSURF.copy()

215. flashSurf = pygame.Surface(DISPLAYSURF.get_size())

216. flashSurf = flashSurf.convert_alpha()

217. BEEP1.play() # play all four beeps at the same time, roughly.

218. BEEP2.play()

219. BEEP3.play()

220. BEEP4.play()

221. r, g, b = color

222. for i in range(3): # do the flash 3 times

Each of the iterations of the for loop on the next line (line 223 below) will perform a flash. To

have three flashes done, we put all of that code in a for loop that has three iterations. If you want

more or fewer flashes, then change the integer that is passed to range() on line 222.

223. for start, end, step in ((0, 255, 1), (255, 0, -1)):

The for loop on line 223 is exactly the same as the one line 173. The start, end, and step

variables will be used on the next for loop (on line 224) to control how the alpha variable

changes. Reread the ―Animating the Button Flash‖ section if you need to refresh yourself on how

these loops work.

224. # The first iteration in this loop sets the following for loop

225. # to go from 0 to 255, the second from 255 to 0.

226. for alpha in range(start, end, animationSpeed * step): #

animation loop

227. # alpha means transparency. 255 is opaque, 0 is invisible

228. checkForQuit()

229. flashSurf.fill((r, g, b, alpha))

230. DISPLAYSURF.blit(origSurf, (0, 0))

231. DISPLAYSURF.blit(flashSurf, (0, 0))

232. drawButtons()

233. pygame.display.update()

234. FPSCLOCK.tick(FPS)

This animation loop works the same as the previous flashing animation code in the ―Animating

the Background Change‖ section. The copy of the original Surface object stored in origSurf is

drawn on the display Surface, then flashSurf (which has the new flashing color painted on it)

is blitted on top of the display Surface. After the background color is set up, the buttons are drawn

on top on line 232. Finally the display Surface is drawn to the screen with the call to

pygame.display.update().

Chapter 5 – Simulate 129

The for loop on line 226 adjusts the alpha value for the color used for each frame of animation

(increasing at first, and then decreasing).

Converting from Pixel Coordinates to Buttons

238. def getButtonClicked(x, y):

239. if YELLOWRECT.collidepoint((x, y)):

240. return YELLOW

241. elif BLUERECT.collidepoint((x, y)):

242. return BLUE

243. elif REDRECT.collidepoint((x, y)):

244. return RED

245. elif GREENRECT.collidepoint((x, y)):

246. return GREEN

247. return None

248.

249.

250. if __name__ == '__main__':

251. main()

The getButtonClicked() function simply takes XY pixel coordinates and returns either the

values YELLOW, BLUE, RED, or GREEN if one of the buttons was clicked, or returns None if the

XY pixel coordinates are not over any of the four buttons.

Explicit is Better Than Implicit
You may have noticed that the code for getButtonClicked() ends with a return None

statement on line 247. This might seem like an odd thing to type out, since all functions return

None if they don’t have any return statement at all. We could have left line 47 out entirely and

the program would have worked the exact same way. So why bother writing it in?

Normally when a function reaches the end and returns the None value implicitly (that is, there is

no return statement outright saying that it is returning None) the code that calls it doesn’t care

about the return value. All function calls have to return a value (so that they can evaluate to

something and be part of expressions), but our code doesn’t always make use of the return value.

For example, think about the print() function. Technically, this function returns the None

value, but we never care about it:

>>> spam = print('Hello')

Hello

>>> spam == None

True

>>>

130 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

However, when getButtonClicked() returns None, it means that the coordinates that were

passed to it were not over any of the four buttons. To make it clear that in this case the value

None is returned from getButtonClicked(), we have the return None line at the end of

the function.

To make your code more readable, it is better to have your code be explicit (that is, clearly state

something even if it might be obvious) rather than implicit (that is, leaving it up to the person

reading code to know how it works without outright telling them). In fact, ―explicit is better than

implicit‖ is one of the Python Koans.

The koans are a group of little sayings about how to write good code. There’s an Easter egg (that

is, a little hidden surprise) in the Python interactive shell where if you try to import a module

named this, then it will display ―The Zen of Python‖ koans. Try it out in the interactive shell:

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

If you’d like to know more about what these individual koans mean, visit http://invpy.com/zen.

Chapter 6 – Wormy 131

CHAPTER 6 – WORMY

How to Play Wormy
Wormy is a Nibbles clone. The player starts out controlling a short worm that is constantly

moving around the screen. The player cannot stop or slow down the worm, but they can control

which direction it turns. A red apple appears randomly on the screen, and the player must move

the worm so that it eats the apple. Each time the worm eats an apple, the worm grows longer by

one segment and a new apply randomly appears on the screen. The game is over if the worm

crashes into itself or the edges of the screen.

Source Code to Wormy
This source code can be downloaded from http://invpy.com/wormy.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

http://invpy.com/diff/wormy to see if the differences between your code and the code in the book.

 1. # Wormy (a Nibbles clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, pygame, sys

 7. from pygame.locals import *

 8.

 9. FPS = 15

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

132 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 12. CELLSIZE = 20

 13. assert WINDOWWIDTH % CELLSIZE == 0, "Window width must be a multiple of

cell size."

 14. assert WINDOWHEIGHT % CELLSIZE == 0, "Window height must be a multiple of

cell size."

 15. CELLWIDTH = int(WINDOWWIDTH / CELLSIZE)

 16. CELLHEIGHT = int(WINDOWHEIGHT / CELLSIZE)

 17.

 18. # R G B

 19. WHITE = (255, 255, 255)

 20. BLACK = (0, 0, 0)

 21. RED = (255, 0, 0)

 22. GREEN = (0, 255, 0)

 23. DARKGREEN = (0, 155, 0)

 24. DARKGRAY = (40, 40, 40)

 25. BGCOLOR = BLACK

 26.

 27. UP = 'up'

 28. DOWN = 'down'

 29. LEFT = 'left'

 30. RIGHT = 'right'

 31.

 32. HEAD = 0 # syntactic sugar: index of the worm's head

 33.

 34. def main():

 35. global FPSCLOCK, DISPLAYSURF, BASICFONT

 36.

 37. pygame.init()

 38. FPSCLOCK = pygame.time.Clock()

 39. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 40. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

 41. pygame.display.set_caption('Wormy')

 42.

 43. showStartScreen()

 44. while True:

 45. runGame()

 46. showGameOverScreen()

 47.

 48.

 49. def runGame():

 50. # Set a random start point.

 51. startx = random.randint(5, CELLWIDTH - 6)

 52. starty = random.randint(5, CELLHEIGHT - 6)

 53. wormCoords = [{'x': startx, 'y': starty},

 54. {'x': startx - 1, 'y': starty},

 55. {'x': startx - 2, 'y': starty}]

Chapter 6 – Wormy 133

 56. direction = RIGHT

 57.

 58. # Start the apple in a random place.

 59. apple = getRandomLocation()

 60.

 61. while True: # main game loop

 62. for event in pygame.event.get(): # event handling loop

 63. if event.type == QUIT:

 64. terminate()

 65. elif event.type == KEYDOWN:

 66. if (event.key == K_LEFT or event.key == K_a) and direction

!= RIGHT:

 67. direction = LEFT

 68. elif (event.key == K_RIGHT or event.key == K_d) and

direction != LEFT:

 69. direction = RIGHT

 70. elif (event.key == K_UP or event.key == K_w) and direction

!= DOWN:

 71. direction = UP

 72. elif (event.key == K_DOWN or event.key == K_s) and

direction != UP:

 73. direction = DOWN

 74. elif event.key == K_ESCAPE:

 75. terminate()

 76.

 77. # check if the worm has hit itself or the edge

 78. if wormCoords[HEAD]['x'] == -1 or wormCoords[HEAD]['x'] ==

CELLWIDTH or wormCoords[HEAD]['y'] == -1 or wormCoords[HEAD]['y'] ==

CELLHEIGHT:

 79. return # game over

 80. for wormBody in wormCoords[1:]:

 81. if wormBody['x'] == wormCoords[HEAD]['x'] and wormBody['y'] ==

wormCoords[HEAD]['y']:

 82. return # game over

 83.

 84. # check if worm has eaten an apply

 85. if wormCoords[HEAD]['x'] == apple['x'] and wormCoords[HEAD]['y']

== apple['y']:

 86. # don't remove worm's tail segment

 87. apple = getRandomLocation() # set a new apple somewhere

 88. else:

 89. del wormCoords[-1] # remove worm's tail segment

 90.

 91. # move the worm by adding a segment in the direction it is moving

 92. if direction == UP:

134 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 93. newHead = {'x': wormCoords[HEAD]['x'], 'y':

wormCoords[HEAD]['y'] - 1}

 94. elif direction == DOWN:

 95. newHead = {'x': wormCoords[HEAD]['x'], 'y':

wormCoords[HEAD]['y'] + 1}

 96. elif direction == LEFT:

 97. newHead = {'x': wormCoords[HEAD]['x'] - 1, 'y':

wormCoords[HEAD]['y']}

 98. elif direction == RIGHT:

 99. newHead = {'x': wormCoords[HEAD]['x'] + 1, 'y':

wormCoords[HEAD]['y']}

100. wormCoords.insert(0, newHead)

101. DISPLAYSURF.fill(BGCOLOR)

102. drawGrid()

103. drawWorm(wormCoords)

104. drawApple(apple)

105. drawScore(len(wormCoords) - 3)

106. pygame.display.update()

107. FPSCLOCK.tick(FPS)

108.

109. def drawPressKeyMsg():

110. pressKeySurf = BASICFONT.render('Press a key to play.', True,

DARKGRAY)

111. pressKeyRect = pressKeySurf.get_rect()

112. pressKeyRect.topleft = (WINDOWWIDTH - 200, WINDOWHEIGHT - 30)

113. DISPLAYSURF.blit(pressKeySurf, pressKeyRect)

114.

115.

116. def checkForKeyPress():

117. if len(pygame.event.get(QUIT)) > 0:

118. terminate()

119.

120. keyUpEvents = pygame.event.get(KEYUP)

121. if len(keyUpEvents) == 0:

122. return None

123. if keyUpEvents[0].key == K_ESCAPE:

124. terminate()

125. return keyUpEvents[0].key

126.

127.

128. def showStartScreen():

129. titleFont = pygame.font.Font('freesansbold.ttf', 100)

130. titleSurf1 = titleFont.render('Wormy!', True, WHITE, DARKGREEN)

131. titleSurf2 = titleFont.render('Wormy!', True, GREEN)

132.

133. degrees1 = 0

Chapter 6 – Wormy 135

134. degrees2 = 0

135. while True:

136. DISPLAYSURF.fill(BGCOLOR)

137. rotatedSurf1 = pygame.transform.rotate(titleSurf1, degrees1)

138. rotatedRect1 = rotatedSurf1.get_rect()

139. rotatedRect1.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2)

140. DISPLAYSURF.blit(rotatedSurf1, rotatedRect1)

141.

142. rotatedSurf2 = pygame.transform.rotate(titleSurf2, degrees2)

143. rotatedRect2 = rotatedSurf2.get_rect()

144. rotatedRect2.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2)

145. DISPLAYSURF.blit(rotatedSurf2, rotatedRect2)

146.

147. drawPressKeyMsg()

148.

149. if checkForKeyPress():

150. pygame.event.get() # clear event queue

151. return

152. pygame.display.update()

153. FPSCLOCK.tick(FPS)

154. degrees1 += 3 # rotate by 3 degrees each frame

155. degrees2 += 7 # rotate by 7 degrees each frame

156.

157.

158. def terminate():

159. pygame.quit()

160. sys.exit()

161.

162.

163. def getRandomLocation():

164. return {'x': random.randint(0, CELLWIDTH - 1), 'y': random.randint(0,

CELLHEIGHT - 1)}

165.

166.

167. def showGameOverScreen():

168. gameOverFont = pygame.font.Font('freesansbold.ttf', 150)

169. gameSurf = gameOverFont.render('Game', True, WHITE)

170. overSurf = gameOverFont.render('Over', True, WHITE)

171. gameRect = gameSurf.get_rect()

172. overRect = overSurf.get_rect()

173. gameRect.midtop = (WINDOWWIDTH / 2, 10)

174. overRect.midtop = (WINDOWWIDTH / 2, gameRect.height + 10 + 25)

175.

176. DISPLAYSURF.blit(gameSurf, gameRect)

177. DISPLAYSURF.blit(overSurf, overRect)

178. drawPressKeyMsg()

136 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

179. pygame.display.update()

180. pygame.time.wait(500)

181. checkForKeyPress() # clear out any key presses in the event queue

182.

183. while True:

184. if checkForKeyPress():

185. pygame.event.get() # clear event queue

186. return

187.

188. def drawScore(score):

189. scoreSurf = BASICFONT.render('Score: %s' % (score), True, WHITE)

190. scoreRect = scoreSurf.get_rect()

191. scoreRect.topleft = (WINDOWWIDTH - 120, 10)

192. DISPLAYSURF.blit(scoreSurf, scoreRect)

193.

194.

195. def drawWorm(wormCoords):

196. for coord in wormCoords:

197. x = coord['x'] * CELLSIZE

198. y = coord['y'] * CELLSIZE

199. wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

200. pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect)

201. wormInnerSegmentRect = pygame.Rect(x + 4, y + 4, CELLSIZE - 8,

CELLSIZE - 8)

202. pygame.draw.rect(DISPLAYSURF, GREEN, wormInnerSegmentRect)

203.

204.

205. def drawApple(coord):

206. x = coord['x'] * CELLSIZE

207. y = coord['y'] * CELLSIZE

208. appleRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

209. pygame.draw.rect(DISPLAYSURF, RED, appleRect)

210.

211.

212. def drawGrid():

213. for x in range(0, WINDOWWIDTH, CELLSIZE): # draw vertical lines

214. pygame.draw.line(DISPLAYSURF, DARKGRAY, (x, 0), (x, WINDOWHEIGHT))

215. for y in range(0, WINDOWHEIGHT, CELLSIZE): # draw horizontal lines

216. pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, y), (WINDOWWIDTH, y))

217.

218.

219. if __name__ == '__main__':

220. main()

Chapter 6 – Wormy 137

The Grid

If you play the game a little, you’ll notice that the apple and the segments of the worm’s body

always fit along a grid of lines. We will call each of the squares in this grid a cell (it’s not always

what a space in a grid is called, it’s just a name I came up with). The cells have their own

Cartesian coordinate system, with (0, 0) being the top left cell and (31, 23) being the bottom right

cell.

The Setup Code

 1. # Wormy (a Nibbles clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, pygame, sys

 7. from pygame.locals import *

 8.

 9. FPS = 15

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

 12. CELLSIZE = 20

 13. assert WINDOWWIDTH % CELLSIZE == 0, "Window width must be a multiple of

cell size."

 14. assert WINDOWHEIGHT % CELLSIZE == 0, "Window height must be a multiple of

cell size."

 15. CELLWIDTH = int(WINDOWWIDTH / CELLSIZE)

 16. CELLHEIGHT = int(WINDOWHEIGHT / CELLSIZE)

138 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The code at the start of the program just sets up some constant variables used in the game. The

width and height of the cells are stored in CELLSIZE. The assert statements on lines 13 and

14 ensure that the cells fit perfectly in the window. For example, if the CELLSIZE was 10 and

the WINDOWWIDTH or WINDOWHEIGHT constants were set to 15, then only 1.5 cells could fit.

The assert statements make sure that only a whole integer number of cells fits in the window.

 18. # R G B

 19. WHITE = (255, 255, 255)

 20. BLACK = (0, 0, 0)

 21. RED = (255, 0, 0)

 22. GREEN = (0, 255, 0)

 23. DARKGREEN = (0, 155, 0)

 24. DARKGRAY = (40, 40, 40)

 25. BGCOLOR = BLACK

 26.

 27. UP = 'up'

 28. DOWN = 'down'

 29. LEFT = 'left'

 30. RIGHT = 'right'

 31.

 32. HEAD = 0 # syntactic sugar: index of the worm's head

Some more constants are set on lines 19 to 32. The HEAD constant will be explained later in this

chapter.

The main() Function

 34. def main():

 35. global FPSCLOCK, DISPLAYSURF, BASICFONT

 36.

 37. pygame.init()

 38. FPSCLOCK = pygame.time.Clock()

 39. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 40. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

 41. pygame.display.set_caption('Wormy')

 42.

 43. showStartScreen()

 44. while True:

 45. runGame()

 46. showGameOverScreen()

In the Wormy game program, we’ve put the main part of the code in a function called

runGame(). This is because we only want to show the ―start screen‖ (the animation with the

rotating ―Wormy‖ text) once when the program starts (by calling the showStartScreen()

Chapter 6 – Wormy 139

function). Then we want to call runGame(), which will start a game of Wormy. This function

will return when the player’s worm collides into a wall or into itself and causes a game over.

At that point we will show the game over screen by calling showGameOverScreen(). When

that function call returns, the loop goes back to the start and calls runGame() again. The

while loop on line 44 will loop forever until the program terminates.

A Separate runGame() Function

 49. def runGame():

 50. # Set a random start point.

 51. startx = random.randint(5, CELLWIDTH - 6)

 52. starty = random.randint(5, CELLHEIGHT - 6)

 53. wormCoords = [{'x': startx, 'y': starty},

 54. {'x': startx - 1, 'y': starty},

 55. {'x': startx - 2, 'y': starty}]

 56. direction = RIGHT

 57.

 58. # Start the apple in a random place.

 59. apple = getRandomLocation()

At the beginning of a game, we want the worm to start in a random position (but not too close to

the edges of the board) so we store a random coordinate in startx and starty. (Remember

that CELLWIDTH and CELLHEIGHT is the number of cells wide and high the window is, not the

number of pixels wide and high).

The body of the worm will be stored in a list of dictionary values. There will be one dictionary

value per body segment of the worm. The dictionary will have keys 'x' and 'y' for the XY

coordinates of that body segment. The head of the body to be at startx and starty. The other

two body segments will be one and two cells to the left of the head.

The head of the worm will always be the body part at wormCoords[0]. To make this code

more readable, we’ve set the HEAD constant to 0 on line 32, so that we can use

wormCoords[HEAD] instead of wormCoords[0].

The Event Handling Loop

 61. while True: # main game loop

 62. for event in pygame.event.get(): # event handling loop

 63. if event.type == QUIT:

 64. terminate()

 65. elif event.type == KEYDOWN:

 66. if (event.key == K_LEFT or event.key == K_a) and direction

!= RIGHT:

140 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 67. direction = LEFT

 68. elif (event.key == K_RIGHT or event.key == K_d) and

direction != LEFT:

 69. direction = RIGHT

 70. elif (event.key == K_UP or event.key == K_w) and direction

!= DOWN:

 71. direction = UP

 72. elif (event.key == K_DOWN or event.key == K_s) and

direction != UP:

 73. direction = DOWN

 74. elif event.key == K_ESCAPE:

 75. terminate()

Line 61 is the start of the main game loop and line 62 is the start of the event handling loop. If the

event is a QUIT event, then we call terminate() (which we’ve defined the same as the

terminate() function in the previous game programs).

Otherwise, if the event is a KEYDOWN event, then we check if the key that was pressed down is an

arrow key or a WASD key. We want an additional check so that the worm does not turn in on

itself. For example, if the worm is moving left, then if the player accidentally presses the right

arrow key, the worm would immediate start going right and crash into itself.

That is why we have this check for the current value of the direction variable. That way, if

the player accidentally presses an arrow key that would cause them to immediately crash the

worm, we just ignore that key press.

Collision Detection

77. # check if the worm has hit itself or the edge

78. if wormCoords[HEAD]['x'] == -1 or wormCoords[HEAD]['x'] ==

CELLWIDTH or wormCoords[HEAD]['y'] == -1 or wormCoords[HEAD]['y'] ==

CELLHEIGHT:

79. return # game over

80. for wormBody in wormCoords[1:]:

81. if wormBody['x'] == wormCoords[HEAD]['x'] and wormBody['y'] ==

wormCoords[HEAD]['y']:

82. return # game over

The worm has crashed when the head has moved off the edge of the grid or when the head moves

onto a cell that is already occupied by another body segment.

We can check if the head has moved off the edge of the grid by seeing if either the X coordinate

of the head (which is stored in wormCoords[HEAD]['x']) is -1 (which is past the left edge

Chapter 6 – Wormy 141

of the grid) or equal to CELLWIDTH (which is past the right edge, since the rightmost X cell

coordinate is one less than CELLWIDTH).

The head has also moved off the grid if the Y coordinate of the head (which is stored in

wormCoords[HEAD]['y']) is either -1 (which is past the top edge) or CELLHEIGHT

(which is past the bottom edge).

All we have to do to end the current game is to return out of runGame(). When runGame()

returns to the function call in main(), the next line after the runGame() call (line 46) is the

call to showGameOverScreen() which makes the large ―Game Over‖ text appear. This is

why we have the return statement on line 79.

Line 80 loops through every body segment in wormCoords after the head (which is at index 0.

This is why the for loop iterates over wormCoords[1:] instead of just wormCoords). If

both the 'x' and 'y' values of the body segment are the same as the 'x' and 'y' of the head,

then we also end the game by returning out of the runGame() function.

Detecting Collisions with the Apple

 84. # check if worm has eaten an apply

 85. if wormCoords[HEAD]['x'] == apple['x'] and wormCoords[HEAD]['y']

== apple['y']:

 86. # don't remove worm's tail segment

 87. apple = getRandomLocation() # set a new apple somewhere

 88. else:

 89. del wormCoords[-1] # remove worm's tail segment

We do a similar collision detection check between the head of the worm and the apple’s XY

coordinates. If they match, we set the coordinates of the apple to a random new location (which

we get from the return value of getRandomLocation()).

If the head has not collided with an apple, then we delete the last body segment in the

wormCoords list. Remember that negative integers for indexes count from the end of the list.

So while 0 is the index of the first item in the list and 1 is for the second item, -1 is for the last

item in the list and -2 is for the second to last item.

The code on lines 91 to 100 (described next in the ―Moving the Worm‖ section) will add a new

body segment (for the head) in the direction that the worm is going. This will make the worm one

segment longer. By not deleting the last body segment when the worm eats an apple, the overall

length of the worm increases by one. But when line 89 deletes the last body segment, the size

remains the same because a new head segment is added right afterwards.

142 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Moving the Worm

 91. # move the worm by adding a segment in the direction it is moving

 92. if direction == UP:

 93. newHead = {'x': wormCoords[HEAD]['x'], 'y':

wormCoords[HEAD]['y'] - 1}

 94. elif direction == DOWN:

 95. newHead = {'x': wormCoords[HEAD]['x'], 'y':

wormCoords[HEAD]['y'] + 1}

 96. elif direction == LEFT:

 97. newHead = {'x': wormCoords[HEAD]['x'] - 1, 'y':

wormCoords[HEAD]['y']}

 98. elif direction == RIGHT:

 99. newHead = {'x': wormCoords[HEAD]['x'] + 1, 'y':

wormCoords[HEAD]['y']}

100. wormCoords.insert(0, newHead)

To move the worm, we add a new body segment to the beginning of the wormCoords list.

Because the body segment is being added to the beginning of the list, it will become the new

head. The coordinates of the new head will be right next to the old head’s coordinates. Whether 1

is added or subtracted from either the X or Y coordinate depends on the direction the worm was

going.

This new head segment is added to wormCoords with the insert() list method on line 100.

The insert() List Method
Unlike the append() list method that can only add items to the end of a list, the insert() list

method can add items anywhere inside the list. The first parameter for insert() is the index

where the item should go (all the items originally at this index and after have their indexes

increase by one). If the argument passed for the first parameter is larger than the length of the list,

the item is simply added to the end of the list (just like what append() does). The second

parameter for insert() is the item value to be added. Type the following into the interactive

shell to see how insert() works:

>>> spam = ['cat', 'dog', 'bat']

>>> spam.insert(0, 'frog')

>>> spam

['frog', 'cat', 'dog', 'bat']

>>> spam.insert(10, 42)

>>> spam

['frog', 'cat', 'dog', 'bat', 42]

>>> spam.insert(2, 'horse')

>>> spam

['frog', 'cat', 'horse', 'dog', 'bat', 42]

Chapter 6 – Wormy 143

>>>

Drawing the Screen

101. DISPLAYSURF.fill(BGCOLOR)

102. drawGrid()

103. drawWorm(wormCoords)

104. drawApple(apple)

105. drawScore(len(wormCoords) - 3)

106. pygame.display.update()

107. FPSCLOCK.tick(FPS)

The code for drawing the screen in the runGame() function is fairly simple. Line 101 fills in

the entire display Surface with the background color. Lines 102 to 105 draw the grid, worm,

apple, and score to the display Surface. Then the call to pygame.display.update() draws

the display Surface to the actual computer screen.

Drawing “Press a key” Text to the Screen

109. def drawPressKeyMsg():

110. pressKeySurf = BASICFONT.render('Press a key to play.', True,

DARKGRAY)

111. pressKeyRect = pressKeySurf.get_rect()

112. pressKeyRect.topleft = (WINDOWWIDTH - 200, WINDOWHEIGHT - 30)

113. DISPLAYSURF.blit(pressKeySurf, pressKeyRect)

While the start screen animation is playing or the game over screen is being shown, there will be

some small text in the bottom right corner that says ―Press a key to play.‖ Rather than have the

code typed out in both the showStartScreen() and the showGameOverScreen(), we

put it in a this separate function and simply call the function from showStartScreen() and

showGameOverScreen().

The checkForKeyPress() Function

116. def checkForKeyPress():

117. if len(pygame.event.get(QUIT)) > 0:

118. terminate()

119.

120. keyUpEvents = pygame.event.get(KEYUP)

121. if len(keyUpEvents) == 0:

122. return None

123. if keyUpEvents[0].key == K_ESCAPE:

124. terminate()

125. return keyUpEvents[0].key

144 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

This function first checks if there are any QUIT events in the event queue. The call to

pygame.event.get() on line 117 returns a list of all the QUIT events in the event queue

(because we pass QUIT as an argument). If there are not QUIT events in the event queue, then

the list that pygame.event.get() returns will be the empty list: []

The len() call on line 117 will return 0 if pygame.event.get() returned an empty list. If

there are more than zero items in the list returned by pygame.event.get() (and remember,

any items in this list will only be QUIT events because we passed QUIT as the argument to

pygame.event.get()), then the terminate() function gets called on line 118 and the

program terminates.

After that, the call to pygame.event.get() gets a list of any KEYUP events in the event

queue. If the key event is for the Esc key, then the program terminates in that case as well.

Otherwise, the first key event object in the list that was returned by pygame.event.get() is

returned from this checkForKeyPress() function.

The Start Screen

128. def showStartScreen():

129. titleFont = pygame.font.Font('freesansbold.ttf', 100)

130. titleSurf1 = titleFont.render('Wormy!', True, WHITE, DARKGREEN)

131. titleSurf2 = titleFont.render('Wormy!', True, GREEN)

132.

133. degrees1 = 0

134. degrees2 = 0

135. while True:

136. DISPLAYSURF.fill(BGCOLOR)

When the Wormy game program first begins running, the player doesn’t automatically begin

playing the game. Instead, a start screen appears which tells the player what program they are

running. A start screen also gives the player a chance to prepare for the game to begin (otherwise

the player might not be ready and crash on their first game).

The Wormy start screen requires two Surface objects with the ―Wormy!‖ text drawn on them.

These are what the render() method calls create on lines 130 and 131. The text will be large:

the Font() constructor function call on line 129 creates a Font object that is 100 points in size.

The first ―Wormy!‖ text will have white text with a dark green background, and the other will

have green text with a transparent background.

Line 135 begins the animation loop for the start screen. During this animation, the two pieces of

text will be rotated and drawn to the display Surface object.

Chapter 6 – Wormy 145

Rotating the Start Screen Text

137. rotatedSurf1 = pygame.transform.rotate(titleSurf1, degrees1)

138. rotatedRect1 = rotatedSurf1.get_rect()

139. rotatedRect1.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2)

140. DISPLAYSURF.blit(rotatedSurf1, rotatedRect1)

141.

142. rotatedSurf2 = pygame.transform.rotate(titleSurf2, degrees2)

143. rotatedRect2 = rotatedSurf2.get_rect()

144. rotatedRect2.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2)

145. DISPLAYSURF.blit(rotatedSurf2, rotatedRect2)

146.

147. drawPressKeyMsg()

148.

149. if checkForKeyPress():

150. pygame.event.get() # clear event queue

151. return

152. pygame.display.update()

153. FPSCLOCK.tick(FPS)

The showStartScreen() function will rotate the images on the Surface objects that the

―Wormy!‖ text is written on. The first parameter is the Surface object to make a rotated copy of.

The second parameter is the number of degrees to rotate the Surface. The

pygame.transform.rotate() function doesn’t change the Surface object you pass it, but

rather returns a new Surface object with the rotated image drawn on it.

Note that this new Surface object will probably be larger than the original one, since all Surface

objects represent rectangular areas and the corners of the rotated Surface will stick out past the

width and height of original Surface. The picture below has a black rectangle along with a

slightly rotated version of itself. In order to make a Surface object that can fit the rotated

rectangle (which is colored gray in the picture below), it must be larger than the original black

rectangle’s Surface object:

The amount you rotate it is given in degrees, which is a measure of rotation. There are 360

degrees in a circle. Not rotated at all is 0 degrees. Rotating to one quarter counter-clockwise is 90

degrees. To rotate clockwise, pass a negative integer. Rotating 360 degrees is rotating the image

all the way around, which means you end up with the same image as if you rotated it 0 degrees. In

fact, if the rotation argument you pass to pygame.transform.rotate() is 360 or larger,

146 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

then Pygame automatically keeps subtracting 360 from it until it gets a number less than 360.

This image shows several examples of different rotation amounts:

The two rotated ―Wormy!‖ Surface objects are blitted to the display Surface on each frame of the

animation loop on lines 140 and 145.

On line 147 the drawPressKeyMsg() function call draws the ―Press a key to play.‖ text in the

lower corner of the display Surface object. This animation loop will keep looping until

checkForKeyPress() returns a value that is not None, which happens if the player presses a

key. Before returning, pygame.event.get() is called simply to clear out any other events

that have accumulated in the event queue which the start screen was displayed.

Rotations Are Not Perfect
You may wonder why we store the rotated Surface in a separate variable, rather than just

overwrite the titleSurf1 and titleSurf2 variables. There are two reasons.

First, rotating a 2D image is never completely perfect. The rotated image is always approximate.

If you rotate an image by 10 degrees counterclockwise, and then rotate it back 10 degrees

clockwise, the image you have will not be the exact same image you started with. Think of it as

making a photocopy, and then a photocopy of the first photocopy, and the another photocopy of

that photocopy. If you keep doing this, the image gets worse and worse as the slight distortions

add up.

(The only exception to this is if you rotate an image by a multiple of 90 degrees, such as 0, 90,

180, 270, or 360 degrees. In that case, the pixels can be rotated without any distortion.)

Second, if you rotate a 2D image then the rotated image will be slightly larger than the original

image. If you rotate that rotated image, then the next rotated image will be slightly larger again. If

you keep doing this, eventually the image will become too large for Pygame to handle, and your

Chapter 6 – Wormy 147

program will crash with the error message, pygame.error: Width or height is too

large.

154. degrees1 += 3 # rotate by 3 degrees each frame

155. degrees2 += 7 # rotate by 7 degrees each frame

The amount that we rotate the two ―Wormy!‖ text Surface objects is stored in degrees1 and

degrees2. On each iteration through the animation loop, we increase the number stored in

degrees1 by 3 and degrees2 by 7. This means on the next iteration of the animation loop

the white text ―Wormy!‖ Surface object will be rotated by another 3 degrees and the green text

―Wormy!‖ Surface object will be rotated by another 7 degrees. This is why the one of the Surface

objects rotates slower than the other.

158. def terminate():

159. pygame.quit()

160. sys.exit()

The terminate() function calls pygame.quit() and sys.exit() so that the game

correctly shuts down. It is identical to the terminate() functions in the previous game

programs.

Deciding Where the Apple Appears

163. def getRandomLocation():

164. return {'x': random.randint(0, CELLWIDTH - 1), 'y': random.randint(0,

CELLHEIGHT - 1)}

The getRandomLocation() function is called whenever new coordinates for the apple are

needed. This function returns a dictionary with keys 'x' and 'y', with the values set to random

XY coordinates.

Game Over Screens

167. def showGameOverScreen():

168. gameOverFont = pygame.font.Font('freesansbold.ttf', 150)

169. gameSurf = gameOverFont.render('Game', True, WHITE)

170. overSurf = gameOverFont.render('Over', True, WHITE)

171. gameRect = gameSurf.get_rect()

172. overRect = overSurf.get_rect()

173. gameRect.midtop = (WINDOWWIDTH / 2, 10)

174. overRect.midtop = (WINDOWWIDTH / 2, gameRect.height + 10 + 25)

175.

176. DISPLAYSURF.blit(gameSurf, gameRect)

148 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

177. DISPLAYSURF.blit(overSurf, overRect)

178. drawPressKeyMsg()

179. pygame.display.update()

The game over screen is similar to the start screen, except it isn’t animated. The words ―Game‖

and ―Over‖ are rendered to two Surface objects which are then drawn on the screen.

180. pygame.time.wait(500)

181. checkForKeyPress() # clear out any key presses in the event queue

182.

183. while True:

184. if checkForKeyPress():

185. pygame.event.get() # clear event queue

186. return

The Game Over text will stay on the screen until the player pushes a key. Just to make sure the

player doesn’t accidentally press a key too soon, we will put a half second pause with the call to

pygame.time.wait() on line 180. (The 500 argument stands for a 500 millisecond pause,

which is half of one second.)

Then, checkForKeyPress() is called so that any key events that were made since the

showGameOverScreen() function started are ignored. This pause and dropping of the key

events is to prevent the following situation: Say the player was trying to turn away from the edge

of the screen at the last minute, but pressed the key too late and crashed into the edge of the

board. If this happens, then the key press would have happened after the

showGameOverScreen() was called, and that key press would cause the game over screen to

disappear almost instantly. The next game would start immediately after that, and might take the

player by surprise. Adding this pause helps the make the game more ―user friendly‖.

Drawing Functions
The code to draw the score, worm, apple, and grid are all put into separate functions.

188. def drawScore(score):

189. scoreSurf = BASICFONT.render('Score: %s' % (score), True, WHITE)

190. scoreRect = scoreSurf.get_rect()

191. scoreRect.topleft = (WINDOWWIDTH - 120, 10)

192. DISPLAYSURF.blit(scoreSurf, scoreRect)

The drawScore() function simply renders and draws the text of the score that was passed in

its score parameter on the display Surface object.

Chapter 6 – Wormy 149

195. def drawWorm(wormCoords):

196. for coord in wormCoords:

197. x = coord['x'] * CELLSIZE

198. y = coord['y'] * CELLSIZE

199. wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

200. pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect)

201. wormInnerSegmentRect = pygame.Rect(x + 4, y + 4, CELLSIZE - 8,

CELLSIZE - 8)

202. pygame.draw.rect(DISPLAYSURF, GREEN, wormInnerSegmentRect)

The drawWorm() function will draw a green box for each of the segments of the worm’s body.

The segments are passed in the wormCoords parameter, which is a list of dictionaries each with

an 'x' key and a 'y' key. The for loop on line 196 loops through each of the dictionary values

in wormCoords.

Because the grid coordinates take up the entire window and also begin a 0, 0 pixel, it is fairly

easy to convert from grid coordinates to pixel coordinates. Line 197 and 198 simply multiply the

coord['x'] and coord['y'] coordinate by the CELLSIZE.

Line 199 creates a Rect object for the worm segment that will be passed to the

pygame.draw.rect() function on line 200. Remember that each cell in the grid is

CELLSIZE in width and height, so that’s what the size of the segment’s Rect object should be.

Line 200 draws a dark green rectangle for the segment. Then on top of this, a smaller bright green

rectangle is drawn. This makes the worm look a little nicer.

The inner bright green rectangle starts 4 pixels to the right and 4 pixels below the topleft corner of

the cell. The width and height of this rectangle are 8 pixels less than the cell size, so there will be

a 4 pixel margin on the right and bottom sides as well.

205. def drawApple(coord):

206. x = coord['x'] * CELLSIZE

207. y = coord['y'] * CELLSIZE

208. appleRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

209. pygame.draw.rect(DISPLAYSURF, RED, appleRect)

The drawApple() function is very similar to drawWorm(), except since the red apple is just

a single rectangle that fills up the cell, all the function needs to do is convert to pixel coordinates

(which is what lines 206 and 207 do), create the Rect object with the location and size of the

apple (line 208), and then pass this Rect object to the pygame.draw.rect() function.

212. def drawGrid():

213. for x in range(0, WINDOWWIDTH, CELLSIZE): # draw vertical lines

150 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

214. pygame.draw.line(DISPLAYSURF, DARKGRAY, (x, 0), (x, WINDOWHEIGHT))

215. for y in range(0, WINDOWHEIGHT, CELLSIZE): # draw horizontal lines

216. pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, y), (WINDOWWIDTH, y))

Just to make it easier to visualize the grid of cells, we call pygame.draw.line() to draw out

each of the vertical and horizontal lines of the grid.

Normally, to draw the 32 vertical lines needed, we would need 32 calls to

pygame.draw.line() with the following coordinates:

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 0), (0, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (20, 0), (20, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (40, 0), (40, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (60, 0), (60, WINDOWHEIGHT))

...skipped for brevity...

pygame.draw.line(DISPLAYSURF, DARKGRAY, (560, 0), (560, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (580, 0), (580, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (600, 0), (600, WINDOWHEIGHT))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (620, 0), (620, WINDOWHEIGHT))

Instead of typing out all these lines of code, we can just have one line of code inside a for loop.

Notice that the pattern for the vertical lines is that the X coordinate of the start and end point

starts at 0 and goes up to 620, increasing by 20 each time. The Y coordinate is always 0 for the

start point and WINDOWHEIGHT for the end point parameter. That means the for loop should

iterate over range(0, 640, 20). This is why the for loop on line 213 iterates over

range(0, WINDOWWIDTH, CELLSIZE).

For the horizontal lines, the coordinates would have to be:

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 0), (WINDOWWIDTH, 0))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 20), (WINDOWWIDTH, 20))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 40), (WINDOWWIDTH, 40))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 60), (WINDOWWIDTH, 60))

...skipped for brevity...

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 400), (WINDOWWIDTH, 400))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 420), (WINDOWWIDTH, 420))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 440), (WINDOWWIDTH, 440))

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 460), (WINDOWWIDTH, 460))

The Y coordinate ranges from 0 to 460, increasing by 20 each time. The X coordinate is always

0 for the start point and WINDOWWIDTH for the end point parameter. We can also use a for loop

here so we don’t have to type out all those pygame.draw.line() calls.

Chapter 6 – Wormy 151

Noticing regular patterns needed by the calls and using loops is a clever programmer trick to save

us from a lot of typing. We could have typed out all 56 pygame.draw.line() calls and the

program would have worked the exact same. But by being a little bit clever, we can save

ourselves a lot of work.

219. if __name__ == '__main__':

220. main()

After all the functions and constants and global variables have been defined and created, the

main() function is called to start the game.

Don’t Reuse Variable Names
Take a look at a few lines of code from the drawWorm() function again:

199. wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

200. pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect)

201. wormInnerSegmentRect = pygame.Rect(x + 4, y + 4, CELLSIZE - 8,

CELLSIZE - 8)

202. pygame.draw.rect(DISPLAYSURF, GREEN, wormInnerSegmentRect)

Notice that two different Rect objects are created on lines 199 and 201. The Rect object created

on line 199 is stored in the wormSegmentRect local variable and is passed to the

pygame.draw.rect() function on line 200. The Rect object created on line 201 is stored in

the wormInnerSegmentRect local variable and is passed to the pygame.draw.rect()

function on line 202.

Every time you create a variable, it takes up a small amount of the computer’s memory. You

might think it would be clever to reuse the wormSegmentRect variable for both Rect objects,

like this:

199. wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE)

200. pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect)

201. wormSegmentRect = pygame.Rect(x + 4, y + 4, CELLSIZE - 8, CELLSIZE

- 8)

202. pygame.draw.rect(DISPLAYSURF, GREEN, wormInnerSegmentRect)

Because the Rect object returned by pygame.Rect() on line 199 won’t be needed after 200,

we can overwrite this value and reuse the variable to store the Rect object returned by

pygame.Rect() on line 201. Since we are now using fewer variables we are saving memory,

right?

152 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

While this is technically true, you really are only saving a few bytes. Modern computers have

memory of several billion bytes. So the savings aren’t that great. Meanwhile, reusing variables

reduces the code readability. If a programmer was reading through this code after it was written,

they would see that wormSegmentRect is passed to the pygame.draw.rect() calls on

line 200 and 202. If they tried to find the first time the wormSegmentRect variable was

assigned a value, they would see the pygame.Rect() call on line 199. They might not realize

that the Rect object returned by line 199’s pygame.Rect() call isn’t the same as the one that is

passed to the pygame.draw.rect() call on line 202.

Little things like this make it harder to understand how exactly your program works. It won’t just

be other programmers looking at your code who will be confused. When you look at your own

code a couple weeks after writing it, you may have a hard time remembering how exactly it

works. Code readability is much more important than saving a few bytes of memory here and

there.

For additional programming practice, you can download buggy versions of Wormy from

http://invpy.com/buggy/wormy and try to figure out how to fix the bugs.

Chapter 7 - Tetromino 153

CHAPTER 7 - TETROMINO

How to Play Tetromino
Tetromino is a Tetris clone. Differently shaped blocks (each made up of four boxes) fall from the

top of the screen, and the player must guide them down to form complete rows that have no gaps

in them. When a complete row is formed, the row disappears and each row above it moves down

one row. The player tries to keep forming complete lines until the screen fills up and a new

falling block cannot fit on the screen.

Some Tetromino Nomenclature
In this chapter, I have come up with a set of terms for the different things in the game program.

 Board – The board is made up of 10 x 20 spaces that the blocks fall and stack up in.

 Box – A box is a single filled-in square space on the board.

 Piece – The things that fall from the top of the board that the player can rotate and

position. Each piece has a shape and is made up of 4 boxes.

 Shape – The shapes are the different types of pieces in the game. The names of the

shapes are T, S, Z, J, L, I, and O.

154 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 Template – A list of shape data structures that represents all the possible rotations of a

shape. These are store in variables with names like S_SHAPE_TEMPLATE or

J_SHAPE_TEMPLATE.

 Landed – When a piece has either reached the bottom of the board or is touching a box

on the board, we say that the piece has landed. At that point, the next piece should start

falling.

Source Code to Tetromino
This source code can be downloaded from http://invpy.com/tetromino.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

http://invpy.com/diff/tetromino to see if the differences between your code and the code in the

book.

You will also need the background music files in the same folder of as the tetromino.py file. You

can download them from here:

 http://invpy.com/tetrisb.mid

 http://invpy.com/tetrisc.mid

 1. # Tetromino (a Tetris clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, time, pygame, sys

 7. from pygame.locals import *

 8.

 9. FPS = 25

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

 12. BOXSIZE = 20

 13. BOARDWIDTH = 10

 14. BOARDHEIGHT = 20

 15. BLANK = '.'

 16.

 17. MOVESIDEWAYSFREQ = 0.15

 18. MOVEDOWNFREQ = 0.1

 19.

 20. XMARGIN = int((WINDOWWIDTH - BOARDWIDTH * BOXSIZE) / 2)

 21. TOPMARGIN = WINDOWHEIGHT - (BOARDHEIGHT * BOXSIZE) - 5

 22.

 23. # R G B

Chapter 7 - Tetromino 155

 24. WHITE = (255, 255, 255)

 25. GRAY = (185, 185, 185)

 26. BLACK = (0, 0, 0)

 27. RED = (155, 0, 0)

 28. LIGHTRED = (175, 20, 20)

 29. GREEN = (0, 155, 0)

 30. LIGHTGREEN = (20, 175, 20)

 31. BLUE = (0, 0, 155)

 32. LIGHTBLUE = (20, 20, 175)

 33. YELLOW = (155, 155, 0)

 34. LIGHTYELLOW = (175, 175, 20)

 35.

 36. BORDERCOLOR = BLUE

 37. BGCOLOR = BLACK

 38. TEXTCOLOR = WHITE

 39. TEXTSHADOWCOLOR = GRAY

 40. COLORS = (BLUE, GREEN, RED, YELLOW)

 41. LIGHTCOLORS = (LIGHTBLUE, LIGHTGREEN, LIGHTRED, LIGHTYELLOW)

 42. assert len(COLORS) == len(LIGHTCOLORS) # each color must have light color

 43.

 44. TEMPLATEWIDTH = 5

 45. TEMPLATEHEIGHT = 5

 46.

 47. S_SHAPE_TEMPLATE = [['.....',

 48. '.....',

 49. '..OO.',

 50. '.OO..',

 51. '.....'],

 52. ['.....',

 53. '..O..',

 54. '..OO.',

 55. '...O.',

 56. '.....']]

 57.

 58. Z_SHAPE_TEMPLATE = [['.....',

 59. '.....',

 60. '.OO..',

 61. '..OO.',

 62. '.....'],

 63. ['.....',

 64. '..O..',

 65. '.OO..',

 66. '.O...',

 67. '.....']]

 68.

 69. I_SHAPE_TEMPLATE = [['..O..',

156 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 70. '..O..',

 71. '..O..',

 72. '..O..',

 73. '.....'],

 74. ['.....',

 75. '.....',

 76. 'OOOO.',

 77. '.....',

 78. '.....']]

 79.

 80. O_SHAPE_TEMPLATE = [['.....',

 81. '.....',

 82. '.OO..',

 83. '.OO..',

 84. '.....']]

 85.

 86. J_SHAPE_TEMPLATE = [['.....',

 87. '.O...',

 88. '.OOO.',

 89. '.....',

 90. '.....'],

 91. ['.....',

 92. '..OO.',

 93. '..O..',

 94. '..O..',

 95. '.....'],

 96. ['.....',

 97. '.....',

 98. '.OOO.',

 99. '...O.',

100. '.....'],

101. ['.....',

102. '..O..',

103. '..O..',

104. '.OO..',

105. '.....']]

106.

107. L_SHAPE_TEMPLATE = [['.....',

108. '...O.',

109. '.OOO.',

110. '.....',

111. '.....'],

112. ['.....',

113. '..O..',

114. '..O..',

115. '..OO.',

Chapter 7 - Tetromino 157

116. '.....'],

117. ['.....',

118. '.....',

119. '.OOO.',

120. '.O...',

121. '.....'],

122. ['.....',

123. '.OO..',

124. '..O..',

125. '..O..',

126. '.....']]

127.

128. T_SHAPE_TEMPLATE = [['.....',

129. '..O..',

130. '.OOO.',

131. '.....',

132. '.....'],

133. ['.....',

134. '..O..',

135. '..OO.',

136. '..O..',

137. '.....'],

138. ['.....',

139. '.....',

140. '.OOO.',

141. '..O..',

142. '.....'],

143. ['.....',

144. '..O..',

145. '.OO..',

146. '..O..',

147. '.....']]

148.

149. SHAPES = {'S': S_SHAPE_TEMPLATE,

150. 'Z': Z_SHAPE_TEMPLATE,

151. 'J': J_SHAPE_TEMPLATE,

152. 'L': L_SHAPE_TEMPLATE,

153. 'I': I_SHAPE_TEMPLATE,

154. 'O': O_SHAPE_TEMPLATE,

155. 'T': T_SHAPE_TEMPLATE}

156.

157.

158. def main():

159. global FPSCLOCK, DISPLAYSURF, BASICFONT, BIGFONT

160. pygame.init()

161. FPSCLOCK = pygame.time.Clock()

158 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

162. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

163. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

164. BIGFONT = pygame.font.Font('freesansbold.ttf', 100)

165. pygame.display.set_caption('Tetromino')

166.

167. showTextScreen('Tetromino')

168. while True: # game loop

169. if random.randint(0, 1) == 0:

170. pygame.mixer.music.load('tetrisb.mid')

171. else:

172. pygame.mixer.music.load('tetrisc.mid')

173. pygame.mixer.music.play(-1, 0.0)

174. runGame()

175. pygame.mixer.music.stop()

176. showTextScreen('Game Over')

177.

178.

179. def runGame():

180. # setup variables for the start of the game

181. board = getBlankBoard()

182. lastMoveDownTime = time.time()

183. lastMoveSidewaysTime = time.time()

184. lastFallTime = time.time()

185. movingDown = False # note: there is no movingUp variable

186. movingLeft = False

187. movingRight = False

188. score = 0

189. level, fallFreq = calculateLevelAndFallFreq(score)

190.

191. fallingPiece = getNewPiece()

192. nextPiece = getNewPiece()

193.

194. while True: # main game loop

195. if fallingPiece == None:

196. # No falling piece in play, so start a new piece at the top

197. fallingPiece = nextPiece

198. nextPiece = getNewPiece()

199. lastFallTime = time.time() # reset lastFallTime

200.

201. if not isValidPosition(board, fallingPiece):

202. return # can't fit a new piece on the board, so game over

203.

204. checkForQuit()

205. for event in pygame.event.get(): # event handling loop

206. if event.type == KEYUP:

207. if (event.key == K_p):

Chapter 7 - Tetromino 159

208. # Pausing the game

209. DISPLAYSURF.fill(BGCOLOR)

210. pygame.mixer.music.stop()

211. showTextScreen('Paused') # pause until a key press

212. pygame.mixer.music.play(-1, 0.0)

213. lastFallTime = time.time()

214. lastMoveDownTime = time.time()

215. lastMoveSidewaysTime = time.time()

216. elif (event.key == K_LEFT or event.key == K_a):

217. movingLeft = False

218. elif (event.key == K_RIGHT or event.key == K_d):

219. movingRight = False

220. elif (event.key == K_DOWN or event.key == K_s):

221. movingDown = False

222.

223. elif event.type == KEYDOWN:

224. # moving the block sideways

225. if (event.key == K_LEFT or event.key == K_a) and

isValidPosition(board, fallingPiece, adjX=-1):

226. fallingPiece['x'] -= 1

227. movingLeft = True

228. movingRight = False

229. lastMoveSidewaysTime = time.time()

230.

231. elif (event.key == K_RIGHT or event.key == K_d) and

isValidPosition(board, fallingPiece, adjX=1):

232. fallingPiece['x'] += 1

233. movingRight = True

234. movingLeft = False

235. lastMoveSidewaysTime = time.time()

236.

237. # rotating the block (if there is room to rotate)

238. elif (event.key == K_UP or event.key == K_w):

239. fallingPiece['rotation'] = (fallingPiece['rotation'] +

1) % len(SHAPES[fallingPiece['shape']])

240. if not isValidPosition(board, fallingPiece):

241. fallingPiece['rotation'] =

(fallingPiece['rotation'] - 1) % len(SHAPES[fallingPiece['shape']])

242. elif (event.key == K_q): # rotate the other direction

243. fallingPiece['rotation'] = (fallingPiece['rotation'] -

1) % len(SHAPES[fallingPiece['shape']])

244. if not isValidPosition(board, fallingPiece):

245. fallingPiece['rotation'] =

(fallingPiece['rotation'] + 1) % len(SHAPES[fallingPiece['shape']])

246.

247. # making the block fall faster with the down key

160 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

248. elif (event.key == K_DOWN or event.key == K_s):

249. movingDown = True

250. if isValidPosition(board, fallingPiece, adjY=1):

251. fallingPiece['y'] += 1

252. lastMoveDownTime = time.time()

253.

254. # move the current block all the way down

255. elif event.key == K_SPACE:

256. movingDown = False

257. movingLeft = False

258. movingRight = False

259. for i in range(1, BOARDHEIGHT):

260. if not isValidPosition(board, fallingPiece,

adjY=i):

261. break

262. fallingPiece['y'] += i - 1

263.

264. # handle moving the block because of user input

265. if (movingLeft or movingRight) and time.time() -

lastMoveSidewaysTime > MOVESIDEWAYSFREQ:

266. if movingLeft and isValidPosition(board, fallingPiece, adjX=-

1):

267. fallingPiece['x'] -= 1

268. elif movingRight and isValidPosition(board, fallingPiece,

adjX=1):

269. fallingPiece['x'] += 1

270. lastMoveSidewaysTime = time.time()

271.

272. if movingDown and time.time() - lastMoveDownTime > MOVEDOWNFREQ

and isValidPosition(board, fallingPiece, adjY=1):

273. fallingPiece['y'] += 1

274. lastMoveDownTime = time.time()

275.

276. # let the piece fall if it is time to fall

277. if time.time() - lastFallTime > fallFreq:

278. # see if the piece has landed

279. if not isValidPosition(board, fallingPiece, adjY=1):

280. # falling piece has landed, set it on the board

281. addToBoard(board, fallingPiece)

282. score += removeCompleteLines(board)

283. level, fallFreq = calculateLevelAndFallFreq(score)

284. fallingPiece = None

285. else:

286. # piece did not land, just move the block down

287. fallingPiece['y'] += 1

288. lastFallTime = time.time()

Chapter 7 - Tetromino 161

289.

290. # drawing everything on the screen

291. DISPLAYSURF.fill(BGCOLOR)

292. drawBoard(board)

293. drawStatus(score, level)

294. drawNextPiece(nextPiece)

295. if fallingPiece != None:

296. drawPiece(fallingPiece)

297.

298. pygame.display.update()

299. FPSCLOCK.tick(FPS)

300.

301.

302. def makeTextObjs(text, font, color):

303. surf = font.render(text, True, color)

304. return surf, surf.get_rect()

305.

306.

307. def terminate():

308. pygame.quit()

309. sys.exit()

310.

311.

312. def checkForKeyPress():

313. # Go through event queue looking for a KEYUP event.

314. # Grab KEYDOWN events to remove them from the event queue.

315. checkForQuit()

316.

317. for event in pygame.event.get([KEYDOWN, KEYUP]):

318. if event.type == KEYDOWN:

319. continue

320. return event.key

321. return None

322.

323.

324. def showTextScreen(text):

325. # This function displays large text in the

326. # center of the screen until a key is pressed.

327. # Draw the text drop shadow

328. titleSurf, titleRect = makeTextObjs(text, BIGFONT, TEXTSHADOWCOLOR)

329. titleRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2))

330. DISPLAYSURF.blit(titleSurf, titleRect)

331.

332. # Draw the text

333. titleSurf, titleRect = makeTextObjs(text, BIGFONT, TEXTCOLOR)

162 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

334. titleRect.center = (int(WINDOWWIDTH / 2) - 3, int(WINDOWHEIGHT / 2) -

3)

335. DISPLAYSURF.blit(titleSurf, titleRect)

336.

337. # Draw the additional "Press a key to play." text.

338. pressKeySurf, pressKeyRect = makeTextObjs('Press a key to play.',

BASICFONT, TEXTCOLOR)

339. pressKeyRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) +

100)

340. DISPLAYSURF.blit(pressKeySurf, pressKeyRect)

341.

342. while checkForKeyPress() == None:

343. pygame.display.update()

344. FPSCLOCK.tick()

345.

346.

347. def checkForQuit():

348. for event in pygame.event.get(QUIT): # get all the QUIT events

349. terminate() # terminate if any QUIT events are present

350. for event in pygame.event.get(KEYUP): # get all the KEYUP events

351. if event.key == K_ESCAPE:

352. terminate() # terminate if the KEYUP event was for the Esc key

353. pygame.event.post(event) # put the other KEYUP event objects back

354.

355.

356. def calculateLevelAndFallFreq(score):

357. # Based on the score, return the level the player is on and

358. # how many seconds pass until a falling piece falls one space.

359. level = int(score / 10) + 1

360. fallFreq = 0.27 - (level * 0.02)

361. return level, fallFreq

362.

363. def getNewPiece():

364. # return a random new piece in a random rotation and color

365. shape = random.choice(list(SHAPES.keys()))

366. newPiece = {'shape': shape,

367. 'rotation': random.randint(0, len(SHAPES[shape]) - 1),

368. 'x': int(BOARDWIDTH / 2) - int(TEMPLATEWIDTH / 2),

369. 'y': -2, # start it above the board (i.e. less than 0)

370. 'color': random.randint(0, len(COLORS)-1)}

371. return newPiece

372.

373.

374. def addToBoard(board, piece):

375. # fill in the board based on piece's location, shape, and rotation

376. for x in range(TEMPLATEWIDTH):

Chapter 7 - Tetromino 163

377. for y in range(TEMPLATEHEIGHT):

378. if SHAPES[piece['shape']][piece['rotation']][y][x] != BLANK:

379. board[x + piece['x']][y + piece['y']] = piece['color']

380.

381.

382. def getBlankBoard():

383. # create and return a new blank board data structure

384. board = []

385. for i in range(BOARDWIDTH):

386. board.append([BLANK] * BOARDHEIGHT)

387. return board

388.

389.

390. def isOnBoard(x, y):

391. return x >= 0 and x < BOARDWIDTH and y < BOARDHEIGHT

392.

393.

394. def isValidPosition(board, piece, adjX=0, adjY=0):

395. # Return True if the piece is within the board and not colliding

396. for x in range(TEMPLATEWIDTH):

397. for y in range(TEMPLATEHEIGHT):

398. isAboveBoard = y + piece['y'] + adjY < 0

399. if isAboveBoard or

SHAPES[piece['shape']][piece['rotation']][y][x] == BLANK:

400. continue

401. if not isOnBoard(x + piece['x'] + adjX, y + piece['y'] +

adjY):

402. return False

403. if board[x + piece['x'] + adjX][y + piece['y'] + adjY] !=

BLANK:

404. return False

405. return True

406.

407. def isCompleteLine(board, y):

408. # Return True if the line filled with boxes with no gaps.

409. for x in range(BOARDWIDTH):

410. if board[x][y] == BLANK:

411. return False

412. return True

413.

414.

415. def removeCompleteLines(board):

416. # Remove any completed lines on the board, move everything above them

down, and return the number of complete lines.

417. numLinesRemoved = 0

418. y = BOARDHEIGHT - 1 # start y at the bottom of the board

164 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

419. while y >= 0:

420. if isCompleteLine(board, y):

421. # Remove the line and pull boxes down by one line.

422. for pullDownY in range(y, 0, -1):

423. for x in range(BOARDWIDTH):

424. board[x][pullDownY] = board[x][pullDownY-1]

425. # Set very top line to blank.

426. for x in range(BOARDWIDTH):

427. board[x][0] = BLANK

428. numLinesRemoved += 1

429. # Note on the next iteration of the loop, y is the same.

430. # This is so that if the line that was pulled down is also

431. # complete, it will be removed.

432. else:

433. y -= 1 # move on to check next row up

434. return numLinesRemoved

435.

436.

437. def convertToPixelCoords(boxx, boxy):

438. # Convert the given xy coordinates of the board to xy

439. # coordinates of the location on the screen.

440. return (XMARGIN + (boxx * BOXSIZE)), (TOPMARGIN + (boxy * BOXSIZE))

441.

442.

443. def drawBox(boxx, boxy, color, pixelx=None, pixely=None):

444. # draw a single box (each tetromino piece has four boxes)

445. # at xy coordinates on the board. Or, if pixelx & pixely

446. # are specified, draw to the pixel coordinates stored in

447. # pixelx & pixely (this is used for the "Next" piece).

448. if color == BLANK:

449. return

450. if pixelx == None and pixely == None:

451. pixelx, pixely = convertToPixelCoords(boxx, boxy)

452. pygame.draw.rect(DISPLAYSURF, COLORS[color], (pixelx + 1, pixely + 1,

BOXSIZE - 1, BOXSIZE - 1))

453. pygame.draw.rect(DISPLAYSURF, LIGHTCOLORS[color], (pixelx + 1, pixely

+ 1, BOXSIZE - 4, BOXSIZE - 4))

454.

455.

456. def drawBoard(board):

457. # draw the border around the board

458. pygame.draw.rect(DISPLAYSURF, BORDERCOLOR, (XMARGIN - 3, TOPMARGIN -

7, (BOARDWIDTH * BOXSIZE) + 8, (BOARDHEIGHT * BOXSIZE) + 8), 5)

459.

460. # fill the background of the board

Chapter 7 - Tetromino 165

461. pygame.draw.rect(DISPLAYSURF, BGCOLOR, (XMARGIN, TOPMARGIN, BOXSIZE *

BOARDWIDTH, BOXSIZE * BOARDHEIGHT))

462. # draw the individual boxes on the board

463. for x in range(BOARDWIDTH):

464. for y in range(BOARDHEIGHT):

465. drawBox(x, y, board[x][y])

466.

467.

468. def drawStatus(score, level):

469. # draw the score text

470. scoreSurf = BASICFONT.render('Score: %s' % score, True, TEXTCOLOR)

471. scoreRect = scoreSurf.get_rect()

472. scoreRect.topleft = (WINDOWWIDTH - 150, 20)

473. DISPLAYSURF.blit(scoreSurf, scoreRect)

474.

475. # draw the level text

476. levelSurf = BASICFONT.render('Level: %s' % level, True, TEXTCOLOR)

477. levelRect = levelSurf.get_rect()

478. levelRect.topleft = (WINDOWWIDTH - 150, 50)

479. DISPLAYSURF.blit(levelSurf, levelRect)

480.

481.

482. def drawPiece(piece, pixelx=None, pixely=None):

483. shapeToDraw = SHAPES[piece['shape']][piece['rotation']]

484. if pixelx == None and pixely == None:

485. # if pixelx & pixely hasn't been specified, use the location

stored in the piece data structure

486. pixelx, pixely = convertToPixelCoords(piece['x'], piece['y'])

487.

488. # draw each of the blocks that make up the piece

489. for x in range(TEMPLATEWIDTH):

490. for y in range(TEMPLATEHEIGHT):

491. if shapeToDraw[y][x] != BLANK:

492. drawBox(None, None, piece['color'], pixelx + (x *

BOXSIZE), pixely + (y * BOXSIZE))

493.

494.

495. def drawNextPiece(piece):

496. # draw the "next" text

497. nextSurf = BASICFONT.render('Next:', True, TEXTCOLOR)

498. nextRect = nextSurf.get_rect()

499. nextRect.topleft = (WINDOWWIDTH - 120, 80)

500. DISPLAYSURF.blit(nextSurf, nextRect)

501. # draw the "next" piece

502. drawPiece(piece, pixelx=WINDOWWIDTH-120, pixely=100)

503.

166 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

504.

505. if __name__ == '__main__':

506. main()

The Usual Setup Code

 1. # Tetromino (a Tetris clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, time, pygame, sys

 7. from pygame.locals import *

 8.

 9. FPS = 25

 10. WINDOWWIDTH = 640

 11. WINDOWHEIGHT = 480

 12. BOXSIZE = 20

 13. BOARDWIDTH = 10

 14. BOARDHEIGHT = 20

 15. BLANK = '.'

These are the constants used by our Tetromino game. Each box is a square that is 20 pixels wide

and high. The board itself is 10 boxes wide and 20 boxes tall. The BLANK constant will be used

as a value to represent blank spaces in the board’s data structure.

Setting up Timing Constants for Holding Down Keys

 17. MOVESIDEWAYSFREQ = 0.15

 18. MOVEDOWNFREQ = 0.1

Every time the player pushes the left or right arrow key down, the falling piece should move one

box over to the left or right, respectively. However, the player can also hold down the left or right

arrow key to keep moving the falling piece. The MOVESIDEWAYSFREQ constant will set it so

that every 0.15 seconds that passes with the left or right arrow key held down, the piece will

move another space over.

The MOVEDOWNFREQ constant is the same thing except it tells how frequently the piece drops by

one box while the player has the down arrow key held down.

More Setup Code

 20. XMARGIN = int((WINDOWWIDTH - BOARDWIDTH * BOXSIZE) / 2)

Chapter 7 - Tetromino 167

 21. TOPMARGIN = WINDOWHEIGHT - (BOARDHEIGHT * BOXSIZE) - 5

The program needs to calculate how many pixels are to the left and right side of the board to use

later in the program. WINDOWWIDTH is the total number of pixels wide the entire window is. The

board is BOARDWIDTH boxes wide and each box is BOXSIZE pixels wide. If we subtract

BOXSIZE pixels from this for each of the boxes wide in the board (which is BOARDWIDTH *

BOXSIZE), we’ll have the size of the margin to the left and right of the board. If we divide this

by 2, then we will have the size of just one margin. Since the margins are the same size, we can

use XMARGIN for either the left-side or right-side margin.

We can calculate the size of the space between the top of the board and the top of the window in a

similar manner. The board will be drawn 5 pixels above the bottom of the window, so 5 is

subtracted from topmargin to account for this.

 23. # R G B

 24. WHITE = (255, 255, 255)

 25. GRAY = (185, 185, 185)

 26. BLACK = (0, 0, 0)

 27. RED = (155, 0, 0)

 28. LIGHTRED = (175, 20, 20)

 29. GREEN = (0, 155, 0)

 30. LIGHTGREEN = (20, 175, 20)

 31. BLUE = (0, 0, 155)

 32. LIGHTBLUE = (20, 20, 175)

 33. YELLOW = (155, 155, 0)

 34. LIGHTYELLOW = (175, 175, 20)

168 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 35.

 36. BORDERCOLOR = BLUE

 37. BGCOLOR = BLACK

 38. TEXTCOLOR = WHITE

 39. TEXTSHADOWCOLOR = GRAY

 40. COLORS = (BLUE, GREEN, RED, YELLOW)

 41. LIGHTCOLORS = (LIGHTBLUE, LIGHTGREEN, LIGHTRED, LIGHTYELLOW)

 42. assert len(COLORS) == len(LIGHTCOLORS) # each color must have light color

The pieces will come in four colors: blue, green, red, and yellow. When we draw the boxes

though, there will be a thin highlight on the box in a lighter color. So this means we need to create

light blue, light green, light red, and light yellow colors as well.

Each of these four colors will be stored in tuples named COLORS (for the normal colors) and

LIGHTCOLORS (for the lighter colors).

Setting Up the Piece Templates

 44. TEMPLATEWIDTH = 5

 45. TEMPLATEHEIGHT = 5

 46.

 47. S_SHAPE_TEMPLATE = [['.....',

 48. '.....',

 49. '..OO.',

 50. '.OO..',

 51. '.....'],

 52. ['.....',

 53. '..O..',

 54. '..OO.',

 55. '...O.',

 56. '.....']]

 57.

 58. Z_SHAPE_TEMPLATE = [['.....',

 59. '.....',

 60. '.OO..',

 61. '..OO.',

 62. '.....'],

 63. ['.....',

 64. '..O..',

 65. '.OO..',

 66. '.O...',

 67. '.....']]

 68.

 69. I_SHAPE_TEMPLATE = [['..O..',

 70. '..O..',

Chapter 7 - Tetromino 169

 71. '..O..',

 72. '..O..',

 73. '.....'],

 74. ['.....',

 75. '.....',

 76. 'OOOO.',

 77. '.....',

 78. '.....']]

 79.

 80. O_SHAPE_TEMPLATE = [['.....',

 81. '.....',

 82. '.OO..',

 83. '.OO..',

 84. '.....']]

 85.

 86. J_SHAPE_TEMPLATE = [['.....',

 87. '.O...',

 88. '.OOO.',

 89. '.....',

 90. '.....'],

 91. ['.....',

 92. '..OO.',

 93. '..O..',

 94. '..O..',

 95. '.....'],

 96. ['.....',

 97. '.....',

 98. '.OOO.',

 99. '...O.',

100. '.....'],

101. ['.....',

102. '..O..',

103. '..O..',

104. '.OO..',

105. '.....']]

106.

107. L_SHAPE_TEMPLATE = [['.....',

108. '...O.',

109. '.OOO.',

110. '.....',

111. '.....'],

112. ['.....',

113. '..O..',

114. '..O..',

115. '..OO.',

116. '.....'],

170 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

117. ['.....',

118. '.....',

119. '.OOO.',

120. '.O...',

121. '.....'],

122. ['.....',

123. '.OO..',

124. '..O..',

125. '..O..',

126. '.....']]

127.

128. T_SHAPE_TEMPLATE = [['.....',

129. '..O..',

130. '.OOO.',

131. '.....',

132. '.....'],

133. ['.....',

134. '..O..',

135. '..OO.',

136. '..O..',

137. '.....'],

138. ['.....',

139. '.....',

140. '.OOO.',

141. '..O..',

142. '.....'],

143. ['.....',

144. '..O..',

145. '.OO..',

146. '..O..',

147. '.....']]

Our game program needs to know how each of the shapes are shaped, including for all of their

possible rotations. In order to do this, we will create lists of lists of strings. The inner list of

strings will represent a single rotation of a shape, like this:

['.....',

 '.....',

 '..OO.',

 '.OO..',

 '.....']

We will write the rest of our code so that it interprets a list of strings like the one above to

represent a shape where the periods are empty spaces and the O’s are boxes, like this:

Chapter 7 - Tetromino 171

Splitting a “Line of Code” Across Multiple Lines
You can see that this list is spread across many lines in the file editor. This is perfectly valid

Python, because the Python interpreter realizes that until it sees the] closing square bracket, the

list isn’t finished. The indentation doesn’t matter because Python knows you won’t have different

indentation for a new block in the middle of a list. This code below works just fine:

spam = ['hello', 3.14, 'world', 42, 10, 'fuzz']

eggs = ['hello', 3.14,

 'world'

 , 42,

 10, 'fuzz']

Though, of course, the code for the eggs list would be much more readable if we lined up all the

items in the list or put on a single line like spam.

Normally, splitting a line of code across multiple lines in the file editor would require putting a \

character at the end of the line. The \ tells Python, ―This code continues onto the next line.‖ (This

slash was first used in the Sliding Puzzle game in the isValidMove() function.)

We will make ―template‖ data structures of the shapes by creating a list of these list of strings,

and store them in variables such as S_SHAPE_TEMPLATE. This way,

len(S_SHAPE_TEMPLATE) will represent how many possible rotations there are for the S

shape, and S_SHAPE_TEMPLATE[0] will represent the S shape’s first possible rotation. Lines

47 to 147 will create ―template‖ data structures for each of the shapes.

Imagine that each possible piece in a tiny 5 x 5 board of empty space, with some of the spaces on

the board filled in with boxes. The following expressions that use S_SHAPE_TEMPLATE[0]

are True:

S_SHAPE_TEMPLATE[0][2][2] == 'O'

S_SHAPE_TEMPLATE[0][2][3] == 'O'

S_SHAPE_TEMPLATE[0][3][1] == 'O'

S_SHAPE_TEMPLATE[0][3][2] == 'O'

If we represented this shape on paper, it would look something like this:

172 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

This is how we can represent things like Tetromino pieces as Python values such as strings and

lists. The TEMPLATEWIDTH and TEMPLATEHEIGHT constants simply set how large each row

and column for each shape’s rotation should be. (The templates will always be 5x5.)

149. SHAPES = {'S': S_SHAPE_TEMPLATE,

150. 'Z': Z_SHAPE_TEMPLATE,

151. 'J': J_SHAPE_TEMPLATE,

152. 'L': L_SHAPE_TEMPLATE,

153. 'I': I_SHAPE_TEMPLATE,

154. 'O': O_SHAPE_TEMPLATE,

155. 'T': T_SHAPE_TEMPLATE}

The SHAPES variable will be a dictionary that stores all of the different templates. Because each

template has all the possible rotations of a single shape, this means that the SHAPES variable

contains all possible rotations of every possible shape. This will be the data structure that contains

all of the shape data in our game.

The main() Function

158. def main():

159. global FPSCLOCK, DISPLAYSURF, BASICFONT, BIGFONT

160. pygame.init()

161. FPSCLOCK = pygame.time.Clock()

162. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

163. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

164. BIGFONT = pygame.font.Font('freesansbold.ttf', 100)

165. pygame.display.set_caption('Tetromino')

166.

167. showTextScreen('Tetromino')

Chapter 7 - Tetromino 173

The main() function handles creating some more global constants and showing the start screen

that appears when the program is run.

168. while True: # game loop

169. if random.randint(0, 1) == 0:

170. pygame.mixer.music.load('tetrisb.mid')

171. else:

172. pygame.mixer.music.load('tetrisc.mid')

173. pygame.mixer.music.play(-1, 0.0)

174. runGame()

175. pygame.mixer.music.stop()

176. showTextScreen('Game Over')

The code for the actual game is all in runGame(). The main() function here simply randomly

decides what background music to start playing (either the tetrisb.mid or tetrisc.mid MIDI music

file), then calls runGame() to begin the game. When the player loses, runGame() will return

to main(), which then stops the background music and displays the game over screen.

When the player presses a key, the showTextScreen() function that displays the game over

screen will return. The game loop will loop back to the beginning at line 169 and start another

game.

The Start of a New Game

179. def runGame():

180. # setup variables for the start of the game

181. board = getBlankBoard()

182. lastMoveDownTime = time.time()

183. lastMoveSidewaysTime = time.time()

184. lastFallTime = time.time()

185. movingDown = False # note: there is no movingUp variable

186. movingLeft = False

187. movingRight = False

188. score = 0

189. level, fallFreq = calculateLevelAndFallFreq(score)

190.

191. fallingPiece = getNewPiece()

192. nextPiece = getNewPiece()

Before the game begins and pieces start falling, we need to initialize some variables to their start-

of-game values. On line 191 the fallingPiece variable will be set to the currently falling

piece that can be rotated by the player. On line 192 the nextPiece variable will be set to the

piece that shows up in the ―Next‖ part of the screen so that player knows what piece is coming up

after setting the falling piece.

174 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The Game Loop

194. while True: # main game loop

195. if fallingPiece == None:

196. # No falling piece in play, so start a new piece at the top

197. fallingPiece = nextPiece

198. nextPiece = getNewPiece()

199. lastFallTime = time.time() # reset lastFallTime

200.

201. if not isValidPosition(board, fallingPiece):

202. return # can't fit a new piece on the board, so game over

203.

204. checkForQuit()

The main game loop that starts on line 194 handles all of the code for the main part of the game

when pieces are falling to the bottom. The fallingPiece variable is set to None after the

falling piece has landed. This means that the piece in nextPiece should be copied to the

fallingPiece variable, and a random new piece should be put into the nextPiece variable.

A new piece can be generated from the getNewPiece() function. The lastFallTime

variable is also reset to the current time so that the piece will fall in however many seconds is in

fallFreq.

The pieces that getNewPiece() are positioned a little bit above the board, usually with part of

the piece already on the board. But if this is an invalid position because the board is already filled

up there (in which case the isValidPosition() call on line 201 will return False), then

we know that the board is full and the player should lose the game. When this happens, the

runGame() function returns.

The Event Handling Loop

205. for event in pygame.event.get(): # event handling loop

206. if event.type == KEYUP:

The event handling loop takes care of when the player rotates the falling piece, moves the falling

piece, or pauses the game.

Pausing the Game

207. if (event.key == K_p):

208. # Pausing the game

209. DISPLAYSURF.fill(BGCOLOR)

210. pygame.mixer.music.stop()

211. showTextScreen('Paused') # pause until a key press

212. pygame.mixer.music.play(-1, 0.0)

Chapter 7 - Tetromino 175

213. lastFallTime = time.time()

214. lastMoveDownTime = time.time()

215. lastMoveSidewaysTime = time.time()

If the player has pressed the P key, then the game should pause. We need to hide the board from

the player (otherwise the player could cheat by pausing the game and taking time to decide where

to move the piece).

The code blanks out the display Surface with a call to DISPLAYSURF.fill(BGCOLOR) and

stops the music. The showTextScreen() function is called to display the ―Paused‖ text and

wait for the player to press a key to continue.

Once the player has pressed a key, showTextScreen() will return. Line 212 will restart the

background music. Also, since a large amount of time could have passed since the player paused

the game, the lastFallTime, lastMoveDownTime, and lastMoveSidewaysTime

variables should all be reset to the current time (which is done on lines 213 to 215).

Using Movement Variables to Handle User Input

216. elif (event.key == K_LEFT or event.key == K_a):

217. movingLeft = False

218. elif (event.key == K_RIGHT or event.key == K_d):

219. movingRight = False

220. elif (event.key == K_DOWN or event.key == K_s):

221. movingDown = False

Letting up on one of the arrow keys (or the WASD keys) will set the movingLeft,

movingRight, or movingDown variables back to False, indicating that the player no longer

wants to move the piece in those directions. The code later will handle what to do based on the

Boolean values inside these ―moving‖ variables. Note that the up arrow and W keys are used for

rotating the piece, not moving the piece up. This is why there is no movingUp variable.

Checking if a Slide or Rotation is Valid

223. elif event.type == KEYDOWN:

224. # moving the block sideways

225. if (event.key == K_LEFT or event.key == K_a) and

isValidPosition(board, fallingPiece, adjX=-1):

226. fallingPiece['x'] -= 1

227. movingLeft = True

228. movingRight = False

229. lastMoveSidewaysTime = time.time()

176 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

When the left arrow key is pressed down (and moving to the left is a valid move for the falling

piece, as determined by the call to isValidPosition()), then we should change the position

to one space to the left by subtracting the value of fallingPiece['x'] by 1. The

isValidPosition() function has optional parameters called adjX and adjY. Normally the

isValidPosition() function checks the position of the data provided by the piece object

that is passed for the second parameter. However, sometimes we don’t want to check where the

piece is currently located, but rather a few spaces over from that position.

If we pass -1 for the adjX (a short name for ―adjusted X‖), then it doesn’t check the validity of

the position in the piece’s data structure, but rather if the position of where the piece would be if

it was one space to the left. Passing 1 for adjX would check one space to the right. There is also

an adjY optional parameter. Passing -1 for adjY checks one space above where the piece is

currently positioned, and passing a value like 3 for adjY would check three spaces down from

where the piece is.

The movingLeft variable is set to True, and just to make sure the falling piece won’t move

both left and right, the movingRight variable is set to False on line 228. The

lastMoveSidewaysTime variable will be updated to the current time on line 229.

These variables are set so that the player can just hold down the arrow key to keep moving the

piece over. If the movingLeft variable is set to True, the program can know that the left

arrow key (or A key) has been pressed and not yet let go. And if 0.15 seconds (the number stored

in MOVESIDEWAYSFREQ) has passed since the time stored in lastMoveSidewaysTime,

then it is time for the program to move the falling piece to the left again.

The lastMoveSidewaysTime works just like how the lastClickTime variable did in the

Simulate chapter.

231. elif (event.key == K_RIGHT or event.key == K_d) and

isValidPosition(board, fallingPiece, adjX=1):

232. fallingPiece['x'] += 1

233. movingRight = True

234. movingLeft = False

235. lastMoveSidewaysTime = time.time()

The code on lines 231 to 235 is almost identical to lines 225 to 229, except that it handles moving

the falling piece to the right when the right arrow key (or D key) has been pressed.

237. # rotating the block (if there is room to rotate)

238. elif (event.key == K_UP or event.key == K_w):

Chapter 7 - Tetromino 177

239. fallingPiece['rotation'] = (fallingPiece['rotation'] +

1) % len(SHAPES[fallingPiece['shape']])

The up arrow key (or W key) will rotate the falling piece to its next rotation. All the code has to

do is increment the 'rotation' key’s value in the fallingPiece dictionary by 1.

However, if incrementing the 'rotation' key’s value makes it larger than the total number of

rotations, then ―modding‖ by the total number of possible rotations for that shape (which is what

len(SHAPES[fallingPiece['shape']]) is) then it will ―roll over‖ to 0.

Here’s an example of this modding with the J shape, which has 4 possible rotations:

>>> 0 % 4

0

>>> 1 % 4

1

>>> 2 % 4

2

>>> 3 % 4

3

>>> 5 % 4

1

>>> 6 % 4

2

>>> 7 % 4

3

>>> 8 % 4

0

>>>

240. if not isValidPosition(board, fallingPiece):

241. fallingPiece['rotation'] =

(fallingPiece['rotation'] - 1) % len(SHAPES[fallingPiece['shape']])

If the new rotated position is not valid because it overlaps some boxes already on the board, then

we want to switch it back to the original rotation by subtracting 1 from

fallingPiece['rotation']. We can also mod it by

len(SHAPES[fallingPiece['shape']]) so that if the new value is -1, the modding

will change it back to the last rotation in the list. Here’s an example of modding a negative

number:

>>> -1 % 4

3

178 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

242. elif (event.key == K_q): # rotate the other direction

243. fallingPiece['rotation'] = (fallingPiece['rotation'] -

1) % len(SHAPES[fallingPiece['shape']])

244. if not isValidPosition(board, fallingPiece):

245. fallingPiece['rotation'] =

(fallingPiece['rotation'] + 1) % len(SHAPES[fallingPiece['shape']])

Lines 242 to 245 do the same thing 238 to 241, except they handle the case where the player has

pressed the Q key which rotates the piece in the opposite direction. In this case, we subtract 1

from fallingPiece['rotation'] (which is done on line 243) instead of adding 1.

247. # making the block fall faster with the down key

248. elif (event.key == K_DOWN or event.key == K_s):

249. movingDown = True

250. if isValidPosition(board, fallingPiece, adjY=1):

251. fallingPiece['y'] += 1

252. lastMoveDownTime = time.time()

If the down arrow or S key is pressed down, then the player wants the piece to fall faster than

normal. Line 251 moves the piece down one space on the board (but only if it is a valid space).

The movingDown variable is set to True and lastMoveDownTime is reset to the current

time. These variables will be checked later so that the piece keeps falling at the faster rate as long

as the down arrow or S key is held down.

Finding the Bottom

254. # move the current block all the way down

255. elif event.key == K_SPACE:

256. movingDown = False

257. movingLeft = False

258. movingRight = False

259. for i in range(1, BOARDHEIGHT):

260. if not isValidPosition(board, fallingPiece,

adjY=i):

261. break

262. fallingPiece['y'] += i - 1

When the player presses the space key the falling piece will immediately drop down as far as it

can go on the board and land. The program first needs to find out how many spaces the piece can

move until it lands.

Lines 256 to 258 will set all the moving variables to False (which makes the code in later parts

of the programming think that the user has let up on any arrow keys that were held down). This is

Chapter 7 - Tetromino 179

done because this code will move the piece to the absolute bottom and begin falling the next

piece, and we don’t want to surprise the player by having those pieces immediately start moving

just because they were holding down an arrow key when they hit the space key.

To find the farthest that the piece can fall, we should first call isValidPosition() and pass

the integer 1 for the adjY parameter. If isValidPosition() returns False, we know that

the piece cannot fall any further and is already at the bottom. If isValidPosition() returns

True, then we know that it can fall 1 space down.

In that case, we should call isValidPosition() with adjY set to 2. If it returns True

again, we will call isValidPosition() with adjY set to 3, and so on. This is what the for

loop on line 259 handles: calling isValidPosition() with increasing integer values to pass

for adjY until the function call returns False. At that point, we know that the value in i is one

space more past the bottom. This is why line 262 increases fallingPiece['y'] by i - 1

instead of i.

(Also note that the second parameter to range() on line 259’s for statement is set to

BOARDHEIGHT because this is the maximum amount that the piece could fall before it must hit

the bottom of the board.)

Moving by Holding Down the Key

264. # handle moving the block because of user input

265. if (movingLeft or movingRight) and time.time() -

lastMoveSidewaysTime > MOVESIDEWAYSFREQ:

266. if movingLeft and isValidPosition(board, fallingPiece, adjX=-

1):

267. fallingPiece['x'] -= 1

268. elif movingRight and isValidPosition(board, fallingPiece,

adjX=1):

269. fallingPiece['x'] += 1

270. lastMoveSidewaysTime = time.time()

Remember that on line 227 the movingLeft variable was set to True if the player pressed

down on the left arrow key? (The same for line 233 where movingRight was set to True if

the player pressed down on the right arrow key.) The moving variables were set back to False if

the user let up on these keys also (see line 217 and 219).

What also happened when the player pressed down on the left or right arrow key was that the

lastMoveSidewaysTime variable was set to the current time (which was the return value of

time.time()). If the player continued to hold down the arrow key without letting up on it,

then the movingLeft or movingRight variable would still be set to True.

180 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

If the user held down on the key for longer than 0.15 seconds (the value stored in

MOVESIDEWAYSFREQ is the float 0.15) then the expression time.time() -

lastMoveSidewaysTime > MOVESIDEWAYSFREQ would evaluate to True. Line 265’s

condition is True if the user has both held down the arrow key and 0.15 seconds has passed, and

in that case we should move the falling piece to the left or right even though the user hasn’t

pressed the arrow key again.

This is very useful because it would become tiresome for the player to repeatedly hit the arrow

keys to get the falling piece to move over multiple spaces on the board. Instead, they can just hold

down an arrow key and the piece will keep moving over until they let up on the key. When that

happens, the code on lines 216 to 221 will set the moving variable to False and the condition on

line 265 will be False. That is what stops the falling piece from sliding over more.

To demonstrate why the time.time() - lastMoveSidewaysTime >

MOVESIDEWAYSFREQ returns True after the number of seconds in MOVESIDEWAYSFREQ has

passed, run this short program:

import time

WAITTIME = 4

begin = time.time()

while True:

 now = time.time()

 message = '%s, %s, %s' % (begin, now, (now - begin))

 if now - begin > WAITTIME:

 print(message + ' PASSED WAIT TIME!')

 else:

 print(message + ' Not yet...')

 time.sleep(0.2)

This program has an infinite loop, so in order to terminate it, press Ctrl-C. The output of this

program will look something like this:

1322106392.2, 1322106392.2, 0.0 Not yet...

1322106392.2, 1322106392.42, 0.219000101089 Not yet...

1322106392.2, 1322106392.65, 0.449000120163 Not yet...

1322106392.2, 1322106392.88, 0.680999994278 Not yet...

1322106392.2, 1322106393.11, 0.910000085831 Not yet...

1322106392.2, 1322106393.34, 1.1400001049 Not yet...

1322106392.2, 1322106393.57, 1.3710000515 Not yet...

1322106392.2, 1322106393.83, 1.6360001564 Not yet...

1322106392.2, 1322106394.05, 1.85199999809 Not yet...

Chapter 7 - Tetromino 181

1322106392.2, 1322106394.28, 2.08000016212 Not yet...

1322106392.2, 1322106394.51, 2.30900001526 Not yet...

1322106392.2, 1322106394.74, 2.54100012779 Not yet...

1322106392.2, 1322106394.97, 2.76999998093 Not yet...

1322106392.2, 1322106395.2, 2.99800014496 Not yet...

1322106392.2, 1322106395.42, 3.22699999809 Not yet...

1322106392.2, 1322106395.65, 3.45600008965 Not yet...

1322106392.2, 1322106395.89, 3.69200015068 Not yet...

1322106392.2, 1322106396.12, 3.92100000381 Not yet...

1322106392.2, 1322106396.35, 4.14899992943 PASSED WAIT TIME!

1322106392.2, 1322106396.58, 4.3789999485 PASSED WAIT TIME!

1322106392.2, 1322106396.81, 4.60700011253 PASSED WAIT TIME!

1322106392.2, 1322106397.04, 4.83700013161 PASSED WAIT TIME!

1322106392.2, 1322106397.26, 5.06500005722 PASSED WAIT TIME!

Traceback (most recent call last):

 File "C:\timetest.py", line 13, in <module>

 time.sleep(0.2)

KeyboardInterrupt

The first number on each line of output is the return value of time.time() when the program

first started (and this value never changes). The second number is the latest return value from

time.time() (this value keeps getting updated on each iteration of the loop). And the third

number is the current time minus the start time. This third number is the number of seconds that

have elapsed since the begin = time.time() line of code was executed.

If this number is greater than 4, the code will start printing ―PASSED WAIT TIME!‖ instead of

―Not yet...‖. This is how our game program can know if a certain amount of time has passed since

a line of code was run.

In our Tetromino program, the time.time() – lastMoveSidewaysTime expression will

evaluate to the number of seconds that has elapsed since the last time

lastMoveSidewaysTime was set to the current time. If this value is greater than the value in

MOVESIDEWAYSFREQ, we know it is time for the code to move the falling piece over one more

space.

Don’t forget to update lastMoveSidewaysTime to the current time again! This is what we

do on line 270.

272. if movingDown and time.time() - lastMoveDownTime > MOVEDOWNFREQ

and isValidPosition(board, fallingPiece, adjY=1):

273. fallingPiece['y'] += 1

274. lastMoveDownTime = time.time()

182 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Lines 272 to 274 do almost the same thing as lines 265 to 270 do except for moving the falling

piece down. This has a separate move variable (movingDown) and ―last time‖ variable

(lastMoveDownTime) as well as a different ―move frequency‖ variable (MOVEDOWNFREQ).

Letting the Piece “Naturally” Fall

276. # let the piece fall if it is time to fall

277. if time.time() - lastFallTime > fallFreq:

278. # see if the piece has landed

279. if not isValidPosition(board, fallingPiece, adjY=1):

280. # falling piece has landed, set it on the board

281. addToBoard(board, fallingPiece)

282. score += removeCompleteLines(board)

283. level, fallFreq = calculateLevelAndFallFreq(score)

284. fallingPiece = None

285. else:

286. # piece did not land, just move the block down

287. fallingPiece['y'] += 1

288. lastFallTime = time.time()

The rate that the piece is naturally moving down (that is, falling) is tracked by the

lastFallTime variable. If enough time has elapsed since the falling piece last fell down one

space, lines 279 to 288 will handle dropping the piece by one space.

If the condition on line 279 is True, then the piece has landed. The call to addToBoard() will

make the piece part of the board data structure (so that future pieces can land on it), and the

removeCompleteLines() call will handle erasing any complete lines on the board and

pulling the boxes down. The removeCompleteLines() function also returns an integer

value of how many lines were removed, so we add this number to the score.

Because the score may have changed, we call the calculateLevelAndFallFreq()

function to update the current level and frequency that the pieces fall. And finally, we set the

fallingPiece variable to None to indicate that the next piece should become the new falling

piece, and a random new piece should be generated for the new next piece. (That is done on lines

195 to 199 at the beginning of the game loop.)

If the piece has not landed, we simply set its Y position down one space (on line 287) and reset

lastFallTime to the current time (on line 288).

Drawing Everything on the Screen

290. # drawing everything on the screen

291. DISPLAYSURF.fill(BGCOLOR)

292. drawBoard(board)

Chapter 7 - Tetromino 183

293. drawStatus(score, level)

294. drawNextPiece(nextPiece)

295. if fallingPiece != None:

296. drawPiece(fallingPiece)

297.

298. pygame.display.update()

299. FPSCLOCK.tick(FPS)

Now that the game loop has handled all events and updated the game state, the game loop just

needs to draw the game state to the screen. Most of the drawing is handled by other functions, so

the game loop code just needs to call those functions. Then the call to

pygame.display.update() makes the display Surface appear on the actual computer

screen, and the tick() method call adds a slight pause so the game doesn’t run too fast.

makeTextObjs(), A Shortcut Function for Making Text

302. def makeTextObjs(text, font, color):

303. surf = font.render(text, True, color)

304. return surf, surf.get_rect()

The makeTextObjs() function just provides us with a shortcut. Given the text, Font object,

and a Color object, it calls render() for us and returns the Surface and Rect object for this text.

This just saves us from typing out the code to create the Surface and Rect object each time we

need them.

The Same Old terminate() Function

307. def terminate():

308. pygame.quit()

309. sys.exit()

The terminate() function works the same as in the previous game programs.

Waiting for a Key Press Event with the checkForKeyPress()

Function

312. def checkForKeyPress():

313. # Go through event queue looking for a KEYUP event.

314. # Grab KEYDOWN events to remove them from the event queue.

315. checkForQuit()

316.

317. for event in pygame.event.get([KEYDOWN, KEYUP]):

318. if event.type == KEYDOWN:

184 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

319. continue

320. return event.key

321. return None

The checkForKeyPress() function works almost the same as it did in the Wormy game.

First it calls checkForQuit() to handle any QUIT events (or KEYUP events specifically for

the Esc key) and terminates the program if there are any. Then it pulls out all the KEYUP and

KEYDOWN events from the event queue. It ignores any KEYDOWN events (KEYDOWN was

specified to pygame.event.get() only to clear those events out of the event queue).

If there were no KEYUP events in the event queue, then the function returns None.

showTextScreen(), A Generic Text Screen Function

324. def showTextScreen(text):

325. # This function displays large text in the

326. # center of the screen until a key is pressed.

327. # Draw the text drop shadow

328. titleSurf, titleRect = makeTextObjs(text, BIGFONT, TEXTSHADOWCOLOR)

329. titleRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2))

330. DISPLAYSURF.blit(titleSurf, titleRect)

331.

332. # Draw the text

333. titleSurf, titleRect = makeTextObjs(text, BIGFONT, TEXTCOLOR)

334. titleRect.center = (int(WINDOWWIDTH / 2) - 3, int(WINDOWHEIGHT / 2) -

3)

335. DISPLAYSURF.blit(titleSurf, titleRect)

336.

337. # Draw the additional "Press a key to play." text.

338. pressKeySurf, pressKeyRect = makeTextObjs('Press a key to play.',

BASICFONT, TEXTCOLOR)

339. pressKeyRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) +

100)

340. DISPLAYSURF.blit(pressKeySurf, pressKeyRect)

Instead of separate functions for the start screen and game over screens, we will create one

generic function named showTextScreen(). The showTextScreen() function will draw

whatever text we pass for the text parameter. Also, the text ―Press a key to play.‖ will be

displayed in addition.

Notice that lines 328 to 330 draw the text in a darker shadow color first, and then lines 333 to 335

draw the same text again, except offset by 3 pixels to the left and 3 pixels upward. This creates a

―drop shadow‖ effect that makes the text look a bit prettier. You can compare the difference by

commenting out lines 328 to 330 to see the text without a drop shadow.

Chapter 7 - Tetromino 185

The showTextScreen() will be used for the start screen, the game over screen, and also for a

pause screen. (The pause screen is explained later in this chapter.)

342. while checkForKeyPress() == None:

343. pygame.display.update()

344. FPSCLOCK.tick()

We want the text to stay on the screen until the user presses a key. This small loop will constantly

call pygame.display.update() and FPSCLOCK.tick() until

checkForKeyPress() returns a value other than None. This happens when the user presses

a key.

The checkForQuit() Function

347. def checkForQuit():

348. for event in pygame.event.get(QUIT): # get all the QUIT events

349. terminate() # terminate if any QUIT events are present

350. for event in pygame.event.get(KEYUP): # get all the KEYUP events

351. if event.key == K_ESCAPE:

352. terminate() # terminate if the KEYUP event was for the Esc key

353. pygame.event.post(event) # put the other KEYUP event objects back

The checkForQuit() function can be called to handle any events that will cause the program

to terminate. This happens if there are any QUIT events in the event queue (this is handle by lines

348 and 349), or if there is a KEYUP event of the Esc key. The player should be able to press the

Esc key at any time to quit the program.

Because the pygame.event.get() call on line 350 pulls out all of the KEYUP events

(including events for keys other than the Esc key), if the event is not for the Esc key, we want to

put it back into the event queue by calling the pygame.event.post() function.

The calculateLevelAndFallFreq() Function

356. def calculateLevelAndFallFreq(score):

357. # Based on the score, return the level the player is on and

358. # how many seconds pass until a falling piece falls one space.

359. level = int(score / 10) + 1

360. fallFreq = 0.27 - (level * 0.02)

361. return level, fallFreq

Every time the player completes a line, their score will increase by one point. Every ten points,

the game goes up a level and the pieces start falling down faster. Both the level and the falling

frequency can be calculated from the score that is passed to this function.

186 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

To calculate the level, we use the int() function to round down the score divided by 10. So if

the score any number between 0 and 9, the int() call will round it down to 0. The + 1 part of

the code is there because we want the first level to be level 1, not level 0. When the score reaches

10, then int(10 / 10) will evaluate to 1, and the + 1 will make the level 2. Here is a graph

showing the values of level for the scores 1 to 34:

To calculate the falling frequency, we start with a base time of 0.27 (meaning that the piece will

naturally fall once every 0.27 seconds). Then we multiply the level by 0.02, and subtract that

from the 0.27 base time. So on level 1, we subtract 0.02 * 1 (that is, 0.02) from 0.27 to

get 0.25. On level 2, we subtract 0.02 * 2 (that is, 0.04) to get 0.23. You can think of the

level * 0.02 part of the equation as ―for every level, the piece will fall 0.02 seconds faster

than the previous level.‖

We can also make a graph showing how fast the pieces will fall at each level of the game:

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Le
ve

l

Score

level = int(score / 10) + 1

Chapter 7 - Tetromino 187

You can see that at level 14, the falling frequency will be less than 0. This won’t cause any bugs

with our code, because line 277 just checks that the elapsed time since the falling piece last fell

one space is greater than the calculated falling frequency. So if the falling frequency is negative,

then the condition on line 277 will always be True and the piece will fall on every iteration of

the game loop. From level 14 and beyond, the piece cannot fall any faster.

If the FPS is set at 25, this means that at reaching level 14, the falling piece will fall 25 spaces a

second. Considering that the board is only 20 spaces tall, that means the player will have less than

a second to set each piece!

If you want the pieces to start (if you can see what I mean) falling faster at a slower rate, you can

change the equation that the calculateLevelAndFallFreq() uses. For example, let’s say

line 360 was this:

360. fallFreq = 0.27 - (level * 0.01)

In the above case, the pieces would only fall 0.01 seconds faster on each level rather than 0.02

seconds faster. The graph would look like this (the original line is also in the graph in light grey):

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fa
ll

Fr
e

q
u

e
n

cy
 (

se
co

n
d

s)

Level

fallFreq = 0.27 - (level * 0.02)

188 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

As you can see, with this new equation, level 14 would only be as hard as the original level 7.

You can change the game to be as difficult or easy as you like by changing the equations in

calculateLevelAndFallFreq().

Generating Pieces with the getNewPiece() Function

363. def getNewPiece():

364. # return a random new piece in a random rotation and color

365. shape = random.choice(list(SHAPES.keys()))

366. newPiece = {'shape': shape,

367. 'rotation': random.randint(0, len(SHAPES[shape]) - 1),

368. 'x': int(BOARDWIDTH / 2) - int(TEMPLATEWIDTH / 2),

369. 'y': -2, # start it above the board (i.e. less than 0)

370. 'color': random.randint(0, len(COLORS)-1)}

371. return newPiece

The getNewPiece() function generates a random piece that is positioned at the top of the

board. First, to randomly choose the shape of the piece, we create a list of all the possible shapes

by calling list(SHAPES.keys()) on line 365. The keys() dictionary method returns a

value of the data type ―dict_keys‖, which must be converted to a list value with the list()

function before being passed to random.choice(). This is because the random.choice()

function only accepts list values for its parameter. The random.choice() function then

randomly returns the value of an item from the list.

The piece data structures are simply a dictionary value with the keys 'shape', 'rotation',

'x', 'y', and 'color'.

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fa
ll

Fr
e

q
u

e
n

cy
 (

se
co

n
d

s)

Level

fallFreq = 0.27 - (level * 0.01)

Chapter 7 - Tetromino 189

The value for the 'rotation' key is a random integer between 0 to one less than however

many possible rotations there are for that shape. The number of rotations for a shape can be found

from the expression len(SHAPES[shape]).

Notice that we don’t store the list of string values (like the ones store in the constants like

S_SHAPE_TEMPLATE) in each piece data structure to represent the boxes of each piece. Instead,

we just store an index for the shape and rotation which refer to the PIECES constant.

The 'x' key’s value is always set to the middle of the board (also accounting for the width of the

pieces themselves, which is found from our TEMPLATEWIDTH constant). The 'y' key’s value is

always set to -2 to place it slightly above the board. (The top row of the board is row 0.)

Since the COLORS constant is a tuple of the different colors, selecting a random number from 0

to the length of COLORS (subtracting one) will give us a random index value for the piece’s

color.

Once all of the values in the newPiece dictionary are set, the getNewPiece() function

returns newPiece.

Adding Pieces to the Board Data Structure

374. def addToBoard(board, piece):

375. # fill in the board based on piece's location, shape, and rotation

376. for x in range(TEMPLATEWIDTH):

377. for y in range(TEMPLATEHEIGHT):

378. if SHAPES[piece['shape']][piece['rotation']][y][x] != BLANK:

379. board[x + piece['x']][y + piece['y']] = piece['color']

The board data structure is a data representation for the rectangular space where pieces that have

previously landed are tracked. The currently falling piece is not marked on the board data

structure. What the addToBoard() function does is takes a piece data structure and adds its

boxes to the board data structure. This happens after a piece has landed.

The nested for loops on lines 376 and 377 go through every space in the piece data structure,

and if it finds a box in the space (line 378), it adds it to the board (line 379).

Creating a New Board Data Structure

382. def getBlankBoard():

383. # create and return a new blank board data structure

384. board = []

385. for i in range(BOARDWIDTH):

386. board.append([BLANK] * BOARDHEIGHT)

190 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

387. return board

The data structure used for the board is fairly simple: it’s a list of lists of values. If the value is the

same as the value in BLANK, then it is an empty space. If the value is an integer, then it represents

a box that is the color that the integer indexes in the COLORS constant list. That is, 0 is blue, 1 is

green, 2 is red, and 3 is yellow.

In order to create a blank board, list replication is used to create the lists of BLANK values which

represents a column. This is done on line 386. One of these lists is created for each of the

columns in the board (this is what the for loop on line 385 does).

The isOnBoard() and isValidPosition() Functions

390. def isOnBoard(x, y):

391. return x >= 0 and x < BOARDWIDTH and y < BOARDHEIGHT

The isOnBoard() is a simple function which checks that the XY coordinates that are passed

represent valid values that exist on the board. As long as both the XY coordinates are not less 0

or greater than or equal to the BOARDWIDTH and BOARDHEIGHT constants, then the function

returns True.

394. def isValidPosition(board, piece, adjX=0, adjY=0):

395. # Return True if the piece is within the board and not colliding

396. for x in range(TEMPLATEWIDTH):

397. for y in range(TEMPLATEHEIGHT):

398. isAboveBoard = y + piece['y'] + adjY < 0

399. if isAboveBoard or

SHAPES[piece['shape']][piece['rotation']][y][x] == BLANK:

400. continue

The isValidPosition() function is given a board data structure and a piece data structure,

and returns True if all the boxes in the piece are both on the board and not overlapping any

boxes on the board. This is done by taking the piece’s XY coordinates (which is really the

coordinate of the upper right box on the 5x5 boxes for the piece) and adding the coordinate inside

the piece data structure. Here’s a couple pictures to help illustrate this:

Chapter 7 - Tetromino 191

The board with a falling piece in a valid

position.

The board with the falling piece in an invalid

position.

On the left board, the falling piece’s (that is, the top left corner of the falling piece’s) XY

coordinates are (2, 3) on the board. But the boxes inside the falling piece’s coordinate system

have their own coordinates. To find the ―board‖ coordinates of these pieces, we just have to add

the ―board‖ coordinates of the falling piece’s top left box and the ―piece‖ coordinates of the

boxes.

On the left board, the falling piece’s boxes are at the following ―piece‖ coordinates:

 (2, 2) (3, 2) (1, 3) (2, 3)

When we add the (2, 3) coordinate (the piece’s coordinates on the board) to these coordinates, it

looks like this:

 (2 + 2, 2 + 3) (3 + 2, 2 + 3) (1 + 2, 3 + 3) (2 + 2, 3 + 3)

After adding the (2, 3) coordinate the boxes are at the following ―board‖ coordinates:

 (4, 5) (5, 5) (3, 6) (4, 6)

192 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

And now that we can figure out where the falling piece’s boxes are as board coordinates, we can

see if they overlap with the landed boxes that are already on the board. The nested for loops on

lines 396 and 397 go through each of the possible coordinates on the falling piece.

We want to check if a box of the falling piece is either off of the board or overlapping a box on

the board. (Although one exception is if the box is above the board, which is where it could be

when the falling piece just begins falling.) Line 398 creates a variable named isAboveBoard

that is set to True if the box on the falling piece at the coordinates pointed to be x and y is above

the board. Otherwise it is set to False.

The if statement on line 399 checks if the space on the piece is above the board or is blank. If

either of those is True, then the code executes a continue statement and goes to the next

iteration. (Note that the end of line 399 has [y][x] instead of [x][y]. This is because the

coordinates in the PIECES data structure are reversed. See the previous section, ―Setting Up the

Piece Templates‖).

401. if not isOnBoard(x + piece['x'] + adjX, y + piece['y'] +

adjY):

402. return False

403. if board[x + piece['x'] + adjX][y + piece['y'] + adjY] !=

BLANK:

404. return False

405. return True

The if statement on line 401 checks that the piece’s box is not located on the board. The if

statement on line 403 checks that the board space the piece’s box is located is not blank. If either

of these conditions are True, then the isValidPosition() function will return False.

Notice that these if statements also adjust the coordinates for the adjX and adjY parameters

that were passed in to the function.

If the code goes through the nested for loop and hasn’t found a reason to return False, then the

position of the piece must be valid and so the function returns True on line 405.

Checking for, and Removing, Complete Lines

407. def isCompleteLine(board, y):

408. # Return True if the line filled with boxes with no gaps.

409. for x in range(BOARDWIDTH):

410. if board[x][y] == BLANK:

411. return False

412. return True

Chapter 7 - Tetromino 193

The isCompleteLine does a simple check at the row specified by the y parameter. A row on

the board is considered to be ―complete‖ when every space is filled by a box. The for loop on

line 409 goes through each space in the row. If a space is blank (which is caused by it having the

same value as the BLANK constant), then the function return False.

415. def removeCompleteLines(board):

416. # Remove any completed lines on the board, move everything above them

down, and return the number of complete lines.

417. numLinesRemoved = 0

418. y = BOARDHEIGHT - 1 # start y at the bottom of the board

419. while y >= 0:

The removeCompleteLines() function will find any complete lines in the passed board data

structure, remove the lines, and then shift all the boxes on the board above that line down one

row. The function will return the number of lines that were removed (which is tracked by the

numLinesRemoved variable) so that this can be added to the score.

The way this function works is by running in a loop starting on line 419 with the y variable

starting at the lowest row (which is BOARDHEIGHT - 1). Whenever the row specified by y is

not complete, y will be decremented to the next highest row. The loop finally stops once y

reaches -1.

420. if isCompleteLine(board, y):

421. # Remove the line and pull boxes down by one line.

422. for pullDownY in range(y, 0, -1):

423. for x in range(BOARDWIDTH):

424. board[x][pullDownY] = board[x][pullDownY-1]

425. # Set very top line to blank.

426. for x in range(BOARDWIDTH):

427. board[x][0] = BLANK

428. numLinesRemoved += 1

429. # Note on the next iteration of the loop, y is the same.

430. # This is so that if the line that was pulled down is also

431. # complete, it will be removed.

432. else:

433. y -= 1 # move on to check next row up

434. return numLinesRemoved

The isCompleteLine() function will return True if the line that y is referring to is

complete. In that case, the program needs to copy the values of each row above the removed line

to the next lowest line. This is what the for loop on line 422 does (which is why its call to the

range() function begins at y, rather than 0. Also note that it uses the three argument form of

194 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

range(), so that the list it returns starts at y, ends at 0, and after each iteration ―increases‖ by -

1.)

Let’s look at the following example. To save space, only the top five rows of the board are

shown. Row 3 is a complete line, which means that all the rows above it (row 2, 1, and 0) must be

―pulled down‖. First, row 2 is copied down to row 3. The board on the right shows what the board

will look like after this is done:

This ―pulling down‖ is really just copying the higher row’s values to the row below it on line 424.

After row 2 is copied to row 3, then row 1 is copied to row 2 followed by row 0 copied to row 1:

Row 0 (the row at the very top) doesn’t have a row above it to copy values down. But row 0

doesn’t need a row copied to it, it just needs all the spaces set to BLANK. This is what lines 426

and 427 do. After that, the board will have changed from the board shown below on the left to the

board shown below on the right:

After the complete line is removed, the execution reaches the end of the while loop that started

on line 419, so the execution jumps back to the beginning of the loop. Note that at no point when

Chapter 7 - Tetromino 195

the line was being removed and the rows being pulled down that the y variable changed at all. So

on the next iteration, the y variable is pointing to the same row as before.

This is needed because if there were two complete lines, then the second complete line would

have been pulled down and would also have to be removed. The code will then remove this

complete line, and then go to the next iteration. It is only when there is not a completed line that

the y variable is decremented on line 433. Once the y variable has been decremented all the way

to 0, the execution will exit the while loop.

Convert from Board Coordinates to Pixel Coordinates

437. def convertToPixelCoords(boxx, boxy):

438. # Convert the given xy coordinates of the board to xy

439. # coordinates of the location on the screen.

440. return (XMARGIN + (boxx * BOXSIZE)), (TOPMARGIN + (boxy * BOXSIZE))

This helper function converts the board’s box coordinates to pixel coordinates. This function

works the same way to the other ―convert coordinates‖ functions used in the previous game

programs.

Drawing a Box on the Board or Elsewhere on the Screen

443. def drawBox(boxx, boxy, color, pixelx=None, pixely=None):

444. # draw a single box (each tetromino piece has four boxes)

445. # at xy coordinates on the board. Or, if pixelx & pixely

446. # are specified, draw to the pixel coordinates stored in

447. # pixelx & pixely (this is used for the "Next" piece).

448. if color == BLANK:

449. return

450. if pixelx == None and pixely == None:

451. pixelx, pixely = convertToPixelCoords(boxx, boxy)

452. pygame.draw.rect(DISPLAYSURF, COLORS[color], (pixelx + 1, pixely + 1,

BOXSIZE - 1, BOXSIZE - 1))

453. pygame.draw.rect(DISPLAYSURF, LIGHTCOLORS[color], (pixelx + 1, pixely

+ 1, BOXSIZE - 4, BOXSIZE - 4))

The drawBox() function draws a single box on the screen. The function can receive boxx and

boxy parameters for board coordinates where the box should be drawn. However, if the pixelx

and pixely parameters are specified, then these pixel coordinates will override the boxx and

boxy parameters. The pixelx and pixely parameters are used to draw the boxes of the

―Next‖ piece, which is not on the board.

If the pixelx and pixely parameters are not set, then they will be set to None by default

when the function first begins. Then the if statement on line 450 will overwrite the None values

196 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

with the return values from convertToPixelCoords(). This call gets the pixel coordinates

of the board coordinates specified by boxx and boxy.

The code won’t fill the entire box’s space with color. To have a black outline in between the

boxes of a piece, the left and top parameters in the pygame.draw.rect() call have + 1

added to them and a - 1 is added to the width and height parameters. In order to draw the

highlighted box, first the box is drawn with the darker color on line 452. Then, a slightly smaller

box is drawn on top of the darker box on line 453.

Drawing Everything to the Screen

456. def drawBoard(board):

457. # draw the border around the board

458. pygame.draw.rect(DISPLAYSURF, BORDERCOLOR, (XMARGIN - 3, TOPMARGIN -

7, (BOARDWIDTH * BOXSIZE) + 8, (BOARDHEIGHT * BOXSIZE) + 8), 5)

459.

460. # fill the background of the board

461. pygame.draw.rect(DISPLAYSURF, BGCOLOR, (XMARGIN, TOPMARGIN, BOXSIZE *

BOARDWIDTH, BOXSIZE * BOARDHEIGHT))

462. # draw the individual boxes on the board

463. for x in range(BOARDWIDTH):

464. for y in range(BOARDHEIGHT):

465. drawBox(x, y, board[x][y])

The drawBoard() function is responsible for calling the drawing functions for the board’s

border and all the boxes on the board. First the board’s border is drawn on DISPLAYSURF,

followed by the background color of the board. Then a call to drawBox() is made for each

space on the board. The drawBox() function is smart enough to leave out the box if

board[x][y] is set to BLANK.

Drawing the Score and Level Text

468. def drawStatus(score, level):

469. # draw the score text

470. scoreSurf = BASICFONT.render('Score: %s' % score, True, TEXTCOLOR)

471. scoreRect = scoreSurf.get_rect()

472. scoreRect.topleft = (WINDOWWIDTH - 150, 20)

473. DISPLAYSURF.blit(scoreSurf, scoreRect)

474.

475. # draw the level text

476. levelSurf = BASICFONT.render('Level: %s' % level, True, TEXTCOLOR)

477. levelRect = levelSurf.get_rect()

478. levelRect.topleft = (WINDOWWIDTH - 150, 50)

479. DISPLAYSURF.blit(levelSurf, levelRect)

Chapter 7 - Tetromino 197

The drawStatus() function is responsible for rendering the text for the ―Score:‖ and ―Level:‖

information that appears in the upper right of the corner of the screen.

Drawing a Piece on the Board or Elsewhere on the Screen

482. def drawPiece(piece, pixelx=None, pixely=None):

483. shapeToDraw = SHAPES[piece['shape']][piece['rotation']]

484. if pixelx == None and pixely == None:

485. # if pixelx & pixely hasn't been specified, use the location

stored in the piece data structure

486. pixelx, pixely = convertToPixelCoords(piece['x'], piece['y'])

487.

488. # draw each of the blocks that make up the piece

489. for x in range(TEMPLATEWIDTH):

490. for y in range(TEMPLATEHEIGHT):

491. if shapeToDraw[y][x] != BLANK:

492. drawBox(None, None, piece['color'], pixelx + (x *

BOXSIZE), pixely + (y * BOXSIZE))

The drawPiece() function will draw the boxes of a piece according to the piece data structure

that is passed to it. This function will be used to draw the falling piece and the ―Next‖ piece.

Since the piece data structure will contain all of the shape, position, rotation, and color

information, nothing else besides the piece data structure needs to be passed to the function.

However, the ―Next‖ piece is not drawn on the board. In this case, we ignore the position

information stored inside the piece data structure and instead let the caller of the drawPiece()

function pass in arguments for the optional pixelx and pixely parameters to specify where

exactly on the window the piece should be drawn.

If no pixelx and pixely arguments are passed in, then lines 484 and 486 will overwrite those

variables with the return values of convertToPixelCoords() call.

The nested for loops on line 489 and 490 will then call drawBox() for each box of the piece

that needs to be drawn.

Drawing the “Next” Piece

495. def drawNextPiece(piece):

496. # draw the "next" text

497. nextSurf = BASICFONT.render('Next:', True, TEXTCOLOR)

498. nextRect = nextSurf.get_rect()

499. nextRect.topleft = (WINDOWWIDTH - 120, 80)

500. DISPLAYSURF.blit(nextSurf, nextRect)

501. # draw the "next" piece

502. drawPiece(piece, pixelx=WINDOWWIDTH-120, pixely=100)

198 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

503.

504.

505. if __name__ == '__main__':

506. main()

The drawNextPiece() draws the ―Next‖ piece in the upper right corner of the screen. It does

this by calling the drawPiece() function and passing in arguments for drawPiece()’s

pixelx and pixely parameters.

That’s the last function. Line 505 and 506 are run after all the function definitions have been

executed, and then the main() function is called to begin the main part of the program.

Summary
The Tetromino game (which is a clone of the more popular game, ―Tetris‖) is pretty easy to

explain to someone in English: ―Blocks fall from the top of a board, and the player moves and

rotates them so that they form complete lines. The complete lines disappear (giving the player

points) and the lines above them move down. The game keeps going until the blocks fill up the

entire board and the player loses.‖

Explaining it in plain English is one thing, but when we have to tell a computer exactly what to

do there are many details we have to fill in. The original Tetris game was designed and

programmed one person, Alex Pajitnov, in the Soviet Union in 1984. The game is simple, fun,

and addictive. It is one of the most popular video games ever made, and has sold 100 million

copies with many people creating their own clones and variations of it.

And it was all created by one person who knew how to program.

With the right idea and some programming knowledge you can create incredibly fun games. And

with some practice, you will be able to turn your game ideas into real programs that might

become as popular as Tetris!

For additional programming practice, you can download buggy versions of Tetromino from

http://invpy.com/buggy/tetromino and try to figure out how to fix the bugs.

There are also variations of the Tetromino game on the book’s website. ―Pentomino‖ is a version

of this game with pieces made up of five boxes. There is also ―Tetromino for Idiots‖, where all of

the pieces are made up of just one box.

Chapter 7 - Tetromino 199

These variations can be downloaded from:

 http://invpy.com/pentomino.py

 http://invpy.com/tetrominoforidiots.py

200 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

CHAPTER 8 – SQUIRREL EAT

SQUIRREL

How to Play Squirrel Eat Squirrel
Squirrel Eat Squirrel is loosely based on the game ―Katamari Damacy‖. The player controls a

small squirrel that must hop around the screen eating smaller squirrels and avoiding larger

squirrels. Each time the player’s squirrel eats a squirrel that is smaller than it, it grows larger. If

the player’s squirrel gets hit by a larger squirrel larger than it, it loses a life point. The player wins

when the squirrel becomes a monstrously large squirrel called the Omega Squirrel. The player

loses if their squirrel gets hit three times.

I’m not really sure where I got the idea for a video game where squirrels eat each other. I’m a

little strange sometimes.

The Design of Squirrel Eat Squirrel
There are three types of data structures in this game, which are represented as dictionary values.

The types are player squirrels, enemy squirrels, and grass objects. There is only one player

squirrel object at a time in the game.

Note: Technically, ―object‖ means something specific in Object-Oriented Programming. Python

does have OOP features, but they aren’t covered in this book. Technically the Pygame objects

such as ―Rect object‖ or ―Surface object‖ are objects. But I’m going to use the term ―object‖ in

this book to refer to ―things that exist in the game world‖. But really, the player squirrel, enemy

squirrels, and grass ―objects‖ are just dictionary values.

Chapter 8 – Squirrel Eat Squirrel 201

All the objects have the following keys in their dictionary value: 'x', 'y', and 'rect'. The

'x' and 'y' key’s value give the coordinates of the top left of the object in game world

coordinates. These are different from pixel coordinates (which is what the 'rect' key’s value

tracks). The difference between game world and pixel coordinates will be explained when you

learn about the concept of cameras.

In addition, the player squirrel, enemy squirrel, and grass objects have other keys which are

explained in a large comment at the start of the source code.

Source Code to Squirrel Eat Squirrel
This source code can be downloaded from http://invpy.com/squirrel.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

http://invpy.com/diff/squirrel to see if the differences between your code and the code in the

book.

You will also need to download the following image files:

 http://invpy.com/gameicon.png

 http://invpy.com/squirrel.png

 http://invpy.com/grass1.png

 http://invpy.com/grass2.png

 http://invpy.com/grass3.png

 http://invpy.com/grass4.png

 1. # Squirrel Eat Squirrel (a 2D Katamari Damacy clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, time, math, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30 # frames per second to update the screen

 10. WINWIDTH = 640 # width of the program's window, in pixels

 11. WINHEIGHT = 480 # height in pixels

 12. HALF_WINWIDTH = int(WINWIDTH / 2)

 13. HALF_WINHEIGHT = int(WINHEIGHT / 2)

 14.

 15. GRASSCOLOR = (24, 255, 0)

 16. WHITE = (255, 255, 255)

 17. RED = (255, 0, 0)

 18.

202 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 19. CAMERASLACK = 90 # how far from the center the squirrel moves before

moving the camera

 20. MOVERATE = 9 # how fast the player moves

 21. BOUNCERATE = 6 # how fast the player bounces (large is slower)

 22. BOUNCEHEIGHT = 30 # how high the player bounces

 23. STARTSIZE = 25 # how big the player starts off

 24. WINSIZE = 300 # how big the player needs to be to win

 25. INVULNTIME = 2 # how long the player is invulnerable after being hit

in seconds

 26. GAMEOVERTIME = 4 # how long the "game over" text stays on the screen

in seconds

 27. MAXHEALTH = 3 # how much health the player starts with

 28.

 29. NUMGRASS = 80 # number of grass objects in the active area

 30. NUMSQUIRRELS = 30 # number of squirrels in the active area

 31. SQUIRRELMINSPEED = 3 # slowest squirrel speed

 32. SQUIRRELMAXSPEED = 7 # fastest squirrel speed

 33. DIRCHANGEFREQ = 2 # % chance of direction change per frame

 34. LEFT = 'left'

 35. RIGHT = 'right'

 36.

 37. """

 38. This program has three data structures to represent the player, enemy

squirrels, and grass background objects. The data structures are dictionaries

with the following keys:

 39.

 40. Keys used by all three data structures:

 41. 'x' - the left edge coordinate of the object in the game world (not a

pixel coordinate on the screen)

 42. 'y' - the top edge coordinate of the object in the game world (not a

pixel coordinate on the screen)

 43. 'rect' - the pygame.Rect object representing where on the screen the

object is located.

 44. Player data structure keys:

 45. 'surface' - the pygame.Surface object that stores the image of the

squirrel which will be drawn to the screen.

 46. 'facing' - either set to LEFT or RIGHT, stores which direction the

player is facing.

 47. 'size' - the width and height of the player in pixels. (The width &

height are always the same.)

 48. 'bounce' - represents at what point in a bounce the player is in. 0

means standing (no bounce), up to BOUNCERATE (the completion of the bounce)

 49. 'health' - an integer showing how many more times the player can be

hit by a larger squirrel before dying.

 50. Enemy Squirrel data structure keys:

Chapter 8 – Squirrel Eat Squirrel 203

 51. 'surface' - the pygame.Surface object that stores the image of the

squirrel which will be drawn to the screen.

 52. 'movex' - how many pixels per frame the squirrel moves horizontally. A

negative integer is moving to the left, a positive to the right.

 53. 'movey' - how many pixels per frame the squirrel moves vertically. A

negative integer is moving up, a positive moving down.

 54. 'width' - the width of the squirrel's image, in pixels

 55. 'height' - the height of the squirrel's image, in pixels

 56. 'bounce' - represents at what point in a bounce the player is in. 0

means standing (no bounce), up to BOUNCERATE (the completion of the bounce)

 57. 'bouncerate' - how quickly the squirrel bounces. A lower number means

a quicker bounce.

 58. 'bounceheight' - how high (in pixels) the squirrel bounces

 59. Grass data structure keys:

 60. 'grassImage' - an integer that refers to the index of the

pygame.Surface object in GRASSIMAGES used for this grass object

 61. """

 62.

 63. def main():

 64. global FPSCLOCK, DISPLAYSURF, BASICFONT, L_SQUIR_IMG, R_SQUIR_IMG,

GRASSIMAGES

 65.

 66. pygame.init()

 67. FPSCLOCK = pygame.time.Clock()

 68. pygame.display.set_icon(pygame.image.load('gameicon.png'))

 69. DISPLAYSURF = pygame.display.set_mode((WINWIDTH, WINHEIGHT))

 70. pygame.display.set_caption('Squirrel Eat Squirrel')

 71. BASICFONT = pygame.font.Font('freesansbold.ttf', 32)

 72.

 73. # load the image files

 74. L_SQUIR_IMG = pygame.image.load('squirrel.png')

 75. R_SQUIR_IMG = pygame.transform.flip(L_SQUIR_IMG, True, False)

 76. GRASSIMAGES = []

 77. for i in range(1, 5):

 78. GRASSIMAGES.append(pygame.image.load('grass%s.png' % i))

 79.

 80. while True:

 81. runGame()

 82.

 83.

 84. def runGame():

 85. # set up variables for the start of a new game

 86. invulnerableMode = False # if the player is invulnerable

 87. invulnerableStartTime = 0 # time the player became invulnerable

 88. gameOverMode = False # if the player has lost

 89. gameOverStartTime = 0 # time the player lost

204 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 90. winMode = False # if the player has won

 91.

 92. # create the surfaces to hold game text

 93. gameOverSurf = BASICFONT.render('Game Over', True, WHITE)

 94. gameOverRect = gameOverSurf.get_rect()

 95. gameOverRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

 96.

 97. winSurf = BASICFONT.render('You have achieved OMEGA SQUIRREL!', True,

WHITE)

 98. winRect = winSurf.get_rect()

 99. winRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

100.

101. winSurf2 = BASICFONT.render('(Press "r" to restart.)', True, WHITE)

102. winRect2 = winSurf2.get_rect()

103. winRect2.center = (HALF_WINWIDTH, HALF_WINHEIGHT + 30)

104.

105. # camerax and cameray are where the middle of the camera view is

106. camerax = 0

107. cameray = 0

108.

109. grassObjs = [] # stores all the grass objects in the game

110. squirrelObjs = [] # stores all the non-player squirrel objects

111. # stores the player object:

112. playerObj = {'surface': pygame.transform.scale(L_SQUIR_IMG,

(STARTSIZE, STARTSIZE)),

113. 'facing': LEFT,

114. 'size': STARTSIZE,

115. 'x': HALF_WINWIDTH,

116. 'y': HALF_WINHEIGHT,

117. 'bounce':0,

118. 'health': MAXHEALTH}

119.

120. moveLeft = False

121. moveRight = False

122. moveUp = False

123. moveDown = False

124.

125. # start off with some random grass images on the screen

126. for i in range(10):

127. grassObjs.append(makeNewGrass(camerax, cameray))

128. grassObjs[i]['x'] = random.randint(0, WINWIDTH)

129. grassObjs[i]['y'] = random.randint(0, WINHEIGHT)

130.

131. while True: # main game loop

132. # Check if we should turn off invulnerability

Chapter 8 – Squirrel Eat Squirrel 205

133. if invulnerableMode and time.time() - invulnerableStartTime >

INVULNTIME:

134. invulnerableMode = False

135.

136. # move all the squirrels

137. for sObj in squirrelObjs:

138. # move the squirrel, and adjust for their bounce

139. sObj['x'] += sObj['movex']

140. sObj['y'] += sObj['movey']

141. sObj['bounce'] += 1

142. if sObj['bounce'] > sObj['bouncerate']:

143. sObj['bounce'] = 0 # reset bounce amount

144.

145. # random chance they change direction

146. if random.randint(0, 99) < DIRCHANGEFREQ:

147. sObj['movex'] = getRandomVelocity()

148. sObj['movey'] = getRandomVelocity()

149. if sObj['movex'] > 0: # faces right

150. sObj['surface'] = pygame.transform.scale(R_SQUIR_IMG,

(sObj['width'], sObj['height']))

151. else: # faces left

152. sObj['surface'] = pygame.transform.scale(L_SQUIR_IMG,

(sObj['width'], sObj['height']))

153.

154.

155. # go through all the objects and see if any need to be deleted.

156. for i in range(len(grassObjs) - 1, -1, -1):

157. if isOutsideActiveArea(camerax, cameray, grassObjs[i]):

158. del grassObjs[i]

159. for i in range(len(squirrelObjs) - 1, -1, -1):

160. if isOutsideActiveArea(camerax, cameray, squirrelObjs[i]):

161. del squirrelObjs[i]

162.

163. # add more grass & squirrels if we don't have enough.

164. while len(grassObjs) < NUMGRASS:

165. grassObjs.append(makeNewGrass(camerax, cameray))

166. while len(squirrelObjs) < NUMSQUIRRELS:

167. squirrelObjs.append(makeNewSquirrel(camerax, cameray))

168.

169. # adjust camerax and cameray if beyond the "camera slack"

170. playerCenterx = playerObj['x'] + int(playerObj['size'] / 2)

171. playerCentery = playerObj['y'] + int(playerObj['size'] / 2)

172. if (camerax + HALF_WINWIDTH) - playerCenterx > CAMERASLACK:

173. camerax = playerCenterx + CAMERASLACK - HALF_WINWIDTH

174. elif playerCenterx – (camerax + HALF_WINWIDTH) > CAMERASLACK:

175. camerax = playerCenterx – CAMERASLACK - HALF_WINWIDTH

206 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

176. if (cameray + HALF_WINHEIGHT) - playerCentery > CAMERASLACK:

177. cameray = playerCentery + CAMERASLACK - HALF_WINHEIGHT

178. elif playerCentery – (cameray + HALF_WINHEIGHT) > CAMERASLACK:

179. cameray = playerCentery – CAMERASLACK - HALF_WINHEIGHT

180.

181. # draw the green background

182. DISPLAYSURF.fill(GRASSCOLOR)

183.

184. # draw all the grass objects on the screen

185. for gObj in grassObjs:

186. gRect = pygame.Rect((gObj['x'] - camerax,

187. gObj['y'] - cameray,

188. gObj['width'],

189. gObj['height']))

190. DISPLAYSURF.blit(GRASSIMAGES[gObj['grassImage']], gRect)

191.

192.

193. # draw the other squirrels

194. for sObj in squirrelObjs:

195. sObj['rect'] = pygame.Rect((sObj['x'] - camerax,

196. sObj['y'] - cameray -

getBounceAmount(sObj['bounce'], sObj['bouncerate'], sObj['bounceheight']),

197. sObj['width'],

198. sObj['height']))

199. DISPLAYSURF.blit(sObj['surface'], sObj['rect'])

200.

201.

202. # draw the player squirrel

203. flashIsOn = round(time.time(), 1) * 10 % 2 == 1

204. if not gameOverMode and not (invulnerableMode and flashIsOn):

205. playerObj['rect'] = pygame.Rect((playerObj['x'] - camerax,

206. playerObj['y'] – cameray -

getBounceAmount(playerObj['bounce'], BOUNCERATE, BOUNCEHEIGHT),

207. playerObj['size'],

208. playerObj['size']))

209. DISPLAYSURF.blit(playerObj['surface'], playerObj['rect'])

210.

211.

212. # draw the health meter

213. drawHealthMeter(playerObj['health'])

214.

215. for event in pygame.event.get(): # event handling loop

216. if event.type == QUIT:

217. terminate()

218.

219. elif event.type == KEYDOWN:

Chapter 8 – Squirrel Eat Squirrel 207

220. if event.key in (K_UP, K_w):

221. moveDown = False

222. moveUp = True

223. elif event.key in (K_DOWN, K_s):

224. moveUp = False

225. moveDown = True

226. elif event.key in (K_LEFT, K_a):

227. moveRight = False

228. moveLeft = True

229. if playerObj['facing'] == RIGHT: # change player image

230. playerObj['surface'] =

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size']))

231. playerObj['facing'] = LEFT

232. elif event.key in (K_RIGHT, K_d):

233. moveLeft = False

234. moveRight = True

235. if playerObj['facing'] == LEFT: # change player image

236. playerObj['surface'] =

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size']))

237. playerObj['facing'] = RIGHT

238. elif winMode and event.key == K_r:

239. return

240.

241. elif event.type == KEYUP:

242. # stop moving the player's squirrel

243. if event.key in (K_LEFT, K_a):

244. moveLeft = False

245. elif event.key in (K_RIGHT, K_d):

246. moveRight = False

247. elif event.key in (K_UP, K_w):

248. moveUp = False

249. elif event.key in (K_DOWN, K_s):

250. moveDown = False

251.

252. elif event.key == K_ESCAPE:

253. terminate()

254.

255. if not gameOverMode:

256. # actually move the player

257. if moveLeft:

258. playerObj['x'] -= MOVERATE

259. if moveRight:

260. playerObj['x'] += MOVERATE

261. if moveUp:

262. playerObj['y'] -= MOVERATE

263. if moveDown:

208 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

264. playerObj['y'] += MOVERATE

265.

266. if (moveLeft or moveRight or moveUp or moveDown) or

playerObj['bounce'] != 0:

267. playerObj['bounce'] += 1

268.

269. if playerObj['bounce'] > BOUNCERATE:

270. playerObj['bounce'] = 0 # reset bounce amount

271.

272. # check if the player has collided with any squirrels

273. for i in range(len(squirrelObjs)-1, -1, -1):

274. sqObj = squirrelObjs[i]

275. if 'rect' in sqObj and

playerObj['rect'].colliderect(sqObj['rect']):

276. # a player/squirrel collision has occurred

277.

278. if sqObj['width'] * sqObj['height'] <=

playerObj['size']**2:

279. # player is larger and eats the squirrel

280. playerObj['size'] += int((sqObj['width'] *

sqObj['height'])**0.2) + 1

281. del squirrelObjs[i]

282.

283. if playerObj['facing'] == LEFT:

284. playerObj['surface'] =

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size']))

285. if playerObj['facing'] == RIGHT:

286. playerObj['surface'] =

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size']))

287.

288. if playerObj['size'] > WINSIZE:

289. winMode = True # turn on "win mode"

290.

291. elif not invulnerableMode:

292. # player is smaller and takes damage

293. invulnerableMode = True

294. invulnerableStartTime = time.time()

295. playerObj['health'] -= 1

296. if playerObj['health'] == 0:

297. gameOverMode = True # turn on "game over mode"

298. gameOverStartTime = time.time()

299. else:

300. # game is over, show "game over" text

301. DISPLAYSURF.blit(gameOverSurf, gameOverRect)

302. if time.time() - gameOverStartTime > GAMEOVERTIME:

303. return # end the current game

Chapter 8 – Squirrel Eat Squirrel 209

304.

305. # check if the player has won.

306. if winMode:

307. DISPLAYSURF.blit(winSurf, winRect)

308. DISPLAYSURF.blit(winSurf2, winRect2)

309.

310. pygame.display.update()

311. FPSCLOCK.tick(FPS)

312.

313.

314.

315.

316. def drawHealthMeter(currentHealth):

317. for i in range(currentHealth): # draw red health bars

318. pygame.draw.rect(DISPLAYSURF, RED, (15, 5 + (10 * MAXHEALTH) - i

* 10, 20, 10))

319. for i in range(MAXHEALTH): # draw the white outlines

320. pygame.draw.rect(DISPLAYSURF, WHITE, (15, 5 + (10 * MAXHEALTH) - i

* 10, 20, 10), 1)

321.

322.

323. def terminate():

324. pygame.quit()

325. sys.exit()

326.

327.

328. def getBounceAmount(currentBounce, bounceRate, bounceHeight):

329. # Returns the number of pixels to offset based on the bounce.

330. # Larger bounceRate means a slower bounce.

331. # Larger bounceHeight means a higher bounce.

332. # currentBounce will always be less than bounceRate

333. return int(math.sin((math.pi / float(bounceRate)) * currentBounce) *

bounceHeight)

334.

335. def getRandomVelocity():

336. speed = random.randint(SQUIRRELMINSPEED, SQUIRRELMAXSPEED)

337. if random.randint(0, 1) == 0:

338. return speed

339. else:

340. return -speed

341.

342.

343. def getRandomOffCameraPos(camerax, cameray, objWidth, objHeight):

344. # create a Rect of the camera view

345. cameraRect = pygame.Rect(camerax, cameray, WINWIDTH, WINHEIGHT)

346. while True:

210 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

347. x = random.randint(camerax - WINWIDTH, camerax + (2 * WINWIDTH))

348. y = random.randint(cameray - WINHEIGHT, cameray + (2 * WINHEIGHT))

349. # create a Rect object with the random coordinates and use

colliderect()

350. # to make sure the right edge isn't in the camera view.

351. objRect = pygame.Rect(x, y, objWidth, objHeight)

352. if not objRect.colliderect(cameraRect):

353. return x, y

354.

355.

356. def makeNewSquirrel(camerax, cameray):

357. sq = {}

358. generalSize = random.randint(5, 25)

359. multiplier = random.randint(1, 3)

360. sq['width'] = (generalSize + random.randint(0, 10)) * multiplier

361. sq['height'] = (generalSize + random.randint(0, 10)) * multiplier

362. sq['x'], sq['y'] = getRandomOffCameraPos(camerax, cameray,

sq['width'], sq['height'])

363. sq['movex'] = getRandomVelocity()

364. sq['movey'] = getRandomVelocity()

365. if sq['movex'] < 0: # squirrel is facing left

366. sq['surface'] = pygame.transform.scale(L_SQUIR_IMG, (sq['width'],

sq['height']))

367. else: # squirrel is facing right

368. sq['surface'] = pygame.transform.scale(R_SQUIR_IMG, (sq['width'],

sq['height']))

369. sq['bounce'] = 0

370. sq['bouncerate'] = random.randint(10, 18)

371. sq['bounceheight'] = random.randint(10, 50)

372. return sq

373.

374.

375. def makeNewGrass(camerax, cameray):

376. gr = {}

377. gr['grassImage'] = random.randint(0, len(GRASSIMAGES) - 1)

378. gr['width'] = GRASSIMAGES[0].get_width()

379. gr['height'] = GRASSIMAGES[0].get_height()

380. gr['x'], gr['y'] = getRandomOffCameraPos(camerax, cameray,

gr['width'], gr['height'])

381. gr['rect'] = pygame.Rect((gr['x'], gr['y'], gr['width'],

gr['height']))

382. return gr

383.

384.

385. def isOutsideActiveArea(camerax, cameray, obj):

386. # Return False if camerax and cameray are more than

Chapter 8 – Squirrel Eat Squirrel 211

387. # a half-window length beyond the edge of the window.

388. boundsLeftEdge = camerax - WINWIDTH

389. boundsTopEdge = cameray - WINHEIGHT

390. boundsRect = pygame.Rect(boundsLeftEdge, boundsTopEdge, WINWIDTH * 3,

WINHEIGHT * 3)

391. objRect = pygame.Rect(obj['x'], obj['y'], obj['width'], obj['height'])

392. return not boundsRect.colliderect(objRect)

393.

394.

395. if __name__ == '__main__':

396. main()

The Usual Setup Code

 1. # Squirrel Eat Squirrel (a 2D Katamari Damacy clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, time, math, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30 # frames per second to update the screen

 10. WINWIDTH = 640 # width of the program's window, in pixels

 11. WINHEIGHT = 480 # height in pixels

 12. HALF_WINWIDTH = int(WINWIDTH / 2)

 13. HALF_WINHEIGHT = int(WINHEIGHT / 2)

 14.

 15. GRASSCOLOR = (24, 255, 0)

 16. WHITE = (255, 255, 255)

 17. RED = (255, 0, 0)

The start of the program assigns several constant variables. This program frequently makes use of

the half length of the width and height of the window so much that the HALF_WINWIDTH and

HALF_WINHEIGHT variables store these numbers.

 19. CAMERASLACK = 90 # how far from the center the squirrel moves before

moving the camera

The ―camera slack‖ is described later. Basically, it means that the camera will begin following the

player squirrel when it moves 90 pixels away from the center of the window.

 20. MOVERATE = 9 # how fast the player moves

 21. BOUNCERATE = 6 # how fast the player bounces (large is slower)

212 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 22. BOUNCEHEIGHT = 30 # how high the player bounces

 23. STARTSIZE = 25 # how big the player starts off

 24. WINSIZE = 300 # how big the player needs to be to win

 25. INVULNTIME = 2 # how long the player is invulnerable after being hit

in seconds

 26. GAMEOVERTIME = 4 # how long the "game over" text stays on the screen

in seconds

 27. MAXHEALTH = 3 # how much health the player starts with

 28.

 29. NUMGRASS = 80 # number of grass objects in the active area

 30. NUMSQUIRRELS = 30 # number of squirrels in the active area

 31. SQUIRRELMINSPEED = 3 # slowest squirrel speed

 32. SQUIRRELMAXSPEED = 7 # fastest squirrel speed

 33. DIRCHANGEFREQ = 2 # % chance of direction change per frame

 34. LEFT = 'left'

 35. RIGHT = 'right'

The comments next to these constants explains what the constant variable is used for.

Describing the Data Structures

 37. """

 38. This program has three data structures to represent the player, enemy

squirrels, and grass background objects. The data structures are dictionaries

with the following keys:

 39.

 40. Keys used by all three data structures:

 41. 'x' - the left edge coordinate of the object in the game world (not a

pixel coordinate on the screen)

 42. 'y' - the top edge coordinate of the object in the game world (not a

pixel coordinate on the screen)

 43. 'rect' - the pygame.Rect object representing where on the screen the

object is located.

 44. Player data structure keys:

 45. 'surface' - the pygame.Surface object that stores the image of the

squirrel which will be drawn to the screen.

 46. 'facing' - either set to LEFT or RIGHT, stores which direction the

player is facing.

 47. 'size' - the width and height of the player in pixels. (The width &

height are always the same.)

 48. 'bounce' - represents at what point in a bounce the player is in. 0

means standing (no bounce), up to BOUNCERATE (the completion of the bounce)

 49. 'health' - an integer showing how many more times the player can be

hit by a larger squirrel before dying.

 50. Enemy Squirrel data structure keys:

Chapter 8 – Squirrel Eat Squirrel 213

 51. 'surface' - the pygame.Surface object that stores the image of the

squirrel which will be drawn to the screen.

 52. 'movex' - how many pixels per frame the squirrel moves horizontally. A

negative integer is moving to the left, a positive to the right.

 53. 'movey' - how many pixels per frame the squirrel moves vertically. A

negative integer is moving up, a positive moving down.

 54. 'width' - the width of the squirrel's image, in pixels

 55. 'height' - the height of the squirrel's image, in pixels

 56. 'bounce' - represents at what point in a bounce the player is in. 0

means standing (no bounce), up to BOUNCERATE (the completion of the bounce)

 57. 'bouncerate' - how quickly the squirrel bounces. A lower number means

a quicker bounce.

 58. 'bounceheight' - how high (in pixels) the squirrel bounces

 59. Grass data structure keys:

 60. 'grassImage' - an integer that refers to the index of the

pygame.Surface object in GRASSIMAGES used for this grass object

 61. """

The comments from lines 37 to 61 are in one large, multi-line string. They describe the keys in

the player squirrel, enemy squirrel, and grass objects. In Python, a multi-line string value by itself

works as a multi-line comment.

The main() Function

 63. def main():

 64. global FPSCLOCK, DISPLAYSURF, BASICFONT, L_SQUIR_IMG, R_SQUIR_IMG,

GRASSIMAGES

 65.

 66. pygame.init()

 67. FPSCLOCK = pygame.time.Clock()

 68. pygame.display.set_icon(pygame.image.load('gameicon.png'))

 69. DISPLAYSURF = pygame.display.set_mode((WINWIDTH, WINHEIGHT))

 70. pygame.display.set_caption('Squirrel Eat Squirrel')

 71. BASICFONT = pygame.font.Font('freesansbold.ttf', 32)

The first several lines of the main() function are the same setup code that we’ve seen in our

previous game programs. The pygame.display.set_icon() is a Pygame function that

sets the icon in the window’s title bar (just like pygame.display.set_caption() sets the

caption text in the title bar). The single argument to pygame.display.set_icon() is a

Surface object of a small image. The ideal image size is 32 x 32 pixels, although you can use

other sized images. The image will just be compressed into a smaller size to be used as the

window’s icon.

214 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The pygame.transform.flip() Function

 73. # load the image files

 74. L_SQUIR_IMG = pygame.image.load('squirrel.png')

 75. R_SQUIR_IMG = pygame.transform.flip(L_SQUIR_IMG, True, False)

 76. GRASSIMAGES = []

 77. for i in range(1, 5):

 78. GRASSIMAGES.append(pygame.image.load('grass%s.png' % i))

The image for the player and enemy squirrels is loaded from squirrel.png on line 74. Make sure

that this PNG file is in the same folder as squirrel.py, otherwise you will get the error

pygame.error: Couldn't open squirrel.png.

The image in squirrel.png (which you can download from http://invpy.com/squirrel.png) is of a

squirrel facing to the left. We also need a Surface object that contains a picture of the squirrel

facing to the right. Instead of creating a second PNG image file, we can call the

pygame.transform.flip() function. This function has three parameters: the Surface

object with the image to flip, a Boolean value to do a horizontal flip, and a Boolean value to do a

vertical flip. By passing True for the second parameter and False for the third parameter, the

Surface object that returns has the image of the squirrel facing to the right. The original Surface

object in L_SQUIR_IMG that we passed in is unchanged.

Here are examples of images being horizontally and vertically flipped:

Original Horizontal Flip Vertical Flip Horizontal and

Vertical Flip

 80. while True:

 81. runGame()

After the setup in main() is complete, the game begins with runGame() being called.

A More Detailed Game State than Usual

 84. def runGame():

 85. # set up variables for the start of a new game

Chapter 8 – Squirrel Eat Squirrel 215

 86. invulnerableMode = False # if the player is invulnerable

 87. invulnerableStartTime = 0 # time the player became invulnerable

 88. gameOverMode = False # if the player has lost

 89. gameOverStartTime = 0 # time the player lost

 90. winMode = False # if the player has won

The Squirrel Eat Squirrel game has quite a few variables that track the game state. These

variables will be explained in more detail later when they are used in the code.

The Usual Text Creation Code

 92. # create the surfaces to hold game text

 93. gameOverSurf = BASICFONT.render('Game Over', True, WHITE)

 94. gameOverRect = gameOverSurf.get_rect()

 95. gameOverRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

 96.

 97. winSurf = BASICFONT.render('You have achieved OMEGA SQUIRREL!', True,

WHITE)

 98. winRect = winSurf.get_rect()

 99. winRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

100.

101. winSurf2 = BASICFONT.render('(Press "r" to restart.)', True, WHITE)

102. winRect2 = winSurf2.get_rect()

103. winRect2.center = (HALF_WINWIDTH, HALF_WINHEIGHT + 30)

These variables contain Surface objects with the ―Game Over‖, ―You have achieved OMEGA

SQUIRREL!‖, and ―(Press "r" to restart.)‖ text that appears on the screen after the game ends

(with either the player losing or winning).

Cameras

105. # camerax and cameray are where the middle of the camera view is

106. camerax = 0

107. cameray = 0

The camerax and cameray variables track the game coordinates of the ―camera‖. Imagine the

game world as an infinite 2D space. This could, of course, never fit on any screen. We can only

draw a portion of the infinite 2D space on the screen. We call the area of this portion a camera,

because it is as though our screen is just the area of the game world in front what a camera would

see. Here’s a picture of the game world (an infinite green field) and the area that the camera can

view:

216 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

As you can see, the game world XY coordinates keep getting bigger and smaller forever. The

game world origin is where the (0, 0) game world coordinates are. You can see that the three

squirrels are located (in game world coordinates) at (-384, -84), (384, 306), and (585, -234).

But we can only display 640 x 480 pixel area on the screen (though this can change if we pass

different numbers to the pygame.display.set_mode() function), so we need to track

where the camera’s origin is located in game world coordinates. In the picture above, the camera

is placed at (-486, -330) in game world coordinates.

The picture below shows the same field and squirrels, except everything is given in camera

coordinates:

Chapter 8 – Squirrel Eat Squirrel 217

The area that the camera can see (called the camera view) has it’s center (that is, its origin) at the

game world coordinates (-486, -330). Since what the camera sees is displayed on the player’s

screen, the ―camera‖ coordinates are the same as the ―pixel‖ coordinates. To find out the pixel

coordinates of the squirrels (that is, where on the screen they appear), take the game coordinates

of the squirrel and subtract the game coordinates of the camera’s origin.

So the squirrel on the left has game world coordinates of (-384, -84) but appears at (102, 246) on

the screen in pixel coordinates. (For the X coordinate, -384 - -486 = 102 and for the Y coordinate,

-84 - -330 = 246.)

When we do the same calculation to find the pixel coordinates of the other two squirrels, we find

that they exist outside of the range of the screen. This is why they don’t appear in the camera’s

view.

The “Active Area”
The ―active area‖ is just a name I came up with to describe the area of the game world that the

camera views plus an area around it the size of the camera area:

218 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Calculating if something is in the active area or not is explained in the

isOutsideActiveArea() function’s explanation later in this chapter. When we create new

enemy squirrel or grass objects, we don’t want them to be created inside the view of the camera,

since it’ll appear that they just pop out of nowhere.

But we also don’t want to create them too far away from the camera, because then they may

never wander into the camera’s view. Inside the active area but outside the camera is where

squirrel and grass objects can safely be created.

Also, when squirrel and grass objects are beyond the border of the active area then they are far

away enough to delete so that they don’t take up memory any more. Objects that far away aren’t

needed since it is much less likely that they’ll come back into view of the camera.

If you have ever played Super Mario World on the Super Nintendo, there is a good YouTube

video explaining how Super Mario World’s camera system works. You can find this video at

http://invpy.com/mariocamera.

Keeping Track of the Location of Things in the Game World

109. grassObjs = [] # stores all the grass objects in the game

110. squirrelObjs = [] # stores all the non-player squirrel objects

111. # stores the player object:

112. playerObj = {'surface': pygame.transform.scale(L_SQUIR_IMG,

(STARTSIZE, STARTSIZE)),

113. 'facing': LEFT,

114. 'size': STARTSIZE,

115. 'x': HALF_WINWIDTH,

116. 'y': HALF_WINHEIGHT,

117. 'bounce':0,

118. 'health': MAXHEALTH}

119.

120. moveLeft = False

121. moveRight = False

122. moveUp = False

123. moveDown = False

The grassObjs variable holds a list of all the grass objects in the game. As new grass objects

are created, they are added to this list. As grass objects are deleted, they are removed from this

list. The same goes for the squirrelObjs variable and the enemy squirrel objects.

The playerObj variable is not a list, but just the dictionary value itself.

The move variables on lines 120 to 123 track which of arrow keys (or WASD keys) are being

held down, just like in a few of the previous game programs.

Chapter 8 – Squirrel Eat Squirrel 219

Starting Off with Some Grass

125. # start off with some random grass images on the screen

126. for i in range(10):

127. grassObjs.append(makeNewGrass(camerax, cameray))

128. grassObjs[i]['x'] = random.randint(0, WINWIDTH)

129. grassObjs[i]['y'] = random.randint(0, WINHEIGHT)

The active area should start off with a few grass objects visible on the screen. The

makeNewGrass() function will create and return a grass object that is randomly located

somewhere in the active area but outside the camera view. This is what we normally want when

we call makeNewGrass(), but since we want to make sure the first few grass objects are on the

screen, the X and Y coordinates are overwritten.

The Game Loop

131. while True: # main game loop

The game loop, like the game loops in the previous game programs, will do event handling,

updating the game state, and drawing everything to the screen.

Checking to Disable Invulnerability

132. # Check if we should turn off invulnerability

133. if invulnerableMode and time.time() - invulnerableStartTime >

INVULNTIME:

134. invulnerableMode = False

When the player gets hit by an enemy squirrel and does not die, we make the player invulnerable

for a couple seconds (since the INVULNTIME constant is set to 2). During this time, the player’s

squirrel flashes and the won’t take any damage from other squirrels. If the ―invulnerability mode‖

time is over, line 134 will set invulnerableMode to False.

Moving the Enemy Squirrels

136. # move all the squirrels

137. for sObj in squirrelObjs:

138. # move the squirrel, and adjust for their bounce

139. sObj['x'] += sObj['movex']

140. sObj['y'] += sObj['movey']

The enemy squirrels all move according to the values in their 'movex' and 'movey' keys. If

these values are positive, the squirrels move right or down. If these values are negative, they

220 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

move left or up. The larger the value, the farther they move on each iteration through the game

loop (which means they move faster).

The for loop on line 137 will apply this moving code to each of the enemy squirrel objects in the

squirrelObjs list. First, line 139 and 140 will adjust their 'x' and 'y' keys’ values.

141. sObj['bounce'] += 1

142. if sObj['bounce'] > sObj['bouncerate']:

143. sObj['bounce'] = 0 # reset bounce amount

The value in sObj['bounce'] is incremented on each iteration of the game loop for each

squirrel. When this value is 0, the squirrel is at the very beginning of its bounce. When this value

is equal to the value in sObj['bouncerate'] the value is at its end. (This is why a smaller

sObj['bouncerate'] value makes for a faster bounce. If sObj['bouncerate'] is 3,

then it only takes three iterations through the game loop for the squirrel to do a full bounce. If

sObj['bouncerate'] were 10, then it would take ten iterations.)

When sObj['bounce'] gets larger than sObj['bouncerate'], then it needs to be reset

to 0. This is what lines 142 and 143 do.

145. # random chance they change direction

146. if random.randint(0, 99) < DIRCHANGEFREQ:

147. sObj['movex'] = getRandomVelocity()

148. sObj['movey'] = getRandomVelocity()

149. if sObj['movex'] > 0: # faces right

150. sObj['surface'] = pygame.transform.scale(R_SQUIR_IMG,

(sObj['width'], sObj['height']))

151. else: # faces left

152. sObj['surface'] = pygame.transform.scale(L_SQUIR_IMG,

(sObj['width'], sObj['height']))

There is a 2% chance on each iteration through the game loop that the squirrel will randomly

change speed and direction. On line 146 the random.randint(0, 99) call randomly selects

an integer out of 100 possible integers. If this number is less than DIRCHANGEFREQ (which we

set to 2 on line 33) then a new value will be set for sObj['movex'] and sObj['movey'].

Because this means the squirrel might have changed direction, the Surface object in

sObj['surface'] should be replaced by a new one that is properly facing left or right and

scaled to the squirrel’s size. This is what lines 149 to 152 determine. Note that line 150 gets a

Surface object scaled from R_SQUIR_IMG and line 152 gets one scaled from L_SQUIR_IMG.

Chapter 8 – Squirrel Eat Squirrel 221

Removing the Far Away Grass and Squirrel Objects

155. # go through all the objects and see if any need to be deleted.

156. for i in range(len(grassObjs) - 1, -1, -1):

157. if isOutsideActiveArea(camerax, cameray, grassObjs[i]):

158. del grassObjs[i]

159. for i in range(len(squirrelObjs) - 1, -1, -1):

160. if isOutsideActiveArea(camerax, cameray, squirrelObjs[i]):

161. del squirrelObjs[i]

During each iteration of the game loop, the code will check all of the grass and enemy squirrel

objects to see if they are outside the ―active area‖. The isOutsideActiveArea() function

takes the current coordinates of the camera (which are stored in camerax and cameray) and

the grass/enemy squirrel object, and returns True if the object is not located in the active area.

If this is the case, this object is deleted on line 158 (for grass objects) or line 161 (for squirrel

objects). This is how squirrel and grass objects get deleted when the player moves far enough

away from them (or when the enemy squirrels move away far enough from the player). This

ensures that there is always a number of squirrels and grass objects near the player.

When Deleting Items in a List, Iterate Over the List in Reverse
Deleting squirrel and grass objects is done with the del operator. However, notice that the for

loop on line 156 and 159 pass arguments to the range() function so that the numbering starts at

the index of the last item and then decrements by -1 (unlike incrementing by 1 as it normally

does) until it reaches the number -1. We are iterating backwards over the list’s indexes compared

to how it is normally done. This is done because we are iterating over the list that we are also

deleting items from.

To see why this reverse order is needed, say we had the following list value:

animals = ['cat', 'mouse', 'dog', 'horse']

So we wanted to write code to delete any instances of the string 'dog' from this list. We might

think to write out code like this:

for i in range(len(animals)):

 if animals[i] == 'dog':

 del animals[i]

But if we ran this code, we would get an IndexError error that looks like this:

Traceback (most recent call last):

222 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 File "<stdin>", line 2, in <module>

IndexError: list index out of range

To see why this error happens, let’s walk through the code. First, the animals list would be set

to ['cat', 'mouse', 'dog', 'horse'] and len(animals) would return 4. This

means that the call to range(4) would cause the for loop to iterate with the values 0, 1, 2,

and 3.

When the for loop iterates with i set to 2, the if statement’s condition will be True and the

del animals[i] statement will delete animals[2]. This means that afterwards the

animals list will be ['cat', 'mouse', 'horse']. The indexes of all the items after

'dog' are all shifted down by one because the 'dog' value was removed.

But on the next iteration through the for loop, i is set to 3. But animals[3] is out of bounds

because the valid indexes of the animals list is no longer 0 to 3 but 0 to 2. The original call to

range() was for a list with 4 items in it. The list changed in length, but the for loop is set up

for the original length.

However, if we iterate from the last index of the list to 0, we don’t run into this problem. The

following program deletes the 'dog' string from the animals list without causing an

IndexError error:

animals = ['cat', 'mouse', 'dog', 'horse']

for i in range(len(animals) - 1, -1, -1):

 if animals[i] == 'dog':

 del animals[i]

The reason this code doesn’t cause an error is because the for loop iterates over 3, 2, 1, and 0.

On the first iteration, the code checks if animals[3] is equal to 'dog'. It isn’t

(animals[3] is 'horse') so the code moves on to the next iteration. Then animals[2] is

checked if it equals 'dog'. It does, so animals[2] is deleted.

After animals[2] is deleted, the animals list is set to ['cat', 'mouse', 'horse'].

On the next iteration, i is set to 1. There is a value at animals[1] (the 'mouse' value), so no

error is caused. It doesn’t matter that all the items in the list after 'dog' have shifted down by

one, because since we started at the end of the list and are going towards the front, all of those

items have already been checked.

Similarly, we can delete grass and squirrel objects from the grassObjs and squirrelObjs

lists without error because the for loop on lines 156 and 159 iterate in reverse order.

Chapter 8 – Squirrel Eat Squirrel 223

Adding New Grass and Squirrel Objects

163. # add more grass & squirrels if we don't have enough.

164. while len(grassObjs) < NUMGRASS:

165. grassObjs.append(makeNewGrass(camerax, cameray))

166. while len(squirrelObjs) < NUMSQUIRRELS:

167. squirrelObjs.append(makeNewSquirrel(camerax, cameray))

Remember that the NUMGRASS constant was set to 80 and the NUMSQUIRRELS constant was set

to 30 at the beginning of the program? These variables are set so that we can be sure there are

always plenty of grass and squirrel objects in the active area at all times. If the length of the

grassObjs or squirrelObjs drops below NUMGRASS or NUMSQUIRRELS respectively,

then new grass and squirrel objects are created. The makeNewGrass() and

makeNewSquirrel() functions that create these objects are explained later in this chapter.

Camera Slack, and Moving the Camera View

169. # adjust camerax and cameray if beyond the "camera slack"

170. playerCenterx = playerObj['x'] + int(playerObj['size'] / 2)

171. playerCentery = playerObj['y'] + int(playerObj['size'] / 2)

172. if (camerax + HALF_WINWIDTH) - playerCenterx > CAMERASLACK:

173. camerax = playerCenterx + CAMERASLACK - HALF_WINWIDTH

174. elif playerCenterx – (camerax + HALF_WINWIDTH) > CAMERASLACK:

175. camerax = playerCenterx – CAMERASLACK - HALF_WINWIDTH

176. if (cameray + HALF_WINHEIGHT) - playerCentery > CAMERASLACK:

177. cameray = playerCentery + CAMERASLACK - HALF_WINHEIGHT

178. elif playerCentery – (cameray + HALF_WINHEIGHT) > CAMERASLACK:

179. cameray = playerCentery – CAMERASLACK - HALF_WINHEIGHT

The camera’s position (which is stored as integers in the camerax and cameray variables)

needs to be updated when the player moves over. I’ve called the number of pixels the player can

move before the camera gets updated the ―camera slack‖. Line 19 set the CAMERASLACK

constant to 90, which our program will take to mean that the player squirrel can move 90 pixels

from the center before the camera position gets updated to follow the squirrel.

In order to understand the equations used in the if statements on lines 172, 174, 176, and 178,

you should note that (camerax + HALF_WINWIDTH) and (cameray +

HALF_WINHEIGHT) are the XY game world coordinates currently at the center of the screen.

The playerCenterx and playerCentery is set to the middle of the player’s squirrel’s

position, also in game world coordinates.

For line 172, if the center X coordinate minus the player’s center X coordinate is greater than the

CAMERASLACK value, that means the player is more pixels to the right of the center of the

224 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

camera than the camera slack should allow. The camerax value needs to be updated so that the

player squirrel is just at the edge of the camera slack. This is why line 173 sets camerax to

playerCenterx + CAMERASLACK – HALF_WINWIDTH. Note that the camerax

variable is changed, not the playerObj['x'] value. We want to move the camera, not the

player.

The other three if statements follow similar logic for the left, up and down sides.

Drawing the Background, Grass, Squirrels, and Health Meter

181. # draw the green background

182. DISPLAYSURF.fill(GRASSCOLOR)

Line 182 begins the code that starts drawing the contents of the display Surface object. First, line

182 draws a green color for the background. This will paint over all of the previous contents of

the Surface so that we can start drawing the frame from scratch.

184. # draw all the grass objects on the screen

185. for gObj in grassObjs:

186. gRect = pygame.Rect((gObj['x'] - camerax,

187. gObj['y'] - cameray,

188. gObj['width'],

189. gObj['height']))

190. DISPLAYSURF.blit(GRASSIMAGES[gObj['grassImage']], gRect)

The for loop on line 185 goes through all the grass objects in the grassObjs list and creates a

Rect object from the x, y, width, and height information stored in it. This Rect object is stored in

a variable named gRect. On line 190, gRect is used in the blit() method call to draw the

grass image on the display Surface. Note that gObj['grassImage'] only contains an integer

that is an index to GRASSIMAGES. GRASSIMAGES is a list of Surface objects that contain all

the grass images. Surface objects take up much more memory than just a single integer, and all

the grass objects with similar gObj['grassImage'] values look identical. So it makes sense

to only have each grass image stored once in GRASSIMAGES and simply store integers in the

grass objects themselves.

193. # draw the other squirrels

194. for sObj in squirrelObjs:

195. sObj['rect'] = pygame.Rect((sObj['x'] - camerax,

196. sObj['y'] - cameray -

getBounceAmount(sObj['bounce'], sObj['bouncerate'], sObj['bounceheight']),

197. sObj['width'],

198. sObj['height']))

Chapter 8 – Squirrel Eat Squirrel 225

199. DISPLAYSURF.blit(sObj['surface'], sObj['rect'])

The for loop that draws all the enemy squirrel game objects is similar to the previous for loop,

except that the Rect object it creates is saved in the 'rect' key’s value of the squirrel

dictionary. The reason the code does this is because we will use this Rect object later to check if

the enemy squirrels have collided with the player squirrel.

Note that the top parameter for the Rect constructor is not just sObj['y'] - cameray but

sObj['y'] - cameray - getBounceAmount(sObj['bounce'],

sObj['bouncerate'], sObj['bounceheight']). The getBounceAmount()

function will return the number of pixels that the top value should be raised.

Also, there is no common list of Surface objects of the squirrel images, like there was with grass

game objects and GRASSIMAGES. Each enemy squirrel game object has its own Surface object

stored in the 'surface' key. This is because the squirrel images can be scaled to different

sizes.

202. # draw the player squirrel

203. flashIsOn = round(time.time(), 1) * 10 % 2 == 1

After drawing the grass and enemy squirrels, the code will draw the player’s squirrel. However,

there is one case where we would skip drawing the player’s squirrel. When the player collides

with a larger enemy squirrel, the player takes damage and flashes for a little bit to indicate that

the player is temporarily invulnerable. This flashing effect is done by drawing the player squirrel

on some iterations through the game loop but not on others.

The player squirrel will be drawn on game loop iterations for a tenth of a second, and then not

drawn on the game loop iterations for a tenth of second. This repeats over and over again as long

as the player is invulnerable (which, in the code, means that the invulnerableMode variable

is set to True). Our code will make the flashing last for two seconds, since 2 was stored in the

INVULNTIME constant variable on line 25.

To determine if the flash is on or not, line 202 grabs the current time from time.time(). Let’s

use the example where this function call returns 1323926893.622. This value is passed to

round(), which rounds it to one digit past the decimal point (since 1 is passed as round()’s

second parameter). This means round() will return the value 1323926893.6.

This value is then multiplied by 10, to become 13239268936. Once we have it as an integer,

we can do the ―mod two‖ trick first discussed in the Memory Puzzle chapter to see if it is even or

odd. 13239268936 % 2 evaluates to 0, which means that flashIsOn will be set to False,

since 0 == 1 is False.

226 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

In fact, time.time() will keep returning values that will end up putting False into

flashIsOn until 1323926893.700, which is the next tenth second. This is why the

flashIsOn variable will constantly have False for one tenth of a second, and then True for

the next one tenth of a second (no matter how many iterations happen in that tenth of a second).

204. if not gameOverMode and not (invulnerableMode and flashIsOn):

205. playerObj['rect'] = pygame.Rect((playerObj['x'] - camerax,

206. playerObj['y'] – cameray -

getBounceAmount(playerObj['bounce'], BOUNCERATE, BOUNCEHEIGHT),

207. playerObj['size'],

208. playerObj['size']))

209. DISPLAYSURF.blit(playerObj['surface'], playerObj['rect'])

There are three things that must be True before we draw the player’s squirrel. The game must

currently be going on (which happens while gameOverMode is False) and the player is not

invulnerable and not flashing (which happens while invulnerableMode and flashIsOn

are False).

The code for drawing the player’s squirrel is almost identical to the code for drawing the enemy

squirrels.

212. # draw the health meter

213. drawHealthMeter(playerObj['health'])

The drawHealthMeter() function draws the indicator at the top left corner of the screen that

tells the player how many times the player squirrel can be hit before dying. This function will be

explained later in this chapter.

The Event Handling Loop

215. for event in pygame.event.get(): # event handling loop

216. if event.type == QUIT:

217. terminate()

The first thing that is checked in the event handling loop is if the QUIT event has been generated.

If so, then the program should be terminated.

219. elif event.type == KEYDOWN:

220. if event.key in (K_UP, K_w):

221. moveDown = False

222. moveUp = True

223. elif event.key in (K_DOWN, K_s):

Chapter 8 – Squirrel Eat Squirrel 227

224. moveUp = False

225. moveDown = True

If the up or down arrow keys have been pressed (or their WASD equivalents), then the move

variable (moveRight, moveDown, etc.) for that direction should be set to True and the move

variable for the opposite direction should be set to False.

226. elif event.key in (K_LEFT, K_a):

227. moveRight = False

228. moveLeft = True

229. if playerObj['facing'] == RIGHT: # change player image

230. playerObj['surface'] =

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size']))

231. playerObj['facing'] = LEFT

232. elif event.key in (K_RIGHT, K_d):

233. moveLeft = False

234. moveRight = True

235. if playerObj['facing'] == LEFT: # change player image

236. playerObj['surface'] =

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size']))

237. playerObj['facing'] = RIGHT

The moveLeft and moveRight variables should also be set when the left or right arrow keys

are pressed. Also, the value in playerObj['facing'] should be updated to either LEFT or

RIGHT. If the player squirrel is now facing a new direction, the playerObj['surface']

value should be replaced with a correctly scaled image of the squirrel facing the new direction.

Line 229 is run if the left arrow key was pressed and checks if the player squirrel was facing

right. If that was so, then a new scaled Surface object of the player squirrel image is stored in

playerObj['surface']. The code in line 232’s elif statement handles the opposite case.

238. elif winMode and event.key == K_r:

239. return

If the player has won the game by growing large enough (in which case, winMode will be set to

True) and the R key has been pressed, then runGame()should return. This will end the current

game, and a new game will start the next time that runGame() gets called.

241. elif event.type == KEYUP:

242. # stop moving the player's squirrel

243. if event.key in (K_LEFT, K_a):

244. moveLeft = False

228 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

245. elif event.key in (K_RIGHT, K_d):

246. moveRight = False

247. elif event.key in (K_UP, K_w):

248. moveUp = False

249. elif event.key in (K_DOWN, K_s):

250. moveDown = False

If the player lets up on any of the arrow or WASD keys, then the code should set the move

variable for that direction to False. This will stop the squirrel from moving in that direction any

more.

252. elif event.key == K_ESCAPE:

253. terminate()

If the key that was pressed was the Esc key, then terminate the program.

Moving the Player, and Accounting for Bounce

255. if not gameOverMode:

256. # actually move the player

257. if moveLeft:

258. playerObj['x'] -= MOVERATE

259. if moveRight:

260. playerObj['x'] += MOVERATE

261. if moveUp:

262. playerObj['y'] -= MOVERATE

263. if moveDown:

264. playerObj['y'] += MOVERATE

The code inside the if statement on line 255 will move the player’s squirrel around only if the

game is not over. (This is why pressing on the arrow keys after the player’s squirrel dies will have

no effect.) Depending on which of the move variables is set to True, the playerObj dictionary

should have its playerObj['x'] and playerObj['y'] values changed by MOVERATE.

(This is why a larger value in MOVERATE makes the squirrel move faster.)

266. if (moveLeft or moveRight or moveUp or moveDown) or

playerObj['bounce'] != 0:

267. playerObj['bounce'] += 1

268.

269. if playerObj['bounce'] > BOUNCERATE:

270. playerObj['bounce'] = 0 # reset bounce amount

Chapter 8 – Squirrel Eat Squirrel 229

The value in playerObj['bounce'] keeps track of at what point in bouncing the player is

at. This variable stores an integer value from 0 to BOUNCERATE. Just like the bounce value for

the enemy squirrels, a playerObj['bounce'] value of 0 means the player squirrel is at the

start of a bounce and a value of BOUNCERATE means the player squirrel is at the end of the

bounce.

The player squirrel will bounce whenever the player is moving, or if the player has stopped

moving but the squirrel hasn’t finished its current bounce. This condition is captured in the if

statement on line 266. If any of the move variables is set to True or the current

playerObj['bounce'] is not 0 (which means the player is currently in a bounce), then the

variable should be incremented on line 267.

Because the playerObj['bounce'] variable should only be in the range of 0 to

BOUNCERATE, if incrementing it makes it larger than BOUNCERATE, it should be reset back to

0.

Collision Detection: Eat or Be Eaten

272. # check if the player has collided with any squirrels

273. for i in range(len(squirrelObjs)-1, -1, -1):

274. sqObj = squirrelObjs[i]

The for loop on 273 will go run code on each of the enemy squirrel game objects in

squirrelObjs. Notice that the parameters to range() on line 273 start at the last index of

squirrelObjs and decrement. This is because the code inside this for loop may end up

deleting some of these enemy squirrel game objects (if the player’s squirrel ends up eating them),

so it is important to iterate from the end down to the front. The reason why was explained

previously in the ―When Deleting Items in a List, Iterate Over the List in Reverse‖ section.

275. if 'rect' in sqObj and

playerObj['rect'].colliderect(sqObj['rect']):

276. # a player/squirrel collision has occurred

277.

278. if sqObj['width'] * sqObj['height'] <=

playerObj['size']**2:

279. # player is larger and eats the squirrel

280. playerObj['size'] += int((sqObj['width'] *

sqObj['height'])**0.2) + 1

281. del squirrelObjs[i]

If the player’s squirrel is equal or larger than the size of the enemy squirrel it has collided with,

then the player’s squirrel will eat that squirrel and grow. The number that is added to the 'size'

230 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

key in the player object (that is, the growth) is calculated based on the enemy squirrel’s size on

line 280. Here’s a graph showing the growth from different sized squirrels. Notice that larger

squirrels cause more growth:

So, according to the chart, eating a squirrel that has a width and height of 45 (that is, an area of

1600 pixels) would cause the player to grow 5 pixels wider and taller.

Line 281 deletes the eaten squirrel object from the squirrelObjs list so that it will no longer

appear on the screen or have its position updated.

283. if playerObj['facing'] == LEFT:

284. playerObj['surface'] =

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size']))

285. if playerObj['facing'] == RIGHT:

286. playerObj['surface'] =

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size']))

The player’s squirrel image needs to be updated now that the squirrel is larger. This can be done

by passing the original squirrel image in L_SQUIR_IMG or R_SQUIR_IMG to the

pygame.transform.scale() function, which will return an enlarged version of the image.

Depending on whether playerObj['facing'] is equal to LEFT or RIGHT determines

which original squirrel image we pass to the function.

288. if playerObj['size'] > WINSIZE:

289. winMode = True # turn on "win mode"

0

1

2

3

4

5

6

7

8

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

G
ro

w
th

Size of Eaten Squirrel (width & height)

int((sqObj['width'] * sqObj['height'])**0.2) + 1

Chapter 8 – Squirrel Eat Squirrel 231

The way the player wins the game is by getting the squirrel to have a size larger than the integer

stored in the WINSIZE constant variable. If this is true, then the winMode variable is set to

True. Code in the other parts of this function will handle displaying the congratulations text and

checking for the player to press the R key to restart the game.

291. elif not invulnerableMode:

292. # player is smaller and takes damage

293. invulnerableMode = True

294. invulnerableStartTime = time.time()

295. playerObj['health'] -= 1

296. if playerObj['health'] == 0:

297. gameOverMode = True # turn on "game over mode"

298. gameOverStartTime = time.time()

If the player’s area was not equal to or larger than the area of the enemy squirrel, and

invulnerableMode was not set to True, then the player will take damage from colliding

with this larger squirrel.

To prevent the player from being damaged several times by the same squirrel immediately, we

will briefly make the player invulnerable to further squirrel attacks by setting

invulnerableMode to True on line 293. Line 294 will set invulnerableStartTime to

the current time (which is returned by time.time()) so that lines 133 and 134 can know when

to set invulnerableMode to False.

Line 295 decrements the player’s health by 1. Because there is a chance that the player’s health is

now at 0, line 296 checks for this and, if so, sets gameOverMode to True and

gameOverStartTime to the current time.

The Game Over Screen

299. else:

300. # game is over, show "game over" text

301. DISPLAYSURF.blit(gameOverSurf, gameOverRect)

302. if time.time() - gameOverStartTime > GAMEOVERTIME:

303. return # end the current game

When the player has died, the ―Game Over‖ text (which is on the Surface object in the

gameOverSurf variable) will be shown on the screen for the number of seconds that is in the

GAMEOVERTIME constant. Once this amount of time has elapsed, then the runGame() function

will return.

232 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

This lets the enemy squirrels continue to be animated and moving around for a few seconds after

the player dies and before the next game starts. The ―game over screen‖ in Squirrel Eat Squirrel

does not wait until the player presses a key before a new game starts.

Winning

305. # check if the player has won.

306. if winMode:

307. DISPLAYSURF.blit(winSurf, winRect)

308. DISPLAYSURF.blit(winSurf2, winRect2)

309.

310. pygame.display.update()

311. FPSCLOCK.tick(FPS)

The winMode variable is set to True on line 289 if the player has reached a certain size (which

is dictated by the WINSIZE constant). All that happens when the player has won is that the ―You

have achieved OMEGA SQUIRREL!‖ text (which is on the Surface object stored in the

winSurf variable) and the ―(Press ―r‖ to restart.)‖ text (which is on the Surface object stored in

the winSurf2 variable) appears on the screen. The game continues until the user presses the R

key, at which point the program execution will return from runGame(). The event handling

code for the R key is done on lines 238 and 239.

Drawing a Graphical Health Meter

316. def drawHealthMeter(currentHealth):

317. for i in range(currentHealth): # draw red health bars

318. pygame.draw.rect(DISPLAYSURF, RED, (15, 5 + (10 * MAXHEALTH) - i

* 10, 20, 10))

319. for i in range(MAXHEALTH): # draw the white outlines

320. pygame.draw.rect(DISPLAYSURF, WHITE, (15, 5 + (10 * MAXHEALTH) - i

* 10, 20, 10), 1)

To draw the health meter, first the for loop on line 317 draws the filled-in red rectangle for the

amount of health the player has. Then the for loop on line 319 draws an unfilled white rectangle

for all of the possible health the player could have (which is the integer value stored in the

MAXHEALTH constant). Note that the pygame.display.update() function is not called in

drawHealthMeter().

The Same Old terminate() Function

323. def terminate():

324. pygame.quit()

325. sys.exit()

Chapter 8 – Squirrel Eat Squirrel 233

The terminate() function works the same as in the previous game programs.

The Mathematics of the Sine Function

328. def getBounceAmount(currentBounce, bounceRate, bounceHeight):

329. # Returns the number of pixels to offset based on the bounce.

330. # Larger bounceRate means a slower bounce.

331. # Larger bounceHeight means a higher bounce.

332. # currentBounce will always be less than bounceRate

333. return int(math.sin((math.pi / float(bounceRate)) * currentBounce) *

bounceHeight)

334.

There is a mathematical function (which is similar to functions in programming in that they both

―return‖ or ―evaluate‖ to a number based on their parameters) called sine (pronounced like ―sign‖

and often abbreviated as ―sin‖). You may have learned about it in math class, but if you haven’t it

will be explained here. Python has this mathematic function as a Python function in the math

module. You can pass an int or float value to math.sin(), and it will return a float value that is

called the ―sine value‖

In the interactive shell, let’s see what math.sin() returns for some values:

>>> import math

>>> math.sin(1)

0.8414709848078965

>>> math.sin(2)

0.90929742682568171

>>> math.sin(3)

0.14112000805986721

>>> math.sin(4)

-0.7568024953079282

>>> math.sin(5)

-0.95892427466313845

It seems really hard to predict what value math.sin() is going to return based on what value

we pass it (which might make you wonder what math.sin() is useful for). But if we graph the

sine values of the integers 1 through 10 on a graph, we would get this:

234 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

You can kind of see a wavy pattern in the values returned by math.sin(). If you figure out the

sine values for more numbers besides integers (for example, 1.5 and 2.5 and so on) and then

connect the dots with lines, you can see this wavy pattern more easily:

In fact, if you kept adding more and more data points to this graph, you would see that the sine

wave looks like this:

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12

m
at

h
.s

in
(a

rg
)

arg

Values Returned by math.sin()

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

m
at

h
.s

in
(a

rg
)

arg

Values Returned by math.sin()

Chapter 8 – Squirrel Eat Squirrel 235

Notice that math.sin(0) returns 0, then gradually increases until math.sin(3.14 / 2)

returns 1, then it begins to decrease until math.sin(3.14) returns 0. The number 3.14 is a

special number in mathematics called pi (pronounced the same as delicious ―pie‖). This value is

also stored in the constant variable pi in the math module (which is why line 333 uses the

variable, math.pi), which is technically the float value 3.1415926535897931. Since we

want a wavy-looking bounce for our squirrel, we’ll only pay attention to the return values of

math.sin() for the arguments 0 to 3.14:

Let’s take a look at the return value of getBounceAmount() and figure out what it does

exactly.

333. return int(math.sin((math.pi / float(bounceRate)) * currentBounce) *

bounceHeight)

Remember that on line 21 we set the BOUNCERATE constant to 6. This means that our code will

only increment playerObj['bounce'] from 0 to 6 and that we want to split up the range of

floating-point values from 0 to 3.14 into 6 parts, which we can do with simple division: 3.14

/ 6 = 0.5235. Each of the 6 equal parts of the 3.14 length on the graph for the ―sine wave

bounce‖ is 0.5235.

You can see that when playerObj['bounce'] is at 3 (halfway between 0 and 6), the value

passed to the math.sin() call is math.pi / 6 * 3, which is 1.5707 (halfway between 0

and 3.1415). Then math.sin(1.5707) will return 1.0, which is the highest part of the sine

wave (and the highest part of the sine wave happens half way through the wave).

0

0.2

0.4

0.6

0.8

1

1.2

0

0
.1

2

0
.2

4

0
.3

6

0
.4

8

0
.6

0
.7

2

0
.8

4

0
.9

6

1
.0

8

1
.2

1
.3

2

1
.4

4

1
.5

6

1
.6

8

1
.8

1
.9

2

2
.0

4

2
.1

6

2
.2

8

2
.4

2
.5

2

2
.6

4

2
.7

6

2
.8

8 3

3
.1

4

m
at

h
.s

in
(a

rg
)

arg

Values Returned by math.sin()

236 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

As playerObj['bounce'] gets its value incremented, the getBounceAmount() function

will return values that have the same bounce shape that the sine wave has from 0 to 3.14. If you

want to make the bounce higher, than increase the BOUNCEHEIGHT constant. If you want to

make the bounce slower, than increase the BOUNCERATE constant.

The sine function is a concept from trigonometry mathematics. If you’d like to learn more about

the sine wave, the Wikipedia page has detailed information: http://en.wikipedia.org/wiki/Sine

Backwards Compatibility with Python Version 2
The reason we call float() to convert bounceRate to a floating point number is simply so

that this program will work in Python version 2. In Python version 3, the division operator will

evaluate to a floating point value even if both of the operands are integers, like this:

>>> # Python version 3

...

>>> 10 / 5

2.0

>>> 10 / 4

2.5

>>>

However, in Python version 2, the / division operator will only evaluate to a floating point value

if one of the operands is also a floating point value. If both operands are integers, then Python 2’s

division operator will evaluate to an integer value (rounding down if needed), like this:

>>> # Python version 2

...

>>> 10 / 5

2

>>> 10 / 4

2

>>> 10 / 4.0

2.5

>>> 10.0 / 4

2.5

>>> 10.0 / 4.0

2.5

But if we always convert one of the values to a floating point value with the float() function,

then the division operator will evaluate to a float value no matter which version of Python runs

this source code. Making these changes so that our code works with older versions of software is

called backwards compatibility. It is important to maintain backwards compatibility, because

Chapter 8 – Squirrel Eat Squirrel 237

not everyone will always be running the latest version of software and you want to ensure that the

code you write works with as many computers as possible.

You can’t always make your Python 3 code backwards compatible with Python 2, but if it’s

possible then you should do it. Otherwise, when people with Python 2 try to run your games will

get error messages and think that your program is buggy.

A list of some differences between Python 2 and Python 3 can be found at

http://inventwithpython.com/appendixa.html.

The getRandomVelocity() Function

335. def getRandomVelocity():

336. speed = random.randint(SQUIRRELMINSPEED, SQUIRRELMAXSPEED)

337. if random.randint(0, 1) == 0:

338. return speed

339. else:

340. return -speed

The getRandomVelocity() function is used to randomly determine how fast an enemy

squirrel will move. The range of this velocity is set in the SQUIRRELMINSPEED and

SQUIRRELMAXSPEED constants, but on top of that, the speed is either negative (indicating the

squirrel goes to the left or up) or positive (indicating the squirrel goes to the right or down). There

is a fifty-fifty chance for the random speed to be positive or negative.

Finding a Place to Add New Squirrels and Grass

343. def getRandomOffCameraPos(camerax, cameray, objWidth, objHeight):

344. # create a Rect of the camera view

345. cameraRect = pygame.Rect(camerax, cameray, WINWIDTH, WINHEIGHT)

346. while True:

347. x = random.randint(camerax - WINWIDTH, camerax + (2 * WINWIDTH))

348. y = random.randint(cameray - WINHEIGHT, cameray + (2 * WINHEIGHT))

349. # create a Rect object with the random coordinates and use

colliderect()

350. # to make sure the right edge isn't in the camera view.

351. objRect = pygame.Rect(x, y, objWidth, objHeight)

352. if not objRect.colliderect(cameraRect):

353. return x, y

When a new squirrel or grass object is created in the game world, we want it to be within the

active area (so that it is near the player’s squirrel) but not within the view of the camera (so that it

doesn’t just suddenly pop into existence on the screen). To do this, we create a Rect object that

238 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

represents the area of the camera (using camerax, cameray, WINWIDTH, and WINHEIGHT

constants).

Next, we randomly generate numbers for the XY coordinates that would be within the active area.

The active area’s left and top edge are WINWIDTH and WINHEIGHT pixels to the left and up of

camerax and cameray. So the active area’s left and top edge are at camerax - WINWIDTH

and cameray - WINHEIGHT. The active area’s width and height are also three times the size

of the WINWIDTH and WINHEIGHT, as you can see in this image (where WINWIDTH is set to

640 pixels and WINHEIGHT set to 480 pixels):

This means the right and bottom edges will be at camerax + (2 * WINWIDTH) and

cameray + (2 * WINHEIGHT). Line 352 will check if the random XY coordinates would

collide with the camera view’s Rect object. If not, then those coordinates are returned. If so, then

the while loop on line 346 will keep generating new coordinates until it finds acceptable ones.

Creating Enemy Squirrel Data Structures

356. def makeNewSquirrel(camerax, cameray):

357. sq = {}

358. generalSize = random.randint(5, 25)

359. multiplier = random.randint(1, 3)

360. sq['width'] = (generalSize + random.randint(0, 10)) * multiplier

361. sq['height'] = (generalSize + random.randint(0, 10)) * multiplier

362. sq['x'], sq['y'] = getRandomOffCameraPos(camerax, cameray,

sq['width'], sq['height'])

363. sq['movex'] = getRandomVelocity()

364. sq['movey'] = getRandomVelocity()

Creating enemy squirrel game objects is similar to making the grass game objects. The data for

each enemy squirrel is also stored in a dictionary. The width and height are set to random sizes on

line 360 and 361. The generalSize variable is used so that the width and height of each

Chapter 8 – Squirrel Eat Squirrel 239

squirrel aren’t too different from each other. Otherwise, using completely random numbers for

width and height could give us very tall and skinny squirrels or very short and wide squirrels. The

width and height of the squirrel are this general size with a random number from 0 to 10 added to

it (for slight variation), and then multiplied by the multiplier variable.

The original XY coordinate position of the squirrel will be a random location that the camera

cannot see, to prevent the squirrels from just ―popping‖ into existence on the screen.

The speed and direction are also randomly selected by the getRandomVelocity() function.

Flipping the Squirrel Image

365. if sq['movex'] < 0: # squirrel is facing left

366. sq['surface'] = pygame.transform.scale(L_SQUIR_IMG, (sq['width'],

sq['height']))

367. else: # squirrel is facing right

368. sq['surface'] = pygame.transform.scale(R_SQUIR_IMG, (sq['width'],

sq['height']))

369. sq['bounce'] = 0

370. sq['bouncerate'] = random.randint(10, 18)

371. sq['bounceheight'] = random.randint(10, 50)

372. return sq

The L_SQUIR_IMG and R_SQUIR_IMG constants contain Surface objects with left-facing and

right-facing squirrel images on them. New Surface objects will be made using the

pygame.transform.scale() function to match the squirrel’s width and height (stored in

sq['width'] and sq['height'] respectively).

After that, the three bounce-related values are randomly generated (except for sq['bounce']

which is 0 because the squirrel always starts at the beginning of the bounce) and the dictionary is

returned on line 372.

Creating Grass Data Structures

375. def makeNewGrass(camerax, cameray):

376. gr = {}

377. gr['grassImage'] = random.randint(0, len(GRASSIMAGES) - 1)

378. gr['width'] = GRASSIMAGES[0].get_width()

379. gr['height'] = GRASSIMAGES[0].get_height()

380. gr['x'], gr['y'] = getRandomOffCameraPos(camerax, cameray,

gr['width'], gr['height'])

381. gr['rect'] = pygame.Rect((gr['x'], gr['y'], gr['width'],

gr['height']))

382. return gr

240 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The grass game objects are dictionaries with the usual 'x', 'y', 'width', 'height', and

'rect' keys but also a 'grassImage' key which is a number from 0 to one less than the

length of the GRASSIMAGES list. This number will determine what image the grass game object

has. For example, if the value of the grass object’s 'grassImage' key is 3, then it will use the

Surface object stored at GRASSIMAGES[3] for its image.

Checking if Outside the Active Area

385. def isOutsideActiveArea(camerax, cameray, obj):

386. # Return False if camerax and cameray are more than

387. # a half-window length beyond the edge of the window.

388. boundsLeftEdge = camerax - WINWIDTH

389. boundsTopEdge = cameray - WINHEIGHT

390. boundsRect = pygame.Rect(boundsLeftEdge, boundsTopEdge, WINWIDTH * 3,

WINHEIGHT * 3)

391. objRect = pygame.Rect(obj['x'], obj['y'], obj['width'], obj['height'])

392. return not boundsRect.colliderect(objRect)

The isOutsideActiveArea() will return True if the object you pass it is outside of the

―active area‖ that is dictated by the camerax and cameray parameters. Remember that the

active area is an area around the camera view the size of the camera view (which has a width and

height set by WINWIDTH and WINHEIGHT), like this:

We can create a Rect object that represents the active area by passing camerax - WINWIDTH

for the left edge value and cameray - WINHEIGHT for the top edge value, and then

WINWIDTH * 3 and WINHEIGHT * 3 for the width and height. Once we have the active area

represented as a Rect object, we can use the colliderect() method to determine if the object

in the obj parameter is collides with (that is, is inside of) the active area Rect object.

Chapter 8 – Squirrel Eat Squirrel 241

Since the player squirrel, enemy squirrel and grass objects all have 'x', 'y', 'width' and

'height' keys, the isOutsideActiveArea() code can work with any type of those game

objects.

395. if __name__ == '__main__':

396. main()

Finally, after all the functions have been defined, the program will run the main() function and

start the game.

Summary
Squirrel Eat Squirrel was our first game to have multiple enemies moving around the board at

once. The key to having several enemies was using a dictionary value with identical keys for each

enemy squirrel, so that the same code could be run on each of them during an iteration through

the game loop.

The concept of the camera was also introduced. Cameras weren’t needed for our previous games

because the entire game world fit onto one screen. However, when you make your own games

that involve a player moving around a large game world, you will need code to handle converting

between the game world’s coordinate system and the screen’s pixel coordinate system.

Finally, the mathematical sine function was introduced to give realistic squirrel hops (no matter

how tall or long each hop was). You don’t need to know a lot of math to do programming. In

most cases, just knowing addition, multiplication, and negative numbers is fine. However, if you

study mathematics, you’ll often find several uses for math to make your games cooler.

For additional programming practice, you can download buggy versions of Squirrel Eat Squirrel

from http://invpy.com/buggy/squirrel and try to figure out how to fix the bugs.

242 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

CHAPTER 9 – STAR PUSHER

How to Play Star Pusher
Star Pusher is a Sokoban or ―Box Pusher‖ clone. The player is in a room with several stars. There

are star marks on the grounds of some of the tile sprites in the room. The player must figure out

how to push the stars on top of the tiles with star marks. The player cannot push a star if there is a

wall or another star behind it. The player cannot pull stars, so if a star gets pushed into a corner,

the player will have to restart the level. When all of the stars have been pushed onto star-marked

floor tiles, the level is complete and the next level starts.

Each level is made up of a 2D grid of tile images. Tile sprites are images of the same size that

can be placed next to each other to form more complex images. With a few floor and wall tiles,

we can create levels of many interesting shapes and sizes.

The level files are not included in the source code. Instead, you can either create the level files

yourself or download them. A level file with 201 levels can be downloaded from

http://invpy.com/starPusherLevels.txt. When you run the Star Pusher program, make sure that this

level file is in the same folder as the starpusher.py file. Otherwise you will get this error message:

AssertionError: Cannot find the level file: starPusherLevels.txt

The level designs were originally made David W. Skinner. You can download more puzzles from

his website at http://users.bentonrea.com/~sasquatch/sokoban/.

Source Code to Star Pusher
This source code can be downloaded from http://invpy.com/starpusher.py. If you get any error

messages, look at the line number that is mentioned in the error message and check your code for

any typos. You can also copy and paste your code into the web form at

Chapter 9 – Star Pusher 243

http://invpy.com/diff/starpusher to see if the differences between your code and the code in the

book.

The level file can be downloaded from http://invpy.com/starPusherLevels.txt. The tiles can be

downloaded from http://invpy.com/starPusherImages.zip.

Also, just like the squirrel, grass, and enemy ―objects‖ in the Squirrel Eat Squirrel game, when I

say ―map objects‖, ―game state objects‖, or ―level objects‖ in this chapter, I do not mean objects

in the Object-Oriented Programming sense. These ―objects‖ are really just dictionary values, but

it is easier to refer to them as objects since they represent things in the game world.

 1. # Star Pusher (a Sokoban clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, copy, os, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30 # frames per second to update the screen

 10. WINWIDTH = 800 # width of the program's window, in pixels

 11. WINHEIGHT = 600 # height in pixels

 12. HALF_WINWIDTH = int(WINWIDTH / 2)

 13. HALF_WINHEIGHT = int(WINHEIGHT / 2)

 14.

 15. # The total width and height of each tile in pixels.

 16. TILEWIDTH = 50

 17. TILEHEIGHT = 85

 18. TILEFLOORHEIGHT = 45

 19.

 20. CAM_MOVE_SPEED = 5 # how many pixels per frame the camera moves

 21.

 22. # The percentage of outdoor tiles that have additional

 23. # decoration on them, such as a tree or rock.

 24. OUTSIDE_DECORATION_PCT = 20

 25.

 26. BRIGHTBLUE = (0, 170, 255)

 27. WHITE = (255, 255, 255)

 28. BGCOLOR = BRIGHTBLUE

 29. TEXTCOLOR = WHITE

 30.

 31. UP = 'up'

 32. DOWN = 'down'

 33. LEFT = 'left'

 34. RIGHT = 'right'

244 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 35.

 36.

 37. def main():

 38. global FPSCLOCK, DISPLAYSURF, IMAGESDICT, TILEMAPPING,

OUTSIDEDECOMAPPING, BASICFONT, PLAYERIMAGES, currentImage

 39.

 40. # Pygame initialization and basic set up of the global variables.

 41. pygame.init()

 42. FPSCLOCK = pygame.time.Clock()

 43.

 44. # Because the Surface object stored in DISPLAYSURF was returned

 45. # from the pygame.display.set_mode() function, this is the

 46. # Surface object that is drawn to the actual computer screen

 47. # when pygame.display.update() is called.

 48. DISPLAYSURF = pygame.display.set_mode((WINWIDTH, WINHEIGHT))

 49.

 50. pygame.display.set_caption('Star Pusher')

 51. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

 52.

 53. # A global dict value that will contain all the Pygame

 54. # Surface objects returned by pygame.image.load().

 55. IMAGESDICT = {'uncovered goal': pygame.image.load('RedSelector.png'),

 56. 'covered goal': pygame.image.load('Selector.png'),

 57. 'star': pygame.image.load('Star.png'),

 58. 'corner': pygame.image.load('Wall Block Tall.png'),

 59. 'wall': pygame.image.load('Wood Block Tall.png'),

 60. 'inside floor': pygame.image.load('Plain Block.png'),

 61. 'outside floor': pygame.image.load('Grass Block.png'),

 62. 'title': pygame.image.load('star_title.png'),

 63. 'solved': pygame.image.load('star_solved.png'),

 64. 'princess': pygame.image.load('princess.png'),

 65. 'boy': pygame.image.load('boy.png'),

 66. 'catgirl': pygame.image.load('catgirl.png'),

 67. 'horngirl': pygame.image.load('horngirl.png'),

 68. 'pinkgirl': pygame.image.load('pinkgirl.png'),

 69. 'rock': pygame.image.load('Rock.png'),

 70. 'short tree': pygame.image.load('Tree_Short.png'),

 71. 'tall tree': pygame.image.load('Tree_Tall.png'),

 72. 'ugly tree': pygame.image.load('Tree_Ugly.png')}

 73.

 74. # These dict values are global, and map the character that appears

 75. # in the level file to the Surface object it represents.

 76. TILEMAPPING = {'x': IMAGESDICT['corner'],

 77. '#': IMAGESDICT['wall'],

 78. 'o': IMAGESDICT['inside floor'],

 79. ' ': IMAGESDICT['outside floor']}

Chapter 9 – Star Pusher 245

 80. OUTSIDEDECOMAPPING = {'1': IMAGESDICT['rock'],

 81. '2': IMAGESDICT['short tree'],

 82. '3': IMAGESDICT['tall tree'],

 83. '4': IMAGESDICT['ugly tree']}

 84.

 85. # PLAYERIMAGES is a list of all possible characters the player can be.

 86. # currentImage is the index of the player's current player image.

 87. currentImage = 0

 88. PLAYERIMAGES = [IMAGESDICT['princess'],

 89. IMAGESDICT['boy'],

 90. IMAGESDICT['catgirl'],

 91. IMAGESDICT['horngirl'],

 92. IMAGESDICT['pinkgirl']]

 93.

 94. startScreen() # show the title screen until the user presses a key

 95.

 96. # Read in the levels from the text file. See the readLevelsFile() for

 97. # details on the format of this file and how to make your own levels.

 98. levels = readLevelsFile('starPusherLevels.txt')

 99. currentLevelIndex = 0

100.

101. # The main game loop. This loop runs a single level, when the user

102. # finishes that level, the next/previous level is loaded.

103. while True: # main game loop

104. # Run the level to actually start playing the game:

105. result = runLevel(levels, currentLevelIndex)

106.

107. if result in ('solved', 'next'):

108. # Go to the next level.

109. currentLevelIndex += 1

110. if currentLevelIndex >= len(levels):

111. # If there are no more levels, go back to the first one.

112. currentLevelIndex = 0

113. elif result == 'back':

114. # Go to the previous level.

115. currentLevelIndex -= 1

116. if currentLevelIndex < 0:

117. # If there are no previous levels, go to the last one.

118. currentLevelIndex = len(levels)-1

119. elif result == 'reset':

120. pass # Do nothing. Loop re-calls runLevel() to reset the level

121.

122.

123. def runLevel(levels, levelNum):

124. global currentImage

125. levelObj = levels[levelnum]

246 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

126. mapObj = decorateMap(levelObj['mapObj'],

levelObj['startState']['player'])

127. gameStateObj = copy.deepcopy(levelObj['startState'])

128. mapNeedsRedraw = True # set to True to call drawMap()

129. levelSurf = BASICFONT.render('Level %s of %s' % (levelObj['levelNum']

+ 1, totalNumOfLevels), 1, TEXTCOLOR)

130. levelRect = levelSurf.get_rect()

131. levelRect.bottomleft = (20, WINHEIGHT - 35)

132. mapWidth = len(mapObj) * TILEWIDTH

133. mapHeight = (len(mapObj[0]) - 1) * (TILEHEIGHT - TILEFLOORHEIGHT) +

TILEHEIGHT

134. MAX_CAM_X_PAN = abs(HALF_WINHEIGHT - int(mapHeight / 2)) + TILEWIDTH

135. MAX_CAM_Y_PAN = abs(HALF_WINWIDTH - int(mapWidth / 2)) + TILEHEIGHT

136.

137. levelIsComplete = False

138. # Track how much the camera has moved:

139. cameraOffsetX = 0

140. cameraOffsetY = 0

141. # Track if the keys to move the camera are being held down:

142. cameraUp = False

143. cameraDown = False

144. cameraLeft = False

145. cameraRight = False

146.

147. while True: # main game loop

148. # Reset these variables:

149. playerMoveTo = None

150. keyPressed = False

151.

152. for event in pygame.event.get(): # event handling loop

153. if event.type == QUIT:

154. # Player clicked the "X" at the corner of the window.

155. terminate()

156.

157. elif event.type == KEYDOWN:

158. # Handle key presses

159. keyPressed = True

160. if event.key == K_LEFT:

161. playerMoveTo = LEFT

162. elif event.key == K_RIGHT:

163. playerMoveTo = RIGHT

164. elif event.key == K_UP:

165. playerMoveTo = UP

166. elif event.key == K_DOWN:

167. playerMoveTo = DOWN

168.

Chapter 9 – Star Pusher 247

169. # Set the camera move mode.

170. elif event.key == K_a:

171. cameraLeft = True

172. elif event.key == K_d:

173. cameraRight = True

174. elif event.key == K_w:

175. cameraUp = True

176. elif event.key == K_s:

177. cameraDown = True

178.

179. elif event.key == K_n:

180. return 'next'

181. elif event.key == K_b:

182. return 'back'

183.

184. elif event.key == K_ESCAPE:

185. terminate() # Esc key quits.

186. elif event.key == K_BACKSPACE:

187. return 'reset' # Reset the level.

188. elif event.key == K_p:

189. # Change the player image to the next one.

190. currentImage += 1

191. if currentImage >= len(PLAYERIMAGES):

192. # After the last player image, use the first one.

193. currentImage = 0

194. mapNeedsRedraw = True

195.

196. elif event.type == KEYUP:

197. # Unset the camera move mode.

198. if event.key == K_a:

199. cameraLeft = False

200. elif event.key == K_d:

201. cameraRight = False

202. elif event.key == K_w:

203. cameraUp = False

204. elif event.key == K_s:

205. cameraDown = False

206.

207. if playerMoveTo != None and not levelIsComplete:

208. # If the player pushed a key to move, make the move

209. # (if possible) and push any stars that are pushable.

210. moved = makeMove(mapObj, gameStateObj, playerMoveTo)

211.

212. if moved:

213. # increment the step counter.

214. gameStateObj['stepCounter'] += 1

248 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

215. mapNeedsRedraw = True

216.

217. if isLevelFinished(levelObj, gameStateObj):

218. # level is solved, we should show the "Solved!" image.

219. levelIsComplete = True

220. keyPressed = False

221.

222. DISPLAYSURF.fill(BGCOLOR)

223.

224. if mapNeedsRedraw:

225. mapSurf = drawMap(mapObj, gameStateObj, levelObj['goals'])

226. mapNeedsRedraw = False

227.

228. if cameraUp and cameraOffsetY < MAX_CAM_X_PAN:

229. cameraOffsetY += CAM_MOVE_SPEED

230. elif cameraDown and cameraOffsetY > -MAX_CAM_X_PAN:

231. cameraOffsetY -= CAM_MOVE_SPEED

232. if cameraLeft and cameraOffsetX < MAX_CAM_Y_PAN:

233. cameraOffsetX += CAM_MOVE_SPEED

234. elif cameraRight and cameraOffsetX > -MAX_CAM_Y_PAN:

235. cameraOffsetX -= CAM_MOVE_SPEED

236.

237. # Adjust mapSurf's Rect object based on the camera offset.

238. mapSurfRect = mapSurf.get_rect()

239. mapSurfRect.center = (HALF_WINWIDTH + cameraOffsetX,

HALF_WINHEIGHT + cameraOffsetY)

240.

241. # Draw mapSurf to the DISPLAYSURF Surface object.

242. DISPLAYSURF.blit(mapSurf, mapSurfRect)

243.

244. DISPLAYSURF.blit(levelSurf, levelRect)

245. stepSurf = BASICFONT.render('Steps: %s' %

(gameStateObj['stepCounter']), 1, TEXTCOLOR)

246. stepRect = stepSurf.get_rect()

247. stepRect.bottomleft = (20, WINHEIGHT - 10)

248. DISPLAYSURF.blit(stepSurf, stepRect)

249.

250. if levelIsComplete:

251. # is solved, show the "Solved!" image until the player

252. # has pressed a key.

253. solvedRect = IMAGESDICT['solved'].get_rect()

254. solvedRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

255. DISPLAYSURF.blit(IMAGESDICT['solved'], solvedRect)

256.

257. if keyPressed:

258. return 'solved'

Chapter 9 – Star Pusher 249

259.

260. pygame.display.update() # draw DISPLAYSURF to the screen.

261. FPSCLOCK.tick()

262.

263.

274. def decorateMap(mapObj, startxy):

275. """Makes a copy of the given map object and modifies it.

276. Here is what is done to it:

277. * Walls that are corners are turned into corner pieces.

278. * The outside/inside floor tile distinction is made.

279. * Tree/rock decorations are randomly added to the outside tiles.

280.

281. Returns the decorated map object."""

282.

283. startx, starty = startxy # Syntactic sugar

284.

285. # Copy the map object so we don't modify the original passed

286. mapObjCopy = copy.deepcopy(mapObj)

287.

288. # Remove the non-wall characters from the map data

289. for x in range(len(mapObjCopy)):

290. for y in range(len(mapObjCopy[0])):

291. if mapObjCopy[x][y] in ('$', '.', '@', '+', '*'):

292. mapObjCopy[x][y] = ' '

293.

294. # Flood fill to determine inside/outside floor tiles.

295. floodFill(mapObjCopy, startx, starty, ' ', 'o')

296.

297. # Convert the adjoined walls into corner tiles.

298. for x in range(len(mapObjCopy)):

299. for y in range(len(mapObjCopy[0])):

300.

301. if mapObjCopy[x][y] == '#':

302. if (isWall(mapObjCopy, x, y-1) and isWall(mapObjCopy, x+1,

y)) or \

303. (isWall(mapObjCopy, x+1, y) and isWall(mapObjCopy, x,

y+1)) or \

304. (isWall(mapObjCopy, x, y+1) and isWall(mapObjCopy, x-1,

y)) or \

305. (isWall(mapObjCopy, x-1, y) and isWall(mapObjCopy, x,

y-1)):

306. mapObjCopy[x][y] = 'x'

307.

308. elif mapObjCopy[x][y] == ' ' and random.randint(0, 99) <

OUTSIDE_DECORATION_PCT:

250 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

309. mapObjCopy[x][y] =

random.choice(list(OUTSIDEDECOMAPPING.keys()))

310.

311. return mapObjCopy

312.

313.

314. def isBlocked(mapObj, gameStateObj, x, y):

315. """Returns True if the (x, y) position on the map is

316. blocked by a wall or star, otherwise return False."""

317.

318. if isWall(mapObj, x, y):

319. return True

320.

321. elif x < 0 or x >= len(mapObj) or y < 0 or y >= len(mapObj[x]):

322. return True # x and y aren't actually on the map.

323.

324. elif (x, y) in gameStateObj['stars']:

325. return True # a star is blocking

326.

327. return False

328.

329.

330. def makeMove(mapObj, gameStateObj, playerMoveTo):

331. """Given a map and game state object, see if it is possible for the

332. player to make the given move. If it is, then change the player's

333. position (and the position of any pushed star). If not, do nothing.

334.

335. Returns True if the player moved, otherwise False."""

336.

337. # Make sure the player can move in the direction they want.

338. playerx, playery = gameStateObj['player']

339.

340. # This variable is "syntactic sugar". Typing "stars" is more

341. # readable than typing "gameStateObj['stars']" in our code.

342. stars = gameStateObj['stars']

343.

344. # The code for handling each of the directions is so similar aside

345. # from adding or subtracting 1 to the x/y coordinates. We can

346. # simplify it by using the xOffset and yOffset variables.

347. if playerMoveTo == UP:

348. xOffset = 0

349. yOffset = -1

350. elif playerMoveTo == RIGHT:

351. xOffset = 1

352. yOffset = 0

353. elif playerMoveTo == DOWN:

Chapter 9 – Star Pusher 251

354. xOffset = 0

355. yOffset = 1

356. elif playerMoveTo == LEFT:

357. xOffset = -1

358. yOffset = 0

359.

360. # See if the player can move in that direction.

361. if isWall(mapObj, playerx + xOffset, playery + yOffset):

362. return False

363. else:

364. if (playerx + xOffset, playery + yOffset) in stars:

365. # There is a star in the way, see if the player can push it.

366. if not isBlocked(mapObj, gameStateObj, playerx + (xOffset*2),

playery + (yOffset*2)):

367. # Move the star.

368. ind = stars.index((playerx + xOffset, playery + yOffset))

369. stars[ind] = (stars[ind][0] + xOffset, stars[ind][1] +

yOffset)

370. else:

371. return False

372. # Move the player upwards.

373. gameStateObj['player'] = (playerx + xOffset, playery + yOffset)

374. return True

375.

376.

377. def startScreen():

378. """Display the start screen (which has the title and instructions)

379. until the player presses a key. Returns None."""

380.

381. # Position the title image.

382. titleRect = IMAGESDICT['title'].get_rect()

383. topCoord = 50 # topCoord tracks where to position the top of the text

384. titleRect.top = topCoord

385. titleRect.centerx = HALF_WINWIDTH

386. topCoord += titleRect.height

387.

388. # Unfortunately, Pygame's font & text system only shows one line at

389. # a time, so we can't use strings with \n newline characters in them.

390. # So we will use a list with each line in it.

391. instructionText = ['Push the stars over the marks.',

392. 'Arrow keys to move, WASD for camera control, P to

change character.',

393. 'Backspace to reset level, Esc to quit.',

394. 'N for next level, B to go back a level.']

395.

396. # Start with drawing a blank color to the entire window:

252 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

397. DISPLAYSURF.fill(BGCOLOR)

398.

399. # Draw the title image to the window:

400. DISPLAYSURF.blit(IMAGESDICT['title'], titleRect)

401.

402. # Position and draw the text.

403. for i in range(len(instructionText)):

404. instSurf = BASICFONT.render(instructionText[i], 1, TEXTCOLOR)

405. instRect = instSurf.get_rect()

406. topCoord += 10 # 10 pixels will go in between each line of text.

407. instRect.top = topCoord

408. instRect.centerx = HALF_WINWIDTH

409. topCoord += instRect.height # Adjust for the height of the line.

410. DISPLAYSURF.blit(instSurf, instRect)

411.

412. while True: # Main loop for the start screen.

413. for event in pygame.event.get():

414. if event.type == QUIT:

415. terminate()

416. elif event.type == KEYDOWN:

417. if event.key == K_ESCAPE:

418. terminate()

419. return # user has pressed a key, so return.

420.

421. # Display the DISPLAYSURF contents to the actual screen.

422. pygame.display.update()

423. FPSCLOCK.tick()

424.

425.

426. def readLevelsFile(filename):

427. assert os.path.exists(filename), 'Cannot find the level file: %s' %

(filename)

428. mapFile = open(filename, 'r')

429. # Each level must end with a blank line

430. content = mapFile.readlines() + ['\r\n']

431. mapFile.close()

432.

433. levels = [] # Will contain a list of level objects.

434. levelNum = 0

435. mapTextLines = [] # contains the lines for a single level's map.

436. mapObj = [] # the map object made from the data in mapTextLines

437. for lineNum in range(len(content)):

438. # Process each line that was in the level file.

439. line = content[lineNum].rstrip('\r\n')

440.

441. if ';' in line:

Chapter 9 – Star Pusher 253

442. # Ignore the ; lines, they're comments in the level file.

443. line = line[:line.find(';')]

444.

445. if line != '':

446. # This line is part of the map.

447. mapTextLines.append(line)

448. elif line == '' and len(mapTextLines) > 0:

449. # A blank line indicates the end of a level's map in the file.

450. # Convert the text in mapTextLines into a level object.

451.

452. # Find the longest row in the map.

453. maxWidth = -1

454. for i in range(len(mapTextLines)):

455. if len(mapTextLines[i]) > maxWidth:

456. maxWidth = len(mapTextLines[i])

457. # Add spaces to the ends of the shorter rows. This

458. # ensures the map will be rectangular.

459. for i in range(len(mapTextLines)):

460. mapTextLines[i] += ' ' * (maxWidth - len(mapTextLines[i]))

461.

462. # Convert mapTextLines to a map object.

463. for x in range(len(mapTextLines[0])):

464. mapObj.append([])

465. for y in range(len(mapTextLines)):

466. for x in range(maxWidth):

467. mapObj[x].append(mapTextLines[y][x])

468.

469. # Loop through the spaces in the map and find the @, ., and $

470. # characters for the starting game state.

471. startx = None # The x and y for the player's starting position

472. starty = None

473. goals = [] # list of (x, y) tuples for each goal.

474. stars = [] # list of (x, y) for each star's starting position.

475. for x in range(maxWidth):

476. for y in range(len(mapObj[x])):

477. if mapObj[x][y] in ('@', '+'):

478. # '@' is player, '+' is player & goal

479. startx = x

480. starty = y

481. if mapObj[x][y] in ('.', '+', '*'):

482. # '.' is goal, '*' is star & goal

483. goals.append((x, y))

484. if mapObj[x][y] in ('$', '*'):

485. # '$' is star

486. stars.append((x, y))

487.

254 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

488. # Basic level design sanity checks:

489. assert startx != None and starty != None, 'Level %s (around

line %s) in %s is missing a "@" or "+" to mark the start point.' % (levelNum+1,

lineNum, filename)

490. assert len(goals) > 0, 'Level %s (around line %s) in %s must

have at least one goal.' % (levelNum+1, lineNum, filename)

491. assert len(stars) >= len(goals), 'Level %s (around line %s) in

%s is impossible to solve. It has %s goals but only %s stars.' % (levelNum+1,

lineNum, filename, len(goals), len(stars))

492.

493. # Create level object and starting game state object.

494. gameStateObj = {'player': (startx, starty),

495. 'stepCounter': 0,

496. 'stars': stars}

497. levelObj = {'width': maxWidth,

498. 'height': len(mapObj),

499. 'mapObj': mapObj,

500. 'goals': goals,

501. 'startState': gameStateObj}

502.

503. levels.append(levelObj)

504.

505. # Reset the variables for reading the next map.

506. mapTextLines = []

507. mapObj = []

508. gameStateObj = {}

509. levelNum += 1

510. return levels

511.

512.

513. def floodFill(mapObj, x, y, oldCharacter, newCharacter):

514. """Changes any values matching oldCharacter on the map object to

515. newCharacter at the (x, y) position, and does the same for the

516. positions to the left, right, down, and up of (x, y), recursively."""

517.

518. # In this game, the flood fill algorithm creates the inside/outside

519. # floor distinction. This is a "recursive" function.

520. # For more info on the Flood Fill algorithm, see:

521. # http://en.wikipedia.org/wiki/Flood_fill

522. if mapObj[x][y] == oldCharacter:

523. mapObj[x][y] = newCharacter

524.

525. if x < len(mapObj) - 1 and mapObj[x+1][y] == oldCharacter:

526. floodFill(mapObj, x+1, y, oldCharacter, newCharacter) # call right

527. if x > 0 and mapObj[x-1][y] == oldCharacter:

Chapter 9 – Star Pusher 255

528. floodFill(mapObj, x-1, y, oldCharacter, newCharacter) # call left

529. if y < len(mapObj[x]) - 1 and mapObj[x][y+1] == oldCharacter:

530. floodFill(mapObj, x, y+1, oldCharacter, newCharacter) # call down

531. if y > 0 and mapObj[x][y-1] == oldCharacter:

532. floodFill(mapObj, x, y-1, oldCharacter, newCharacter) # call up

533.

534.

535. def drawMap(mapObj, gameStateObj, goals):

536. """Draws the map to a Surface object, including the player and

537. stars. This function does not call pygame.display.update(), nor

538. does it draw the "Level" and "Steps" text in the corner."""

539.

540. # mapSurf will be the single Surface object that the tiles are drawn

541. # on, so that it is easy to position the entire map on the DISPLAYSURF

542. # Surface object. First, the width and height must be calculated.

543. mapSurfWidth = len(mapObj) * TILEWIDTH

544. mapSurfHeight = (len(mapObj[0]) - 1) * (TILEHEIGHT - TILEFLOORHEIGHT)

+ TILEHEIGHT

545. mapSurf = pygame.Surface((mapSurfWidth, mapSurfHeight))

546. mapSurf.fill(BGCOLOR) # start with a blank color on the surface.

547.

548. # Draw the tile sprites onto this surface.

549. for x in range(len(mapObj)):

550. for y in range(len(mapObj[x])):

551. spaceRect = pygame.Rect((x * TILEWIDTH, y * (TILEHEIGHT -

TILEFLOORHEIGHT), TILEWIDTH, TILEHEIGHT))

552. if mapObj[x][y] in TILEMAPPING:

553. baseTile = TILEMAPPING[mapObj[x][y]]

554. elif mapObj[x][y] in OUTSIDEDECOMAPPING:

555. baseTile = TILEMAPPING[' ']

556.

557. # First draw the base ground/wall tile.

558. mapSurf.blit(baseTile, spaceRect)

559.

560. if mapObj[x][y] in OUTSIDEDECOMAPPING:

561. # Draw any tree/rock decorations that are on this tile.

562. mapSurf.blit(OUTSIDEDECOMAPPING[mapObj[x][y]], spaceRect)

563. elif (x, y) in gameStateObj['stars']:

564. if (x, y) in goals:

565. # A goal AND star are on this space, draw goal first.

566. mapSurf.blit(IMAGESDICT['covered goal'], spaceRect)

567. # Then draw the star sprite.

568. mapSurf.blit(IMAGESDICT['star'], spaceRect)

569. elif (x, y) in goals:

570. # Draw a goal without a star on it.

571. mapSurf.blit(IMAGESDICT['uncovered goal'], spaceRect)

256 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

572.

573. # Last draw the player on the board.

574. if (x, y) == gameStateObj['player']:

575. # Note: The value "currentImage" refers

576. # to a key in "PLAYERIMAGES" which has the

577. # specific player image we want to show.

578. mapSurf.blit(PLAYERIMAGES[currentImage], spaceRect)

579.

580. return mapSurf

581.

582.

583. def isLevelFinished(levelObj, gameStateObj):

584. """Returns True if all the goals have stars in them."""

585. for goal in levelObj['goals']:

586. if goal not in gameStateObj['stars']:

587. # Found a space with a goal but no star on it.

588. return False

589. return True

590.

591.

592. def terminate():

593. pygame.quit()

594. sys.exit()

595.

596.

597. if __name__ == '__main__':

598. main()

The Initial Setup

 1. # Star Pusher (a Sokoban clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Creative Commons BY-NC-SA 3.0 US

 5.

 6. import random, sys, copy, os, pygame

 7. from pygame.locals import *

 8.

 9. FPS = 30 # frames per second to update the screen

 10. WINWIDTH = 800 # width of the program's window, in pixels

 11. WINHEIGHT = 600 # height in pixels

 12. HALF_WINWIDTH = int(WINWIDTH / 2)

 13. HALF_WINHEIGHT = int(WINHEIGHT / 2)

 14.

 15. # The total width and height of each tile in pixels.

 16. TILEWIDTH = 50

Chapter 9 – Star Pusher 257

 17. TILEHEIGHT = 85

 18. TILEFLOORHEIGHT = 45

 19.

 20. CAM_MOVE_SPEED = 5 # how many pixels per frame the camera moves

 21.

 22. # The percentage of outdoor tiles that have additional

 23. # decoration on them, such as a tree or rock.

 24. OUTSIDE_DECORATION_PCT = 20

 25.

 26. BRIGHTBLUE = (0, 170, 255)

 27. WHITE = (255, 255, 255)

 28. BGCOLOR = BRIGHTBLUE

 29. TEXTCOLOR = WHITE

 30.

 31. UP = 'up'

 32. DOWN = 'down'

 33. LEFT = 'left'

 34. RIGHT = 'right'

These constants are used in various parts of the program. The TILEWIDTH and TILEHEIGHT

variables show that each of the tile images are 50 pixels wide and 85 pixels tall. However, these

tiles overlap with each other when drawn on the screen. (This is explained later.) The

TILEFLOORHEIGHT refers to the fact that the part of the tile that represents the floor is 45

pixels tall. Here is a diagram of the plain floor image:

The grassy tiles outside of the level’s room will sometimes have extra decorations added to them

(such as trees or rocks). The OUTSIDE_DECORATION_PCT constant shows what percentage of

these tiles will randomly have these decorations.

 37. def main():

 38. global FPSCLOCK, DISPLAYSURF, IMAGESDICT, TILEMAPPING,

OUTSIDEDECOMAPPING, BASICFONT, PLAYERIMAGES, currentImage

 39.

 40. # Pygame initialization and basic set up of the global variables.

 41. pygame.init()

 42. FPSCLOCK = pygame.time.Clock()

 43.

 44. # Because the Surface object stored in DISPLAYSURF was returned

258 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 45. # from the pygame.display.set_mode() function, this is the

 46. # Surface object that is drawn to the actual computer screen

 47. # when pygame.display.update() is called.

 48. DISPLAYSURF = pygame.display.set_mode((WINWIDTH, WINHEIGHT))

 49.

 50. pygame.display.set_caption('Star Pusher')

 51. BASICFONT = pygame.font.Font('freesansbold.ttf', 18)

This is the usual Pygame setup that happens at the beginning of the program.

 53. # A global dict value that will contain all the Pygame

 54. # Surface objects returned by pygame.image.load().

 55. IMAGESDICT = {'uncovered goal': pygame.image.load('RedSelector.png'),

 56. 'covered goal': pygame.image.load('Selector.png'),

 57. 'star': pygame.image.load('Star.png'),

 58. 'corner': pygame.image.load('Wall Block Tall.png'),

 59. 'wall': pygame.image.load('Wood Block Tall.png'),

 60. 'inside floor': pygame.image.load('Plain Block.png'),

 61. 'outside floor': pygame.image.load('Grass Block.png'),

 62. 'title': pygame.image.load('star_title.png'),

 63. 'solved': pygame.image.load('star_solved.png'),

 64. 'princess': pygame.image.load('princess.png'),

 65. 'boy': pygame.image.load('boy.png'),

 66. 'catgirl': pygame.image.load('catgirl.png'),

 67. 'horngirl': pygame.image.load('horngirl.png'),

 68. 'pinkgirl': pygame.image.load('pinkgirl.png'),

 69. 'rock': pygame.image.load('Rock.png'),

 70. 'short tree': pygame.image.load('Tree_Short.png'),

 71. 'tall tree': pygame.image.load('Tree_Tall.png'),

 72. 'ugly tree': pygame.image.load('Tree_Ugly.png')}

The IMAGESDICT is a dictionary where all of the loaded images are stored. This makes it easier

to use in other functions, since only the IMAGESDICT variable needs to be made global. If we

stored each of these images in separate variables, then all 18 variables (for the 18 images used in

this game) would need to be made global. A dictionary containing all of the Surface objects with

the images is easier to handle.

 74. # These dict values are global, and map the character that appears

 75. # in the level file to the Surface object it represents.

 76. TILEMAPPING = {'x': IMAGESDICT['corner'],

 77. '#': IMAGESDICT['wall'],

 78. 'o': IMAGESDICT['inside floor'],

 79. ' ': IMAGESDICT['outside floor']}

Chapter 9 – Star Pusher 259

The data structure for the map is just a 2D list of single character strings. The TILEMAPPING

dictionary links the characters used in this map data structure to the images that they represent.

(This will become more clear in the drawMap() function’s explanation.)

 80. OUTSIDEDECOMAPPING = {'1': IMAGESDICT['rock'],

 81. '2': IMAGESDICT['short tree'],

 82. '3': IMAGESDICT['tall tree'],

 83. '4': IMAGESDICT['ugly tree']}

The OUTSIDEDECOMAPPING is also a dictionary that links the characters used in the map data

structure to images that were loaded. The ―outside decoration‖ images are drawn on top of the

outdoor grassy tile.

 85. # PLAYERIMAGES is a list of all possible characters the player can be.

 86. # currentImage is the index of the player's current player image.

 87. currentImage = 0

 88. PLAYERIMAGES = [IMAGESDICT['princess'],

 89. IMAGESDICT['boy'],

 90. IMAGESDICT['catgirl'],

 91. IMAGESDICT['horngirl'],

 92. IMAGESDICT['pinkgirl']]

The PLAYERIMAGES list stores the images used for the player. The currentImage variable

tracks the index of the currently selected player image. For example, when currentImage is

set to 0 then PLAYERIMAGES[0], which is the ―princess‖ player image, is drawn to the screen.

 94. startScreen() # show the title screen until the user presses a key

 95.

 96. # Read in the levels from the text file. See the readLevelsFile() for

 97. # details on the format of this file and how to make your own levels.

 98. levels = readLevelsFile('starPusherLevels.txt')

 99. currentLevelIndex = 0

The startScreen() function will keep displaying the initial start screen (which also has the

instructions for the game) until the player presses a key. When the player presses a key, the

startScreen() function returns and then reads in the levels from the level file. The player

starts off on the first level, which is the level object in the levels list at index 0.

101. # The main game loop. This loop runs a single level, when the user

102. # finishes that level, the next/previous level is loaded.

103. while True: # main game loop

104. # Run the level to actually start playing the game:

260 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

105. result = runLevel(levels, currentLevelIndex)

The runLevel() function handles all the action for the game. It is passed a list of level objects,

and the integer index of the level in that list to be played. When the player has finished playing

the level, runLevel() will return one of the following strings: 'solved' (because the player

has finished putting all the stars on the goals), 'next' (because the player wants to skip to the

next level), 'back' (because the player wants to go back to the previous level), and 'reset'

(because the player wants to start playing the current level over again, maybe because they

pushed a star into a corner).

107. if result in ('solved', 'next'):

108. # Go to the next level.

109. currentLevelIndex += 1

110. if currentLevelIndex >= len(levels):

111. # If there are no more levels, go back to the first one.

112. currentLevelIndex = 0

113. elif result == 'back':

114. # Go to the previous level.

115. currentLevelIndex -= 1

116. if currentLevelIndex < 0:

117. # If there are no previous levels, go to the last one.

118. currentLevelIndex = len(levels)-1

If runLevel() has returned the strings 'solved' or 'next', then we need to increment

levelNum by 1. If this increments levelNum beyond the number of levels there are, then

levelNum is set back at 0.

The opposite is done if 'back' is returned, then levelNum is decremented by 1. If this makes

it go below 0, then it is set to the last level (which is len(levels)-1).

119. elif result == 'reset':

120. pass # Do nothing. Loop re-calls runLevel() to reset the level

If the return value was 'reset', then the code does nothing. The pass statement does nothing

(like a comment), but is needed because the Python interpreter expects an indented line of code

after an elif statement.

We could remove lines 119 and 120 from the source code entirely, and the program will still

work just the same. The reason we include it here is for program readability, so that if we make

changes to the code later, we won’t forget that runLevel() can also return the string

'reset'.

Chapter 9 – Star Pusher 261

123. def runLevel(levels, levelNum):

124. global currentImage

125. levelObj = levels[levelnum]

126. mapObj = decorateMap(levelObj['mapObj'],

levelObj['startState']['player'])

127. gameStateObj = copy.deepcopy(levelObj['startState'])

The levels list contains all the level objects that were loaded from the level file. The level object

for the current level (which is what levelNum is set to) is stored in the levelObj variable. A

map object (which makes a distinction between indoor and outdoor tiles, and decorates the

outdoor tiles with trees and rocks) is returned from the decorateMap() function. And to track

the state of the game while the player plays this level, a copy of the game state object that is

stored in levelObj is made using the copy.deepcopy() function.

The game state object copy is made because the game state object stored in

levelObj['startState'] represents the game state at the very beginning of the level, and

we do not want to modify this. Otherwise, if the player restarts the level, the original game state

for that level will be lost.

The copy.deepcopy() function is used because the game state object is a dictionary of that

has tuples. But technically, the dictionary contains references to tuples. (References are explained

in detail at http://invpy.com/references.) Using an assignment statement to make a copy of the

dictionary will make a copy of the references but not the values they refer to, so that both the

copy and the original dictionary still refer to the same tuples.

The copy.deepcopy() function solves this problem by making copies of the actual tuples in

the dictionary. This way we can guarantee that changing one dictionary will not affect the other

dictionary.

128. mapNeedsRedraw = True # set to True to call drawMap()

129. levelSurf = BASICFONT.render('Level %s of %s' % (levelObj['levelNum']

+ 1, totalNumOfLevels), 1, TEXTCOLOR)

130. levelRect = levelSurf.get_rect()

131. levelRect.bottomleft = (20, WINHEIGHT - 35)

132. mapWidth = len(mapObj) * TILEWIDTH

133. mapHeight = (len(mapObj[0]) - 1) * (TILEHEIGHT - TILEFLOORHEIGHT) +

TILEHEIGHT

134. MAX_CAM_X_PAN = abs(HALF_WINHEIGHT - int(mapHeight / 2)) + TILEWIDTH

135. MAX_CAM_Y_PAN = abs(HALF_WINWIDTH - int(mapWidth / 2)) + TILEHEIGHT

136.

137. levelIsComplete = False

138. # Track how much the camera has moved:

139. cameraOffsetX = 0

262 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

140. cameraOffsetY = 0

141. # Track if the keys to move the camera are being held down:

142. cameraUp = False

143. cameraDown = False

144. cameraLeft = False

145. cameraRight = False

More variables are set at the start of playing a level. The mapWidth and mapHeight variables

are the size of the maps in pixels. The expression for calculating mapHeight is a bit

complicated since the tiles overlap each other. Only the bottom row of tiles is the full height

(which accounts for the + TILEHEIGHT part of the expression), all of the other rows of tiles

(which number as (len(mapObj[0]) - 1)) are slightly overlapped. This means that they

are effectively each only (TILEHEIGHT - TILEFLOORHEIGHT) pixels tall.

The camera in Star Pusher can be moved independently of the player moving around the map.

This is why the camera needs its own set of ―moving‖ variables: cameraUp, cameraDown,

cameraLeft, and cameraRight. The cameraOffsetX and cameraOffsetY variables

track the position of the camera.

147. while True: # main game loop

148. # Reset these variables:

149. playerMoveTo = None

150. keyPressed = False

151.

152. for event in pygame.event.get(): # event handling loop

153. if event.type == QUIT:

154. # Player clicked the "X" at the corner of the window.

155. terminate()

156.

The playerMoveTo variable will be set to the direction constant that the player intends to

move the player character on the map. The keyPressed variable tracks if any key has been

pressed during this iteration of the game loop. This variable is checked later when the player has

solved the level.

157. elif event.type == KEYDOWN:

158. # Handle key presses

159. keyPressed = True

160. if event.key == K_LEFT:

161. playerMoveTo = LEFT

162. elif event.key == K_RIGHT:

163. playerMoveTo = RIGHT

164. elif event.key == K_UP:

Chapter 9 – Star Pusher 263

165. playerMoveTo = UP

166. elif event.key == K_DOWN:

167. playerMoveTo = DOWN

168.

169. # Set the camera move mode.

170. elif event.key == K_a:

171. cameraLeft = True

172. elif event.key == K_d:

173. cameraRight = True

174. elif event.key == K_w:

175. cameraUp = True

176. elif event.key == K_s:

177. cameraDown = True

178.

179. elif event.key == K_n:

180. return 'next'

181. elif event.key == K_b:

182. return 'back'

183.

184. elif event.key == K_ESCAPE:

185. terminate() # Esc key quits.

186. elif event.key == K_BACKSPACE:

187. return 'reset' # Reset the level.

188. elif event.key == K_p:

189. # Change the player image to the next one.

190. currentImage += 1

191. if currentImage >= len(PLAYERIMAGES):

192. # After the last player image, use the first one.

193. currentImage = 0

194. mapNeedsRedraw = True

195.

196. elif event.type == KEYUP:

197. # Unset the camera move mode.

198. if event.key == K_a:

199. cameraLeft = False

200. elif event.key == K_d:

201. cameraRight = False

202. elif event.key == K_w:

203. cameraUp = False

204. elif event.key == K_s:

205. cameraDown = False

This code handles what to do when the various keys are pressed.

207. if playerMoveTo != None and not levelIsComplete:

208. # If the player pushed a key to move, make the move

264 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

209. # (if possible) and push any stars that are pushable.

210. moved = makeMove(mapObj, gameStateObj, playerMoveTo)

211.

212. if moved:

213. # increment the step counter.

214. gameStateObj['stepCounter'] += 1

215. mapNeedsRedraw = True

216.

217. if isLevelFinished(levelObj, gameStateObj):

218. # level is solved, we should show the "Solved!" image.

219. levelIsComplete = True

220. keyPressed = False

If the playerMoveTo variable is no longer set to None, then we know the player intended to

move. The call to makeMove() handles changing the XY coordinates of the player’s position in

the gameStateObj, as well as pushing any stars. The return value of makeMove() is stored

in moved. If this value is True, then the player character was moved in that direction. If the

value was False, then the player must have tried to move into a tile that was a wall, or push a

star that had something behind it. In this case, the player can’t move and nothing on the map

changes.

222. DISPLAYSURF.fill(BGCOLOR)

223.

224. if mapNeedsRedraw:

225. mapSurf = drawMap(mapObj, gameStateObj, levelObj['goals'])

226. mapNeedsRedraw = False

The map does not need to be redrawn on each iteration through the game loop. In fact, this game

program is complicated enough that doing so would cause a slight (but noticeable) slowdown in

the game. And the map really only needs to be redrawn when something has changed (such as the

player moving or a star being pushed). So the Surface object in the mapSurf variable is only

updated with a call to the drawMap() function when the mapNeedsRedraw variable is set to

True.

After the map has been drawn on line 225, the mapNeedsRedraw variable is set to False. If

you want to see how the program slows down by drawing on each iteration through the game

loop, comment out line 226 and rerun the program. You will notice that moving the camera is

significantly slower.

228. if cameraUp and cameraOffsetY < MAX_CAM_X_PAN:

229. cameraOffsetY += CAM_MOVE_SPEED

230. elif cameraDown and cameraOffsetY > -MAX_CAM_X_PAN:

Chapter 9 – Star Pusher 265

231. cameraOffsetY -= CAM_MOVE_SPEED

232. if cameraLeft and cameraOffsetX < MAX_CAM_Y_PAN:

233. cameraOffsetX += CAM_MOVE_SPEED

234. elif cameraRight and cameraOffsetX > -MAX_CAM_Y_PAN:

235. cameraOffsetX -= CAM_MOVE_SPEED

If the camera movement variables are set to True and the camera has not gone past (i.e. panned

passed) the boundaries set by the MAX_CAM_X_PAN and MAX_CAM_Y_PAN, then the camera

location (stored in cameraOffsetX and cameraOffsetY) should move over by

CAM_MOVE_SPEED pixels.

Note that there is an if and elif statement on lines 228 and 230 for moving the camera up and

down, and then a separate if and elif statement on lines 232 and 234. This way, the user can

move the camera both vertically and horizontally at the same time. This wouldn’t be possible if

line 232 were an elif statement.

237. # Adjust mapSurf's Rect object based on the camera offset.

238. mapSurfRect = mapSurf.get_rect()

239. mapSurfRect.center = (HALF_WINWIDTH + cameraOffsetX,

HALF_WINHEIGHT + cameraOffsetY)

240.

241. # Draw mapSurf to the DISPLAYSURF Surface object.

242. DISPLAYSURF.blit(mapSurf, mapSurfRect)

243.

244. DISPLAYSURF.blit(levelSurf, levelRect)

245. stepSurf = BASICFONT.render('Steps: %s' %

(gameStateObj['stepCounter']), 1, TEXTCOLOR)

246. stepRect = stepSurf.get_rect()

247. stepRect.bottomleft = (20, WINHEIGHT - 10)

248. DISPLAYSURF.blit(stepSurf, stepRect)

249.

250. if levelIsComplete:

251. # is solved, show the "Solved!" image until the player

252. # has pressed a key.

253. solvedRect = IMAGESDICT['solved'].get_rect()

254. solvedRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT)

255. DISPLAYSURF.blit(IMAGESDICT['solved'], solvedRect)

256.

257. if keyPressed:

258. return 'solved'

259.

260. pygame.display.update() # draw DISPLAYSURF to the screen.

261. FPSCLOCK.tick()

262.

266 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

263.

Lines 237 to 261 position the camera and draw the map and other graphics to the display Surface

object in DISPLAYSURF. If the level is solved, then the victory graphic is also drawn on top of

everything else. The keyPressed variable will be set to True if the user pressed a key during

this iteration, at which point the runLevel() function returns.

264. def isWall(mapObj, x, y):

265. """Returns True if the (x, y) position on

266. the map is a wall, otherwise return False."""

267. if x < 0 or x >= len(mapObj) or y < 0 or y >= len(mapObj[x]):

268. return False # x and y aren't actually on the map.

269. elif mapObj[x][y] in ('#', 'x'):

270. return True # wall is blocking

271. return False

The isWall() function returns True if there is a wall on the map object at the XY coordinates

passed to the function. Wall objects are represented as either a 'x' or '#' string in the map

object.

274. def decorateMap(mapObj, startxy):

275. """Makes a copy of the given map object and modifies it.

276. Here is what is done to it:

277. * Walls that are corners are turned into corner pieces.

278. * The outside/inside floor tile distinction is made.

279. * Tree/rock decorations are randomly added to the outside tiles.

280.

281. Returns the decorated map object."""

282.

283. startx, starty = startxy # Syntactic sugar

284.

285. # Copy the map object so we don't modify the original passed

286. mapObjCopy = copy.deepcopy(mapObj)

The decorateMap() function alters the data structure mapObj so that it isn’t as plain as it

appears in the map file. The three things that decorateMap() changes are explained in the

comment at the top of the function.

288. # Remove the non-wall characters from the map data

289. for x in range(len(mapObjCopy)):

290. for y in range(len(mapObjCopy[0])):

291. if mapObjCopy[x][y] in ('$', '.', '@', '+', '*'):

Chapter 9 – Star Pusher 267

292. mapObjCopy[x][y] = ' '

The map object has characters that represent the position of the player, goals, and stars. These are

necessary for the map object (they’re stored in other data structures after the map file is read) so

they are converted to blank spaces.

294. # Flood fill to determine inside/outside floor tiles.

295. floodFill(mapObjCopy, startx, starty, ' ', 'o')

The floodFill() function will change all of the tiles inside the walls from ' ' characters to

'o' characters. It does this using a programming concept called recursion, which is explained in

―Recursive Functions‖ section later in this chapter.

297. # Convert the adjoined walls into corner tiles.

298. for x in range(len(mapObjCopy)):

299. for y in range(len(mapObjCopy[0])):

300.

301. if mapObjCopy[x][y] == '#':

302. if (isWall(mapObjCopy, x, y-1) and isWall(mapObjCopy, x+1,

y)) or \

303. (isWall(mapObjCopy, x+1, y) and isWall(mapObjCopy, x,

y+1)) or \

304. (isWall(mapObjCopy, x, y+1) and isWall(mapObjCopy, x-1,

y)) or \

305. (isWall(mapObjCopy, x-1, y) and isWall(mapObjCopy, x,

y-1)):

306. mapObjCopy[x][y] = 'x'

307.

308. elif mapObjCopy[x][y] == ' ' and random.randint(0, 99) <

OUTSIDE_DECORATION_PCT:

309. mapObjCopy[x][y] =

random.choice(list(OUTSIDEDECOMAPPING.keys()))

310.

311. return mapObjCopy

The large, multi-line if statement on line 301 checks if the wall tile at the current XY

coordinates are a corner wall tile by checking if there are wall tiles adjacent to it that form a

corner shape. If so, the '#' string in the map object that represents a normal wall is changed to a

'x' string which represents a corner wall tile.

314. def isBlocked(mapObj, gameStateObj, x, y):

315. """Returns True if the (x, y) position on the map is

316. blocked by a wall or star, otherwise return False."""

268 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

317.

318. if isWall(mapObj, x, y):

319. return True

320.

321. elif x < 0 or x >= len(mapObj) or y < 0 or y >= len(mapObj[x]):

322. return True # x and y aren't actually on the map.

323.

324. elif (x, y) in gameStateObj['stars']:

325. return True # a star is blocking

326.

327. return False

There are three cases where a space on the map would be blocked: if there is a star, a wall, or the

coordinates of the space are past the edges of the map. The isBlocked() function checks for

these three cases and returns True if the XY coordinates are blocked and False if not.

330. def makeMove(mapObj, gameStateObj, playerMoveTo):

331. """Given a map and game state object, see if it is possible for the

332. player to make the given move. If it is, then change the player's

333. position (and the position of any pushed star). If not, do nothing.

334.

335. Returns True if the player moved, otherwise False."""

336.

337. # Make sure the player can move in the direction they want.

338. playerx, playery = gameStateObj['player']

339.

340. # This variable is "syntactic sugar". Typing "stars" is more

341. # readable than typing "gameStateObj['stars']" in our code.

342. stars = gameStateObj['stars']

343.

344. # The code for handling each of the directions is so similar aside

345. # from adding or subtracting 1 to the x/y coordinates. We can

346. # simplify it by using the xOffset and yOffset variables.

347. if playerMoveTo == UP:

348. xOffset = 0

349. yOffset = -1

350. elif playerMoveTo == RIGHT:

351. xOffset = 1

352. yOffset = 0

353. elif playerMoveTo == DOWN:

354. xOffset = 0

355. yOffset = 1

356. elif playerMoveTo == LEFT:

357. xOffset = -1

358. yOffset = 0

Chapter 9 – Star Pusher 269

359.

360. # See if the player can move in that direction.

361. if isWall(mapObj, playerx + xOffset, playery + yOffset):

362. return False

363. else:

364. if (playerx + xOffset, playery + yOffset) in stars:

365. # There is a star in the way, see if the player can push it.

366. if not isBlocked(mapObj, gameStateObj, playerx + (xOffset*2),

playery + (yOffset*2)):

367. # Move the star.

368. ind = stars.index((playerx + xOffset, playery + yOffset))

369. stars[ind] = (stars[ind][0] + xOffset, stars[ind][1] +

yOffset)

370. else:

371. return False

372. # Move the player upwards.

373. gameStateObj['player'] = (playerx + xOffset, playery + yOffset)

374. return True

The makeMove() function checks to make sure if moving the player in a particular direction is

a valid move. As long as there isn’t a wall blocking the path, or a star that has a wall or star

behind it, the player will be able to move in that direction. The gameStateObj variable will be

updated to reflect this, and the True value will be returned to tell the function’s caller that the

player was moved.

If there was a star in the space that the player wanted to move, that star’s position is also changed

and this information is updated in the gameStateObj variable as well. This is how the ―star

pushing‖ is implemented.

If the player is blocked from moving in the desired direction, then the gameStateObj is not

modified and the function returns False.

377. def startScreen():

378. """Display the start screen (which has the title and instructions)

379. until the player presses a key. Returns None."""

380.

381. # Position the title image.

382. titleRect = IMAGESDICT['title'].get_rect()

383. topCoord = 50 # topCoord tracks where to position the top of the text

384. titleRect.top = topCoord

385. titleRect.centerx = HALF_WINWIDTH

386. topCoord += titleRect.height

387.

388. # Unfortunately, Pygame's font & text system only shows one line at

270 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

389. # a time, so we can't use strings with \n newline characters in them.

390. # So we will use a list with each line in it.

391. instructionText = ['Push the stars over the marks.',

392. 'Arrow keys to move, WASD for camera control, P to

change character.',

393. 'Backspace to reset level, Esc to quit.',

394. 'N for next level, B to go back a level.']

The startScreen() function needs to display a few different pieces of text down the center

of the window. We will store each line as a string in the instructionText list. The title

image (stored in IMAGESDICT['title'] as a Surface object (that was originally loaded from

the star_title.png file)) will be positioned 50 pixels from the top of the window. This is because

the integer 50 was stored in the topCoord variable on line 383. The topCoord variable will

track the Y axis positioning of the title image and the instructional text. The X axis is always

going to be set so that the images and text are centered, as it is on line 385 for the title image.

On line 386, the topCoord variable is increased by whatever the height of that image is. This

way we can modify the image and the start screen code won’t have to be changed.

396. # Start with drawing a blank color to the entire window:

397. DISPLAYSURF.fill(BGCOLOR)

398.

399. # Draw the title image to the window:

400. DISPLAYSURF.blit(IMAGESDICT['title'], titleRect)

401.

402. # Position and draw the text.

403. for i in range(len(instructionText)):

404. instSurf = BASICFONT.render(instructionText[i], 1, TEXTCOLOR)

405. instRect = instSurf.get_rect()

406. topCoord += 10 # 10 pixels will go in between each line of text.

407. instRect.top = topCoord

408. instRect.centerx = HALF_WINWIDTH

409. topCoord += instRect.height # Adjust for the height of the line.

410. DISPLAYSURF.blit(instSurf, instRect)

Line 400 is where the title image is blitted to the display Surface object. The for loop starting on

line 403 will render, position, and blit each instructional string in the instructionText loop.

The topCoord variable will always be incremented by the size of the previously rendered text

(line 409) and 10 additional pixels (on line 406, so that there will be a 10 pixel gap between the

lines of text).

412. while True: # Main loop for the start screen.

413. for event in pygame.event.get():

Chapter 9 – Star Pusher 271

414. if event.type == QUIT:

415. terminate()

416. elif event.type == KEYDOWN:

417. if event.key == K_ESCAPE:

418. terminate()

419. return # user has pressed a key, so return.

420.

421. # Display the DISPLAYSURF contents to the actual screen.

422. pygame.display.update()

423. FPSCLOCK.tick()

There is a game loop in startScreen() that begins on line 412 and handles events that

indicate if the program should terminate or return from the startScreen() function. Until the

player does either, the loop will keep calling pygame.display.update() and

FPSCLOCK.tick() to keep the start screen displayed on the screen.

Data Structures in Star Pusher
Star Pusher has a specific format for the levels, maps, and game state data structures.

The “Game State” Data Structure
The game state object will be a dictionary with three keys: 'player', 'stepCounter', and

'stars'.

 The value at the 'player' key will be a tuple of two integers for the current XY

position of the player.

 The value at the 'stepCounter' key will be an integer that tracks how many moves

the player has made in this level (so the player can try to solve the puzzle in the future

with fewer steps).

 The value at the 'stars' key is a list of two-integer tuples of XY values for each of the

stars on the current level.

The “Map” Data Structure
The map data structure is simply a 2D list of lists where the two indexes used represent the X and

Y coordinates of the map. The value at each index in the list of lists is a single-character string

that represents the title that is on that map at each space:

 '#' – A wooden wall.

 'x' – A corner wall.

 '@' – The starting space for the player on this level.

 '.' – A goal space.

 '$' – A space where a star is at the start of the level.

272 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 '+' – A space with a goal and the starting player’s space.

 '*' – A space with a goal and a star at the start of the level.

 ' ' – A grassy outdoor space.

 'o' – An inside floor space. (This is a lowercase letter O, not a zero.)

 '1' – A rock on grass.

 '2' – A short tree on grass.

 '3' – A tall tree on grass.

 '4' – An ugly tree on grass.

The “Levels” Data Structure
The level object contains a game state object (which will be the state used when the level first

starts), a map object, and a few other values. The level object itself is a dictionary with the

following keys:

 The value at the key 'width' is an integer of how many tiles wide the entire map is.

 The value at the key 'height' is an integer of how many tiles tall the entire map is.

 The value at the key 'mapObj' is the map object for this level.

 The value at the key 'goals' is a list of two-integer tuples with the XY coordinates of

each goal space on the map.

 The value at the key 'startState' is a game state object used to show the starting

position of the stars and player at the start of the level.

Reading and Writing Text Files
Python has functions for reading files off of the player’s hard drive. This will be useful for having

a separate file keep all of the data for each level. This is also a good idea because in order to get

new levels, the player doesn’t have to change the source code of the game but instead can just

download new level files.

Text Files and Binary Files
Text files are files that contain simple text data. Text files are created in Windows by the Notepad

application, Gedit on Ubuntu, and TextEdit on Mac OS X. There are many other programs called

text editors that can create and modify text files. IDLE’s own file editor is a text editor.

The difference between text editors and word processors (like Microsoft Word, or OpenOffice

Writer, or iWork Pages) is that text editors have text only. You can’t set the font, size, or color of

the text. (IDLE automatically sets the color of the text based on what kind of Python code it is,

but you can’t change this yourself, so it is still a text editor.) The difference between text and

binary files isn’t important for this game program, but you can read about it at

Chapter 9 – Star Pusher 273

http://invpy.com/textbinary. All you need to know is the this chapter and the Star Pusher program

only deal with text files.

Writing to Files
To create a file, call the open() function pass it two arguments: a string for the name of the file,

and the string 'w' to tell the open() function you want to open the file in ―write‖ mode. The

open() function returns a file object:

>>> textFile = open('hello.txt', 'w')

>>>

If you run this code from the interactive shell, the hello.txt file that this function creates will be

created in the same folder that the python.exe program is in (on Windows, this will probably be

C:\Python32). If the open() function is called from a .py program, the file is created in the same

folder that the .py file is in.

The ―write‖ mode tells open() to create the file if it does not exist. If it does exist, then

open() will delete that file and create a new, blank file. This is just like how an assignment

statement can create a new variable, or overwrite the current value in an already existing variable.

This can be somewhat dangerous. If you accidentally send a filename of an important file to the

open() function with 'w' as the second parameter, it will be deleted. This could result in

having to reinstall the operating system on your computer and/or the launching of nuclear

missiles.

The file object has a method called write() which can be used to write text to the file. Just pass

it a string like you would pass a string to the print() function. The difference is that write()

does not automatically add a newline character ('\n') to the end of the string. If you want to add

a newline, you will have to include it in the string:

>>> textFile = open('hello.txt', 'w')

>>> textFile.write('This will be the content of the file.\nHello world!\n')

>>>

To tell Python that you are done writing content to this file, you should call the close()

method of the file object. (Although Python will automatically close any opened file objects when

the program ends.)

>>> textFile.close()

274 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Reading from Files
To read the content of a file, pass the string 'r' instead of 'w' to the open() function. Then

call the readlines() method on the file object to read in the contents of the file. Last, close

the file by calling the close() method.

>>> textFile = open('hello.txt', 'r')

>>> content = textFile.readlines()

>>> textFile.close()

The readlines() method returns a list of strings: one string for each line of text in the file:

>>> content

['This will be the content of the file.\n', 'Hello world!\n']

>>>

If you want to re-read the contents of that file, you will have to call close() on the file object

and re-open it.

As an alternative to readlines(), you can also call the read() method, which will return

the entire contents of the file as a single string value:

>>> textFile = open('hello.txt', 'r')

>>> content = textFile.read()

>>> content

'This will be the content of the file.\nHello world!\n'

On a side note, if you leave out the second parameter to the open() function, Python will

assume you mean to open the file in read mode. So open('foobar.txt', 'r') and

open('foobar.txt') do the exact same thing.

About the Star Pusher Map File Format
We need the level text file to be in a specific format. Which characters represent walls, or stars, or

the player’s starting position? If we have the maps for multiple levels, how can we tell when one

level’s map ends and the next one begins?

Fortunately, the map file format we will use is already defined for us. There are many Sokoban

games out there (you can find more at http://invpy.com/sokobanclones), and they all use the same

map file format. If you download the levels file from http://invpy.com/starPusherLevels.txt and

open it in a text editor, you’ll see something like this:

; Star Pusher (Sokoban clone)

Chapter 9 – Star Pusher 275

; http://inventwithpython.com/blog

; By Al Sweigart al@inventwithpython.com

;

; Everything after the ; is a comment and will be ignored by the game that

; reads in this file.

;

; The format is described at:

; http://sokobano.de/wiki/index.php?title=Level_format

; @ - The starting position of the player.

; $ - The starting position for a pushable star.

; . - A goal where a star needs to be pushed.

; + - Player & goal

; * - Star & goal

; (space) - an empty open space.

; # - A wall.

;

; Level maps are separated by a blank line (I like to use a ; at the start

; of the line since it is more visible.)

;

; I tried to use the same format as other people use for their Sokoban games,

; so that loading new levels is easy. Just place the levels in a text file

; and name it "starPusherLevels.txt" (after renaming this file, of course).

; Starting demo level:

 ########

. #

$ #

.$@$. #

####$ #

 #. #

 # ##

 #####

The comments at the top of the file explain the file’s format. When you load the first level, it

looks like this:

276 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

426. def readLevelsFile(filename):

427. assert os.path.exists(filename), 'Cannot find the level file: %s' %

(filename)

The os.path.exists() function will return True if the file specified by the string passed to

the function exists. If it does not exist, os.path.exists() returns False.

428. mapFile = open(filename, 'r')

429. # Each level must end with a blank line

430. content = mapFile.readlines() + ['\r\n']

431. mapFile.close()

432.

433. levels = [] # Will contain a list of level objects.

434. levelNum = 0

435. mapTextLines = [] # contains the lines for a single level's map.

436. mapObj = [] # the map object made from the data in mapTextLines

The file object for the level file that is opened for reading is stored in mapFile. All of the text

from the level file is stored as a list of strings in the content variable, with a blank line added

to the end. (The reason that this is done is explained later.)

After the level objects are created, they will be stored in the levels list. The levelNum

variable will keep track of how many levels are found inside the level file. The mapTextLines

list will be a list of strings from the content list for a single map (as opposed to how content

stores the strings of all maps in the level file). The mapObj variable will be a 2D list.

437. for lineNum in range(len(content)):

438. # Process each line that was in the level file.

439. line = content[lineNum].rstrip('\r\n')

Chapter 9 – Star Pusher 277

The for loop on line 437 will go through each line that was read from the level file one line at a

time. The line number will be stored in lineNum and the string of text for the line will be stored

in line. Any newline characters at the end of the string will be stripped off.

441. if ';' in line:

442. # Ignore the ; lines, they're comments in the level file.

443. line = line[:line.find(';')]

Any text that exists after a semicolon in the map file is treated like a comment and is ignored.

This is just like the # sign for Python comments. To make sure that our code does not

accidentally think the comment is part of the map, the line variable is modified so that it only

consists of the text up to (but not including) the semicolon character. (Remember that this is only

changing the string in the content list. It is not changing the level file on the hard drive.)

445. if line != '':

446. # This line is part of the map.

447. mapTextLines.append(line)

There can be maps for multiple levels in the map file. The mapTextLines list will contain the

lines of text from the map file for the current level being loaded. As long as the current line is not

blank, the line will be appended to the end of mapTextLines.

448. elif line == '' and len(mapTextLines) > 0:

449. # A blank line indicates the end of a level's map in the file.

450. # Convert the text in mapTextLines into a level object.

When there is a blank line in the map file, that indicates that the map for the current level has

ended. And future lines of text will be for the later levels. Note however, that there must at least

be one line in mapTextLines so that multiple blank lines together are not counted as the start

and stop to multiple levels.

452. # Find the longest row in the map.

453. maxWidth = -1

454. for i in range(len(mapTextLines)):

455. if len(mapTextLines[i]) > maxWidth:

456. maxWidth = len(mapTextLines[i])

All of the strings in mapTextLines need to be the same length (so that they form a rectangle),

so they should be padded with extra blank spaces until they are all as long as the longest string.

The for loop goes through each of the strings in mapTextLines and updates maxWidth

278 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

when it finds a new longest string. After this loop finishes executing, the maxWidth variable

will be set to the length of the longest string in mapTextLines.

457. # Add spaces to the ends of the shorter rows. This

458. # ensures the map will be rectangular.

459. for i in range(len(mapTextLines)):

460. mapTextLines[i] += ' ' * (maxWidth - len(mapTextLines[i]))

The for loop on line 459 goes through the strings in mapTextLines again, this time to add

enough space characters to pad each to be as long as maxWidth.

462. # Convert mapTextLines to a map object.

463. for x in range(len(mapTextLines[0])):

464. mapObj.append([])

465. for y in range(len(mapTextLines)):

466. for x in range(maxWidth):

467. mapObj[x].append(mapTextLines[y][x])

The mapTextLines variable just stores a list of strings. (Each string in the list represents a

row, and each character in the string represents a character at a different column. This is why line

467 has the Y and X indexes reversed, just like the SHAPES data structure in the Tetromino

game.) But the map object will have to be a list of list of single-character strings such that

mapObj[x][y] refers to the tile at the XY coordinates. The for loop on line 463 adds an

empty list to mapObj for each column in mapTextLines.

The nested for loops on line 465 and 466 will fill these lists with single-character strings to

represent each tile on the map. This creates the map object that Star Pusher uses.

469. # Loop through the spaces in the map and find the @, ., and $

470. # characters for the starting game state.

471. startx = None # The x and y for the player's starting position

472. starty = None

473. goals = [] # list of (x, y) tuples for each goal.

474. stars = [] # list of (x, y) for each star's starting position.

475. for x in range(maxWidth):

476. for y in range(len(mapObj[x])):

477. if mapObj[x][y] in ('@', '+'):

478. # '@' is player, '+' is player & goal

479. startx = x

480. starty = y

481. if mapObj[x][y] in ('.', '+', '*'):

482. # '.' is goal, '*' is star & goal

483. goals.append((x, y))

Chapter 9 – Star Pusher 279

484. if mapObj[x][y] in ('$', '*'):

485. # '$' is star

486. stars.append((x, y))

After creating the map object, the nested for loops on lines 475 and 476 will go through each

space to find the XY coordinates three things:

1. The player’s starting position. This will be stored in the startx and starty variables,

which will then be stored in the game state object later on line 494.

2. The starting position of all the stars These will be stored in the stars list, which is later

stored in the game state object on line 496.

3. The position of all the goals. These will be stored in the goals list, which is later stored

in the level object on line 500.

Remember, the game state object contains all the things that can change. This is why the player’s

position is stored in it (because the player can move around) and why the stars are stored in it

(because the stars can be pushed around by the player). But the goals are stored in the level

object, since they will never move around.

488. # Basic level design sanity checks:

489. assert startx != None and starty != None, 'Level %s (around

line %s) in %s is missing a "@" or "+" to mark the start point.' % (levelNum+1,

lineNum, filename)

490. assert len(goals) > 0, 'Level %s (around line %s) in %s must

have at least one goal.' % (levelNum+1, lineNum, filename)

491. assert len(stars) >= len(goals), 'Level %s (around line %s) in

%s is impossible to solve. It has %s goals but only %s stars.' % (levelNum+1,

lineNum, filename, len(goals), len(stars))

At this point, the level has been read in and processed. To be sure that this level will work

properly, a few assertions must pass. If any of the conditions for these assertions are False, then

Python will produce an error (using the string from the assert statement) saying what is wrong

with the level file.

The first assertion on line 489 checks to make sure that there is a player starting point listed

somewhere on the map. The second assertion on line 490 checks to make sure there is at least one

goal (or more) somewhere on the map. And the third assertion on line 491 checks to make sure

that there is at least one star for each goal (but having more stars than goals is allowed).

493. # Create level object and starting game state object.

494. gameStateObj = {'player': (startx, starty),

495. 'stepCounter': 0,

280 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

496. 'stars': stars}

497. levelObj = {'width': maxWidth,

498. 'height': len(mapObj),

499. 'mapObj': mapObj,

500. 'goals': goals,

501. 'startState': gameStateObj}

502.

503. levels.append(levelObj)

Finally, these objects are stored in the game state object, which itself is stored in the level object.

The level object is added to a list of level objects on line 503. It is this levels list that will be

returned by the readLevelsFile() function when all of the maps have been processed.

505. # Reset the variables for reading the next map.

506. mapTextLines = []

507. mapObj = []

508. gameStateObj = {}

509. levelNum += 1

510. return levels

Now that this level is done processing, the variables for mapTextLines, mapObj, and

gameStateObj should be reset to blank values for the next level that will be read in from the

level file. The levelNum variable is also incremented by 1 for the next level’s level number.

Recursive Functions
Before you can learn how the floodFill() function works, you need to learn about recursion.

Recursion is a simple concept: A recursive function is just a function that calls itself, like the

one in the following program: (don’t type the letters at the beginning of each line though)

A. def passFortyTwoWhenYouCallThisFunction(param):

B. print('Start of function.')

C. if param != 42:

D. print('You did not pass 42 when you called this function.')

E. print('Fine. I will do it myself.')

F. passFortyTwoWhenYouCallThisFunction(42) # this is the recursive call

G. if param == 42:

H. print('Thank you for passing 42 when you called this function.')

I. print('End of function.')

J.

K. passFortyTwoWhenYouCallThisFunction(41)

(In your own programs, don’t make functions have names as long as

passFortyTwoWhenYouCallThisFunction(). I’m just being stupid and silly. Stupilly.)

Chapter 9 – Star Pusher 281

When you run this program, the function gets defined when the def statement on line A

executes. The next line of code that is executed is line K, which calls

passFortyTwoWhenYouCallThisFunction() and passes (gasp!) 41. As a result, the

function calls itself on line F and passes 42. We call this call the recursive call.

This is what our program outputs:

Start of function.

You did not pass 42 when you called this function.

Fine. I will do it myself.

Start of function.

Thank you for passing 42 when you called this function.

End of function.

End of function.

Notice that the ―Start of function.‖ and ―End of function.‖ text appears twice. Let’s figure out

what exactly happens and what order it happens in.

On line K, the function is called and 41 is passed for the param parameter. Line B prints out

―Start of function.‖. The condition on line C will be True (since 41 != 42) so Line C and D

will print out their messages. Line F will then make a call, recursively, to the function and passes

42 for the param parameter. So execution starts on line B again and prints out ―Start of

function.‖. Line C’s condition this time is False, so it skips to line G and finds that condition to

be True. This causes line H to be called and displays ―Thank you…‖ on the screen. Then the last

line of the function, line I, will execute to print out ―End of function.‖ and the function returns to

the line that called it.

But remember, the line of code that called the function was line F. And in this original call, param

was set to 41. The code goes down to line G and checks the condition, which is False (since 41

== 42 is False) so it skips the print() call on line H. Instead, it runs the print() call on

line I which makes ―End of function.‖ display for a second time.

Since it has reached the end of the function, it returns to the line of code that called this function

call, which was line K. There are no more lines of code after line K, so the program terminates.

Note that local variables are not just local to the function, but to a specific call of the function.

Stack Overflows
Each time a function is called, the Python interpreter remembers which line of code made the call.

That way when the function returns Python knows where to resume the execution. Remembering

this takes up a tiny bit of memory. This isn’t normally a big deal, but take a look at this code:

282 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

def funky():

 funky()

funky()

If you run this program, you’ll get a large amount of output which looks like this:

...

 File "C:\test67.py", line 2, in funky

 funky()

 File "C:\test67.py", line 2, in funky

 funky()

 File "C:\test67.py", line 2, in funky

 funky()

 File "C:\test67.py", line 2, in funky

 funky()

 File "C:\test67.py", line 2, in funky

 funky()

RuntimeError: maximum recursion depth exceeded

The funky() function does nothing but call itself. And then in that call, the function calls itself

again. Then it calls itself again, and again, and again. Each time it calls itself, Python has to

remember what line of code made that call so that when the function returns it can resume the

execution there. But the funky() function never returns, it just keeps making calls to itself.

This is just like the infinite loop bug, where the program keeps going and never stops. To prevent

itself from running out of memory, Python will cause an error after you are a 1000 calls deep and

crash the program. This type of bug is called a stack overflow.

This code also causes a stack overflow, even though there are no recursive functions:

def spam():

 eggs()

def eggs():

 spam()

spam()

When you run this program, it causes an error that looks like this:

...

 File "C:\test67.py", line 2, in spam

 eggs()

Chapter 9 – Star Pusher 283

 File "C:\test67.py", line 5, in eggs

 spam()

 File "C:\test67.py", line 2, in spam

 eggs()

 File "C:\test67.py", line 5, in eggs

 spam()

 File "C:\test67.py", line 2, in spam

 eggs()

RuntimeError: maximum recursion depth exceeded

Preventing Stack Overflows with a Base Case
In order to prevent stack overflow bugs, you must have a base case where the function stops

make new recursive calls. If there is no base case then the function calls will never stop and

eventually a stack overflow will occur. Here is an example of a recursive function with a base

case. The base case is when the param parameter equals 2.

def fizz(param):

 print(param)

 if param == 2:

 return

 fizz(param - 1)

fizz(5)

When you run this program, the output will look like this:

5

4

3

2

This program does not have a stack overflow error because once the param parameter is set to 2,

the if statement’s condition will be True and the function will return, and then the rest of the

calls will also return in turn.

Though if your code never reaches the base case, then this will cause a stack overflow. If we

changed the fizz(5) call to fizz(0), then the program’s output would look like this:

 File "C:\rectest.py", line 5, in fizz

 fizz(param - 1)

 File "C:\rectest.py", line 5, in fizz

 fizz(param - 1)

 File "C:\rectest.py", line 5, in fizz

284 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 fizz(param - 1)

 File "C:\rectest.py", line 2, in fizz

 print(param)

RuntimeError: maximum recursion depth exceeded

Recursive calls and base cases will be used to perform the flood fill algorithm, which is described

next.

The Flood Fill Algorithm
The flood fill algorithm is used in Star Pusher to change all of the floor tiles inside the walls of

the level to use the ―inside floor‖ tile image instead of the ―outside floor‖ tile (which all the tiles

on the map are by default). The original floodFill() call is on line 295. It will convert any

tiles represented with the ' ' string (which represents an outdoor floor) to a 'o' string (which

represents an indoor floor).

513. def floodFill(mapObj, x, y, oldCharacter, newCharacter):

514. """Changes any values matching oldCharacter on the map object to

515. newCharacter at the (x, y) position, and does the same for the

516. positions to the left, right, down, and up of (x, y), recursively."""

517.

518. # In this game, the flood fill algorithm creates the inside/outside

519. # floor distinction. This is a "recursive" function.

520. # For more info on the Flood Fill algorithm, see:

521. # http://en.wikipedia.org/wiki/Flood_fill

522. if mapObj[x][y] == oldCharacter:

523. mapObj[x][y] = newCharacter

Line 522 and 523 converts the tile at the XY coordinate passed to floodFill() to the

newCharacter string if it originally was the same as the oldCharacter string.

525. if x < len(mapObj) - 1 and mapObj[x+1][y] == oldCharacter:

526. floodFill(mapObj, x+1, y, oldCharacter, newCharacter) # call right

527. if x > 0 and mapObj[x-1][y] == oldCharacter:

528. floodFill(mapObj, x-1, y, oldCharacter, newCharacter) # call left

529. if y < len(mapObj[x]) - 1 and mapObj[x][y+1] == oldCharacter:

530. floodFill(mapObj, x, y+1, oldCharacter, newCharacter) # call down

531. if y > 0 and mapObj[x][y-1] == oldCharacter:

532. floodFill(mapObj, x, y-1, oldCharacter, newCharacter) # call up

These four if statements check if the tile to the right, left, down, and up of the XY coordinate are

the same as oldCharacter, and if so, a recursive call is made to floodFill() with those

coordinates.

Chapter 9 – Star Pusher 285

To better understand how the floodFill() function works, here is a version that does not use

recursive calls, but instead uses a list of XY coordinates to keep track of which spaces on the map

should be checked and possibly changed to newCharacter.

def floodFill(mapObj, x, y, oldCharacter, newCharacter):

 spacesToCheck = []

 if mapObj[x][y] == oldCharacter:

 spacesToCheck.append((x, y))

 while spacesToCheck != []:

 x, y = spacesToCheck.pop()

 mapObj[x][y] = newCharacter

 if x < len(mapObj) - 1 and mapObj[x+1][y] == oldCharacter:

 spacesToCheck.append((x+1, y)) # check right

 if x > 0 and mapObj[x-1][y] == oldCharacter:

 spacesToCheck.append((x-1, y)) # check left

 if y < len(mapObj[x]) - 1 and mapObj[x][y+1] == oldCharacter:

 spacesToCheck.append((x, y+1)) # check down

 if y > 0 and mapObj[x][y-1] == oldCharacter:

 spacesToCheck.append((x, y-1)) # check up

If you would like to read a more detailed tutorial on recursion that uses cats and zombies for an

example, go to http://invpy.com/recursivezombies.

Drawing the Map

535. def drawMap(mapObj, gameStateObj, goals):

536. """Draws the map to a Surface object, including the player and

537. stars. This function does not call pygame.display.update(), nor

538. does it draw the "Level" and "Steps" text in the corner."""

539.

540. # mapSurf will be the single Surface object that the tiles are drawn

541. # on, so that it is easy to position the entire map on the DISPLAYSURF

542. # Surface object. First, the width and height must be calculated.

543. mapSurfWidth = len(mapObj) * TILEWIDTH

544. mapSurfHeight = (len(mapObj[0]) - 1) * (TILEHEIGHT - TILEFLOORHEIGHT)

+ TILEHEIGHT

545. mapSurf = pygame.Surface((mapSurfWidth, mapSurfHeight))

546. mapSurf.fill(BGCOLOR) # start with a blank color on the surface.

The drawMap() function will return a Surface object with the entire map (and the player and

stars) drawn on it. The width and height needed for this Surface have to be calculated from

mapObj (which is done on line 543 and 544). The Surface object that everything will be drawn

286 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

on is created on line 545. To begin with, the entire Surface object is painted to the background

color on line 546.

548. # Draw the tile sprites onto this surface.

549. for x in range(len(mapObj)):

550. for y in range(len(mapObj[x])):

551. spaceRect = pygame.Rect((x * TILEWIDTH, y * (TILEHEIGHT -

TILEFLOORHEIGHT), TILEWIDTH, TILEHEIGHT))

The set of nested for loops on line 549 and 550 will go through every possible XY coordinate

on the map and draw the appropriate tile image at that location.

552. if mapObj[x][y] in TILEMAPPING:

553. baseTile = TILEMAPPING[mapObj[x][y]]

554. elif mapObj[x][y] in OUTSIDEDECOMAPPING:

555. baseTile = TILEMAPPING[' ']

556.

557. # First draw the base ground/wall tile.

558. mapSurf.blit(baseTile, spaceRect)

559.

The baseTile variable is set to the Surface object of the tile image to be drawn at the

iteration’s current XY coordinate. If the single-character string is in the

OUTSIDEDECOMAPPING dictionary, then TILEMAPPING[' '] (the single-character string

for the basic outdoor floor tile) will be used.

560. if mapObj[x][y] in OUTSIDEDECOMAPPING:

561. # Draw any tree/rock decorations that are on this tile.

562. mapSurf.blit(OUTSIDEDECOMAPPING[mapObj[x][y]], spaceRect)

Additionally, if the tile was listed in the OUTSIDEDECOMAPPING dictionary, the corresponding

tree or rock image should be drawn on top of the tile that was just drawn at that XY coordinate.

563. elif (x, y) in gameStateObj['stars']:

564. if (x, y) in goals:

565. # A goal AND star are on this space, draw goal first.

566. mapSurf.blit(IMAGESDICT['covered goal'], spaceRect)

567. # Then draw the star sprite.

568. mapSurf.blit(IMAGESDICT['star'], spaceRect)

If there is a star located at this XY coordinate on the map (which can be found out by checking

for (x, y) in the list at gameStateObj['stars']), then a star should be drawn at this XY

Chapter 9 – Star Pusher 287

coordinate (which is done on line 568). Before the star is drawn, the code should first check if

there is also a goal at this location, in which case, the ―covered goal‖ tile should be drawn first.

569. elif (x, y) in goals:

570. # Draw a goal without a star on it.

571. mapSurf.blit(IMAGESDICT['uncovered goal'], spaceRect)

If there is a goal at this XY coordinate on the map, then the ―uncovered goal‖ should be drawn on

top of the tile. The uncovered goal is drawn because if execution has reached the elif statement

on line 569, we know that the elif statement’s condition on line 563 was False and there is no

star that is also at this XY coordinate.

573. # Last draw the player on the board.

574. if (x, y) == gameStateObj['player']:

575. # Note: The value "currentImage" refers

576. # to a key in "PLAYERIMAGES" which has the

577. # specific player image we want to show.

578. mapSurf.blit(PLAYERIMAGES[currentImage], spaceRect)

579.

580. return mapSurf

Finally, the drawMap() function checks if the player is located at this XY coordinate, and if so,

the player’s image is drawn over the tile. Line 580 is outside of the nested for loops that began

on line 549 and 550, so by the time the Surface object is returned, the entire map has been drawn

on it.

Checking if the Level is Finished

583. def isLevelFinished(levelObj, gameStateObj):

584. """Returns True if all the goals have stars in them."""

585. for goal in levelObj['goals']:

586. if goal not in gameStateObj['stars']:

587. # Found a space with a goal but no star on it.

588. return False

589. return True

The isLevelFinished() function returns True if all the goals are covered stars. Some

levels could have more stars than goals, so it’s important to check that all the goals are covered

by stars, rather than checking if all the stars are over goals.

The for loop on line 585 goes through the goals in levelObj['goals'] (which is a list of

tuples of XY coordinates for each goal) and checks if there is a star in the

gameStateObj['stars'] list that has those same XY coordinates (the not in operators

288 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

work here because gameStateObj['stars'] is a list of those same tuples of XY

coordinates). The first time the code finds a goal with no star at the same position, the function

returns False.

If it gets through all of the goals and finds a star on each of them, isLevelFinished()

returns True.

592. def terminate():

593. pygame.quit()

594. sys.exit()

This terminate() function is the same as in all the previous programs.

597. if __name__ == '__main__':

598. main()

After all the functions have been defined, the main() function is called on line 602 to begin the

game.

Summary
In the Squirrel Eat Squirrel game, the game world was pretty simple: just an infinite green plain

with grass images randomly scattered around it. The Star Pusher game introduced something

new: having uniquely designed levels with tile graphics. In order to store these levels in a format

that the computer can read, they are typed out into a text file and code in the program reads those

files and creates the data structures for the level.

Really, rather than just make a simple game with a single map, the Star Pusher program is more

of a system for loading custom maps based on the level file. Just by modifying the level file, we

can change where walls, stars, and goals appear in the game world. The Star Pusher program can

handle any configuration that the level file is set to (as long as it passes the assert statements

that ensure the map makes sense).

You won’t even have to know how to program Python to make your own levels. A text editor

program that modifies the starPusherLevels.txt file is all that anyone needs to have their own

level editor for the Star Pusher game.

For additional programming practice, you can download buggy versions of Star Pusher from

http://invpy.com/buggy/starpusher and try to figure out how to fix the bugs.

Chapter 10 – Four Extra Games 289

CHAPTER 10 – FOUR EXTRA

GAMES
Included in this chapter is the source code for four extra games. Unfortunately, only the source

code (including comments) is in this chapter without any detailed explanation of the code. By

now, you can play these games and figure out how the code works by looking at the source code

and comments.

The games are:

 Flippy – An ―Othello‖ clone where the player tries to flip the computer AI player’s tiles.

 Ink Spill – A ―Flood It‖ clone that makes use of the flood fill algorithm.

 Four in a Row – A ―Connect Four‖ clone against the computer AI player.

 Gemgem – A ―Bejeweled‖ clone where the player swaps gems to try to get three

identical gems in a row.

If you have any questions about the source code in this book, feel free to email the author at

al@inventwithpython.com.

Buggy versions of these programs are also available if you want to practice fixing bugs:

 http://invpy.com/buggy/flippy

 http://invpy.com/buggy/inkspill

 http://invpy.com/buggy/fourinarow

 http://invpy.com/buggy/gemgem

290 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Flippy, an “Othello” Clone

Othello, also known by the generic name Reversi, has an 8 x 8 board with tiles that are black on

one side and white on the other. The starting board looks like Figure 10-1. Each player takes turn

placing down a new tile of their color. Any of the opponent's tiles that are between the new tile

and the other tiles of that color is flipped. The goal of the game is to have as many of the tiles

with your color as possible. For example, Figure 10-2 is what it looks like if the white player

places a new white tile on space 5, 6.

The starting Reversi board has two white tiles

and two black tiles.

White places a new tile.

Chapter 10 – Four Extra Games 291

The black tile at 5, 5 is in between the new white tile and the existing white tile at 5, 4. That black

tile is flipped over and becomes a new white tile, making the board look like Figure 10-3. Black

makes a similar move next, placing a black tile on 4, 6 which flips the white tile at 4, 5. This

results in a board that looks like Figure 10-4.

White's move will flip over one of black's tiles. Black places a new tile, which flips over one of

white's tiles.

Tiles in all directions are flipped as long as they are in between the player's new tile and existing

tile. In Figure 10-5, the white player places a tile at 3, 6 and flips black tiles in both directions

(marked by the lines). The result is in Figure 10-6.

292 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

White's second move at 3, 6 will flip two of

black's tiles.

The board after white's second move.

As you can see, each player can quickly grab a majority of the tiles on the board in just one or

two moves. Players must always make a move that captures at least one tile. The game ends when

a player either cannot make a move, or the board is completely full. The player with the most tiles

of their color wins.

You can learn more about Reversi from Wikipedia: http://en.wikipedia.org/wiki/Reversi

A text version of this game that uses print() and input() instead of Pygame is featured in

Chapter 15 of ―Invent Your Own Computer Games with Python‖. You can read that chapter for

details about how the computer AI’s algorithm was put together.

http://inventwithpython.com/chapter15.html

The computer AI for this game is pretty good, because it is easy for a computer to simulate every

possible move and take the one that flips over the most tiles. It usually beats me whenever I play

it.

Source Code for Flippy
This source code can be downloaded from http://invpy.com/flippy.py.

The image files that Flippy uses can be downloaded from http://invpy.com/flippyimages.zip.

 1. # Flippy (an Othello or Reversi clone)

Chapter 10 – Four Extra Games 293

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Released under a "Simplified BSD" license

 5.

 6. # Based on the "reversi.py" code that originally appeared in "Invent

 7. # Your Own Computer Games with Python", chapter 15:

 8. # http://inventwithpython.com/chapter15.html

 9.

 10. import random, sys, pygame, time, copy

 11. from pygame.locals import *

 12.

 13. FPS = 10 # frames per second to update the screen

 14. WINDOWWIDTH = 640 # width of the program's window, in pixels

 15. WINDOWHEIGHT = 480 # height in pixels

 16. SPACESIZE = 50 # width & height of each space on the board, in pixels

 17. BOARDWIDTH = 8 # how many columns of spaces on the game board

 18. BOARDHEIGHT = 8 # how many rows of spaces on the game board

 19. WHITE_TILE = 'WHITE_TILE' # an arbitrary but unique value

 20. BLACK_TILE = 'BLACK_TILE' # an arbitrary but unique value

 21. EMPTY_SPACE = 'EMPTY_SPACE' # an arbitrary but unique value

 22. HINT_TILE = 'HINT_TILE' # an arbitrary but unique value

 23. ANIMATIONSPEED = 25 # integer from 1 to 100, higher is faster animation

 24.

 25. # Amount of space on the left & right side (XMARGIN) or above and below

 26. # (YMARGIN) the game board, in pixels.

 27. XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * SPACESIZE)) / 2)

 28. YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * SPACESIZE)) / 2)

 29.

 30. # R G B

 31. WHITE = (255, 255, 255)

 32. BLACK = (0, 0, 0)

 33. GREEN = (0, 155, 0)

 34. BRIGHTBLUE = (0, 50, 255)

 35. BROWN = (174, 94, 0)

 36.

 37. TEXTBGCOLOR1 = BRIGHTBLUE

 38. TEXTBGCOLOR2 = GREEN

 39. GRIDLINECOLOR = BLACK

 40. TEXTCOLOR = WHITE

 41. HINTCOLOR = BROWN

 42.

 43.

 44. def main():

 45. global MAINCLOCK, DISPLAYSURF, FONT, BIGFONT, BGIMAGE

 46.

 47. pygame.init()

294 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 48. MAINCLOCK = pygame.time.Clock()

 49. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 50. pygame.display.set_caption('Flippy')

 51. FONT = pygame.font.Font('freesansbold.ttf', 16)

 52. BIGFONT = pygame.font.Font('freesansbold.ttf', 32)

 53.

 54. # Set up the background image.

 55. boardImage = pygame.image.load('flippyboard.png')

 56. # Use smoothscale() to stretch the board image to fit the entire

board:

 57. boardImage = pygame.transform.smoothscale(boardImage, (BOARDWIDTH *

SPACESIZE, BOARDHEIGHT * SPACESIZE))

 58. boardImageRect = boardImage.get_rect()

 59. boardImageRect.topleft = (XMARGIN, YMARGIN)

 60. BGIMAGE = pygame.image.load('flippybackground.png')

 61. # Use smoothscale() to stretch the background image to fit the entire

window:

 62. BGIMAGE = pygame.transform.smoothscale(BGIMAGE, (WINDOWWIDTH,

WINDOWHEIGHT))

 63. BGIMAGE.blit(boardImage, boardImageRect)

 64.

 65. # Run the main game.

 66. while True:

 67. if runGame() == False:

 68. break

 69.

 70.

 71. def runGame():

 72. # Plays a single game of reversi each time this function is called.

 73.

 74. # Reset the board and game.

 75. mainBoard = getNewBoard()

 76. resetBoard(mainBoard)

 77. showHints = False

 78. turn = random.choice(['computer', 'player'])

 79.

 80. # Draw the starting board and ask the player what color they want.

 81. drawBoard(mainBoard)

 82. playerTile, computerTile = enterPlayerTile()

 83.

 84. # Make the Surface and Rect objects for the "New Game" and "Hints"

buttons

 85. newGameSurf = FONT.render('New Game', True, TEXTCOLOR, TEXTBGCOLOR2)

 86. newGameRect = newGameSurf.get_rect()

 87. newGameRect.topright = (WINDOWWIDTH - 8, 10)

 88. hintsSurf = FONT.render('Hints', True, TEXTCOLOR, TEXTBGCOLOR2)

Chapter 10 – Four Extra Games 295

 89. hintsRect = hintsSurf.get_rect()

 90. hintsRect.topright = (WINDOWWIDTH - 8, 40)

 91.

 92. while True: # main game loop

 93. # Keep looping for player and computer's turns.

 94. if turn == 'player':

 95. # Player's turn:

 96. if getValidMoves(mainBoard, playerTile) == []:

 97. # If it's the player's turn but they

 98. # can't move, then end the game.

 99. break

100. movexy = None

101. while movexy == None:

102. # Keep looping until the player clicks on a valid space.

103.

104. # Determine which board data structure to use for display.

105. if showHints:

106. boardToDraw = getBoardWithValidMoves(mainBoard,

playerTile)

107. else:

108. boardToDraw = mainBoard

109.

110. checkForQuit()

111. for event in pygame.event.get(): # event handling loop

112. if event.type == MOUSEBUTTONUP:

113. # Handle mouse click events

114. mousex, mousey = event.pos

115. if newGameRect.collidepoint((mousex, mousey)):

116. # Start a new game

117. return True

118. elif hintsRect.collidepoint((mousex, mousey)):

119. # Toggle hints mode

120. showHints = not showHints

121. # movexy is set to a two-item tuple XY coordinate,

or None value

122. movexy = getSpaceClicked(mousex, mousey)

123. if movexy != None and not isValidMove(mainBoard,

playerTile, movexy[0], movexy[1]):

124. movexy = None

125.

126. # Draw the game board.

127. drawBoard(boardToDraw)

128. drawInfo(boardToDraw, playerTile, computerTile, turn)

129.

130. # Draw the "New Game" and "Hints" buttons.

131. DISPLAYSURF.blit(newGameSurf, newGameRect)

296 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

132. DISPLAYSURF.blit(hintsSurf, hintsRect)

133.

134. MAINCLOCK.tick(FPS)

135. pygame.display.update()

136.

137. # Make the move and end the turn.

138. makeMove(mainBoard, playerTile, movexy[0], movexy[1], True)

139. if getValidMoves(mainBoard, computerTile) != []:

140. # Only set for the computer's turn if it can make a move.

141. turn = 'computer'

142.

143. else:

144. # Computer's turn:

145. if getValidMoves(mainBoard, computerTile) == []:

146. # If it was set to be the computer's turn but

147. # they can't move, then end the game.

148. break

149.

150. # Draw the board.

151. drawBoard(mainBoard)

152. drawInfo(mainBoard, playerTile, computerTile, turn)

153.

154. # Draw the "New Game" and "Hints" buttons.

155. DISPLAYSURF.blit(newGameSurf, newGameRect)

156. DISPLAYSURF.blit(hintsSurf, hintsRect)

157.

158. # Make it look like the computer is thinking by pausing a bit.

159. pauseUntil = time.time() + random.randint(5, 15) * 0.1

160. while time.time() < pauseUntil:

161. pygame.display.update()

162.

163. # Make the move and end the turn.

164. x, y = getComputerMove(mainBoard, computerTile)

165. makeMove(mainBoard, computerTile, x, y, True)

166. if getValidMoves(mainBoard, playerTile) != []:

167. # Only set for the player's turn if they can make a move.

168. turn = 'player'

169.

170. # Display the final score.

171. drawBoard(mainBoard)

172. scores = getScoreOfBoard(mainBoard)

173.

174. # Determine the text of the message to display.

175. if scores[playerTile] > scores[computerTile]:

176. text = 'You beat the computer by %s points! Congratulations!' % \

177. (scores[playerTile] - scores[computerTile])

Chapter 10 – Four Extra Games 297

178. elif scores[playerTile] < scores[computerTile]:

179. text = 'You lost. The computer beat you by %s points.' % \

180. (scores[computerTile] - scores[playerTile])

181. else:

182. text = 'The game was a tie!'

183.

184. textSurf = FONT.render(text, True, TEXTCOLOR, TEXTBGCOLOR1)

185. textRect = textSurf.get_rect()

186. textRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2))

187. DISPLAYSURF.blit(textSurf, textRect)

188.

189. # Display the "Play again?" text with Yes and No buttons.

190. text2Surf = BIGFONT.render('Play again?', True, TEXTCOLOR,

TEXTBGCOLOR1)

191. text2Rect = text2Surf.get_rect()

192. text2Rect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2) + 50)

193.

194. # Make "Yes" button.

195. yesSurf = BIGFONT.render('Yes', True, TEXTCOLOR, TEXTBGCOLOR1)

196. yesRect = yesSurf.get_rect()

197. yesRect.center = (int(WINDOWWIDTH / 2) - 60, int(WINDOWHEIGHT / 2) +

90)

198.

199. # Make "No" button.

200. noSurf = BIGFONT.render('No', True, TEXTCOLOR, TEXTBGCOLOR1)

201. noRect = noSurf.get_rect()

202. noRect.center = (int(WINDOWWIDTH / 2) + 60, int(WINDOWHEIGHT / 2) +

90)

203.

204. while True:

205. # Process events until the user clicks on Yes or No.

206. checkForQuit()

207. for event in pygame.event.get(): # event handling loop

208. if event.type == MOUSEBUTTONUP:

209. mousex, mousey = event.pos

210. if yesRect.collidepoint((mousex, mousey)):

211. return True

212. elif noRect.collidepoint((mousex, mousey)):

213. return False

214. DISPLAYSURF.blit(textSurf, textRect)

215. DISPLAYSURF.blit(text2Surf, text2Rect)

216. DISPLAYSURF.blit(yesSurf, yesRect)

217. DISPLAYSURF.blit(noSurf, noRect)

218. pygame.display.update()

219. MAINCLOCK.tick(FPS)

220.

298 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

221.

222. def translateBoardToPixelCoord(x, y):

223. return XMARGIN + x * SPACESIZE + int(SPACESIZE / 2), YMARGIN + y *

SPACESIZE + int(SPACESIZE / 2)

224.

225.

226. def animateTileChange(tilesToFlip, tileColor, additionalTile):

227. # Draw the additional tile that was just laid down. (Otherwise we'd

228. # have to completely redraw the board & the board info.)

229. if tileColor == WHITE_TILE:

230. additionalTileColor = WHITE

231. else:

232. additionalTileColor = BLACK

233. additionalTileX, additionalTileY =

translateBoardToPixelCoord(additionalTile[0], additionalTile[1])

234. pygame.draw.circle(DISPLAYSURF, additionalTileColor, (additionalTileX,

additionalTileY), int(SPACESIZE / 2) - 4)

235. pygame.display.update()

236.

237. for rgbValues in range(0, 255, int(ANIMATIONSPEED * 2.55)):

238. if rgbValues > 255:

239. rgbValues = 255

240. elif rgbValues < 0:

241. rgbValues = 0

242.

243. if tileColor == WHITE_TILE:

244. color = tuple([rgbValues] * 3) # rgbValues goes from 0 to 255

245. elif tileColor == BLACK_TILE:

246. color = tuple([255 - rgbValues] * 3) # rgbValues goes from 255

to 0

247.

248. for x, y in tilesToFlip:

249. centerx, centery = translateBoardToPixelCoord(x, y)

250. pygame.draw.circle(DISPLAYSURF, color, (centerx, centery),

int(SPACESIZE / 2) - 4)

251. pygame.display.update()

252. MAINCLOCK.tick(FPS)

253. checkForQuit()

254.

255.

256. def drawBoard(board):

257. # Draw background of board.

258. DISPLAYSURF.blit(BGIMAGE, BGIMAGE.get_rect())

259.

260. # Draw grid lines of the board.

261. for x in range(BOARDWIDTH + 1):

Chapter 10 – Four Extra Games 299

262. # Draw the horizontal lines.

263. startx = (x * SPACESIZE) + XMARGIN

264. starty = YMARGIN

265. endx = (x * SPACESIZE) + XMARGIN

266. endy = YMARGIN + (BOARDHEIGHT * SPACESIZE)

267. pygame.draw.line(DISPLAYSURF, GRIDLINECOLOR, (startx, starty),

(endx, endy))

268. for y in range(BOARDHEIGHT + 1):

269. # Draw the vertical lines.

270. startx = XMARGIN

271. starty = (y * SPACESIZE) + YMARGIN

272. endx = XMARGIN + (BOARDWIDTH * SPACESIZE)

273. endy = (y * SPACESIZE) + YMARGIN

274. pygame.draw.line(DISPLAYSURF, GRIDLINECOLOR, (startx, starty),

(endx, endy))

275.

276. # Draw the black & white tiles or hint spots.

277. for x in range(BOARDWIDTH):

278. for y in range(BOARDHEIGHT):

279. centerx, centery = translateBoardToPixelCoord(x, y)

280. if board[x][y] == WHITE_TILE or board[x][y] == BLACK_TILE:

281. if board[x][y] == WHITE_TILE:

282. tileColor = WHITE

283. else:

284. tileColor = BLACK

285. pygame.draw.circle(DISPLAYSURF, tileColor, (centerx,

centery), int(SPACESIZE / 2) - 4)

286. if board[x][y] == HINT_TILE:

287. pygame.draw.rect(DISPLAYSURF, HINTCOLOR, (centerx - 4,

centery - 4, 8, 8))

288.

289.

290. def getSpaceClicked(mousex, mousey):

291. # Return a tuple of two integers of the board space coordinates where

292. # the mouse was clicked. (Or returns None not in any space.)

293. for x in range(BOARDWIDTH):

294. for y in range(BOARDHEIGHT):

295. if mousex > x * SPACESIZE + XMARGIN and \

296. mousex < (x + 1) * SPACESIZE + XMARGIN and \

297. mousey > y * SPACESIZE + YMARGIN and \

298. mousey < (y + 1) * SPACESIZE + YMARGIN:

299. return (x, y)

300. return None

301.

302.

303. def drawInfo(board, playerTile, computerTile, turn):

300 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

304. # Draws scores and whose turn it is at the bottom of the screen.

305. scores = getScoreOfBoard(board)

306. scoreSurf = FONT.render("Player Score: %s Computer Score: %s

%s's Turn" % (str(scores[playerTile]), str(scores[computerTile]),

turn.title()), True, TEXTCOLOR)

307. scoreRect = scoreSurf.get_rect()

308. scoreRect.bottomleft = (10, WINDOWHEIGHT - 5)

309. DISPLAYSURF.blit(scoreSurf, scoreRect)

310.

311.

312. def resetBoard(board):

313. # Blanks out the board it is passed, and sets up starting tiles.

314. for x in range(BOARDWIDTH):

315. for y in range(BOARDHEIGHT):

316. board[x][y] = EMPTY_SPACE

317.

318. # Add starting pieces to the center

319. board[3][3] = WHITE_TILE

320. board[3][4] = BLACK_TILE

321. board[4][3] = BLACK_TILE

322. board[4][4] = WHITE_TILE

323.

324.

325. def getNewBoard():

326. # Creates a brand new, empty board data structure.

327. board = []

328. for i in range(BOARDWIDTH):

329. board.append([EMPTY_SPACE] * BOARDHEIGHT)

330.

331. return board

332.

333.

334. def isValidMove(board, tile, xstart, ystart):

335. # Returns False if the player's move is invalid. If it is a valid

336. # move, returns a list of spaces of the captured pieces.

337. if board[xstart][ystart] != EMPTY_SPACE or not isOnBoard(xstart,

ystart):

338. return False

339.

340. board[xstart][ystart] = tile # temporarily set the tile on the board.

341.

342. if tile == WHITE_TILE:

343. otherTile = BLACK_TILE

344. else:

345. otherTile = WHITE_TILE

346.

Chapter 10 – Four Extra Games 301

347. tilesToFlip = []

348. # check each of the eight directions:

349. for xdirection, ydirection in [[0, 1], [1, 1], [1, 0], [1, -1], [0, -

1], [-1, -1], [-1, 0], [-1, 1]]:

350. x, y = xstart, ystart

351. x += xdirection

352. y += ydirection

353. if isOnBoard(x, y) and board[x][y] == otherTile:

354. # The piece belongs to the other player next to our piece.

355. x += xdirection

356. y += ydirection

357. if not isOnBoard(x, y):

358. continue

359. while board[x][y] == otherTile:

360. x += xdirection

361. y += ydirection

362. if not isOnBoard(x, y):

363. break # break out of while loop, continue in for loop

364. if not isOnBoard(x, y):

365. continue

366. if board[x][y] == tile:

367. # There are pieces to flip over. Go in the reverse

368. # direction until we reach the original space, noting all

369. # the tiles along the way.

370. while True:

371. x -= xdirection

372. y -= ydirection

373. if x == xstart and y == ystart:

374. break

375. tilesToFlip.append([x, y])

376.

377. board[xstart][ystart] = EMPTY_SPACE # make space empty

378. if len(tilesToFlip) == 0: # If no tiles flipped, this move is invalid

379. return False

380. return tilesToFlip

381.

382.

383. def isOnBoard(x, y):

384. # Returns True if the coordinates are located on the board.

385. return x >= 0 and x < BOARDWIDTH and y >= 0 and y < BOARDHEIGHT

386.

387.

388. def getBoardWithValidMoves(board, tile):

389. # Returns a new board with hint markings.

390. dupeBoard = copy.deepcopy(board)

391.

302 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

392. for x, y in getValidMoves(dupeBoard, tile):

393. dupeBoard[x][y] = HINT_TILE

394. return dupeBoard

395.

396.

397. def getValidMoves(board, tile):

398. # Returns a list of (x,y) tuples of all valid moves.

399. validMoves = []

400.

401. for x in range(BOARDWIDTH):

402. for y in range(BOARDHEIGHT):

403. if isValidMove(board, tile, x, y) != False:

404. validMoves.append((x, y))

405. return validMoves

406.

407.

408. def getScoreOfBoard(board):

409. # Determine the score by counting the tiles.

410. xscore = 0

411. oscore = 0

412. for x in range(BOARDWIDTH):

413. for y in range(BOARDHEIGHT):

414. if board[x][y] == WHITE_TILE:

415. xscore += 1

416. if board[x][y] == BLACK_TILE:

417. oscore += 1

418. return {WHITE_TILE:xscore, BLACK_TILE:oscore}

419.

420.

421. def enterPlayerTile():

422. # Draws the text and handles the mouse click events for letting

423. # the player choose which color they want to be. Returns

424. # [WHITE_TILE, BLACK_TILE] if the player chooses to be White,

425. # [BLACK_TILE, WHITE_TILE] if Black.

426.

427. # Create the text.

428. textSurf = FONT.render('Do you want to be white or black?', True,

TEXTCOLOR, TEXTBGCOLOR1)

429. textRect = textSurf.get_rect()

430. textRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2))

431.

432. xSurf = BIGFONT.render('White', True, TEXTCOLOR, TEXTBGCOLOR1)

433. xRect = xSurf.get_rect()

434. xRect.center = (int(WINDOWWIDTH / 2) - 60, int(WINDOWHEIGHT / 2) + 40)

435.

436. oSurf = BIGFONT.render('Black', True, TEXTCOLOR, TEXTBGCOLOR1)

Chapter 10 – Four Extra Games 303

437. oRect = oSurf.get_rect()

438. oRect.center = (int(WINDOWWIDTH / 2) + 60, int(WINDOWHEIGHT / 2) + 40)

439.

440. while True:

441. # Keep looping until the player has clicked on a color.

442. checkForQuit()

443. for event in pygame.event.get(): # event handling loop

444. if event.type == MOUSEBUTTONUP:

445. mousex, mousey = event.pos

446. if xRect.collidepoint((mousex, mousey)):

447. return [WHITE_TILE, BLACK_TILE]

448. elif oRect.collidepoint((mousex, mousey)):

449. return [BLACK_TILE, WHITE_TILE]

450.

451. # Draw the screen.

452. DISPLAYSURF.blit(textSurf, textRect)

453. DISPLAYSURF.blit(xSurf, xRect)

454. DISPLAYSURF.blit(oSurf, oRect)

455. pygame.display.update()

456. MAINCLOCK.tick(FPS)

457.

458.

459. def makeMove(board, tile, xstart, ystart, realMove=False):

460. # Place the tile on the board at xstart, ystart, and flip tiles

461. # Returns False if this is an invalid move, True if it is valid.

462. tilesToFlip = isValidMove(board, tile, xstart, ystart)

463.

464. if tilesToFlip == False:

465. return False

466.

467. board[xstart][ystart] = tile

468.

469. if realMove:

470. animateTileChange(tilesToFlip, tile, (xstart, ystart))

471.

472. for x, y in tilesToFlip:

473. board[x][y] = tile

474. return True

475.

476.

477. def isOnCorner(x, y):

478. # Returns True if the position is in one of the four corners.

479. return (x == 0 and y == 0) or \

480. (x == BOARDWIDTH and y == 0) or \

481. (x == 0 and y == BOARDHEIGHT) or \

482. (x == BOARDWIDTH and y == BOARDHEIGHT)

304 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

483.

484.

485. def getComputerMove(board, computerTile):

486. # Given a board and the computer's tile, determine where to

487. # move and return that move as a [x, y] list.

488. possibleMoves = getValidMoves(board, computerTile)

489.

490. # randomize the order of the possible moves

491. random.shuffle(possibleMoves)

492.

493. # always go for a corner if available.

494. for x, y in possibleMoves:

495. if isOnCorner(x, y):

496. return [x, y]

497.

498. # Go through all possible moves and remember the best scoring move

499. bestScore = -1

500. for x, y in possibleMoves:

501. dupeBoard = copy.deepcopy(board)

502. makeMove(dupeBoard, computerTile, x, y)

503. score = getScoreOfBoard(dupeBoard)[computerTile]

504. if score > bestScore:

505. bestMove = [x, y]

506. bestScore = score

507. return bestMove

508.

509.

510. def checkForQuit():

511. for event in pygame.event.get((QUIT, KEYUP)): # event handling loop

512. if event.type == QUIT or (event.type == KEYUP and event.key ==

K_ESCAPE):

513. pygame.quit()

514. sys.exit()

515.

516.

517. if __name__ == '__main__':

518. main()

Chapter 10 – Four Extra Games 305

Ink Spill, a “Flood It” Clone

The game ―Flood It‖ begins with a board filled with colored tiles. On each turn the player chooses

a new color to paint the top left tile and any tiles adjacent to it of that same color. This game

makes use of the flood fill algorithm (described in the Star Pusher chapter). The goal of the game

is to turn the entire board into a single color before running out of turns.

This game also has a Settings screen where the player can change the size of the board and the

difficulty of the game. If the player gets board of the colors, there are a few other color schemes

they can switch to as well.

Source Code for Ink Spill
This source code can be downloaded from http://invpy.com/inkspill.py.

The image files that Flippy uses can be downloaded from http://invpy.com/inkspillimages.zip.

 1. # Ink Spill (a Flood It clone)

 2. # http://inventwithpython.com/pygame

 3. # By Al Sweigart al@inventwithpython.com

 4. # Released under a "Simplified BSD" license

 5.

 6. import random, sys, webbrowser, copy, pygame

 7. from pygame.locals import *

 8.

 9. # There are different box sizes, number of boxes, and

 10. # life depending on the "board size" setting selected.

 11. SMALLBOXSIZE = 60 # size is in pixels

 12. MEDIUMBOXSIZE = 20

 13. LARGEBOXSIZE = 11

 14.

 15. SMALLBOARDSIZE = 6 # size is in boxes

306 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 16. MEDIUMBOARDSIZE = 17

 17. LARGEBOARDSIZE = 30

 18.

 19. SMALLMAXLIFE = 10 # number of turns

 20. MEDIUMMAXLIFE = 30

 21. LARGEMAXLIFE = 64

 22.

 23. FPS = 30

 24. WINDOWWIDTH = 640

 25. WINDOWHEIGHT = 480

 26. boxSize = MEDIUMBOXSIZE

 27. PALETTEGAPSIZE = 10

 28. PALETTESIZE = 45

 29. EASY = 0 # arbitrary but unique value

 30. MEDIUM = 1 # arbitrary but unique value

 31. HARD = 2 # arbitrary but unique value

 32.

 33. difficulty = MEDIUM # game starts in "medium" mode

 34. maxLife = MEDIUMMAXLIFE

 35. boardWidth = MEDIUMBOARDSIZE

 36. boardHeight = MEDIUMBOARDSIZE

 37.

 38.

 39. # R G B

 40. WHITE = (255, 255, 255)

 41. DARKGRAY = (70, 70, 70)

 42. BLACK = (0, 0, 0)

 43. RED = (255, 0, 0)

 44. GREEN = (0, 255, 0)

 45. BLUE = (0, 0, 255)

 46. YELLOW = (255, 255, 0)

 47. ORANGE = (255, 128, 0)

 48. PURPLE = (255, 0, 255)

 49.

 50. # The first color in each scheme is the background color, the next six are

the palette colors.

 51. COLORSCHEMES = (((150, 200, 255), RED, GREEN, BLUE, YELLOW, ORANGE,

PURPLE),

 52. ((0, 155, 104), (97, 215, 164), (228, 0, 69), (0, 125,

50), (204, 246, 0), (148, 0, 45), (241, 109, 149)),

 53. ((195, 179, 0), (255, 239, 115), (255, 226, 0), (147, 3,

167), (24, 38, 176), (166, 147, 0), (197, 97, 211)),

 54. ((85, 0, 0), (155, 39, 102), (0, 201, 13), (255,

118, 0), (206, 0, 113), (0, 130, 9), (255, 180, 115)),

 55. ((191, 159, 64), (183, 182, 208), (4, 31, 183), (167,

184, 45), (122, 128, 212), (37, 204, 7), (88, 155, 213)),

Chapter 10 – Four Extra Games 307

 56. ((200, 33, 205), (116, 252, 185), (68, 56, 56), (52, 238,

83), (23, 149, 195), (222, 157, 227), (212, 86, 185)))

 57. for i in range(len(COLORSCHEMES)):

 58. assert len(COLORSCHEMES[i]) == 7, 'Color scheme %s does not have

exactly 7 colors.' % (i)

 59. bgColor = COLORSCHEMES[0][0]

 60. paletteColors = COLORSCHEMES[0][1:]

 61.

 62. def main():

 63. global FPSCLOCK, DISPLAYSURF, LOGOIMAGE, SPOTIMAGE, SETTINGSIMAGE,

SETTINGSBUTTONIMAGE, RESETBUTTONIMAGE

 64.

 65. pygame.init()

 66. FPSCLOCK = pygame.time.Clock()

 67. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 68.

 69. # Load images

 70. LOGOIMAGE = pygame.image.load('inkspilllogo.png')

 71. SPOTIMAGE = pygame.image.load('inkspillspot.png')

 72. SETTINGSIMAGE = pygame.image.load('inkspillsettings.png')

 73. SETTINGSBUTTONIMAGE = pygame.image.load('inkspillsettingsbutton.png')

 74. RESETBUTTONIMAGE = pygame.image.load('inkspillresetbutton.png')

 75.

 76. pygame.display.set_caption('Ink Spill')

 77. mousex = 0

 78. mousey = 0

 79. mainBoard = generateRandomBoard(boardWidth, boardHeight, difficulty)

 80. life = maxLife

 81. lastPaletteClicked = None

 82.

 83. while True: # main game loop

 84. paletteClicked = None

 85. resetGame = False

 86.

 87. # Draw the screen.

 88. DISPLAYSURF.fill(bgColor)

 89. drawLogoAndButtons()

 90. drawBoard(mainBoard)

 91. drawLifeMeter(life)

 92. drawPalettes()

 93.

 94. checkForQuit()

 95. for event in pygame.event.get(): # event handling loop

 96. if event.type == MOUSEBUTTONUP:

 97. mousex, mousey = event.pos

308 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 98. if pygame.Rect(WINDOWWIDTH -

SETTINGSBUTTONIMAGE.get_width(),

 99. WINDOWHEIGHT -

SETTINGSBUTTONIMAGE.get_height(),

100. SETTINGSBUTTONIMAGE.get_width(),

101.

SETTINGSBUTTONIMAGE.get_height()).collidepoint(mousex, mousey):

102. resetGame = showSettingsScreen() # clicked on Settings

button

103. elif pygame.Rect(WINDOWWIDTH -

RESETBUTTONIMAGE.get_width(),

104. WINDOWHEIGHT -

SETTINGSBUTTONIMAGE.get_height() - RESETBUTTONIMAGE.get_height(),

105. RESETBUTTONIMAGE.get_width(),

106.

RESETBUTTONIMAGE.get_height()).collidepoint(mousex, mousey):

107. resetGame = True # clicked on Reset button

108. else:

109. # check if a palette button was clicked

110. paletteClicked = getColorOfPaletteAt(mousex, mousey)

111.

112. if paletteClicked != None and paletteClicked !=

lastPaletteClicked:

113. # a palette button was clicked that is different from the

114. # last palette button clicked (this check prevents the player

115. # from accidentally clicking the same palette twice)

116. lastPaletteClicked = paletteClicked

117. floodAnimation(mainBoard, paletteClicked)

118. life -= 1

119.

120. resetGame = False

121. if hasWon(mainBoard):

122. for i in range(4): # flash border 4 times

123. flashBorderAnimation(WHITE, mainBoard)

124. resetGame = True

125. pygame.time.wait(2000) # pause so the player can bask in

victory

126. elif life == 0:

127. # life is zero, so player has lost

128. drawLifeMeter(0)

129. pygame.display.update()

130. pygame.time.wait(400)

131. for i in range(4):

132. flashBorderAnimation(BLACK, mainBoard)

133. resetGame = True

Chapter 10 – Four Extra Games 309

134. pygame.time.wait(2000) # pause so the player can suffer in

their defeat

135.

136. if resetGame:

137. # start a new game

138. mainBoard = generateRandomBoard(boardWidth, boardHeight,

difficulty)

139. life = maxLife

140. lastPaletteClicked = None

141.

142. pygame.display.update()

143. FPSCLOCK.tick(FPS)

144.

145.

146. def checkForQuit():

147. # Terminates the program if there are any QUIT or escape key events.

148. for event in pygame.event.get(QUIT): # get all the QUIT events

149. pygame.quit() # terminate if any QUIT events are present

150. sys.exit()

151. for event in pygame.event.get(KEYUP): # get all the KEYUP events

152. if event.key == K_ESCAPE:

153. pygame.quit() # terminate if the KEYUP event was for the Esc

key

154. sys.exit()

155. pygame.event.post(event) # put the other KEYUP event objects back

156.

157.

158. def hasWon(board):

159. # if the entire board is the same color, player has won

160. for x in range(boardWidth):

161. for y in range(boardHeight):

162. if board[x][y] != board[0][0]:

163. return False # found a different color, player has not won

164. return True

165.

166.

167. def showSettingsScreen():

168. global difficulty, boxSize, boardWidth, boardHeight, maxLife,

paletteColors, bgColor

169.

170. # The pixel coordinates in this function were obtained by loading

171. # the inkspillsettings.png image into a graphics editor and reading

172. # the pixel coordinates from there. Handy trick.

173.

174. origDifficulty = difficulty

175. origBoxSize = boxSize

310 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

176. screenNeedsRedraw = True

177.

178. while True:

179. if screenNeedsRedraw:

180. DISPLAYSURF.fill(bgColor)

181. DISPLAYSURF.blit(SETTINGSIMAGE, (0,0))

182.

183. # place the ink spot marker next to the selected difficulty

184. if difficulty == EASY:

185. DISPLAYSURF.blit(SPOTIMAGE, (30, 4))

186. if difficulty == MEDIUM:

187. DISPLAYSURF.blit(SPOTIMAGE, (8, 41))

188. if difficulty == HARD:

189. DISPLAYSURF.blit(SPOTIMAGE, (30, 76))

190.

191. # place the ink spot marker next to the selected size

192. if boxSize == SMALLBOXSIZE:

193. DISPLAYSURF.blit(SPOTIMAGE, (22, 150))

194. if boxSize == MEDIUMBOXSIZE:

195. DISPLAYSURF.blit(SPOTIMAGE, (11, 185))

196. if boxSize == LARGEBOXSIZE:

197. DISPLAYSURF.blit(SPOTIMAGE, (24, 220))

198.

199. for i in range(len(COLORSCHEMES)):

200. drawColorSchemeBoxes(500, i * 60 + 30, i)

201.

202. pygame.display.update()

203.

204. screenNeedsRedraw = False # by default, don't redraw the screen

205. for event in pygame.event.get(): # event handling loop

206. if event.type == QUIT:

207. pygame.quit()

208. sys.exit()

209. elif event.type == KEYUP:

210. if event.key == K_ESCAPE:

211. # Esc key on settings screen goes back to game

212. return not (origDifficulty == difficulty and

origBoxSize == boxSize)

213. elif event.type == MOUSEBUTTONUP:

214. screenNeedsRedraw = True # screen should be redrawn

215. mousex, mousey = event.pos # syntactic sugar

216.

217. # check for clicks on the difficulty buttons

218. if pygame.Rect(74, 16, 111, 30).collidepoint(mousex,

mousey):

219. difficulty = EASY

Chapter 10 – Four Extra Games 311

220. elif pygame.Rect(53, 50, 104, 29).collidepoint(mousex,

mousey):

221. difficulty = MEDIUM

222. elif pygame.Rect(72, 85, 65, 31).collidepoint(mousex,

mousey):

223. difficulty = HARD

224.

225. # check for clicks on the size buttons

226. elif pygame.Rect(63, 156, 84, 31).collidepoint(mousex,

mousey):

227. # small board size setting:

228. boxSize = SMALLBOXSIZE

229. boardWidth = SMALLBOARDSIZE

230. boardHeight = SMALLBOARDSIZE

231. maxLife = SMALLMAXLIFE

232. elif pygame.Rect(52, 192, 106,32).collidepoint(mousex,

mousey):

233. # medium board size setting:

234. boxSize = MEDIUMBOXSIZE

235. boardWidth = MEDIUMBOARDSIZE

236. boardHeight = MEDIUMBOARDSIZE

237. maxLife = MEDIUMMAXLIFE

238. elif pygame.Rect(67, 228, 58, 37).collidepoint(mousex,

mousey):

239. # large board size setting:

240. boxSize = LARGEBOXSIZE

241. boardWidth = LARGEBOARDSIZE

242. boardHeight = LARGEBOARDSIZE

243. maxLife = LARGEMAXLIFE

244. elif pygame.Rect(14, 299, 371, 97).collidepoint(mousex,

mousey):

245. # clicked on the "learn programming" ad

246. webbrowser.open('http://inventwithpython.com') # opens

a web browser

247. elif pygame.Rect(178, 418, 215, 34).collidepoint(mousex,

mousey):

248. # clicked on the "back to game" button

249. return not (origDifficulty == difficulty and

origBoxSize == boxSize)

250.

251. for i in range(len(COLORSCHEMES)):

252. # clicked on a color scheme button

253. if pygame.Rect(500, 30 + i * 60, MEDIUMBOXSIZE * 3,

MEDIUMBOXSIZE * 2).collidepoint(mousex, mousey):

254. bgColor = COLORSCHEMES[i][0]

255. paletteColors = COLORSCHEMES[i][1:]

312 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

256.

257.

258. def drawColorSchemeBoxes(x, y, schemeNum):

259. # Draws the color scheme boxes that appear on the "Settings" screen.

260. for boxy in range(2):

261. for boxx in range(3):

262. pygame.draw.rect(DISPLAYSURF, COLORSCHEMES[schemeNum][3 * boxy

+ boxx + 1], (x + MEDIUMBOXSIZE * boxx, y + MEDIUMBOXSIZE * boxy,

MEDIUMBOXSIZE, MEDIUMBOXSIZE))

263. if paletteColors == COLORSCHEMES[schemeNum][1:]:

264. # put the ink spot next to the selected color scheme

265. DISPLAYSURF.blit(SPOTIMAGE, (x - 50, y))

266.

267.

268. def flashBorderAnimation(color, board, animationSpeed=30):

269. origSurf = DISPLAYSURF.copy()

270. flashSurf = pygame.Surface(DISPLAYSURF.get_size())

271. flashSurf = flashSurf.convert_alpha()

272. for start, end, step in ((0, 256, 1), (255, 0, -1)):

273. # the first iteration on the outer loop will set the inner loop

274. # to have transparency go from 0 to 255, the second iteration will

275. # have it go from 255 to 0. This is the "flash".

276. for transparency in range(start, end, animationSpeed * step):

277. DISPLAYSURF.blit(origSurf, (0, 0))

278. r, g, b = color

279. flashSurf.fill((r, g, b, transparency))

280. DISPLAYSURF.blit(flashSurf, (0, 0))

281. drawBoard(board) # draw board ON TOP OF the transparency layer

282. pygame.display.update()

283. FPSCLOCK.tick(FPS)

284. DISPLAYSURF.blit(origSurf, (0, 0)) # redraw the original surface

285.

286.

287. def floodAnimation(board, paletteClicked, animationSpeed=25):

288. origBoard = copy.deepcopy(board)

289. floodFill(board, board[0][0], paletteClicked, 0, 0)

290.

291. for transparency in range(0, 255, animationSpeed):

292. # The "new" board slowly become opaque over the original board.

293. drawBoard(origBoard)

294. drawBoard(board, transparency)

295. pygame.display.update()

296. FPSCLOCK.tick(FPS)

297.

298.

299. def generateRandomBoard(width, height, difficulty=MEDIUM):

Chapter 10 – Four Extra Games 313

300. # Creates a board data structure with random colors for each box.

301. board = []

302. for x in range(width):

303. column = []

304. for y in range(height):

305. column.append(random.randint(0, len(paletteColors) - 1))

306. board.append(column)

307.

308. # Make board easier by setting some boxes to same color as a neighbor.

309.

310. # Determine how many boxes to change.

311. if difficulty == EASY:

312. if boxSize == SMALLBOXSIZE:

313. boxesToChange = 100

314. else:

315. boxesToChange = 1500

316. elif difficulty == MEDIUM:

317. if boxSize == SMALLBOXSIZE:

318. boxesToChange = 5

319. else:

320. boxesToChange = 200

321. else:

322. boxesToChange = 0

323.

324. # Change neighbor's colors:

325. for i in range(boxesToChange):

326. # Randomly choose a box whose color to copy

327. x = random.randint(1, width-2)

328. y = random.randint(1, height-2)

329.

330. # Randomly choose neighbors to change.

331. direction = random.randint(0, 3)

332. if direction == 0: # change left and up neighbor

333. board[x-1][y] == board[x][y]

334. board[x][y-1] == board[x][y]

335. elif direction == 1: # change right and down neighbor

336. board[x+1][y] == board[x][y]

337. board[x][y+1] == board[x][y]

338. elif direction == 2: # change right and up neighbor

339. board[x][y-1] == board[x][y]

340. board[x+1][y] == board[x][y]

341. else: # change left and down neighbor

342. board[x][y+1] == board[x][y]

343. board[x-1][y] == board[x][y]

344. return board

345.

314 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

346.

347. def drawLogoAndButtons():

348. # draw the Ink Spill logo and Settings and Reset buttons.

349. DISPLAYSURF.blit(LOGOIMAGE, (WINDOWWIDTH - LOGOIMAGE.get_width(), 0))

350. DISPLAYSURF.blit(SETTINGSBUTTONIMAGE, (WINDOWWIDTH -

SETTINGSBUTTONIMAGE.get_width(), WINDOWHEIGHT -

SETTINGSBUTTONIMAGE.get_height()))

351. DISPLAYSURF.blit(RESETBUTTONIMAGE, (WINDOWWIDTH -

RESETBUTTONIMAGE.get_width(), WINDOWHEIGHT - SETTINGSBUTTONIMAGE.get_height() -

RESETBUTTONIMAGE.get_height()))

352.

353.

354. def drawBoard(board, transparency=255):

355. # The colored squares are drawn to a temporary surface which is then

356. # drawn to the DISPLAYSURF surface. This is done so we can draw the

357. # squares with transparency on top of DISPLAYSURF as it currently is.

358. tempSurf = pygame.Surface(DISPLAYSURF.get_size())

359. tempSurf = tempSurf.convert_alpha()

360. tempSurf.fill((0, 0, 0, 0))

361.

362. for x in range(boardWidth):

363. for y in range(boardHeight):

364. left, top = leftTopPixelCoordOfBox(x, y)

365. r, g, b = paletteColors[board[x][y]]

366. pygame.draw.rect(tempSurf, (r, g, b, transparency), (left,

top, boxSize, boxSize))

367. left, top = leftTopPixelCoordOfBox(0, 0)

368. pygame.draw.rect(tempSurf, BLACK, (left-1, top-1, boxSize * boardWidth

+ 1, boxSize * boardHeight + 1), 1)

369. DISPLAYSURF.blit(tempSurf, (0, 0))

370.

371.

372. def drawPalettes():

373. # Draws the six color palettes at the bottom of the screen.

374. numColors = len(paletteColors)

375. xmargin = int((WINDOWWIDTH - ((PALETTESIZE * numColors) +

(PALETTEGAPSIZE * (numColors - 1)))) / 2)

376. for i in range(numColors):

377. left = xmargin + (i * PALETTESIZE) + (i * PALETTEGAPSIZE)

378. top = WINDOWHEIGHT - PALETTESIZE - 10

379. pygame.draw.rect(DISPLAYSURF, paletteColors[i], (left, top,

PALETTESIZE, PALETTESIZE))

380. pygame.draw.rect(DISPLAYSURF, bgColor, (left + 2, top + 2,

PALETTESIZE - 4, PALETTESIZE - 4), 2)

381.

382.

Chapter 10 – Four Extra Games 315

383. def drawLifeMeter(currentLife):

384. lifeBoxSize = int((WINDOWHEIGHT - 40) / maxLife)

385.

386. # Draw background color of life meter.

387. pygame.draw.rect(DISPLAYSURF, bgColor, (20, 20, 20, 20 + (maxLife *

lifeBoxSize)))

388.

389. for i in range(maxLife):

390. if currentLife >= (maxLife - i): # draw a solid red box

391. pygame.draw.rect(DISPLAYSURF, RED, (20, 20 + (i *

lifeBoxSize), 20, lifeBoxSize))

392. pygame.draw.rect(DISPLAYSURF, WHITE, (20, 20 + (i * lifeBoxSize),

20, lifeBoxSize), 1) # draw white outline

393.

394.

395. def getColorOfPaletteAt(x, y):

396. # Returns the index of the color in paletteColors that the x and y

parameters

397. # are over. Returns None if x and y are not over any palette.

398. numColors = len(paletteColors)

399. xmargin = int((WINDOWWIDTH - ((PALETTESIZE * numColors) +

(PALETTEGAPSIZE * (numColors - 1)))) / 2)

400. top = WINDOWHEIGHT - PALETTESIZE - 10

401. for i in range(numColors):

402. # Find out if the mouse click is inside any of the palettes.

403. left = xmargin + (i * PALETTESIZE) + (i * PALETTEGAPSIZE)

404. r = pygame.Rect(left, top, PALETTESIZE, PALETTESIZE)

405. if r.collidepoint(x, y):

406. return i

407. return None # no palette exists at these x, y coordinates

408.

409.

410. def floodFill(board, oldColor, newColor, x, y):

411. # This is the flood fill algorithm.

412. if oldColor == newColor or board[x][y] != oldColor:

413. return

414.

415. board[x][y] = newColor # change the color of the current box

416.

417. # Make the recursive call for any neighboring boxes:

418. if x > 0:

419. floodFill(board, oldColor, newColor, x - 1, y) # on box to the

left

420. if x < boardWidth - 1:

421. floodFill(board, oldColor, newColor, x + 1, y) # on box to the

right

316 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

422. if y > 0:

423. floodFill(board, oldColor, newColor, x, y - 1) # on box to up

424. if y < boardHeight - 1:

425. floodFill(board, oldColor, newColor, x, y + 1) # on box to down

426.

427.

428. def leftTopPixelCoordOfBox(boxx, boxy):

429. # Returns the x and y of the left-topmost pixel of the xth & yth box.

430. xmargin = int((WINDOWWIDTH - (boardWidth * boxSize)) / 2)

431. ymargin = int((WINDOWHEIGHT - (boardHeight * boxSize)) / 2)

432. return (boxx * boxSize + xmargin, boxy * boxSize + ymargin)

433.

434.

435. if __name__ == '__main__':

436. main()

Chapter 10 – Four Extra Games 317

Four-In-A-Row, a “Connect Four” Clone

The game ―Connect Four‖ has a 7 x 6 board where the players take turns dropping tokens from

the top of the board. The tokens will fall from the top of each column and come to rest on the

bottom of the board or on top of the topmost token in that column. A player wins when four of

their tokens line up in a row either horizontally, vertically, or diagonally.

The AI for this game is pretty good. It simulates every possible move it can make, then simulates

every possible move the human player can make in response to each of those moves, and then

simulates every possible move it can make in response to that, and then simulates every possible

move the human player could make in response to each of those moves! After all that thinking,

the computer determines which move is most likely to lead to it winning.

So the computer is kind of tough to beat. I usually lose to it.

Since there are seven possible moves you can make on your turn (unless some columns are full),

and seven possible moves the opponent could make, and seven moves in response to that, and

seven moves in response to that, that means that on each turn the computer is considering 7 x 7 x

7 x 7 = 2,401 possible moves. You can make the computer consider the game even further by

setting the DIFFICULTY constant to a higher number, but when I set to a value larger than 2, the

computer takes a long time to calculate its turn.

You can also make the computer easier by setting DIFFICULTY to 1. Then the computer only

considers each of its moves and the player’s possible responses to those moves. If you set the

DIFFICULTY to 0, then the computer loses all intelligence and simply makes random moves.

Source Code for Four-In-A-Row
This source code can be downloaded from http://invpy.com/fourinarow.py.

318 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

The image files that Flippy uses can be downloaded from http://invpy.com/fourinarowimages.zip.

 1. # Four-In-A-Row (a Connect Four clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Released under a "Simplified BSD" license

 5.

 6. import random, copy, sys, pygame

 7. from pygame.locals import *

 8.

 9. BOARDWIDTH = 7 # how many spaces wide the board is

 10. BOARDHEIGHT = 6 # how many spaces tall the board is

 11. assert BOARDWIDTH >= 4 and BOARDHEIGHT >= 4, 'Board must be at least 4x4.'

 12.

 13. DIFFICULTY = 2 # how many moves to look ahead. (>2 is usually too slow)

 14.

 15. SPACESIZE = 50 # size of the tokens and individual board spaces in pixels

 16.

 17. FPS = 30 # frames per second to update the screen

 18. WINDOWWIDTH = 640 # width of the program's window, in pixels

 19. WINDOWHEIGHT = 480 # height in pixels

 20.

 21. XMARGIN = int((WINDOWWIDTH - BOARDWIDTH * SPACESIZE) / 2)

 22. YMARGIN = int((WINDOWHEIGHT - BOARDHEIGHT * SPACESIZE) / 2)

 23.

 24. BRIGHTBLUE = (0, 50, 255)

 25. WHITE = (255, 255, 255)

 26.

 27. BGCOLOR = BRIGHTBLUE

 28. TEXTCOLOR = WHITE

 29.

 30. RED = 'red'

 31. BLACK = 'black'

 32. EMPTY = None

 33. HUMAN = 'human'

 34. COMPUTER = 'computer'

 35.

 36.

 37. def main():

 38. global FPSCLOCK, DISPLAYSURF, REDPILERECT, BLACKPILERECT, REDTOKENIMG

 39. global BLACKTOKENIMG, BOARDIMG, ARROWIMG, ARROWRECT, HUMANWINNERIMG

 40. global COMPUTERWINNERIMG, WINNERRECT, TIEWINNERIMG

 41.

 42. pygame.init()

 43. FPSCLOCK = pygame.time.Clock()

 44. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

Chapter 10 – Four Extra Games 319

 45. pygame.display.set_caption('Four in a Row')

 46.

 47. REDPILERECT = pygame.Rect(int(SPACESIZE / 2), WINDOWHEIGHT - int(3 *

SPACESIZE / 2), SPACESIZE, SPACESIZE)

 48. BLACKPILERECT = pygame.Rect(WINDOWWIDTH - int(3 * SPACESIZE / 2),

WINDOWHEIGHT - int(3 * SPACESIZE / 2), SPACESIZE, SPACESIZE)

 49. REDTOKENIMG = pygame.image.load('4row_red.png')

 50. REDTOKENIMG = pygame.transform.smoothscale(REDTOKENIMG, (SPACESIZE,

SPACESIZE))

 51. BLACKTOKENIMG = pygame.image.load('4row_black.png')

 52. BLACKTOKENIMG = pygame.transform.smoothscale(BLACKTOKENIMG,

(SPACESIZE, SPACESIZE))

 53. BOARDIMG = pygame.image.load('4row_board.png')

 54. BOARDIMG = pygame.transform.smoothscale(BOARDIMG, (SPACESIZE,

SPACESIZE))

 55.

 56. HUMANWINNERIMG = pygame.image.load('4row_humanwinner.png')

 57. COMPUTERWINNERIMG = pygame.image.load('4row_computerwinner.png')

 58. TIEWINNERIMG = pygame.image.load('4row_tie.png')

 59. WINNERRECT = HUMANWINNERIMG.get_rect()

 60. WINNERRECT.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2))

 61.

 62. ARROWIMG = pygame.image.load('4row_arrow.png')

 63. ARROWRECT = ARROWIMG.get_rect()

 64. ARROWRECT.left = REDPILERECT.right + 10

 65. ARROWRECT.centery = REDPILERECT.centery

 66.

 67. isFirstGame = True

 68.

 69. while True:

 70. runGame(isFirstGame)

 71. isFirstGame = False

 72.

 73.

 74. def runGame(isFirstGame):

 75. if isFirstGame:

 76. # Let the computer go first on the first game, so the player

 77. # can see how the tokens are dragged from the token piles.

 78. turn = COMPUTER

 79. showHelp = True

 80. else:

 81. # Randomly choose who goes first.

 82. if random.randint(0, 1) == 0:

 83. turn = COMPUTER

 84. else:

 85. turn = HUMAN

320 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 86. showHelp = False

 87.

 88. # Set up a blank board data structure.

 89. mainBoard = getNewBoard()

 90.

 91. while True: # main game loop

 92. if turn == HUMAN:

 93. # Human player's turn.

 94. getHumanMove(mainBoard, showHelp)

 95. if showHelp:

 96. # turn off help arrow after the first move

 97. showHelp = False

 98. if isWinner(mainBoard, RED):

 99. winnerImg = HUMANWINNERIMG

100. break

101. turn = COMPUTER # switch to other player's turn

102. else:

103. # Computer player's turn.

104. column = getComputerMove(mainBoard)

105. animateComputerMoving(mainBoard, column)

106. makeMove(mainBoard, BLACK, column)

107. if isWinner(mainBoard, BLACK):

108. winnerImg = COMPUTERWINNERIMG

109. break

110. turn = HUMAN # switch to other player's turn

111.

112. if isBoardFull(mainBoard):

113. # A completely filled board means it's a tie.

114. winnerImg = TIEWINNERIMG

115. break

116.

117. while True:

118. # Keep looping until player clicks the mouse or quits.

119. drawBoard(mainBoard)

120. DISPLAYSURF.blit(winnerImg, WINNERRECT)

121. pygame.display.update()

122. FPSCLOCK.tick()

123. for event in pygame.event.get(): # event handling loop

124. if event.type == QUIT or (event.type == KEYUP and event.key ==

K_ESCAPE):

125. pygame.quit()

126. sys.exit()

127. elif event.type == MOUSEBUTTONUP:

128. return

129.

130.

Chapter 10 – Four Extra Games 321

131. def makeMove(board, player, column):

132. lowest = getLowestEmptySpace(board, column)

133. if lowest != -1:

134. board[column][lowest] = player

135.

136.

137. def drawBoard(board, extraToken=None):

138. DISPLAYSURF.fill(BGCOLOR)

139.

140. # draw tokens

141. spaceRect = pygame.Rect(0, 0, SPACESIZE, SPACESIZE)

142. for x in range(BOARDWIDTH):

143. for y in range(BOARDHEIGHT):

144. spaceRect.topleft = (XMARGIN + (x * SPACESIZE), YMARGIN + (y *

SPACESIZE))

145. if board[x][y] == RED:

146. DISPLAYSURF.blit(REDTOKENIMG, spaceRect)

147. elif board[x][y] == BLACK:

148. DISPLAYSURF.blit(BLACKTOKENIMG, spaceRect)

149.

150. # draw the extra token

151. if extraToken != None:

152. if extraToken['color'] == RED:

153. DISPLAYSURF.blit(REDTOKENIMG, (extraToken['x'],

extraToken['y'], SPACESIZE, SPACESIZE))

154. elif extraToken['color'] == BLACK:

155. DISPLAYSURF.blit(BLACKTOKENIMG, (extraToken['x'],

extraToken['y'], SPACESIZE, SPACESIZE))

156.

157. # draw board over the tokens

158. for x in range(BOARDWIDTH):

159. for y in range(BOARDHEIGHT):

160. spaceRect.topleft = (XMARGIN + (x * SPACESIZE), YMARGIN + (y *

SPACESIZE))

161. DISPLAYSURF.blit(BOARDIMG, spaceRect)

162.

163. # draw the red and black tokens off to the side

164. DISPLAYSURF.blit(REDTOKENIMG, REDPILERECT) # red on the left

165. DISPLAYSURF.blit(BLACKTOKENIMG, BLACKPILERECT) # black on the right

166.

167.

168. def getNewBoard():

169. board = []

170. for x in range(BOARDWIDTH):

171. board.append([EMPTY] * BOARDHEIGHT)

172. return board

322 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

173.

174.

175. def getHumanMove(board, isFirstMove):

176. draggingToken = False

177. tokenx, tokeny = None, None

178. while True:

179. for event in pygame.event.get(): # event handling loop

180. if event.type == QUIT:

181. pygame.quit()

182. sys.exit()

183. elif event.type == MOUSEBUTTONDOWN and not draggingToken and

REDPILERECT.collidepoint(event.pos):

184. # start of dragging on red token pile.

185. draggingToken = True

186. tokenx, tokeny = event.pos

187. elif event.type == MOUSEMOTION and draggingToken:

188. # update the position of the red token being dragged

189. tokenx, tokeny = event.pos

190. elif event.type == MOUSEBUTTONUP and draggingToken:

191. # let go of the token being dragged

192. if tokeny < YMARGIN and tokenx > XMARGIN and tokenx <

WINDOWWIDTH - XMARGIN:

193. # let go at the top of the screen.

194. column = int((tokenx - XMARGIN) / SPACESIZE)

195. if isValidMove(board, column):

196. animateDroppingToken(board, column, RED)

197. board[column][getLowestEmptySpace(board, column)]

= RED

198. drawBoard(board)

199. pygame.display.update()

200. return

201. tokenx, tokeny = None, None

202. draggingToken = False

203. if tokenx != None and tokeny != None:

204. drawBoard(board, {'x':tokenx - int(SPACESIZE / 2), 'y':tokeny

- int(SPACESIZE / 2), 'color':RED})

205. else:

206. drawBoard(board)

207.

208. if isFirstMove:

209. # Show the help arrow for the player's first move.

210. DISPLAYSURF.blit(ARROWIMG, ARROWRECT)

211.

212. pygame.display.update()

213. FPSCLOCK.tick()

214.

Chapter 10 – Four Extra Games 323

215.

216. def animateDroppingToken(board, column, color):

217. x = XMARGIN + column * SPACESIZE

218. y = YMARGIN - SPACESIZE

219. dropSpeed = 1.0

220.

221. lowestEmptySpace = getLowestEmptySpace(board, column)

222.

223. while True:

224. y += int(dropSpeed)

225. dropSpeed += 0.5

226. if int((y - YMARGIN) / SPACESIZE) >= lowestEmptySpace:

227. return

228. drawBoard(board, {'x':x, 'y':y, 'color':color})

229. pygame.display.update()

230. FPSCLOCK.tick()

231.

232.

233. def animateComputerMoving(board, column):

234. x = BLACKPILERECT.left

235. y = BLACKPILERECT.top

236. speed = 1.0

237. # moving the black tile up

238. while y > (YMARGIN - SPACESIZE):

239. y -= int(speed)

240. speed += 0.5

241. drawBoard(board, {'x':x, 'y':y, 'color':BLACK})

242. pygame.display.update()

243. FPSCLOCK.tick()

244. # moving the black tile over

245. y = YMARGIN - SPACESIZE

246. speed = 1.0

247. while x > (XMARGIN + column * SPACESIZE):

248. x -= int(speed)

249. speed += 0.5

250. drawBoard(board, {'x':x, 'y':y, 'color':BLACK})

251. pygame.display.update()

252. FPSCLOCK.tick()

253. # dropping the black tile

254. animateDroppingToken(board, column, BLACK)

255.

256.

257. def getComputerMove(board):

258. potentialMoves = getPotentialMoves(board, BLACK, DIFFICULTY)

259. # get the best fitness from the potential moves

260. bestMoveFitness = -1

324 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

261. for i in range(BOARDWIDTH):

262. if potentialMoves[i] > bestMoveFitness and isValidMove(board, i):

263. bestMoveFitness = potentialMoves[i]

264. # find all potential moves that have this best fitness

265. bestMoves = []

266. for i in range(len(potentialMoves)):

267. if potentialMoves[i] == bestMoveFitness and isValidMove(board, i):

268. bestMoves.append(i)

269. return random.choice(bestMoves)

270.

271.

272. def getPotentialMoves(board, tile, lookAhead):

273. if lookAhead == 0 or isBoardFull(board):

274. return [0] * BOARDWIDTH

275.

276. if tile == RED:

277. enemyTile = BLACK

278. else:

279. enemyTile = RED

280.

281. # Figure out the best move to make.

282. potentialMoves = [0] * BOARDWIDTH

283. for firstMove in range(BOARDWIDTH):

284. dupeBoard = copy.deepcopy(board)

285. if not isValidMove(dupeBoard, firstMove):

286. continue

287. makeMove(dupeBoard, tile, firstMove)

288. if isWinner(dupeBoard, tile):

289. # a winning move automatically gets a perfect fitness

290. potentialMoves[firstMove] = 1

291. break # don't bother calculating other moves

292. else:

293. # do other player's counter moves and determine best one

294. if isBoardFull(dupeBoard):

295. potentialMoves[firstMove] = 0

296. else:

297. for counterMove in range(BOARDWIDTH):

298. dupeBoard2 = copy.deepcopy(dupeBoard)

299. if not isValidMove(dupeBoard2, counterMove):

300. continue

301. makeMove(dupeBoard2, enemyTile, counterMove)

302. if isWinner(dupeBoard2, enemyTile):

303. # a losing move automatically gets the worst

fitness

304. potentialMoves[firstMove] = -1

305. break

Chapter 10 – Four Extra Games 325

306. else:

307. # do the recursive call to getPotentialMoves()

308. results = getPotentialMoves(dupeBoard2, tile,

lookAhead - 1)

309. potentialMoves[firstMove] += (sum(results) /

BOARDWIDTH) / BOARDWIDTH

310. return potentialMoves

311.

312.

313. def getLowestEmptySpace(board, column):

314. # Return the row number of the lowest empty row in the given column.

315. for y in range(BOARDHEIGHT-1, -1, -1):

316. if board[column][y] == EMPTY:

317. return y

318. return -1

319.

320.

321. def isValidMove(board, column):

322. # Returns True if there is an empty space in the given column.

323. # Otherwise returns False.

324. if column < 0 or column >= (BOARDWIDTH) or board[column][0] != EMPTY:

325. return False

326. return True

327.

328.

329. def isBoardFull(board):

330. # Returns True if there are no empty spaces anywhere on the board.

331. for x in range(BOARDWIDTH):

332. for y in range(BOARDHEIGHT):

333. if board[x][y] == EMPTY:

334. return False

335. return True

336.

337.

338. def isWinner(board, tile):

339. # check horizontal spaces

340. for x in range(BOARDWIDTH - 3):

341. for y in range(BOARDHEIGHT):

342. if board[x][y] == tile and board[x+1][y] == tile and

board[x+2][y] == tile and board[x+3][y] == tile:

343. return True

344. # check vertical spaces

345. for x in range(BOARDWIDTH):

346. for y in range(BOARDHEIGHT - 3):

347. if board[x][y] == tile and board[x][y+1] == tile and

board[x][y+2] == tile and board[x][y+3] == tile:

326 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

348. return True

349. # check / diagonal spaces

350. for x in range(BOARDWIDTH - 3):

351. for y in range(3, BOARDHEIGHT):

352. if board[x][y] == tile and board[x+1][y-1] == tile and

board[x+2][y-2] == tile and board[x+3][y-3] == tile:

353. return True

354. # check \ diagonal spaces

355. for x in range(BOARDWIDTH - 3):

356. for y in range(BOARDHEIGHT - 3):

357. if board[x][y] == tile and board[x+1][y+1] == tile and

board[x+2][y+2] == tile and board[x+3][y+3] == tile:

358. return True

359. return False

360.

361.

362. if __name__ == '__main__':

363. main()

Chapter 10 – Four Extra Games 327

Gemgem, a “Bejeweled” Clone

―Bejeweled‖ is a game where gems fall to fill up a board. The player can swap any two adjacent

gems to try to match three gems in a row (vertically or horizontally, but not diagonally). The

matched gems then disappear, making way for new gems to fall from the top. Matching more

than three gems, or causing a chain reaction of gem matches will result in more points. The

player’s score slowly drops over time, so the player must constantly be making new matches. The

game ends when no possible match can be made on the board.

Source Code for Gemgem
This source code can be downloaded from http://invpy.com/gemgem.py.

The image files that Flippy uses can be downloaded from http://invpy.com/gemgemimages.zip.

 1. # Gemgem (a Bejeweled clone)

 2. # By Al Sweigart al@inventwithpython.com

 3. # http://inventwithpython.com/pygame

 4. # Released under a "Simplified BSD" license

 5.

 6. """

 7. This program has "gem data structures", which are basically dictionaries

 8. with the following keys:

 9. 'x' and 'y' - The location of the gem on the board. 0,0 is the top left.

 10. There is also a ROWABOVEBOARD row that 'y' can be set to,

 11. to indicate that it is above the board.

 12. 'direction' - one of the four constant variables UP, DOWN, LEFT, RIGHT.

 13. This is the direction the gem is moving.

 14. 'imageNum' - The integer index into GEMIMAGES to denote which image

 15. this gem uses.

 16. """

 17.

328 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

 18. import random, time, pygame, sys, copy

 19. from pygame.locals import *

 20.

 21. FPS = 30 # frames per second to update the screen

 22. WINDOWWIDTH = 600 # width of the program's window, in pixels

 23. WINDOWHEIGHT = 600 # height in pixels

 24.

 25. BOARDWIDTH = 8 # how many columns in the board

 26. BOARDHEIGHT = 8 # how many rows in the board

 27. GEMIMAGESIZE = 64 # width & height of each space in pixels

 28.

 29. # NUMGEMIMAGES is the number of gem types. You will need .png image

 30. # files named gem0.png, gem1.png, etc. up to gem(N-1).png.

 31. NUMGEMIMAGES = 7

 32. assert NUMGEMIMAGES >= 5 # game needs at least 5 types of gems to work

 33.

 34. # NUMMATCHSOUNDS is the number of different sounds to choose from when

 35. # a match is made. The .wav files are named match0.wav, match1.wav, etc.

 36. NUMMATCHSOUNDS = 6

 37.

 38. MOVERATE = 25 # 1 to 100, larger num means faster animations

 39. DEDUCTSPEED = 0.8 # reduces score by 1 point every DEDUCTSPEED seconds.

 40.

 41. # R G B

 42. PURPLE = (255, 0, 255)

 43. LIGHTBLUE = (170, 190, 255)

 44. BLUE = (0, 0, 255)

 45. RED = (255, 100, 100)

 46. BLACK = (0, 0, 0)

 47. BROWN = (85, 65, 0)

 48. HIGHLIGHTCOLOR = PURPLE # color of the selected gem's border

 49. BGCOLOR = LIGHTBLUE # background color on the screen

 50. GRIDCOLOR = BLUE # color of the game board

 51. GAMEOVERCOLOR = RED # color of the "Game over" text.

 52. GAMEOVERBGCOLOR = BLACK # background color of the "Game over" text.

 53. SCORECOLOR = BROWN # color of the text for the player's score

 54.

 55. # The amount of space to the sides of the board to the edge of the window

 56. # is used several times, so calculate it once here and store in variables.

 57. XMARGIN = int((WINDOWWIDTH - GEMIMAGESIZE * BOARDWIDTH) / 2)

 58. YMARGIN = int((WINDOWHEIGHT - GEMIMAGESIZE * BOARDHEIGHT) / 2)

 59.

 60. # constants for direction values

 61. UP = 'up'

 62. DOWN = 'down'

 63. LEFT = 'left'

Chapter 10 – Four Extra Games 329

 64. RIGHT = 'right'

 65.

 66. EMPTY_SPACE = -1 # an arbitrary, nonpositive value

 67. ROWABOVEBOARD = 'row above board' # an arbitrary, noninteger value

 68.

 69. def main():

 70. global FPSCLOCK, DISPLAYSURF, GEMIMAGES, GAMESOUNDS, BASICFONT,

BOARDRECTS

 71.

 72. # Initial set up.

 73. pygame.init()

 74. FPSCLOCK = pygame.time.Clock()

 75. DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT))

 76. pygame.display.set_caption('Gemgem')

 77. BASICFONT = pygame.font.Font('freesansbold.ttf', 36)

 78.

 79. # Load the images

 80. GEMIMAGES = []

 81. for i in range(1, NUMGEMIMAGES+1):

 82. gemImage = pygame.image.load('gem%s.png' % i)

 83. if gemImage.get_size() != (GEMIMAGESIZE, GEMIMAGESIZE):

 84. gemImage = pygame.transform.smoothscale(gemImage,

(GEMIMAGESIZE, GEMIMAGESIZE))

 85. GEMIMAGES.append(gemImage)

 86.

 87. # Load the sounds.

 88. GAMESOUNDS = {}

 89. GAMESOUNDS['bad swap'] = pygame.mixer.Sound('badswap.wav')

 90. GAMESOUNDS['match'] = []

 91. for i in range(NUMMATCHSOUNDS):

 92. GAMESOUNDS['match'].append(pygame.mixer.Sound('match%s.wav' % i))

 93.

 94. # Create pygame.Rect objects for each board space to

 95. # do board-coordinate-to-pixel-coordinate conversions.

 96. BOARDRECTS = []

 97. for x in range(BOARDWIDTH):

 98. BOARDRECTS.append([])

 99. for y in range(BOARDHEIGHT):

100. r = pygame.Rect((XMARGIN + (x * GEMIMAGESIZE),

101. YMARGIN + (y * GEMIMAGESIZE),

102. GEMIMAGESIZE,

103. GEMIMAGESIZE))

104. BOARDRECTS[x].append(r)

105.

106. while True:

107. runGame()

330 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

108.

109.

110. def runGame():

111. # Plays through a single game. When the game is over, this function

returns.

112.

113. # initialize the board

114. gameBoard = getBlankBoard()

115. score = 0

116. fillBoardAndAnimate(gameBoard, [], score) # Drop the initial gems.

117.

118. # initialize variables for the start of a new game

119. firstSelectedGem = None

120. lastMouseDownX = None

121. lastMouseDownY = None

122. gameIsOver = False

123. lastScoreDeduction = time.time()

124. clickContinueTextSurf = None

125.

126. while True: # main game loop

127. clickedSpace = None

128. for event in pygame.event.get(): # event handling loop

129. if event.type == QUIT or (event.type == KEYUP and event.key ==

K_ESCAPE):

130. pygame.quit()

131. sys.exit()

132. elif event.type == KEYUP and event.key == K_BACKSPACE:

133. return # start a new game

134.

135. elif event.type == MOUSEBUTTONUP:

136. if gameIsOver:

137. return # after games ends, click to start a new game

138.

139. if event.pos == (lastMouseDownX, lastMouseDownY):

140. # This event is a mouse click, not the end of a mouse

drag.

141. clickedSpace = checkForGemClick(event.pos)

142. else:

143. # this is the end of a mouse drag

144. firstSelectedGem = checkForGemClick((lastMouseDownX,

lastMouseDownY))

145. clickedSpace = checkForGemClick(event.pos)

146. if not firstSelectedGem or not clickedSpace:

147. # if not part of a valid drag, deselect both

148. firstSelectedGem = None

149. clickedSpace = None

Chapter 10 – Four Extra Games 331

150. elif event.type == MOUSEBUTTONDOWN:

151. # this is the start of a mouse click or mouse drag

152. lastMouseDownX, lastMouseDownY = event.pos

153.

154. if clickedSpace and not firstSelectedGem:

155. # This was the first gem clicked on.

156. firstSelectedGem = clickedSpace

157. elif clickedSpace and firstSelectedGem:

158. # Two gems have been clicked on and selected. Swap the gems.

159. firstSwappingGem, secondSwappingGem =

getSwappingGems(gameBoard, firstSelectedGem, clickedSpace)

160. if firstSwappingGem == None and secondSwappingGem == None:

161. # If both are None, then the gems were not adjacent

162. firstSelectedGem = None # deselect the first gem

163. continue

164.

165. # Show the swap animation on the screen.

166. boardCopy = getBoardCopyMinusGems(gameBoard,

(firstSwappingGem, secondSwappingGem))

167. animateMovingGems(boardCopy, [firstSwappingGem,

secondSwappingGem], [], score)

168.

169. # Swap the gems in the board data structure.

170. gameBoard[firstSwappingGem['x']][firstSwappingGem['y']] =

secondSwappingGem['imageNum']

171. gameBoard[secondSwappingGem['x']][secondSwappingGem['y']] =

firstSwappingGem['imageNum']

172.

173. # See if this is a matching move.

174. matchedGems = findMatchingGems(gameBoard)

175. if matchedGems == []:

176. # Was not a matching move; swap the gems back

177. GAMESOUNDS['bad swap'].play()

178. animateMovingGems(boardCopy, [firstSwappingGem,

secondSwappingGem], [], score)

179. gameBoard[firstSwappingGem['x']][firstSwappingGem['y']] =

firstSwappingGem['imageNum']

180. gameBoard[secondSwappingGem['x']][secondSwappingGem['y']]

= secondSwappingGem['imageNum']

181. else:

182. # This was a matching move.

183. scoreAdd = 0

184. while matchedGems != []:

185. # Remove matched gems, then pull down the board.

186.

332 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

187. # points is a list of dicts that tells

fillBoardAndAnimate()

188. # where on the screen to display text to show how many

189. # points the player got. points is a list because if

190. # the player gets multiple matches, then multiple

points text should appear.

191. points = []

192. for gemSet in matchedGems:

193. scoreAdd += (10 + (len(gemSet) - 3) * 10)

194. for gem in gemSet:

195. gameBoard[gem[0]][gem[1]] = EMPTY_SPACE

196. points.append({'points': scoreAdd,

197. 'x': gem[0] * GEMIMAGESIZE +

XMARGIN,

198. 'y': gem[1] * GEMIMAGESIZE +

YMARGIN})

199. random.choice(GAMESOUNDS['match']).play()

200. score += scoreAdd

201.

202. # Drop the new gems.

203. fillBoardAndAnimate(gameBoard, points, score)

204.

205. # Check if there are any new matches.

206. matchedGems = findMatchingGems(gameBoard)

207. firstSelectedGem = None

208.

209. if not canMakeMove(gameBoard):

210. gameIsOver = True

211.

212. # Draw the board.

213. DISPLAYSURF.fill(BGCOLOR)

214. drawBoard(gameBoard)

215. if firstSelectedGem != None:

216. highlightSpace(firstSelectedGem['x'], firstSelectedGem['y'])

217. if gameIsOver:

218. if clickContinueTextSurf == None:

219. # Only render the text once. In future iterations, just

220. # use the Surface object already in clickContinueTextSurf

221. clickContinueTextSurf = BASICFONT.render('Final Score: %s

(Click to continue)' % (score), 1, GAMEOVERCOLOR, GAMEOVERBGCOLOR)

222. clickContinueTextRect = clickContinueTextSurf.get_rect()

223. clickContinueTextRect.center = int(WINDOWWIDTH / 2),

int(WINDOWHEIGHT / 2)

224. DISPLAYSURF.blit(clickContinueTextSurf, clickContinueTextRect)

225. elif score > 0 and time.time() - lastScoreDeduction > DEDUCTSPEED:

226. # score drops over time

Chapter 10 – Four Extra Games 333

227. score -= 1

228. lastScoreDeduction = time.time()

229. drawScore(score)

230. pygame.display.update()

231. FPSCLOCK.tick(FPS)

232.

233.

234. def getSwappingGems(board, firstXY, secondXY):

235. # If the gems at the (X, Y) coordinates of the two gems are adjacent,

236. # then their 'direction' keys are set to the appropriate direction

237. # value to be swapped with each other.

238. # Otherwise, (None, None) is returned.

239. firstGem = {'imageNum': board[firstXY['x']][firstXY['y']],

240. 'x': firstXY['x'],

241. 'y': firstXY['y']}

242. secondGem = {'imageNum': board[secondXY['x']][secondXY['y']],

243. 'x': secondXY['x'],

244. 'y': secondXY['y']}

245. highlightedGem = None

246. if firstGem['x'] == secondGem['x'] + 1 and firstGem['y'] ==

secondGem['y']:

247. firstGem['direction'] = LEFT

248. secondGem['direction'] = RIGHT

249. elif firstGem['x'] == secondGem['x'] - 1 and firstGem['y'] ==

secondGem['y']:

250. firstGem['direction'] = RIGHT

251. secondGem['direction'] = LEFT

252. elif firstGem['y'] == secondGem['y'] + 1 and firstGem['x'] ==

secondGem['x']:

253. firstGem['direction'] = UP

254. secondGem['direction'] = DOWN

255. elif firstGem['y'] == secondGem['y'] - 1 and firstGem['x'] ==

secondGem['x']:

256. firstGem['direction'] = DOWN

257. secondGem['direction'] = UP

258. else:

259. # These gems are not adjacent and can't be swapped.

260. return None, None

261. return firstGem, secondGem

262.

263.

264. def getBlankBoard():

265. # Create and return a blank board data structure.

266. board = []

267. for x in range(BOARDWIDTH):

268. board.append([EMPTY_SPACE] * BOARDHEIGHT)

334 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

269. return board

270.

271.

272. def canMakeMove(board):

273. # Return True if the board is in a state where a matching

274. # move can be made on it. Otherwise return False.

275.

276. # The patterns in oneOffPatterns represent gems that are configured

277. # in a way where it only takes one move to make a triplet.

278. oneOffPatterns = (((0,1), (1,0), (2,0)),

279. ((0,1), (1,1), (2,0)),

280. ((0,0), (1,1), (2,0)),

281. ((0,1), (1,0), (2,1)),

282. ((0,0), (1,0), (2,1)),

283. ((0,0), (1,1), (2,1)),

284. ((0,0), (0,2), (0,3)),

285. ((0,0), (0,1), (0,3)))

286.

287. # The x and y variables iterate over each space on the board.

288. # If we use + to represent the currently iterated space on the

289. # board, then this pattern: ((0,1), (1,0), (2,0))refers to identical

290. # gems being set up like this:

291. #

292. # +A

293. # B

294. # C

295. #

296. # That is, gem A is offset from the + by (0,1), gem B is offset

297. # by (1,0), and gem C is offset by (2,0). In this case, gem A can

298. # be swapped to the left to form a vertical three-in-a-row triplet.

299. #

300. # There are eight possible ways for the gems to be one move

301. # away from forming a triple, hence oneOffPattern has 8 patterns.

302.

303. for x in range(BOARDWIDTH):

304. for y in range(BOARDHEIGHT):

305. for pat in oneOffPatterns:

306. # check each possible pattern of "match in next move" to

307. # see if a possible move can be made.

308. if (getGemAt(board, x+pat[0][0], y+pat[0][1]) == \

309. getGemAt(board, x+pat[1][0], y+pat[1][1]) == \

310. getGemAt(board, x+pat[2][0], y+pat[2][1]) != None) or

\

311. (getGemAt(board, x+pat[0][1], y+pat[0][0]) == \

312. getGemAt(board, x+pat[1][1], y+pat[1][0]) == \

313. getGemAt(board, x+pat[2][1], y+pat[2][0]) != None):

Chapter 10 – Four Extra Games 335

314. return True # return True the first time you find a

pattern

315. return False

316.

317.

318. def drawMovingGem(gem, progress):

319. # Draw a gem sliding in the direction that its 'direction' key

320. # indicates. The progress parameter is a number from 0 (just

321. # starting) to 100 (slide complete).

322. movex = 0

323. movey = 0

324. progress *= 0.01

325.

326. if gem['direction'] == UP:

327. movey = -int(progress * GEMIMAGESIZE)

328. elif gem['direction'] == DOWN:

329. movey = int(progress * GEMIMAGESIZE)

330. elif gem['direction'] == RIGHT:

331. movex = int(progress * GEMIMAGESIZE)

332. elif gem['direction'] == LEFT:

333. movex = -int(progress * GEMIMAGESIZE)

334.

335. basex = gem['x']

336. basey = gem['y']

337. if basey == ROWABOVEBOARD:

338. basey = -1

339.

340. pixelx = XMARGIN + (basex * GEMIMAGESIZE)

341. pixely = YMARGIN + (basey * GEMIMAGESIZE)

342. r = pygame.Rect((pixelx + movex, pixely + movey, GEMIMAGESIZE,

GEMIMAGESIZE))

343. DISPLAYSURF.blit(GEMIMAGES[gem['imageNum']], r)

344.

345.

346. def pullDownAllGems(board):

347. # pulls down gems on the board to the bottom to fill in any gaps

348. for x in range(BOARDWIDTH):

349. gemsInColumn = []

350. for y in range(BOARDHEIGHT):

351. if board[x][y] != EMPTY_SPACE:

352. gemsInColumn.append(board[x][y])

353. board[x] = ([EMPTY_SPACE] * (BOARDHEIGHT - len(gemsInColumn))) +

gemsInColumn

354.

355.

356. def getGemAt(board, x, y):

336 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

357. if x < 0 or y < 0 or x >= BOARDWIDTH or y >= BOARDHEIGHT:

358. return None

359. else:

360. return board[x][y]

361.

362.

363. def getDropSlots(board):

364. # Creates a "drop slot" for each column and fills the slot with a

365. # number of gems that that column is lacking. This function assumes

366. # that the gems have been gravity dropped already.

367. boardCopy = copy.deepcopy(board)

368. pullDownAllGems(boardCopy)

369.

370. dropSlots = []

371. for i in range(BOARDWIDTH):

372. dropSlots.append([])

373.

374. # count the number of empty spaces in each column on the board

375. for x in range(BOARDWIDTH):

376. for y in range(BOARDHEIGHT-1, -1, -1): # start from bottom, going

up

377. if boardCopy[x][y] == EMPTY_SPACE:

378. possibleGems = list(range(len(GEMIMAGES)))

379. for offsetX, offsetY in ((0, -1), (1, 0), (0, 1), (-1,

0)):

380. # Narrow down the possible gems we should put in the

381. # blank space so we don't end up putting an two of

382. # the same gems next to each other when they drop.

383. neighborGem = getGemAt(boardCopy, x + offsetX, y +

offsetY)

384. if neighborGem != None and neighborGem in

possibleGems:

385. possibleGems.remove(neighborGem)

386.

387. newGem = random.choice(possibleGems)

388. boardCopy[x][y] = newGem

389. dropSlots[x].append(newGem)

390. return dropSlots

391.

392.

393. def findMatchingGems(board):

394. gemsToRemove = [] # a list of lists of gems in matching triplets that

should be removed

395. boardCopy = copy.deepcopy(board)

396.

397. # loop through each space, checking for 3 adjacent identical gems

Chapter 10 – Four Extra Games 337

398. for x in range(BOARDWIDTH):

399. for y in range(BOARDHEIGHT):

400. # look for horizontal matches

401. if getGemAt(boardCopy, x, y) == getGemAt(boardCopy, x + 1, y)

== getGemAt(boardCopy, x + 2, y) and getGemAt(boardCopy, x, y) != EMPTY_SPACE:

402. targetGem = boardCopy[x][y]

403. offset = 0

404. removeSet = []

405. while getGemAt(boardCopy, x + offset, y) == targetGem:

406. # keep checking, in case there's more than 3 gems in a

row

407. removeSet.append((x + offset, y))

408. boardCopy[x + offset][y] = EMPTY_SPACE

409. offset += 1

410. gemsToRemove.append(removeSet)

411.

412. # look for vertical matches

413. if getGemAt(boardCopy, x, y) == getGemAt(boardCopy, x, y + 1)

== getGemAt(boardCopy, x, y + 2) and getGemAt(boardCopy, x, y) != EMPTY_SPACE:

414. targetGem = boardCopy[x][y]

415. offset = 0

416. removeSet = []

417. while getGemAt(boardCopy, x, y + offset) == targetGem:

418. # keep checking if there's more than 3 gems in a row

419. removeSet.append((x, y + offset))

420. boardCopy[x][y + offset] = EMPTY_SPACE

421. offset += 1

422. gemsToRemove.append(removeSet)

423.

424. return gemsToRemove

425.

426.

427. def highlightSpace(x, y):

428. pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, BOARDRECTS[x][y], 4)

429.

430.

431. def getDroppingGems(board):

432. # Find all the gems that have an empty space below them

433. boardCopy = copy.deepcopy(board)

434. droppingGems = []

435. for x in range(BOARDWIDTH):

436. for y in range(BOARDHEIGHT - 2, -1, -1):

437. if boardCopy[x][y + 1] == EMPTY_SPACE and boardCopy[x][y] !=

EMPTY_SPACE:

438. # This space drops if not empty but the space below it is

338 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

439. droppingGems.append({'imageNum': boardCopy[x][y], 'x': x,

'y': y, 'direction': DOWN})

440. boardCopy[x][y] = EMPTY_SPACE

441. return droppingGems

442.

443.

444. def animateMovingGems(board, gems, pointsText, score):

445. # pointsText is a dictionary with keys 'x', 'y', and 'points'

446. progress = 0 # progress at 0 represents beginning, 100 means finished.

447. while progress < 100: # animation loop

448. DISPLAYSURF.fill(BGCOLOR)

449. drawBoard(board)

450. for gem in gems: # Draw each gem.

451. drawMovingGem(gem, progress)

452. drawScore(score)

453. for pointText in pointsText:

454. pointsSurf = BASICFONT.render(str(pointText['points']), 1,

SCORECOLOR)

455. pointsRect = pointsSurf.get_rect()

456. pointsRect.center = (pointText['x'], pointText['y'])

457. DISPLAYSURF.blit(pointsSurf, pointsRect)

458.

459. pygame.display.update()

460. FPSCLOCK.tick(FPS)

461. progress += MOVERATE # progress the animation a little bit more

for the next frame

462.

463.

464. def moveGems(board, movingGems):

465. # movingGems is a list of dicts with keys x, y, direction, imageNum

466. for gem in movingGems:

467. if gem['y'] != ROWABOVEBOARD:

468. board[gem['x']][gem['y']] = EMPTY_SPACE

469. movex = 0

470. movey = 0

471. if gem['direction'] == LEFT:

472. movex = -1

473. elif gem['direction'] == RIGHT:

474. movex = 1

475. elif gem['direction'] == DOWN:

476. movey = 1

477. elif gem['direction'] == UP:

478. movey = -1

479. board[gem['x'] + movex][gem['y'] + movey] = gem['imageNum']

480. else:

481. # gem is located above the board (where new gems come from)

Chapter 10 – Four Extra Games 339

482. board[gem['x']][0] = gem['imageNum'] # move to top row

483.

484.

485. def fillBoardAndAnimate(board, points, score):

486. dropSlots = getDropSlots(board)

487. while dropSlots != [[]] * BOARDWIDTH:

488. # do the dropping animation as long as there are more gems to drop

489. movingGems = getDroppingGems(board)

490. for x in range(len(dropSlots)):

491. if len(dropSlots[x]) != 0:

492. # cause the lowest gem in each slot to begin moving in the

DOWN direction

493. movingGems.append({'imageNum': dropSlots[x][0], 'x': x,

'y': ROWABOVEBOARD, 'direction': DOWN})

494.

495. boardCopy = getBoardCopyMinusGems(board, movingGems)

496. animateMovingGems(boardCopy, movingGems, points, score)

497. moveGems(board, movingGems)

498.

499. # Make the next row of gems from the drop slots

500. # the lowest by deleting the previous lowest gems.

501. for x in range(len(dropSlots)):

502. if len(dropSlots[x]) == 0:

503. continue

504. board[x][0] = dropSlots[x][0]

505. del dropSlots[x][0]

506.

507.

508. def checkForGemClick(pos):

509. # See if the mouse click was on the board

510. for x in range(BOARDWIDTH):

511. for y in range(BOARDHEIGHT):

512. if BOARDRECTS[x][y].collidepoint(pos[0], pos[1]):

513. return {'x': x, 'y': y}

514. return None # Click was not on the board.

515.

516.

517. def drawBoard(board):

518. for x in range(BOARDWIDTH):

519. for y in range(BOARDHEIGHT):

520. pygame.draw.rect(DISPLAYSURF, GRIDCOLOR, BOARDRECTS[x][y], 1)

521. gemToDraw = board[x][y]

522. if gemToDraw != EMPTY_SPACE:

523. DISPLAYSURF.blit(GEMIMAGES[gemToDraw], BOARDRECTS[x][y])

524.

525.

340 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

526. def getBoardCopyMinusGems(board, gems):

527. # Creates and returns a copy of the passed board data structure,

528. # with the gems in the "gems" list removed from it.

529. #

530. # Gems is a list of dicts, with keys x, y, direction, imageNum

531.

532. boardCopy = copy.deepcopy(board)

533.

534. # Remove some of the gems from this board data structure copy.

535. for gem in gems:

536. if gem['y'] != ROWABOVEBOARD:

537. boardCopy[gem['x']][gem['y']] = EMPTY_SPACE

538. return boardCopy

539.

540.

541. def drawScore(score):

542. scoreImg = BASICFONT.render(str(score), 1, SCORECOLOR)

543. scoreRect = scoreImg.get_rect()

544. scoreRect.bottomleft = (10, WINDOWHEIGHT - 6)

545. DISPLAYSURF.blit(scoreImg, scoreRect)

546.

547.

548. if __name__ == '__main__':

549. main()

Summary
I hope these game programs have given you your own ideas about what games you’d like to make

and how you can write the code for them. Even if you don’t have any ideas of your own, it’s great

practice to try to program clones of other games you’ve played.

Here are several websites that can teach you more about programming Python:

 http://pygame.org – The official Pygame website has the source code to hundreds of

games that people have written that make use of the Pygame library. You can learn a lot

by downloading and reading other people’s source code.

 http://python.org/doc/ - More Python tutorials and the documentation of all the Python

modules and functions.

 http://pygame.org/docs/ - Complete documentation on the modules and functions for

Pygame

 http://reddit.com/r/learnpython and http://reddit.com/r/learnprogramming have several

users that could help you with finding resources to learn programming.

Chapter 10 – Four Extra Games 341

 http://inventwithpython.com/pygame - This book's website, which includes all the source

code for these programs and additional information. This site also has the image and

sound files used in the Pygame programs.

 http://inventwithpython.com - The website for the book ―Invent Your Own Computer

Games with Python‖, which covers basic Python programming.

 http://invpy.com/wiki - A wiki that covers individual Python programming concepts that

you can look up if you need to learn about something specific.

 http://invpy.com/traces - A web application that helps you trace through the execution of

the programs in this book, step by step.

 http://invpy.com/videos - Videos that accompany the programs in this book.

 http://gamedevlessons.com - A helpful website about how to design and program video

games.

 al@inventwithpython.com - My email address. Feel free to email me your questions

about this book or about Python programming.

Or you can find out more about Python by searching the World Wide Web. Go to the search

website http://google.com and search for ―Python programming‖ or ―Python tutorials‖ to find

web sites that can teach you more about Python programming.

Now get going and invent your own games. And good luck!

342 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

GLOSSARY
Alpha Value - The amount of transparency for a color. In Pygame, alpha values range from 0

(completely transparent) to 255 (completely opaque).

Anti-Aliasing - A technique for making shapes look smoother and less blocky by adding fuzzy

colors to their edges. Anti-aliased drawings look smooth. Aliased drawings look blocky.

Attributes - A variable that is part of an object. For example, Rect objects have members such as

top and left which hold integer values for the Rect object.

Backwards Compatibility - Writing code that is compatible with older versions of software.

Python version 3 has some backwards-incompatible features with Python version 2, but it is

possible to write Python 3 programs that are backwards-compatible with Python 2.

Base Case - In recursion, the base case is the condition that stops further recursive function calls.

A base case is necessary to prevent stack overflow errors.

Blitting - A word that means copying the image on one Surface object to another. In

programming in general, it means to copy one image to another image.

Bounding Rectangle - The smallest rectangle that can be drawn around another shape.

Camera - A view of a particular part of the game world. Cameras are used when the game world

is too large to fit on the player's screen.

Caption - In programming, the caption is the text on the title bar of the window. In Pygame, the

caption can be set with the pygame.display.set_caption() function.

CLI - See, Command Line Interface

Command Line Interface - A program that the user can use by seeing text on the screen and

typing text through the keyboard. Old computers used to be able to only run CLI programs, but

new computers have Graphical User Interfaces.

Constructor Function - The function that creates a new object. In Python, these functions have

the same name as the kind of objects they produce. For example, pygame.Rect() creates Rect

objects.

Display Surface - The Surface object returned by the call to

pygame.display.set_mode(). This Surface object is special because anything drawn on it

Glossary 343

with the Pygame drawing or blitting functions will appear on the screen when

pygame.display.update() is called.

Drawing Primitives - The name for the basic shape-drawing functions in Pygame. Drawing

primitives include rectangles, lines, and ellipses. Drawing primitives do not include images like

the ones in .png or .jpg files.

Event Handling - The code that performs actions in response to Event objects that have been

generated by the user, such as key presses or mouse clicks.

Event Handling Loop - The event handling code is usually inside a loop to handle each of the

events that have been generated since the last time the event handling loop was executed.

Event Queue - When events such as mouse clicks or key presses happen, Pygame stores them in

an internal queue data structure. Events can be removed and retrieved from the event queue by

calling pygame.event.get().

FPS - See, Frames Per Second

Frame - A single image that is displayed on the screen as part of an animation. Animated

graphics will be composed of many frames, each shown for a split second.

Frame Rate - See, Refresh Rate

Frames Per Second - The measure of how many frames of an animation are displayed per

second. It is common for games to be run at 30 frames per second or more.

Game Loop - The game loop contains code that performs event handling, updates the game

world's state, and draws the game world's state to the screen. This is done many times a second.

Game State - The entire collection of values that make up the game world. This can include

information about the player's character, which pieces are on a board, or the score and level

number.

Graphical User Interface - A program that displays graphics to the user for output and can

accept keyboard presses and mouse clicks for input.

GUI - See, Graphical User Interface

Immutable - Not changeable or modifiable. In Python, list values are mutable and tuple values

are immutable.

Interactive Shell - A program (part of IDLE) that executes Python instructions one at a time. The

interactive shell is a good way to experiment with what a line of code does.

344 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

Interpreter - The software that executes instructions written in the Python programming

language. On Windows, this is python.exe. When someone says, "Python runs this program", they

mean "the Python interpreter software runs this program."

Magic Numbers - Integers or floating-point values used in a program without explanation. Magic

numbers should be replaced by constant variables with descriptive names to increase readability.

Main Loop - See, Game Loop

Member Variable - See, Attributes.

Modulus Operator - In Python, the modulus operator is the % sign. It performs "remainder"

arithmetic. For example, since 22 / 7 is ―3 remainder 1‖, then 22 % 7 is 1.

Multidimensional - Having more than one dimension. In Python, this usually refers to when a

list contains another list, or a dictionary contains a tuple (which in turn could contain other lists,

tuples, or dictionaries.)

Mutable - Changeable or modifiable. In Python, list values are mutable and tuple values are

immutable.

Pi - The number of diameter lengths of a circle that can fit along the outside circumference. Pi is

the same number no matter what the size of the circle is. This value is available in the math

module as math.pi, which is the float value 3.1415926535897931.

Pixels - Stands for "picture element". A pixel is a single square of color on the computer screen.

The screen is made up of hundreds of thousands of pixels which can be set to different colors to

form an image.

Points - A point in Python is usually represented as a tuple of two integers (or float values) to

represent the X and Y coordinates of a position on a 2D surface.

Properties - See, Attributes.

Real-time - A program that runs continuously and does not wait for the player to do something is

said to run in real-time.

Recursive Call - The function call in a recursive function that calls that same function.

Recursive Function - A function that calls itself.

Refresh Rate - The frequency that the computer screen updates its image. A high or fast refresh

rate will make animations appear smoothly, while a low or slow refresh rate will make animation

look choppy. Refresh rate is measured in FPS or hertz (which mean the same thing).

Glossary 345

RGB Values - An RGB value is an exact value of a particular color. RGB stands for red, green

blue. In Pygame, an RGB value is a tuple of three integers (all between 0 and 255) which

represent the amount of red, green, and blue are in the color.

Shell - See, Interactive Shell.

Sine - A mathematical function that produces a wavey line when drawn on a graph. Python has a

sine function in the math module: math.sin().

Sprites - A name given for a picture of something. Games commonly have a sprite for each kind

of object in the game.

Stack Overflow - An error caused when a recursive function does not have a base case.

Syntactic Sugar - A bit of code that is written to make the program more readable, even though

it isn't necessary for the program to work.

Tile Sprites - Tiles are a kind of sprite designed to be drawn on a 2D grid. They are usually

images of the background, such as floors or walls.

Title Bar - The bar along the top of programs that usually contain the program's caption and

close button. The style of the title bar varies between operating systems.

X-axis - The horizontal arrangement of numbers used in cartesian coordinate systems. The X

coordinates get smaller going to the left and larger going to the right.

Y-axis - The vertical arrangement of numbers used in cartesian coordinate systems. The Y

coordinates get smaller going up and larger going down. (This is the opposite of how the Y-axis

works in mathematics.)

346 http://inventwithpython.com/pygame

Email questions to the author: al@inventwithpython.com

About the Author 347

ABOUT THE AUTHOR

Albert Sweigart (but you can call him Al), is a software developer in San Francisco, California

who enjoys bicycling, volunteering, haunting coffee shops, and making useful software. ―Making

Games with Python & Pygame‖ is his second book.

His first book, ―Invent Your Own Computer Games with Python‖ can be read online at

http://inventwithpython.com.

He is originally from Houston, Texas. He finally put his University of Texas at Austin computer

science degree in a frame. He laughs out loud when watching park squirrels, which makes people

think he’s a simpleton.

 Email: al@inventwithpython.com

 Blog: http://coffeeghost.net

 Twitter: @AlSweigart

