Error messages are not actionable

Facilities to debug sbt are limited

Warnings to educate users should be discouraged
Lack of colors in sbt output \

Unclear, cryptic error messages

Display of compilation errors could be improved and \
errors could be appropriately numbered

Absence of ".value’ produces a runtime error "\ Usability
instead of a compile error

Y
‘value' semantics are difficult and yield unexpected
results when used in normal Scala code situations j

(if, while, by-name, inside anon functions).

Consider adding "help’ methods for concise One-line description of tasks and settings are not
explanations of keys enough

Publishing artifacts could be easier

It's difficult to know how to change sbt to do things
for which you don't have a formulaic solution for

Documentation needs to improve

Which scope should | use?
What scope is being used?
How does scope delegation work? /

Scoping is unclear and unintuitive -- there should be
better documentation and conceptual simplification.

Learning experience / sbt model

It's not clear why lazy is used to define setting and

task keys.
Syntax is too complicated
Interaction between Scala files in project and sbt } Lack of strongly opinionated way of writing builds
files

Configurations are difficult to use

The state of the source code makes it hard for
people to contribute

Improving scripted, sbt's test framework, would
make writing plugins and hacking on sbt faster Sbt test framework is slow and tricky
Documentation is poor and it's not official /

Contributing experience

Community feedback

Maintainers are too conservative and cautious (for
business reasons) and that slows downs the open
source community

Releases happen rarely -- speeding up release
cadence is a must

Reloads are slow

Scala instances are leaked and classpaths are not

cached - can be fixed Consumes too much memory

Performance

Watching sources in big projects is slow, seems to
affect "testOnly’ too

Single jar download of sbt
No support for offline mode
Much faster

Use NIO f thing —— e oo icati i
se or everything < Reduces code duplication for Windows

Add MiMa by default on sbt

Source dependencies (they already exist, but they
are not fully functional)

Add sbt-pgp by default on sbt

New features

Test harness for sbt to check reproducible behaviour

Reproducible build
eproducible builds {Dependency lock file

Sbt docs are not regenerated when changes occur
to the repository

Division between 0.13 and 1.0 docs is confusing

Documentation is not up to date in comparison with
previous sbt versions

Documentation No discoverability for plugins (Scaladex integration)
Port SO questions to documentation

Missing documentation on all the macros and use of
reflection

Documentation is written by experts, neglecting
beginners that are not familiar with the fundamentals

An empty or missing build.sbt is a valid project
(should be fixed as it is in scala-extras)

Bare keys are not scoped per-build but per-project

No way to define a root project that auto-aggregates
(as it does when there is no root project)

The distinction between “Global” and "ThisBuild™ is
not clear

27 Sbt exclusion rules don't handle Scala version
specific dependencies

27 Explore adding Bill of Materials support
Dependency management [Ivy is slow

_Coursiz Missing support for fine-grained builds
Va

77 Missing support for incremental compilation
Zinc, the incremental compiler / within jars

Slow in 0.13.x, fixed in 1.0.x

