
SCALA 2.13 COLLECTIONS REWORK

Goals
Traversable and Iterable
CanBuildFrom
FromIterable
Views
Laziness
Language Integration
Outlook
Goals
Traversable and Iterable
CanBuildFrom
FromIterable
Views
Laziness
Language Integration
Outlook

Goals
Traversable and Iterable
CanBuildFrom
FromIterable
Views
Laziness
Language Integration
Outlook

 (/index.html)

DOCUMENTATION (/DOCUMENTATION/) DOWNLOAD (/DOWNLOAD/) COMMUNITY (/COMMUNITY/)

CONTRIBUTE (/CONTRIBUTE/)
(HTTP://GITHUB.COM/SCALA/SCALA) (HTTP://TWITTER.COM/SCALA_LANG)

FEBRUARY 25, 2017

WRITTEN BY: Stefan Zeiger

In October of 2015 Martin Odersky asked for strawman proposals
(https://github.com/lampepfl/dotty/issues/818) for a new collections library design for
Scala 2.13, which eventually led to the project that we are currently working on, based on
his latest proposal. This was not the first redesign for the Scala collections. The current
design (http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html)
was first implemented in Scala 2.8 along with the required improvements to type inference
in the Scala compiler. It can generally be considered a success, providing powerful and
flexible abstractions that bring together immutable and mutable collections, both
sequential and parallel, with a high amount of shared interfaces and implementations.
However, it does exhibit some symptoms of second-system syndrome
(https://en.wikipedia.org/wiki/Second-system_effect) that have been problematic in
practice.

Goals
Before looking at details of these problems and possible solutions in the new design, let’s
start with the broader goals for the new design:

Simplify the API for users: This includes doing common operations without
CanBuildFrom , pruning back the inheritance tree and a better separation of immutable

and mutable collection operations.

Simplify the API for implementors: Implementing a new collection type is far from trivial
(http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html) at the
moment. Setting up the implicits to get the desired CanBuildFrom instance in all cases
(both through static implicits lookup and at run-time) is tricky. Inheriting lots of method
implementations by default appears like a benefit at first but you still need to manually
check (and possibly override) all methods whose default implementation has
unsatisfactory performance for a specific collection.

http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#goals
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#traversable-and-iterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#canbuildfrom
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#fromiterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#views
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#laziness
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#language-integration
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#outlook
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#goals
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#traversable-and-iterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#canbuildfrom
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#fromiterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#views
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#laziness
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#language-integration
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#outlook
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#goals
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#traversable-and-iterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#canbuildfrom
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#fromiterable
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#views
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#laziness
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#language-integration
http://127.0.0.1:4000/blog/2017/02/25/collections-rework.html#outlook
http://127.0.0.1:4000/index.html
http://127.0.0.1:4000/documentation/
http://127.0.0.1:4000/download/
http://127.0.0.1:4000/community/
http://127.0.0.1:4000/contribute/
http://github.com/scala/scala
http://twitter.com/scala_lang
https://github.com/lampepfl/dotty/issues/818
http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html
https://en.wikipedia.org/wiki/Second-system_effect
http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html

Traversable and Iterable
Leaving the “generic” abstractions (which encompass both sequential and parallel
collections) and the implementation traits (like TraversableLike and IterableLike)
aside, we have Traversable at the root of the current collections hierarchy. Its only real
subtype that is used by collection implementations is Iterable . The difference is that
Traversable only provides internal iteration, i.e. a foreach method, whereas
Iterable gives you the more powerful external iteration via an Iterator . The
Traversable abstraction has not carried its weight in the current library and will likely

not resurface in the new design. Everything we want to do can be expressed with
Iterable .

We are also looking at other opportunities to remove collection traits. While each one of
them is there for a good reason, their interactions and the sheer number create a huge
amount of complexity. For example, this is the class declaration of the standard List
(http://www.scala-lang.org/api/2.12.1/scala/collection/immutable/List.html) class:

If you traverse all these supertypes you find no less than 37 (!) linear supertypes in total.

1. 1. sealed abstract class List[+A] extends AbstractSeq[A]
2. with LinearSeq[A]
3. with Product
4. with GenericTraversableTemplate
5. with LinearSeqOptimized[A, List
6. with scala.Serializable {
7. ...
8. }

Design for better performance: The best algorithms are not very useful if you ignore lower-
level performance concerns such as specialization for primitive types or method dispatch
in the JVM. For example, replacing Scala collections in Slick’s AST
(https://github.com/slick/slick/pull/1252/commits/2adb7c36874c41f068176570d3812b674463660e)
by a custom collection implementation improved the performance of Slick’s query
compiler by 25% (from reducing overhead and implementing efficient operations alone,
without any use of specialization). While we do not expect the same improvements for a
more generic collection library, it does show that there is room for improvement.

Provide source compatibility with 2.12 where it makes sense but allow breaking changes
where required: We expect the majority of collection usage to be compatible between 2.12
and 2.13 and the majority of the remaining incompatibilities to be automatically fixable
with ScalaFix (https://scalacenter.github.io/scalafix/).

http://www.scala-lang.org/api/2.12.1/scala/collection/immutable/List.html
https://github.com/slick/slick/pull/1252/commits/2adb7c36874c41f068176570d3812b674463660e
https://scalacenter.github.io/scalafix/

CanBuildFrom
One of the most powerful but also most controversial features of the current collections
library is CanBuildFrom :

This is the standard map method as declared in TraversableLike . It is so inscrutable to
beginners that simplified use case signatures were added to the API documentation in order
to better convey the intended meaning:

1. 1. def map[B](f: A => B): $Coll[B]

While use case signatures help you when you look at the scaladocs, you still have to deal
with the real definitions in IDE code-completion and in compiler errors.

Here is the same method as defined in IterablePolyTransforms in the new design:

1. 1. def map[B](f: A => B): C[B]

The method has the expected signature, there is no compile-time or run-time overhead to
find the right CanBuildFrom , and the type constructor C is refined to a concrete
collection type in almost every use case, so you see the expected definitions in scaladocs,
code-completion and error messages.

Of course, CanBuildFrom was added in Scala 2.8 for a good reason. It allows a single
definition of a standard method like map to work for regular, unconstrained collections
and for constrained collections that require an implicit evidence for their element type. For
example, we can naturally define class BitSet extends Set[Int] , but what does it
mean to call map on a BitSet ?

1. 1. val s: BitSet = ...
2. val c1 = s.map(i => i+1)
3. val c2 = s.map(i => i.toString)

The current Scala collections design makes it possible to not only build a BitSet for c1
and a HashSet for c2 at run-time but also compute these types statically at compile-

1. 1. def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr,

time. It gets slightly more complicated when you take code such as

1. 1. val s: BitSet = ...
2. val c1 = (s: Set[Int]).map(i => i+1)

You wouldn’t expect c1 to be of type BitSet but is it still backed by a BitSet at run-
time or do you get a default Set implementation? In this case it is the latter but there are
inconsistencies between static and dynamic lookup of Builder types in the current
library that can lead to unexpected types or implementations.

As shown above, the new design does not have an implicit evidence parameter for map , so
you are assured that you always get the same implementation no matter if you statically
see your BitSet as a BitSet or a Set[Int] . This “same implementation” in the case
of BitSet means Set though. A collection implementation is free to pick any collection
type to build (between what its supertype promises and what it implements itself, of
course) as long as it is unconstrained. In order to call BitSet.map and get another
constrained BitSet out of it, we need to overload the map method:

1. 1. class BitSet extends Set[Int] {
2. // inherited:
3. //def map[B](f: Int => B): Set[B]
4.
5. def map(f: Int => Int): BitSet
6. }

Thanks to an improvement to type inference (https://github.com/scala/scala/pull/5307) it is
possible to call the overloaded method with a lambda without explicit type annotations in
Scala 2.12:

1. 1. val s: BitSet = ...
2.
3. // Scala 2.11 and earlier would have required:
4. val c1 = s.map((i: Int) => i+1)
5.
6. // This works in 2.12+:
7. val c2 = s.map(i => i+1)

While BitSet is a rather esoteric collection type, the same principle of implicit constraints
on element types T applies to other collection types as well:

https://github.com/scala/scala/pull/5307

This covers most uses of CanBuildFrom in a much simpler way. The most important use
cases that cannot be supported by the new design are collection.breakOut (for
building a different collection type directly without an extra conversion step) and to (for
converting to a different collection type for which a CanBuildFrom is available).

FromIterable
The to method still exists in the new design but it is only a decorator around
FromIterable , the basic abstraction that is implemented by every unconstrained

collection type’s companion object:

Note that the fi parameter is not implicit (like the CanBuildFrom in the current library),
so you now call to with a value and have the type inferred instead of calling it with a type
and having the value filled in by implicit lookup:

1. 1. val s: Set[Int] = ...
2. val v = s.to(Vector) // this used to be to[Vector]

1. 1. trait IterableOps[+A] extends Any {
2. def to[C[X] <: Iterable[X]](fi: FromIterable[C]): C[A @uncheckedVariance
3. fi.fromIterable(coll)
4. ...
5. }
6.
7. trait FromIterable[+C[X] <: Iterable[X]] {
8. def fromIterable[B](it: Iterable[B]): C[B]
9. }

BitSet: T <:< Int (“must be an Int”)

All Map types: T <:< (_, _) (“must be a Tuple2”)

All sorted collections (like TreeSet): Ordering[T] (“must have an Ordering”)

String (not a collection type per se but it gets many collection methods as extension
methods): T <:< Char (“must be a Char”)

This has the advantage that we can overload to to cover maps (and maybe also other
constrained collection types) which is not possible in the current design (where to only
works for unary type constructors).

Views
Views (http://docs.scala-lang.org/overviews/collections/views) in the current collections
library are one of the lesser-used features (https://github.com/scala/collection-
strawman/issues/21#issuecomment-275861238) yet they add a lot of complexity to the
implementation. The new design separates immutable views from mutable views (the
latter have not yet been implemented), with only two types of immutable views: indexed
and non-indexed. This is a huge simplification over the current design where a view type is
specific to a its underlying collection type.

Conceptually a View is now a reified operation over an Iterator . Like a Java 8 Stream
(https://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/) it has terminal
operations which run the operation represented by the current View on a fresh
Iterator (e.g. foreach and foldLeft) and intermediate operations which create a

new View (e.g. filter and flatMap). This provides clear semantics even when used
together with mutable collections: Composing views with intermediate operations is
always independent of concurrent modifications to the underlying collection. Only when
you call a terminal operation will the current state of the collection be used (by calling
iterator on it).

Views are also the recommended replacement for collection.breakOut . For example,

1. 1. val s: Seq[Int] = ...
2. val set: Set[String] = s.map(_.toString)(collection.breakOut)

can be expressed with the same performance characteristics as:

1. 1. val s: Seq[Int] = ...
2. val set = s.view.map(_.toString).to(Set)

If you combine multiple operations they are executed lazily:

http://docs.scala-lang.org/overviews/collections/views
https://github.com/scala/collection-strawman/issues/21#issuecomment-275861238
https://zeroturnaround.com/rebellabs/java-8-streams-cheat-sheet/

Laziness
Aside from views the current collections library also supports lazy collections but they do
not get a first class treatment. While we do have Stream , it is only lazy in the tail but still
strict in the head element and the implementation needs to special-case pretty much
everything because the basic abstraction for building new collections (which is used by all
of the default implementations that strict collection types can safely inherit) is
CanBuildFrom / Builder which uses strict, push-based collection building.

By combining FromIterable with the new View design we can turn this around to
provide pull-based building which can be used by strict and lazy collections alike. For
example, this is the default implementation of map in IterablePolyTransforms which
does not need to be overridden in LazyList to provide the expected laziness:

Any operation that is available on View can get a default implementation like this based
on rebuilding the current collection type from a View operation. Naturally a LazyList
can be “built” from an Iterable by getting an Iterator and only pulling elements one
by one as they are needed, so we automatically get a lazy implementation of map .

Language Integration
You may have wondered about the asymmetry in the default types that are in scope
through Predef or the scala package object:

1. 1. val s: Seq[Int] = ...
2.
3. // First build a filtered Seq, then a mapped Seq, then a Set
4. val set1 = s.filter(_ > 0).map(_.toString).to(Set)
5.
6. // Build a Set directly by evaluating filter and map together:
7. val set2 = s.view.filter(_ > 0).map(_.toString).to(Set)

1. 1. def map[B](f: A => B): C[B] = fromIterable(View.Map(coll, f))

Unlike all other collection types, Seq is not the immutable version but the generic one
that encompasses both, mutable and immutable sequences. The reason for this is that the
Scala specification represents varargs as type scala.Seq (and it should not have to rely
on any type outside the top-level scala package). Since varargs in Java (and on the JVM)
are really mutable arrays, the default Seq has to allow mutable collections.

In practice though, this kind of array can be treated as quasi-immutable, so we plan to add
a new ImmutableArray wrapper in the new design which can be used for varags, thereby
removing the need for a non-immutable default Seq type.

Outlook
We are currently working on the new design as part of SCP-007
(https://github.com/scalacenter/advisoryboard/blob/master/proposals/007-
collections.md) which is funded by Scala Center (https://scala.epfl.ch/). At this stage all
work is happening in the collection-strawman (https://github.com/scala/collection-
strawman) repository with the goal of refining and completing it to the point where we are
confident that it can and should become a part of Scala 2.13. The core project team consists
of Julien Richard-Foy (from Scala Center), Martin Odersky, Rex Kerr and myself (as a
member of the Scala team at Lightbend who maintain the Scala compiler).

If you’d like to get involved, now is the time to weigh in on the discussions that are
happening on the pull requests and issues. We also have a Gitter channel
(https://gitter.im/scala/collection-strawman) and a Scala Contributors
(https://contributors.scala-lang.org/t/ongoing-work-on-standard-collections-redesign/293)
discourse discussion thread.

A few topics still need further exploration:

1. 1. scala> classOf[Set[_]]
2. res1: Class[Set[_]] = interface scala.collection.immutable.Set
3.
4. scala> classOf[Map[_, _]]
5. res2: Class[Map[_, _]] = interface scala.collection.immutable.
6.
7. scala> classOf[Seq[_]]
8. res3: Class[Seq[_]] = interface scala.collection.Seq

https://github.com/scalacenter/advisoryboard/blob/master/proposals/007-collections.md
https://scala.epfl.ch/
https://github.com/scala/collection-strawman
https://gitter.im/scala/collection-strawman
https://contributors.scala-lang.org/t/ongoing-work-on-standard-collections-redesign/293

DOCUMENTATION

Getting Started
(/documentation/getting-
started.html)
API (http://www.scala-
lang.org/api/current/index.html#package)
Overviews/Guides
(http://docs.scala-
lang.org/overviews/)
Tutorials (http://docs.scala-
lang.org/tutorials/)
Language Specification
(/files/archive/spec/2.12/)

DOWNLOAD

Current Version (/download/)
All Versions
(/download/all.html)

COMMUNITY

Community (/community/)
Mailing Lists
(/community/index.html#mailing-
lists)
Chat Rooms & More
(/community/index.html#chat-
rooms)
Libraries and Tools
(/community/index.html#community-
libraries-and-tools)
The Scala Center
(https://scala.epfl.ch/)

CONTRIBUTE

How to Help (/contribute)
Report an Issue
(/contribute/bug-reporting-
guide.html)

The current roadmap calls for the basic design to be completed in Q1 2017 so we can focus
on migration options in Q2 and come to a decision whether to adopt the new design in
Scala 2.13. If all goes according to plan, the remaining implementation work should be
finished by the end of the year in time for Scala 2.13.0-RC1.

Currently there is no support for specialization (http://www.scala-
notes.org/2011/04/specializing-for-primitive-types/) of collections. It would be nice to
allow this in the new design if we can do it without too much of an impact on the majority
of non-specialized collections.

We need a story for parallel collections. They will be moved into a separate module
(https://github.com/scala/scala/pull/5603/) in Scala 2.13 as part of the ongoing
modularization of the standard library but it is not clear yet how closely they will be
integrated into the new design.

The scala-java8-compat (https://github.com/scala/scala-java8-compat) module provides
better integration of collections with Java Streams. Some basic parts like the specialized
Stepper types (which unify Java Iterators, Scala Iterators and Java Spliterators) may

find their way into the standard library.

Apart from ScalaFix (https://scalacenter.github.io/scalafix/) we should explore other
migration options, for example using IntelliJ IDEA’s refactoring API or providing
compatibility libraries that allow you to cross-build most sources against the old and new
collection libraries.

http://127.0.0.1:4000/documentation/getting-started.html
http://www.scala-lang.org/api/current/index.html#package
http://docs.scala-lang.org/overviews/
http://docs.scala-lang.org/tutorials/
http://127.0.0.1:4000/files/archive/spec/2.12/
http://127.0.0.1:4000/download/
http://127.0.0.1:4000/download/all.html
http://127.0.0.1:4000/community/
http://127.0.0.1:4000/community/index.html#mailing-lists
http://127.0.0.1:4000/community/index.html#chat-rooms
http://127.0.0.1:4000/community/index.html#community-libraries-and-tools
https://scala.epfl.ch/
http://127.0.0.1:4000/contribute
http://127.0.0.1:4000/contribute/bug-reporting-guide.html
http://www.scala-notes.org/2011/04/specializing-for-primitive-types/
https://github.com/scala/scala/pull/5603/
https://github.com/scala/scala-java8-compat
https://scalacenter.github.io/scalafix/

 (http://www.epfl.ch) Copyright © 2002-2017 École Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

http://www.epfl.ch/

