Skip to content
This repository
Fetching contributors…

Cannot retrieve contributors at this time

file 1894 lines (1685 sloc) 84.297 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
/* NSC -- new Scala compiler
* Copyright 2005-2013 LAMP/EPFL
* @author Iulian Dragos
*/

package scala.tools.nsc
package transform

import scala.tools.nsc.symtab.Flags
import scala.collection.{ mutable, immutable }
import scala.language.postfixOps
import scala.language.existentials

/** Specialize code on types.
*
* Make sure you've read the thesis:
*
* Iulian Dragos: Compiling Scala for Performance (chapter 4)
*
* There are some things worth noting, (possibly) not mentioned there:
* 0) Make sure you understand the meaning of various `SpecializedInfo` descriptors
* defined below.
*
* 1) Specializing traits by introducing bridges in specialized methods
* of the specialized trait may introduce problems during mixin composition.
* Concretely, it may cause cyclic calls and result in a stack overflow.
* See ticket #4351.
* This was solved by introducing an `Abstract` specialized info descriptor.
* Instead of generating a bridge in the trait, an abstract method is generated.
*
* 2) Specialized private members sometimes have to be switched to protected.
* In some cases, even this is not enough. Example:
*
* {{{
* class A[@specialized T](protected val d: T) {
* def foo(that: A[T]) = that.d
* }
* }}}
*
* Specialization will generate a specialized class and a specialized method:
*
* {{{
* class A$mcI$sp(protected val d: Int) extends A[Int] {
* def foo(that: A[Int]) = foo$mcI$sp(that)
* def foo(that: A[Int]) = that.d
* }
* }}}
*
* Above, `A$mcI$sp` cannot access `d`, so the method cannot be typechecked.
*/
abstract class SpecializeTypes extends InfoTransform with TypingTransformers {
  import global._
  import Flags._
  /** the name of the phase: */
  val phaseName: String = "specialize"

  /** The following flags may be set by this phase: */
  override def phaseNewFlags: Long = notPRIVATE | lateFINAL

  /** This phase changes base classes. */
  override def changesBaseClasses = true
  override def keepsTypeParams = true

  type TypeEnv = immutable.Map[Symbol, Type]
  def emptyEnv: TypeEnv = Map[Symbol, Type]()

  private implicit val typeOrdering: Ordering[Type] = Ordering[String] on ("" + _.typeSymbol.name)

  import definitions.{
    BooleanClass, UnitClass, ArrayClass,
    ScalaValueClasses, isPrimitiveValueClass, isPrimitiveValueType,
    SpecializedClass, UnspecializedClass, AnyRefClass, ObjectClass,
    GroupOfSpecializable, uncheckedVarianceClass, ScalaInlineClass
  }
  import rootMirror.RootClass

  /** TODO - this is a lot of maps.
*/

  /** For a given class and concrete type arguments, give its specialized class */
  val specializedClass: mutable.Map[(Symbol, TypeEnv), Symbol] = new mutable.LinkedHashMap

  /** Map a method symbol to a list of its specialized overloads in the same class. */
  private val overloads = perRunCaches.newMap[Symbol, List[Overload]]() withDefaultValue Nil

  /** Map a symbol to additional information on specialization. */
  private val info = perRunCaches.newMap[Symbol, SpecializedInfo]()

  /** Map class symbols to the type environments where they were created. */
  private val typeEnv = perRunCaches.newMap[Symbol, TypeEnv]() withDefaultValue emptyEnv

  // Key: a specialized class or method
  // Value: a map from tparams in the original class to tparams in the specialized class.
  private val anyrefSpecCache = perRunCaches.newMap[Symbol, mutable.Map[Symbol, Symbol]]()

  // holds mappings from members to the type variables in the class
  // that they were already specialized for, so that they don't get
  // specialized twice (this is for AnyRef specializations)
  private val wasSpecializedForTypeVars = perRunCaches.newMap[Symbol, Set[Symbol]]() withDefaultValue Set()

  /** Concrete methods that use a specialized type, or override such methods. */
  private val concreteSpecMethods = perRunCaches.newWeakSet[Symbol]()

  private def specializedTypes(tps: List[Symbol]) = tps filter (_.isSpecialized)
  private def specializedOn(sym: Symbol): List[Symbol] = {
    sym getAnnotation SpecializedClass match {
      case Some(AnnotationInfo(_, Nil, _)) => specializableTypes.map(_.typeSymbol)
      case Some(ann @ AnnotationInfo(_, args, _)) => {
        args map (_.tpe) flatMap { tp =>
          tp baseType GroupOfSpecializable match {
            case TypeRef(_, GroupOfSpecializable, arg :: Nil) =>
              arg.typeArgs map (_.typeSymbol)
            case _ =>
              tp.typeSymbol :: Nil
          }
        }
      }
      case _ => Nil
    }
  }

  // If we replace `isBoundedGeneric` with (tp <:< AnyRefClass.tpe),
  // then pos/spec-List.scala fails - why? Does this kind of check fail
  // for similar reasons? Does `sym.isAbstractType` make a difference?
  private def isSpecializedAnyRefSubtype(tp: Type, sym: Symbol) = {
    specializedOn(sym).exists(s => !isPrimitiveValueClass(s)) &&
    !isPrimitiveValueClass(tp.typeSymbol) &&
    isBoundedGeneric(tp)
    //(tp <:< AnyRefClass.tpe)
  }

  object TypeEnv {
    /** Return a new type environment binding specialized type parameters of sym to
* the given args. Expects the lists to have the same length.
*/
    def fromSpecialization(sym: Symbol, args: List[Type]): TypeEnv = {
      ifDebug(assert(sym.info.typeParams.length == args.length, sym + " args: " + args))

      emptyEnv ++ collectMap2(sym.info.typeParams, args)((k, v) => k.isSpecialized)
    }

    /** Does typeenv `t1` include `t2`? All type variables in `t1`
* are defined in `t2` and:
* - are bound to the same type, or
* - are an AnyRef specialization and `t2` is bound to a subtype of AnyRef
*/
    def includes(t1: TypeEnv, t2: TypeEnv) = t1 forall {
      case (sym, tpe) =>
        t2 get sym exists { t2tp =>
          (tpe == t2tp) || !(isPrimitiveValueType(tpe) || isPrimitiveValueType(t2tp)) // u.t.b. (t2tp <:< AnyRefClass.tpe)
        }
    }

    /** Reduce the given environment to contain mappings only for type variables in tps. */
    def restrict(env: TypeEnv, tps: immutable.Set[Symbol]): TypeEnv =
      env filterKeys tps toMap

    /** Is the given environment a valid specialization for sym?
* It is valid if each binding is from a @specialized type parameter in sym (or its owner)
* to a type for which `sym` is specialized.
*/
    def isValid(env: TypeEnv, sym: Symbol): Boolean = {
      env forall { case (tvar, tpe) =>
        tvar.isSpecialized && (concreteTypes(tvar) contains tpe) && {
          (sym.typeParams contains tvar) ||
          (sym.owner != RootClass && (sym.owner.typeParams contains tvar))
        }
      }
    }
  }

  /** Returns the generic class that was specialized to 'sClass', or
* 'sClass' itself if sClass is not a specialized subclass.
*/
  def genericClass(sClass: Symbol): Symbol =
    if (sClass.isSpecialized) sClass.superClass
    else sClass

  case class Overload(sym: Symbol, env: TypeEnv) {
    override def toString = "specialized overload " + sym + " in " + env
    def matchesSym(other: Symbol) = sym.tpe =:= other.tpe
    def matchesEnv(env1: TypeEnv) = TypeEnv.includes(env, env1)
  }
  private def newOverload(method: Symbol, specializedMethod: Symbol, env: TypeEnv) = {
    assert(!specializedMethod.isOverloaded, specializedMethod.defString)
    val om = Overload(specializedMethod, env)
    overloads(method) ::= om
    om
  }

  /** Just to mark uncheckable */
  override def newPhase(prev: scala.tools.nsc.Phase): StdPhase = new SpecializationPhase(prev)
  class SpecializationPhase(prev: scala.tools.nsc.Phase) extends super.Phase(prev) {
    override def checkable = false
  }

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new SpecializationTransformer(unit)

  abstract class SpecializedInfo {
    def target: Symbol

    /** Are type bounds of @specialized type parameters of 'target' now in 'env'? */
    def typeBoundsIn(env: TypeEnv) = false

    /** A degenerated method has @specialized type parameters that appear only in
* type bounds of other @specialized type parameters (and not in its result type).
*/
    def degenerate = false

    def isAccessor = false
  }

  /** Symbol is a special overloaded method of 'original', in the environment env. */
  case class SpecialOverload(original: Symbol, env: TypeEnv) extends SpecializedInfo {
    def target = original
  }

  /** Symbol is a method that should be forwarded to 't' */
  case class Forward(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a specialized abstract method, either specialized or original. The original `t` is abstract. */
  case class Abstract(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a specialized accessor for the `target` field. */
  case class SpecializedAccessor(target: Symbol) extends SpecializedInfo {
    override def isAccessor = true
  }

  /** Symbol is a specialized method whose body should be the target's method body. */
  case class Implementation(target: Symbol) extends SpecializedInfo

  /** Symbol is a specialized override paired with `target`. */
  case class SpecialOverride(target: Symbol) extends SpecializedInfo

  /** A specialized inner class that specializes original inner class `target` on a type parameter of the enclosing class, in the typeenv `env`. */
  case class SpecializedInnerClass(target: Symbol, env: TypeEnv) extends SpecializedInfo

  /** Symbol is a normalized member obtained by specializing 'target'. */
  case class NormalizedMember(target: Symbol) extends SpecializedInfo {

    /** Type bounds of a @specialized type var are now in the environment. */
    override def typeBoundsIn(env: TypeEnv): Boolean = {
      target.info.typeParams exists { tvar =>
        tvar.isSpecialized && (specializedTypeVars(tvar.info.bounds) exists env.isDefinedAt)
      }
    }

    override lazy val degenerate = {
      val stvTypeParams = specializedTypeVars(target.info.typeParams map (_.info))
      val stvResult = specializedTypeVars(target.info.resultType)

      debuglog("degenerate: " + target + " stv tparams: " + stvTypeParams + " stv info: " + stvResult)

      (stvTypeParams -- stvResult).nonEmpty
    }
  }

  /** Has `clazz` any type parameters that need be specialized? */
  def hasSpecializedParams(clazz: Symbol) =
    clazz.info.typeParams exists (_.isSpecialized)

  /** Return specialized type parameters. */
  def specializedParams(sym: Symbol): List[Symbol] =
    sym.info.typeParams filter (_.isSpecialized)

  def splitParams(tps: List[Symbol]) =
    tps partition (_.isSpecialized)

  /** Given an original class symbol and a list of types its type parameters are instantiated at
* returns a list of type parameters that should remain in the TypeRef when instantiating a
* specialized type.
*/
  def survivingArgs(sym: Symbol, args: List[Type]): List[Type] =
    for ((tvar, tpe) <- sym.info.typeParams.zip(args) if !tvar.isSpecialized || !isPrimitiveValueType(tpe))
      yield tpe

  val specializedType = new TypeMap {
    override def apply(tp: Type): Type = tp match {
      case TypeRef(pre, sym, args) if args.nonEmpty =>
        val pre1 = this(pre)
        // when searching for a specialized class, take care to map all
        // type parameters that are subtypes of AnyRef to AnyRef
        val args1 = map2(args, sym.info.typeParams)((tp, orig) =>
          if (isSpecializedAnyRefSubtype(tp, orig)) AnyRefClass.tpe
          else tp
        )
        specializedClass.get((sym, TypeEnv.fromSpecialization(sym, args1))) match {
          case Some(sym1) => typeRef(pre1, sym1, survivingArgs(sym, args))
          case None => typeRef(pre1, sym, args)
        }
      case _ => tp
    }
  }

  /** Return the specialized name of 'sym' in the given environment. It
* guarantees the same result regardless of the map order by sorting
* type variables alphabetically.
*/
  private def specializedName(sym: Symbol, env: TypeEnv): TermName = {
    val tvars = (
      if (sym.isClass) env.keySet
      else specializedTypeVars(sym).intersect(env.keySet)
    )
    val (methparams, others) = tvars.toList sortBy ("" + _.name) partition (_.owner.isMethod)
    // debuglog("specName(" + sym + ") env: " + env + " tvars: " + tvars)

    specializedName(sym.name, methparams map env, others map env)
  }

  /** Specialize name for the two list of types. The first one denotes
* specialization on method type parameters, the second on outer environment.
*/
  private def specializedName(name: Name, types1: List[Type], types2: List[Type]): TermName = {
    if (nme.INITIALIZER == name || (types1.isEmpty && types2.isEmpty))
      name
    else if (nme.isSetterName(name))
      nme.getterToSetter(specializedName(nme.setterToGetter(name), types1, types2))
    else if (nme.isLocalName(name))
      nme.getterToLocal(specializedName(nme.localToGetter(name), types1, types2))
    else {
      val (base, cs, ms) = nme.splitSpecializedName(name)
      newTermName(base.toString + "$"
                  + "m" + ms + types1.map(t => definitions.abbrvTag(t.typeSymbol)).mkString("", "", "")
                  + "c" + cs + types2.map(t => definitions.abbrvTag(t.typeSymbol)).mkString("", "", "$sp"))
    }
  }

  lazy val specializableTypes = ScalaValueClasses map (_.tpe) sorted

  /** If the symbol is the companion of a value class, the value class.
* Otherwise, AnyRef.
*/
  def specializesClass(sym: Symbol): Symbol = {
    val c = sym.companionClass
    if (isPrimitiveValueClass(c)) c else AnyRefClass
  }

  /** Return the types `sym` should be specialized at. This may be some of the primitive types
* or AnyRef. AnyRef means that a new type parameter T will be generated later, known to be a
* subtype of AnyRef (T <: AnyRef).
* These are in a meaningful order for stability purposes.
*/
  def concreteTypes(sym: Symbol): List[Type] = {
    val types = if (!sym.isSpecialized)
      Nil // no @specialized Annotation
    else
      specializedOn(sym) map (s => specializesClass(s).tpe) sorted

    if (isBoundedGeneric(sym.tpe) && (types contains AnyRefClass))
      reporter.warning(sym.pos, sym + " is always a subtype of " + AnyRefClass.tpe + ".")

    types
  }

  /** Return a list of all type environments for all specializations
* of @specialized types in `tps`.
*/
  private def specializations(tps: List[Symbol]): List[TypeEnv] = {
    // the keys in each TypeEnv
    val keys: List[Symbol] = tps filter (_.isSpecialized)
    // creating each permutation of concrete types
    def loop(ctypes: List[List[Type]]): List[List[Type]] = ctypes match {
      case Nil => Nil
      case set :: Nil => set map (_ :: Nil)
      case set :: sets => for (x <- set ; xs <- loop(sets)) yield x :: xs
    }
    // zip the keys with each permutation to create a TypeEnv.
    // If we don't exclude the "all AnyRef" specialization, we will
    // incur duplicate members and crash during mixin.
    loop(keys map concreteTypes) filterNot (_ forall (_ <:< AnyRefClass.tpe)) map (xss => Map(keys zip xss: _*))
  }

  /** Does the given 'sym' need to be specialized in the environment 'env'?
* Specialization is needed for
* - members with specialized type parameters found in the given environment
* - constructors of specialized classes
* - normalized members whose type bounds appear in the environment
* But suppressed for:
* - any member with the @unspecialized annotation, or which has an
* enclosing member with the annotation.
*/
  private def needsSpecialization(env: TypeEnv, sym: Symbol): Boolean = (
    !sym.ownerChain.exists(_ hasAnnotation UnspecializedClass) && (
         specializedTypeVars(sym).intersect(env.keySet).diff(wasSpecializedForTypeVars(sym)).nonEmpty
      || sym.isClassConstructor && (sym.enclClass.typeParams exists (_.isSpecialized))
      || isNormalizedMember(sym) && info(sym).typeBoundsIn(env)
    )
  )

  def isNormalizedMember(m: Symbol) = m.isSpecialized && (info get m exists {
    case NormalizedMember(_) => true
    case _ => false
  })
  def specializedTypeVars(tpes: List[Type]): immutable.Set[Symbol] = {
    val buf = Set.newBuilder[Symbol]
    tpes foreach (tp => buf ++= specializedTypeVars(tp))
    buf.result
  }
  def specializedTypeVars(sym: Symbol): immutable.Set[Symbol] = beforeTyper(specializedTypeVars(sym.info))

  /** Return the set of @specialized type variables mentioned by the given type.
* It only counts type variables that appear:
* - naked
* - as arguments to type constructors in @specialized positions
* (arrays are considered as Array[@specialized T])
*/
  def specializedTypeVars(tpe: Type): immutable.Set[Symbol] = tpe match {
    case TypeRef(pre, sym, args) =>
      if (sym.isAliasType)
        specializedTypeVars(tpe.normalize)
      else if (sym.isTypeParameter && sym.isSpecialized || (sym.isTypeSkolem && sym.deSkolemize.isSpecialized))
        Set(sym)
      else if (sym == ArrayClass)
        specializedTypeVars(args)
      else if (args.isEmpty)
        Set()
      else
        specializedTypeVars(sym.typeParams zip args collect { case (tp, arg) if tp.isSpecialized => arg })

    case PolyType(tparams, resTpe) => specializedTypeVars(resTpe :: tparams.map(_.info))
    // since this method may be run at phase typer (before uncurry, where NMTs are eliminated)
    case NullaryMethodType(resTpe) => specializedTypeVars(resTpe)
    case MethodType(argSyms, resTpe) => specializedTypeVars(resTpe :: argSyms.map(_.tpe))
    case ExistentialType(_, res) => specializedTypeVars(res)
    case AnnotatedType(_, tp, _) => specializedTypeVars(tp)
    case TypeBounds(lo, hi) => specializedTypeVars(lo :: hi :: Nil)
    case RefinedType(parents, _) => parents flatMap specializedTypeVars toSet
    case _ => Set()
  }

  /** Returns the type parameter in the specialized class `sClass` that corresponds to type parameter
* `tparam` in the original class. It will create it if needed or use the one from the cache.
*/
  private def typeParamSubAnyRef(tparam: Symbol, sClass: Symbol): Type = {
    val sClassMap = anyrefSpecCache.getOrElseUpdate(sClass, mutable.Map[Symbol, Symbol]())

    sClassMap.getOrElseUpdate(tparam,
      tparam.cloneSymbol(sClass, tparam.flags, tparam.name append tpnme.SPECIALIZED_SUFFIX)
        modifyInfo (info => TypeBounds(info.bounds.lo, AnyRefClass.tpe))
    ).tpe
  }

  /** Cleans the anyrefSpecCache of all type parameter symbols of a class.
*/
  private def cleanAnyRefSpecCache(clazz: Symbol, decls: List[Symbol]) {
    // remove class type parameters and those of normalized members.
    clazz :: decls foreach (anyrefSpecCache remove _)
  }

  /** Type parameters that survive when specializing in the specified environment. */
  def survivingParams(params: List[Symbol], env: TypeEnv) =
    params filter {
      p =>
      !p.isSpecialized ||
      !env.contains(p) ||
      !isPrimitiveValueType(env(p))
    }

  /** Produces the symbols from type parameters `syms` of the original owner,
* in the given type environment `env`. The new owner is `nowner`.
*
* Non-specialized type parameters are cloned into new ones.
* Type parameters specialized on AnyRef have preexisting symbols.
*
* For instance, a @specialized(AnyRef) T, will become T$sp <: AnyRef.
*/
  def produceTypeParameters(syms: List[Symbol], nowner: Symbol, env: TypeEnv) = {
    val cloned = for (s <- syms) yield if (!env.contains(s)) s.cloneSymbol(nowner) else env(s).typeSymbol
    // log("producing type params: " + cloned.map(t => (t, t.tpe.bounds.hi)))
    foreach2(syms, cloned) { (orig, cln) =>
      cln.removeAnnotation(SpecializedClass)
      if (env.contains(orig))
        cln modifyInfo (info => TypeBounds(info.bounds.lo, AnyRefClass.tpe))
    }
    cloned map (_ substInfo (syms, cloned))
  }

  /** Maps AnyRef bindings from a raw environment (holding AnyRefs) into type parameters from
* the specialized symbol (class (specialization) or member (normalization)), leaves everything else as-is.
*/
  private def mapAnyRefsInSpecSym(env: TypeEnv, origsym: Symbol, specsym: Symbol): TypeEnv = env map {
    case (sym, tp) if tp == AnyRefClass.tpe && sym.owner == origsym => (sym, typeParamSubAnyRef(sym, specsym))
    case x => x
  }

  /** Maps AnyRef bindings from a raw environment (holding AnyRefs) into type parameters from
* the original class, leaves everything else as-is.
*/
  private def mapAnyRefsInOrigCls(env: TypeEnv, origcls: Symbol): TypeEnv = env map {
    case (sym, tp) if (tp == AnyRefClass.tpe) && sym.owner == origcls => (sym, sym.tpe)
    case x => x
  }

  /** Specialize 'clazz', in the environment `outerEnv`. The outer
* environment contains bindings for specialized types of enclosing
* classes.
*
* A class C is specialized w.r.t to its own specialized type params
* `stps`, by specializing its members, and creating a new class for
* each combination of `stps`.
*/
  def specializeClass(clazz: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    def specializedClass(env0: TypeEnv, normMembers: List[Symbol]): Symbol = {
      /** It gets hard to follow all the clazz and cls, and specializedClass
* was both already used for a map and mucho long. So "sClass" is the
* specialized subclass of "clazz" throughout this file.
*/

      // SI-5545: Eliminate classes with the same name loaded from the bytecode already present - all we need to do is
      // to force .info on them, as their lazy type will be evaluated and the symbols will be eliminated. Unfortunately
      // evaluating the info after creating the specialized class will mess the specialized class signature, so we'd
      // better evaluate it before creating the new class symbol
      val clazzName = specializedName(clazz, env0).toTypeName
      val bytecodeClazz = clazz.owner.info.decl(clazzName)
      // debuglog("Specializing " + clazz + ", but found " + bytecodeClazz + " already there")
      bytecodeClazz.info

      val sClass = clazz.owner.newClass(clazzName, clazz.pos, (clazz.flags | SPECIALIZED) & ~CASE)

      def cloneInSpecializedClass(member: Symbol, flagFn: Long => Long, newName: Name = null) =
        member.cloneSymbol(sClass, flagFn(member.flags | SPECIALIZED), newName)

      sClass.sourceFile = clazz.sourceFile
      currentRun.symSource(sClass) = clazz.sourceFile // needed later on by mixin

      val env = mapAnyRefsInSpecSym(env0, clazz, sClass)
      typeEnv(sClass) = env
      this.specializedClass((clazz, env0)) = sClass

      val decls1 = newScope // declarations of the newly specialized class 'sClass'
      var oldClassTParams: List[Symbol] = Nil // original unspecialized type parameters
      var newClassTParams: List[Symbol] = Nil // unspecialized type parameters of 'specializedClass' (cloned)

      // has to be a val in order to be computed early. It is later called
      // within 'atPhase(next)', which would lead to an infinite cycle otherwise
      val specializedInfoType: Type = {
        oldClassTParams = survivingParams(clazz.info.typeParams, env)
        newClassTParams = produceTypeParameters(oldClassTParams, sClass, env) map subst(env)
        // log("new tparams " + newClassTParams.zip(newClassTParams map {s => (s.tpe, s.tpe.bounds.hi)}) + ", in env: " + env)

        def applyContext(tpe: Type) =
          subst(env, tpe).instantiateTypeParams(oldClassTParams, newClassTParams map (_.tpe))

        /** Return a list of specialized parents to be re-mixed in a specialized subclass.
* Assuming env = [T -> Int] and
* class Integral[@specialized T] extends Numeric[T]
* and Numeric[U] is specialized on U, this produces List(Numeric$mcI).
*
* so that class Integral$mci extends Integral[Int] with Numeric$mcI.
*/
        def specializedParents(parents: List[Type]): List[Type] = {
          var res: List[Type] = Nil
          // log(specializedClass + ": seeking specialized parents of class with parents: " + parents.map(_.typeSymbol))
          for (p <- parents) {
            val stp = afterSpecialize(specializedType(p))
            if (stp != p)
              if (p.typeSymbol.isTrait) res ::= stp
              else if (currentRun.compiles(clazz))
                reporter.warning(clazz.pos, p.typeSymbol + " must be a trait. Specialized version of "
                  + clazz + " will inherit generic " + p) // TODO change to error
          }
          res
        }

        var parents = List(applyContext(beforeTyper(clazz.tpe)))
        // log("!!! Parents: " + parents + ", sym: " + parents.map(_.typeSymbol))
        if (parents.head.typeSymbol.isTrait)
          parents = parents.head.parents.head :: parents
        val extraSpecializedMixins = specializedParents(clazz.info.parents map applyContext)
        if (extraSpecializedMixins.nonEmpty)
          debuglog("extra specialized mixins for %s: %s".format(clazz.name.decode, extraSpecializedMixins.mkString(", ")))
        // If the class being specialized has a self-type, the self type may
        // require specialization. First exclude classes whose self types have
        // the same type constructor as the class itself, since they will
        // already be covered. Then apply the current context to the self-type
        // as with the parents and assign it to typeOfThis.
        if (clazz.typeOfThis.typeConstructor ne clazz.typeConstructor) {
          sClass.typeOfThis = applyContext(clazz.typeOfThis)
          debuglog("Rewriting self-type for specialized class:\n" +
              " " + clazz.defStringSeenAs(clazz.typeOfThis) + "\n" +
              " => " + sClass.defStringSeenAs(sClass.typeOfThis)
          )
        }
        GenPolyType(newClassTParams, ClassInfoType(parents ::: extraSpecializedMixins, decls1, sClass))
      }

      afterSpecialize(sClass setInfo specializedInfoType)
      val fullEnv = outerEnv ++ env

      /** Enter 'sym' in the scope of the current specialized class. It's type is
* mapped through the active environment, binding type variables to concrete
* types. The existing typeEnv for `sym` is composed with the current active
* environment
*/
      def enterMember(sym: Symbol): Symbol = {
        typeEnv(sym) = fullEnv ++ typeEnv(sym) // append the full environment
        sym modifyInfo (_.substThis(clazz, sClass).instantiateTypeParams(oldClassTParams, newClassTParams map (_.tpe)))
        // we remove any default parameters. At this point, they have been all
        // resolved by the type checker. Later on, erasure re-typechecks everything and
        // chokes if it finds default parameters for specialized members, even though
        // they are never needed.
        mapParamss(sym)(_ resetFlag DEFAULTPARAM)
        decls1 enter subst(fullEnv)(sym)
      }

      /** Create and enter in scope an overridden symbol m1 for `m` that forwards
* to `om`. `om` is a fresh, special overload of m1 that is an implementation
* of `m`. For example, for a
*
* class Foo[@specialized A] {
* def m(x: A) = <body> // m
* }
* , for class Foo$I extends Foo[Int], this method enters two new symbols in
* the scope of Foo$I:
*
* def m(x: Int) = m$I(x) // m1
* def m$I(x: Int) = <body>/adapted to env {A -> Int} // om
*/
      def forwardToOverload(m: Symbol): Symbol = {
        val specMember = enterMember(cloneInSpecializedClass(m, f => (f | OVERRIDE) & ~(DEFERRED | CASEACCESSOR)))
        val om = specializedOverload(sClass, m, env).setFlag(OVERRIDE)
        val original = info.get(m) match {
          case Some(NormalizedMember(tg)) => tg
          case _ => m
        }
        info(specMember) = Forward(om)
        info(om) = if (original.isDeferred) Forward(original) else Implementation(original)
        typeEnv(om) = env ++ typeEnv(m) // add the environment for any method tparams

        newOverload(specMember, om, typeEnv(om))
        enterMember(om)
      }

      for (m <- normMembers ; if needsSpecialization(outerEnv ++ env, m) && satisfiable(fullEnv)) {
        if (!m.isDeferred)
          addConcreteSpecMethod(m)
        // specialized members have to be overridable.
        if (m.isPrivate)
          m.resetFlag(PRIVATE).setFlag(PROTECTED)

        if (m.isConstructor) {
          val specCtor = enterMember(cloneInSpecializedClass(m, x => x))
          info(specCtor) = Forward(m)
        }
        else if (isNormalizedMember(m)) { // methods added by normalization
          val NormalizedMember(original) = info(m)
          if (nonConflicting(env ++ typeEnv(m))) {
            if (info(m).degenerate) {
              debuglog("degenerate normalized member " + m.defString)
              val specMember = enterMember(cloneInSpecializedClass(m, _ & ~DEFERRED))

              info(specMember) = Implementation(original)
              typeEnv(specMember) = env ++ typeEnv(m)
            } else {
              val om = forwardToOverload(m)
              debuglog("normalizedMember " + m + " om: " + om + " " + pp(typeEnv(om)))
            }
          }
          else
            debuglog("conflicting env for " + m + " env: " + env)
        }
        else if (m.isDeferred) { // abstract methods
          val specMember = enterMember(cloneInSpecializedClass(m, _ | DEFERRED))
          // debuglog("deferred " + specMember.fullName + " remains abstract")

          info(specMember) = new Abstract(specMember)
          // was: new Forward(specMember) {
          // override def target = m.owner.info.member(specializedName(m, env))
          // }
        } else if (m.isMethod && !m.hasAccessorFlag) { // other concrete methods
          // log("other concrete " + m)
          forwardToOverload(m)

        } else if (m.isMethod && m.hasFlag(LAZY)) {
          forwardToOverload(m)

        } else if (m.isValue && !m.isMethod && !m.hasFlag(LAZY)) { // concrete value definition
          def mkAccessor(field: Symbol, name: Name) = {
            val newFlags = (SPECIALIZED | m.getter(clazz).flags) & ~(LOCAL | CASEACCESSOR | PARAMACCESSOR)
            // we rely on the super class to initialize param accessors
            val sym = sClass.newMethod(name, field.pos, newFlags)
            info(sym) = SpecializedAccessor(field)
            sym
          }
          def overrideIn(clazz: Symbol, sym: Symbol) = {
            val newFlags = (sym.flags | OVERRIDE | SPECIALIZED) & ~(DEFERRED | CASEACCESSOR | PARAMACCESSOR)
            val sym1 = sym.cloneSymbol(clazz, newFlags)
            sym1 modifyInfo (_ asSeenFrom (clazz.tpe, sym1.owner))
          }
          val specVal = specializedOverload(sClass, m, env)

          addConcreteSpecMethod(m)
          specVal.asInstanceOf[TermSymbol].setAlias(m)

          enterMember(specVal)
          // create accessors
          // debuglog("m: " + m + " isLocal: " + nme.isLocalName(m.name) + " specVal: " + specVal.name + " isLocal: " + nme.isLocalName(specVal.name))

          if (nme.isLocalName(m.name)) {
            val specGetter = mkAccessor(specVal, nme.localToGetter(specVal.name)) setInfo MethodType(Nil, specVal.info)
            val origGetter = overrideIn(sClass, m.getter(clazz))
            info(origGetter) = Forward(specGetter)
            enterMember(specGetter)
            enterMember(origGetter)
            debuglog("specialize accessor in %s: %s -> %s".format(sClass.name.decode, origGetter.name.decode, specGetter.name.decode))

            clazz.caseFieldAccessors.find(_.name.startsWith(m.name)) foreach { cfa =>
              val cfaGetter = overrideIn(sClass, cfa)
              info(cfaGetter) = SpecializedAccessor(specVal)
              enterMember(cfaGetter)
              debuglog("override case field accessor %s -> %s".format(m.name.decode, cfaGetter.name.decode))
            }

            if (specVal.isVariable && m.setter(clazz) != NoSymbol) {
              val specSetter = mkAccessor(specVal, nme.getterToSetter(specGetter.name))
                .resetFlag(STABLE)
              specSetter.setInfo(MethodType(specSetter.newSyntheticValueParams(List(specVal.info)),
                                            UnitClass.tpe))
              val origSetter = overrideIn(sClass, m.setter(clazz))
              info(origSetter) = Forward(specSetter)
              enterMember(specSetter)
              enterMember(origSetter)
            }
          }
          else { // if there are no accessors, specialized methods will need to access this field in specialized subclasses
            m.resetFlag(PRIVATE)
            specVal.resetFlag(PRIVATE)
            debuglog("no accessors for %s/%s, specialized methods must access field in subclass".format(
              m.name.decode, specVal.name.decode))
          }
        }
        else if (m.isClass) {
          val specClass: Symbol = cloneInSpecializedClass(m, x => x)
          typeEnv(specClass) = fullEnv
          specClass setName specializedName(specClass, fullEnv).toTypeName
          enterMember(specClass)
          debuglog("entered specialized class " + specClass.fullName)
          info(specClass) = SpecializedInnerClass(m, fullEnv)
        }
      }
      sClass
    }

    val decls1 = clazz.info.decls.toList flatMap { m: Symbol =>
      if (m.isAnonymousClass) List(m) else {
        normalizeMember(m.owner, m, outerEnv) flatMap { normalizedMember =>
          val ms = specializeMember(m.owner, normalizedMember, outerEnv, clazz.info.typeParams)
          // interface traits have concrete members now
          if (ms.nonEmpty && clazz.isTrait && clazz.isInterface)
            clazz.resetFlag(INTERFACE)

          if (normalizedMember.isMethod) {
            val newTpe = subst(outerEnv, normalizedMember.info)
            // only do it when necessary, otherwise the method type might be at a later phase already
            if (newTpe != normalizedMember.info) {
              normalizedMember updateInfo newTpe
            }
          }
          normalizedMember :: ms
        }
      }
    }

    val subclasses = specializations(clazz.info.typeParams) filter satisfiable
    subclasses foreach {
      env =>
      val spc = specializedClass(env, decls1)
      val existing = clazz.owner.info.decl(spc.name)

      // a symbol for the specialized class already exists if there's a classfile for it.
      // keeping both crashes the compiler on test/files/pos/spec-Function1.scala
      if (existing != NoSymbol)
        clazz.owner.info.decls.unlink(existing)

      afterSpecialize(clazz.owner.info.decls enter spc) //!!! assumes fully specialized classes
    }
    if (subclasses.nonEmpty) clazz.resetFlag(FINAL)
    cleanAnyRefSpecCache(clazz, decls1)
    decls1
  }

  /** Expand member `sym` to a set of normalized members. Normalized members
* are monomorphic or polymorphic only in non-specialized types.
*
* Given method m[@specialized T, U](x: T, y: U) it returns
* m[T, U](x: T, y: U),
* m$I[ U](x: Int, y: U),
* m$D[ U](x: Double, y: U)
* // etc.
*/
  private def normalizeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    sym :: (
      if (!sym.isMethod || beforeTyper(sym.typeParams.isEmpty)) Nil
      else {
        // debuglog("normalizeMember: " + sym.fullNameAsName('.').decode)
        var specializingOn = specializedParams(sym)
        val unusedStvars = specializingOn filterNot specializedTypeVars(sym.info)

        // I think the last condition should be !sym.isArtifact, but that made the
        // compiler start warning about Tuple1.scala and Tuple2.scala claiming
        // their type parameters are used in non-specializable positions. Why is
        // unusedStvars.nonEmpty for these classes???
        if (unusedStvars.nonEmpty && currentRun.compiles(sym) && !sym.isSynthetic) {
          reporter.warning(sym.pos,
            "%s %s unused or used in non-specializable positions.".format(
              unusedStvars.mkString("", ", ", ""),
              if (unusedStvars.length == 1) "is" else "are")
          )
          unusedStvars foreach (_ removeAnnotation SpecializedClass)
          specializingOn = specializingOn filterNot (unusedStvars contains)
        }
        for (env0 <- specializations(specializingOn) if needsSpecialization(env0, sym)) yield {
          // !!! Can't this logic be structured so that the new symbol's name is
          // known when the symbol is cloned? It is much cleaner not to be mutating
          // names after the fact. And it adds about a billion lines of
          // "Renaming value _1 in class Tuple2 to _1$mcZ$sp" to obscure the small
          // number of other (important) actual symbol renamings.
          val tps = survivingParams(sym.info.typeParams, env0)
          val specMember = sym.cloneSymbol(owner, (sym.flags | SPECIALIZED) & ~DEFERRED) // <-- this needs newName = ...
          val env = mapAnyRefsInSpecSym(env0, sym, specMember)
          val (keys, vals) = env.toList.unzip

          specMember setName specializedName(sym, env) // <-- but the name is calculated based on the cloned symbol
          // debuglog("%s normalizes to %s%s".format(sym, specMember,
          // if (tps.isEmpty) "" else " with params " + tps.mkString(", ")))

          typeEnv(specMember) = outerEnv ++ env
          val tps1 = produceTypeParameters(tps, specMember, env)
          tps1 foreach (_ modifyInfo (_.instantiateTypeParams(keys, vals)))

          // the cloneInfo is necessary so that method parameter symbols are cloned at the new owner
          val methodType = sym.info.resultType.instantiateTypeParams(keys ++ tps, vals ++ tps1.map(_.tpe)).cloneInfo(specMember)
          specMember setInfo GenPolyType(tps1, methodType)

          debuglog("%s expands to %s in %s".format(sym, specMember.name.decode, pp(env)))
          info(specMember) = NormalizedMember(sym)
          newOverload(sym, specMember, env)
          owner.info.decls.enter(specMember)
          specMember
        }
      }
    )
  }

  // concise printing of type env
  private def pp(env: TypeEnv): String = {
    env.toList.sortBy(_._1.name) map {
      case (k, v) =>
        val vsym = v.typeSymbol
        if (k == vsym) "" + k.name
        else k.name + ":" + vsym.name

    } mkString ("env(", ", ", ")")
  }

  /** Specialize member `m` w.r.t. to the outer environment and the type
* parameters of the innermost enclosing class.
*
* Turns 'private' into 'protected' for members that need specialization.
*
* Return a list of symbols that are specializations of 'sym', owned by 'owner'.
*/
  private def specializeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv, tps: List[Symbol]): List[Symbol] = {
    def specializeOn(tparams: List[Symbol]): List[Symbol] = specializations(tparams) map { spec0 =>
      val spec = mapAnyRefsInOrigCls(spec0, owner)
      if (sym.isPrivate) {
        sym.resetFlag(PRIVATE).setFlag(PROTECTED)
        debuglog("Set %s to private[%s]".format(sym, sym.enclosingPackage))
      }

      val specMember = subst(outerEnv)(specializedOverload(owner, sym, spec))
      typeEnv(specMember) = typeEnv(sym) ++ outerEnv ++ spec
      wasSpecializedForTypeVars(specMember) ++= spec collect { case (s, tp) if s.tpe == tp => s }

      val wasSpec = wasSpecializedForTypeVars(specMember)
      if (wasSpec.nonEmpty)
        debuglog("specialized overload for %s in %s".format(specMember, pp(typeEnv(specMember))))

      newOverload(sym, specMember, spec)
      info(specMember) = SpecialOverload(sym, typeEnv(specMember))
      specMember
    }

    if (sym.isMethod) {
      val stvars = specializedTypeVars(sym)
      if (stvars.nonEmpty)
        debuglog("specialized %s on %s".format(sym.fullLocationString, stvars.map(_.name).mkString(", ")))

      val tps1 = if (sym.isConstructor) tps filter (sym.info.paramTypes contains _) else tps
      val tps2 = tps1 filter stvars
      if (!sym.isDeferred)
        addConcreteSpecMethod(sym)

      specializeOn(tps2)
    }
    else Nil
  }

  /** Return the specialized overload of `m`, in the given environment. */
  private def specializedOverload(owner: Symbol, sym: Symbol, env: TypeEnv): Symbol = {
    val newFlags = (sym.flags | SPECIALIZED) & ~(DEFERRED | CASEACCESSOR)
    // this method properly duplicates the symbol's info
    ( sym.cloneSymbol(owner, newFlags, newName = specializedName(sym, env))
        modifyInfo (info => subst(env, info.asSeenFrom(owner.thisType, sym.owner)))
    )
  }

  /** For each method m that overrides an inherited method m', add a special
* overload method `om` that overrides the corresponding overload in the
* superclass. For the following example:
*
* class IntFun extends Function1[Int, Int] {
* def apply(x: Int): Int = ..
* }
*
* this method will return List('apply$mcII$sp')
*/
  private def specialOverrides(clazz: Symbol) = logResultIf[List[Symbol]]("specialized overrides in " + clazz, _.nonEmpty) {
    /** Return the overridden symbol in syms that needs a specialized overriding symbol,
* together with its specialization environment. The overridden symbol may not be
* the closest to 'overriding', in a given hierarchy.
*
* An method m needs a special override if
* * m overrides a method whose type contains specialized type variables
* * there is a valid specialization environment that maps the overridden method type to m's type.
*/
    def needsSpecialOverride(overriding: Symbol): (Symbol, TypeEnv) = {
      def checkOverriddenTParams(overridden: Symbol) {
        foreach2(overridden.info.typeParams, overriding.info.typeParams) { (baseTvar, derivedTvar) =>
          val missing = concreteTypes(baseTvar).toSet -- concreteTypes(derivedTvar).toSet
          if (missing.nonEmpty) {
            reporter.error(derivedTvar.pos,
              "Type parameter has to be specialized at least for the same types as in the overridden method. Missing "
              + "types: " + missing.mkString("", ", ", "")
            )
          }
        }
      }
      if (!overriding.isParamAccessor) {
        for (overridden <- overriding.allOverriddenSymbols) {
          val stvars = specializedTypeVars(overridden.info)
          if (stvars.nonEmpty) {
            debuglog("specialized override of %s by %s%s".format(overridden.fullLocationString, overriding.fullLocationString,
              if (stvars.isEmpty) "" else stvars.map(_.name).mkString("(", ", ", ")")))

            if (currentRun compiles overriding)
              checkOverriddenTParams(overridden)

            val env = unify(overridden.info, overriding.info, emptyEnv, false, true)
            def atNext = afterSpecialize(overridden.owner.info.decl(specializedName(overridden, env)))

            if (TypeEnv.restrict(env, stvars).nonEmpty && TypeEnv.isValid(env, overridden) && atNext != NoSymbol) {
              debuglog(" " + pp(env) + " found " + atNext)
              return (overridden, env)
            }
          }
        }
      }
      (NoSymbol, emptyEnv)
    }
    (clazz.info.decls flatMap { overriding =>
      needsSpecialOverride(overriding) match {
        case (NoSymbol, _) => None
        case (overridden, env) =>
          val om = specializedOverload(clazz, overridden, env)
          foreachWithIndex(om.paramss) { (params, i) =>
            foreachWithIndex(params) { (param, j) =>
              param.name = overriding.paramss(i)(j).name // SI-6555 Retain the parameter names from the subclass.
            }
          }
          debuglog("specialized overload %s for %s in %s: %s".format(om, overriding.name.decode, pp(env), om.info))
          typeEnv(om) = env
          addConcreteSpecMethod(overriding)
          info(om) = (
            if (overriding.isDeferred) { // abstract override
              debuglog("abstract override " + overriding.fullName + " with specialized " + om.fullName)
              Forward(overriding)
            }
            else {
              // if the override is a normalized member, 'om' gets the
              // implementation from its original target, and adds the
              // environment of the normalized member (that is, any
              // specialized /method/ type parameter bindings)
              val impl = info get overriding match {
                case Some(NormalizedMember(target)) =>
                  typeEnv(om) = env ++ typeEnv(overriding)
                  target
                case _ =>
                  overriding
              }
              info(overriding) = Forward(om setPos overriding.pos)
              SpecialOverride(impl)
            }
          )
          newOverload(overriding, om, env)
          ifDebug(afterSpecialize(assert(
            overridden.owner.info.decl(om.name) != NoSymbol,
            "Could not find " + om.name + " in " + overridden.owner.info.decls))
          )
          Some(om)
      }
    }).toList
  }

  case object UnifyError extends scala.util.control.ControlThrowable
  private[this] def unifyError(tp1: Any, tp2: Any): Nothing = {
    log("unifyError" + ((tp1, tp2)))
    throw UnifyError
  }

  /** Return the most general type environment that specializes tp1 to tp2.
* It only allows binding of type parameters annotated with @specialized.
* Fails if such an environment cannot be found.
*
* If `strict` is true, a UnifyError is thrown if unification is impossible.
*
* If `tparams` is true, then the methods tries to unify over type params in polytypes as well.
*/
  private def unify(tp1: Type, tp2: Type, env: TypeEnv, strict: Boolean, tparams: Boolean = false): TypeEnv = (tp1, tp2) match {
    case (TypeRef(_, sym1, _), _) if sym1.isSpecialized =>
      debuglog("Unify " + tp1 + ", " + tp2)
      if (isPrimitiveValueClass(tp2.typeSymbol) || isSpecializedAnyRefSubtype(tp2, sym1))
        env + ((sym1, tp2))
      else if (isSpecializedAnyRefSubtype(tp2, sym1))
        env + ((sym1, tp2)) // env + ((sym1, AnyRefClass.tpe))
      else if (strict)
        unifyError(tp1, tp2)
      else
        env
    case (TypeRef(_, sym1, args1), TypeRef(_, sym2, args2)) =>
      if (args1.nonEmpty || args2.nonEmpty)
        debuglog("Unify types " + tp1 + " and " + tp2)

      if (strict && args1.length != args2.length) unifyError(tp1, tp2)
      val e = unify(args1, args2, env, strict)
      if (e.nonEmpty) debuglog("unified to: " + e)
      e
    case (TypeRef(_, sym1, _), _) if sym1.isTypeParameterOrSkolem =>
      env
    case (MethodType(params1, res1), MethodType(params2, res2)) =>
      if (strict && params1.length != params2.length) unifyError(tp1, tp2)
      debuglog("Unify methods " + tp1 + " and " + tp2)
      unify(res1 :: (params1 map (_.tpe)), res2 :: (params2 map (_.tpe)), env, strict)
    case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
      debuglog("Unify polytypes " + tp1 + " and " + tp2)
      if (strict && tparams1.length != tparams2.length)
        unifyError(tp1, tp2)
      else if (tparams && tparams1.length == tparams2.length)
        unify(res1 :: tparams1.map(_.info), res2 :: tparams2.map(_.info), env, strict)
      else
        unify(res1, res2, env, strict)
    case (PolyType(_, res), other) => unify(res, other, env, strict)
    case (ThisType(_), ThisType(_)) => env
    case (_, SingleType(_, _)) => unify(tp1, tp2.underlying, env, strict)
    case (SingleType(_, _), _) => unify(tp1.underlying, tp2, env, strict)
    case (ThisType(_), _) => unify(tp1.widen, tp2, env, strict)
    case (_, ThisType(_)) => unify(tp1, tp2.widen, env, strict)
    case (RefinedType(_, _), RefinedType(_, _)) => env
    case (AnnotatedType(_, tp1, _), tp2) => unify(tp2, tp1, env, strict)
    case (ExistentialType(_, res1), _) => unify(tp2, res1, env, strict)
    case (TypeBounds(lo1, hi1), TypeBounds(lo2, hi2)) => unify(List(lo1, hi1), List(lo2, hi2), env, strict)
    case _ =>
      debuglog("don't know how to unify %s [%s] with %s [%s]".format(tp1, tp1.getClass, tp2, tp2.getClass))
      env
  }

  private def unify(tp1: List[Type], tp2: List[Type], env: TypeEnv, strict: Boolean): TypeEnv = {
    if (tp1.isEmpty || tp2.isEmpty) env
    else (tp1 zip tp2).foldLeft(env) { (env, args) =>
      if (!strict) unify(args._1, args._2, env, strict)
      else {
        val nenv = unify(args._1, args._2, emptyEnv, strict)
        if (env.keySet intersect nenv.keySet isEmpty) env ++ nenv
        else {
          debuglog("could not unify: u(" + args._1 + ", " + args._2 + ") yields " + nenv + ", env: " + env)
          unifyError(tp1, tp2)
        }
      }
    }
  }

  /** Apply type bindings in the given environment `env` to all declarations. */
  private def subst(env: TypeEnv, decls: List[Symbol]): List[Symbol] =
    decls map subst(env)

  /** Apply the type environment 'env' to the given type. All type
* bindings are supposed to be to primitive types. A type variable
* that is annotated with 'uncheckedVariance' is mapped to the corresponding
* primitive type losing the annotation.
*/
  private def subst(env: TypeEnv, tpe: Type): Type = {
    class FullTypeMap(from: List[Symbol], to: List[Type]) extends SubstTypeMap(from, to) with AnnotationFilter {
      def keepAnnotation(annot: AnnotationInfo) = !(annot matches uncheckedVarianceClass)

      override def mapOver(tp: Type): Type = tp match {
        case ClassInfoType(parents, decls, clazz) =>
          val parents1 = parents mapConserve this
          val decls1 = mapOver(decls)

          if ((parents1 eq parents) && (decls1 eq decls)) tp
          else ClassInfoType(parents1, decls1, clazz)
        case _ =>
          super.mapOver(tp)
      }
    }
    val (keys, values) = env.toList.unzip
    (new FullTypeMap(keys, values))(tpe)
  }

  private def subst(env: TypeEnv)(decl: Symbol): Symbol =
    decl modifyInfo (info =>
      if (decl.isConstructor) MethodType(subst(env, info).params, decl.owner.tpe)
      else subst(env, info)
    )

  /** Checks if the type parameter symbol is not specialized
* and is used as type parameters when extending a class with a specialized
* type parameter.
* At some point we may remove this restriction.
*
* Example:
*
* class Base[@specialized T]
* class Derived[T] extends Base[T] // a non-specialized T is
* // used as a type param for Base
* // -> returning true
*/
  private def notSpecializedIn(tsym: Symbol, supertpe: Type) = supertpe match {
    case TypeRef(_, supersym, supertargs) =>
      val tspec = specializedOn(tsym).toSet
      for (supt <- supersym.typeParams) {
        val supspec = specializedOn(supt).toSet
        if (tspec != supspec && tspec.subsetOf(supspec))
          reporter.error(tsym.pos, "Type parameter has to be specialized at least for the same types as in the superclass. Missing types: " + (supspec.diff(tspec)).mkString(", "))
      }
    case _ => //log("nope")
  }

  private def unspecializableClass(tp: Type) = (
       definitions.isRepeatedParamType(tp) // ???
    || tp.typeSymbol.isJavaDefined
    || tp.typeSymbol.isPackageClass
  )

  /** Type transformation. It is applied to all symbols, compiled or loaded.
* If it is a 'no-specialization' run, it is applied only to loaded symbols.
*/
  override def transformInfo(sym: Symbol, tpe: Type): Type = {
    if (settings.nospecialization.value && currentRun.compiles(sym)) tpe
    else tpe.resultType match {
      case cinfo @ ClassInfoType(parents, decls, clazz) if !unspecializableClass(cinfo) =>
        val tparams = tpe.typeParams
        if (tparams.isEmpty)
          afterSpecialize(parents map (_.typeSymbol.info))

        val parents1 = parents mapConserve specializedType
        if (parents ne parents1) {
          debuglog("specialization transforms %s%s parents to %s".format(
            if (tparams.nonEmpty) "(poly) " else "", clazz, parents1)
          )
        }
        val newScope = newScopeWith(specializeClass(clazz, typeEnv(clazz)) ++ specialOverrides(clazz): _*)
        // If tparams.isEmpty, this is just the ClassInfoType.
        GenPolyType(tparams, ClassInfoType(parents1, newScope, clazz))
      case _ =>
        tpe
    }
  }

  /** Is any type variable in `env` conflicting with any if its type bounds, when
* type bindings in `env` are taken into account?
*
* A conflicting type environment could still be satisfiable.
*/
  def conflicting(env: TypeEnv) = !nonConflicting(env)
  def nonConflicting(env: TypeEnv) = env forall { case (tvar, tpe) =>
    (subst(env, tvar.info.bounds.lo) <:< tpe) && (tpe <:< subst(env, tvar.info.bounds.hi))
  }

  /** The type environment is sound w.r.t. to all type bounds or only soft
* conflicts appear. An environment is sound if all bindings are within
* the bounds of the given type variable. A soft conflict is a binding
* that does not fall within the bounds, but whose bounds contain
* type variables that are @specialized, (that could become satisfiable).
*/
  def satisfiable(env: TypeEnv): Boolean = satisfiable(env, false)
  def satisfiable(env: TypeEnv, warnings: Boolean): Boolean = {
    def matches(tpe1: Type, tpe2: Type): Boolean = {
      val t1 = subst(env, tpe1)
      val t2 = subst(env, tpe2)
      ((t1 <:< t2)
        || specializedTypeVars(t1).nonEmpty
        || specializedTypeVars(t2).nonEmpty)
     }

    env forall { case (tvar, tpe) =>
      matches(tvar.info.bounds.lo, tpe) && matches(tpe, tvar.info.bounds.hi) || {
        if (warnings)
          reporter.warning(tvar.pos, "Bounds prevent specialization of " + tvar)

        debuglog("specvars: " +
          tvar.info.bounds.lo + ": " +
          specializedTypeVars(tvar.info.bounds.lo) + " " +
          subst(env, tvar.info.bounds.hi) + ": " +
          specializedTypeVars(subst(env, tvar.info.bounds.hi))
        )
        false
      }
    }
  }

  def satisfiabilityConstraints(env: TypeEnv): Option[TypeEnv] = {
    val noconstraints = Some(emptyEnv)
    def matches(tpe1: Type, tpe2: Type): Option[TypeEnv] = {
      val t1 = subst(env, tpe1)
      val t2 = subst(env, tpe2)
      // log("---------> " + tpe1 + " matches " + tpe2)
      // log(t1 + ", " + specializedTypeVars(t1))
      // log(t2 + ", " + specializedTypeVars(t2))
      // log("unify: " + unify(t1, t2, env, false, false) + " in " + env)
      if (t1 <:< t2) noconstraints
      else if (specializedTypeVars(t1).nonEmpty) Some(unify(t1, t2, env, false, false) -- env.keys)
      else if (specializedTypeVars(t2).nonEmpty) Some(unify(t2, t1, env, false, false) -- env.keys)
      else None
    }

    env.foldLeft[Option[TypeEnv]](noconstraints) {
      case (constraints, (tvar, tpe)) =>
        val loconstraints = matches(tvar.info.bounds.lo, tpe)
        val hiconstraints = matches(tpe, tvar.info.bounds.hi)
        val allconstraints = for (c <- constraints; l <- loconstraints; h <- hiconstraints) yield c ++ l ++ h
        allconstraints
    }
  }

  /** This duplicator additionally performs casts of expressions if that is allowed by the `casts` map. */
  class Duplicator(casts: Map[Symbol, Type]) extends {
    val global: SpecializeTypes.this.global.type = SpecializeTypes.this.global
  } with typechecker.Duplicators {
    private val (castfrom, castto) = casts.unzip
    private object CastMap extends SubstTypeMap(castfrom.toList, castto.toList)

    class BodyDuplicator(_context: Context) extends super.BodyDuplicator(_context) {
      override def castType(tree: Tree, pt: Type): Tree = {
        // log(" expected type: " + pt)
        // log(" tree type: " + tree.tpe)
        tree.tpe = if (tree.tpe != null) fixType(tree.tpe) else null
        // log(" tree type: " + tree.tpe)
        val ntree = if (tree.tpe != null && !(tree.tpe <:< pt)) {
          val casttpe = CastMap(tree.tpe)
          if (casttpe <:< pt) gen.mkCast(tree, casttpe)
          else if (casttpe <:< CastMap(pt)) gen.mkCast(tree, pt)
          else tree
        } else tree
        ntree.tpe = null
        ntree
      }
    }

    protected override def newBodyDuplicator(context: Context) = new BodyDuplicator(context)

  }

  /** A tree symbol substituter that substitutes on type skolems.
* If a type parameter is a skolem, it looks for the original
* symbol in the 'from' and maps it to the corresponding new
* symbol. The new symbol should probably be a type skolem as
* well (not enforced).
*
* All private members are made protected in order to be accessible from
* specialized classes.
*/
  class ImplementationAdapter(from: List[Symbol],
                              to: List[Symbol],
                              targetClass: Symbol,
                              addressFields: Boolean) extends TreeSymSubstituter(from, to) {
    override val symSubst = new SubstSymMap(from, to) {
      override def matches(sym1: Symbol, sym2: Symbol) =
        if (sym2.isTypeSkolem) sym2.deSkolemize eq sym1
        else sym1 eq sym2
    }

    private def isAccessible(sym: Symbol): Boolean =
      (currentClass == sym.owner.enclClass) && (currentClass != targetClass)

    private def shouldMakePublic(sym: Symbol): Boolean =
      sym.hasFlag(PRIVATE | PROTECTED) && (addressFields || !nme.isLocalName(sym.name))

    /** All private members that are referenced are made protected,
* in order to be accessible from specialized subclasses.
*/
    override def transform(tree: Tree): Tree = tree match {
      case Select(qual, name) =>
        val sym = tree.symbol
        if (sym.isPrivate) debuglog(
          "seeing private member %s, currentClass: %s, owner: %s, isAccessible: %b, isLocalName: %b".format(
            sym, currentClass, sym.owner.enclClass, isAccessible(sym), nme.isLocalName(sym.name))
        )
        if (shouldMakePublic(sym) && !isAccessible(sym)) {
          debuglog("changing private flag of " + sym)
          sym.makeNotPrivate(sym.owner)
        }
        super.transform(tree)

      case _ =>
        super.transform(tree)
    }
  }

  /** Return the generic class corresponding to this specialized class. */
  def originalClass(clazz: Symbol): Symbol =
    if (clazz.isSpecialized) {
      val (originalName, _, _) = nme.splitSpecializedName(clazz.name)
      clazz.owner.info.decl(originalName).suchThat(_.isClass)
    } else NoSymbol

  def illegalSpecializedInheritance(clazz: Symbol): Boolean = (
       clazz.isSpecialized
    && originalClass(clazz).parentSymbols.exists(p => hasSpecializedParams(p) && !p.isTrait)
  )

  def specializeCalls(unit: CompilationUnit) = new TypingTransformer(unit) {
    /** Map a specializable method to it's rhs, when not deferred. */
    val body = perRunCaches.newMap[Symbol, Tree]()

    /** Map a specializable method to its value parameter symbols. */
    val parameters = perRunCaches.newMap[Symbol, List[Symbol]]()

    /** Collect method bodies that are concrete specialized methods.
*/
    class CollectMethodBodies extends Traverser {
      override def traverse(tree: Tree) = tree match {
        case DefDef(_, _, _, vparams :: Nil, _, rhs) =>
          if (concreteSpecMethods(tree.symbol) || tree.symbol.isConstructor) {
            // debuglog("!!! adding body of a defdef %s, symbol %s: %s".format(tree, tree.symbol, rhs))
            body(tree.symbol) = rhs
            // body(tree.symbol) = tree // whole method
            parameters(tree.symbol) = vparams.map(_.symbol)
            concreteSpecMethods -= tree.symbol
          } // no need to descend further down inside method bodies

        case ValDef(mods, name, tpt, rhs) if concreteSpecMethods(tree.symbol) =>
          body(tree.symbol) = rhs
          // log("!!! adding body of a valdef " + tree.symbol + ": " + rhs)
          //super.traverse(tree)
        case _ =>
          super.traverse(tree)
      }
    }

    def doesConform(origSymbol: Symbol, treeType: Type, memberType: Type, env: TypeEnv) = {
      (treeType =:= memberType) || { // anyref specialization
        memberType match {
          case PolyType(_, resTpe) =>
            debuglog("Conformance for anyref - polytype with result type: " + resTpe + " and " + treeType + "\nOrig. sym.: " + origSymbol)
            try {
              val e = unify(origSymbol.tpe, memberType, emptyEnv, true)
              debuglog("obtained env: " + e)
              e.keySet == env.keySet
            } catch {
              case _: Throwable =>
                debuglog("Could not unify.")
                false
            }
          case _ => false
        }
      }
    }

    def reportError[T](body: =>T)(handler: TypeError => T): T =
      try body
      catch {
        case te: TypeError =>
          reporter.error(te.pos, te.msg)
          handler(te)
      }

    override def transform(tree: Tree): Tree =
      reportError { transform1(tree) } {_ => tree}

    def transform1(tree: Tree) = {
      val symbol = tree.symbol

      /** The specialized symbol of 'tree.symbol' for tree.tpe, if there is one */
      def specSym(qual: Tree): Option[Symbol] = {
        val env = unify(symbol.tpe, tree.tpe, emptyEnv, false)
        debuglog("[specSym] checking for rerouting: %s with \n\tsym.tpe: %s, \n\ttree.tpe: %s \n\tenv: %s \n\tname: %s"
                .format(tree, symbol.tpe, tree.tpe, env, specializedName(symbol, env)))
        if (!env.isEmpty) { // a method?
          val specCandidates = qual.tpe.member(specializedName(symbol, env))
          val specMember = specCandidates suchThat { s =>
            doesConform(symbol, tree.tpe, qual.tpe.memberType(s), env)
          }

          debuglog("[specSym] found: " + specCandidates.tpe + ", instantiated as: " + tree.tpe)
          debuglog("[specSym] found specMember: " + specMember)
          if (specMember ne NoSymbol)
            if (TypeEnv.includes(typeEnv(specMember), env)) Some(specMember)
            else {
              debuglog("wrong environments for specialized member: \n\ttypeEnv(%s) = %s\n\tenv = %s".format(specMember, typeEnv(specMember), env))
              None
            }
          else None
        } else None
      }

      curTree = tree
      tree match {
        case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
          def transformNew = {
          debuglog("Attempting to specialize new %s(%s)".format(tpt, args.mkString(", ")))
          val found = findSpec(tpt.tpe)
          if (found.typeSymbol ne tpt.tpe.typeSymbol) {
            // the ctor can be specialized
            debuglog("** instantiated specialized type: " + found)
            reportError {
              localTyper.typedPos(tree.pos)(New(found, transformTrees(args): _*))
            } {
              _ => super.transform(tree)
            }
          } else super.transform(tree)
          }
          transformNew

        case Apply(sel @ Select(sup @ Super(qual, name), name1), args)
          if (sup.symbol.info.parents != beforePrevPhase(sup.symbol.info.parents)) =>
          def transformSuperApply = {

          def parents = sup.symbol.info.parents
          debuglog(tree + " parents changed from: " + beforePrevPhase(parents) + " to: " + parents)

          val res = localTyper.typed(
            Apply(Select(Super(qual, name) setPos sup.pos, name1) setPos sel.pos, transformTrees(args)) setPos tree.pos)
          debuglog("retyping call to super, from: " + symbol + " to " + res.symbol)
          res
          }
          transformSuperApply

        case TypeApply(sel @ Select(qual, name), targs)
                if (!specializedTypeVars(symbol.info).isEmpty && name != nme.CONSTRUCTOR) =>
          def transformTypeApply = {
          debuglog("checking typeapp for rerouting: " + tree + " with sym.tpe: " + symbol.tpe + " tree.tpe: " + tree.tpe)
          val qual1 = transform(qual)
          // log(">>> TypeApply: " + tree + ", qual1: " + qual1)
          specSym(qual1) match {
            case Some(specMember) =>
              debuglog("found " + specMember.fullName)
              ifDebug(assert(symbol.info.typeParams.length == targs.length, symbol.info.typeParams + " / " + targs))

              val env = typeEnv(specMember)
              val residualTargs = symbol.info.typeParams zip targs collect {
                case (tvar, targ) if !env.contains(tvar) || !isPrimitiveValueClass(env(tvar).typeSymbol) => targ
              }
              // See SI-5583. Don't know why it happens now if it didn't before.
              if (specMember.info.typeParams.isEmpty && residualTargs.nonEmpty) {
                log("!!! Type args to be applied, but symbol says no parameters: " + ((specMember.defString, residualTargs)))
                localTyper.typed(sel)
              }
              else {
                ifDebug(assert(residualTargs.length == specMember.info.typeParams.length,
                  "residual: %s, tparams: %s, env: %s".format(residualTargs, specMember.info.typeParams, env))
                )

                val tree1 = gen.mkTypeApply(Select(qual1, specMember), residualTargs)
                debuglog("rewrote " + tree + " to " + tree1)
                localTyper.typedOperator(atPos(tree.pos)(tree1)) // being polymorphic, it must be a method
              }

            case None =>
              treeCopy.TypeApply(tree, treeCopy.Select(sel, qual1, name), super.transformTrees(targs))
              // See pos/exponential-spec.scala - can't call transform on the whole tree again.
              // super.transform(tree)
          }
          }
          transformTypeApply

        case Select(Super(_, _), _) if illegalSpecializedInheritance(currentClass) =>
          val pos = tree.pos
          debuglog(pos.source.file.name+":"+pos.line+": not specializing call to super inside illegal specialized inheritance class.\n" + pos.lineContent)
          tree

        case Select(qual, name) if name != nme.CONSTRUCTOR && specializedTypeVars(symbol.info).nonEmpty =>
          debuglog("specializing Select %s [tree.tpe: %s]".format(symbol.defString, tree.tpe))
          val env = unify(symbol.tpe, tree.tpe, emptyEnv, false)
          if (env.isEmpty) super.transform(tree)
          else {
            val qual1 = transform(qual)
            def reselect(member: Symbol) = {
              val newSelect = atPos(tree.pos)(Select(qual1, member))
              if (member.isMethod) localTyper typedOperator newSelect
              else localTyper typed newSelect
            }
            overloads(symbol) find (_ matchesEnv env) match {
              case Some(Overload(member, _)) => reselect(member)
              case _ =>
                val specMember = qual1.tpe.member(specializedName(symbol, env)).suchThat(_.tpe matches subst(env, symbol.tpe))
                if (specMember ne NoSymbol)
                  reselect(specMember)
                else
                  treeCopy.Select(tree, qual1, name)
            }
          }
        case Select(qual, _) =>
          overloads(symbol) find (_ matchesSym symbol) match {
            case Some(Overload(member, _)) =>
              val newTree = Select(transform(qual), member)
              debuglog(s"** routing $tree to ${member.fullName} tree: $newTree")
              localTyper.typedOperator(atPos(tree.pos)(newTree))
            case None =>
              super.transform(tree)
          }

        case PackageDef(pid, stats) =>
          tree.symbol.info // make sure specializations have been performed
          atOwner(tree, symbol) {
            val specMembers = implSpecClasses(stats) map localTyper.typed
            treeCopy.PackageDef(tree, pid, transformStats(stats ::: specMembers, symbol.moduleClass))
          }

        case Template(parents, self, body) =>
          def transformTemplate = {
          val specMembers = makeSpecializedMembers(tree.symbol.enclClass) ::: (implSpecClasses(body) map localTyper.typed)
          if (!symbol.isPackageClass)
            (new CollectMethodBodies)(tree)
          val parents1 = map2(currentOwner.info.parents, parents)((tpe, parent) =>
            TypeTree(tpe) setPos parent.pos)

          treeCopy.Template(tree,
            parents1 /*currentOwner.info.parents.map(tpe => TypeTree(tpe) setPos parents.head.pos)*/ ,
            self,
            atOwner(currentOwner)(transformTrees(body ::: specMembers)))
          }
          transformTemplate

        case ddef @ DefDef(_, _, _, vparamss, _, _) if info.isDefinedAt(symbol) =>
          def transformDefDef = {
          // log("--> method: " + ddef + " in " + ddef.symbol.owner + ", " + info(symbol))
          def reportTypeError(body: =>Tree) = reportError(body)(_ => ddef)

          if (symbol.isConstructor) {

            val t = atOwner(symbol)(forwardCtorCall(tree.pos, gen.mkSuperSelect, vparamss, symbol.owner))

            if (symbol.isPrimaryConstructor)
              localTyper.typedPos(symbol.pos)(deriveDefDef(tree)(_ => Block(List(t), Literal(Constant()))))
            else // duplicate the original constructor
              reportTypeError(duplicateBody(ddef, info(symbol).target))
          }
          else info(symbol) match {
            case Implementation(target) =>
              assert(body.isDefinedAt(target), "sym: " + symbol.fullName + " target: " + target.fullName)
              // we have an rhs, specialize it
              val tree1 = reportTypeError {
                duplicateBody(ddef, target)
              }
              debuglog("implementation: " + tree1)
              deriveDefDef(tree1)(transform)

            case NormalizedMember(target) =>
              val constraints = satisfiabilityConstraints(typeEnv(symbol))
              log("constraints: " + constraints)
              if (target.isDeferred || constraints == None) {
                deriveDefDef(tree)(_ => localTyper typed gen.mkSysErrorCall("Fatal error in code generation: this should never be called."))
              } else {
                // we have an rhs, specialize it
                val tree1 = reportTypeError {
                  duplicateBody(ddef, target, constraints.get)
                }
                debuglog("implementation: " + tree1)
                deriveDefDef(tree1)(transform)
              }

            case SpecialOverride(target) =>
              assert(body.isDefinedAt(target), "sym: " + symbol.fullName + " target: " + target.fullName)
              //debuglog("moving implementation, body of target " + target + ": " + body(target))
              debuglog("%s is param accessor? %b".format(ddef.symbol, ddef.symbol.isParamAccessor))
              // we have an rhs, specialize it
              val tree1 = addBody(ddef, target)
              (new ChangeOwnerTraverser(target, tree1.symbol))(tree1.rhs)
              debuglog("changed owners, now: " + tree1)
              deriveDefDef(tree1)(transform)

            case SpecialOverload(original, env) =>
              debuglog("completing specialized " + symbol.fullName + " calling " + original)
              debuglog("special overload " + original + " -> " + env)
              val t = DefDef(symbol, { vparamss =>
                val fun = Apply(Select(This(symbol.owner), original),
                                makeArguments(original, vparamss.head))

                debuglog("inside defdef: " + symbol + "; type: " + symbol.tpe + "; owner: " + symbol.owner)
                gen.maybeMkAsInstanceOf(fun,
                  symbol.owner.thisType.memberType(symbol).finalResultType,
                  symbol.owner.thisType.memberType(original).finalResultType)
              })
              debuglog("created special overload tree " + t)
              debuglog("created " + t)
              reportError {
                localTyper.typed(t)
              } {
                _ => super.transform(tree)
              }

            case fwd @ Forward(_) =>
              debuglog("forward: " + fwd + ", " + ddef)
              val rhs1 = forwardCall(tree.pos, gen.mkAttributedRef(symbol.owner.thisType, fwd.target), vparamss)
              debuglog("-->d completed forwarder to specialized overload: " + fwd.target + ": " + rhs1)
              reportError {
                localTyper.typed(deriveDefDef(tree)(_ => rhs1))
              } {
                _ => super.transform(tree)
              }

            case SpecializedAccessor(target) =>
              val rhs1 = if (symbol.isGetter)
                gen.mkAttributedRef(target)
              else
                Assign(gen.mkAttributedRef(target), Ident(vparamss.head.head.symbol))
              debuglog("specialized accessor: " + target + " -> " + rhs1)
              localTyper.typed(deriveDefDef(tree)(_ => rhs1))

            case Abstract(targ) =>
              debuglog("abstract: " + targ)
              localTyper.typed(deriveDefDef(tree)(rhs => rhs))
          }
          }
          transformDefDef

        case ValDef(_, _, _, _) if symbol.hasFlag(SPECIALIZED) && !symbol.isParamAccessor =>
          def transformValDef = {
          assert(body.isDefinedAt(symbol.alias), body)
          val tree1 = deriveValDef(tree)(_ => body(symbol.alias).duplicate)
          debuglog("now typing: " + tree1 + " in " + tree.symbol.owner.fullName)

          val d = new Duplicator(emptyEnv)
          val newValDef = d.retyped(
            localTyper.context1.asInstanceOf[d.Context],
            tree1,
            symbol.alias.enclClass,
            symbol.enclClass,
            typeEnv(symbol.alias) ++ typeEnv(tree.symbol)
          )
          deriveValDef(newValDef)(transform)
          }
          transformValDef

        case _ =>
          super.transform(tree)
      }
    }

    /** Duplicate the body of the given method `tree` to the new symbol `source`.
*
* Knowing that the method can be invoked only in the `castmap` type environment,
* this method will insert casts for all the expressions of types mappend in the
* `castmap`.
*/
    private def duplicateBody(tree: DefDef, source: Symbol, castmap: TypeEnv = emptyEnv) = {
      val symbol = tree.symbol
      val meth = addBody(tree, source)

      val d = new Duplicator(castmap)
      debuglog("-->d DUPLICATING: " + meth)
      d.retyped(
        localTyper.context1.asInstanceOf[d.Context],
        meth,
        source.enclClass,
        symbol.enclClass,
        typeEnv(source) ++ typeEnv(symbol)
      )
    }

    /** Put the body of 'source' as the right hand side of the method 'tree'.
* The destination method gets fresh symbols for type and value parameters,
* and the body is updated to the new symbols, and owners adjusted accordingly.
* However, if the same source tree is used in more than one place, full re-typing
* is necessary. @see method duplicateBody
*/
    private def addBody(tree: DefDef, source: Symbol): DefDef = {
      val symbol = tree.symbol
      debuglog("specializing body of" + symbol.defString)
      val DefDef(_, _, tparams, vparams :: Nil, tpt, _) = tree
// val (_, origtparams) = splitParams(source.typeParams)
      val env = typeEnv(symbol)
      val boundTvars = env.keySet
      val origtparams = source.typeParams.filter(tparam => !boundTvars(tparam) || !isPrimitiveValueType(env(tparam)))
      if (origtparams.nonEmpty || symbol.typeParams.nonEmpty)
        debuglog("substituting " + origtparams + " for " + symbol.typeParams)

      // skolemize type parameters
      val oldtparams = tparams map (_.symbol)
      val newtparams = deriveFreshSkolems(oldtparams)
      map2(tparams, newtparams)(_ setSymbol _)

      // create fresh symbols for value parameters to hold the skolem types
      val newSyms = cloneSymbolsAtOwnerAndModify(vparams map (_.symbol), symbol, _.substSym(oldtparams, newtparams))

      // replace value and type parameters of the old method with the new ones
      // log("Adding body for " + tree.symbol + " - origtparams: " + origtparams + "; tparams: " + tparams)
      // log("Type vars of: " + source + ": " + source.typeParams)
      // log("Type env of: " + tree.symbol + ": " + boundTvars)
      // log("newtparams: " + newtparams)
      val symSubstituter = new ImplementationAdapter(
        parameters(source) ::: origtparams,
        newSyms ::: newtparams,
        source.enclClass,
        false) // don't make private fields public

      val newBody = symSubstituter(body(source).duplicate)
      tpt.tpe = tpt.tpe.substSym(oldtparams, newtparams)

      copyDefDef(tree)(vparamss = List(newSyms map ValDef), rhs = newBody)
    }

    /** Create trees for specialized members of 'sClass', based on the
* symbols that are already there.
*/
    private def makeSpecializedMembers(sClass: Symbol): List[Tree] = {
      // add special overrides first
// if (!specializedClass.hasFlag(SPECIALIZED))
// for (m <- specialOverrides(specializedClass)) specializedClass.info.decls.enter(m)
      val mbrs = new mutable.ListBuffer[Tree]
      var hasSpecializedFields = false

      for (m <- sClass.info.decls
             if m.hasFlag(SPECIALIZED)
                 && (m.sourceFile ne null)
                 && satisfiable(typeEnv(m), !sClass.hasFlag(SPECIALIZED))) {
        debuglog("creating tree for " + m.fullName)
        if (m.isMethod) {
          if (info(m).target.hasAccessorFlag) hasSpecializedFields = true
          if (m.isClassConstructor) {
            val origParams = parameters(info(m).target)
            val vparams = (
              map2(m.info.paramTypes, origParams)((tp, sym) =>
                m.newValue(specializedName(sym, typeEnv(sClass)), sym.pos, sym.flags) setInfo tp
              )
            )
            // param accessors for private members (the others are inherited from the generic class)
            if (m.isPrimaryConstructor) {
              for (param <- vparams ; if sClass.info.nonPrivateMember(param.name) == NoSymbol) {
                val acc = param.cloneSymbol(sClass, param.flags | PARAMACCESSOR | PRIVATE)
                sClass.info.decls.enter(acc)
                mbrs += ValDef(acc, EmptyTree).setType(NoType).setPos(m.pos)
              }
            }

            // ctor
            mbrs += atPos(m.pos)(DefDef(m, Modifiers(m.flags), mmap(List(vparams))(ValDef), EmptyTree))
          } else {
            mbrs += atPos(m.pos)(DefDef(m, { paramss => EmptyTree }))
          }
        } else if (m.isValue) {
          mbrs += ValDef(m, EmptyTree).setType(NoType).setPos(m.pos)
        } else if (m.isClass) {
// mbrs +=
// ClassDef(m, Template(m.info.parents map TypeTree, emptyValDef, List())
// .setSymbol(m.newLocalDummy(m.pos)))
// log("created synthetic class: " + m.fullName)
        }
      }
      if (hasSpecializedFields) {
        val isSpecializedInstance = sClass :: sClass.parentSymbols exists (_ hasFlag SPECIALIZED)
        val sym = sClass.newMethod(nme.SPECIALIZED_INSTANCE, sClass.pos) setInfoAndEnter MethodType(Nil, BooleanClass.tpe)

        mbrs += atPos(sym.pos) {
          DefDef(sym, Literal(Constant(isSpecializedInstance)).setType(BooleanClass.tpe)).setType(NoType)
        }
      }
      mbrs.toList
    }

    /** Create specialized class definitions */
    def implSpecClasses(trees: List[Tree]): List[Tree] = {
      val buf = new mutable.ListBuffer[Tree]
      for (tree <- trees)
        tree match {
          case ClassDef(_, _, _, impl) =>
            tree.symbol.info // force specialization
            for (((sym1, env), specCls) <- specializedClass if sym1 == tree.symbol) {
              val parents = specCls.info.parents.map(TypeTree)
              buf +=
                ClassDef(specCls, atPos(impl.pos)(Template(parents, emptyValDef, List()))
                           .setSymbol(specCls.newLocalDummy(sym1.pos))) setPos tree.pos
              debuglog("created synthetic class: " + specCls + " of " + sym1 + " in " + pp(env))
            }
          case _ =>
        }
      buf.toList
    }
  }

  private def forwardCall(pos: scala.reflect.internal.util.Position, receiver: Tree, paramss: List[List[ValDef]]): Tree = {
    val argss = mmap(paramss)(x => Ident(x.symbol))
    atPos(pos) { (receiver /: argss) (Apply.apply) }
  }

  /** Forward to the generic class constructor. If the current class initializes
* specialized fields corresponding to parameters, it passes null to the superclass
* constructor. This saves the boxing cost for initializing generic fields that are
* never used.
*
* For example:
* {{{
* case class Tuple2[T, U](x: T, y: U)
*
* class Tuple2$II {
* val _x$I: Int = ..
* def x = _x$I
* // same for y
* def this(x: Int, y: Int) {
* super.this(null.asInstanceOf[Int], null.asInstanceOf[Int])
* }
* }
* }}
*/
  private def forwardCtorCall(pos: scala.reflect.internal.util.Position, receiver: Tree, paramss: List[List[ValDef]], clazz: Symbol): Tree = {

    /** A constructor parameter `f` initializes a specialized field
* iff:
* - it is specialized itself
* - there is a getter for the original (non-specialized) field in the same class
* - there is a getter for the specialized field in the same class
*/
    def initializesSpecializedField(f: Symbol) = (
         (f.name endsWith nme.SPECIALIZED_SUFFIX)
      && clazz.info.member(nme.originalName(f.name)).isPublic
      && clazz.info.decl(f.name).suchThat(_.isGetter) != NoSymbol
    )

    val argss = mmap(paramss)(x =>
      if (initializesSpecializedField(x.symbol))
        gen.mkAsInstanceOf(Literal(Constant(null)), x.symbol.tpe)
      else
        Ident(x.symbol)
    )
    atPos(pos) { (receiver /: argss) (Apply.apply) }
  }

  /** Add method m to the set of symbols for which we need an implementation tree
* in the tree transformer.
*
* @note This field is part of the specializeTypes subcomponent, so any symbols
* that here are not garbage collected at the end of a compiler run!
*/
  def addConcreteSpecMethod(m: Symbol) {
    if (currentRun.compiles(m)) concreteSpecMethods += m
  }

  private def makeArguments(fun: Symbol, vparams: List[Symbol]): List[Tree] = (
    //! TODO: make sure the param types are seen from the right prefix
    map2(fun.info.paramTypes, vparams)((tp, arg) => gen.maybeMkAsInstanceOf(Ident(arg), tp, arg.tpe))
  )
  private def findSpec(tp: Type): Type = tp match {
    case TypeRef(pre, sym, _ :: _) => specializedType(tp)
    case _ => tp
  }

  class SpecializationTransformer(unit: CompilationUnit) extends Transformer {
    informProgress("specializing " + unit)
    override def transform(tree: Tree) = {
      val resultTree = if (settings.nospecialization.value) tree
      else afterSpecialize(specializeCalls(unit).transform(tree))

      // Remove the final modifier and @inline annotation from anything in the
      // original class (since it's being overridden in at least onesubclass).
      //
      // We do this here so that the specialized subclasses will correctly copy
      // final and @inline.
      info.foreach {
        case (sym, SpecialOverload(target, _)) => {
          sym.resetFlag(FINAL)
          target.resetFlag(FINAL)
          sym.removeAnnotation(ScalaInlineClass)
          target.removeAnnotation(ScalaInlineClass)
        }
        case _ => {}
      }

      resultTree
    }
  }

  def printSpecStats() {
    println(" concreteSpecMembers: %7d".format(concreteSpecMethods.size))
    println(" overloads: %7d".format(overloads.size))
    println(" typeEnv: %7d".format(typeEnv.size))
    println(" info: %7d".format(info.size))
  }
}
Something went wrong with that request. Please try again.