Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

871 lines (718 sloc) 36.368 kb
/* NSC -- new Scala compiler
* Copyright 2005-2013 LAMP/EPFL
* Copyright 2007 Google Inc. All Rights Reserved.
* Author: bqe@google.com (Burak Emir)
*/
package scala.tools.nsc
package matching
import PartialFunction._
import scala.collection.{ mutable }
import scala.reflect.internal.util.Position
import transform.ExplicitOuter
import symtab.Flags
import mutable.ListBuffer
import scala.annotation.elidable
import scala.language.postfixOps
import scala.tools.nsc.settings.ScalaVersion
trait ParallelMatching extends ast.TreeDSL
with MatchSupport
with Matrix
with Patterns
with PatternBindings
{
self: ExplicitOuter =>
import global.{ typer => _, _ }
import definitions.{
AnyRefClass, IntClass, BooleanClass, SomeClass, OptionClass,
getProductArgs, productProj, Object_eq, Any_asInstanceOf
}
import CODE._
import Types._
import Debug._
/** Transition **/
def toPats(xs: List[Tree]): List[Pattern] = xs map Pattern.apply
/** The umbrella matrix class. **/
abstract class MatchMatrix(val context: MatrixContext) extends MatchMatrixOptimizer with MatrixExhaustiveness {
import context._
def data: MatrixContext#MatrixInit
lazy val MatrixInit(roots, cases, failTree) = data
lazy val (rows, targets) = expand(roots, cases).unzip
lazy val expansion: Rep = make(roots, rows)
private val shortCuts = perRunCaches.newMap[Int, Symbol]()
final def createShortCut(theLabel: Symbol): Int = {
val key = shortCuts.size + 1
shortCuts(key) = theLabel
-key
}
def createLabelDef(namePrefix: String, body: Tree, params: List[Symbol] = Nil, restpe: Type = matchResultType) = {
val labelName = cunit.freshTermName(namePrefix)
val labelSym = owner.newLabel(labelName, owner.pos)
val labelInfo = MethodType(params, restpe)
LabelDef(labelSym setInfo labelInfo, params, body setType restpe)
}
/** This is the recursively focal point for translating the current
* list of pattern variables and a list of pattern match rows into
* a tree suitable for entering erasure.
*
* The first time it is called, the variables are (copies of) the
* original pattern matcher roots, and the rows correspond to the
* original casedefs.
*/
final def make(roots1: PatternVarGroup, rows1: List[Row]): Rep = {
traceCategory("New Match", "%sx%s (%s)", roots1.size, rows1.size, roots1.syms.mkString(", "))
def classifyPat(opat: Pattern, j: Int): Pattern = opat simplify roots1(j)
val newRows = rows1 flatMap (_ expandAlternatives classifyPat)
if (rows1.length != newRows.length) make(roots1, newRows) // recursive call if any change
else {
val rep = Rep(roots1, newRows)
new ExhaustivenessChecker(rep, roots.head.sym.pos).check
rep
}
}
override def toString() = "MatchMatrix(%s) { %s }".format(matchResultType, indentAll(targets))
/**
* Encapsulates a symbol being matched on. It is created from a
* PatternVar, which encapsulates the symbol's creation and assignment.
*
* We never match on trees directly - a temporary variable is created
* (in a PatternVar) for any expression being matched on.
*/
class Scrutinee(val pv: PatternVar) {
import definitions._
// presenting a face of our symbol
def sym = pv.sym
def tpe = sym.tpe
def pos = sym.pos
def id = ID(sym) setPos pos // attributed ident
def accessors = if (isCaseClass) sym.caseFieldAccessors else Nil
def accessorTypes = accessors map (x => (tpe memberType x).resultType)
lazy val accessorPatternVars = PatternVarGroup(
for ((accessor, tpe) <- accessors zip accessorTypes) yield
createVar(tpe, _ => fn(id, accessor))
)
private def extraValDefs = if (pv.rhs.isEmpty) Nil else List(pv.valDef)
def allValDefs = extraValDefs ::: accessorPatternVars.valDefs
// tests
def isDefined = sym ne NoSymbol
def isSubrangeType = subrangeTypes(tpe.typeSymbol)
def isCaseClass = tpe.typeSymbol.isCase
// sequences
def seqType = tpe.widen baseType SeqClass
def elemType = tpe typeArgs 0
private def elemAt(i: Int) = (id DOT (tpe member nme.apply))(LIT(i))
private def createElemVar(i: Int) = createVar(elemType, _ => elemAt(i))
private def createSeqVar(drop: Int) = createVar(seqType, _ => id DROP drop)
def createSequenceVars(count: Int): List[PatternVar] =
(0 to count).toList map (i => if (i < count) createElemVar(i) else createSeqVar(i))
// for propagating "unchecked" to synthetic vars
def isChecked = !(sym hasFlag NO_EXHAUSTIVE)
def flags: List[Long] = List(NO_EXHAUSTIVE) filter (sym hasFlag _)
// this is probably where this actually belongs
def createVar(tpe: Type, f: Symbol => Tree) = context.createVar(tpe, f, isChecked)
def castedTo(headType: Type) =
if (tpe =:= headType) this
else new Scrutinee(createVar(headType, lhs => gen.mkAsInstanceOf(id, lhs.tpe)))
override def toString() = "(%s: %s)".format(id, tpe)
}
def isPatternSwitch(scrut: Scrutinee, ps: List[Pattern]): Option[PatternSwitch] = {
def isSwitchableConst(x: Pattern) = cond(x) { case x: LiteralPattern if x.isSwitchable => true }
def isSwitchableDefault(x: Pattern) = isSwitchableConst(x) || x.isDefault
// TODO - scala> (5: Any) match { case 5 => 5 ; case 6 => 7 }
// ... should compile to a switch. It doesn't because the scrut isn't Int/Char, but
// that could be handle in an if/else since every pattern requires an Int.
// More immediately, Byte and Short scruts should also work.
if (!scrut.isSubrangeType) None
else {
val (_lits, others) = ps span isSwitchableConst
val lits = _lits collect { case x: LiteralPattern => x }
condOpt(others) {
case Nil => new PatternSwitch(scrut, lits, None)
// TODO: This needs to also allow the case that the last is a compatible type pattern.
case List(x) if isSwitchableDefault(x) => new PatternSwitch(scrut, lits, Some(x))
}
}
}
class PatternSwitch(
scrut: Scrutinee,
override val ps: List[LiteralPattern],
val defaultPattern: Option[Pattern]
) extends PatternMatch(scrut, ps) {
require(scrut.isSubrangeType && (ps forall (_.isSwitchable)))
}
case class PatternMatch(scrut: Scrutinee, ps: List[Pattern]) {
def head = ps.head
def tail = ps.tail
def size = ps.length
def headType = head.necessaryType
private val dummyCount = if (head.isCaseClass) headType.typeSymbol.caseFieldAccessors.length else 0
def dummies = emptyPatterns(dummyCount)
def apply(i: Int): Pattern = ps(i)
def pzip() = ps.zipWithIndex
def pzip[T](others: List[T]) = {
assert(ps.size == others.size, "Internal error: ps = %s, others = %s".format(ps, others))
ps zip others
}
// Any unapply - returns Some(true) if a type test is needed before the unapply can
// be called (e.g. def unapply(x: Foo) = { ... } but our scrutinee is type Any.)
object AnyUnapply {
def unapply(x: Pattern): Option[Boolean] = condOpt(x.tree) {
case UnapplyParamType(tpe) => !(scrut.tpe <:< tpe)
}
}
def mkRule(rest: Rep): RuleApplication = {
tracing("Rule")(head match {
case x if isEquals(x.tree.tpe) => new MixEquals(this, rest)
case x: SequencePattern => new MixSequence(this, rest, x)
case AnyUnapply(false) => new MixUnapply(this, rest)
case _ =>
isPatternSwitch(scrut, ps) match {
case Some(x) => new MixLiteralInts(x, rest)
case _ => new MixTypes(this, rest)
}
})
}
override def toString() = "%s match {%s}".format(scrut, indentAll(ps))
} // PatternMatch
/***** Rule Applications *****/
sealed abstract class RuleApplication {
def pmatch: PatternMatch
def rest: Rep
def cond: Tree
def success: Tree
def failure: Tree
lazy val PatternMatch(scrut, patterns) = pmatch
lazy val head = pmatch.head
lazy val codegen: Tree = IF (cond) THEN (success) ELSE (failure)
def mkFail(xs: List[Row]): Tree =
if (xs.isEmpty) failTree
else remake(xs).toTree
def remake(
rows: List[Row],
pvgroup: PatternVarGroup = emptyPatternVarGroup,
includeScrut: Boolean = true): Rep =
{
val scrutpvs = if (includeScrut) List(scrut.pv) else Nil
make(pvgroup.pvs ::: scrutpvs ::: rest.tvars, rows)
}
/** translate outcome of the rule application into code (possible involving recursive application of rewriting) */
def tree(): Tree
override def toString =
"Rule/%s (%s =^= %s)".format(getClass.getSimpleName, scrut, head)
}
/** {case ... if guard => bx} else {guardedRest} */
/** VariableRule: The top-most rows has only variable (non-constructor) patterns. */
case class VariableRule(subst: Bindings, guard: Tree, guardedRest: Rep, bx: Int) extends RuleApplication {
def pmatch: PatternMatch = impossible
def rest: Rep = guardedRest
private lazy val (valDefs, successTree) = targets(bx) applyBindings subst.toMap
lazy val cond = guard
lazy val success = successTree
lazy val failure = guardedRest.toTree
final def tree(): Tree =
if (bx < 0) REF(shortCuts(-bx))
else squeezedBlock(
valDefs,
if (cond.isEmpty) success else codegen
)
override def toString = "(case %d) {\n Bindings: %s\n\n if (%s) { %s }\n else { %s }\n}".format(
bx, subst, guard, success, guardedRest
)
}
class MixLiteralInts(val pmatch: PatternSwitch, val rest: Rep) extends RuleApplication {
val literals = pmatch.ps
val defaultPattern = pmatch.defaultPattern
private lazy val casted: Tree =
if (!scrut.tpe.isInt) scrut.id DOT nme.toInt else scrut.id
// creates a row transformer for injecting the default case bindings at a given index
private def addDefaultVars(index: Int): Row => Row =
if (defaultVars.isEmpty) identity
else rebindAll(_, pmatch(index).boundVariables, scrut.sym)
// add bindings for all the given vs to the given tvar
private def rebindAll(r: Row, vs: Iterable[Symbol], tvar: Symbol) =
r rebind r.subst.add(vs, tvar)
private def bindVars(Tag: Int, orig: Bindings): Bindings = {
def myBindVars(rest: List[(Int, List[Symbol])], bnd: Bindings): Bindings = rest match {
case Nil => bnd
case (Tag,vs)::xs => myBindVars(xs, bnd.add(vs, scrut.sym))
case (_, vs)::xs => myBindVars(xs, bnd)
}
myBindVars(varMap, orig)
}
// bound vars and rows for default pattern (only one row, but a list is easier to use later)
lazy val (defaultVars, defaultRows) = defaultPattern match {
case None => (Nil, Nil)
case Some(p) => (p.boundVariables, List(rebindAll(rest rows literals.size, p.boundVariables, scrut.sym)))
}
// literalMap is a map from each literal to a list of row indices.
// varMap is a list from each literal to a list of the defined vars.
lazy val (litPairs, varMap) = (
literals.zipWithIndex map {
case (lit, index) =>
val tag = lit.intValue
(tag -> index, tag -> lit.boundVariables)
} unzip
)
def literalMap = litPairs groupBy (_._1) map {
case (k, vs) => (k, vs map (_._2))
}
lazy val cases =
for ((tag, indices) <- literalMap.toList.sortBy(_._1)) yield {
val newRows = indices map (i => addDefaultVars(i)(rest rows i))
val r = remake(newRows ++ defaultRows, includeScrut = false)
val r2 = make(r.tvars, r.rows map (x => x rebind bindVars(tag, x.subst)))
CASE(Literal(Constant(tag))) ==> r2.toTree
}
lazy val defaultTree = remake(defaultRows, includeScrut = false).toTree
def defaultCase = CASE(WILD(IntClass.tpe)) ==> defaultTree
// cond/success/failure only used if there is exactly one case.
lazy val cond = scrut.id MEMBER_== cases.head.pat
lazy val success = cases.head.body
lazy val failure = defaultTree
// only one case becomes if/else, otherwise match
def tree() =
if (cases.size == 1) codegen
else casted MATCH (cases :+ defaultCase: _*)
}
/** mixture rule for unapply pattern
*/
class MixUnapply(val pmatch: PatternMatch, val rest: Rep) extends RuleApplication {
val Pattern(UnApply(unMethod, unArgs)) = head
val Apply(unTarget, _ :: trailing) = unMethod
object SameUnapplyCall {
def isSame(t: Tree) = isEquivalentTree(unTarget, t)
def unapply(x: Pattern) = /*tracing("SameUnapplyCall (%s vs. %s)".format(unTarget, x))*/(x match {
case Pattern(UnApply(Apply(fn, _), args)) if isSame(fn) => Some(args)
case _ => None
})
}
object SameUnapplyPattern {
def isSame(t: Tree) = isEquivalentTree(unMethod, t)
def apply(x: Pattern) = unapply(x).isDefined
def unapply(x: Pattern) = /*tracing("SameUnapplyPattern (%s vs. %s)".format(unMethod, x))*/(x match {
case Pattern(UnApply(t, _)) if isSame(t) => Some(unArgs)
case _ => None
})
}
private lazy val zipped = pmatch pzip rest.rows
lazy val unapplyResult: PatternVar =
scrut.createVar(unMethod.tpe, Apply(unTarget, scrut.id :: trailing) setType _.tpe)
lazy val cond: Tree = unapplyResult.tpe.normalize match {
case TypeRef(_, BooleanClass, _) => unapplyResult.ident
case TypeRef(_, SomeClass, _) => TRUE
case _ => NOT(unapplyResult.ident DOT nme.isEmpty)
}
lazy val failure =
mkFail(zipped.tail filterNot (x => SameUnapplyPattern(x._1)) map { case (pat, r) => r insert pat })
private def doSuccess: (List[PatternVar], List[PatternVar], List[Row]) = {
// pattern variable for the unapply result of Some(x).get
def unMethodTypeArg = unMethod.tpe.baseType(OptionClass).typeArgs match {
case Nil => log("No type argument for unapply result! " + unMethod.tpe) ; NoType
case arg :: _ => arg
}
lazy val pv = scrut.createVar(unMethodTypeArg, _ => fn(ID(unapplyResult.lhs), nme.get))
def tuple = pv.lhs
// at this point it's Some[T1,T2...]
lazy val tpes = getProductArgs(tuple.tpe)
// one pattern variable per tuple element
lazy val tuplePVs =
for ((tpe, i) <- tpes.zipWithIndex) yield
scrut.createVar(tpe, _ => fn(ID(tuple), productProj(tuple, i + 1)))
// the filter prevents infinite unapply recursion
def mkNewRows(sameFilter: (List[Tree]) => List[Tree]) = {
val dum = if (unArgs.length <= 1) unArgs.length else tpes.size
for ((pat, r) <- zipped) yield pat match {
case SameUnapplyCall(xs) => r.insert2(toPats(sameFilter(xs)) :+ NoPattern, pat.boundVariables, scrut.sym)
case _ => r insert (emptyPatterns(dum) :+ pat)
}
}
// 0 is Boolean, 1 is Option[T], 2+ is Option[(T1,T2,...)]
unArgs.length match {
case 0 => (Nil, Nil, mkNewRows((xs) => Nil))
case 1 => (List(pv), List(pv), mkNewRows(xs => List(xs.head)))
case _ => (pv :: tuplePVs, tuplePVs, mkNewRows(identity))
}
}
lazy val success = {
val (squeezePVs, pvs, rows) = doSuccess
val srep = remake(rows, pvs).toTree
squeezedBlock(squeezePVs map (_.valDef), srep)
}
final def tree() =
squeezedBlock(List(handleOuter(unapplyResult.valDef)), codegen)
}
/** Handle Sequence patterns (including Star patterns.)
* Note: pivot == head, just better typed.
*/
sealed class MixSequence(val pmatch: PatternMatch, val rest: Rep, pivot: SequencePattern) extends RuleApplication {
require(scrut.tpe <:< head.tpe)
def hasStar = pivot.hasStar
private def pivotLen = pivot.nonStarLength
private def seqDummies = emptyPatterns(pivot.elems.length + 1)
// Should the given pattern join the expanded pivot in the success matrix? If so,
// this partial function will be defined for the pattern, and the result of the apply
// is the expanded sequence of new patterns.
lazy val successMatrixFn = new PartialFunction[Pattern, List[Pattern]] {
private def seqIsDefinedAt(x: SequenceLikePattern) = (hasStar, x.hasStar) match {
case (true, true) => true
case (true, false) => pivotLen <= x.nonStarLength
case (false, true) => pivotLen >= x.nonStarLength
case (false, false) => pivotLen == x.nonStarLength
}
def isDefinedAt(pat: Pattern) = pat match {
case x: SequenceLikePattern => seqIsDefinedAt(x)
case WildcardPattern() => true
case _ => false
}
def apply(pat: Pattern): List[Pattern] = pat match {
case x: SequenceLikePattern =>
def isSameLength = pivotLen == x.nonStarLength
def rebound = x.nonStarPatterns :+ (x.elemPatterns.last rebindTo WILD(scrut.seqType))
(pivot.hasStar, x.hasStar, isSameLength) match {
case (true, true, true) => rebound :+ NoPattern
case (true, true, false) => (seqDummies drop 1) :+ x
case (true, false, true) => x.elemPatterns ++ List(NilPattern, NoPattern)
case (false, true, true) => rebound
case (false, false, true) => x.elemPatterns :+ NoPattern
case _ => seqDummies
}
case _ => seqDummies
}
}
// Should the given pattern be in the fail matrix? This is true of any sequences
// as long as the result of the length test on the pivot doesn't make it impossible:
// for instance if neither sequence is right ignoring and they are of different
// lengths, the later one cannot match since its length must be wrong.
def failureMatrixFn(c: Pattern) = (pivot ne c) && (c match {
case x: SequenceLikePattern =>
(hasStar, x.hasStar) match {
case (_, true) => true
case (true, false) => pivotLen > x.nonStarLength
case (false, false) => pivotLen != x.nonStarLength
}
case WildcardPattern() => true
case _ => false
})
// divide the remaining rows into success/failure branches, expanding subsequences of patterns
val successRows = pmatch pzip rest.rows collect {
case (c, row) if successMatrixFn isDefinedAt c => row insert successMatrixFn(c)
}
val failRows = pmatch pzip rest.rows collect {
case (c, row) if failureMatrixFn(c) => row insert c
}
// the discrimination test for sequences is a call to lengthCompare. Note that
// this logic must be fully consistent wiith successMatrixFn and failureMatrixFn above:
// any inconsistency will (and frequently has) manifested as pattern matcher crashes.
lazy val cond = {
// the method call symbol
val methodOp: Symbol = head.tpe member nme.lengthCompare
// the comparison to perform. If the pivot is right ignoring, then a scrutinee sequence
// of >= pivot length could match it; otherwise it must be exactly equal.
val compareOp: (Tree, Tree) => Tree = if (hasStar) _ INT_>= _ else _ INT_== _
// scrutinee.lengthCompare(pivotLength) [== | >=] 0
val compareFn: Tree => Tree = (t: Tree) => compareOp((t DOT methodOp)(LIT(pivotLen)), ZERO)
// wrapping in a null check on the scrutinee
// XXX this needs to use the logic in "def condition"
nullSafe(compareFn, FALSE)(scrut.id)
// condition(head.tpe, scrut.id, head.boundVariables.nonEmpty)
}
lazy val success = {
// one pattern var per sequence element up to elemCount, and one more for the rest of the sequence
lazy val pvs = scrut createSequenceVars pivotLen
squeezedBlock(pvs map (_.valDef), remake(successRows, pvs, hasStar).toTree)
}
lazy val failure = remake(failRows).toTree
final def tree(): Tree = codegen
}
class MixEquals(val pmatch: PatternMatch, val rest: Rep) extends RuleApplication {
private lazy val rhs =
decodedEqualsType(head.tpe) match {
case SingleType(pre, sym) => REF(pre, sym)
case PseudoType(o) => o
}
private lazy val labelDef =
createLabelDef("fail%", remake((rest.rows.tail, pmatch.tail).zipped map (_ insert _)).toTree)
lazy val cond = handleOuter(rhs MEMBER_== scrut.id)
lazy val successOne = rest.rows.head.insert2(List(NoPattern), head.boundVariables, scrut.sym)
lazy val successTwo = Row(emptyPatterns(1 + rest.tvars.size), NoBinding, EmptyTree, createShortCut(labelDef.symbol))
lazy val success = remake(List(successOne, successTwo)).toTree
lazy val failure = labelDef
final def tree() = codegen
override def toString() = "MixEquals(%s == %s)".format(scrut, head)
}
/** Mixture rule for type tests.
* moreSpecific: more specific patterns
* subsumed: more general patterns (subsuming current), rows index and subpatterns
* remaining: remaining, rows index and pattern
*/
class MixTypes(val pmatch: PatternMatch, val rest: Rep) extends RuleApplication {
case class Yes(bx: Int, moreSpecific: Pattern, subsumed: List[Pattern])
case class No(bx: Int, remaining: Pattern)
val (yeses, noes) = {
val _ys = new ListBuffer[Yes]
val _ns = new ListBuffer[No]
for ((pattern, j) <- pmatch.pzip()) {
// scrutinee, head of pattern group
val (s, p) = (pattern.tpe, head.necessaryType)
def isEquivalent = head.necessaryType =:= pattern.tpe
def isObjectTest = pattern.isObject && (p =:= pattern.necessaryType)
def sMatchesP = matches(s, p)
def pMatchesS = matches(p, s)
def ifEquiv(yes: Pattern): Pattern = if (isEquivalent) yes else pattern
def passl(p: Pattern = NoPattern, ps: List[Pattern] = pmatch.dummies) = Some(Yes(j, p, ps))
def passr() = Some( No(j, pattern))
def typed(pp: Tree) = passl(ifEquiv(Pattern(pp)))
def subs() = passl(ifEquiv(NoPattern), pattern subpatterns pmatch)
val (oneY, oneN) = pattern match {
case Pattern(LIT(null)) if !(p =:= s) => (None, passr) // (1)
case x if isObjectTest => (passl(), None) // (2)
case Pattern(Typed(pp, _)) if sMatchesP => (typed(pp), None) // (4)
// The next line used to be this which "fixed" 1697 but introduced
// numerous regressions including #3136.
// case Pattern(_: UnApply, _) => (passl(), passr)
case Pattern(_: UnApply) => (None, passr)
case x if !x.isDefault && sMatchesP => (subs(), None)
case x if x.isDefault || pMatchesS => (passl(), passr)
case _ => (None, passr)
}
oneY map (_ys +=)
oneN map (_ns +=)
}
(_ys.toList, _ns.toList)
}
val moreSpecific = yeses map (_.moreSpecific)
val subsumed = yeses map (x => (x.bx, x.subsumed))
val remaining = noes map (x => (x.bx, x.remaining))
private def mkZipped =
for (Yes(j, moreSpecific, subsumed) <- yeses) yield
j -> (moreSpecific :: subsumed)
lazy val casted = scrut castedTo pmatch.headType
lazy val cond = condition(casted.tpe, scrut, head.boundVariables.nonEmpty)
private def isAnyMoreSpecific = yeses exists (x => !x.moreSpecific.isEmpty)
lazy val (subtests, subtestVars) =
if (isAnyMoreSpecific) (mkZipped, List(casted.pv))
else (subsumed, Nil)
lazy val newRows =
for ((j, ps) <- subtests) yield
(rest rows j).insert2(ps, pmatch(j).boundVariables, casted.sym)
lazy val success = {
val srep = remake(newRows, subtestVars ::: casted.accessorPatternVars, includeScrut = false)
squeezedBlock(casted.allValDefs, srep.toTree)
}
lazy val failure =
mkFail(remaining map { case (p1, p2) => rest rows p1 insert p2 })
final def tree(): Tree = codegen
}
/*** States, Rows, Etc. ***/
case class Row(pats: List[Pattern], subst: Bindings, guard: Tree, bx: Int) {
private def nobindings = subst.get().isEmpty
private def bindstr = if (nobindings) "" else pp(subst)
/** Extracts the 'i'th pattern. */
def extractColumn(i: Int) = {
val (x, xs) = extractIndex(pats, i)
(x, copy(pats = xs))
}
/** Replaces the 'i'th pattern with the argument. */
def replaceAt(i: Int, p: Pattern) = {
val newps = (pats take i) ::: p :: (pats drop (i + 1))
copy(pats = newps)
}
def insert(h: Pattern) = copy(pats = h :: pats)
def insert(hs: List[Pattern]) = copy(pats = hs ::: pats) // prepends supplied pattern
def rebind(b: Bindings) = copy(subst = b) // substitutes for bindings
def insert2(hs: List[Pattern], vs: Iterable[Symbol], tvar: Symbol) =
tracing("insert2")(copy(pats = hs ::: pats, subst = subst.add(vs, tvar)))
// returns this rows with alternatives expanded
def expandAlternatives(classifyPat: (Pattern, Int) => Pattern): List[Row] = {
def isNotAlternative(p: Pattern) = !cond(p.tree) { case _: Alternative => true }
// classify all the top level patterns - alternatives come back unaltered
val newPats: List[Pattern] = pats.zipWithIndex map classifyPat.tupled
// see if any alternatives were in there
val (ps, others) = newPats span isNotAlternative
// make a new row for each alternative, with it spliced into the original position
if (others.isEmpty) List(copy(pats = ps))
else extractBindings(others.head) map (x => replaceAt(ps.size, x))
}
override def toString() = {
val bs = if (nobindings) "" else "\n" + bindstr
"Row(%d)(%s%s)".format(bx, pp(pats), bs)
}
}
abstract class State {
def bx: Int // index into the list of rows
def params: List[Symbol] // bound names to be supplied as arguments to labeldef
def body: Tree // body to execute upon match
def label: Option[LabelDef] // label definition for this state
// Called with a bindings map when a match is achieved.
// Returns a list of variable declarations based on the labeldef parameters
// and the given substitution, and the body to execute.
protected def applyBindingsImpl(subst: Map[Symbol, Symbol]): (List[ValDef], Tree)
final def applyBindings(subst: Map[Symbol, Symbol]): (List[ValDef], Tree) = {
_referenceCount += 1
applyBindingsImpl(subst)
}
private var _referenceCount = 0
def referenceCount = _referenceCount
def unreached = referenceCount == 0
def shouldInline(sym: Symbol) = referenceCount == 1 && label.exists(_.symbol == sym)
// Creates a simple Ident if the symbol's type conforms to
// the val definition's type, or a casted Ident if not.
private def newValIdent(lhs: Symbol, rhs: Symbol) =
if (rhs.tpe <:< lhs.tpe) Ident(rhs)
else gen.mkTypeApply(Ident(rhs), Any_asInstanceOf, List(lhs.tpe))
protected def newValDefinition(lhs: Symbol, rhs: Symbol) =
typer typedValDef ValDef(lhs, newValIdent(lhs, rhs))
protected def newValReference(lhs: Symbol, rhs: Symbol) =
typer typed newValIdent(lhs, rhs)
protected def valDefsFor(subst: Map[Symbol, Symbol]) = mapSubst(subst)(newValDefinition)
protected def identsFor(subst: Map[Symbol, Symbol]) = mapSubst(subst)(newValReference)
protected def mapSubst[T](subst: Map[Symbol, Symbol])(f: (Symbol, Symbol) => T): List[T] =
params flatMap { lhs =>
subst get lhs map (rhs => f(lhs, rhs)) orElse {
// This should not happen; the code should be structured so it is
// impossible, but that still lies ahead.
cunit.warning(lhs.pos, "No binding")
None
}
}
// typer is not able to digest a body of type Nothing being assigned result type Unit
protected def caseResultType =
if (body.tpe.isNothing) body.tpe else matchResultType
}
case class LiteralState(bx: Int, params: List[Symbol], body: Tree) extends State {
def label = None
protected def applyBindingsImpl(subst: Map[Symbol, Symbol]) =
(valDefsFor(subst), body.duplicate setType caseResultType)
}
case class FinalState(bx: Int, params: List[Symbol], body: Tree) extends State {
traceCategory("Final State", "(%s) => %s", paramsString, body)
def label = Some(labelDef)
private lazy val labelDef = createLabelDef("body%" + bx, body, params, caseResultType)
protected def applyBindingsImpl(subst: Map[Symbol, Symbol]) = {
val tree =
if (referenceCount > 1) ID(labelDef.symbol) APPLY identsFor(subst)
else labelDef
(valDefsFor(subst), tree)
}
private def paramsString = params map (s => s.name + ": " + s.tpe) mkString ", "
override def toString() = pp("(%s) => %s".format(pp(params), body))
}
case class Rep(val tvars: PatternVarGroup, val rows: List[Row]) {
lazy val Row(pats, subst, guard, index) = rows.head
lazy val guardedRest = if (guard.isEmpty) Rep(Nil, Nil) else make(tvars, rows.tail)
lazy val (defaults, others) = pats span (_.isDefault)
/** Cut out the column containing the non-default pattern. */
class Cut(index: Int) {
/** The first two separate out the 'i'th pattern in each row from the remainder. */
private val (_column, _rows) = rows map (_ extractColumn index) unzip
/** Now the 'i'th tvar is separated out and used as a new Scrutinee. */
private val (_pv, _tvars) = tvars extractIndex index
/** The non-default pattern (others.head) replaces the column head. */
private val (_ncol, _nrep) =
(others.head :: _column.tail, make(_tvars, _rows))
def mix() = {
val newScrut = new Scrutinee(new PatternVar(_pv.sym, EmptyTree, _pv.checked))
PatternMatch(newScrut, _ncol) mkRule _nrep
}
}
/** Converts this to a tree - recursively acquires subreps. */
final def toTree(): Tree = tracing("toTree")(typer typed applyRule())
/** The VariableRule. */
private def variable() = {
val binding = (defaults map (_.boundVariables) zip tvars.pvs) .
foldLeft(subst)((b, pair) => b.add(pair._1, pair._2.lhs))
VariableRule(binding, guard, guardedRest, index)
}
/** The MixtureRule: picks a rewrite rule to apply. */
private def mixture() = new Cut(defaults.size) mix()
/** Applying the rule will result in one of:
*
* VariableRule - if all patterns are default patterns
* MixtureRule - if one or more patterns are not default patterns
* Error - no rows remaining
*/
final def applyRule(): Tree =
if (rows.isEmpty) failTree
else if (others.isEmpty) variable.tree()
else mixture.tree()
def ppn(x: Any) = pp(x, newlines = true)
override def toString() =
if (tvars.isEmpty) "Rep(%d) = %s".format(rows.size, ppn(rows))
else "Rep(%dx%d)%s%s".format(tvars.size, rows.size, ppn(tvars), ppn(rows))
}
/** Expands the patterns recursively. */
final def expand(roots: List[PatternVar], cases: List[CaseDef]) = tracing("expand") {
for ((CaseDef(pat, guard, body), bx) <- cases.zipWithIndex) yield {
val subtrees = pat match {
case x if roots.length <= 1 => List(x)
case Apply(_, args) => args
case WILD() => emptyTrees(roots.length)
}
val params = pat filter (_.isInstanceOf[Bind]) map (_.symbol) distinct
val row = Row(toPats(subtrees), NoBinding, guard, bx)
val state = body match {
case x: Literal => LiteralState(bx, params, body)
case _ => FinalState(bx, params, body)
}
row -> state
}
}
/** returns the condition in "if (cond) k1 else k2"
*/
final def condition(tpe: Type, scrut: Scrutinee, isBound: Boolean): Tree = {
assert(scrut.isDefined)
val cond = handleOuter(condition(tpe, scrut.id, isBound))
if (!needsOuterTest(tpe, scrut.tpe, owner)) cond
else addOuterCondition(cond, tpe, scrut.id)
}
final def condition(tpe: Type, scrutTree: Tree, isBound: Boolean): Tree = {
assert((tpe ne NoType) && (scrutTree.tpe ne NoType))
def isMatchUnlessNull = scrutTree.tpe <:< tpe && tpe.isAnyRef
def isRef = scrutTree.tpe.isAnyRef
// See ticket #1503 for the motivation behind checking for a binding.
// The upshot is that it is unsound to assume equality means the right
// type, but if the value doesn't appear on the right hand side of the
// match that's unimportant; so we add an instance check only if there
// is a binding.
def bindingWarning() = {
if (isBound && settings.Xmigration.value < ScalaVersion.twoDotEight) {
cunit.warning(scrutTree.pos,
"A bound pattern such as 'x @ Pattern' now matches fewer cases than the same pattern with no binding.")
}
}
def genEquals(sym: Symbol): Tree = {
val t1: Tree = REF(sym) MEMBER_== scrutTree
if (isBound) {
bindingWarning()
t1 AND (scrutTree IS tpe.widen)
}
else t1
}
typer typed {
tpe match {
case ConstantType(Constant(null)) if isRef => scrutTree OBJ_EQ NULL
case ConstantType(const) => scrutTree MEMBER_== Literal(const)
case SingleType(NoPrefix, sym) => genEquals(sym)
case SingleType(pre, sym) if sym.isStable => genEquals(sym)
case ThisType(sym) if sym.isModule => genEquals(sym)
case _ if isMatchUnlessNull => scrutTree OBJ_NE NULL
case _ => scrutTree IS tpe
}
}
}
/** adds a test comparing the dynamic outer to the static outer */
final def addOuterCondition(cond: Tree, tpe2test: Type, scrut: Tree) = {
val TypeRef(prefix, _, _) = tpe2test
val theRef = handleOuter(prefix match {
case NoPrefix => abort("assertion failed: NoPrefix")
case ThisType(clazz) => THIS(clazz)
case pre => REF(pre.prefix, pre.termSymbol)
})
outerAccessor(tpe2test.typeSymbol) match {
case NoSymbol => ifDebug(cunit.warning(scrut.pos, "no outer acc for " + tpe2test.typeSymbol)) ; cond
case outerAcc =>
val casted = gen.mkAsInstanceOf(scrut, tpe2test, any = true, wrapInApply = true)
cond AND ((casted DOT outerAcc)() OBJ_EQ theRef)
}
}
}
}
Jump to Line
Something went wrong with that request. Please try again.