Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

432 lines (359 sloc) 15.108 kb
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2011, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */
package scala.collection
import mutable.{ Buffer, Builder, ListBuffer, ArrayBuffer }
import generic.CanBuildFrom
import annotation.unchecked.{ uncheckedVariance => uV }
import language.{implicitConversions, higherKinds}
import reflect.ClassTag
/** A template trait for collections which can be traversed either once only
* or one or more times.
* $traversableonceinfo
*
* @author Martin Odersky
* @author Paul Phillips
* @version 2.8
* @since 2.8
*
* @define coll traversable or iterator
*
* @tparam A the element type of the collection
*
* @define traversableonceinfo
* This trait exists primarily to eliminate code duplication between
* `Iterator` and `Traversable`, and thus implements some of the common
* methods that can be implemented solely in terms of foreach without
* access to a `Builder`. It also includes a number of abstract methods
* whose implementations are provided by `Iterator`, `Traversable`, etc.
* It contains implementations common to `Iterators` and
* `Traversables`, such as folds, conversions, and other operations which
* traverse some or all of the elements and return a derived value.
* Directly subclassing `TraversableOnce` is not recommended - instead,
* consider declaring an `Iterator` with a `next` and `hasNext` method,
* creating an `Iterator` with one of the methods on the `Iterator` object,
* or declaring a subclass of `Traversable`.
*
* @define coll traversable or iterator
* @define orderDependent
*
* Note: might return different results for different runs, unless the underlying collection type is ordered.
* @define orderDependentFold
*
* Note: might return different results for different runs, unless the
* underlying collection type is ordered or the operator is associative
* and commutative.
* @define mayNotTerminateInf
*
* Note: may not terminate for infinite-sized collections.
* @define willNotTerminateInf
*
* Note: will not terminate for infinite-sized collections.
*/
trait TraversableOnce[+A] extends Any with GenTraversableOnce[A] {
self =>
/** Self-documenting abstract methods. */
def foreach[U](f: A => U): Unit
def isEmpty: Boolean
def hasDefiniteSize: Boolean
// Note: We could redefine this in TraversableLike to always return `repr`
// of type `Repr`, only if `Repr` had type bounds, which it doesn't, because
// not all `Repr` are a subtype `TraversableOnce[A]`.
// The alternative is redefining it for maps, sets and seqs. For concrete implementations
// we don't have to do this anyway, since they are leaves in the inheritance hierarchy.
// Note 2: This is implemented in all collections _not_ inheriting `Traversable[A]`
// at least indirectly. Currently, these are `ArrayOps` and `StringOps`.
// It is also implemented in `TraversableOnce[A]`.
/** A version of this collection with all
* of the operations implemented sequentially (i.e. in a single-threaded manner).
*
* This method returns a reference to this collection. In parallel collections,
* it is redefined to return a sequential implementation of this collection. In
* both cases, it has O(1) complexity.
*
* @return a sequential view of the collection.
*/
def seq: TraversableOnce[A]
/** Presently these are abstract because the Traversable versions use
* breakable/break, and I wasn't sure enough of how that's supposed to
* function to consolidate them with the Iterator versions.
*/
def forall(p: A => Boolean): Boolean
def exists(p: A => Boolean): Boolean
def find(p: A => Boolean): Option[A]
def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Unit
// for internal use
protected[this] def reversed = {
var elems: List[A] = Nil
self.seq foreach (elems ::= _)
elems
}
def size: Int = {
var result = 0
for (x <- self) result += 1
result
}
def nonEmpty: Boolean = !isEmpty
def count(p: A => Boolean): Int = {
var cnt = 0
for (x <- this)
if (p(x)) cnt += 1
cnt
}
/** Finds the first element of the $coll for which the given partial
* function is defined, and applies the partial function to it.
*
* $mayNotTerminateInf
* $orderDependent
*
* @param pf the partial function
* @return an option value containing pf applied to the first
* value for which it is defined, or `None` if none exists.
* @example `Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)`
*/
def collectFirst[B](pf: PartialFunction[A, B]): Option[B] = {
for (x <- self.toIterator) { // make sure to use an iterator or `seq`
if (pf isDefinedAt x)
return Some(pf(x))
}
None
}
def /:[B](z: B)(op: (B, A) => B): B = foldLeft(z)(op)
def :\[B](z: B)(op: (A, B) => B): B = foldRight(z)(op)
def foldLeft[B](z: B)(op: (B, A) => B): B = {
var result = z
this.seq foreach (x => result = op(result, x))
result
}
def foldRight[B](z: B)(op: (A, B) => B): B =
reversed.foldLeft(z)((x, y) => op(y, x))
def reduceLeft[B >: A](op: (B, A) => B): B = {
if (isEmpty)
throw new UnsupportedOperationException("empty.reduceLeft")
var first = true
var acc: B = 0.asInstanceOf[B]
for (x <- self) {
if (first) {
acc = x
first = false
}
else acc = op(acc, x)
}
acc
}
def reduceRight[B >: A](op: (A, B) => B): B = {
if (isEmpty)
throw new UnsupportedOperationException("empty.reduceRight")
reversed.reduceLeft[B]((x, y) => op(y, x))
}
def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] =
if (isEmpty) None else Some(reduceLeft(op))
def reduceRightOption[B >: A](op: (A, B) => B): Option[B] =
if (isEmpty) None else Some(reduceRight(op))
def reduce[A1 >: A](op: (A1, A1) => A1): A1 = reduceLeft(op)
def reduceOption[A1 >: A](op: (A1, A1) => A1): Option[A1] = reduceLeftOption(op)
def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1 = foldLeft(z)(op)
def aggregate[B](z: B)(seqop: (B, A) => B, combop: (B, B) => B): B = foldLeft(z)(seqop)
def sum[B >: A](implicit num: Numeric[B]): B = foldLeft(num.zero)(num.plus)
def product[B >: A](implicit num: Numeric[B]): B = foldLeft(num.one)(num.times)
def min[B >: A](implicit cmp: Ordering[B]): A = {
if (isEmpty)
throw new UnsupportedOperationException("empty.min")
reduceLeft((x, y) => if (cmp.lteq(x, y)) x else y)
}
def max[B >: A](implicit cmp: Ordering[B]): A = {
if (isEmpty)
throw new UnsupportedOperationException("empty.max")
reduceLeft((x, y) => if (cmp.gteq(x, y)) x else y)
}
def maxBy[B](f: A => B)(implicit cmp: Ordering[B]): A = {
if (isEmpty)
throw new UnsupportedOperationException("empty.maxBy")
reduceLeft((x, y) => if (cmp.gteq(f(x), f(y))) x else y)
}
def minBy[B](f: A => B)(implicit cmp: Ordering[B]): A = {
if (isEmpty)
throw new UnsupportedOperationException("empty.minBy")
reduceLeft((x, y) => if (cmp.lteq(f(x), f(y))) x else y)
}
/** Copies all elements of this $coll to a buffer.
* $willNotTerminateInf
* @param dest The buffer to which elements are copied.
*/
def copyToBuffer[B >: A](dest: Buffer[B]): Unit = dest ++= seq
def copyToArray[B >: A](xs: Array[B], start: Int): Unit =
copyToArray(xs, start, xs.length - start)
def copyToArray[B >: A](xs: Array[B]): Unit =
copyToArray(xs, 0, xs.length)
def toArray[B >: A : ClassTag]: Array[B] = {
if (isTraversableAgain) {
val result = new Array[B](size)
copyToArray(result, 0)
result
}
else toBuffer.toArray
}
def toTraversable: Traversable[A]
def toList: List[A] = to[List]
def toIterable: Iterable[A] = toStream
def toSeq: Seq[A] = toStream
def toIndexedSeq: immutable.IndexedSeq[A] = to[immutable.IndexedSeq]
def toBuffer[B >: A]: mutable.Buffer[B] = to[ArrayBuffer].asInstanceOf[mutable.Buffer[B]]
def toSet[B >: A]: immutable.Set[B] = to[immutable.Set].asInstanceOf[immutable.Set[B]]
def toVector: Vector[A] = to[Vector]
def to[Col[_]](implicit cbf: CanBuildFrom[Nothing, A, Col[A @uV]]): Col[A @uV] = {
val b = cbf()
b ++= seq
b.result
}
def toMap[T, U](implicit ev: A <:< (T, U)): immutable.Map[T, U] = {
val b = immutable.Map.newBuilder[T, U]
for (x <- self)
b += x
b.result
}
def mkString(start: String, sep: String, end: String): String =
addString(new StringBuilder(), start, sep, end).toString
def mkString(sep: String): String = mkString("", sep, "")
def mkString: String = mkString("")
/** Appends all elements of this $coll to a string builder using start, end, and separator strings.
* The written text begins with the string `start` and ends with the string `end`.
* Inside, the string representations (w.r.t. the method `toString`)
* of all elements of this $coll are separated by the string `sep`.
*
* Example:
*
* {{{
* scala> val a = LinkedList(1,2,3,4)
* a: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2, 3, 4)
*
* scala> val b = new StringBuilder()
* b: StringBuilder =
*
* scala> a.addString(b, "LinkedList(", ", ", ")")
* res1: StringBuilder = LinkedList(1, 2, 3, 4)
* }}}
*
* @param b the string builder to which elements are appended.
* @param start the starting string.
* @param sep the separator string.
* @param end the ending string.
* @return the string builder `b` to which elements were appended.
*/
def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
var first = true
b append start
for (x <- self) {
if (first) {
b append x
first = false
}
else {
b append sep
b append x
}
}
b append end
b
}
/** Appends all elements of this $coll to a string builder using a separator string.
* The written text consists of the string representations (w.r.t. the method `toString`)
* of all elements of this $coll, separated by the string `sep`.
*
* Example:
*
* {{{
* scala> val a = LinkedList(1,2,3,4)
* a: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2, 3, 4)
*
* scala> val b = new StringBuilder()
* b: StringBuilder =
*
* scala> a.addString(b, ", ")
* res0: StringBuilder = 1, 2, 3, 4
* }}}
*
* @param b the string builder to which elements are appended.
* @param sep the separator string.
* @return the string builder `b` to which elements were appended.
*/
def addString(b: StringBuilder, sep: String): StringBuilder = addString(b, "", sep, "")
/** Appends all elements of this $coll to a string builder.
* The written text consists of the string representations (w.r.t. the method
* `toString`) of all elements of this $coll without any separator string.
*
* Example:
*
* {{{
* scala> val a = LinkedList(1,2,3,4)
* a: scala.collection.mutable.LinkedList[Int] = LinkedList(1, 2, 3, 4)
*
* scala> val b = new StringBuilder()
* b: StringBuilder =
*
* scala> val h = a.addString(b)
* b: StringBuilder = 1234
* }}}
* @param b the string builder to which elements are appended.
* @return the string builder `b` to which elements were appended.
*/
def addString(b: StringBuilder): StringBuilder = addString(b, "")
}
object TraversableOnce {
@deprecated("use OnceCanBuildFrom instead")
def traversableOnceCanBuildFrom[T] = new OnceCanBuildFrom[T]
@deprecated("use MonadOps instead")
def wrapTraversableOnce[A](trav: TraversableOnce[A]) = new MonadOps(trav)
implicit def alternateImplicit[A](trav: TraversableOnce[A]) = new ForceImplicitAmbiguity
implicit def flattenTraversableOnce[A, CC[_]](travs: TraversableOnce[CC[A]])(implicit ev: CC[A] => TraversableOnce[A]) =
new FlattenOps[A](travs map ev)
/* Functionality reused in Iterator.CanBuildFrom */
private[collection] abstract class BufferedCanBuildFrom[A, Coll[X] <: TraversableOnce[X]] extends generic.CanBuildFrom[Coll[_], A, Coll[A]] {
def bufferToColl[B](buff: ArrayBuffer[B]): Coll[B]
def traversableToColl[B](t: GenTraversable[B]): Coll[B]
def newIterator: Builder[A, Coll[A]] = new ArrayBuffer[A] mapResult bufferToColl
/** Creates a new builder on request of a collection.
* @param from the collection requesting the builder to be created.
* @return the result of invoking the `genericBuilder` method on `from`.
*/
def apply(from: Coll[_]): Builder[A, Coll[A]] = from match {
case xs: generic.GenericTraversableTemplate[_, _] => xs.genericBuilder.asInstanceOf[Builder[A, Traversable[A]]] mapResult {
case res => traversableToColl(res.asInstanceOf[GenTraversable[A]])
}
case _ => newIterator
}
/** Creates a new builder from scratch
* @return the result of invoking the `newBuilder` method of this factory.
*/
def apply() = newIterator
}
/** With the advent of `TraversableOnce`, it can be useful to have a builder which
* operates on `Iterator`s so they can be treated uniformly along with the collections.
* See `scala.util.Random.shuffle` or `scala.concurrent.Future.sequence` for an example.
*/
class OnceCanBuildFrom[A] extends BufferedCanBuildFrom[A, TraversableOnce] {
def bufferToColl[B](buff: ArrayBuffer[B]) = buff.iterator
def traversableToColl[B](t: GenTraversable[B]) = t.seq
}
/** Evidence for building collections from `TraversableOnce` collections */
implicit def OnceCanBuildFrom[A] = new OnceCanBuildFrom[A]
class FlattenOps[A](travs: TraversableOnce[TraversableOnce[A]]) {
def flatten: Iterator[A] = new AbstractIterator[A] {
val its = travs.toIterator
private var it: Iterator[A] = Iterator.empty
def hasNext: Boolean = it.hasNext || its.hasNext && { it = its.next.toIterator; hasNext }
def next(): A = if (hasNext) it.next() else Iterator.empty.next()
}
}
class ForceImplicitAmbiguity
implicit class MonadOps[+A](trav: TraversableOnce[A]) {
def map[B](f: A => B): TraversableOnce[B] = trav.toIterator map f
def flatMap[B](f: A => GenTraversableOnce[B]): TraversableOnce[B] = trav.toIterator flatMap f
def withFilter(p: A => Boolean) = trav.toIterator filter p
def filter(p: A => Boolean): TraversableOnce[A] = withFilter(p)
}
}
Jump to Line
Something went wrong with that request. Please try again.