Skip to content
This repository
May 02, 2011
file 806 lines (713 sloc) 27.55 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/* __ *\
** ________ ___ / / ___ Scala API **
** / __/ __// _ | / / / _ | (c) 2003-2011, LAMP/EPFL **
** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ **
** /____/\___/_/ |_/____/_/ | | **
** |/ **
\* */

package scala.collection

import mutable.{ ListBuffer, ArraySeq }
import immutable.{ List, Range }
import generic._
import parallel.ParSeq
import annotation.bridge
import scala.math.Ordering

/** A template trait for sequences of type `Seq[A]`
* $seqInfo
*
* @define seqInfo
* Sequences are special cases of iterable collections of class `Iterable`.
* Unlike iterables, sequences always have a defined order of elements.
* Sequences provide a method `apply` for indexing. Indices range from `0` up the the `length` of
* a sequence. Sequences support a number to find occurrences of elements or subsequences, including
* `segmentLength`, `prefixLength`, `indexWhere`, `indexOf`, `lastIndexWhere`, `lastIndexOf`,
* `startsWith`, `endsWith`, `indexOfSlice`.
*
* Another way to see a sequence is as a `PartialFunction` from `Int` values
* to the element type of the sequence. The `isDefinedAt` method of a sequence
* returns `true` for the interval from `0` until `length`.
*
* Sequences can be accessed in reverse order of their elements, using methods
* `reverse` and `reverseIterator`.
*
* Sequences have two principal subtraits, `IndexedSeq` and `LinearSeq`, which give different guarantees for performance.
* An `IndexedSeq` provides fast random-access of elements and a fast `length` operation.
* A `LinearSeq` provides fast access only to the first element via `head`, but also
* has a fast `tail` operation.
*
* @tparam A the element type of the collection
* @tparam Repr the type of the actual collection containing the elements.
*
* @author Martin Odersky
* @author Matthias Zenger
* @version 1.0, 16/07/2003
* @since 2.8
*
* @define Coll Seq
* @define coll sequence
* @define thatinfo the class of the returned collection. Where possible, `That` is
* the same class as the current collection class `Repr`, but this
* depends on the element type `B` being admissible for that class,
* which means that an implicit instance of type `CanBuildFrom[Repr, B, That]`
* is found.
* @define bfinfo an implicit value of class `CanBuildFrom` which determines the
* result class `That` from the current representation type `Repr`
* and the new element type `B`.
* @define orderDependent
* @define orderDependentFold
*/
trait SeqLike[+A, +Repr] extends IterableLike[A, Repr] with GenSeqLike[A, Repr] with Parallelizable[A, ParSeq[A]] { self =>

  override protected[this] def thisCollection: Seq[A] = this.asInstanceOf[Seq[A]]
  override protected[this] def toCollection(repr: Repr): Seq[A] = repr.asInstanceOf[Seq[A]]

  def length: Int

  def apply(idx: Int): A

  protected[this] override def parCombiner = ParSeq.newCombiner[A]

  /** Compares the length of this $coll to a test value.
*
* @param len the test value that gets compared with the length.
* @return A value `x` where
* {{{
* x < 0 if this.length < len
* x == 0 if this.length == len
* x > 0 if this.length > len
* }}}
* The method as implemented here does not call `length` directly; its running time
* is `O(length min len)` instead of `O(length)`. The method should be overwritten
* if computing `length` is cheap.
*/
  def lengthCompare(len: Int): Int = {
    var i = 0
    val it = iterator
    while (it.hasNext && i <= len) {
      it.next()
      i += 1
    }
    i - len
  }

  /** The size of this $coll, equivalent to `length`.
*
* $willNotTerminateInf
*/
  override def size = length

  def segmentLength(p: A => Boolean, from: Int): Int = {
    var i = 0
    var it = iterator.drop(from)
    while (it.hasNext && p(it.next()))
      i += 1
    i
  }

  def indexWhere(p: A => Boolean, from: Int): Int = {
    var i = from
    var it = iterator.drop(from)
    while (it.hasNext) {
      if (p(it.next())) return i
      else i += 1
    }

    -1
  }

  /** Returns index of the first element satisfying a predicate, or `-1`.
*/
  @deprecated("Use indexWhere(p) instead.", "2.8.0")
  def findIndexOf(p: A => Boolean): Int = indexWhere(p)

  def lastIndexWhere(p: A => Boolean, end: Int): Int = {
    var i = length - 1
    val it = reverseIterator
    while (it.hasNext && { val elem = it.next; (i > end || !p(elem)) }) i -= 1
    i
  }

  /** Iterates over distinct permutations.
*
* @return An Iterator which traverses the distinct permutations of this $coll.
* @example `"abb".permutations = Iterator(abb, bab, bba)`
*/
  def permutations: Iterator[Repr] =
    if (isEmpty) Iterator(repr)
    else new PermutationsItr

  /** Iterates over combinations.
*
* @return An Iterator which traverses the possible n-element combinations of this $coll.
* @example `"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)`
*/
  def combinations(n: Int): Iterator[Repr] =
    if (n < 0 || n > size) Iterator.empty
    else new CombinationsItr(n)

  private class PermutationsItr extends Iterator[Repr] {
    private[this] val (elms, idxs) = init()
    private var _hasNext = true

    def hasNext = _hasNext
    def next: Repr = {
      if (!hasNext)
        Iterator.empty.next

      val result = (self.newBuilder ++= elms).result
      var i = idxs.length - 2
      while(i >= 0 && idxs(i) >= idxs(i+1))
        i -= 1

      if (i < 0)
        _hasNext = false
      else {
        var j = idxs.length - 1
        while(idxs(j) <= idxs(i)) j -= 1
          swap(i,j)

        val len = (idxs.length - i) / 2
        var k = 1
        while (k <= len) {
          swap(i+k, idxs.length - k)
          k += 1
        }
      }
      result
    }
    private def swap(i: Int, j: Int) {
      var tmpI = idxs(i)
      idxs(i) = idxs(j)
      idxs(j) = tmpI
      var tmpE = elms(i)
      elms(i) = elms(j)
      elms(j) = tmpE
    }

    private[this] def init() = {
      val m = mutable.HashMap[A, Int]()
      val (es, is) = thisCollection map (e => (e, m.getOrElseUpdate(e, m.size))) sortBy (_._2) unzip

      (es.toBuffer, is.toArray)
    }
  }

  private class CombinationsItr(n: Int) extends Iterator[Repr] {
    // generating all nums such that:
    // (1) nums(0) + .. + nums(length-1) = n
    // (2) 0 <= nums(i) <= cnts(i), where 0 <= i <= cnts.length-1
    private val (elms, cnts, nums) = init()
    private val offs = cnts.scanLeft(0)(_ + _)
    private var _hasNext = true

    def hasNext = _hasNext
    def next: Repr = {
      if (!hasNext)
        Iterator.empty.next

      /** Calculate this result. */
      val buf = self.newBuilder
      for(k <- 0 until nums.length; j <- 0 until nums(k))
        buf += elms(offs(k)+j)
      val res = buf.result

      /** Prepare for the next call to next. */
      var idx = nums.length - 1
      while (idx >= 0 && nums(idx) == cnts(idx))
        idx -= 1

      idx = nums.lastIndexWhere(_ > 0, idx - 1)

      if (idx < 0)
        _hasNext = false
      else {
        var sum = nums.slice(idx + 1, nums.length).sum + 1
        nums(idx) -= 1
        for (k <- (idx+1) until nums.length) {
          nums(k) = sum min cnts(k)
          sum -= nums(k)
        }
      }

      res
    }

    /** Rearrange seq to newSeq a0a0..a0a1..a1...ak..ak such that
* seq.count(_ == aj) == cnts(j)
*
* @return (newSeq,cnts,nums)
*/
    private def init(): (IndexedSeq[A], Array[Int], Array[Int]) = {
      val m = mutable.HashMap[A, Int]()

      // e => (e, weight(e))
      val (es, is) = thisCollection map (e => (e, m.getOrElseUpdate(e, m.size))) sortBy (_._2) unzip
      val cs = new Array[Int](m.size)
      is foreach (i => cs(i) += 1)
      val ns = new Array[Int](cs.length)

      var r = n
      0 until ns.length foreach { k =>
        ns(k) = r min cs(k)
        r -= ns(k)
      }
      (es.toIndexedSeq, cs, ns)
    }
  }

  def reverse: Repr = {
    var xs: List[A] = List()
    for (x <- this)
      xs = x :: xs
    val b = newBuilder
    b.sizeHint(this)
    for (x <- xs)
      b += x
    b.result
  }

  def reverseMap[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    var xs: List[A] = List()
    for (x <- this.seq)
      xs = x :: xs
    val b = bf(repr)
    for (x <- xs)
      b += f(x)

    b.result
  }

  /** An iterator yielding elements in reversed order.
*
* $willNotTerminateInf
*
* Note: `xs.reverseIterator` is the same as `xs.reverse.iterator` but might be more efficient.
*
* @return an iterator yielding the elements of this $coll in reversed order
*/
  def reverseIterator: Iterator[A] = toCollection(reverse).iterator

  @deprecated("use `reverseIterator' instead", "2.8.0")
  def reversedElements = reverseIterator

  def startsWith[B](that: GenSeq[B], offset: Int): Boolean = {
    val i = this.iterator drop offset
    val j = that.iterator
    while (j.hasNext && i.hasNext)
      if (i.next != j.next)
        return false

    !j.hasNext
  }

  @bridge
  def startsWith[B](that: Seq[B], offset: Int): Boolean = startsWith(that: GenSeq[B], offset)

  def endsWith[B](that: GenSeq[B]): Boolean = {
    val i = this.iterator.drop(length - that.length)
    val j = that.iterator
    while (i.hasNext && j.hasNext)
      if (i.next != j.next)
        return false

    !j.hasNext
  }

  @bridge
  def endsWith[B](that: Seq[B]): Boolean = endsWith(that: GenSeq[B])


  /** Finds first index where this $coll contains a given sequence as a slice.
* $mayNotTerminateInf
* @param that the sequence to test
* @return the first index such that the elements of this $coll starting at this index
* match the elements of sequence `that`, or `-1` of no such subsequence exists.
*/
  def indexOfSlice[B >: A](that: GenSeq[B]): Int = indexOfSlice(that, 0)

  @bridge
  def indexOfSlice[B >: A](that: Seq[B]): Int = indexOfSlice(that: GenSeq[B])

  /** Finds first index after or at a start index where this $coll contains a given sequence as a slice.
* $mayNotTerminateInf
* @param that the sequence to test
* @param from the start index
* @return the first index `>= from` such that the elements of this $coll starting at this index
* match the elements of sequence `that`, or `-1` of no such subsequence exists.
*/
  def indexOfSlice[B >: A](that: GenSeq[B], from: Int): Int =
    if (this.hasDefiniteSize && that.hasDefiniteSize)
      SeqLike.indexOf(thisCollection, 0, length, that.seq, 0, that.length, from)
    else {
      var i = from
      var s: Seq[A] = thisCollection drop i
      while (!s.isEmpty) {
        if (s startsWith that)
          return i

        i += 1
        s = s.tail
      }
      -1
    }

  @bridge
  def indexOfSlice[B >: A](that: Seq[B], from: Int): Int = indexOfSlice(that: GenSeq[B], from)

  /** Finds last index where this $coll contains a given sequence as a slice.
* $willNotTerminateInf
* @param that the sequence to test
* @return the last index such that the elements of this $coll starting a this index
* match the elements of sequence `that`, or `-1` of no such subsequence exists.
*/
  def lastIndexOfSlice[B >: A](that: GenSeq[B]): Int = lastIndexOfSlice(that, length)

  @bridge
  def lastIndexOfSlice[B >: A](that: Seq[B]): Int = lastIndexOfSlice(that: GenSeq[B])

  /** Finds last index before or at a given end index where this $coll contains a given sequence as a slice.
* @param that the sequence to test
* @param end the end index
* @return the last index `<= end` such that the elements of this $coll starting at this index
* match the elements of sequence `that`, or `-1` of no such subsequence exists.
*/
  def lastIndexOfSlice[B >: A](that: GenSeq[B], end: Int): Int =
    SeqLike.lastIndexOf(thisCollection, 0, length, that.seq, 0, that.length, end)

  @bridge
  def lastIndexOfSlice[B >: A](that: Seq[B], end: Int): Int = lastIndexOfSlice(that: GenSeq[B], end)

  /** Tests whether this $coll contains a given sequence as a slice.
* $mayNotTerminateInf
* @param that the sequence to test
* @return `true` if this $coll contains a slice with the same elements
* as `that`, otherwise `false`.
*/
  def containsSlice[B](that: GenSeq[B]): Boolean = indexOfSlice(that) != -1

  @bridge
  def containsSlice[B](that: Seq[B]): Boolean = containsSlice(that: GenSeq[B])

  /** Tests whether this $coll contains a given value as an element.
* $mayNotTerminateInf
*
* @param elem the element to test.
* @return `true` if this $coll has an element that is
* is equal (wrt `==`) to `elem`, `false` otherwise.
*/
  def contains(elem: Any): Boolean = exists (_ == elem)

  /** Produces a new sequence which contains all elements of this $coll and also all elements of
* a given sequence. `xs union ys` is equivalent to `xs ++ ys`.
* $willNotTerminateInf
*
* Another way to express this
* is that `xs union ys` computes the order-presevring multi-set union of `xs` and `ys`.
* `union` is hence a counter-part of `diff` and `intersect` which also work on multi-sets.
*
* $willNotTerminateInf
*
* @param that the sequence to add.
* @tparam B the element type of the returned $coll.
* @tparam That $thatinfo
* @param bf $bfinfo
* @return a new collection of type `That` which contains all elements of this $coll
* followed by all elements of `that`.
* @usecase def union(that: Seq[A]): $Coll[A]
* @return a new $coll which contains all elements of this $coll
* followed by all elements of `that`.
*/
  override def union[B >: A, That](that: GenSeq[B])(implicit bf: CanBuildFrom[Repr, B, That]): That =
    this ++ that

  /** Computes the multiset difference between this $coll and another sequence.
* $willNotTerminateInf
*
* @param that the sequence of elements to remove
* @tparam B the element type of the returned $coll.
* @tparam That $thatinfo
* @param bf $bfinfo
* @return a new collection of type `That` which contains all elements of this $coll
* except some of occurrences of elements that also appear in `that`.
* If an element value `x` appears
* ''n'' times in `that`, then the first ''n'' occurrences of `x` will not form
* part of the result, but any following occurrences will.
* @usecase def diff(that: Seq[A]): $Coll[A]
* @return a new $coll which contains all elements of this $coll
* except some of occurrences of elements that also appear in `that`.
* If an element value `x` appears
* ''n'' times in `that`, then the first ''n'' occurrences of `x` will not form
* part of the result, but any following occurrences will.
*/
  def diff[B >: A](that: GenSeq[B]): Repr = {
    val occ = occCounts(that.seq)
    val b = newBuilder
    for (x <- this)
      if (occ(x) == 0) b += x
      else occ(x) -= 1
    b.result
  }

  @bridge
  def diff[B >: A](that: Seq[B]): Repr = diff(that: GenSeq[B])

  /** Computes the multiset intersection between this $coll and another sequence.
* $mayNotTerminateInf
*
* @param that the sequence of elements to intersect with.
* @tparam B the element type of the returned $coll.
* @tparam That $thatinfo
* @param bf $bfinfo
* @return a new collection of type `That` which contains all elements of this $coll
* which also appear in `that`.
* If an element value `x` appears
* ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
* in the result, but any following occurrences will be omitted.
* @usecase def intersect(that: Seq[A]): $Coll[A]
* @return a new $coll which contains all elements of this $coll
* which also appear in `that`.
* If an element value `x` appears
* ''n'' times in `that`, then the first ''n'' occurrences of `x` will be retained
* in the result, but any following occurrences will be omitted.
*/
  def intersect[B >: A](that: GenSeq[B]): Repr = {
    val occ = occCounts(that.seq)
    val b = newBuilder
    for (x <- this)
      if (occ(x) > 0) {
        b += x
        occ(x) -= 1
      }
    b.result
  }

  @bridge
  def intersect[B >: A](that: Seq[B]): Repr = intersect(that: GenSeq[B])

  private def occCounts[B](sq: Seq[B]): mutable.Map[B, Int] = {
    val occ = new mutable.HashMap[B, Int] { override def default(k: B) = 0 }
    for (y <- sq.seq) occ(y) += 1
    occ
  }

  /** Builds a new $coll from this $coll without any duplicate elements.
* $willNotTerminateInf
*
* @return A new $coll which contains the first occurrence of every element of this $coll.
*/
  def distinct: Repr = {
    val b = newBuilder
    val seen = mutable.HashSet[A]()
    for (x <- this) {
      if (!seen(x)) {
        b += x
        seen += x
      }
    }
    b.result
  }

  def patch[B >: A, That](from: Int, patch: GenSeq[B], replaced: Int)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    val (prefix, rest) = this.splitAt(from)
    b ++= toCollection(prefix)
    b ++= patch.seq
    b ++= toCollection(rest).view drop replaced
    b.result
  }

  @bridge
  def patch[B >: A, That](from: Int, patch: Seq[B], replaced: Int)(implicit bf: CanBuildFrom[Repr, B, That]): That =
    this.patch(from, patch: GenSeq[B], replaced)(bf)

  def updated[B >: A, That](index: Int, elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    val (prefix, rest) = this.splitAt(index)
    b ++= toCollection(prefix)
    b += elem
    b ++= toCollection(rest).view.tail
    b.result
  }

  def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    b += elem
    b ++= thisCollection
    b.result
  }

  def :+[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    b ++= thisCollection
    b += elem
    b.result
  }

  def padTo[B >: A, That](len: Int, elem: B)(implicit bf: CanBuildFrom[Repr, B, That]): That = {
    val b = bf(repr)
    b.sizeHint(length max len)
    var diff = len - length
    b ++= thisCollection
    while (diff > 0) {
      b += elem
      diff -= 1
    }
    b.result
  }

  def corresponds[B](that: GenSeq[B])(p: (A,B) => Boolean): Boolean = {
    val i = this.iterator
    val j = that.iterator
    while (i.hasNext && j.hasNext)
      if (!p(i.next, j.next))
        return false

    !i.hasNext && !j.hasNext
  }

  @bridge
  def corresponds[B](that: Seq[B])(p: (A,B) => Boolean): Boolean =
    corresponds(that: GenSeq[B])(p)

  /** Sorts this $coll according to a comparison function.
* $willNotTerminateInf
*
* The sort is stable. That is, elements that are equal wrt `lt` appear in the
* same order in the sorted sequence as in the original.
*
* @param lt the comparison function which tests whether
* its first argument precedes its second argument in
* the desired ordering.
* @return a $coll consisting of the elements of this $coll
* sorted according to the comparison function `lt`.
* @example {{{
* List("Steve", "Tom", "John", "Bob").sortWith(_.compareTo(_) < 0) =
* List("Bob", "John", "Steve", "Tom")
* }}}
*/
  def sortWith(lt: (A, A) => Boolean): Repr = sorted(Ordering fromLessThan lt)

  /** Sorts this $Coll according to the Ordering which results from transforming
* an implicitly given Ordering with a transformation function.
* @see scala.math.Ordering
* $willNotTerminateInf
* @param f the transformation function mapping elements
* to some other domain `B`.
* @param ord the ordering assumed on domain `B`.
* @tparam B the target type of the transformation `f`, and the type where
* the ordering `ord` is defined.
* @return a $coll consisting of the elements of this $coll
* sorted according to the ordering where `x < y` if
* `ord.lt(f(x), f(y))`.
*
* @example {{{
* val words = "The quick brown fox jumped over the lazy dog".split(' ')
* // this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]]
* words.sortBy(x => (x.length, x.head))
* res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)
* }}}
*/
  def sortBy[B](f: A => B)(implicit ord: Ordering[B]): Repr = sorted(ord on f)

  /** Sorts this $coll according to an Ordering.
*
* The sort is stable. That is, elements that are equal wrt `lt` appear in the
* same order in the sorted sequence as in the original.
*
* @see scala.math.Ordering
*
* @param ord the ordering to be used to compare elements.
* @return a $coll consisting of the elements of this $coll
* sorted according to the ordering `ord`.
*/
  def sorted[B >: A](implicit ord: Ordering[B]): Repr = {
    val len = this.length
    val arr = new ArraySeq[A](len)
    var i = 0
    for (x <- this.seq) {
      arr(i) = x
      i += 1
    }
    java.util.Arrays.sort(arr.array, ord.asInstanceOf[Ordering[Object]])
    val b = newBuilder
    b.sizeHint(len)
    for (x <- arr) b += x
    b.result
  }

  /** Converts this $coll to a sequence.
* $willNotTerminateInf
*
* Overridden for efficiency.
*/
  override def toSeq: Seq[A] = thisCollection

  /** Produces the range of all indices of this sequence.
*
* @return a `Range` value from `0` to one less than the length of this $coll.
*/
  def indices: Range = 0 until length

  override def view = new SeqView[A, Repr] {
    protected lazy val underlying = self.repr
    override def iterator = self.iterator
    override def length = self.length
    override def apply(idx: Int) = self.apply(idx)
  }

  override def view(from: Int, until: Int) = view.slice(from, until)

  /* Need to override string, so that it's not the Function1's string that gets mixed in.
*/
  override def toString = super[IterableLike].toString

  /** Returns index of the last element satisfying a predicate, or -1.
*/
  @deprecated("use `lastIndexWhere` instead", "2.8.0")
  def findLastIndexOf(p: A => Boolean): Int = lastIndexWhere(p)

  /** Tests whether every element of this $coll relates to the
* corresponding element of another sequence by satisfying a test predicate.
*
* @param that the other sequence
* @param p the test predicate, which relates elements from both sequences
* @tparam B the type of the elements of `that`
* @return `true` if both sequences have the same length and
* `p(x, y)` is `true` for all corresponding elements `x` of this $coll
* and `y` of `that`, otherwise `false`.
*/
  @deprecated("use `corresponds` instead", "2.8.0")
  def equalsWith[B](that: Seq[B])(f: (A,B) => Boolean): Boolean = corresponds(that)(f)

 /**
* returns a projection that can be used to call non-strict <code>filter</code>,
* <code>map</code>, and <code>flatMap</code> methods that build projections
* of the collection.
*/
  @deprecated("use `view' instead", "2.8.0")
  override def projection = view
}

/** The companion object for trait `SeqLike`.
*/
object SeqLike {
  /** A KMP implementation, based on the undoubtedly reliable wikipedia entry.
*
* @author paulp
* @since 2.8
*/
  private def KMP[B](S: Seq[B], W: Seq[B]): Option[Int] = {
    // trivial cases
    if (W.isEmpty) return Some(0)
    else if (W drop 1 isEmpty) return (S indexOf W(0)) match {
      case -1 => None
      case x => Some(x)
    }

    val T: Array[Int] = {
      val arr = new Array[Int](W.length)
      var pos = 2
      var cnd = 0
      arr(0) = -1
      arr(1) = 0
      while (pos < W.length) {
        if (W(pos - 1) == W(cnd)) {
          arr(pos) = cnd + 1
          pos += 1
          cnd += 1
        }
        else if (cnd > 0) {
          cnd = arr(cnd)
        }
        else {
          arr(pos) = 0
          pos += 1
        }
      }
      arr
    }

    var m, i = 0
    def mi = m + i

    while (mi < S.length) {
      if (W(i) == S(mi)) {
        i += 1
        if (i == W.length)
          return Some(m)
      }
      else {
        m = mi - T(i)
        if (i > 0)
          i = T(i)
      }
    }
    None
  }

  /** Finds a particular index at which one sequence occurs in another sequence.
* Both the source sequence and the target sequence are expressed in terms
* other sequences S' and T' with offset and length parameters. This
* function is designed to wrap the KMP machinery in a sufficiently general
* way that all library sequence searches can use it. It is unlikely you
* have cause to call it directly: prefer functions such as StringBuilder#indexOf
* and Seq#lastIndexOf.
*
* @param source the sequence to search in
* @param sourceOffset the starting offset in source
* @param sourceCount the length beyond sourceOffset to search
* @param target the sequence being searched for
* @param targetOffset the starting offset in target
* @param targetCount the length beyond targetOffset which makes up the target string
* @param fromIndex the smallest index at which the target sequence may start
*
* @return the applicable index in source where target exists, or -1 if not found
*/
  def indexOf[B](
    source: Seq[B], sourceOffset: Int, sourceCount: Int,
    target: Seq[B], targetOffset: Int, targetCount: Int,
    fromIndex: Int): Int = {
      val toDrop = fromIndex max 0
      val src = source.slice(sourceOffset, sourceCount) drop toDrop
      val tgt = target.slice(targetOffset, targetCount)

      KMP(src, tgt) match {
        case None => -1
        case Some(x) => x + toDrop
      }
  }

  /** Finds a particular index at which one sequence occurs in another sequence.
* Like indexOf, but finds the latest occurrence rather than earliest.
*
* @see SeqLike#indexOf
*/
  def lastIndexOf[B](
    source: Seq[B], sourceOffset: Int, sourceCount: Int,
    target: Seq[B], targetOffset: Int, targetCount: Int,
    fromIndex: Int): Int = {
      if (fromIndex < 0) return -1
      val toTake = (fromIndex + targetCount) min sourceCount
      // Given seq 1234567 looking for abc, we need to take an extra
      // abc.length chars to examine beyond what is dictated by fromIndex.
      val src = source.slice(sourceOffset, sourceCount) take toTake reverse
      val tgt = target.slice(targetOffset, targetCount).reverse

      // then we reverse the adjustment here on success.
      KMP(src, tgt) match {
        case None => -1
        case Some(x) => src.length - x - targetCount
      }
    }
}
Something went wrong with that request. Please try again.