# scala/scala

fixed minor math layout and unsupported commands

 @@ -395,8 +395,13 @@ just the bounds of these type variables. That is, assuming $T$ has bound type variables $a_1 , \ldots , a_n$ which correspond to class type parameters $a'_1 , \ldots , a'_n$ with lower bounds $L_1 , \ldots , L_n$ and upper bounds $U_1 , \ldots , U_n$, $\mathcal{C}_0$ -contains the constraints \bda{rcll} a_i &<:& \sigma U_i & \gap (i = 1 -, \ldots , n)\\ \sigma L_i &<:& a_i & \gap (i = 1 , \ldots , n) \eda +contains the constraints + +$$\begin{array} +a_i &<:& \sigma U_i & (i = 1, \ldots , n) \\ +\sigma L_i &<:& a_i & (i = 1 , \ldots , n) +\end{array}$$ + where $\sigma$ is the substitution $[a'_1 := a_1 , \ldots , a'_n := a_n]$. @@ -563,7 +568,7 @@ $L'_1 , \ldots , L'_m$ and maximal bounds $U'_1 , \ldots , U'_m$ such that for all $i$, $L_i <: L'_i$ and $U'_i <: U_i$ and the following constraint system is satisfied: -$L_1 <: a_1 <: U_1\;\wedge\;\ldots\;\wedge\;L_m <: a_m <: U_m \ \Rightarrow\ T_p <: T$ +$$L_1 <: a_1 <: U_1\;\wedge\;\ldots\;\wedge\;L_m <: a_m <: U_m \ \Rightarrow\ T_p <: T$$ If no such bounds can be found, a compile time error results. If such bounds are found, the pattern matching clause starting with $p$ is @@ -578,8 +583,9 @@ $b_i$. When applying a pattern matching expression to a selector value, patterns are tried in sequence until one is found which matches the -[selector value](#patterns). Say this case is $\CASE;p_i -\Arrow b_i$. The result of the whole expression is then the result of +[selector value](#patterns). Say this case is +$\mathbf{case} p_i \Rightarrow b_i$. The result of the whole expression is +then the result of evaluating $b_i$, where all pattern variables of $p_i$ are bound to the corresponding parts of the selector value. If no matching pattern is found, a scala.MatchError exception is thrown. @@ -708,7 +714,7 @@ already a variable or wildcard pattern. (@) Here is a method which uses a fold-left operation /: to compute the scalar product of two vectors: - + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {.scala} def scalarProduct(xs: Array[Double], ys: Array[Double]) = (0.0 /: (xs zip ys)) {