diff --git a/tutorials/how-to-implement-rag/index.mdx b/tutorials/how-to-implement-rag/index.mdx index 38ca4ba4a1..95f1c5fca9 100644 --- a/tutorials/how-to-implement-rag/index.mdx +++ b/tutorials/how-to-implement-rag/index.mdx @@ -40,7 +40,7 @@ Run the following command to install the required packages: ```sh pip install langchain psycopg2 python-dotenv ``` -### Step 2: Create a .env file +### Create a .env file Create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values. @@ -117,9 +117,9 @@ conn = psycopg2.connect( cur = conn.cursor() ``` -## Embeddings and Vector Store Setup +## Embeddings and vector store setup -### Import Required Modules +### Import required modules ```python # rag.py @@ -130,7 +130,7 @@ from langchain_postgres import PGVector ### Configure OpenAI Embeddings -We will utilize the [OpenAIEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html) class from LangChain and store the embeddings in PostgreSQL using the PGVector integration. +We will use the [OpenAIEmbeddings](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html) class from LangChain and store the embeddings in PostgreSQL using the PGVector integration. ```python # rag.py