diff --git a/README.md b/README.md index c8d7cf4..a60f98e 100644 --- a/README.md +++ b/README.md @@ -42,6 +42,7 @@ Data generation instructions are available in the [SFNO folder](./fno). ## Examples - Demos of different simulation setups: - [2D simulation with a pseudo-spectral solver](./examples/Kolmogrov2d_rk4_cn_forced_turbulence.ipynb) + - [2D simulation with a finite volume solver](./examples/Kolmogrov2d_rk4_fvm_forced_turbulence.ipynb) - Demos of Spatiotemporal FNO's training and evaluation using the neural operator-assisted fluid simulation pipelines - [Training of SFNO for only 15 epochs for the isotropic turbulence example](./examples/ex2_SFNO_train.ipynb) - [Training of SFNO for only ***10*** epochs with 1k samples and reach `1e-2` level of relative error](./examples/ex2_SFNO_train_fnodata.ipynb) using the data in the FNO paper, which to our best knowledge no operator learner can do this in <100 epochs in the small data regime. @@ -56,6 +57,7 @@ The Apache 2.0 License in the root folder applies to the `torch-cfd` folder of t ## Contributions PR welcome. Currently, the port of `torch-cfd` currently includes: - The pseudospectral method for vorticity uses anti-aliasing filtering techniques for nonlinear terms to maintain stability. +- The finite volume method on a MAC grid for velocity, and using the projection scheme to impose the divergence free condition. - Temporal discretization: Currently only RK4 temporal discretization uses explicit time-stepping for advection and either implicit or explicit time-stepping for diffusion. - Boundary conditions: only periodic boundary conditions. diff --git a/examples/Kolmogrov2d_rk4_fvm_forced_turbulence.ipynb b/examples/Kolmogrov2d_rk4_fvm_forced_turbulence.ipynb new file mode 100644 index 0000000..ef13816 --- /dev/null +++ b/examples/Kolmogrov2d_rk4_fvm_forced_turbulence.ipynb @@ -0,0 +1,222 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "29f7f30e", + "metadata": {}, + "outputs": [], + "source": [ + "# %%\n", + "\n", + "import torch\n", + "from torch_cfd import grids, boundaries\n", + "from torch_cfd.initial_conditions import filtered_velocity_field\n", + "\n", + "from torch_cfd.equations import stable_time_step\n", + "from torch_cfd.fvm import RKStepper, NavierStokes2DFVMProjection\n", + "from torch_cfd.forcings import KolmogorovForcing\n", + "import torch_cfd.finite_differences as fdm\n", + "\n", + "from tqdm.auto import tqdm" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "99054c12", + "metadata": {}, + "outputs": [], + "source": [ + "n = 256\n", + "density = 1.0\n", + "max_velocity = 3.0\n", + "peak_wavenumber = 3.0\n", + "cfl_safety_factor = 0.5\n", + "viscosity = 1e-3\n", + "device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n", + "torch.set_default_dtype(torch.float64)\n", + "inner_steps = 20\n", + "outer_steps = 100\n", + "diam = 2 * torch.pi\n", + "\n", + "grid = grids.Grid((n, n), domain=((0, diam), (0, diam)), device=device)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b8528369", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cuda:0\n", + "divergence of initial velocity L2: 1.60e-12\n", + "dt: 0.0040906154343617095\n" + ] + } + ], + "source": [ + "v0 = filtered_velocity_field(\n", + " grid, max_velocity, peak_wavenumber, iterations=3, random_state=42,\n", + " device=device\n", + ")\n", + "v0div = fdm.divergence(v0)\n", + "pressure_bc = boundaries.get_pressure_bc_from_velocity(v0)\n", + "\n", + "print(v0[0].device)\n", + "print(f\"divergence of initial velocity L2: {torch.linalg.norm(v0div).data:.2e}\")\n", + "\n", + "dt = stable_time_step(\n", + " dx=min(grid.step),\n", + " max_velocity=max_velocity,\n", + " max_courant_number=cfl_safety_factor,\n", + " viscosity=viscosity,\n", + ")\n", + "print(f\"dt: {dt}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fff70056", + "metadata": {}, + "outputs": [], + "source": [ + "step_fn = RKStepper.from_method(method=\"classic_rk4\", requires_grad=False)\n", + "forcing_fn = KolmogorovForcing(diam=diam, wave_number=peak_wavenumber,\n", + " grid=grid, offsets=(v0[0].offset, v0[1].offset))\n", + "\n", + "ns2d = NavierStokes2DFVMProjection(\n", + " viscosity=viscosity,\n", + " grid=grid,\n", + " bcs=(v0[0].bc, v0[1].bc),\n", + " density=density,\n", + " drag=0.1,\n", + " forcing=forcing_fn,\n", + " solver=step_fn,\n", + " # set_laplacian=False,\n", + ").to(v0.device)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c538cf5a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ecf417cf5c824467b51884ee4c846905", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/100 [00:00 0:\n", + " break\n", + " trajectory[0].append(v[0].data.detach().cpu().numpy())\n", + " trajectory[1].append(v[1].data.detach().cpu().numpy())\n", + " pbar.update()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "19904b57", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABagAAAJOCAYAAABSnuBAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsvXm4LVdZ5/9ZQ1Xt6Zxzx+RmIkSRQBwgAq2AItg2oIKgCKgIiIraMjSDQoM/55ahQUVtZdInTv1Ii5jHSCs2SkQUjAii0q0BZAiZkzucYQ9VtYbfH2utqtr7nHMzcyXUN8/OOXefPdS0Vr3r+37f7yu8954ePXr06NGjR48ePXr06NGjR48ePXr06NHjcwx5pjegR48ePXr06NGjR48ePXr06NGjR48ePXp8YaInqHv06NGjR48ePXr06NGjR48ePXr06NGjxxlBT1D36NGjR48ePXr06NGjR48ePXr06NGjR48zgp6g7tGjR48ePXr06NGjR48ePXr06NGjR48eZwQ9Qd2jR48ePXr06NGjR48ePXr06NGjR48ePc4IeoK6R48ePXr06NGjR48ePXr06NGjR48ePXqcEfQEdY8ePXr06NGjR48ePXr06NGjR48ePXr0OCPoCeoePXr06NGjR48ePXr06NGjR48ePXr06HFG0BPUPXr06NGjR48ePXr06NGjR48ePXr06NHjjKAnqHvsib/8y79ECMGpU6fO9Kb06NFjH/TjtEePLyz0Y75Hj3s3+jHeo8e9F/347tGjR4/Toyeoe/DoRz+aF73oRUvPPeIRj+CGG25gY2PjzGzUXcBiseB5z3sehw8fZjKZ8JSnPIWbbrrptO/x3vMTP/ETnHPOOQyHQ77hG76Bj3/845+jLe7R47bRj1PY2dnh+c9/Pueffz7D4ZBLLrmEN73pTUuvectb3sKjH/1o1tfX910EfOxjH+NJT3oSR44cYX19na/5mq/hyiuvXHrNC1/4Qh7ykIdQFAUPfvCD7+ru9uhxh3FvG/O3Z2zuheuuu47v/u7v5vDhwwyHQ778y7+cv//7v2/+/lM/9VM84AEPYDwec/DgQb7hG76Bq666atfn/O///b/5qq/6KobDIQcPHuTJT37y3bRnPXrcOdybxviJEyd4wQtewMUXX8xwOOQ+97kPL3zhC9nc3Lzdn/FDP/RDCCF4wxvesPT8fe97X4QQS4/XvOY1e37GJz7xCdbW1jhw4MBd2JsePe467k3jG+AHf/AH+eIv/mKGwyFHjx7lSU96Ev/6r/+67+vruublL385X/7lX854PObcc8/lWc96Ftdff33zmkTY7/X44Ac/2LzmSU96Eueccw7j8ZgHP/jB/M//+T/v8f3t0aPHmUFPUPfYE3mec+zYMYQQZ3pT7jBe/OIX88d//Me8/e1v573vfS/XX3893/Zt33ba9/z3//7f+eVf/mXe9KY3cdVVVzEej3nc4x7HYrH4HG11jx53HF9o4/QlL3kJ73rXu/jd3/1d/uVf/oUXvehFPP/5z+eKK65oXjObzXj84x/PK1/5yn0/5wlPeALGGN7znvfwoQ99iAc96EE84QlP4MYbb1x63fd+7/fy9Kc//a7taI8edyM+n8f87Rmbqzh58iSPfOQjybKMP/3TP+X//b//x8///M9z8ODB5jX3v//9+R//43/wz//8z/z1X/81973vfXnsYx/LLbfc0rzmHe94B8985jN5znOewz/+4z/yN3/zN3zXd33X3bp/PXrcHfh8HePXX389119/Pa9//ev56Ec/ym/+5m/yrne9i+/7vu+7Xe+//PLL+du//VvOPffcPf/+Mz/zM9xwww3N4wUveMGu19R1zXd+53fytV/7tXdpX3r0uKfw+Tq+AR7ykIdw2WWX8S//8i/82Z/9Gd57HvvYx2Kt3fP1s9mMD3/4w/z4j/84H/7wh/nDP/xDrr76ar7lW76leU0i7LuP7//+7+eiiy7ioQ99KADvf//7+Yqv+Are8Y538E//9E885znP4VnPehbvfOc7Pyf73aNHj88xfI8vaDz72c/2wNLjU5/6lL/yyis94E+ePOm99/6yyy7zGxsb/o//+I/9/e9/fz8cDv1TnvIUP51O/W/+5m/6Cy+80B84cMC/4AUv8MaY5vMXi4V/6Utf6s8991w/Go38f/gP/8FfeeWV99j+nDp1ymdZ5t/+9rc3z/3Lv/yLB/wHPvCBPd/jnPPHjh3zr3vd65Y+pygK/3u/93v32Lb26HF70Y/TgC/90i/1P/MzP7P03Fd+5Vf6H/uxH9v12tVjk3DLLbd4wP/VX/1V89zW1pYH/Lvf/e5dn/OTP/mT/kEPetDt3LMePe4e3NvGfBf7jc298PKXv9x/zdd8zR36/M3NTQ/4P//zP/fee1/XtT/vvPP8r//6r9+Zze3R4x7BvXmMJ/z+7/++z/Pc13V92tdde+21/rzzzvMf/ehH/YUXXuh/8Rd/cenvez23F172spf57/7u726OWY8eZwpfCOP7H//xHz3gP/GJT9zu9/zd3/2dB/xnPvOZPf9eVZU/evTorlh/Fd/0Td/kn/Oc59yh7e3Ro8fnB3oF9Rc4fumXfomHP/zhPPe5z20ylxdccMGer53NZvzyL/8yb3vb23jXu97FX/7lX/Kt3/qt/Mmf/Al/8id/wu/8zu/w5je/mT/4gz9o3vP85z+fD3zgA7ztbW/jn/7pn3jqU5/K4x//+NPaZ3zjN34jk8lk38eXfumX7vveD33oQ9R1zTd8wzc0zz3gAQ/gPve5Dx/4wAf2fM+nPvUpbrzxxqX3bGxs8FVf9VX7vqdHj88l+nEa8IhHPIIrrriC6667Du89V155JR/72Md47GMfe7rDt4TDhw9z8cUX89u//dtMp1OMMbz5zW/mrLPO4iEPecjt/pwePe5J3NvG/J3FFVdcwUMf+lCe+tSnctZZZ3HppZfy1re+dd/XV1XFW97yFjY2NnjQgx4EwIc//GGuu+46pJRceumlnHPOOXzjN34jH/3oR+/27e3R4/biC2GMb25usr6+jtZ639c453jmM5/Jj/7oj57281/zmtdw+PBhLr30Ul73utdhjFn6+3ve8x7e/va386u/+qt3aBt79LgncG8f39PplMsuu4yLLrpo3/3aC5ubmwgh9rXgueKKKzh+/DjPec5zbvNzDh06dLu/t0ePHp8/2D9i6PEFgY2NDfI8ZzQacezYsdO+tq5r3vjGN/LFX/zFAHz7t387v/M7v8NNN93EZDLhkksu4TGPeQxXXnklT3/607nmmmu47LLLuOaaa5qSvR/5kR/hXe96F5dddhmvetWr9vyeX//1X2c+n++7HVmW7fu3G2+8kTzPd934zj777F3l+933pNfc3vf06PG5RD9OA37lV36FH/iBH+D8889Ha42Ukre+9a086lGP2vc9qxBC8Od//uc8+clPZm1tDSklZ511Fu9617uWbAN69DiTuLeN+TuLT37yk7zxjW/kJS95Ca985Sv54Ac/yAtf+ELyPOfZz35287p3vvOdfMd3fAez2YxzzjmHd7/73Rw5cqT5DAhe1b/wC7/Afe97X37+53+eRz/60XzsYx/rF7k9zgju7WP81ltv5Wd/9mf5gR/4gdO+7rWvfS1aa174whfu+5oXvvCFfOVXfiWHDh3i/e9/P694xSu44YYb+IVf+AUAjh8/zvd8z/fwu7/7u6yvr9/ubezR457CvXV8/9qv/Rove9nLmE6nXHzxxbz73e8mz/PbfB+E3jMvf/nL+c7v/M59x+lv/MZv8LjHPY7zzz9/38/5/d//fT74wQ/y5je/+XZ9b48ePT6/0BPUPW43RqNRc/OEQCbd9773ZTKZLD138803A/DP//zPWGu5//3vv/Q5ZVly+PDhfb/nvPPOu5u3vEePLxzcm8fpr/zKr/C3f/u3XHHFFVx44YX81V/9Fc973vM499xzl9TYp4P3nuc973mcddZZvO9972M4HPLrv/7rPPGJT+SDH/wg55xzzj28Fz163L24N4955xwPfehDmwX3pZdeykc/+lHe9KY3LRHUj3nMY/jIRz7Crbfeylvf+lae9rSncdVVV3HWWWfhnAPgx37sx3jKU54CwGWXXcb555/P29/+dn7wB3/wc75fPXrcEXy+jfGtrS2++Zu/mUsuuYSf+qmf2vd1H/rQh/ilX/olPvzhD5/Wk/clL3lJ8/tXfMVXkOc5P/iDP8irX/1qiqLguc99Lt/1Xd91h5LVPXr8e8Hn0/h+xjOewX/6T/+JG264gde//vU87WlP42/+5m8YDAanfV9d1zztaU/De88b3/jGPV9z7bXX8md/9mf8/u///r6fc+WVV/Kc5zyHt771rfdI1VaPHj3OPHqCusftxmpmVQix53NpMbizs4NSig996EMopZZe173pruIbv/Ebed/73rfv3y+88EL+7//9v3v+7dixY1RVxalTp5bUmTfddNO+Gez0/E033bRETt100008+MEP3nc7evT494h76zidz+e88pWv5PLLL+ebv/mbgbBQ/chHPsLrX//6201Qv+c97+Gd73wnJ0+ebBQcv/Zrv8a73/1ufuu3fov/+l//6+36nB49/r3g82HM31mcc845XHLJJUvPPfCBD+Qd73jH0nPj8Zj73e9+3O9+9+Orv/qr+ZIv+RJ+4zd+g1e84hXNfb37OUVR8EVf9EVcc801d+v29uhxT+DzaYxvb2/z+Mc/nrW1NS6//PLTqjLf9773cfPNN3Of+9ynec5ay0tf+lLe8IY38OlPf3rP933VV30Vxhg+/elPc/HFF/Oe97yHK664gte//vVASEQ759Ba85a3vIXv/d7vPe029+hxJvH5NL43NjbY2NjgS77kS/jqr/5qDh48yOWXX853fud37vueRE5/5jOf4T3vec++6unLLruMw4cPLzVR7OK9730vT3ziE/nFX/xFnvWsZ512O3v06PH5i56g7kGe5/t24L0ruPTSS7HWcvPNN9+hjtp3pQTpIQ95CFmW8Rd/8ReNUurqq6/mmmuu4eEPf/ie77nooos4duwYf/EXf9EQ0ltbW1x11VX85//8n2/3dvfocU/iC32c1nVNXddIudw6QSnVBO23B7PZDGDX50gp79Dn9OhxT+PeNObvLB75yEdy9dVXLz33sY99jAsvvPC073POUZYlEOaboii4+uqr+Zqv+RogzCef/vSnb/NzevS4J3FvG+NbW1s87nGPoygKrrjiittUVT7zmc/clVx+3OMexzOf+czTetB+5CMfaey5AD7wgQ8sHcc/+qM/4rWvfS3vf//7+6rMHmcM97bxvQrvPd775l67FxI5/fGPf5wrr7xyX4W3957LLruMZz3rWXtux1/+5V/yhCc8gde+9rW3aRvUo0ePz2/0BHUP7nvf+3LVVVfx6U9/mslkcrf5Md7//vfnGc94Bs961rP4+Z//eS699FJuueUW/uIv/oKv+IqvaFSQq7grweTGxgbf933fx0te8hIOHTrE+vo6L3jBC3j4wx/OV3/1Vzeve8ADHsCrX/1qvvVbvxUhBC960Yv4b//tv/ElX/IlXHTRRfz4j/845557Lk9+8pPv9Lb06HF34gt9nK6vr/N1X/d1/OiP/ijD4ZALL7yQ9773vfz2b/9240MJwd/6xhtv5BOf+AQQSiHX1ta4z33uw6FDh3j4wx/OwYMHefazn81P/MRPMBwOeetb38qnPvWppX39xCc+wc7ODjfeeCPz+ZyPfOQjQFBh3l6/vR497gruTWMebntsAvzH//gf+dZv/Vae//znA/DiF7+YRzziEbzqVa/iaU97Gn/3d3/HW97yFt7ylrcAoVHTz/3cz/Et3/ItnHPOOdx666386q/+Ktdddx1PfepTAVhfX+eHfuiH+Mmf/EkuuOACLrzwQl73utcBNK/p0eNM4N40xre2tnjsYx/LbDbjd3/3d9na2mJrawuAo0ePNkrP7n398OHDuwirLMs4duwYF198MRDI56uuuorHPOYxrK2t8YEPfIAXv/jFfPd3f3fTN+KBD3zg0mf8/d//PVJKvuzLvuxO70+PHncV96bx/clPfpL/9b/+F4997GM5evQo1157La95zWsYDod80zd9U/O67viu65pv//Zv58Mf/jDvfOc7sdY2fWYOHTq0FEu/5z3v4VOf+hTf//3fv+u7r7zySp7whCfwX/7Lf+EpT3lK8xl5nvc9JHr0uBdC3vZLetzb8SM/8iMopbjkkks4evTo3VrymrKhL33pS7n44ot58pOfzAc/+MGlcr67G7/4i7/IE57wBJ7ylKfwqEc9imPHjvGHf/iHS6+5+uqr2dzcbP79spe9jBe84AX8wA/8AA972MPY2dnhXe96122qP3r0+FyhH6fwtre9jYc97GE84xnP4JJLLuE1r3kNP/dzP8cP/dAPNa9505vexKWXXspzn/tcAB71qEdx6aWXcsUVVwBw5MgR3vWud7Gzs8PXf/3X89CHPpS//uu/5o/+6I940IMe1HzO93//93PppZfy5je/mY997GNceumlXHrppVx//fX32DHp0aOLe9uYv62xCfBv//Zv3Hrrrc2/H/awh3H55Zfze7/3e3zZl30ZP/uzP8sb3vAGnvGMZwChguJf//VfecpTnsL9739/nvjEJ3L8+HHe9773LflTvu51r+M7vuM7eOYzn8nDHvawptS4b4za40zi3jTGP/zhD3PVVVfxz//8z9zvfvfjnHPOaR6f/exnm9et3tdvC0VR8La3vY2v+7qv40u/9Ev5uZ/7OV784hc3SaoePf694t40vgeDAe973/v4pm/6Ju53v/vx9Kc/nbW1Nd7//vc3lQywPL6vu+46rrjiCq699loe/OAHL80J73//+5c+/zd+4zd4xCMewQMe8IBd3/1bv/VbzGYzXv3qVy99xrd927fdI/vao0ePMwvhvfdneiN69OjRo0ePHj169OjRo0ePHj169OjRo8cXHnoFdY8ePXr06NGjR48ePXr06NGjR48ePXr0OCPoCeoePXr06NGjR48ePXr06NGjR48ePXr06HFG0BPUPXr06NGjR48ePXr06NGjR48ePXr06NHjjKAnqHv06NGjR48ePXr06NGjR48ePXr06NGjxxlBT1D36NGjR48ePXr06NGjR48ePXr06NGjR48zgp6g7tGjR48ePXr06NGjR48ePXr06NGjR48eZwT6TG/AXYFzjuuvv561tTWEEGd6c3r06LEC7z3b29uce+65SHnH8mH9+O7R49837sr4hn6M9+jx7xn9+O7R496Lfnz36HHvxl0d4z16nCl8XhPU119/PRdccMGZ3owePXrcBj772c9y/vnn36H39OO7R4/PD9yZ8Q39GO/R4/MB/fju0ePei3589+hx78adHeM9Tg9rLV/7kEu45Isv4Nff8ednenPuVfi8JqjX1tYA+OsnfjnrhUJIj5QglECo8BpxmoSRd+At2NpjjcDVgroUVJWgqiSLSjM3ihtqzZb3bHnLpjecsjVbtmTqa3ZszdQZSu+wskDrEUqPyLMJRX6QLNsgzw+QFYeQagz5BqgCnw+a7RCmBluCKcFMsfUWpt6kqk4xnV1DVe9gzAxr5zhX470BPNKDADzghUIIjVIDdDahyNfJsw20HqNkgZAK7yxldYKyOklZbVLXW1g7I/cwlpoDKueQHnBEDfgiNWQsBGMBA+nIhUcJD4D1IjyAbSupgIX3VHjmeBbeMveOmTMsvGPmak7YBaWzzJ1l4S0WsEIgRYZUBUqNyPSA0fAclBqQZWsoNQp/02OELBBCgxqAUCA1SAUi/oTmp5cSHzOFXiqczvBS4pTES4GTovP38G8An64ZGz/OeaSxSOdRtUVVJdLUiJ2b8WYnnqct6nobY7YxZoqxC6xdUJsFxmzjncV7i8cunTNJ+LnvtQm49FMAhGMlhETEcy2kRiBByF3qBe99c5F7XPgZf/fegnc4b8HXaA+5kIykZigVazJnTWWsyYw1qRkLzRGhGAID4cmkJxeeQjky6dDKoaRHKUeehzGotUMo2Kktj/4//9SM1TuC9J6ve/R/I8sPhHMO4Ax4g3cl1kyxZoqpt6nqU1T1FmW1ial3qOqTzbUd9idnQxWMpWr2a4jgiJDNfqnO91vAeUHlBbWHqvN8HY+vFIIJcFhbDo9KxmOL1g7nBMaEuWRRamZGMbOKbSvZ8p5NHCddzbX1lE1bsmVrFt5SeUctQIgMKbMwPmTO2uR8iuIssmwN7w3GzHGuJMvWGIzOR+aHqWfX8G+f/B0OCsUBlaOFpPSW0oWHi9svgUIqlBBoIcniQxF/CkEmJBrFUMa/I1ECciQKgRSCnPBQQCbCz3T8usdxFTY+ur+7OH9YoMJTe8eOt5TeMneOyhsWzjL3hnmcb+cr826er1PkB8jzgwwGZ5MPzkKMzsGOD2LzApupZhyrqoT5Sez8BsrFDcxm17Izu4GqPMnQ10ykZiQ1A6kphCIXklxociFQnbFmvafynrmvmbpwP0jbtvAOIwR5fog8m5Bla+TZOkVxmCw/iBCacn4jWzv/xs7OZ1B20XzuSCgKGR4jqRkIjRKC2jkqLDu2xnjXzBPOexy+GfcOwr/j3yzd59s5RcTZSKocIRRS6DifaIQQSJmhZJh3pMzIs42l+dl5+Jv3//ydGt/QjvHf+9BfMZpM9r5enGdzarh503B8x3Lr1HNqCjtzOHGLhE3P5NZt9C0fZ+vkP7C98ynmi1swZpuBFwylYigVEkEhFQOh2VAFB1TGQZFxUCgOCsFIOYbSIYRHCZq5Lc8see7Jc4cuPLrwqEygBwI1kIhcI4sCkeegZNpo3GKOX1RMb6yo55K6FDgnkNIjpUeoEH8sFpLjWwP+aFpxbT3l5nrOSVcj1IC8OMxocIQ8P9gcc6XHAHhv8C6MpOY+mR+C4UEAptf+Hza3P8ZicRxjZnhfI7xjKGRzfa/JnPPzMWOhGAjVjOe9kDfjHnIg68QGhXIUypJnlsHANe9xDowRWCspa0XtJMaF+AGg8oKFkxx3nqvtjP+7OMGtpqSWGYPBWWysfxFraw/En/sQ5hsTzERCDioHpcO9JomCpAAp/dI2OydwHqoKbCXwC9A7jrWbboGdG6lmn6WuTmLsDCkLsmyNLD+Eyg9BsY5ZO4yPcYVwFuFciAFMDfUM6inObDLf+QyL8mZqM8XaktrMsHGOdq7GY5G+9dTzhPt/huCgzrlPvsbZagjAzBus95yjBpwvNRcOKs49Nmdy1JONw7bUU8vsuODa64f8wXZF5X24nmVGjmDqLcddxQlbcireX47bqokThVRovcbhg1/G+n2eyMn7H+PwuZaLjsE3Pagdy7OdHb7zIY+6y+P7cRddwklXhnMrJMPReYwGRxgOzqEYHkMXZ8HoKPVkg8XaEDORqAmcfbZjYwQHR7A+lKwPJJOBZFRIBplESYHWAufAOU9tPPPaUdaOrbnl5NRx07bnplNwy7UK+yev5eTm1QztgoeMjvL4wZivvGSTg4+6lNGlX3+H9s0vZlQ3/BvlJz+K25niZnOqrZrN6yXX3jLkX0vNJ+yMT1Zb3FIv2MIiRdHE6Hk2Ic/WyLINsmwNna2jsw3E4CxQRYhnpWpiVeEcmCqsFWwJ+Tp2tEY1HlENMlwh2huvBWE8wkK+qFG1RZo6PKoSFicx8+sp5zcyX9zAdH4zi/lNCG8oEExUxrrKOKAKNmTezJXrQnJWnCe19GTSIUU75lxcGzgvME5QubDtqhMvSuFxXjA3iptrzfXectXiODfWM7adwQpNnh9kODzCcHA2o/F9yNa+hPrgOSwuHrG25jm4BgfGMM7DdTHOw3VRZJJxIRkNTheBnB618ZSVY147auNY1J6thWVeeRa1Z25gUUFloKzDozZgDSxKgTHgjMCVAqxHlJ5sbshKE2KPxQzKLez8hhC/2mkTz3ks3lmEVEiRo2RBPjgSrgs1jtdFJw62Jc5sUpcnOLX5f1mUJ6mrU1g7J/OODZVzWBecrUecr4acIzUX5DUAM6u4oXK87F//+i6P7weeewEiXqcp7rAxJgnPxXUqKfaAEH8oiPFUiEXa2Kq7pmnWM/HzPGl945vnwrPLr2u/CUScfyVhvXN2NmRN5kxkjhIhpj9pF5wwCzZtzUKA1hMOblzcjFEhNNbMmM2vY3t6LXV1kjFwTjbi4uIADs+WNRy3c06YRYjrhUeIgiw/wGh4lEOHvpJsfBF24xizg+uYQ5LRumc89qwNYW3YXte5ZineJB5X68C6cK3eOvXslDCdw2wGO9sStwnDzZLB5inYvpb5zie48eYPYO0M7+q4FvTgLR6H9GHq0AhGUqNFOBtpfVBIxVhmbMicwyrniMg4SwruM54zKMI9X2UepX3DvbhaMJ9KtrYz/t9swM3OcNLXnLI1m7Zk05acshUz70Dm6GyNA+tfwmBwFK3XyYpDiGwDshG+mGDzAlMUmFxTr6ulOEBr0MqjdBsPQBiT4d4Q4gAT/+3d8jFN3BHQxBQpnkjPi26sscIrObf73961z6fvd/E5a0T4uwGmIGuPrsIcoRcz5GIG1Ra+3sTUm5h6i9nsWmozpap3sGaBdQu8q3HO4LGIyC9kcSQpIZAIrHNcff1n7/QY73F6/O5rX8RnbzzOR67+NM/7h3/g0ksvPdObdK/B5zVBnW5g5fEBZa7ixOLRmW8WKmkhmNCdWJwDLEgXyGlvJBiBrxXOKGqrKL2kkp7SWxYeZtZRCkspHKVzVHiMACslWg/RekiRByIiz9cDOZ0fRukxMj8QCFZV4FUeN8IipAOnQEqssHgJQtiw7cIjpQyTjxAgwAuB9IL4z3jTF4FgkAqlNEplaD0gy0ZoPQrkLuApAQMYvKvAB7LPCajxWEEgcJVECYUGMuHRkZRMSAS1RzIn3NxkvOl5L3De4aUAZ3HSU3iNwZPhw4IRj4/bLwQhyBXEbbPhpy8RaHBlJEsEAosQAoEDkTdBfLggdLOYRCh8DO4DQa0akhoCiZ32s0tSA82okM4jskhOC4OUOaoskfkaXgokDoEJD2HwvsJjAB321Gm8CDcmvAhEcQqwluOnBvGlnfBKoCIJLYVGCNX5XSKE3DsLEwlphMB7gSdcHz5cQHhvER5c/CkQ+HgynAAroBZQCtACdqTAIqgiKZl7mBnIBeTGI0UgdwcLG8gdFRYic2PCXtyJ8r/0Hn3kEmSxhleRKLA2kgQV1NOQLKg2MfUpquokZXkri/I4bmeO9WHxXuFxIh4qKRFSkQnFQEgmQjKUnoEMCygVN9X6SFA7Se0FcycaYrWKD+s9VghmXjMqNWNdkkuDVGCcQEuJ0grhA33rkeHq9pZSwMBr5lgyHMZ5rA/HXkQySMhw3SuVkWdDdDYKCQYsznm0LsiyCTIb4vUAKSVKSHKlQ3DiweCJZ769PIQI5xriOPZkIsw3Ll6JVliEAIvACY+K10aOQIm04BDkMRBKi4sUUJ9uiaji9xLJUx+3wXiHwVN7Qek8M29ZYJl5w9ybmPSylN5RS5BiwGh4NkW+QZ5tMCgOkw/OIhucjRiejR2MIcsCeT4rkeU2lJtU8+uYzz7LdHYd0+n11PUpMu84KBSHsjGFVE1wroRAIcgjUZ0Cv2HnxmLxTJ3hlCvZNBXbtmLqDHNvMXaOUxnOabwf4H2JwKL1BDE8Qm1OUlUnoayace+EQEiJTGNcxuMrw3h2AhwCG4+XF3FBKNKx7CS5pIhnX8T/wj4IVJhLhUKpQZhPpG5IaSlDckTJDKVGaD1kMDgHpSdIPUZmE+oYgd/Z8t70vtFkwnhtb4IaQGQWo2oqZVkox0JACWQjiTMgZ4pseJTB/CCL8kaqKsNJhfDhvimFRItwPJWUKCVQUqEjYZ0LwUB6RiqM8CySyIW2FFowKBxZIcgKT1Z4ZC7QA4nMI0GdCUQmEM39xeOMxGmJUJpSCWwWCGoICTyVhRhkICSihvWyYOJrtl3NFEsdxyPCIwRhe3WB0oOYpNZ4F+ZXpSeofAMxOIgr1pDVHGO3cb4O75eAF2gvGQhFoTQDmTHSGROVMxGKXKSEUycB07kThXHfEtQKGMgwbwykZaAkhZIMpG3iL+fCvdUYQU4gqGsbCCyAykkyEV5zthxygx0y9RaLxdk5xuzg7CZDK5C1Zm6HWCEQMuSmE+srO48lxEWgdAJfh3t2Jg0Z4IQNggbp0SJHypwsG5HlY1Sxhh8cxA/WlwhC4SyyrpGqRsgQszlhMfkIY4dhoSh8SLX5EGclykb6EFp0KRXiKxY4nBRMpEJ4ycJZhJJYodDkFM4w0Za8CMGJdYJs5JkNBON5HkhwKUJcIlRMOmsyDNorhDMIJeOYV+H+lw0YjY7B+hHyjTEbBx2HD4o9x+FdHd9nZyMyr3FCcNJWGLNNbXK0GaDrPMSq9RBdjtD5mDIbUhWKWe2h9mDB2UAsWBsSHkYJMiHIvUSpGLPEGNR6jxw4hHWoOvB6KldYEZLKhVSs64LDmeTQwYyNI0cYTEZ3bOcmI4zZZn7LGOsNToZYoCgtLBwLlzGTI7YJ94GZ9fg4pkWMcX1M0cowtSNiLAA+kNOqaL9PpTusDxd6NkKqAV6PcEWBKwReRYGFBEmYwzJTobxBopFeI6XBYTG+xFNi3RzvSoR0DL1iLDUbKueALjigCg7KnENSc0goNgScldcUGjLtI4kTNi+QMALrBMZKaiupO8moFFul2HCgwpycW811xRpKSm6sZ2w5g7FbVJVCqYysGqLnA0Yqp9w6i1kuUIVDDkI+sJAwyCRWS2QRHuO17E5dr9Z5qBxWheSkqT1KeaR3YT0mw1yqJIiacEuWkWMNwVKMhUB4gag90np0btC+RqFRljAe60GzdpACrJM4VzWBU7Oekzrcw6QIJfoyTn5S4oXDMQA3ZlAcBAwCS12DcXNm3pK5mtxVDFXGSGZcQMFQOnIhqOP96K6O74HOmt9dFBgoQnLcQxPjOQJBnNY4u7/VN4T18ipomXhO//ZieTbtHvv2vWlbW3GQFDKszUTQO+VCkxPXBzH22rQVlZtj7A5KZTinyLJ19OAgWudoXbA9vZb54lauNTOOFWMOqwFHlGbiMiY655Z6zklbMvM1pj7JHMts+inGWAbCUXjFnMMsXI6THq98uLkCa3kYz1ILlGzj6i5BLY0n955chfWI9qBriatAlTl6VkE2jJyAwnsVjr2Loikfjl5KnioEmQpxroxrEIVASxWel5pCBXHPSArWc8Ugh0EBWeFRGQgVz40VrBcw0Y6ZkQztgMJpcqXJrSKzCmkk0lZMMTg7pTanwj1BF+BLFBYpFF5kKJGjRIGSOV7meCWQ2iNzH/RqejlpLWWXIO4+xNK/V7FKVDfXURz7y1dm/FtnseNc+LcPQXr4HhFJawIxjRcI69EG8romK2v0PCavqk1cdSoS05tU1UnqeptFdRxr5hi7wNkK70PiW4lw3jQhYZshAl8Sz5+9izF6j/0xn8/5/3759/jvL30m//Avn+JHf/jZvPv9/9gf67sJn9cEdcL1O0O2lUZFlW+hw4BUIhBnabGk5Oq0EgL9FFilgKpykoUT7HjBHLjF1+x4y5at2XYVW7ZiGpXTc2+pBAg0Wg3I9BClhmFBr0bIpPwVnUPtDcKkDSjBGbzZwdtFqwg1Kate42wZ1FI+UEmJCuquxTw+kLYRIs6YMipmpAyBrlIjlKpQao7SA6xdYDAY76mi8m/maubeBSJSSJQXqKgg7Qg0mkXm7YXsTJzC+ybY9s5iRYVwGmPnzfb7SBZ4ZeL+G4QokSocU+FNOLYyHd8SkZTVLvwUSVWtHF5KhItENaAceOdxMhALu4jqiPT39F6kblRIjZJZqI66uSPf9zaQv5EaSkTc3oeuVRIkNYEIjGogkmSGQDbEtGjulrvvsj4R1PH3cKRXXxd03A4fSUFH5R0ykh7Oe2pvmQtLhQvqWUFYECaywiflbPg5tFmjpFVA6Qx3FTtHDyMmISkAIdusjEPVlmw+R5Ulen4KuRgj1QAZj/9icYLabFP5mpkzjKRm4SyZUITwLM4LMUGihCdTvpk3wjEQZNbHQF4FApkwHnJgLgSV9+wIAUahZiG6HBS2IaNW0RyvGFikoHoV3nuET8GFiteZjvPAHYfrhFXWO1z8boNHe4ERjjIGNVkMUMNCw5DJFZU1oiFvcy8ZivaaiPFpc0100Sqno1raOyw+JhEctXfMnaX0hhOmjErkoABfxLkWFFINydUQnY2ZjM4lzw8EpfLgLFRxBPINvM4RzqHnM4SpcDufYT6/ntnsOqazzzKb34y1U0ZesC41g6g610JifVhOuUhwKkSccHUkq8PYy5tARJCrjEEkPDMhkbZEWjjpS+p6uz2PQsb7Qpg/smyNPF9jUd4aFm+ERYjxDickDo/zIYHnOuO09i4sVuLIblRKol3GiTjGQ1Iv3DWEVOF3IRFIpNQoPQwL4YaUzlEqJFx1VO3qbINsdB5kY1yxRl0UVC7VFdyzGOSSTImoKGoXD0KGyhebacjGSFkgZY6M1SWetnLAkY6VbxTn6Tq0hISU9QIlQqJoletsvlOJ01dmWQvW4p3DVW5ZRWPbfCqA1h5vHUVmmYiCgVQMpUbbitpbnK1wrsJ7i/OxGseHOdW7cE+UahDOqRrgVYFwFhbHKasTWDPHu7pRmklACUkhVFM5kaoCVslpCGO4S1KTjhUxyeQDsZaUkyme6goE0jwopUd5jxMprR5itEzC0AomQrGhcm6VmtJWGDujrE5RlrcyKrdRxYB8rilVhpMSi0dqEVblhAVgd1GZFqCmEtgykEW6dGRlDfW0ibVcvIZTrNRUaq0ktVESVYOL3Jd0BcKUIPTyfX8fiM6jm0QqvQ0xpTIMhSJHUgvH3DvmwjO1iqqUuMrgrUfmCpl7VGYoMosSCkuYNwdxGyofSFrr22vd0y5SBQKtCnS2QTkekQ88RQ6T4p5ZWB1WOQrVVPNsmSmLhdx1zLL4EM4CE6ZDhTFgjKesYF55NoaeeeUZ5oJcCXLtyHUkb5ynMp7KhtdUBioblHM4j3MVzhsyqRgKxSiz6EmGWj98p/ZLjtcReaieEFWFUIJsDJM1w8Gp4ajT3KoGHJcLlK2osThnsLYKVQ+uwtoZxuYhdgWUGTdzj0gThtAh4WHK8DPGVV61Cmtch4xzPggsnEfaGENY2yT1TXWcqjpBVW1SVlsYEyopB7GSbhwrzlbJ6XVlmQxqtHJo3a6tIBE/gfxRMsZQRiF9UEyH9YJHeoEUQX091qGa8mxXNNcrZs6Wq6mqU81np5hn7aZz2LEH2DQS58LcGsg6h+2Et+PKMcjvmN+qdZ5F5VhUjnkVlNNVVOTP63g92aCcXkTVdG2I12dQTnsnYmWuIEgmYyWm8yHBZW28tveGECqIRzrjwnuDcwuEUzhA+HYt6V1bRaNUuGdLNUfYBcLVlBh2nEHbsonXzhNjnBdRkLGPUuYOQhESPw7AByWugxCz+FYcIaF5DSKtSdo5ifS3FZxOGQ2Q9E1i5fldr6MlsU2MoRbOkkkVq0gzrA7zpfEO5wyLxYnwzfEazLJ1lB4zGp6LEIodmbGY38LHF5vMMsNRPWQgFWeJIbmQFEZx3CzYcYaqPsn29BqsnWPNlKHZYVRfiC7PZmrGbFYSY0IlyDD3DDMYOsi1CFWqkuY6t1HQsorV2CRcI1EoFGOi1aPjRWCqpRBoxBI5LcXyGqWJ8wljXGeJmA7kdIqRiGT1GMvhrRq3yLHowCesrntsxdRXlOWppWu/WV9LjZQKrxRKSmSd4WRcm8uQ6usS0qtK5/Q3Fy++LlkNexPV6fluAm7PixOW1nrps7pqbZ8U1bUA45tYRJeGYmsLtZhCtYktb8VUmxizRV1vUVWnGtV0VZ6MsWBIeivfriXDei3EdrpzvqQQGHH3jPEeu/FLr3wux44c4OmPfwTf+DWX8sXf+Dz+7M/+jMc//vFnetPuFbhXENSfMrDuBUrIQJLVceDGOUPhm98T8dQo+EiLq0A8VZGInXvPnFBmfqutmPqabVtHYrq19QjktAqqMz1E6zGZnqD1EKmKZvEYvsiASMFlG2g6u8CZKc4tMHWw3qjrHaydY2yJtVVcmIblteqUKgGN4jH8v51ppVQteRqDX61HOFdi7RClZkiV402NwUZyyETi3YWydh8z2k6Qi255VlzQkxb3u297Ydv2nhzbj4l5de/iYrzGCoWwsyYgkN6ilG0CN2cXgYj0SZ0bCOpE4CXCug34i6CsTnYfSiGlbFTVQkm889hM7SIluvBSBhWvVB2Sul2cCqFQMse5KvwbiRcykAPCg5cxbBNNwNWWtQVFa0MiiUQgLRNJYX87NUewRFB3SWnffX6VnBZhW4QPCjDnwXhP6SzIUC7rCJUDWhhmvm4IStkEKK3dQXouJxIekeyoTxOM317I8wX5KOwFQF0JjFFUpWZR5mRzSz6bkG+vkc8mTbXAfHEzzhtsVNzOnGEiM2pvo/K5vWYVQTWZSUeml8tWtZVkNhzroKYGRLj+lRfMhWAeSWpVa5jB2dkiBEBe7JvIScFfUOR2Tg1pX10nMO/8fS8ipJMA24/wTp8qSIsEH9VmYGJVBhAD0vA5cycDYe3Cec+EbAhs1QlgB0I314PsXBdpPxPJlco+bUyIBcI1WJuUzjaWJAsfbCxqQoUKKIQcoFSOVgOUHobyaD1mPL4PWX4YXRxG6AnoIiQByxJhF7jqFFV5nBMn/4HZ7AbK8gTKG0ZCMpQ5mmB1AmExNfV1cxwbBYkIhFhQpgmsV4xVOOZ55+wpIVCqaN4rEeyYOcaVGKMahbKsTqFUEUoZs3W0HmME5PF0p2Pk0iMuIBJxXXuH8SGxlCw7wrmNhHRMbqWKi2bx15lLUvVFsO6YLKmlw3EeobP1oM7NNpD5AepD51EPh1TDDDsSWL+z77V2dyLTgmEuIyEV7u2qM2icFHido/S4sSShk7J1SSokaEh9G8tYAkkdKkT2QqrMCtVYHqEEUomwCOvCxqvcWlxVg3V46/EWfFSA7gWVQZ4H642MVrk/w+K8aWy9mkcip3yb/OuSqsJUmPI4tZmF8s+YbAllvALdtfYhEKKJnF61OAJ2kdbpb+ERElLWi4agAnaR1FISyGnnyZSDOJ864VFekAvPxEvWZM5IambOUPmKutpmUZ7ALW5FZSO0zrCZoo5VAS6eVB+V0OG7aX46E8np0iNLjy5rVFXi6h2s2cG6EudsGytJjYjH0eks2oK1F5rNNKoOCW+kAl0g7SCKABRSKFyTrN67ukk22x0/03sWzrDtKtZVFq+DMN/MvWPHaealwtYdVaASqEzE6ybDeU+JYepCAj0k/Vxj7xOugc55FDJYTRSHmRaakYZhBpPijpF6txcHI4lfZyNKb9mpZxg7pSxTJVgbr2VAFgfL9nCDhRMNSV1HcnCn8EwKT65hmIlI4NAoC63zzOtAKNaRQBQ1WLsAb8llqBoY5iVqfYIcb9yp/ZLjDeRgjF/M8Eohco3KLIOJ4+Co4lA94ojMuVHlZPUsVLvEcexsiZUaKXOMmTcxpLMh6SEBvAYGBAm5Abtoxv2+d3kXVNQiWtMl5b9wDlHPcNUp6uoEVXWKsjqJqXdwvqQQkrHKWFc5h9SAgyqQ00eF4pD0rGnDKLPkmUNrF8LgJYIawGNqgexYeUgvqDtzn3MCJyJJrRxjD8dMIAZrbIh66jlbrqKqtoCWHDxw8kLWrGVmDrJZa4xx1CYkIgJJHUjlQSapjQ+JTX3bSZdETFfGs6gDQR3I6UhSV5553ZLTiypcV1XVktMmLu1aEiqIKcJ5MI3FSqpaTdfBKlJ8l356b/EuXC/tNRGPpS1xbhGthILaVEkd1iGiwhHWqdu2bmKSG9UgVOwiUXuu2u44UnWS8yFecwiIxLQUAu/btWAiqYVPcUtau56eSOuS0enfq4R097nVOLh5PtpXmBh/Oh+uu7B2kYxERi0dtQoCgO16q11zRWTZOlIVDAdnI4RGSc3NO5+iLC0zZzgnGzOWmkNqQCYUhVCcMAtO2YrF/BacLTF2jrEzRmZKXk9R5bnMyoNsx+u6yD3rwzCXDT3kCtQeAqrbhDfBzrF7LISIVb1pzdkK31JsIDtrO9lZ76U4IZPR9kwHe4+s8I29arNEVSEOOLheAmDnOdZLrNBYtXK+bcWs2gox6soaR8dtU4R1uDJFqH5W8VJGYGS4x2ntMQZ0tPvoxond5HX42ZLVdwSr4qNuzJF+dm08fB2rKYxDl8viKrl1LbY+RV0eD5ahZpuq2qSqt6JV2CIkNNwC6T2akABSIqilVTxXOp4nHcVCDXqC+h7BLbfcwqt//XL+6JdfhpSSA+tjfvyHvp0ffeEP8p/+5ZModedtpnoE3CsI6r9a3MJAZQ1pMhChvL1bjt2WnbcqoW4pP6SFaqtQW0Tf01OmpPQ2LprC3wzghUSKHKny4IEaCROl8oYkc9FXVIgSZ6bNNju3CMS0K+PNaoa1QU0RfAwX1GZOXW83WTOBJ+uU4qQbiI1EhffJa9g2AZ0QCqkGwZ9S7H26S8CYKVNvcTYQIGsqY+4LdqRiQvDqHSKbrF3CPNonVFEFOcdS+ehD7Sy1tyycbZRrXYQAJZLTzoCQYUJ2Nc5VSJlj7Tyq+oqwiGzIYB0UT5EgDvuaCNyuslk3imuiR3ejuNZFKKGMi1FbDLCZbuw/ukiqa6EzfDYKgZczqEgYeG9xrsKYGUoN8d5h5TyU+DQRmSNpCaI+mkbRGAntLnHUKrLDXVU2JFqXhI6kSPKY7nhN74XkWR03CCEyQGKxGByVt8ysRSMQlE0wdzrSM1TFhb/rmMnVUYHr/B288++BC8716IGPnmswX4QApKoEdSWoK0U9G1FOBmTzgxRbx5hML8S6EqWuYTa7ibre4pStQumaEBQiqNWsCPYXuXRkKigZ8zyUc7ZKR4upBUWpgo9qp3R1TEiOTZ1k08MJ79msNXKrYFKYpmqjS1SvLglkR00gCOV2VrhQBhbPZ6qCkGoQEjRC7XOG2zEW1My7z1squexui7udEVqac1YXAaejNYK6tyWoW0sP9iBXE1mRoYt1tMoZqAKtx6FCJVsj02uBiNRjpBzE7V9QTj/TBHiL8gSL8gRVeRJjp+Tesy4zDgiBkxLnM2xMyK1uU7OvtImXDEEmg09vIVXjSz2WwRs6KciDL7dkqCXrKuOUKqhi9c3c7uAWBmcrbCQahgMT1TjH2Nr6t+AdGQn9yjuUt0Fx5qPa3TtM5x4U7GAkCBXcwaM6WnQsgLoJrTSndNXSWg3I8wNLSmmlx8jiCL5Yp147wHQypFpXbJzjWB/AIPdk2mMWjg/drivnrmM8UEwGluHckcdSTiF9sFnIFLYYhG1Xo061gWkU5kRVVCZk8PIWLij3Y6IqKaihk8iOxLSKKiE96Fh7dFY+PqkUAVfV+Npg5waz8JHAkK2SOC7MVBb3wXnywjFBMoy+45mQSGfxrsa6QFI7VwWSQhZNslYI3TlXa+AsZvNjbJ76J6pyM/ia+pDGyAjemwOpg7e50g0hOmwWnwHJfqf5PT2fEtZET34f9lp6gXIC6STGiLg4bAlqrQECaVVb2ZBXIJEi6LEPecm5asBxPaByFmsrFvUms5lmvvNxht6Q2/OQ5hCqHmMKjSkkNgP08sLYu3ZRqKJSKZ+X6PkMOT/FfHYNZXkLxqSKrRwpg6JY5AdwxRq2GGCKrKncgXCuvAw2MQDKWYQaNHGJlBnCVc29ehVNUhLRlL97YOoMt9RzciE5pkfkSKbesInhRi9ZnxVsnKrJ1yx5HojQbOwYr1uO3pBxk9Bs2pLKL1j4DIlg5mtKb6mcpY5URIIUmuHgKIzPxa5L1iaWQ2M4OL5nFlVHhGRdKibR63zmDNu2Zl7dirFzymqLqt5kODhJUR0nL88mWxxm3V1EPRxSjgs2J4qdoScfeAYDT57DIIciD2S16pAR1gUycVrCzgzmM8Fgq+J4uYnyjkN6wHlSc/isbfLzL0IdOOvO7ZjUqPVDuMUUMZ8jrUUNDYMNw8Gy4j61ws4KdvI1bqineFszFwbrypCk2SuBIYsYVy4QcoCIawjvWmJTyI7CP16fIip2haWpMEvktCpL5PRWzOw6ZtNPMZ1dy3xxC+XiBLgFEyG5MF/jiB5yRBUrxHTNKLMUmUXrMFd1ienVaom88DFBJQBDbSWZFNSunQNrK8O8KjyjzPLFTnLIFBzNMq5RA27URfDiNyXbi5spq5PMZjdhbcVo8zzGx+/DZO0+VBuHuPHgkBsPCIYTz2Ti2ZhYbtmxTArJpIiJTS3IlEBJsXSNLOqW1A4K6aTAZ0kxPS1bUtqYZdW0NaIhpkUZVeudKj9VmzDvmBqRfOvrHZxdNGu1VQKxizSHO1ciTFdZbdtEhysxZofa7GCTWlYqhNXUIlT6YiuMd/yrzNjUA475nKG7exJShVTBMgMf1nONCCc8l9YQ6fekRe1yZ93YS6z8vkpEd1LuSzHpbcWjoku6EioES2/JvKTCMRTB4ibcJ0OcV1U7zMtbMGZGmW1R1FvRwjPETMPh2QyHZ6PUgPn8Fj5eb/Fv1TZHVM5Z2YijesiF+RrnZmO2XcXHF5tsLm5ms7yV7Z1ryPP/x3h4jMnkvoxvvYi1yYWUB49yzWLEZN2xNoG1oWeYwzALSbmElJBzzc9oIeEIY99UWFviXNkImYKdY7uiS/7egkB8pvi2i0xIChGsPTaE4pDwHC5qxuuWfORiXKSW4qIUE7nKcRDDcOJYO1VzeLvg5irjRqc4IXTTI+iAqfhstcP2/Eaq8hR5vs6gPMyguJXB4Ah5cRa6OkxWHgCgHg4xtcbUIQZwRmCiPk03j2XLj4S9vKS7S6DT/Z6qRNp/LyulEyEt5w5Ve/LSoMsKVS4apXSy8JhXJ5hOr+l4S8+DJaCrgqohChI1sCE1uZTksfpt1YawiyRusXj0adbuPe48fvZFz+ZRD3kgj/4PX9Y895+f/jh++X/+Cb/1qhfwvT/+a2dw6+4duFcQ1DfVczJbNcqgQqilMvVuqUrKAEJ7Y0twHWVVHYmA2ju2XU0dg/xEDAQFgA7l0TIPC5PVsixbRuKyXCKHl4OKtpGOsfNguWHLQGLEBWlosOObJgbdfQCC+NYHfzufiOq9IDRSDlDKoFWJUXMyPcLaEu9qjJtHiwfLtq1RhPJyK8AKRYXfVQbcktOOCrdETpeR4E+kiqOdOJcR/+1dIHuFwrm6c14sylucU0sktOzUSq+qDhKBDURyPpLaatCS1mYQ1FJqgDLBAkW4DKezaPkRCeHOAtVH5XVSrAk7QKoSYaextNwiXb1EDAUVtMA3CuoEGZuhZA0x3SgsV8jprppC0pLTqdwrkdTLh7Xz75WFkBQaj0NKGo9qvMOKkEww+BA8xnOVeM69crEi/qHbhKQJSO9oanoPTIrgIVmZsACto+gkNUbyLvi7GicRLkMNR2TuIEVxFGPmMelRYkx7PdbYprw/HA/flK0mD/tuIzMpY+m68MhaIaOXKgQVtRIerGKToKY+VYfrdJTZ5vMD6bWPSlMsk9SpALwJHvcoIb+tkvLmszvfuXvstee0m0DaN+e+n3n6Hp/X/ekJ11C4jtpKAaIXcko+SaGRKsynRb4R1NLR/1h3xjGAqTdx9mYW5XFqsxMrT6bUZoqzc3RsCFcIjZSB3J06u6Q8toK4DemqDVucqCPpw6MGMucxIt4XpGPbVR1FiWAYbRLC6ksyFB4rM9ZUjvEe62pKSqzVGJtT1VuhP4AMyQelhlRuThbLVdO9KKmou5eOh6bRIULFY6h3E9PdeSjOJ11/aa0GscHkQZQao/MNVHYABocx43UWaxOq9Qy5DmsTz9FDMMgIKmZJtFz53CDrkAy59q0yJpGSUiLUoJPIFHtex92mkauJmmRdAcsWYVISSeoOOa12L4N9tPbw1mGrpKAWu9TTjQuU8mGxrdqmNilWEYTF4yqB0bX4CarfAWRjvFTI+Umq8ibK6kRICUdrj7TIT9frLvW0aJucNsppIRqVeffYdEnqROw3zdH2sTWCtBj0ZDhqZCg29gKciPZsMIzEQC4VuZMssBgzo6pOovU6hZ40SuoAjUGGEes659uFMlpZe3RpyMoaVS6Q1RzqnWijFmKvkPwODxF7hLgsw2Yaq2XTPBlA2EQGuugH26mmWolBVpHUhOneKGJiLhHVC2+ZRkujcZzjKh+sPqZWM5sqNhYGNtK1I9ADz0QE5V+aLxbexOqlWGmRqgWaai7CPKBG2OEYmXkyDbkKZN49gUyE62mC5GBswGy8wzpDbecYBGWMobtzvJ4eRthwRdYup3aSMhIEoYQ6qKqdg0wtD8mkng4NMmE0n2NdSY4IPsvCMzgAav3QXdo3kRXIvMDlOcznCCWRSlAMPeNBzXqZseFCw92pM6GSIDar9s7gvAvJJ1fiXB7WCzbsf1cx222KGpzfYp+Vzk4nclpYF65R64JnejWPyunjsUdHsPdwfsGakKzJjA2d76uaTuR011seli18VhESUyENXSPJcDjRelInOC8YKMe6F1RWUskcq9p7n7UlM1dT11tMZ59tiNnCLSjshUhzhEU5YTpXlAvBYhGsP9aHLlYFBAuY1HBu+RpJ6utERrekdLKHqQ3MFvsT0ykZhvMI41GNajqQ001z9S45babxfJeNVdN+8M7gMQhpl55ziaCOwpja7MS1Y4l11VL876CJ67dtFaydlGTtbhJX1t4h43pxr6pZKUJCrktSQzfiWiaiWfn76pp9LzJadGLo7mv3Q/fvqX+HjZZuWcfuY2w01tXUdr5rHeUzGyvOCsaj85AyZzbX1NUmN7k5ZRkqAo9kA9ZlzgFVcCwboc2cTVszt1PKhW3W+9aWjGxJ4Q2zg1/EDjKqfGN/GgdD34rroCWpIRGlcf+saxJa1nas2IQMwpd0P+ikoIUQS+rpBCWC4G8oJBMhGKswJ2SFb5L2ahiCQpGqkq3DO4dSjsyGecA5E8h0D7bKAI2V0XZNecZSg4Mdt6CsbCvCinOl9wbtDHq+FpNvQ4TLMC50hLK2Y6fhouxFnp6kTsftdL+3th3L/tVLpLQVTeWEqh3DrXloijqfIuoZvjqFqTapq+Md+44dZvObsCZVQdR4TNOvIhehR0chFRuqaMQLSWjVrfm20ZKwWznlYsVlj7sXH//4x3nrO/6CD/3+a5eeL/KMV/+XZ/CS1/0WT3/J6xiPx2doC+8dOOME9XXXXcfLX/5y/vRP/5TZbMb97nc/LrvsMh760Ife7s/YdoYMt6R2S2UPXTVn4yXKMiHURSr5sVFtZWLpeQr0EzmdFiSJEACaidTaCucsTla7FiuBsLZYG5TC1gafaRtLuMIEXsXS3PCNSbWcyGmNaDLB3rcuXj5mr7vfA5B8FYXUSB0GjHMlWQyQbDTdd95Q+xrpHVvxhmZxWOGppGOIDD7EneNm8Q0xnXxRK+8acrpuytFdU1KVlJOJrIq6s4Zc75LT3jukzJYU4eH8hZ9p4S53kXctKROaRKqwCBUqWK9ENaqUg9DwSw1QEG94Liilo/+kXMnHNyR18saKn9eU+aZkRSSHfHSWFTi87ywmoqWHbDy2skbZ2LUN6e5b60Nqo9dfCE6Cyla2yYk9bkrJSKJLYHkvcd4gvIqLfEsyjWlPcwxYulYB3eMRrzvvPRaLDV0g8LhgTXAXMc5B5HHxWUGmid5gHhk9yETmoQarJabIkWZAVhymqIMyy9RTKrtoLCTSddolYJJaMikmU2m/kyKoHJ2LqiCQ1qOEjKQMSO9ZB7AKi+CEByJJPdAu+k3H79ljH2WrH+4E8DE54F2TjOmWQt8RhJK+3QR0Wkz4zoO9ft4GEbn7LKeFRBrfIUmjhCaV8KUE32pjPq2G4Wcct8mXsapOhnnVlRi7aCyQysVxrCvxvibzMEpJSqnDXO4dCx/K5a1gaWypPcoJQzBs49EJlQWB/HGNNUzlHduyDuNC0viJD2lJauslQwETmVFKGz2jLdYukCanlhlVtRmtNQp0Nqaut7CYxhYl3Xdq75ZULelcJUozkdN7VWCE8x9KcLse01JmZNkaWo1CI99o4+GHB6nHa8wOjLHrkuGGYzLxTEZwZC2UmibP19ldt5i/3QjqN7GkIEpoVIRqgJR5cwy8oEPwiyWiv1H1x89ofnpBt8VW8FgMjRFDCatsFmLeOURnpZNUQ956vANbL1tfSLlMeEuZtuO2mX7nAlHdWlupcP/KJsFv3VTYxY3M5zdR1dude0BINibfx5SoDxVmbb+AfOX7uvZHqwR+IqlvT4F4mLrSDBEilQyHi4k9R/iZi5AATx7umZAoFyqT6nobY7bQ9SnUfIDuGnmjcbVovKGBJQXjqnrJ1qeozXZQlcXjqJIdmxrgdR4qqrTCZWLFSy0S4Y1FWNvnInzWbc/N3bne4BsywHQs1saxya0jVKVtoplXmrqsGFiHzHRj87EhYCAVCsHMmcY3P8WuxrtdPuJCapQqcDpD5ZGg1uJ22SHcWeSEBMQGmnWVtx76cU6sq+3YEK5NxurF8ebalHaEcAV1rShriR2G8uw8+iJlKyXd1gXVa1UJmIGehmrEXEgOqIIDmaE4mN959XSEUEG2J5RCqMCSh3PjGAwd61PLIaMpYql/6V0wsnAWJ1J1RI11NTLa+TkX+qk4C0LEXixdSzvASxW899N2WILXsXVI11E4mxqqTerFTSwWNzJf3ExVnsTaGSMvWFMhiXpYDTgks+g37Rkry0BHy7OulcfSoL8NEjDOdSkplULLRFInz/9MOQYeDgLWKmynOaTDh/J/b5gvjuO8C/d+M2NoS7J6iiqPoct1FmXB5lzhnGN75BuFfVKe5itJDBvJskBSx5++9Zd2sWpvsRCNp2xXMY0DEQlp4YKvrLAOZWxj66HKRUNOe7vAuwXOLRq7prSGWe0t0hBz6b7vyuY17TqzbCpOazOP1bgLvKtxPjThbFZYkawK1cA1J4TCnbaV9e2HizaGewkgoE3OOe9RiF3xZ5dwTv+GlkRWzeqlJaJbC4oOWb1CrC6JM1bmwJQMTtsfulWE45F6jFiRMVFZXMNabNMjaQ8bCjViNDyGFIpZjO1Omm3qekrpLXXmOCCL0DBWSLSYc8pWzNyCqrb4aZuoGnvD+PjZTBkz69D4bhBJ6rxd+9kOYdocv+h5jrONUj9tt/euIamDcGpZVZ6s/NJxSYT9QKpYbRWEN4PCogegMhGS9plG5hmkZvYQbM+sRVYWZT0D5wBD6vtFrbHo5h67qSuIiceZq6mqk0Go5+pA4HpL4QxFNkGbDYS14b5gM4zVuCypyMN9GsIasSWo/Z7q6eYa2UMt3f7Oks/8XqR0kwyvSvTOCShDvJF8pVPDw2DfMceaOXW91VS5aQ8ZMRkgFQOpGclw7xgpvWSxCTTr1+613SWn68i59Lh78YrnPYtnfcvXcckXX7Drb097/CP4hd/+Y37xFd/P//fLv3cGtu7egzNKUJ88eZJHPvKRPOYxj+FP//RPOXr0KB//+Mc5ePDgHfocK7PYGCrUtmgPIipN02BON8BkRyAJXox7wUHbRMkn1XRQWzqRSAGxlE1tLB4A4epdhGmXWPTehmDC1Q0xnEiRZIDvo2dkRrcpQevxmm7EqaRKQus1uORJHIOeRFKr0GxFZxtN9t0mgtwbrHexJL2K2+2plWPgNYtYWtJVcCcSJR2nOnpZJ6VqlwxMvqndcvpOoVbcXhdtDYI6WAi3q2nIrn2jtb3oIqmQZb1F8ofuEl9ajUKjGjNG6QlaaqQ3CDdCWIvLQsue1U9ufahDYyphF41i2zVJi44PpY9lVfHa896TPKYTkdQlpxOB1Fp8dPyF47ViI4nv4jFaIqfTdjbBXyfwW1VXArJR6Di8dEuvbd7TaQSZjm0XLlpROFeTLFucNzhbc1eRx/LthNSgZjUjnpRuTgqczsizA2T5IbLyOEoPkWZKaechaeIcTu1ulJgIJK19851KeaRN5FO0R4mCBJn8FL1AiXDsrFHc4j2bCJTRgAlEUFQJduMFFcl/KWIju/i3YH/TNj5tbWtUWBRJDZFguaMICaJlS4suQd022YNW7Rx+X/5Jo6SMV1J8ajmZ0VX1SpWTLCaakvg4NrtJJe8ti/JEM692k3jWVjhfN9ZHQw9jIclEFpTuMTCrnGs8rAUKpSdkQqNUTvJeDt/Xzj2Nqi1ev+HfNd5bjLAhCeOD+j7NkSG+juXDQkWbD4GNqsa1SMZU3lJbxwwTrItsTm12UPUQkWu0KlBqgDU7IVlGnF+dJVdySfnbnB+RLIJasn8va6C2OWNQTUtZoPUw+l+vB//u/ABueIByfZ35gQHyAKxNHBvrngNjmAzg0Eg05DSAqO4ZxeV+yLVoVHCrCwwfm4mFuTie05X3N40S44I0qU4tHitEQ5omdAllIUHmgQGT2WlCJxuaI3q7vMjpfmZj76GC8g5af/bbgve2TYjqcWgIGtXTi9lnWZS3hKqozkiX0MwzaWHe7RmQsztxth/53DzvwzFLKuq9kLjbvUhqXDvnpuYWiqQaCs1+AhluqM2Uut5ClccRcoDURWOzAWHO9yY0OhaRpEskUVBOL4J6sYpej9FKLCTFQvJa6TFk42jtkeMyhc+AVEHlPEQ1vJOJpI5zVup/sfcZa35Ls2RjieVDg6dQrORjU1hDhUNFQqfynh3vOFVmnD0TuMohByByjcwM68qyYTXXxRL7MtoCJVFAHavXutvSKKgz3dxHcw25vmfGc+2hIJLUSDZUES3zunPigqra7twXNHl9KnjqLn1agXEyqOYMVHnYr1q3JDW0hEJdCWTpEYsTeF8zlDkHZcbBUYU+cuhON0hMEPkgENNSteSMEshckBWOYW7YKDNGUrMtJBpBjQ8zUcciLimDrS1JvVa6CWnvzNJ15rIsXoPxHpyaIkZySkYVtSi3MfObWCxuYDq7jvniONbOyL1nonLWVM4hXXBU5kE5LTzr2jbK6W4/jr28V5fsPvbgO1PlhErk5QpJnZApz9A7NpzAorAyx+lOBZGrmZoZJcR4IFgiDupNiuoUw/kx8p1DlOvrbFMwn3mKgSfPg8VQpncnMWDZIiGR0q1CXzTX0C5SysY5rG4bUibVtDR1UK6vKKe9W4TGrHbRVNF2See9kHoQhdfEhMZSXBQSHKae4Xwd4xUXyWnf9iyKa4+0PpuKUHtyT0HE+Vv65pSze8ndUTzvo4ju9kRZ9UWG3erq20Ii0dO9sBWvhW9O5F8uJE4qRlJTSYt1nh1f46zAsJuglnoNJQsGg6OxUk1TlpppvUVdz4LVUuY4Fm0/MinRteSkKdmJFQKtTaPl4IkvxsvzmcoRc9nt6QBUNIn62i6T1N6BtIRmnNFGdKlfRVprCwiL0zbg7/aXSWryIPoL5PQEybpyjHLDYGiRGaihQg5yZJ4h8hxSoo5QUUZVIYcmkk0Wbz2TNROqrqYCa4L8DgmnVEyTG/CuZu4t1uwwm1uMTcKUWeiLYhcofzh6u49QpsAUGbaWuExgizBmpQbRqKjF7SKoVy08Vu07RB2qJXTtkLVtSOkmGVVuBsvB2OywrrepzRRjptT1tEkuOVcjvSGDYB+owvWWSOmBVGSJd1lJBqa1QBjprWp6lZzeL2nU487hAx/4AH/2Nx/h43/yK3v+XQjB63/kWXzzD7+aH/j/buass+5aAvwLGWeUoH7ta1/LBRdcwGWXXdY8d9FFF93hz8nzQygp4o3cROIikNWBtPZI31kcxN+7pbTQqhdhufSyS06vFiL5WLYigdrMEaJcIu9c54YTAtFU5lK2QWlnG5NFgmT/7qzdG7EhkGbC27TVS2UxS4jey40gyC7IdBlViSHY8d7i7Jy5s0DVZNyH0jZZ1JTFg+XJsSWhXaOcrpxtFICrTb26ysqkJoZAFOEMPhKvuwjipBJvmkW1DQG73suCRP7qhpBSMvhQazWklttoPUKpGZkrgxLaGYSzSDcKGWhAOLXUKAlobT66DRqlRrhWndndjqXtWg2kOmrHrrqx67vd7rtdLtfqHBPfIapP13Ck2xxttfkHLBNaaZt0tEZRkWAMn9PajnS3ravqMKYErt53W24PBplAZqLxc04LDRNJaiF3KxC9lFBsoOsN8vwAeXWCutqmdnMW3jZJlV37rmg6UgcCKZToI1PQ0pLU0niMlVgnWqJahrL1E0aw4z3KCTCasYqd1vFNk5FuwNFVNwrfKqi75/HOKKf3Ctq75HR6uDZGpSWlkwVHTO+lz1qyrkm/t4mPbnOwLlkqm2tu9zVdmx28d9i4uHKuxpqoMvKhWRxxrtRL5W8qdo/30W/VUUPw2IvJnlyGPgGZHi5d16vbkH4aW4YkowulkV4KnDPgBVYYvA/jbeZMWOTYsLhpk4gqqv4EluBTvVCascvCHOkMJpblSpmh1E5jYaLUgNJOwYf7USrLNd41jRxbiPY/0doDpWMdjn9HQb0HOa3UCJ1vIAaHscMNyvV1Fgdy1AFYW3ccWIf1IWwMYVIINoayadRjnQ8K088hkofoUn/CJdek1tqpuZ+kl8UFVzdgtyvWKV0E8jTMBSrzqOj9KzMdFmLReqBVTbvG3sNZj619WCzF23DytW/nlph4izm8ttlwON8podlFWGgGdaHSE2Q2weVDhLOY2XXM5zdRm1l7b+wo1KBd/C8R1bQq6ua4pH93bD66Kty9Gifuh2QDsBdJLbvsBa3NiRay8VcscdRmRl1vR5/0CbIcoIRuPHa7DQ2Fc8skUTVvyGlTb2LqLUzTG0SFEm09RuoJPhsF9XSmMIUEnZT54T7g8XgFXoXqqvDHjop1peKp9f1sVYLdUnQnWpLaEVTUM2tYSMtY6ti4OzTr3rIZs6lmbVGjJuFzVS4ZZZZJrRlIxZYN5fYQFZMxAbOS1grxhRpQaYWOytJc3XMK6or2msqFYF1lbLsskuge42pqKoydI00b/5hqMyRiWL4+hc2o0VEtJ1hEz1GXt+XczgX1tK1gMK+x5a1oTyBkhWZ9Y4Y+eBgxuBvKcNXue7OQwQO1yCwT6RvrGuUEMtl84ON9zyBdhXM5yQIQgnpadO0fYvgh1QDb8Z/uEqSJnIagnnaLWykX1zOb38hicQJrpmjvmEjNRiSnD6lBVE7DWDkK7dBqOfJu1YWnu0b2iKlifCadX6lGCCR1UlEr4cmkZ6xcUFHHZp9Wx8RsDXNbYs20GVcp5rRmSl5voheHGc3PRrjzKMcF05FgVghUDkr7pnFal1QP+7bsK9tVSnoHrgyJRGFBGteq1TuK9dV5R5gKYcsVW49IULuWnE6xh+tI0/cipFeT9WGt1lbb2ugznFTTDTFN23tJCNGszWoss3uIvOpWKDv8vjrtbny6qoTurnWTojf9vducfa/P6t7jV5O+rSilVQuvevim+1smJEOpqVUQWVXOUVGDXSDqTn8PaCrhlCwoisNNjCmEpKo3ucWWGDwbqmAsNYfVoDkv0izY8QZjtpnPQ7w23ro63unPZ8qIKRIpgy2jy1tbjy457VxIoEjnooLaNEQosLS94TDE+5NPxwMyGclQEeIRhWAoFUMUG0Iw1oZBEew9VC4RuUYoicjz8EjJOkBkUdAVYyUNeGcZuMCDWCewswJrJaA5GSsnJAJMEPstvKO2s9YKxS5QakRhjpLZBTI/QGY2UOUQXRSYosBqhalDZZXJBEgRGlzLRhcWtq8zD/iYfOsWIft4PFOlhCx9THy3lVmyShUSO0tq6RCL7QRSOjU7dGWsbqiR3pMDB1XeKKWHMtzHM1RT5ZaOx2ofn6bhPK5Zz6ZkXk9O3zPw3vMjP/wcfuR7voVjR/YX0n7tQy7h67/qy/jp//IsfvX33vU53MJ7F84oQX3FFVfwuMc9jqc+9am8973v5bzzzuOHf/iHee5zn7vn68uypCxb1eDW1hYAo+FRhPAhi2xLTD1dUiUnotqTSh19vIH7Dhm0O+xqy5BYKXGPxJGzgbjyDucN0i3XO6dmdUvbEUkW6f1y8JCUyStZ47yxtGi9KROSpxcxIGm2rEPYLiE2BiR+r46Br4slhd5b8IHgKc0UGxuIVVEJnYz5V0ny7oRYe9eUkgULhaA+L6OKJ5HTTe5axKPQvWvEYyfSMWyCUbd0TJOthMfS2hesTsjJjkU0KlSlcpQeolWBsQu0mpG8KLU3QUUd360IShUXLT+Wzq8MYUxStXTVznKFAGv3KymYdgf5XTKvtQtpG26G9xuEUFirgFl8zjbE4F63I0/nGu+Q0/vZiQQyq0CpPJBaeozW641/d1JsdhH81g3W7NBt/FnHJlS3B/uN72EW1EjKhL3JVQjQQsOa1uZj174LjdQTsmw9NC/VA4yRyxYfJFWCX3kEUiKV4HsbyGenwkKrsUDFBdJLCqwTzYQ6tDk73jcktRSSPC7AcisaL/eu56yOCuqlFNiSB7VuHncEsqOQ6I4Sx6piuuPFLII3dGq6FxTRXT/jTnC+j51E2u4uwmIreq151ybtulUkcTx37Y2KZiGhl6pHrPdseRNV0sFuR6VrVxW7mgG2x3EPW4+4DUJMG2USQuJSNYkL58MJCx5Kb9Gu9aCWiIZFmSSSWggGQjESGQtlA4kerT6CimoQVRUDlMyC0r/OsL6KjUoJBE4MPHdbU6Xx3FoELSXHOmR8SHwFclqrUSCnswNIPdmXnD6yBhtDwaQQTArJMA9Kcet8WFzcQYJ6vzF+e5FsPhI36N3e37/ruiP5X7b/TsF714u+i1BJEXzpZR7KWGWmkcNhUEpGdVDCqr2Ht8mvsN3G9HkqCx3v2/fCPMYnJt3XBEvjannbio56WiKngYQqqxNYu1pZsfcipW0cHR9xc6xvycDV49KhUICont7n2O3977aE5HR+1Yq2G730hFJYMyWzM1S92Y5tglLMFgNkUjM7F0p/q8USQWSq49TVCcrqFKkJcxgPo6ienjTqaVNIfAYyC4tav2TvQaNa9Xt0at+v4VkSSHTjO4fAxKRbIKiDinrqa9bJUJFQmnvHJjCda+ppTXHQxZJqyaSoOTTPGYsMySJYqcXFax0bVIeoN83yLiahNV7JRlGaEk93BfuN74X3TOJzOWF+HEfro9KHh/GhxN3Us2j1tIO1U0St0UJHSygV77EjgFDWbQWVFrg8XJOpMVYgqMGXkE+nVIubyRGsq5xjQjI+6NCHz73L+xwq6XSjGoSooFYClXny3AXPVhFUcZmQyFR63RWweNcoY4XQUXSSklK093+pQA1wMQgRsQIj+U43mxXtJcr5dcxm1zGb30RVb6K8ZSQU6yrnoC44oAoOyYwNYCwdA+XIpGsEARDGaus/vXoAdl83q+O/eS7l9wFnAzHdVVJnkRS3XmCtxArdTEbOe7aTqtLO8JXvHLtA0OZmiq43GTrLoFjDDEehmVqhqbNwnfho25MIK+iQUjZVS9AQ0rhQvp8I6XSsdynVnW1V06YCW0K9gzM7rWraBYI9nedwPFuSOsUg6Vrw0f4mqaR3V3e1VbfEqtvuurJZN0Jjexl2L6zV9jhNp8Xp7t9pXktEWkOOdUnoPSw49lJCd4novew509+670voJlIbC4RO9VlaJS31plohvsPvkHsZ5ilnGUlN6YOFoaPCWoGo2zWhUiPQ7TjNsrWl7arrLU7YilvNHPSQsdQcUEV7TMyCqbfUZpv5XLKY34CUAwpV4NTZzOWAbSTOOepBaBCb5rklmw9HbNRZ4+wiNEn0llQx260YtJ3BnBKo6ZhY74N6WoTGthMhmUjPMDfkhUMPfLD2kHJJOS2yfClhJ5TCV1UTU2jrQzLf2lCN5AR2kWOtZF2m9XM811agbc3UWyoW1HUUBMqMqjrFoDoRqmSLw8j8ALIKRLXLMmxZUI0KvAxxqpfh3u3ShshlsWG8UBBN5/hUHRFU0spYsvl8ybLHpX4W9SmsnVHXW7Hv0Q6L8kRjueNiU3ThHRoohGSsMsYy44AuGlI6jzxQ18ajex0nPmZVNV071yine0uPew6XX345n7z2Jl76PU+8zde+5kXfzaVP/VFeePXVXHzxxZ+Drbv34YwS1J/85Cd54xvfyEte8hJe+cpX8sEPfpAXvvCF5HnOs5/97F2vf/WrX81P//RP73p+ODgbsE2msJQ6lIN3bujtjT+G695h4kyU1NXdqapdRq0ieOsKH8lgZxulluu8IhBLfpc6OiknB7FTcFIKNQuyzs15ryaOze94aoLvtvTJdCR8bzdoS40FmjJBFUqD6ZRN7tWgo7QlFcEfrbKOUgSCWjvRKPm6GfKk1kmer0m5k/ThRqQlbTRa2YcAa45yE7gncto0xzsQWLvV8auJhkYdisF54veq4AFrF1g1QOkSqwqcq9FqRGjCYJsS+7Cf8fOi7+QSZGrauHsoNUFno1nt/i3ZN4hmkdJFt1mQFKpT5ql2edZ5b1HxM5Yz5PEz0wp7hVyUMiPTk12EtIrlzqHseRI8ugdHQCq8KnbXcTqLdha8ISs3QyAe1SJ1Nd11XPbDfuN7XEhUIamUR0nPvA77VeddFfXye4RzIYGgBig9JsvWUKoAoYKC1beNEhO6yppETqfnHR7qWB4W/a6lDKotE9cHUnmcFxTasiGCjmXHOzY9YENwJ4WPZJBompNlUiLjuNIIDMuNZMI5061in90E3NLp2EvFtBKINerpVXI6WnMkD3Upsl3K6NXGnV1CehVdRbR3BuuqXUR0SiAKaJqDKAKxq2RnUZXKU71trDtAobJ1BmqAVEVjk9GtQgjXdYFSxZ4EdZec9s5EAqv1uQ7ejjoGmuHAORGaLZbONorPxts3KlCGcV7PRVCgjL1mLnXjzV/6OqioVRHINz1GRy9c4yo0rXIiVabkUTG+fK9qz0tXId5eO629kVJ5VKEGWyOVbyDyA1STCYv1HLkO40lLTh8aBdX0MA8N1AaZjOc1Bsx3sKnafmP87kRTabByTbYk9d7qqi6tqET0pI8VFSoTQSnUUQm5qmqJ6uZDUmPEpGYKT3fV06FCQzTTsrcCYyRVvL6T73hQUKfqg+XzKdWgUU9LU2NmgYSqzWxZAtTdf59M0NJ92geyP+1vUpbFq6vxm97j+HSbSa6iKUVWexNVS9sU/bmDkpJdVS2JbLFROVXX2zQNDYUOFU/ZBG0qvI7lwc6G8uZ6GkqczU5UTm9SVScxZid8tlAhWa3GqOwAvljD5gWm0HgtQAukjrOjjOW9cYOSxce++9XEL1EQkWKUaLOiO1GKFhITRQtprC+cBRXORQ1UuHAvKTPOmi8YVRaVBeXaYBDuN2MZvLtTLGY619FqD4E0D/pYOr5Pz887jP3G9xxPRetzPhSKsdRMpWLow5xYxTkxkHhzahUa33aTsul6WCKp0TgjsFJgklo3qvZNJVAzj55usb24kVFULh7JDMOzi7vsP31bECo0XR5lljwKPHSsimzEK0skdegdI0QgAZtqkCSCSE1RdYHNdNMgses7nQhTWdeIcpv5/Dqm8xupylMIVzMUoarnoCo4rAYclBkbQjFWjoGyZMrd5rjtInFcgSxrj/0qktWHs2l943dZKoXXeQbKhuSXlVg0VgVi5pQtkbZm5i21DXOdd62Pt3MVeaqGrCZk5QGy7QKXD7FF0VRaWB2aS3oZxAVNrN8l7PYgo7vHN7zGNgkx4Vyo1rAl2AU+zj3WTFvVdBRypPOcYg+guRZSjJSS5NbMO9XBprP+sU3MJCH2Xmp7FHVtLLtrSkUgH2vndsWFt4X9xnch1e4YcI+PXlZMiyUl9JLfdIeEXvo3eyupu1jy5RUsEXmpYqpr86E61lfp+1NPEYQPDROVbmLPylZUxGSalU38a20QDKV4U8qCLGvXaQBVvcmNdXxdNgoktSyaiVHYkh1nqOst5vMbQvJ0vkGxNcQUGVWhWeg2WZScxlIi3DsBTSWFpfE6b6w+23PUrpfbc5Di2HQcIKrIhWRDSMbKMEzq6Sz04wgP1bE5Sn78cc1qFXI4DLkpa2Ho8LbGW4cxjrEx1E7iyoxDPmsX3Lq9ToSrmTtL6UNV92JxnNrMqOpN8uw4eXkLeX4QnR1A5RtoPUFnY1S13ojLbKabipM0b6ZE815jfa9qCDe7KY7nkDw1Zoa1M4yZLfXFsWZOVW3hfYXwrrHwGEa19ERmFDJYeKzLvBkLeyVbklJ67uxuOw/f9kxbVUtLBIjdPFKPO4e6rvmvL3k+P/28pzMZDW/z9Q/4ovP4nic9mv/6w8/i8r+46nOwhfc+nFGC2jnHQx/6UF71qlcBcOmll/LRj36UN73pTXsS1K94xSt4yUte0vx7a2uLCy64gMHgGEKYRrUphAxkgqtCV+N9Ms8hanc40SnD9MvkdDOJp+cFBOI5Tvh+mchOAUNSyyTiWQtBJlVDSqcJqtuNtXvTTTfZOn7PXhNSej4RFsLTeHG7GPAuQWpS529ic5/9Fpkp62cxGBy1tyhvl2xRugS1p7VESaR0Up5HXUsMYOSeqsy9rCZC0L5KTNuGzMp82zgybY+kVSenBpJ1VMo6gqLbiRpvglebtRVWDwJBrScN+SukCiXE6dBB9KQ+PVbJft/UCaXFqouKZoH3EkSbUHCuRsocWP4e0VFFCqXAlvi4uE6K6l0EYvei9A46ZCLQ2HgoNUTrYaskU+OWlM4mkI1xxRrleILNNDZTzU0dWCpxVLVBzzeQ1QIdlWtCnbzNY5aw3/geFxI9kFTGo6RjXoum63ptgkqqlsSMuF9qEITQgYxTo0D+yZza1ZTeRpJm93bsx/0KRZOFkjKoqE0dS4ujekHi0QrWtaWqNRWCCs8OAuUEuUjKjGABkUcSs82aS1Qc52E8p0D6thtxdZ/vNoNbxenJabVUbdD1NQ7fcXofcmBJHb1KSIfx4ZcWVjrud4ZoCGlJUBOmBoeVd9QCwvxRIFVOoQYoPaTIDzTWFYmADXYXkciSrfJcrCZXIFa3EIL56PNpbYm2s0iI5RgzBSGxyECqeUPlg9+68Bbp6qYkr20+J6IftQz+ckI3DROTYtBGMsaqIqj81QCtBpRmJyaxApLVh06K+uaciybZlJpMpvPUXhdtVYSUUVmuxyg9RugJvlijHBcwgdHEszaBg+OgnN4YSiYDybiQ5FosedRa54MNwh3AfmP89mJPTtB1xvxeJqjEhGCy9xBtmWSCjXep9ntCMklrFxskKtSgQA6HiCwQ1MLaQFArFbwWISqDOvYekbCRalk9LbOgsLQuNHpbzCU73rLwJja282FOZ3fyR8oClW0sqacXs2uo6q2mlHcZ0ZoCmhLQRoUTj4fCNwrqHE/lRUNOd+ORpjwaEeMRQIhODdcdg2uI6fAZllYBlErSpSc0cDazUM1jZxizFRr9pYonNUDUnXkxqZbcAlNtYu20aVBkYqMrpaIHe77RqKfrIgvq6UKgCo/SrWpU6th8aY9LzLvdSf7WZi5VyzXp+SUvVeMDUZQ4vdS7Ix0DGQmlHW85aTLmO4q1uUEOHShJXtSsa8shl0WiSOBcakCY0vjQDQqCJdDyjtwdCur9xneFZ+49iHBdDRGMRShnLl1YqLcq6hCX1WaOMXOUnMakTIE3O3FuV6gqkLheSWytcdJjmqRy8A62pWA4r/Dzm5jNb+SAyjhbFRxdW5CdfRbq4N1AUDu7759SM1StXPQTDUloFVcZPolYfBuzt0R1iPNCIgZISRk1wGeBnBfJyqOj5oVAnMpqgZvfyM70sywWt+L8ghGCtaja21AF61KzITQTIRlKQ6b8kud0+v2OEdbitK+XwrcklEtzQEtUq9DRlaEPjVStE0CG1Z5bTWyeaAkktZvjaxvtAgwmNk8UQqGzDZTZQeoJsp4gy6IRWCT1efDxvu1GgSI1nE/EtG3/LZxdSop5sxPIaVs2RFbXb9o2FVklq2rpvfpt2Ki+TJ7S0rdCp1R1q2KlViJaG0uMPcipRIaFap3b0+a2xX7jOxeKbI/juPr9XQIukcPp+b1I6O7f97L1WCWoGwI63dsAi2zuK1a4NgbAN9+b1KurhH0SStRCs5CWgVOUIoiEahH7TpmwltV6sfTeJDLKsrWlKomt6gTazMmEJM9GDITisBpADrYKfaS2vWG2uAWlhig1psgPkM8m1EOFKQQmD/ZBq039vANRx+vSVDhbRstTu0tYkmKF9v5Ew0XYuNCRMaadCMVEwCSqp7PCIzMQWawcSerp5qFb8ZbUiKwMSRxrQ3+IYbBBK2qPtwZjQqJ6w2VN00SJCNbUQpBZiRY1KvVoqE6hbIW1ZehdUG+Slbc2Tb91th56zizOBhUSemnsh+bGyzHV0ji2ZZjTu0kmW+Lsgro6gbGzOC5DH4tWxLKslh54z0BIhqpgGO07Eik9ELrptZGzvC3JRzoR01W076ixy4kWlkWLzVjzK4mgnp++W/Dmn/rPaKX43m/9+tv9np/64adxv296Pu973/v42q/92ntw6+6dOKME9TnnnMMll1yy9NwDH/hA3vGOd+z5+qIoKIpi1/PZ4CgShzU7SBstLMw8NKKSeVMiJVyNSJ5dMgTx4V4lWpVrZKdX1dTNv1firq5qN9KuTRY7kwqNII+NFpLpfSE06yojpyUy9syc4Zn71l+o8g4nPHUsEwewIpZqieBdm9ThCUvlpjEw83FxLU20vFjxthVCN1YpNhL9FouJAVLXFqV7WFrRRGsVkNRfQmZhsZ3Irv1I6Vjyv2SPklQmWKQPClRJUOEo0SpPV7O/aTHd+GC7oLwM1g4W6xax03W4s5fViXCYOlYdq0rqpilSCkgbH+x2gRo8czvKGPwuK5JwrfkQoAuDEBIns3CshUKIEilVVMHHm35Sz0rbJBakDIkD56qQxV89npGYWT6/qrU96HrRZgcCMZ0fwBfrmOE4lkdmVOsKUbDqxBK5dxUbR+Rk0wJd1uiyRJVrITi4ndhvfK8NFdlQURlPrgXz2keLgUBQl7mnqsBI0ZAHzfkhXM+BfB8iRYaF1oJmSUHt9ySnk6/bXrF88lVNqqGkHFof1FROUlnJCR/GMUKy4ZM6IxDUmQg+yslvddXmo0mUyWitIvcmWU+HRj1DatW5mlQT8f9iiZxum2O2ylzYm5heSgImBZA3uyodUtNXHZXjSU2WtjEp/2rvmHoXvKRFjtQtIZ3pEVoNY/Cek+cH4zVdNCozaAn727JEScdTMsALg4pJn+bvqxeFAbzE+pra++Y6SwqUtqmJBaGa+X0oFaVXDKVulDilN43vapEfCEkjPURUOcYvKITER2VpapYo6RAckcgM27nbWzucL9WQ9yqS9lIOkDokoMxwhJ1IipFjNAoNETeG0dpjIFkfKoa5JNOtR23j11nesWtxvzF+Z7EiEj79ayNBtgq7clNPREkgkwn2HsMMMRwiB0NEHrZfxA717bbEBI31u+w9QmNE2s+LbLC3UJeCeamZe0vtQjNNg4eYIGp8xeN1qvQEmR/ADsZIU1NPP8N8Eb2n9zkgKTVqfac/hHdUcSGamsQGRFW1bxXUq2e5S+g3CusVmW4YFl1rANGU9KZHbSW1k9ReUHmo8EvJAxlnp1TdYMyUOt67hFB4Z1DOItWCxgvah6qxliAKpbdVdYrahJgmNAcdovV6o55OVgCJnNaxuVrY9mAnJWQsFVarFVFdFaRt45eYDkzz+WpjLud9rEhzmPiRjZ8+LsaIyzYf29OMg7OafCPYfOQjzyQ3bFQFazLnuFiEqjHahtTL18KqYvXuUU/D/uO79o6K0LAtj0qxYH8UiJ/CxTkzxmbBJiwP6jQbkmrWTMP8bheIWoX4SEp0KalrFZSwEpwMxI2pBGLug73H7DoWi+PB3kNmbByaog8fQ2S3Pz7ZD94avN2doIBQKSElFJklJ2sEKkHk4UM82KkWTMQ0BCVm54PivSFY0TidrfhPd8lphypLxOxm5rNrmM9vxdoZQy+YqIw1lbOhctZV1pDTE8L4X1UzA43lWfp9Faez6ul+RncuTFYfzglktPmwK2rqTHoGPr1QYMk4pAftGLJVLP2vQtVK2Sqpg8XCVoxtO6ILNQA1CGseqZBVvFbj3LofWS1WkxANYR0qB4lrAVed2uU1bcy0Iaa7iun9mh06W4XEvqtjDFU3c3GIF0XTk6hbgbtqv7hXn4Cu0rK7Rrq92DdGlxlZx+JmL2JcdYi4VQX0qsXGXn/v7o/a55Jrq308Nl5LSaBk8UgvcCnpgmuEYV2iP31X+r5EJA5kN3ZLNkoxOWIWWLtMUHf7BwUhUIV1hll9kk1bk4sFA6k4qocMheSwGlBn8XNtxbQ8yUIPyfMDZPMbyaYHyEYF1VBjBr6pHoXU0DMsR0UUC1EnpW/VkNFSZkghcbHaNlUtC4LYoUmIds7ZQCgmSMbSUWSWrHChwjSqp9mlng7k9JLlUV40BLW0Fu8cKnfogSOrPaOxxfmajSqsEKBNmCri2sgG8cfU1my6CuNDY11rFuhsFL2epyiZt2uD8uYloYqUgybeX7XOdElxHqvOXZNQKmP1Q0VVb4Y1ul1EUrrCRktLj0F7GCAYSMVBXZyWlO5aqqVrtiscsPh47baK6fD63aT0UtJmhZF23E039y9gbG1t8dNvfDuX/ewPo/XtX/OcfeQAL/veJ/Gjz/8+PvCRq3dxMT1OjzNKUD/ykY/k6quXG6h97GMf48ILL7xDnyOKw2hcIHCMxsUu2EIoRCy7EUKSQkghJNaCEMkiwUXqxi/pqMTKI00C3UusqyYuIiGtYylfIRQjpRkIzVjqUOIhJEOh2EAyFG2DogTbeVTesynCQnIeF5O1d8ydQAoLDoxwrYI67A2n86FuFAM6w2UZsg5d7FXH31apImQFVUFt5lgzj+rzOqgNRfLPaxf8gZJeVkfLDsnVbd7VJbsSUnBuAFwgbMONIu5L9KNN5f+ZkKypjKJD7u3n013KWFIvLJW3lM5SekftPTV1qND2DmOiUqchAnVHRZpKLZMhXgxMOzYq3U7sTVPMSH6nsrwlatCLoGL1BudkKA0kEGJOKKytwu/eIrztEG4KJEG5KRWu05ixq0b3nRvZqg91KPvP4kI9qMhUdgAGh7GDMdVkQj3MqScSOYTxJHRDTw2ImuMbG8oYI6gqqDJNXSqyeYYui10L+TuD0UAxGClq48krwbyKyRnnqAyUFVQ51JlfUneTkgYiqGm1GqBUHryrVyoR9lqYJRKuSzZ1y/YhLdjSd/pmATcEDtiaepFTOclmHMNKSIbxq4LNh4yLjtbuJ9l8tFrnuBtLzbhu24t6VyCzsoutFlfEcSybDERqLrra5LA5NitqaWNmnQXVMimd5rhMhGC32+y1ba5qI2HmsUIgRUZeHNiTkFZq1Nh1rJLSS/vndyePkgJ+P/I6KdSAhpwKnxEVTqkiwoJDYYRFeI/0sWmi7XiLq0TESHIEFZJCaEbSMneGUihMXKBas8DYRTMupQoEdRaTgavNEpVokw1hu1tyOqntnbeNp3zzt2ghIlURiI58iCkK1NAzGnlGA5gMYFJIJkVQTg9zySAS1AmJ0CruoMXHXUUak7ZzaxM2VnJEBUyDbqKWjmjP7z0nLVt8+Egqe/RABvV0JKcTqSWqMvgrdmw+vPW4esXeIzVZzDx60Cb4nPWYBdSlZKfSLPy89Sgn0MSpeqa109GobANfrId/z25hPvssZXWysXhq7vtCInwY3054nA8JoHQPXHhD5VsSrIlDhI+ESBuf7GfvsZf+rttwLNVPpdOSiGljEjktqHx8QIhzUvK9Q1I3zdBcjbELZL3TfJ/3BukGzVhO1mZJuVibbep6m6rewsR7bKYn5PlBsuIwFBuY4QhTZNiRQA1bcjqo1G7foqJLUjtXx+xt2odETtPaAUVipI4Kainaa7Np4iuWbT42vWWzzFjsSIbR5iMrPMPCcGg6YD3GRDLODt07yF57EUqb7/lFU0UiiURz/eTIpuKkkIrchXtfjcd505xva6MSUC5wcgD1TvCjFjpUEOgMYTw+C03tmuSZgWxu0TsnmC5uoKpOcWh4iHOVY+1syM66/ZUbp4U1YM1ysqpTmpUI3jxaCWQiesH6VMXUidMaotrgnAr2ZdHiTapB28gzy5qqkS45DYSy9Pkpyuln2Nn5FMZsk3vPWGasyYyJyhjJjIlQDJEMIfTHUK1aWsUKkrTtTW+OFduekHRqE1C3heSZ2z02zrVe1N2GiUjI0lzgQ/XSYbVCjtoK4S0VNdbGtU9cP1gbFPhtA+JROIYy3P+EGiDUICS2UlIb9q3CaXe6M+u5uAaIaktTb0bf39kSsdVdF6TzbOy8tfGwZWx4mJoe1ngsysNQSHIplywhU8zY9WdumtvRKmGXDhVtM/u9GgbfFWyonHylUeh+9iFLPs+JiN6DfF56bo/X7YVESrcq1FgBJPwSUQ0gfYeQjuOya+/R/c68c8zTnGW9xRHHqq+DvRZJOV0CRbNWEkKh1QCnK6TIWFCxaSuGRrMmc4YqqJSPqiG1DnZuW3ZGWZ5ikd1EURylmJ8KKuqxoq5EbPgZ9sWYUDHirUDXDmlCI0drZ03CK5HTUmaIKCpJSBzGamIh2XsMRWiOmOepCkw0PTTEHn0Y2hMXx5XSiLxAOouzFlHVoadHFbysM+MY1JZ1ZcEqGglWSoylc2TD9W/MgtI7jF9gfCSMVY5W0yWrv1BNodt1fcc6s4vu+j1Z74RGpvVSAqmutgMh7YLljvSejJDEKETGQIUkRiEUGzpnIALvk69cW8016uO90XeuT982P+z2SUnIO+uw26o6AKj2sHDtccfw2h95Dl92vwv45q97yB1+70ue9UTe+L/+D3/wB3/AU5/61Htg6+69OKME9Ytf/GIe8YhH8KpXvYqnPe1p/N3f/R1vectbeMtb3nKHPseuHUFbUOUAUZ3C2UVDTCcYws6mdhLSO5yvI8kaI0W6ZHSris6jyk/EjHVaZHQDhUIo1lTOIHrrhZIY1agTJtKHRinaMcpLJhPTLIATvAVjJKYWVJVkXmluWeTsOMUOsONDN/cdYZk6E4QFPmSKG6URSZGRVLymLT8Vuulw67K44I1+Vbo8gCrPolhMKapNsvwQ1kyp662oApjHjGLwSOui21yv24iwezNQMbBMC+1E4KZtTJ9fVifDItLMA9kVp2rlQ6O0Ii5mxjLjrGzISGaR+FeNMicFHCkLGUqnLXNnmfmamTWhEVH0tZq7msrXzBcyEPKxTLCwJbkNdhWyjpYXKZh1pvG3TB5zdb1FXW9TmynGtOrz1BgzEXbN+RbEhXfwMxMui5n4EqVmZHqEtcPGhiNZF6we+6CCz4OKWmYr5cYO76PzqmiTFsHeYxQaTAzORgzPpl47wGJ9QrWu0GswHHmOThyjAZy9DrmGXIUGZdaFzG9lgtXGvPJMSzh+yrJYCMqZoporXLFXyfkdh5IClQsGkSw7uWMYZoZch+NqXVAUzEuJzRTZHDDBCxBvkGoQfKj1EFHqpjFTCAp2B72pWY5zYGvR+bn82rRwC7+3z+vMkheOYscymBYoozjhHbd4y5DgTwyhWVQldaNqTCVdpXVLCQUpCxA6LKoikdls61IAIvDxuu9eKd0SPtFZlLTqaRWbX0Z6tSGq03gN9jjNuE12SZGU9r5u/KN1UkgLhZay8Vt1eHacoXTBrkOIDCULdDYKVh16xFi113ueHwzqB9WST3t7vS8T0d2EUXq+O980x0R0CcDOz0gGdBN2u5TJQgaVn6uoRSrTjf773sXry3BAFRyROTmSofBBQksn4LQVU1cHhWe9hlYFQkjyfIPS1VR2zjAuRI33TJ1hHPsXlM5hqHEuNdEK5HZDZvoYtHbU00FNlqok1kJjxPWiaYp49gYcnUiOrikOjhXrI71ETJ9phMqJENjXJhawONoGYS6Sk67epRQNjv+RTDmNciyLSqHB0FKsQXZwhD5yFLV+CDEYN96KOIOvq0BSh43DVQ5be+pSYozEWShGjmIYyGk9CAs7WznqmWe2pbjx1iEfqxQnzIITZsGOM3ihyfSITA9JjXKVGoVqgY2LcDpDnbqGzeN/y/bOp5ab0SYCTCgQ0VLKh2T2wrum6gfCwmZT5uRekAlPLl3zvOqURVkhGrIVEjEdjM4qgvo594LaCcpa4bxbsgoAmnJ9Y2VDTp80mrmHObDpLbe4im1XUTq71PAnxDM1pp42/7Z2Tl3vNL0TugR1KL0OvpDGTBurNykz8mzCZHIR+fA8xNp9KDcOMTs4xK8LsoFnMAjEdEpQGeMxJihhXSIcLI33LJGISttk7SKSTaEsX/swJ+ZCMog+0bITo0gR+4j4oHuGUOGz7WpyJZuEfO0dt7iaf6sLNm4aUAznTM43ZGPJxiHDefOKi2YDTmWjkACzy+mDlCtOc493odzaOYV14V5+T2HRJGhDojQXgmFU541kRuUd4/jTOBP6n7iSut6KFSDt3KuJFUUElaJSClUPcEVoTmorgasF2SnL5KabWRz/MLce/wcKV/OV2RqXnL/J5NJLyO7zwF3b6baPN0SzHK/fpsLa1wvcYoqvS3xd4atqKXsmou+81kENn9HaMDTxOq1AI8XtwstYlh+aVGf5IfLhefjRWZjxGqYolohpp2S0WJshNj/N1smPsLl1NdPZDUzwrKkiKKd1zgFZcFBlHBKaiRAMBQxSDNO194jktNYOnRJssapExIspJe/D2kVE733RVEvsjZh872QNuw0Tl5smepRwKOHJnOQiX7AhNCdUzilVcMqWnDIlOzGWr8yU0s6wdhF6UcRm6Mk6KzUJlrIIHvSx18peNmBLsUanOiOcL9M0KEzND50rqaqTUYm5bN8R3tPatxhbUlfbkfyqcL5G+hCzDeN6MhfBFmCsskbBm6wospikvj1VuBBi9aTQXDRxr6O+m4b8/dSIgdodm91RhfZtEdCnQ7fZsW3uTS0prQhEdSPcSER4p6Ij2LLJFRIdMiQDoamVa/qBOBfW2rUwIdlcZ50qiAqthlGY1R4XKYPAwhjH1BtuiVYfmVjjmCrYUJqJVGRSsjU/ybS8FYQMogw9IS/WqEYFVaGpdEguShnWPjZWjGTzCj3dol7cFJr2RWV3sjgUQoX1plCNgEqSSNYkbgj3pbHUHBUZZyvH+rBiMLRx/IfqkNOS0xCSd42i2gRxnFLIPMM7hx56QjThkBLOqhaMyoxBpdmwis3Io8xlxo7PWajAfUxkRumD0KPyjtLV1HW4X1SEsCWsY/J9G70ndKu1aebhKCqLVT/JinASbVkHKqMQgyV19CBWToYEhliy7ghjLz1sQ0bXUZyzipRgyjqq/oFsqzFXuY50FpKoIP0OsBA9QX1XcO211/KG3/3fvPeyn75TCujxaMDPPO/pvOKlL+RJT3oSeZ7f9pt6AGeYoH7Ywx7G5Zdfzite8Qp+5md+hosuuog3vOENPOMZz7hDn+N0hhcCYQukHSyRDV2F6b7wK0pFWnI6lf10bSSK5CXXKf0ZCM0RlTMkktJCsiFCV+yxtkwGNYMiLHrzkadYYykLCUF1YRY2qqoEgx2L9YKs0igbCKN0s62EJPMqKKlpCXX2CHibz48lkS5TTVdbAKsDqaczjc4yVDkkB1x1iiw/jDU7TQDWJZUhKg5XiJ69Ar49M5axpMbZBVrP4kJyEYI6WSNsotXa8lglJLkIWco1mTfJgGFUKabGc+lN1nuGQjL3irlwTL0iExWZ7ahBnQ82BbbCIpsS4hTEQjtQ0n75qJpoyojNFGPmS97n3VLf5B3XKt3DqfIQmnV6j3cehIsWAqk5ZJtoEEIF1fTKtbxXY7RlOEDtWQ8v5QChJ9hBsPOox4GcHk8caxM4MIZDYzi2rqIHbXu9VsZTGc+89uyUjlzDogo75hxUTuCLu5/cGuSS9ZGituG7JwPP9hxmGkRUUXupIC4e2ms1EXgS62zj0QlteboPNuchndAstgI5bepEWnc9FkWHoI6KppT8t57R0LBWKzasZO6DH/U8JpHStZr7NtFVEuyB5AohBHSav51+2nZEr9k9VOF7YpcFTDs2luYP7zrkdPBwD8mXQMJkDTHdWncAzYKo9I5aZig1YqBHZFnwXM6iuinL1tB6RNOcMzV03W+fm8Wianykd3vAt+S0bRaN4bVpzxL5rOK8pdRoqVohqF9GjTIyqcZTI8ngi9+qnKuopk52H+tSh0VPE1yGJlWltE25qMFgzXypwkTIDOPmTTf1pKmvooo6qA1TcN0hRXapwjuNtmTbbNPpLDSL0gKtPZmGXMEwEwwysUs1/e8BwXveN13rvRWhy7rzgSz0y0mItPWJ6FwqeFiBIpW5g1bBZzEbK+RkghyOkeMN5GAMhLL+1NOhi2Tv0VVPd32nhRKNyrqaSXa2NccrzQlvG5LFQFO5k7zFQ+VAQVYcxhYD1HxKOf0Mi8UtjSoYuglgR2oKnKy/fIodvEM7y1wYtm3FZuaYeEWi4lKpvwVyEebG/ZTUlujnLYIKOnPBsgPTzocpqed8RzUdbT12PFQQm8kaps40ibrlJELoQ+GEwdpyqZoj3BurZt9Ts2xj59QmKBlTk2CtCvJsnaw4jBydTbV2gPn6EDeWZAPHYAB5VE+nROwu3/NOM7qkVGv8YlPfk+gZC8HfM8WQiWzuNi2rvUMhcLSNuoCmqmQYbYJqwtjfwXFikXN0Z8FwbpC5JCsso9ywMc85oHKGUrNtKyramKMTaYYYyy2QLihYU+LnnkRLmLWe5t05UXaOUdjGULFiXYW1FUp1KtTsIiRrnW39gFNbGAeiDESNmN3CfH4dZXWSoyrjAu1ZP8ejz7rPru1z003cfNooZFNlhIhjfi/4SE67qlzyob8t3J66k+a+pEbobCNWvAwaG4ouOZ2uRTm9lfnOJ5nOro3WHlOGMiePa5b0aG0MVo6BF8jOuOuqpoOfNqEKZGndEtYuqgZbp6S+x8llojqppduqs5akDjF4S1IDze9Shtg5F54NIVt1ZSpmbKoUBMIZKu+jb3OwX3C6RkUlpJQ5zpVN0tZ5u6t58l42YV10m8+7WN6fVJV1vd2Q0suxk23iBxPV0sbsNMR0QWiilvoSJRVmIRUHVLEkwhkKFWJHaGLI3RZMoQLX4qniI6wbRSBWCQriO0og74cjQjAUYtf9Ic06++Uq7ogD9r6f0ZlLqqV6Eb+iwu78qXkukXy0MVrneFp2K7nb+LZtOGmFayt3nEGIGhvvR6v3Dyk1CIHzNMKUVDGjhGBDhEauI6mZ25hoNTtYs4M2Faq24DT/P3v/FmNblu75Qb9xmZd1icuOnfesrOrTTbe7bW5ttwUC9YPlB7DUAmEeLCw1jR+4yBja2MIC1IYnBG4kZPmFJ3hAlizeAAmpZV5AFhfxYrdxW7TdrTpV52RWZu3cO3dErLXmZdx4+MYYc661Y2dlnsqs053OURWKHZERK9aaa84xx/h//+/3L7k30pGU570n8B7lPNS6xebuwHpu5q7e4p7WagmRNuhsrFD0xmNtysK0oK7khy7OvOBJoczg2V0dipPg7aOw+ts20oXALhuEJCRVn6FXtFYEK0HCnZLsgtIdXXnNuQDj0yhFy7M13/qLpY+07M/P+O7ojCJUtMqwzx1KBdXaZv1HuoHO0TClODLXLtFYER4uhbNrr3R+F5xJOc/WYnfROMq83Z4J05z9ez2mHyHUv9X4l/97/3X+y//YP8pf+I//x/7Ij/HP/Ff+Mf7Vf/3/wv/mf/rf4a/+L/933+Gz+2GPP1aBGuAv/aW/xF/6S3/pt3qM0FjBGTwhgi5JyaFu4s/RF+eLyTX/tYjUtrQhZpxEqZpJy7rgOzZK84Fq2SvFXsG1CWybwL5zbHeBbhPp95Fmp7H7FnO9R7VtrUCmEEjzTDvPhOOIO3iaLjDP4lYOsyUEzYxmJtEqzbjiZp2/7rcvOkIWp2OnKj0/NBCDwXcaOwmaoQP0fIMOE9YdiNmJWoTleryK+FwSxtctc9qAsjWU8Q1uW3a4Fhey1vd4P4gTKTq0trK5Xb0npUWyySLP2qm+QcKQxVGQhUel2CTDgOagIm3K7ferLUJEXJfH5IjJEPyA1+JKLrgPQAKZsmh2ybiU4IShpvjGMNdNqlpVYUsr1fK3U16n5/8lCVMUYU3asJpcbCiL6nQhRK8Xwlppgnpz+yOs2tV5XlEmRhLhu55506D24py+2sPzKxGn73aa92/sWUha2dAOc+SYxenWJA5jyoumRPAS5vF9jF1vGOfIvtNsmkiXQ0O0VYRm9UJX56uIPuIwDUga9FMjRtmkXYrT3uvzn9GlsKXOxOm6INXQmciVd4xeM8wNQ1IMKTKoZcFtFLVtsKBqllegzosPKyfxZaEi//Qb3yt4D/WE6P3GKAUVpfO/8/dSzK2nvn5eOwx6lUMO8/OPKTHlBdlEIimNNhu2m/cqssPaPU1zJZzIEtqn+0VEfRu/PC0L3pSkkwHBuNbjvmaClqKauJUWkePsuCmLV4NcX9GfieOyYQ25aCVBhCq67MhQJBY8VGFFzygG5WmUZkgtqNKNo6S4mDefEroTcCkI4kNbbO42MbolYPH4uoAtWJpWIbxyYi0UyHM1Z5+X12fOzyFtScaQjCY10i5axOlyna8DEf9eGbNP2e2ZjYpx5WYtDuo8d64Lcl8HMrh0bWktTkHbJ/Smwez2VZyuYpWb3nAPpRBlM+TeZE8X7nQKqaI9pkHzMLS8Sor75KsbKCqF1TafgxnNolvhJXfvEEKA42cMwx/ivKAuFqxTLpzo3CUWV231SfIOQoIpRZosih+S5x7NJmo22UHd6AhRE5WiRRx4ZWN0GS4ZEDxHm8AlhQsq4wkWgTokEb/mypsW1/WQpGB3SIFD7nDyuRshpnSxlsmy9UoE8IBeFW3XTFe5D0/E6NFaOiHa5pq2vcX0H+D3d0z7DWGvsZtUxemuXebwS62xnFLGZ3E6BilU55bgGGcRr6KDFCoqxZaPi7b84uwr4vR6bVA2tUWgzn1QEpYYWg6Plv3R0T2z2B76LnCjEzfRsjcN98EwBdkkr9e11cQQPcZ5Ymzqa3U+fS9FqdLNJkWNRTgqOmdZ15U1UnEXL0YLXz9iGAVRlPEK9b0xiBIRwUyR7uEBd/qU4+lTdHQ8a6/4aD+y+eTuDbxHciPxeC+Cc/AoY4naZG6qR292FQMBCG94OBKHI2keSfMEIVRxOj2Vvrwav0nCLusza3eVOZ+6q4zo02dID5D5zx4fcMdfcDz+ktPpVxntsTB0RfhYxJ6z9we5To3JyI0L1rTKIrUyS8DrpblGu4SZE8HJ9eM94OApQSg/KkWkLlzqIlKXUURqowAd2SjNHoUE31mCTgR7fix0ChzwxFiyX0ph3WFNR4wzxmyIsalu53Wnp1IGAlWwXo81qmON8ChFsRIKvR4x35/LvqB0VhLnM2G6z8Yb6RC1tTv0Xd0KZiGvH1oWQWq911kzbQWlo3JINwxZpB6SYs7Hdya+FcPxbcetDWzzE5DA2/zaU/lefm6X5139/pvjbVipN35elb+R6pxaxjrg1yhg5c6/xHlcitPL33rzWi4dMGVeLQW1tTFs3Q0Bi2kMZJ1eQsp9WrJwisnqOiNBWxRTmDMOZoIw5XVOIsWl2JCiIrkF75HyvrTgPZTSeT/brToOQy1cl31pCdcMJDpUPu+kk2HNoodcpMpB0VKcm4EW5kk24sFDzF1NBYH0lraKwuq3TaLzQfZeSdWuqzNnsIJIS0Og14ExBpyONVy4ONxL7pQsE5d+ulrQUqV7VNzRSn99h3yjNVe6PeNIX4rS5djNRA75ucwp4ggLtqu+Dvm9TtkacloE6Q0mX+v5Qyn2lL2i4Jck2Lqc2292wMhrVZzeko/w4/jN42/+zb/J/+Fv/D/49/9P/+pv9TjGGP76v/CX+cv/43+Nv/I/+l9ze3v7nTy/H/r4Yxeov4shoTUFVlTaPNdtVauNat64nm9gl0m6CqH5BrRufSlc6VI9E2F6EUjfVYprE7lqPdvWs914NnsRpttrg73eYfY79G6PffbuEihAnsBHWfDq4wHdP2Dake2DVN1dkPbZDYohT1pPtXV9o2NlFViFbtLCw/QQg2buFH7SJH2LcXvMPKHCXd2M6SIul8dbJeOGvHiuTm2j5fOqgqdzhVeCXEZxfUyPaHdAKUuTkSISRJAXjlkAggVT0GiZyC8xKqVNuUzUMSnaYBiioiU7D/Qi6hdXT0yJQxKXRUDh/MLNLmFMKQV0EJelLHin2obq3KMkiIeJ4Ie8UPVVnC5V2TWzHOTG6VN5DhCUuIZSFtJ0Do000WWMR5NDH4pbbGHafaP3P8XzhZLuSaYjNJbYKdpeWLRXGxGn390b7vaGd66bNzauISb6ObJpI60NGBXZ9wEXpP1+bhPue5xhrreW47SI1G0L2iYJS9R6JVaJs0EXkU5pIuecOlhaUwuX81Kc9n51Hr/Bni7fP3dS6wD9JnDjHMdguPeKARhSOHMGrB0Mb9s0LCGZF4W4lQAPVcY5T3jOj7mce6uFTGadigVjcWDmB8+OoOJELq7pWM/thoJBEgGlMN5nBUpnjEd2TG83H0noS3ONbW6kxdbuRYzWFrI4W4taZaxCL9ehRCq/t0pe5BthVWvMx1Ott2thVytTxRq9clatj78wr404nSnxjoqkUtX+I8L6dXnBPMaA0Yo2v62tktb2y9CdKcwENebzqKnsfh88HWQha2nbbZTGxoivjq7Va9GGwvpct8dXd1ieo5NWwvq0gvAxmtop8YZz9I95lKJYEam9B2JCx4QOksJe8A4iCogwV8Z66X55jS28SVns2yZhe4XZbcU9vb1G725qQGKEfP8uBeYo4vOciHE5cAXjVRxHMSTCmJgGzeEg7ukXKfAQHafocSSUkg4eo20Wprc02fVLe4MZj4zHXzBNr6jhR2oJPipDaSt1mzOROuGVhA1PMXDE8RA9G23YJ0sfNTsTqiAkLfeXraOX4sEiUpukGIMRjmxc3JBz3mwWYXomO6fJ4X/J8xidbDZXuKPzzeUiAsQo4rTJ13AVRKIjRF+F6cLlVtrSNle07Q1d9y5x9w7jVcZZ7RKbbaLvpYugscvxymbw/Nh5inRgXMiIj2nVYSaieGXO5ngiCYQ15+zYUi1OVHG6CNUxO9piFXVT3QjHHLj7KiUehpa7k6N/R6Mbuc9cWc9NMFzpll5bjlE4meUcX4RfmQtNjILriiLwzD7SfIsQoG8zCmYgXBgqCvYDFg5qdf2vxJ7LjsD1WK8xlUt0xwl9/JLD6Q84nj5nrwzvND3P351pP/qz6Kvn57//8EoEaieCTopBLAwxQJCi7Br3kdwoAvXxnjiK6zrNMynGM3G6PN0YRThb35eLd0/lInQZuoql2xzieQPNTjpFtRGBCuoaW4eIHU7Ewy84Hv4Oh9MfMs+v0SnQlYLIWkDJWEBx1iraXDwKSVy1WiVCzAXRuDzT+vyMQrc6t/hn8S1EdJuITUS7hBoTKtPddFhz3Jc10/J1wqxunjFdnh/Z3REVvU7MQRGUBIIHnTst1kuiiOCvVCClRAzLni+liNbZ/KGb/N5MdU29FqtL0aust9bdozG7+gun9qnzs6yzy3zkM/onpRmVIrvslC7C9N407HTDTluutWWvLBsUN0rTIt0sizjFG+LUehRUSgDGKM7LIc/hQxb4AebvqBZ13Tp2NuXzSNWiJKxF6gXf8k0E7LV4vb7nXGYglP+2FqPLfwvpzWOzLo79JnF6eS7Z8FT2oWrpgCnIvJqXFD1RN+hyb4pyTZfihaCf8trk4viXAsQNgndplWZMLhc1Johe1jpCo6hrvOhl3rOTx0zZ9JWxVpC7R3OGyxn5qTio8z3JKEWowcmyrt+oRKPjkyjDFIJ0mVCu6BniCj9o8h/LAnUx4snvLXOlfFbVHNCEyDaFfM5oTFIUsUJQLdAYjUuGXsWKyph1XjtkF7XXse7v4U20W7nfrLFbtdNJ5/v1Cquzz5iNgu+oOkISUXpOScKuU+QxzpX3vi7KalWY5lKUutZN5nzLdVqKAnLNJ3otmKNtEyQbpeSjPIFlWo9ybbX+R4H6jzr+pX/2r/DP/lP/Bf7Ex+/91o/1T/zFP89/+s/+Cf4X/+J/g3/lf/t//O2f3H8Exg9CoI5ZkEr6XK4ti4XiqlkvIFJxqtYJa2n1KJ9lwlqCKYo4vc2LiI3S7JXlBs1eKd5pPPvWs9t4tjvP5ibSXWnszQZ7fYW5vhEn1u4a++x90GYRqN1EmkfC8R79+Ardtijziv7FAe8CWxcYg6ENK3G63CS/gUitspM5akVqRJw27aoi2uY2Oy/u6tG2KN9gXF851WVhvG4tDDa78LRasCE6u1nyv5WRtufMHkCFFj0ljN/QniZM12OPHVZbmvklMcpiTush35Q0peE3lvcl3yRaFBtEnO51pDeRxkSsyc8xKhqf6IOmDdlBko9X0EsQgU8R611muiqCH3Ernmtqwlk74NpBUbjTzp/EfZ0XoopU+ZPrMI7L90uzJPf6uil12U29cMRn3QhXTwtLc32ex3quv12ovmSyAlWsCtaQOkXbJvoWbrZws9HcbDXPdk9zaI1W7Hpz5rTcHwKzF9TH3CZG+920ED41GqskxK1RbNpFWEDLuQlUTuDaMVvi5eIK8XE5igtyLU67FRbGJBHG1kEl62HK26OhI7J1ntvZcwwtB4pIE2nT6jHzuVkWv2deo8uAxCdCAcure+p9lqey9mVfDmGVy6o51j9eQw/XIgGhhh822XURUhKUBwmnpJ2wMVuM7WmbPW1zTdfdsd39CWxzg25vwfSkZivzkm3E0fuEKlpYr+KSDRANJeCWKOfwpTAN1Pe8CNGVE3uxoVy47BqtxfKv9bxsXNXSRXEetKJRSpHSE0czzylTEoxHkzQGUzdFpftm1KG6qMc0E6JBR1sddkoZghL+dFs2ECnVedCicDlQrDi1ynMUke0tjbGr+0HhiRqdWe/183fvpPxthvMJF4R5PwcRqJeAxCgiUZRCRAmmXQcjXgYAlcLQWQuvShnvESUccb9HX93l+/aNtLSGBSuwHimU7pGlw2Ltno4V7aEYDob7oeFFUryKjsc4M8aAV+Kc10bc+hLsKi3+unuH0O9QL/8DhuFTnD9k1nNmja87Z4qjWglzsYjmMUYRqRFnj46e12GSMKQk98hWJYyJ4tbRUdyK2cXUZnG5sk1Z2smL0GjieVdXcfSthek5iUB2SIFDEq7kMbrqgCqF27XziZQgF8tUlCJjSgFVQpVTrMJ0LFgnNNq0tM2err2j7z+g2/2M4faW+brB7KDrRZzu8j3EvDkFZXFakYLCuIhxIgRIK7XgvVwRBZIjJV+Ld6VVt6DhSphZFTtW4rRGjqFWqjIqCxbjEvPxeracHgxXIaKNoukS2yZwMzdcm4atthyUwWeEXelAo3ZqebR3eC/XU3FQfx8j1vPl7Y9/eX8qDuoyavD0iv/7xgwVQU+J9nDAnz7lePpDvH/kmd3wntlw88lM88Hvnf1KGs+FZnmiQgNXwS8f84LSKev1OB5J80RciS6Xo6DC5M65MHElvzQXjivaych1bzdYu13c081WkCPrl5pPVDNP6MPnHI8/53j6lGl8SUwzm3x/WI8c6ybXnyqfFSYXkGIEh6YhZkRHkjzwQN0tquyeVq1F5fu1aiDFiDIeZSJKR/SY5LVrKfqf1xbWRXIlgY91ss6f0vm8jJb5aJNdlSHjPoLOwWJmwQKNKaBSxGX0Qoir8HidzSZ5Da11i0kBQUEugWqxFKdDXmOvuq+KW1r2lU+85wVPEyaCL4xqmTltgk5pnpmOvZHQyivdcp2DK4vppkXCtjfZeFPCIwuG6ql1J+Q9TzZexIxnapPCRBH52qTf6GT4bcd+59jq5d5X1srFCVtEa6A+L/m3/LdKjCiidBIBOeT58EyI5i2O64sujeXrdRj68vPtai94KU6H1WPOJbTuLXuFYmoDckn1TSNQWCFeUl5TK9Zoh4z7AzYKbjD1fiEhjPEiW2j1XL0w97WX+5JyJ8lFCqe6LxT29ZILtTzHVJ9H+Shibgn3vjzXYpT3IIUkHSPzLOui/JFM7jwxBtwsZgg3L+L0PBOdJ85BHiMuj1syfayJhKjojRTJ5WYveoxJiaBM7g7QNKpgPUxFaFwGgsKb955LwfgSsVGCMwvnvYT6rs+3IYW8lhHkyJgkfNpFEcrLKPf9su4vyJ69Mtwps8oCiLQqnOkYjZHiQNvGs5Dar7v+zz5P3wak8+Mo49/8N/9N/j//3t/h3/hf/fPfyeMppfjr/8Jf5i/+lX+Z/+7/7Jf89KdvYsZ+HOfjhyFQW0MKT+wqWEQKIC/K45MLivUoN5vq1i3OF63p6uSiuVGWPZobpdjrxHXvuNq56prunlns9QZ7d4e5foa+usPkja559t6TLYOq3xFacROmEGi3B7op0o2Bdo6ygeTcdflthgjH8qdt/lhPdN7LjcK1iugVPrcOEU1l/J09lhWBQ2dx0NiS+r3cbKC4U+Xxg5fHnieL7zTNqaHTGns02NMNwR+xpseajqBbohorVxeWzU5pmW+BRiV6E9m0XiZ2myrzrnGRxhmMM5hgMFHVhW1EFrYuRVomJGBOuJLKldYsEbGMmetNXgTquYrps3s8E6dTclWctkplkVpYVpcCtc0CVCBiVkK1L9uZIAsdpS0mtymWsIv6XuTFj3xxfn5Ld4BwqNeLJhCxM2oJzdQ5BGfbwaaBfae53hiutl/vqGqs4nprCRE2jWeTRe7BwvedB7DrDZvW0xoRF6yFqVFnQmfMPEKgOqhFhr1oh8qLa/JhvBSnfShCULV7yQYun9tr53QR/bRgYNnEyPU8c3KGe28E8yHQuDOhoixWzzbra+FJ26X99K0iNTU8db3gLH+jBMUVEaAAKhQxt0Dm9sMiTMe87C+uwLSEIZrMrBtSxCvQSjh31m6rMN3379K2d7T9e5j9z0jNlmAbYtMQbfPWTot1QUxFaV1UQaOiAT+jKMGrlqTsWWdHGevAxLU4XTaWIfOky3HW+Roy2pHSRrinukWtzh+jm8wJ1lUIvBxlXhYnR2BMuvLGgbr47XXuzEkG8obXB4PNRGClLAqDx9Pm9y8paQu1ZT5JEvi7fi3luWpd8B5ff6svotxT4tzfK8P5xDCLg9r5fK1GckCiOOxjLGKAh7z5+rqxJJ4v7ukm86fNvkPvruo9u+I9mixcrUKhinPyjD+9vv/ljVhBezweG166hhfR81WYOQXPTEJh0arBmC6HhWb3dP8+qbsGYDr9knm+J0ZXRekF7bK0ExsNMemaRZZSRGnJOohEXJI20Vd+oslrmg0tm6DlOGgRQ1qVQMvaowgE5462lN3TgFIMSVWhAYqgfS5Mz8jmsYjTpyxO+9KemzeaKy9qfl0JUiDEGV3c0VmcFmd1brHPgp/J4nTfvct2+zHd9qew+4jxukVfQ7+VjqGuhX6F9iijsM6LexqfMD5KZ5k7EefXWQwo3VM5GJkoBbwVHq5c72v3NErEmrWLGrVsngO5LVgtBRWXIofk+Sp0nI7SXq2MwjSJTee5OSVZm5qGhzDXNuN1cbyI+dq52ipeMiW+r7EUNZ6wDq7G5X/5TWv2ZAwxY73UJO5pc3zFcfyM0+lXbBM8tz0f65bukzvM84/On9fDyxp0SCl0lmvbWAmTnEe53o3NbkAvvzMeaziidFEszzOG87VvKTgUhE1SWZTP9xEpkEqHnM1FKdOu3dO6dhEVDrVxHnt4xfT4dzkef8kwvCCEE22SdSWULj0pluqoaAhorUS0VGAwkGAXhZPVICI1XtY63mtsk87c1MpolNbyeY0p1DqL1CIT2piRHwE8ghBZlp+LSK0Loqt0dEZ11gVZhla5S1IpNgkpnilL0JwJkaci5iUJHo3k56+WzIZkpLhX1gNatzXsPcaLYkB0Z/igIkCvR5mLY+7wCH4UNnWYSHhsEoTDVlu22vJxu+PWdNUtvc+83w2LW1r2NaGKhGsH5VMjRjEFxaRoEAFYh4SJmpA0IYkYF7J7/hIP+UcdfR/pTUYzBLA+1fV0wTSUf5fnVe7fZ+GY1Q26OLCNWtzU67F2VIsYTWZt86Q4XcbSLaXO7v9cPB6QXbErTENcHLog67vfNGNWo1zp7snhueX+UO4NgnMQkXITdGZdK0jnhbrFfHNxX3IJM0+1aFrMCWXNasxWXl/hUifpT1Ipe8lyB2cRVjVihmve4tBNIZGcJ0UtazCTZ/YiUq8KasVpHWdHyuJ0CZSOcyK4JWAVspagZS3WRrELLiK1dACIQC3ncVCJOWn6vH8uBYVSqHjbuDSOrVnXl0GEsJxXc+78WovSY16/LEgZcWP32rBVDRtt2Cm7IElz5/c7VgTpzgYaG2mbWINpq8lBn4fTvq27seSyFGd9CuDs2++dP46nRwiBf+m//9/mr/23/qvc3Vx9Z4/7j/xDf4p/8h//z/DX/rm/zP/+//x//84e94c6fhACdWgUyWkK8/hyXGI+YKl0vm2shd/CZiqbDal8WTbZOb3XiSvrqzi9uUl0zxpBejy7wz57F339HLN2Yr3xB61sgsvCOC+Am52mOYng2tlI60V0Mk+49sp4W9KooDeye9qmGgZUBGUQwQ1gnhfhTUS4pZ0Ilt8pQnB5nOJiNXr5DCIuiEMHvE/Ms2IcE75RzLoB5OZpHm+w/kATTjh/RJsW5Y3gL/JCO65uAPJZnBWdDXJDa5fJXeuEnTTWCPZDuwTeSu9uYdilxGwi24zumFIiMRNC2czJ+aPDUBexQA7vGResR2bLSVEkVvfUOmSzIByKEAnUFqTCzfK5xdkUoVp5Yox4dxCGnZlEwMgIEnmOJT3anb/n6+VTinX3VxwhZ+eNFoG3tWRXsgSlfZMhIrVh32kGF+gb6FoYzW9avv12o281m1Zc1E0ujqwTiIo4GeNU3QQKXa/+IlLXanOQnyjfW4vTxRWidaLJj/C2bmgRpvP5aaDdRrZT4GZy3HjDvdKLSP2144lrWa+FsXN3OCjZIJW2trdME298O2+YSQlZomdB6EKcLriaci5LISURdIPNKI+2va6O6b7/gLZ/H929Q+quma9u8V1LaGQuilpJoevy+QXhvKoQ88ZcPmvvRKyGRaQOIypZSBal3uRLL+6nJWFdNpyREnhYQtRq66mes/O6R+tQC1P1+T0hTBeH4uV/mVOkKdf02QJY7ikbbZmiOKscwq8NaLS2WYATDnUg0eRSU0gJTZJNTIq4jESK+bVa+9tVhv5ew3sAzD7mUFaYZil2apeWYkZlDhehfhGoS8cE9Z6xFHfXm3StxKnSbhG8x+7myXt2QX3UEWSzVTovhNe6dFKIOC1oj9PRcD81vIiJV0nc04focoHHSiBidk839oqmfY7qnxPaHu0d4/j5mXv6qZBcKaJqVJ5fQhFzkyAFQBOUbLyP0fE6TMJANJo2NZhguFK+oj6I0nYa1OJoo7rV5N85H/fcPc2y4V+E6WWDV8TpY/RMuTU25g6BVDjU9dEk5rEIWWuBKJFqpwdoVHait+01m/59ttuP6DYfoXcfM93coVbi9LaXdUuzmodCWsRp7yWEKkwKPUXp+ppGmO7x7h7nHpjdA94dc5dGFqNUySuxFQ/XrJm2SjpVyjGV829xUF+O0n3hEhnzEfnq1PKT4YBpNaZJ9JvI9WPgJgrmY6MnxnyfL5e0TPOZjxoDMfPc5yDX2O9iLC7H5XvlXvxNVwwl+yRpXV+cnSLt4UA4/SHH4y+Zpld8aFo+sFt+qhXNhz87u5bj8b66p9N4XD3B0qEjiA+MrfgPWBzUEpA4Qwikgt4I6ax1PUbF5AxzSrgYV8xZlXFRNjNipWPP2g02I7BUe0vKc3m5BwKVQ90cHwmHXzAMf8hx+ILZ3aNTrGvLiNx/6heXQ2fBTmnGIgTlIjRodJBSvndSAAnu/LxUxTmZ/61CqDqzBaKTtYQEsuc9BdITqXUJUpTHEmRTfk46VVHzrIXdyHXvciFdOjMk12HWVgQknei1qXsZUszdGJ6YkiAZtIjUSmlU9BhtidGdOdnre53X1aUAfImZKfMvIOHo0WejykhMDptSFab3puHatNyajp/YjQS8532kuGelMNhmrEJjFryC0b9ZnC5F/vNjJ+9pn4XiNglm7rtyTwM020Sno3QKOGrkUMHmeS/PrTwvkKelV25qeNodvUZ9nInSLMJ0cU6XYMinhGlYnMKXY+2YBqoIGdISZDjGwJSWImoRK6U/JeM+LlZ/647tkomQksPk+0OvDVsjqNANio1ObHQULItawnShdLte4v1UxnuAdkHwHrloWvjThT1tTHfmwk5JSsAG0QxKNtOYQs22atW602H9d1cO6hDBaFLZeubi1fnPy88V13SYI9FBcFLUX+d2lKFzMabRMgetRepNdlIbJdfWnOSaEYSU3FeCevocWI9yLrSr/filKA2LMH2fhehjEhzZmnldOhKKqfHGtGx1UzsjblY40p2JbLRn2wSutg5rI20XMQ2YJodqa+m+U5rK/F9z/0vgdj3G+d9hjvn9ke81+keB+tuOf/1f+ee5P5z45/7pf+I7f+z/+V/9p/lz/6W/yv/g3/63+fN//s9/54//Qxo/CIE6WSUMXdtg9JvOwvUCon4PnUPDFj9hWt1symZWs2xmG3KlM8PrN7ktY5cDEbtt4U3bKk6b6zv09XPs7Xvo67szjt1TQ/U7dOZRm901utWYJmBtzC1ecKn5FVbj4ou8eMz1jU0vQqS11LbWS0HCtYtYXTZq61HE58JsbEzhl5ZW8fN2qtJCOszgApxGEbVHKymzMw06bmjaW6w/Yt0Djd3h/VFQG3EisiwKSlqvOIuWlhdrU57oi5M7oUxpjfF1cReczVVYcV/MKbI3DSEJm9almDebC1esMGEL77O4kNYhKSUU0SaqON2uMDHlBqafuAECVZz2uWovC6KEIxLCQIweXdKi9cLJXsI5YnYPSnUcOBMfq3uk4g1W6ItVUaG1isZ8c4EaRCze95rDFNm0wvM0v4MZpjHCzDWrxXvUinWw0lPtcWtnMSyL6bKRuhSnXVnwR0VUS5Di4ioqrsnSBrsYbJVR9PvI1eR4Z7bcO8tBBe6zeHDp5v5N4w1HbPISeJmfzTdfkpQZD2TuyKiPFbu5zDBFnFYUN1hCsNwmC2lXdO0tfRWm38P0H5A2z3CbLW6zYdo3JKvOEEB11KpBEsae0aigswApmKFotKSUwyJSv8UdvEbflH8XcTrEwtT2yzWDCM8OKqcypYA1cq0Yk4WCp8Ip09LqaXIxyq5Ys8UJWVzta8yH01HaOcn4jhzAWI6HUuI8cinSKINF4VnamS2KOWXHVhigucm/91SxNjO7k0fFgI5JktLz3yqfL+f7P+4h7unI4BKzl0KnmxU6hyOqIEzyGMbK/18XoSPnDEBYkDrinJbPjZH7R7PTmOsbKSpf373xfJTJIcBk52CIZw4gKEUqEaLinPCjoD0ehpYvveFFcrwOM0P0nKKX7aFp0abD5C4E21xju+ekRgq4avjqzD29FqefFlZmuV9lh2Z+ZpD7KCLIhis4XqqxFuFNNOhg2GWGpMlO6k1SoMTdJvHNi0hd3GuXU1n5fnFNF1bjmAKnzJ2uwYgsnN548VApu70SSVytxQ1MyoU1ZM2mFNZs6LpbtpuPxDm9+Qi9/xnTs3c5Pt+yvxasx7aXNVC7FqdX5773uavMK9SUaE4eO5xQ0yPBvcbNr3DukdkdcpDVjMmCVJ8Zk51asktqCFUS4ShmaaQWrLO5eI2eWXeMlY2zS5H7FHjtLGFMaJPQrcJaYVXeOCsbY90w6cAp+hqyqmJZJ0woPxOdwnkIURA63+dYCwZrIargts5F6uyKfqoYqI10GdqWaKUKpBx0hxHz+GuOpz/gcPqMJnneafZ8bDp+dj3QvHfeVrsWp+MK4aFbSDNg3hSnAQlFzF2PTzFV6+NnoWDyhjn5vLaTc1vlxbgu68pSlGqusc1tzmboqlu6/m1tiEbTHg6ow68YT3/AIYvxKbmFz5vXfS4Gokr4zGoNufDjCOI01ImAZYMRdAbi3iV33YE4YvUE1oYqTKmFMre4qPOxqyJ1H1EG4pwF+ZjQGfsRowjVUMwupVshVSfwchwzGzszspssQhVmqxS/NE4bHMJ0Pne5yhwRVYAEMUo3SfAjWlvpUFztE8saH3K3QXQUjnXpnFKr+RcgRF/vwTFO6BTZothqwXg8Mx03puPaiGD1gWpWjmlhzbY60mTnqFaJxkqb/zrb5CmB+txMpNAmVUG4ye9GTJEx5vtduRd+RyJ108reqwRkUhEx4F15bwWz5VjWNlEp4urlBKg89ED5vHThlJ85d0wvrum5IHTWNY38Ep8Upi/wD+tcmplYWcJFnD5Fz5xds4JfgqCWaxmon9c5WJVD7k9AqPeHnRa8yz5jHnod6Gykj7E6moGcR1HynjTJrLAiTrBTzeRQ7oT3R0LG2ZWOAGs3aN3VFVE17aWYy9WLizhmXNc6d6KM4tAVdE9CzYvVp4y1iFp/b461iyyFtTCt6rmbgnStlq9h6ULTKXe35U6LkJ3UJp8nRp2fB6jzjor1fefyPFgXLZ4Spddu6Rd+YErhDEUGi4mxy7kyO93woe25UVaEaeDaRHbG0Vvp9G5bEaX7fcyitEI3YFqdGf+6iv3rTpVSEFzDxOsaNEb07GuR9EeB+tuPYRj4a//av8Ff/xf/Ml3b/OZf+JbjZx+9yz/3X/sn+B/+s3+F/+v/82++1VD64/iBCNQ0Ch8tTdNkRrBdbdguxeplcYHSeWMTKUF8Ra4py7PLS1s4UeftOI1OdE2g2yTZ2O469H6P2V9jrhesx28Sp8vQmx2x34lY3beYxosjOFcU1yL0GntRp+CzxdNqw1pubHpZEDZZpDZqEZaBNwSLdbsVLD+7yb/bWmjNml963i4+e7L7TRxwfQOPVhzYAGNUTLFh011j/AHrrrH+MTOXW4IyhFylnGOobEYRfdaiQKpCdXGvKZPQq5CH2nbmLTNGBGoie93gTSQG0FkgDkxS+U0OrUpoYuZdvhEcF87wB2WzX8KRbBas12iWerPMn4qbuojUQ/RVqD6mTBAM8jeVbqr75qzNOXnSalF+NvKiRH72XLi9NPP+UTi0u05zsxEX9aGD0/eM+ADYtLqeb4soJKOEx8ULMf6pBoS44uTFqPBBU3h6LqqlDVFHCROKqvYGXuI9lFkq3wAYaLeJzRS4Hhw3zvJKGb7C1UVyXew8waC+dAVDdkniL78p4k5KRFFzzsRvXR4/SUiLJIlnp2ne0KrC0cuzYMF6lMu5zItBgVISgrjdvk/X3rHZvE/bvUez/Zi0fZd5d8W86fCdhHCylVqZrOHPz81y/hVDc3Qa5WTDpaK4sLQ799doQDm7YD7IIVcrgX3hRs75+sjO6SJOF842CVVOjCShK+Vxyl3kXAAs/ZVLCnpF+uRiVLMSV5b5ahGp1y7qTml8Csz4ukEvSBqFJiDuNKMUKQs6BRViU6jdHOKc2UjoYzlOa1E9h0wK07vMieSwtFQ//700Zh8Z3XL/mGeIHmwOSNResEwxToSK9Hk74qMEhy3sRRmNXvAe5voOc/386fv2uggeQt0MLC2qq2LZnHCTYjgajoPl1dTwIkVhT4eZU/QM0aNUi9Et1nQ0dkfbPqPt34f+OdE26HkkZPc0LIX3tTi9fp8j5XwVa9PSRbZ2HotDbIgeGzSv1CgbP91CkMfa5NDhJrsaJc9IxNRLkRpSduflQ0N2o602e0WcHmKQ1un8cRlmFFmCq3WCqLKDOgu5l2eoQqH1hsbu6LpbdtuPhTm9/Snq6qdMN3ccn2/Rt1TndN/I2qW+lasCjXR7KdysCIOiGQLd8YQZ7onjl8zjr5nnr5jdPd6fiGFCpSw+6CUEdastW2Nr2FLZQFen9MULqWJBZmKuR6vEMSqYj8Cr1DCfFLqVB2k6WYvuFdwoy5VpOUVfRf+a81ucoMlDNiCUNdrvYpwxYvPnGopZCupqCQ+sn7XN63sLpifaBtfJQq8ZAs0xs6ePv2Qav+S94p5WhnffnzDPP6zPIR7vCY+vqjidskCtjCHOWaQGuOTNR0F8pHkiOXFPR+fP8B5QXIaKedKcnGFMU+0SkEYtLWtKbTE6B6MW3rzdQbN/Q5wGCI24xs1wz3T8RUZ7fEkMAyZfFyFfO3JsFSp370wE5iRi25QCzkRC6ggaWq24QROCJuoScCpQH5PnMzcpgkvoNmWsUThr5VdG7CKC+LDoNrDMN0maBvS5UL2+B3kH9eKIiNC6dtimRFSqilXiCIYNmhkjXG1l6ZTB6UiMiaRSvU+LSO0hGTnvUSI6Z459FZtZ5ss1YkbVvZU+y4EpSA/n7lEpsEGxNy1XWhzTN6Zjpy032lbX9J1SlS/dm1Dd0o2V+bZ2pzbpN4rTkM7EvVgWaXo5boVdvXaKfldDtwpj5Hmk4op3S/FheZ7nIyTOAh1LkG4Rppfi57lbeo3yWIvSXydE1r+Zi9VzPi/Xv1swPOW+NCbPIbgl8DoFXJSslVIClx25wPPWxbSY14cxOul8DYJ8aRP0SrM3DTdW2OPirpUMgc4GzGwx6Hw/VBX9I4H2qzVoBOUW7BTuiHf3CO9czldjtjkEtKv7iLruJdU9wduCo8t7F2PBcIjADKp2jXzdKE7eNX4iOF1F6fLYMYD3+gwNU5+Lkvu/SYqooK16RAlnzgUNRA8oHSprXMvXja9DeByT4xTERPAYZnwVpanGs62WUMsr3XJtGu5Uw0+15UYndkac0mtRuumSrDObRHttRJBuLbqR4G3VtpAxKcpIYPwbyBQoLb/nAZRNxk3le5L9Bq//x7GMv/E3/gZ91/BP/Rf/c9/b3/if/Df/Sd75i/8MP//5z/mTf/JPfm9/5+/38YMQqFWb8Gh812GmDdrIZGx0RzQzMTbigCvCnMqtXajc8quzjieLmZiWDdI6SK1UFUE2YCVltTCPTZPQrUFvenS/yQLzDr27XviV32Roi2p7lLG5cna+4b0cIS3Cuir/y5vVuphXVkJWtMJYeb7F/dyaLDTrRaiuj/2GaLl8NlqxadRKnM5O1vzf1mOYpT17DonDmDiYVAXFghCZgiZsdlh3i53vMfNXWLPB2A3aHwnK1cWDT3IDkaCXJYTjchFkGlkULw7xIDfAsijyRpzUynJj2yrmHYOTkJWU8MzCHFQzpT26lgRSfEOYtkrRKcNW2yeF6RqMsfo3LMWGsmlzSZyVUwwMUYLQ5PkID4/kiRiUNvlc1lVog5jF6XzOJBD+XjpzUJM8ys9oFwhR/9bOyX1vOE6RfZfY95FT95t/57cdjVW1OPLUuOQQPzVq4nhcFkwhKlwUcXqOK/5qDhMqi/91UaSgb0zzZkuWRarlVyfHO2PDq9nwB2eb9FjF5a8dyla3NJyL1wthunSB5H9fqCBPL91T/n+qX6/F6VK0K44RwRFsabsb9ruf0vcf0vTvo3cf465umXZb3NYSNxrdJYwVp80aKVSO+XLsl38HDakRhwgOvFZorUirN1qFIE7WzOY+ezW5+LKEGwmDuojTsZwX2ZG5PkoxeUxqM2s6u8ggL/JD3bSm3JVQOm1KqG4JuLHFkZpPlshFojfqzEXtYpIuDqQItfTla2IK9Xez172+Nw2KMc14d8S3I01h1mMvilD539FLkE2IkPFLc2n19+nvOYF6nKM4qOfENMM8SzCQcUHE6RjEPe2PlTNezvF18Vat52FVOIMyDNA1gXYbM97j+mkcVxkxLBuDsHAUoRSq5N9uUswnxThoHsaGV1HxKjlex4lTdk9PKaKNRZsWa3c0zRVNe4fu3iG2G3nM8RXT8FnFOK3FaaPblZhn8tNbOWzq+ZrPXWIVf0tH0hA9j0HXexQaCIa7pOi1MJXbUiBPC5riUqS+bKtdiwhzSpXpGbMY8LbuEZ03nBIgmAtq+W/V11X1Xbkvt+0NfXfHdvNBDURk9xHj3TsMdz3mFnb7yNVWur5KxxecF+NddumPI/hBYQ6R/uFE8/iaNL5kHj5lml4wTq+Y5tfSuYCnQcSHbXZR7U0jYrWyS8t21t/Wgnx5veWkXTvainCwdnmNWeR/lQLHB4PtPbaXrp22iVybgvloOJpmOdZRggXFFRrATygnTPeQvj+B+lL8WNryl/tfufeVtnmd17ELXz0XYUyPMj2YjtD1xMagfKI7DOjD55xOv+Q4fIGJM+90N3xken66nbj5vfas2BSLOJ2DDutmP8rckYKBp8J3g2A/kpuXcMQnhjgFYZ41x6AZk1+cdwo0prqnjelzdsMGY3foRtzTXAjUhUVtnCccfsHp9AsOp8/w/kANaLv4KIU6lUSMmkJkiIFRy/MZTWA0Ha1SBCx7JaGoGwUBwyZFjDIVL+FHj2kkEDFpjQpvNtKriv2QNVB5FSrI+65ZUB+gSHlvYxskTPYJoTVkF7XWCRNFrDKUYq8UbzZoZiW5DnKcE1Fn52cVqclOatl3KBVyEfj8HF3DhQqKpYTXlrm2iI8+DMQwsUnxTJi+yv/ea3PGmS6Oykth2q7yc0ogWukGhbcJ1Mu6yVfC3yLyl6wUEGzCWefCW+bebztMo1AKKTqUnajhDYdXER1jKsYP4WK7LErPWai+FKYLHkowHkvQaCl8kn9uYUov944lcLH8HJBFyNJRsNyPlqJpMQoN0deO1nUxNQBRISXujGIrWDZ5X5Z1ZsghmSk5tspwZVqemY7npudON9woxbX1bFuPNTE7ggX5qDAYs8HYPbHtBZeTkTkpgvLSXVjwHtLNu+JPmxZrt9JJnd/8wqCWtatajCvIcSqll/I+xNX+urjkA1Jkqu9tMZgE9cb3gtP160tRer1v9345P8JT+/l8/kqei5wfLWRRmjcKG5Ays/rt4zLscI0dOwbHlM8Jn9f7Jq/pW23Y64arHHL6zDTcKMudMtwo+KCf2baeton0m3AmSpteVae0vd6h2lY+mhbVdlmYls53wShdSHXBy32nFEtDkHtY2xKHQYRqo4nOo6anwzV/HE8P7z3vPLtGf4+cw9vrHY21eP/je/N14wchUF/dRIYJxtgB12yGn6B0LwvZOacy+4GgW7QeKDwxCcOQxHdxwUpibshsQJJM3qX9NKxuhiJGyIQpi4qI6RV606DaFr0RcVr1u2/snF6PJyelPMrifi3WhpSIClBGnBh14duhTQe2I9oG1Qhao82hQNcbCcTbtIvYbJQIzXAuVhdndPl3Y1R2ryoaKx9vc9w6n6rIMLrI/SlwP4iQKbzixL2NnO5u2AI2ejZZeIuZAZemxMSIjp5XfuSrZs64lYY2GMy8cKeVCeJkjbJ4SisHQsEwWBNpJkvrLJvUMNst17rlIc48BscxuOpgloVMqExMxdKWa5TF6qWtv1mJVJdiNPX3dN2E9sqcLazgXKQuIQxXXtrBxX3mmaMj4Ahp2aSftT2fLT7FNUuEoAzODxhzxE0v6aZ3aIdbpqFhHBWHKXGYEqOLOJ9o7Dd3WpRAxXKepOlrfvg7Gq3VZ+dpCpIKL4vDiRAnvB8WrEluFV+PmBTOLw/ivGbyhjFocawVZ7USgbphEaVtIwsP2ydsr7C9wWwW5UNpLa1XG9CtQ2sPnAhf7vg70fA6zHVh/DZmWnEBl3eiFp5YDnDpHBHzSm4RrI7E8/GmM7Gc1fUv1p9LiuzTVihlhTXd7Om7Z1UI2rzzj+Ku3+Fwe4Xba8wObJu46hPWhtqtYVbidF28rkXpuGy45rm02CeiF9ZemBTRCb+68DjNeGSdPVAKEgXpEcIJH0acHzKjuLipQxXsFhkzty8rLV0K2XXdZOXRJEEAFadySjM2O2J2WZTaZVGqUbq6Ji9DWKBw74oFX1xWGoWKjjFFHLMI8GXDoxRTitWZHTL/W2cndkiBeX69cuR1NM01ZOdM6SaKYUKHET2PNNMWN1nGEY493I+JTRvZT5F+DOz6rw9I/V2Mlw+OL+49nz8EvniA1w8wnRRqSBjn0c6hpge8u2ecXuLmR1LylL38+opa50n0ypx1Q7Uqsb/ybN9raH/ye7Q/+dNfW1hOQZzo0Xn8GHFT5n7qRVAITnF6MNw/NHx56viDoPl5mPjUH/m1G3iMgvlwyrDpnlVxdbv7PZqrP0XYCV7EPHzG6fW/y+Pj35XXkR2XJQBJ1WJ0brV/o724YKikWdomKWqU8zEigmcM4vJ8DI6XpuNz03IXxeH1gVa0SoIVN2WDqJSEFaWVgMCyVrpsmS73NPkc8t9e3OytNvjsVixzbUoJm6/OGoCEFMrAYExP01zRd8+4vflzdP1H2P3P8Nfv8nh3g3+u6feJd/aRbY+EALfnwvTsBUPmPJxGmXtOJ0X4Ney/OtJ99YJ4/JRx+JRx/JzT8DnTfM883xP8iU0K0spvBauxNbYGIzWqoGTEtVdE2FKsuhSpC8Oy/H67+n2DYqMSTmnmFPk0THz6cguc2D+T97zfBG4GxwehZ8hBsr023Pt5Oba5s0gK1AnvBb92mKQ49W07p77JWLdSl/yF4lIcchfBlEL2yOeQS20XZ7HZYswO09yg+ufMN88Zr7f4TnP1xT3m87/F/et/h5df/X/xp8/4B7ob/kL/nL+4SfzZvzCy/8/+4/JEosf96ueE17+WgMTjY+VIyxMVlvLl9nTtWqvc6XkmOv+GkyO4hB/h+GB48djzaYSv/MR9mJlIKNVkhM+Orr2lbW7o2lua9g7TvQPNrrqnk9bEpsF38l62xyP24QVf/Prf4uHx93HugdJJVXEDPN1FGUj4GBiS5z46dJjpnGKjDa/bPbem49a0S2t60myCZh8MO2fYzgHbJIKLdFceO0fMxqMaMdNAdlHnY6Vai0ZazpWRLhPd5A6pOVXBSuty35cQRe/1hVAteIgpmhoUKMhDmYckNFFQH5uM06nXVRZpdQRXCjUJMQQwU9rpzgVqlR3uglZo2ivhVKdIyKgGYUzPdAmulWFnGj5pb7nSLTtdwtAW7uwmYzx64+ltZNe7un5cC9Elv6B0A5Z7yVPoBHGmCi6hrATXIvVThpMi1pX5+Lsei0tW4Z1injMmz4sg7YIYP+akOObg3Zk3xegiGM5ZQFx3zV6Oun9KirVg7ZA927wSnEuAXuEGV7RURUyR9/slE6jM13J9pSxKozRGWZRuUGiMaUkpEtypGmJiRgzalKqr/pN2z3t2wzu65QPd8IFO3HUzd1cT/SYwT5oxak7B8xgcbfec3fYn2O3HDPs9vtOgc4eGU3QnR/fwILif4TOZD1JA6w5rN3TduzTt83yk7vOeyNdiZen4K91+oifopdspakav6ZzOBZIoeJ7VPaJcx/LvRXw++/rCGR1W3aqwFC9CWr4f0spMtnLZXwrRa+xLRX2Uz2vj16qwMSYJaH4MMy/8IPiWFM90HgV5Ha/otOHDdseN6XhmWiks5E6IaxO5aj3bdqqCdL8Xp7RuFbbXYl7sW/SmF42o36A3W8zte2Jk3OxRTSf5JtrmUN41eyzkNWfp3pEchFjyEErQrzZEM8A8S4dp+4OQ+X63I6W3Fp6/wz/yPT/+3//jB3Hmdj1EkxicxrmWvrtCR499gj2rlMaHsSIRUBqV3ZHELOzl9vgSzFfEYEeAXFssrXNvG6k4L+If7SQvLo0y6iRfJvHV5qbcuMV1Ymr72YI6WcJk9CrEcM2N3jRFoF4+tFqc0MvnBf2gNd9YwBAB24iIPa5bySNzSIwO2jZx2mjcZoMZrjHzDda+pLF7GvuA9yeSd3iEAfUYZ3baclCGTTL0UdN5QzNH7CRYD3jTdaAMWBtpvJKFYoyEYLhRdmmJQ27YXTRnQQjnuITMu8w397X48ZQoXR73LC04M6pLarD8TH6PM1drSAaX5FLtomGInlbpVWhHqkzaRME0XJxPiNOTpCp7N0ZHCEeSP2CmEXPaMY6yQR/mxDBLUaF5WxLgW8a21+xmw76L7NvvfqP7daM4blSMkM6d0+Xflbt20dZ2mTZe2g9dVPVaN6v3v7S9Cj+MLE5LVVz3mVf8RFtWM0d214Fnx5nNrHnIbo+4XjRf3LwqO7h8o1zbOdhTklKEnSFLyBKSuHp91WOVH4LSdfGmM7H8d+rPZIeI6WmaPZv+XfnY/IR2+zHT3Yecnm1I14qmT/Q99H2qjPvGvr07Y+1eL0GqsrEqmzOV2+qUBJeGHK60EqnfOFb5/ZbE8iVAdC1OL2iPBdOhVu6qREInLddKirVtsj5W5hw3qMyYtexMw05bOmXZaFPF43rOVBck9XOLJpKkWyIZurxITinhVTgrpkRk7u+Ukeexet0WhcPj3YHZPdC2t2fuw8tjpMKE9g7jekEZ+LSgmObIOEf6XID84xrHMTDMkcMUOUwyN42jIk7CXdTeVbxH8IfM/5wpDmFYzvHCdNRlzi0OalU41NBtIvb6SrIjrp6//YnB4mIJMYstFw687A46HQ2HyfJV0LxKga9yAbSIck4JKqexGxGqundp+vdJ3RXJGOzxAT98wTR9iQ8DsHKTrlBmShl0FrWqm6m0GJdrIovThrwxRVz/63BPlyI6Bl4zEYg4HRm0xcSW/cpxXkZleKdytL/ZqO8Hiib/db36/ZgSWmm5t62cax5ISucN+I62vaLvntN1z9ns/zTq6qcMd+8w3PboW9jvlzDEXfema7qI09MM4yyu6dNJ4Y6a6xevaR6+JB4/ZRo+43T6lHF6wTh9hXOPGasQuTZtLU7ttGWrGymAKF3v6+TDE6rZ4VwgWmO/yrqgZJ6sQ5tMkmMmAkzkK295NtjaOgzQ2EivI/uo2WvDmCwn5ctTyOeGz50UnCE+xjl+54WpaujIInWojvrFlegpHGo5E9bnuNZGOiNNj272xO4qh+3KMWlef8Fw+iXH06cV7fFRs+On2vLRe/f0f+JD7POP5D1/eCXs6UGc03GeSSuBWrWtlCpX+Iq1OC3X/NI9If99hc0JIrK6STGOhgdvuM/8WpciQSHBZUZwPmvntLF7LoPekzHVOW2nWeaDwy84Dp9npm1kMSfIfVppg1aNOLTNOWetuDolj2FmTJ45eqw7ZQOEZ9Qds2mYEdevoH0MISmuBrPq6IyAR4eIaq0U4y/EehGul++V/kPdKsma0JmbnGfqCOi4rEwu59UiYJ2dX+vzjLzOznN7o7Ss3TNXOq5WPOQ5q6DOYCmOaC3OU206jLY5DH0UcTqNghZRhivbsNOCa3g3Bx/ulWGPhB9uFOy0uKX77JLumkC/ycampjilqXi6JWT7PMvkciSzHEM9iRFHmzeF6ZhyjkVcrr3vUpyOQY6hCNPgJo13kuMyOVNzXNaGjzkpDlCLm5ei9IwgFgKJMfknOwvLnDllh3j5+ZLlsxalnxKg19aEYj4qe+lydsvplwMQ8z5Pnd13s7AbxgX3WDtrEy2wzQWMa9PycbPjXd3yrjK8qxN3neN2N7PZi8t2HBRDVJyiZ1SJq+6WrnuX1F0TrCkXECkqlEs0kxP8l3udTRPZTGFaKerZHdruSHGsx01+JndHXuyDKqM+RQYiczK4qJmcwRqp9ti4mMHWWMS1I3rphlQ1YP5Mw1gJ0fJ1/vnVf39TlF7yLwqX/OuE6TX+ZUih5l48BschuopXG9Ky45JZVNbTXcbvXZmWvWn4veaKO724pK9N4Kr1T+I7mh2YRmM2izCtNxsRpnc30qHX77DvfPTNjIzNak82HkluJGqDNlZm1xjeEFVriOWP48fx9+H4QQjUVxtQTcL7iPMav9liY0AnEanLUMrgvdxYYszVTiUBQiCTnY7lRuVFDMiiUbnByQJzaZMqaAmQiqaornnx6qbcfrESlr7JiF4qYkEYQmXzWybpmlS8vvmSF1ba5DC/FmMkvVeZXsJkjM4Biam6GVsjeI7WSjDepj13Rhches0j/jaO2svRt3olTsMcEhsnLupND191Ct81gvoY99jmhqZ5oPHXOHckhhlHYEqRU/A8KMdGaTaI06N1RlKvh7xRi/ENxyZQ2+d0Tsvuk+ImFfevqg67UYt72cX4Rjvy2u20xnWYutl++jitxekldHMRqdfsr0Bir+TmCnBUXoRzZRiUOI7GLKDXQkVabULLKYU4ZSGSoiOqBl+cIP6Ankfs5JnHhmFMHCZEFBpDdUV/02G0Ytdr9pPmevP9tcmUsT6fYlSQubRPidMluRq4WJRlvnReSLmg5XpDFkVzFnVC/tlS9LBNqnif4pyWxcgmHwyzOLNCwBgDIdKNM1cPjpuHHV8px2NcnIWXC/HKjs2CwtcNlTd4RQBZGBFv+3mqgne5/F9c+bIQN6anaa/Y9u/S9++y2X5Cu/mYtP+Q47tb9DVsthI+tumlQ6O00Zci/pMCdTz/MHr5NyzXrYuygUuG/LG2zRe23hJ+GHNYXojC/0ulW+ZMnA7VSV5c5aWYo5IixUBUUsxJuqGELMYgj92kJY19r0WcutItvRZ37pr5uB7rTolWQUAewyebHSzSsZESBBUo8mFxkQpSpGy4Uy162ZTwYZTQNi9ipjb9RXp7LnbEgHYO7QLzbJlmcVEOLuUCVaT/HsSqbzpK183DEDlMifsBhhH8LIF1xueARD8L3iOccP5QnUGXAnUZZd4u7mkRNKBRiXabMDc3mOvfIE5DZf7FOZw5iMoo7bDDbHn0llcpCXc6zhyiq6gLlEablsbuxUXZPYfuRrjTzsF8zzx9IYJodGfFhtJaXMRplQsX9TmWVt48D5bNVy2kIkiq80JdXv2U6y5FhtiAhX0WrNbBkpcleCNPrGIsnhpGKWLSGCVzlBNYFSSqqxpFDpQTt5NHWnm16mjstoayts0Nff8OXf8R8b0/x+nuBndr6K4i221it4Vtn9c69nx+mb2ENo9zFqhHxXBS+EfovpppXv4Cd8ri9PAZ4/SSabrH+0N1T26V4cZ07I0IVTtt6ZVhs3I+F65luUc7QhVQSnFyjf8q74+co7mluM4Z8vWoFHOKvIiJ50ND3y2NzVolNjqyUZY9lkFHXud8guXckUlZx4T3InjP4fsRqOW8WER2EaGyg3plAPBIJ6CuLfNN7RbQusPYHTQ7/GbLvGlIWmGniD/8gtPpU4bh19g4815/yyd2w886x91PE+1P/hT6+k6QHiUY0Y2VIc1KbCbkcnS8OHvjuSi93NfPxekYxD3tJsVhaniVFIciUCMt+1pJd6Mxm1po0bo7Q3eBID2ibQiNxThPc3wkDV8wnn6JcwcKk10Vx7Ru8mO3KG2xOXB13VlRCqw+TJWNG+PMV2GuOLnRBubUM5jInWqY0QQ0IRiuTgUAIAxbiJiQ0CFnb1yw1tIT4ZGXQ+s83cTy9TnP/2l+8XqdfD7XnCFyVoUwCVsri52lLB9TccZatOkqWtBomVun6XUOnxtpUuJKGXZGCtLS5i8oj3d1uwjTwM5ENjrS2UhnA10TapB7t5EAyeKcXiPh1vkll87p8nXNPdBSjtX63DS1dKgtDtSC0JhrJ8p3I1JHJ4YaPypBWk2a2enaieiiYsi4vCGpKjAecidFYf7OuWNU9jOh7nMv18Rr53PZo5du04JiKOJzQWCu4Ify+XLNq5YiT/4GKJVNX2rBwKyqBYm45NzkwjgkTBJxpVeGjc5ID9txqzt+qjveVZpnJnLbOa62jt21p9/LGzbPmgG4DxOohr57TtM9F7zH+tqKCeUT2ksHWfBHQsgc/dJJbXciUJuekAXq9T6oPFop5gD1WMr6JDEoGKOmDyJS13tMNo/A0y7ptUPaRf21QnT5XNYSa0G6/E5FvlA0kDdDMi+7th6iY0yBxyBrrmMQdEdZT9RzQFExnW3e+2+1FU64abk1Hc90w+/plhuVBMfyBFdazErSSdvsDHrTYPoOtdlgdnv07kbMDzmXTO+u/2gd9rmzT8LBA0qvrFNxuT9JTsCPAvW3HinxFN7rx/G7HT8YgZogreAHr5h2W1SMdeMpjoLFTRxji/cDNgVUGIhK16ixgLDaxEUdzm5+pf2j8hTJ7OOk8F4vSaqFUTePS+tF233jiai2b4xHkvMy6YcygecKeCqOyCKgQ3GdaN2IQ0O3gjlRlqgNwRqUXhiwRThqM8O3tYs43bea1uoqTn+Xo281zicRxLNze9MmThOYLuE2hvbUYdsb7HxD09zTuANNsxNHpPfMeA7R0UXDJhparWlVg8moDxk+z9XnInVwS/uR1onGJNqY2AMowXK0aAajmZNlTJagxe1zOdZic34H6n8riyNYFs9rjmRta15tQKtgsnJdhSQt1UYLDqRXhqN21d096VBRJAX3UhZwZWFW3KGCr5HQxxgmnHvEz/d00wPtcMt8EszHcUrcD5G7aXFSftv3eNcZdt3vSKBOiTk7wZQD7eX1pVhctIUbvDio4fw4l2C60lo2xxKOuIgwYeW+qTzEBsH7ZOe03mzQu/35kyyb23lGh0Cz8+yuA3efG15oy+uo6vVciiAlKAoWxMd6FIGhfF/l9MGoKs1FXmt9jHNn9spH9OTX5W8Ia3pD016x6Z6z2XxIv/mQdvcz4v4DTnfPsHfiUux7zpyKbWbcr9FAhW98JlCnRTACmZ8aK++ntTkoUSeUVsLge2pjVR3zwvwLIYvJcSZEEapTdpOu2fHSEF2cEyLUJFX9M/KOpEiIThydQbAxOiUapD16t2LRXeuGTWVPn4vR8nkZ5X7SooVFrSKdMngd8bHw4iGqZe4p76FVWchLq+9lF7VzB2Z3X39Hm345T5StxQ7tHcYHvG+YZ+lkOUyw7xKjS39sLuoQ5W8fJ3FP3w+puqdDdk8bJwI7YSL6I94fcX4Qd/jKIHfpjDFKZfTKeUBiq6OEHF8/w9y+95ufZBQHdZwjwZ0fnyJYz5PmcbaVO/1VmDkEx5hxBg5QqsWanra9qS3+MbunzXjED18wz1/h/DG37jYX7ulFnIbils9CVBLucIrSl2HS4mIt4rR9wp4XSLkPXwRrl8+/B+2r+Nom/WbXz8Vm8ezx3nYYV+LDstYKVcCfU8TlDXdrNthmR9vsaZtruu4dmYtyoeyrj5+hr+FqH98IQixBupdIj2mWwsc4KsaDQj0k9l8NtPevGO7/fcbxc4bxBcP4ZXVN6xTZotibhivd8H6zFcSPktb+tWt6MRRw5hh28TwYsgyTi9zFfV3WBvU8VWWdoHBEXqXAS9ewPYazbjGtEhtgk9cYRuV7jFocp+vztXSwrLsnvqtxVgzOx6KIUFMMNfi6Gi1U4TO3VcA1do9ubwmbG+ZNR2wkYK9/ODGefskwfs40veJD0/Fxs+OnyvDRewf6P/E+9vlHqKYnPHxGPN7LGnvlno5z5SJUpnIK5z2SVZxei9Rn/z0Lhk7E6dPR8Hq23KfIMfOnfe6WMBfuaa3FHa50L3kKyoqppBFxWsWIHU6o0wvG4y84nv6QGOb8hGUlqbUUkYsz25heXMBm2XeUdVBMAWPmHKzb5oC/Bx6TZ/ZyzU0xMKUOZ6SDYkZCxXdTs3rVIlKnPqFDwLT6LKR6fWzWn7/NWCMAKgu3Cq1qcVJSuhM4W+cAlbNbirplsVNiV2MufBXsijVd7radCO7IPL/CpMiV0rlLYumWKEiPwp/dA3ud6HWkN5FN62lMrEKWyaaGdpuqKF0EafWEKL1872nhX4V0FlZXXKz1mBV2cBGGsyBcjtV3MfyU18tZnD4O9kyYHqNmTjAg8+GQHdOvsoA4Z9RPmRfXZqCwWreWol4pZpXAwkWcXERHVVZ1NfyyZDTkvVrJbPg6+9jlvbEUe2P+a6sOPJsW563kDpjqvL01He+YljvV8HtGcWUdNxvHduPZ7CWbxvSK+REOU8N9ijxkvMemfx/dvcPc9QSryT4qVADjEmaaSP5A8Me6xjOmxeSCnrZ7aPaoHK5cw71TMeqcj9IxPibPIQUOSbPPArX2pUMrVpTZpSi9mOnWArV6qxAt31vc0cte6+JjJUo/hREr91mXhCN9jI4v3IljEGTeTFoQSLVLRdb4bWJxS+dr+9Z0XOmGO91wpyw3SvGT1kmQZRPeuJ5Nk4tNGelhdh1mv0Pv9pj9NfpKQre/UXfeNxk5QDGBnI8F/1GNE440e8L4o0D94/j7c/wgBOpd7mCT1vDEYd+g444WWYhrZbGZ2ap1Rwin7DTyaGVq26xHJu+k8w0ot1D74lTOLKuQYM4ualcD+iC4RJyjTA7jgN5MxPEogYdtV6H3XzuiXzk8JsLgheXlhd01pzJBy+JenCeL60Qru/CndYfWPZie2DQko7ErxEfBdVSR2ipaK8L09ylKVGb1KlixtYIDsG1i6jSua7D9DjPfYt394qL2AzE5fBBHShfc0gqbNAaDKTfRpPAhAP4sa2a9gANyInhkozQkaXluKYEriZDs2Y2w/t5bFjblZ4YU0VlwNFn4WgvZVdzOwnSbHdTlvK1PWUlhQviTmo3S9MkwqsBRO8YYJLU8RQl0iIVnvLSwFV4t2ZGZoiME4fO6+RXN9CXN8RntQ8ewb7jfJq438OoY2HWeD+/aJ17p17/Hu17/TgTqgiZwXpjF2iVUlJTqEKcsWsqmLEQvQRdQ2aDFFR2yrSIkJLyFvGjiTZcgLDxzZRKm8MX2e3S/weyv68+VEAvmqbYMG+fprkbe1YlPo4RoHXB1nnnDzZxFJpJ/owUYFpFaKwvZsRfKMr22TRe30DfZlYgrSza4m9pG3/fvV3E6XH/E6fkz5lvLs32oTsV9J1z7JTz1vMj1pjCdHfCry2n257zqp/IqVIgLyiWMwpcun6Mwd30YslNsWonTItbp7IrXcBZWqlNp8cxem7ygT9nZLDzfWVo3c/vfne24y4E3e2VEFFrhEN7KyVPInEWkVwanBecjbar5PMj3nOIELu+eCIz6DPVRXNQhDEyz8AZLkVJdnjdJGMp2mjhNG+ZZMc0ps2jjCvkUv3UXxW87xlm6N0pWwf0AxxPMo7Cn7eQxTlzgBe/h3IHgB7jAe1werxJcKYXBErCVaHTC3nToq7tvFGoc50nu9bmlfx32o0l4r6XFPxjuU+Q+eXFPh8U9nZSwK43d0LbPxD3d3hCbRtwx8z1uflnd0zFJYJkI07q+p5cIF1g5pVKhNqdaiDHq3Dl92e1TA1bTEmYYSDRR5/utqdkJZR6Fp4oxqQoMT4VRDRl7MMXwhigtDieF0g1tcyPHKAvTbXtL339Iu/0Ydh8x3dxxerahf08KZZv+3DVdRhGnR/c217Rj8/oe8/AZ8/EXPDz8bYbpJdP0FSEMpOToEsKY1Q23tuPWdPwkt/a3q+O4blkf0pIlcSlOlw6IMkrxoBavV4XrMtqMIBtT4D55XkTD9dTQ2EjbRGIqGSnQpgUf5vPcX/jEACrjFFwR7UNBe31367/yWor/rjioxxhqAJlPIiCgjDiBTbvgL8wW09yQ+jvm/R63zcizg6O9f8nr4TNOp1/Tp8CH7TWfmJ6fbubsnv6T6CthuYeHl4t7eo3qKOq80Wdoj28z1u7padA8DG3G+kw8xJkxBemW0DYHubc1zF3rbpmftanidOFO22nCDPe406ccj7/kNL4AhIVbcB5lHrHZmW1NL49v3ly7ieMz5HvkmEM+wfsTQxrxYcZlhNwYA7PtmXViVok9lnAhUrdR2tpTjFXT0xfO31hE6tIQFvIxi0tB7yxErc6p4INgRiRYT71hHijiVG3pv8DnrMcaODIr0KqltXtss6Oxm9xh65jmB7w7EMKJHbA1rbgqV4x5mQcED7hHc6cWnMdayJKckngmZJleVVF6+TgL/ZH3+G1hXSaiQiTO4UkESAn6LmiPMSoRiFkMV99VSOJ0UKSomWdx2R5mW4Xp4UyYjpU/f0ye12E66wAtncqXbOhxtdf1JLyCVDsHBGmjlMGaXsToKkq/OZaOxHj2dblXQl77VTHarXJKYu24K2tH8VWLKN0qXYsXV6bhWrc8qwKn5k4nPtyN7DaefhNot4nuCmzuWJmGxOvZ8ip5Tipxu3mXtn+P1F3ju5aYkUZEcaComNCTmIwK3qMGJ2f3tLI5cJV83dfcldw1uNqHFsMbCC7lqD2HZLhXGhOWOTFGRWMjBN4QpdfsaKA694srGt4uRs/l6yewHXN6U4yuXTgpcIyCTXsIc0Z3BAaVDYqqkYDslC1bK9xZg+K57WqosQQeLhz+G6W40Ykr63i2nc+Eaa05/1zE6Y3F3j1D766wz97DXN1hnr333QjTZeRgxGqEnCficCQOA+F4Ig4OPwTc8UeB+tuP9AYe+Mfxux8/CIH6eqNRSRbXISaO14qRlqgVndZYLe4CcVGXD2mFLW3QZdSblIq5fTrUSbtwqCsjS0kF3wUlCyin8GPEjDOqHYj9EdV0RJOB9/D1rKEiTuePcHggzBK+5H0OloAsjC8tkiFlBp1auSh0l5l9S0BisJomOxMLf1o2MRnloUSo/j5c05ejIENaqypqxCiwFuYm4TtL6HpMs8M2N7TtEecOtI1gPlLmR7VK0wTZMBtKiKMheMscNbuMbChu13qo4+LGKJXdRstN3+QNXRUn1XLD/LpxeTNFrVqQyoafC3G6HH+o4rQEdgnvuKzxQ3a+zRg2aPbKcFDhTKiu7gMdeQhzRdP4jHvQ+YaeCsImTszuAWO2NNNLuuEduuOW+eGGw1bxsk/Cke4CH959+/e4uKi/7zHMkcElEahnhfHirPRhrC2tYR2KV7AOq7a2wjmLZQFVeH1pWTyth1FlUQKmye7pTV/Fab27EY5MrmxLwnJHnCcRREOgvXbcNp67YPlCmSpSLPzo5e/F4qCOHozMZZej8PBUXmiWx7gUp9Pq6/VYnKZLyNKT4vTmY3FOZ3G6u4lc7yV8bJ8F6tKRUdEe5TgnEUMWpEeSBG4t/FOTluIZnIvUq4OxvOYYwE8Z6TFSQjFDmPPGeySE7KZeidMmlSKQnAPFPQ25MJSyYJ4Kv9qLmyZFfBaqpLW/5b1mw3tmw7tawuT2LNdvGZWdp7LzKxesynxODlksC3CXIl5HYn6tc+2SyYeAzBBOrNiaqT5/nxzzfI/3J4zZSUhU3qTIgbMIf3ZCxR1qSrhZMYyJsYfBZZG6VTQm0Fj1nToqv244n3g4BR6GRZw+nLJ7elA0U5Br3DuUn0lhJIQjzh/kOl9RRiO5dTstm8kmI1mKOF34040R/rR99v5vfpLRQ/BE54nuXJwGCfmaJ9ms3yd4lTwPwWVxOm/IWdzTgqy4Q3fvEFvBA+l5JExfMs+vqnsaOHNPA5U7/VRAYoxO5o2Uu2hYunfOXs6THQn5+0nmSh9ibZVft8+vg4AvR2nPLoJDQTkUTmjh8hbhoTjgyjrNZpFys3lPUB7dc9r+veqYnq9uKvu+3Sae3Uqhe+2aBlgjhFyAx9OKNf2oaR4C168faV5/gT/8gsPpl5yGz3g8CEqhMGd3ynDTdDwzHXe255luudGWm5UPbc1THQgiTueicRFj1u3p8uYt6JkyytqgFK7rnTRxFrz6EB2vlOXOW/qxYRN9FQlMnRNUdkyWtaKu5w0s7mlxUCf6RgTqEJ84L/4Io13fa1PK+RnSRTDUboJEQkKnpQOwqe5p29yi21vc7gq3aSvao3t4IB5+wXH4Aufv+dD2fNzs+D1t+Oi9x8U93XaC9xiFOy0Ivlk6IHLIYQp53tBRXNS/ISSpdEzKv8U9HcbENOjqnn6VIg/RcwpeujQL2zi7p41p0aaTvUnG86GsrNdbma+N89jjI/H4KcPpDxjGz/HuiFJlzd9mRNBGjpXpRdA3JUS1O3veZS2hVBC2t+5Ido9Shtkd6n3jPnmcH6u73dmeWUf2SjMHTRzbas7ZxkBwIlKXYL/4lqVfcVGLGL0E6hVxWgIS8+eVOO3X4nQWvQZgSMv1NpciWHoz/K6+frKLWEHb3NG0VzR2m4XpmWm+x80PhDCgU2CnNHemY6MtW23ZGsuuiNPKyD1faTbAM+srzmPTBdpOONPS/r+IWIVNq1YLnSJEr8Mm5b89cSDz+RnxKBPz8Vzc0t4v+xsXNHPUgtbIxyhcHJPfdpxOhik0TN4wec2Xztb3ZiAxpMghBYYcTDclzxgDh+iWfJ98Dyh86BJoKXswg1It2rYY3dLnLoF1WHA9vyrWb+majHlfH6NbzAZ5T7AgsIoILWXt0l1nWQwMJgMclV7ufxYJ931mOrbGcq1bdspyU1jFkEP0Zrat5/Z2pt0m2q3k1pTzwB8cxwfJqvgiTFh7zXbzAbZ9TtjsCI2pdmcVxIhjXAB3JPiDYNtUwVSKe9o0txK4ai849KmATmSs7ztixJN5+Rg998rQJnntJu+neyN6hFGJp0IN52zwWbCkyz7rbc7okO+bwJkYXTpu1mvjhzhzCp5TDjkcoueUArNC3i3VoG1Po6xYxGqhwQORpjimjVzTHzbbs06ItTC9M74Wm7a7gLWxhpg+KU7vW8xui332Dub2Pfl49t4fCeXx1hE9Md/PwvGeeHzIxsaB8HAgDB53jFIsPf5u1u0/jh/Hdz1+EAL1vsuhMVGq8Q/bxIRipgG2JG2ySG2wStwLyllimM4eR9pnPUl7YnKAIqplk1VbM5NwqMUdoxiDoXciJDddJAwe1YyE9gBmOcQpePQ8ofoderNb3NQ5lTVmPl4oIvU4EMZEcLLRLe1ste01Ldy+0ha55k8bsxP+tOkIjSU2Cmvj4qBWayc1tFZn0fiPZ0IrYpS2EBslz7m7QrtbrD/StreE4ohMnsk9cAxOQgqDrpvuoCFgmIMsZCGHkOT07zLWFV8QFx0aTIJ2VekFKmrhciwV4Sw6kUM/VBGlI/Ol9bG83pUgVlrNizjdqkRTk8rlF/u8MN9ExXAhVO+S5Rg9s5IiSqM0U26flSBFhUrZWZgiDlmsze6AMfeLi/pxR7/ZMGw6HvrAiw42TeA4hm/NpTRa0f0ORK3RRYY5Mc0QJkXrAnoeRKwMM6EGlwibmJSqS+2SQ10+X7qnA5lBvXoPi4NaN0hAUNuiN1u5vrfXtSgV3URqRpKb0FoCLQwQh5Hrzczd1HCtG15qwyE6Luvdsshe8BVqjfRgEaSW72lidhIVcQkWcXpZgucPVU7N86AlbVq67pauvT0Xp69/wuluEaf3+8TVpojTJWy1uKfPr5vqnlYQdCJExexzYUiDiZwJ1CEu7ecgppfa2uiDOKjDSIrjmXs6hCG3LwtnMyYnu19iDYkr4vRacAMp/kHKaI20vAcZExKDiFV3TV/F6Q90y53S7BX0OtKurtt12EubAzfnLFYbZNMIIuLstJVsAb24iVJKoDQuxeqiLsWHgmcoQmLp1rApEfwJ5x5z0FMPdNV9vy5waOdQPhFmxTwrTmPi0EBrEps20lrFcQy18+X7GCEmnE/183GK3A+RV6fEV0dxT08nYU9rF7J7Oma8xwHvT3gvxcsixK7PbQk2Ksx//QZ/WqtE1wTMs+fVbfl1QzBcs7RQunSG+IhR4Z1idpqTy+7pKO7pIfrsFo5EpbDFPd1cY9vnpO66uqfV9ICbXopAGmdpTb8YTzmnYXFPSwuyXPXqvOZF8Yo9pVO80SJ/EUymL+6Hl2grWDo1ShN0YYP6/IxCFpaigqQK677BljWM7atj+urqT9P272H6D4i7dzjd3jLtmypM932k72G/PUcKLVkXMoc4L87p168V06PGPESuX0kQYjj8guPpD3IQ4kvm+YFpfkmbEntted70vGN73rUb7lQjopTStKwcYPk1FUHmsn29BC5fHl+DeqMoKd9nWRdQillKXNEZ2zEmz6vkeJEMG2dFmFalC2hZeLj1WjEj78oatMyxNSjRRcyoUO67cV8tznpxcI5ZqDpVNFlpv167pzua5gprrzHtDXH3DtNui+90RXuYh884Hn/ONL3iCsXH7Y6f6o5PtiPPfqZoP/wp5lqu53i8r+FSVaSe5ypOi3AawQimr6A+zoISV5iPMiQnJuLHxHxSDAfDw9DyZdC8SBPH7OoLCky+rxbxvTin64fpie2G0PVEo9GhoD1+zXD6JcPwK6b5gZh85k1bjJUCVxGnrd3K9aO7+j6nFAhBusmkuyisClmynmibaxor+Jxpvmee7zmEoxR7szDkbMdeG2YsIRrC2GSDjuAKYoxYSxVwnho1sycsXwe3zJtVYM3iamHYurBwjNfidBFAh2weKtfcer9WXPpjDIwkkm5o7BX7/Se1i3acXp0J0xsUfebJX5v2Ddf0Xklhah2EuG/9Wft/CUxbC9O61Sij0H2LMvpMiH5KlH4qaLtw01VYZpIYqcGEMSmc13Lcsnv6AAyr4wNvz8n5tuP+2KJSK47pqHiREgciQwoc6rUu/N9lT5JDEPO8tHZH1zWolfP5qn+HJnPa1zgrOa/nfF47ZvdAiE7O9RIGmlzuiC4lUBGfG5Y1oM3rA6tsLWTriyIsLIGCJSOg0YJm65XhfdPlgoVmj4jSO+vYtJ5NF+g3gW4T6W/F1FLC85TRROeZHiOvHjs+TYFfuSOb/jl9/wF6+z6u7Qh5X64Cwp6OuVN0fk0IR2ItYNvqnqbZk2xLysXIwsvOZ9OZMaOMUiQ45L116eYhm79mb9gllbvO4pOhhiVY/pId/WQXYf68oGfOxehyLR+jY8pFjZd+ZEyxBkxr06NVQ6uX0MoYfQ7NdiQ8NkFbrmktoZUSgNjwodnWYtONUuwzZ3rNjm/beCZOF8ObMoLqMY2q4rS5vsG++wnm2fvfDBf3bUb0EvT78LKK0xL8eyAcjsz3M+6UmE+C3Hl8/H7Nhj/IkTi7x/84/njGD0Kg3nWS2Fzaxe/3MnFMKGYtaIukNVZrWSDOFgvEsE619XlR54jaoqK00KYk7fKFDVvaVIcUmZUI1C7l1rNJM58SykSUmVBGmE/kFv/kJmK/Q/c70ri0EAs7KBCHA/EklbDw8Jpw/8B8EqaXqxyvJWzHp4U5jF6cGUY3WCOihDI90bYEa0jNJd5jcTL/rhmjZVw6dHThzDbgu4amadCN3Gyb5poQTvh80xn9A6cUMMG94eIKKjErwxwVOHsm9q5F6jLKTbZVCS7+u1l9ffm7ReReJ1MPeUEz5PNlQXUUB+nqsVk4qHUzmsXp3gSMWsT1LkVcUPRRs0uKfdQckqSFH1Rkr0xunws0GBzSnlmCb2xu1wQgRWbl8e7EpF/T2D3G7uiUpX+9wXfv8NBprI20NvHy0QsD+1sKzt+XoFWG84nDGDlM4rBUU8KKUi1YhzfcFOKSqK3pVbyV4k9pQV5COvLiKonTt4ziyFdGWll1Y9H9BtX06H6H3t2g2h6CRwUv1/54JJmj/D3A7Hfsr17yziFwk2TRVBbCb7ibs7guLgn/RvtRih7V9Ll1W2e3tDzS+pS7DIo5F6elNVJnFJKxPV17S9c9p+vepenfJ+0/ZLy9ZXrW0FyJOH29h5tNFqfbhWd/ifaARTASNVXm1jWXev1zsAgnMUL0ihSEO6piwjiPdk4C8vwxtyufRKysaI+ZEEW0LuJ0CYlbC9Rr3MGkVD5mF9d69MQwyuZVGZ43IlZ9oNsaerPRkUYnGrMIO2dtj1rcJW2eM+aEzBcJNhgCsNGGSJvPy+x0igGl9Bvzhzh4NJZUUR86tzJ6PLO7p2muMCa3e+oV6iOLUyoG7BSZJ8OcsQfHCTYtHMZEa2K+RwRu99/PkmEYI9EEQkzMPnE/BF4dI/cncU+fToo4QDPFXJgQAYn83jv3iPMnuY/nQ7T2CJWNmATQZYZymXdzQbBtYg2w+U0juZE4z4L0Cqq2pIMILaXV+RhMRnuIe1rCeRIe0KrB2i1tc0XbikM0ZqeTnkfi9CXePeTgR2kzLqFdl3iPSwdZ+SyFlcA6EEmOTSloQLlE1+ift7nrUkVEqPrv9SgeNDjv2FjPO8XVnpRCqxatTEURGLsRN7nd0ba3tO0z2u59zLM/h99dcbre43YGtYemX4TpvpXOsDYfhsKyD0lE6cKanmc5l/g0cf36XJgehi8YpxeM46vqmv5At7zXbHnXbnjfdNwpW92S5dwJCRF/UmQgcUieQwxnSI+CsphiOMOEATVEUau3iNTqfH0AstHeKM0DShxlwfFCGTaxBS/rHZfnlyIKTzEI4kOX8yc770MkRlNRS3OQkFSjI3H6bgXqsnYeM5N5zmKVy2Wkkp9SMBVNc03TPUdt3me8vmbeC1qiOzja118wPf5dTqdPSf7IB+2enzY7fs8oPvhwpPtkYU+XcEQJLg/S2TTPWZgWgbkMFSJJx8qgru/WxYY1hUiKMTPoE/MJhqPhOFhertzTj2HmGB2KfF/NeA9jlnO/iNOYntCJoaSI0/r4JdPxF5xOnzHNX1X2tNEL0sPaHY3dV561MV3N3AlexKuCACiC3uIaza87nxNFqHbtDeP4knH+Ch/myv7d6qbiPmZlmOcGFzU3XrPzvrqGnxKp10HlayxSEaYLz3YtTBeG7XzBMh5WxaCBcHbNFRF0iOLUHVPglCLolra9petuaZtrfBg5Ta+Yp68I4YROkQ2KThk6bWiVqSLWVi+u6eqcZuFNb5vAbuOzML2Eptl+EaZ1rp7pRgwNypgqTFchWhvehpip524IMM/VbZ2qCz0L+0WczqL+IamK1phzJ7DJIc7fxfhyalDacECCDz+Ps3CAk6tO1zP8YHZITykugrQWBvim2dG1N7TNDU2zFwSO6WqRJcYJ7wfpmAoDzg8EP0gYtj+R8DXwrlmJya02WNXQaVOD5suecS1AA5jV3XK9VqzBtUqxyUinDYqNUrxjIjsT2DYzXRPo+1CLFLYv54ESjNjq/U8hkI4jjy8tv5oa/sAf+HQ+sr35T9BtPiJsbnBdU9nTxOKgFjybd/er7iqb55cObfekZkvoxLlbXtHldb8eGlW7xYmgg1oVF+Wav1GGIWQzRlr2T0BlSZf7TvkYVozwS1zH+utj7qgak3SdDHH5GFNkIpGUkaKlabGl0Lp6Xes1v46OFgmr7IzJoZX2LNB4pywf6EYKC7nQtLPhLNTU2niOCY1FpJZig+3lfbXXV5jrG8yz97DvfPTdIj3I686HV4SHl4THV1UriocD4TjgD47hFUyDYRwMw2S4H7+7Ton/qIyUkuhy3+sf+X4f/ocwfhAC9bYzGKUJMRJi4qsttTV6QuEwJL20V1TuaG6bjSmg9ZzF6RmlpqXNPTtbfGkZSwuPUVo5WcTJSQQ90ySUCcCACVFcF24mjkd0vyO2Hbrfibs6XwTJCUsoHB+Ix0fC/T3hOOEmxThJ21ThTw/pnD8dyMng2i7OjIL3WPGn0WqZVFcf6/E218N3OYpLbvYxMyHTSrgqT0TC0KJtSEZutra5ofFHGvtICCOzanFJeFNaKXRYWkiDKUw6AzFzHFfYjCI0l3vO2qmsVToThmsYnl7+O1BDIXzQlY03RC0WborzSRNU+MZhJOW5tTrSGKlQ65XgtXZGTF7T50X7PhkGZXIqtrDQJFwqMmpZtB+CQ+PEDReFyxzCiJs1o3lRNzfdQ8+2aXhsbnltFY1NfH7v0Qrev22/d9H524yHk+d+iDwM0rKtp4SZRnCHvEiRhUpt9YueRMRiqjNCqvoAqrqX12iPpeL/Juqjpq/nxabe7FYCdW6tDUFY9EbCSstIu4nt9QtuXjnufM8uL54fo+Ny1JDE9OZNcx2eWALUYlIroWg5+dbO6UIkWCM9xJXVYJstjd2eidPsPmK8fcZ422KvYL9P7LcSiFjE6YVb/JR7Op1f428Z5WckUyA7qzLdBJ/QLmEnh/YOPQ94fyT4Y3bRDjh/xPkTwQ+5mCUb8iZJgI3NjhmjdA2Jq07klLBZMCpHpxxjuVfM7JXmyjR8YLf8VHd8oHR2ywQaE9/ACVkW15iLmiYmXFQ0UWOiwuSi1gadF+yGoBLB2Po8NIoxhcq0L6NsnCT8LBHzvam4qMfpVRYutth0I4zy3Ea+zkMwLqCcIcyKcZRgyuKiNjpWBNSuN9/L9X+cArGJuJAY5iji9AD3RxEU/agwJ2FP22lCO3n/ozvg3T2zu8e7EwXfU4ovZejMXG5yQnsJoCtXY6Mj/SZgvoF7GrKDep4Jc6zuv/Ieey8Cy8kZHoLmPgf2DNHjygZdqYz22GQx9u7cPe1OOHeP849vdU/Dgveoz2vligzZQXYu1ZefW/IUQlowQGtxGc5F67T+mQvjdTr776vCl1rmlxLmJsxcg9EtbXuFMT2N3dE0VzT2CptFSdO9A+0NfnfN6/dviRuN2ST6Xj7aLEqXD1ic0qXzYhGmM2f6qGhfe65+/2/jT59yHD9jGL5gGL8QYdo/oqJjpzTv2R3/yc1z3tWNtGrn7giTj1Zxis2oyhgvbsG1MD1lcbpgTc7ev/X1+zU7llK4loMtgkjhUIeUmPDcR88rZTBRGPiyAhXX5JySuBbJ5FbdnDHpU3FQB0F8tEauQ74jB7UYSFJlTxfxobg5JTxwcU/LOSFrPt29g7u6Zdp1oKE5BvrXrwmHXzAMf8gw/po73fDT9oqf6o6fXJ24+UTTfvhT9PVzUvDiMjvey6azZEKEQHK+4jnqsQgR8NDmKyQzqdfu1Tg7Uoyk2ePHiDvCeBC0x1dDy4ukeBFnXoeJQ3aOliJMMZEImkNcztp00u3YbIm2QYeImYU77U+fMo6/Yppf4TKSUJzTmzx/7LOYv4h56wDlgvS4dJvGtLioy1jwQVq6OsyGtr3mNPyal/4B5yPXpsWZyKwjcwlP9CbvgzRb5+k7CezURtbRa/zRupC3njPL2raYPlxQFRdQkB6HJIaBUgwqBY8hdyucomSyPARhfh+CY1AJpXq6zR2b/l0aKwHWs7vn4fHnhHDCpsQGKV7WLhtt2GpLp0wNP95nnMde6Tof7Eygt1FEyU2ormnbg24UdmPOhWljZL2Y14yqaQXbZkztunsyqyj6BRfHTKrOfslA8E4Koy7IMXRBunuPQXNYOc3dag56W47Otx2/jjCpUItzn/sTh+Ayw9yvOn7lvlPyBZrmlk17Rdfe0LV3dO0ttrnOHV/kkPMjw/AFs7vHuQeck7VeWdepFLFAr7QEVOuMYzGWXtl6zzeqdJ1Qg+nr/q+ahFZdrQW9SJl/Zf/Y6FTdw72NWBMr/qEUJZquOOYVupX3XzUWZTR6s1mKE0C4v2f80vHrV3t+ngI/nx+4J3C3/Qi9+YC564mNkXDwzJ02Xgr1ZpqYs9FO1w7qDmP3KLsntD3RNoLC+xZD8k9C3fAUvOmoWw4ZX7JJipu0HEN4Gt2xIK9iFaPXHPQx416mGHjlxypGS3eVRqkWY68wtqfXTS3SLyHQTkTpMOa1kssB5rDPHRAbbem0fC7CdJ8LTXtl+EBpdtlgsm0C1kRBvl2I0zEqNILrUSajPRqF3TfVOW2u77C33zFvGoiPLwlZnI6PrwQB+3BPOJ4Ih5n5ITCfFPevGobJMMyWoze8cj86gX8cf3+OH4RAvWk01ugqcl5v1tRVEak9GrgQqacv0UHcBoID0NWNJG4CcdIVB1DFe7AE+cxoBsTVOjuNHkwWpxMQSGEkxYiZZ9QwkDYnVNMS23MuXGkZjsNAOBwJx4n5ITAOlskZhqizayCetb2E0vatz/EeWneSCG4W/rQqvKSvEaHjd7Mf+drhvGx+RpcYXGQOmR+eOF/IasF8mLbHuD3GH7DNNW044cOINj0hRabkMdFjL5ENOjHrCDRLCCHiVmzJ/OcsWAdkIdLouPBITcTohM03qqcW3KWlzgfNabbgF+G6MqaTys7cC5coC9farMSS0nJuVKLJC6Dy92NUEoKU2XxbZxizYH0Mmj2aQYlDszgmmiShir2SxfZDmKWaHj2PacJ7mKbXleWmtKV93bOzDQe75ysLn77Omzbgnevmd8aj/U1DOLWJwwn8qOiHWdyHXtriQ3YephqQ6FGAya6KMgKKtdX4MhyxBA4+NSTcxkgQatMJ4mPtwmzAtB3RGNZl+ORG2iu42jnuTj3XuqFTBvvE3yktuQXz8cbI4Ym2OKdyYaQY8tZOsEWcXlzTS4HrvLW+696l3XyM3n3MfHXLeN2hr2G3jxKKmLnTRZzetLo6p9f69FMo0+IGDjEz5iL1s+QJSOiliNOK5BR6ilWkNMMR5nu8e71y0R7w/oh3RxGnw0TCY9LipjFFlEbYgY1a8EATQVLe03KMoPB8Z7oE16bhXbup4vQzG+jzgrYWr0pYXi5s1eJWlGtYR40OCaM0JmoRqZMiqCxSa3E0xloUU+iocjt8PEMsVBe1ilVsFMcwzPM9U/MqB41JortSvWyAtVmQHzGiXSJMmrlN4jSdCsc30dqI0RJeqPV3H6A7OnFrFp78/QCvM9pjOCg4QDs47DQLkiRG6TryR5x7ELxHnFArgbV0BqxbWTtl6HUOsWTVsWIS3SZirr/ZpiKOR+IwEl0WVy4CvSYv7ukDcIy+uqfdhXvaZqewbW6IbU/SGjONpPk13t3XcMS142nNn37yudW5ovR+XYjTSBtvGeU6XDud14LzZUFrQQGp+jVqwQNpbfOcomv2h84bS60bjNlgdIMxW/r+Hay9xrY3cm62t6TuCr/ZMm02zJuGsFU0Nxk30y7CtFkV28u6pbilnRe39DwrppMiHaB/PXP1+jX68DkPX/6/GccvOI0vJADRH2hT5H3T8l5/ywd2y0em5x80hp2JbJu5FrBd0Iz545AU9ymdOQbfJkxfBiKWazisvle+lveFmn+BUkthPebgQ8TFBxJo9agcL5QGDfuM/1i7JsfoCZC5xA26MMxjIuW5VoISE4PLz2H87haEIQtkx7iI02MMeMj3nxWP3e5omj1N/z7h6j2G2ytip9BTYvP6AXX/+wynP+A0fM4wvuT32h2fmA2fmMi77090n3yMuX1PhOXM6UzjMXOjxT0dZ1fd0yXATwNxjugW4uxQ5lycLtzpIk7HuYjTSsTpU8sX3vAier7K58RjmBlTzOJ7cU9va2i71j3a7qG9IWyks1J7hz0+EE9fMI2fMY4vcP4EKeZCsq3itM3OaWt31TW9HudYj3Nx+lKgTimQSsialoJ33z3HmJ5h/JKH8Ute+EH2QibgUsugI4NuGIJhHFueec3W5bb45vz8KddpyYABqsljLUqvuxIrEgu4z8LVkHEAhe9+TCJMD3mu/cIPTEphmyuuNu+x6d/H2g0hzMzuntPwBW6+R4eBLherm1WAbnFQF0HrmWnY5yDEvVLVabkOQ+x7QTi024VHq1uNau2ZMI0x6LZF9Vt024Eu/62v60N1gYYsWSbMUz0P5XPBywiz2wWND7ruCQra40DkkDzH5CmRyoKq+G7u478fJ6aUagjwKz+eoSgD1CKUNj2t3dF1t9xe/1ma9g7b3qCUlcJqNhzM8yum6SXT/JrT6XNCGEmI0aDPovPe9uy1BBJe6ZaPTC9B8pQiHmzUuahczEednc9MR8VUsARzy9e2SatA9AXvICJlEhG6AZtZ0qq1KK3RbbNgW1Yu+VKQIHjiOOAfjnz1ueXnQ8v/z33Fr9wJa/b0258SN7cSjpjXW9I5mFAhSgfh9Li4p7NwK+7pHTQ7YtPIHjp7XuJqXQBvmjhN7owqyJVyzyqu6pP2bI3lITb0ORy0mCTKCE+EGT5k1vhajC73gCl3ODgA3Vcxems3Z4zxdTfs7A7ZKT1LJlVaOiT7VaHpxrT1Ou61YafkeRdhulzPa4PJWpwu58Ci76uz80S3imZvMbsNZr9H727Q18/R33Ad+U1HPN7jfvXzLFALzsM/PJ4J08U1/eKh41gKU8CXP4b9/RFGqubRH8cf3/hhCNS9Zt9ZWhvZtNImvO8Suw4et4nDKXHaKsaDxndb2kNDd2xo5neA7DYKU261G5/8GylP1Guu2ZAiBxUxSWOCZjc0OC9Jxn0faA8xV1NHTDPUiqoyEqpWH7sErMxRNrwjuElYdl/e97x2lldR8SpJYvtDZlmO0dcNr9XdKnhli7F7dLMXnl3mT6snAseKg3n2Ca1iFa+/FxFijhzHwHGKHMaYA7AEz/AwLMFFYQaVN0hJa2LToLsrdPSUqAelDN4fmSaL9wce08wUJoboeQyWBzPXtO0H3WbXnKqV8xZV0+3bBBsUxkQaRJwui+vLdr3imC3vW3AKNymmQWOHyDBZmCEkCZYobsbLpUBIaRXQl5ZNKFmYNsJE7btwxrJTJh+XVbhMcEsol/eKyRlejS1jtByS4pB5cIcUOJi28uAeg+PT+cAxjozThPcnpvmefvic3fArtqff4+71n2R49TH/Hh2/uot8+Gzmg2vPBzeGZzv7vbX8/6bhfOIXLyb+zq8dP/81vPy1pv3csXn1Eo6fMY9f5LCfIz6z5mOQAL0mQW9MDUqbAdLiopD3ZMUVpTDScqAfS0sb5PPBmDO8xxtDW/TVc/TV81wJl81I//4vuH088LNh4P5xw7HZcoiOx+hQKZFIOdxF3ODBH+tCvozqrobspurFOZkUUS28uSIoKVQWsYubsalhTU3m4Uob7Lv0N/8Q4eo9Hp+vmdMSivhsJ4GI+05xs9HVNa0VZ9iOmBb3dO2WSInZy/eLa08+w+iEE3s4KOZZCg+coBkC3WGkOR7Qw2vi+CVufsk4fs40vWKav2KeH8+E6WYlTG+0webNp1W6tnqW69BFCSVMqYS1iKs8Rgd4bjF83N3wSbvnE9PzZyy02hOS4sEbxrmprY3r8L1n1lfshzWRxkYaYt2Yb5Ni8hq8ZZ8MBzQHJcnpB2XolGfSeWGfO2emGES0ViseotJYJe20ECHByT9wOEKMjhBmdsnT7X6G6p+TGslniI20zRsfiZPCN4qTlnMmFC5tiLnt37EbNfvesO2/uyLVZ689evQMc+Iwwe//Co4HjX+E5hDpDiNmnrI4HVB+BndkGj/jePqU0/BrQhywuaBceLbSP5Dy+2+5Mm3lB7f5/WlU4nozc/WxwTz/6Dc+1zQepcXyOOFHmYO919U5PcyW187yeVR8Hh2/9ifuw8QpO4OibujaW7ab99luPmC7+z2aqz+Faxp5facXjLmlf3YP+IwqukR51OezEpmWUFiXeftFIFKkvC0t/NEiPAdVZgeNBAytC/VWHEtaWoeNbnLAXluFzropLpixygrthA1ppFiumz2YXDRvN8SmYd7tmDrLsdOkBpToNdg2YS3s8yaxbc8L68UdXfA/UshSnB6kmNE/zHQPD2wff017+pRp/IzT8AWvphcMw5eo+RXPTcefabZ81F/zsXmXj5Xh/cbzbDuz3Xja7oAy4CbNOGgehpZXU5PXYpH75LI73nNKDhdFjC6beqMURhlCSnTKLMG1F6OyTlcidawb/JiDVRcEWWsSJkrw2awtRqnqPhuT5yGHPbW5I+OY+eeH6ElKS4CW6SuH3jhPHFrGUXFqpTg0ewlIjeN34746Js8U4SHO3PuZr8KUMzMA1VQHcHFSbjbv0/UfMfzkH2S4E2NJ/3pm++tf4V7/+7x+/Ns8Hn6f4/FX7NLMf373J/nzXeAf+NP3PPtHPqb/M38ec/2ceHzAf/UF8fEVcZ5y1stAHAbiOBMGCfcrl1CKCZXX4ylMda1XRgqpIj38mPCj4uWvWx6Glpez5dMIv4wjn/sTr/zESz9yHx1eWfpmnwu/N3TtLU17R9O/j96+T9jcEDopULWP96jTC+bjLzgdf8OY8cUAAQAASURBVJ/T8DlzLlRp02FyEHrfvfuGMF2EHLlGpoxEmM+c02U8hQYqhViAEIYawmhNz83VnyLtf8av7/9D/nB+xRWa57bn2rT82jT0yrLTlrvQcDO33GTsQatj7UoEajdhEaJDUtUhHdLCq5Xu1FSF6JnIV9ExxMApoyMO0fEQpBAwKUVjb9juPuGjZ/8pEbLmrziePuXVV38L7x/Q2W2rUXSIUcGiaLR01Wy0zaK0PUN6fKCaLEwncUybWNnCbRfpNrJG3zy/EKWzU1q3Lapps4mhR7Ud5uoO1fZiamh7ETK1reK0CNOeOBzPEHExZsF6GPAPI+PrxOG14fHUMHrNGAwuKQ5R8Sol7pPP+0bHmNeJ5b1qvqMQ1P/X8Qu8kvnKAzEXINv2hl13x3bzAZvtJzT9+6j2Np8II+PD35YuiK/+bYbxBc4dCP4EePqkuDIN75uWP7O55V3d8q62vKsSt41n352znW0/098GzMYK2/ni2GPsWUFAXOu/ef9y1ur/hGj1m8JUYR14md/b8Yj/6pHh737G7/97Lf+31z3/1vAF/8F0D+0d77/zD8Pdn2W8vWXeCN5DO+FOaxdoh4n29ReEwy8A0DkIVeuOpnsu3OqrW6bdlpRZ9lA6AS+KRvm+NKfIFrkmHBGjeyZgSJ5XYcT6kRZFpzSNNrkbUVc0VRGy/UXIpbjll+5uY3uaboMxPdZs6LTMHeX5xehEeI6zYPpWYnSKTvj70WGQtX3piGx0W4tLZX1/azr6bErYK8NGiTmhYLoEzxO4an01pJViReneLPsmraFvAqaBdhtptor2psVc76tz2jx7D3N1Jx3yf5SRr/eYc8jWGI/5sy9wB487JcaDZjppxtFymDa5W89wSPDL6LhPEw/B8RhnXrunNa0fx4/j7/XxgxCoC0O5tYoQNZtWVRGkuKpjDlCcgsY7i/EdjelrOEkZS4tsPGMsqrdUCEMOd5mBMchNKCZxAXgvAmdwUaqsuiRcCwJEr5w/KRShURGc4ELGyXD0hkMUkVHYfaEK5DE/F0m917W9XxcXRZn0n+B21PAgn2itfDYayCw+PUto4nfVzv14Cgxz5DiFKk4fplTF6dNYxOnslPQR46M45YCkDcp2KN9j7J4mThjTY6wEJiYf8YgAoFJAR1VxLMZqZhWzSJ1oibRIwFFICrKTdsciPGolrT0lgbu0bCkNJhcXwiycPUjEGPFOoZ1U68Wd/fQoLio5f9STxtyCFrGNCOOmSTQ7SY8+eyyXixsuEVzATYp5kvbKyRt2zrAPwqq+R2dumq7M7kPsUGWBHw6kKZ0JHltgoywvX/6Ml/JOALGyYkNMXG/t7xz78eWD48Vj4MUj3D+IQ647nlDDV/j5nhBOwqTLAYlAFm2j4A+UFgZf5audj3Wbmnxd2tUWh8/a7Q8si96L7ojLoXc3GREwovd72qsDmy5wc4Dr3FJqsx8xZVmp8PdsXBzUaw51yiV+YzbZsWiJMea6yHoTIm5HrWwNWZKW6u6M/dp179K0zyWY6voatzPYnbTWb3rBerSWivQoc3A5PUNM1TW9nCvizlvPPSHlAlkQIbSI04UXW8RpO8RFnJ4eSfNrgrvHu/tzcdof8wY70CZolRaBWhv6fGybvHhtlaZRBo3CEXDE/G+Z00HLfQDPHs17zZaPmh2fmJ6PlQEiD97UItCAuLvKOWNymNnB2TPHVW8XDIg1ER0VWNjFiCkL4qQzhkOOoSkFkZhZyvlAF4Z2cWO67ABLKZEUEpYYBub5QdrmmyuZP+0emi1J6/pRz6WgCL44KhOjg3amtv1Xh7yW//5djIcxEYPcD05jFqePiuYQaIZ5Eaf9nJ+khzAyz1+JeJPDEUGcviK2Lu7psmHpM396A7WDptWRfhOx15tv9FzjeBSmbcZ7CD9V7h0+O2uHKO7V+5T5mzEQkgRAWd3RNMKMbds7bCfFAsjsaXcghFMuSjkuXY5nzyUGtF6LUks7P1zgfXKTyNoRLcK0RWe8j6wfliC34nrWuq0hVcYUcXrBCRQxWimLaW8qTxfTkWxLtA2uaaSbq7GExhCsJuxzZ5cFbUWU1prsXlo4j2cs+ipKC/oneEWYgRNc/eqe5vE18fgp8/Aph+kF4/hCnNLjl6QwcKMM//D+Qz4yPR/rho9M5J3txM21Y3sdciFYkULi/oXlcLB8eez40htepcSr5LjPTrCF56pA6xq8dTmKK9rFePZ1EawLbmodyLUwOpf7U1kXhKRyF4AUqHQWqU9ZQAkp0eZujHH1XFH2rABBlLBR5eR6n2cpEpbHSNN3c32PKXJKkcfgKhdYpNJz53QpjjbtHXb7MQ+3PclIkWrz6iXh8e8ynP6AYXzBOH6FjiMftVf8VGs+vDuw/0mLff4BerMnuamGSMV5EnEplqBDCUWMGY9QEB8pSME5RVnnrEcM4jSPc8JNCjeJSPDVqc0FKfg8zbwME/dh5jEIfs4pMLo5d4avxOnYXQmGT2t5L4av8MMXzOOvmefXVTCW67FB64bG7qQrRndvFadTXivEVXt/CRAz6uk9QRkiVDtgCZi2iAC2232EHiyH6RWzO3GKniG27HXDaCyjCtxry40S/Mcm6DO8HiwidQlSG+AsZHReoQBKB8Axer70w4UoDcbs2O4+4dn2Ezab9zFmx+Pjf8jh9IcMpy9IaRRTwlnXh4wiTvdnjmn7Bm96EacFAdDZUMXRpku02yiM4Y1FNRbdNgvGIwvTus3ddeXj+jm638l68Qmkh4LMNctdUfMoc3fwxHkmHAfcMTIeFOOgqzg9RunGul8ZU9bYoV7ZGhTcfA1W6NuM++iIRmcGcs+z6z+1FF+3H0N7I3u4MJHGl7jxC8bhV7z86t9lnu8J/oROnk3GdNzZHe83W943HR/rlj/bOfb9zHZzottGuo0gVJqdroK03mww1zdnRQDVdChj6+cqSmtTv35yrIToMwd7/m/l3ymGBdNZ5penRvl7lO6rI+6LF3z5+5q/db/lb7l7Pp0PeN1yu/+E7e5P4DdbQrPsInXOXtExYwyn+2xYya57ZcWYltnTvuuI+fej0U90Xkq/2VrnMCh6bSA4ucdn1EoJmxzizCl5VAzoJMvTdcdVXXuVdYTuaGxP117Xzimd56x6fNPS2eH8QUTpjO1YQi5dDrkUl/S5MG3OuiEXfryuKI+N0m+I0xsl7PhGL52PkPWbsO5QLI7ptPrIOkAOOT1jyMdAciPqG4rUaTzWNWXp9InHe8Lh4cwpfXwRGQ+6sqUPk+UYMkYuJe4J3EfPL/2BQ1gyT07+TWTkj+M3jJTeyHn6cfzuxw9CoAYJYwtRPvZd5lEX515auWy6ROwUYTJnLc6wsFyXFhghA6rVoqa6XtdtLEhY4hgVa1ky5DRqa/UysZllooOlFXwdFDI7jfMLw3Jp0QoMMeDiEpJYNjrLpsNWZwy8KU4X51FopI3e6MTsVW1fDZbKu3Q+0azEpz+KCFlY018dPcMcOUyRw5g4TOLUOWZB4nQSt2ScJOjOuIRxoVZ+5UVKkIzOIRCN3ckGPnqprEZZyFbelgYiHKOTzZpKOKWlfR7ZAG6UEZeZ0meu2PJemYaawF1b9rKVS5lANBKyY520gjVzZNLni751MaNwJgvHM6jzDSisxOnsHrO2MO3M2d8H6karOPDbMdI7EbbnSbOdDNvZsnOGTTDcJ0OrxTneRM1j7v3SKHT0DOHIPMWzKvtOG7Yv3udEX0VqccSGKjRebw27/u1t59/lePng+PLR8/lD5Mt7OD0o2geHPT4S59d491q4xGE8a4+POcXbrhynhUF9OcLq8xsfaX3dLptbkNbM3+jK0FZEajdhdnuavWW781y/DtxECeRptEGHkM+TmAtmecMZpoUxeXETNVlsDn5E6ZQXzGdw9+qa1lqEqCVkSTiwbfuMpn2O3bzPtNsz7RvYQtenGkgm4rS4GltTWnXTkrjGpWt6ceOuw7jEnSvfH1bi9Diqp8Xp4bXgD6aXuPkl0/Qlw/QSNz/mxO4JlaQTYnFTKFpl2OvmTJgurMmQFmdjzK7FpFT2nAa6BO83G37S7vnEbvhAGfY68WXQ2UkpDqWCXqrvRRaPDoVdmTQ3QXMdzoVqkGu+N9l7HWEtUhutMiZI0ahQBafyN5ZgH0VQCa8iXiV8ChjAJ4fzR4x7ZJq+xNotprlB2w6sbBxjZv7ng1Bb/mvbf35/BleQJSJUR//dIAC+PECypVCpsnNaxOlmGGRDFiUckeTBT0R/wLlHvDuS0oxeia+ySRIFVgKTpCi101a6ZVZ/u9GC99D7/Td6rmVD4cckeI9VMNXoJROghEUdzzqdEgqLtVsJf2uEsavsnmhbEaeChB5J58f4Vva0OKrP55kztMdlANrKQX0ejGrkfnoxH6xRHFp3WCuBdWVzqU0vaALTgbLCDDWCjkndFcE2WXQzIkhbQ2wMoVEkq0iNAg12k1B6EaZL+/TymjLip+BTsiAdPUSXQ3GHyO4w0j7e47/8dzgMnzFOLxeutHtNnxIf///Z+5Mm2bI1PQ971lq7dfeIOP3JzJNNVd1bdYUCSYEkyBKN4EQD0TDgSCMMOOI/oHHCEYkR/oB+AEYyGMcSJZNAkTQ1hAyA0FSxqm7d/mZ3uug83H13q9HgW2vt7RFx8mbem1UFFHOlhUVzIiM83Pdezfu93/MWDS9WT3hRrPn3i4r32pGHp1s2Dx31CZRrERGCC0x7x3CjePm25fVY8sYHLiJjuosmAYeIwG2cS1Lg8XJkXEd0k43a532Aw3+lo3r5M+achBjqqT2V17RBUWIwEb81BId3AafnDq3UUi14j4hgYRYGtJ0E7zOqiPaRPXMlNaBvZey95YC0de/9FPmiKgYitpTl+qhzp2pfYB+8T6gVZudZv7kgXP+MofuCvn9F17/F2i3PTcUn1Qkv2oGH71nK5+9hToUj77sdfnuO7/eZO+3HUcIRE3s6rt+yjivpUPMB7WBZF0rfIx1rWrJhuhiIOMn18TJMvLIDF7afBVQCSsk9tPz7yvoxunkSQ8xqEe+8xwwSjjoOrxjGK6zrCcFLASkKRrlL8g5veubPB2+5zZhemnGSQLRk2Ct7yO7FxHcNweO8lXweP1IWG+rqEUXch/fdG85dLy37xrL2JTd6Yq0LLlVBV9RslPBqK1Ig3WJ/FTm1HT4K1LNbeorz5z4GzN64kTduYFKKwqypV495sPqQ9fpjilK61sbhNReX/4zLyz/EBE8dRenUkQBzYK5Rd8XpRpu74jQ6i9ON8Tk8bXbuBspVZE03C7Z0FKd1uxIhOgnT7Qa9Pv16jFp9nBWRGNShk0C04QYO+4JuKI7E6dtYj2RsAjKTuVUar76d9TsUK5r6AW3zhPXqBWdP/xZh9ZSgDcE71HCDv/mM/vAph8PndP1rhuEaO16wUpoHpuJpccIH5ZoXpuY9ZXhiPA/qiXWz4+yRza7VojXotsQ0Naptj3Apen0mYnDVCPayau4I0red6gAsQykXjujgLMrL3KEWQrSKgrVylrDMgbhv728K1OJ7/PkXjF98weVPJv70yzP+uev46XDNJY716kNOT75H1b7gUFd5T6ac4D0S2sP0e7zdxdD0eE9Hlj3lBlc3uELWW7Wcx9KccGtfsVynWl1g4rEi4bl0DGn3vpZzVCqExbOzQkwvpV4Wt6WYVpiE6qhvPY67bmlnu0W3h42itEMRMFEQNygapTFx/57Oc8uuyEYbSswdcbo9EqdDzJ5aPA/+Ho1DzyK1MuntdmeNkxyxfn+UM6TK5s61FZzNmWNhGnDb87yn9PubI8zrtHdMexg6xfVFxW4os1v6OhCzL0auveXKD9y4idfTIWJTooudb+ce/258N/6ix18ZgRqILmppNW9LtcBXwFTBUAXGCoZaY+uCEANKjgTddLALs0iXmKXp0HAkUquZtTSiorggIWWl0ww6UE7+3pA9mB27tzlsabNxkavgkdcU5jRkF8K85brHEQHCFpW3QIhhY4nx2o1y2Ol0Yh6GLPLL4zx2pyfXXPoacCRap5b+KQpSU0SH9JPnzU1q3xaXXHLKdVGQGHqF7eQwYqzHTE4YW3bKbd3yBxXSLhw36Vrv5YDtZFPtGJlCQAeP9g40dN7ilQENPgpATgXAYPCy0IVwJ8hQOGPCGJOwi7l1LzifU5H1FFDDceFBXuNbbueFuzK9bEsu9d0AvvT7hXWVW9ci02z+H4WraCabuYjKOOreU3XyVg+GZixorKF1mpaSSmv2pjn6nd5PDL4T51RkNwOcvv0eMIvU3kfRMQhSZ3Lyev95Iz+cD7y6tnx+5Xh9DVdXCn0ZaG52qP4CO4l72tou86fTZiwEqfoXSli0SUwYQ6C6h8V3zJ+eUSxjdP14r2b31bLN776Am1tDpQNLu8asG6rVjlXp2EzC0muUie4EocKmw6b3AzrEAJkjzId8bMyKwtQ4UxGcR2lFWMhRiQ1riiZuHpM4vRFnV3lKVT+nqB9DdcawafCtpmyE/9pU0JSJTTzPA3Lvz1iPJELn9xHpsXRNL+eh5JxO88E4AruE9egoukPGetjxnGm8oO/fMowXjIO85j5MFCEctSGmtt1aGc6KipIkUOuc3j4inSlAbkkUQc9TBnhaNHxUnfCRieK0CnRe8TM/8TZyRvtgszsSOEqHn4LnOrYY7lTBzmnOvObUz+xqgNKEKEjqWyJ1xM9EoVp7lZ3VaRjmTozUsumCx6Kii3pgGm/odWQfl2dUpkGXqxyi63X8ubdQCt7D5BY4KCPzemmOw8V+k7HdQzDxte8V5c6/W5z2DlyPs/so4nSxkDyjPZTSsftgdlA3Oh1WjvMH6sJRrTzm9MGvfqDeiiuzO8SulRntMXl567xiF6SgfPCThANF97TWZQw3k3vNlGeZFamnCaY9zu6wNoV7yj5ELdZ3HxxGzY6o3IWVGfXHBxK5lmNBTaWvzS4nEbqksFWY+ogRnVyapliLmK7mQDdlGinwFzXB1KANviix7Qpv9LEorRWhBLSKWRjimjbRKZ3/Nj+L0fPn0lnlJyUhqUOgGDzVYcg4BNu9ohtecXX9J3T9W8bhCuV7HuqS96qTjOVJGI/vf3JNexaoHxaY9SZzht2+Z7i03Jwbzi9q/nQouQgS/tXF19EoRatKKqXywfdRRMZUt1AGiZ8r+SGB6+DocLJfzHzW431BmjdM6rIiFUePXV2N9lRBDumpSOVjGOISIZY77rK7TWf+dPAWM/QUg2XoSoZCcehlbh70tydQ7/zEITj2ThANVhGLIjVFuZZ1pzqjis5if/ohuycPUENgfbHFXP2SvvucYXhLP5wzDlesgRexaPj08Y72g1bc082aMPb4w1acaZHbm9zTiT3tRk9IoZpTmjzlfdBA4rZG8fp2d+NhLLgZC176wJsw8coNXDgRpw/ecggOr4zgS6oT6vrRLE7XT6SQUzdRnHboacL0e4bhnHG8xLlDLETp3MWQCkbGVEfnFpj3AN4NORgxDUF1mPxxMrOk68AHl53W/g4ySILIlBJnY1FsqKoH8tqZmsPhJddux2iFUdsowz6Gkh3ClIPq8rrL3S6BvbdHjNrO23ityPM4KoCCk9Pv86h5zmr1AVX9HG1qnN1z2P+M6+2fcTi8JLiONs55dtFDkvzTeuG+TI8pZROsVHlL1JL1otG3xWl/V5xuyyNxWjetOKfXZxn9Jm+nIlx9zZGRH1EAc/sddrunvwrst1IkOUyGvdeMAXbAdcRB7nw0NYW5oJ1whwaFvadA9uuMp0/+XU5Pfpf65HuE1VNs3WC6PXr3JcP+FxwOv6Dr39D1b5nGa5zvWAXFX28e3itKt1XPau2O0CmmrcWd3jbvxKaoss6C8H3i9DvHPZiOcC/O4+7XpKhp7/x8dfv3OoufBqYvPuP6Jwd+/IsT/rm1/LC/4pXtqesnnJ38Ds3qI8LqGa40mT2t475a+0DRHWAU97T8Hvn5iWUfyhWuqudgRYJ0yb3D3Z12C6lYutElJn5dKY3RBT5o4s4UFXTeY4gxLq4pi46rhAZKCDDBEt4VpeVjMd14b3GuW+RnyHnNMAvTaW1Me/ul2Sh9LF2TcxB2hY55DSJOV4rY5TzjPGBhOgrH6yyANu+4T5yXgmc14rt9vkZ8v0d3u6NvTW77WaAWbI/bXhG6DtcPuN3ItBem/NAphoOh7yXw8GVXcR1SILN0cW3dxHUM4u28dOvdeItVxNekodQN8Nn9j/+78Y4R7p0Tvht/seOvjEBttMJrcDrQlCkw0TNalZ16QwVjBVMZ8OU8CaVWuNTWJp+L8zAJWhpymFaeKNXyABEF6iAitUMzemKFTi+ccvNjdmEhUEcGm4/v06HmGnHspI1GDt+JGzsJxNLHbZv5D4utOM6jnDiOrFUMY8g8R6OTMB2orBLhaQoR+aFyO/cy+CyJUunryyEihsdHESqFXl3shTXdxfCt5JTr+7mN3wyeej9gJnnc4ihzORArDanqNsLfs604ZU2FDxPKORzSzqoAHaT1Nbmpnb59ECSyGuchi1YSnKVimsRp09TCG3YSNaKcz2zvtNCZRQEiXRtLkXN+fUBnTMwsaKdFM7cSlQFTasy6PWobBOYAHz+H/4RxRJkdtnMUB9nkNZ2j3jvKvqQaCypnqELBztRHB2KPtLaM9CISxrG6/jNaIOj36TIJPDd2ZTHSaEVTfXtoGJCCR3Li73vP51eWL67g7YXCXijW2wPF7gI3vI3BYtvYIj/dwWAYoLzFHpYCE1mkXjp80kiM8CQWTF5n96Q42OPzH7mBX0ukLmVDrdtWBOrKctYJPzQ5AUY8wbsFR9LhXZ83fMDRYbQoVhjTok2Hyc7r481kClhKDLjE/yzLU8rqMaY6g+Yxdn2KbTWmFQbsMpzseB5Lha3Fdb9wSS+F6jQXi0g9i9PDwjmdilX1bqTeHyj2N6hhix/eMg3nDMMbxvGKYbxgGK+xbk8IE1WAOh42K6WptGEVmZKNNpzqSjawMck9CUDCjfYx3MxGjSJgQuChqfikPuG3ihXv6YIW2AXFm+D5qd1xcDYLQrBAbkQUDFqzDxOj80za0ynPThl2ytAFw5nXrL2jjPd7qVNr+SxSG+Ziikl4D584tbGIisbhKbWmDoZJeyyBwXlxUWOx9sA4FvTFRSzuNRTlBl0IgzoYeVMmHNU7ZyQLC3SWvNlvCfFxc6MIWguqYQdtZE6boResRxJbojjt7Q47XcewnOHYPa2Syi5hxWntXilxsks44lxIrEtHfaIx69Nf+Th9asHsO2FPx64n67QUllOYMYF9sFl4kVBCLaGI5Ul2T+vqAb5qpb3fjhnvIeLUXCD8qnGbQT0HoC2F6rm9fRYpBfNjiiYK003GLcg8sorv11IQLs/EKa2LI3xH4pj7QjAFU13eK0yLJi7XVrq+nD3uYEn1xBBFQbzkURSdp4zszaI7oPdvcf1L+v41w/CGYbigG87Z73/BBs2LouVF+5wPi5YXuuID43najDx8sGfzwHHy2yvM2WleP/1ux/h2z80rOH/T8GrX8MppPvcjY7y3k2i1UVregLXxrI3jrO3vhCmny9VaCdAeJhMPmUXOheiCyyiDZYdV3mcmIS+EiENQ1FqK45UPtCBZCl7WsyF2g7jYoQVEvujdmF/pPOvRdqQcJuyhwBY6drOJq33qfuXl97XGPgrUKRhLAgMbinJFVZ4Il7l+QtU8Q539NjfPn+BONZvP9pQXgmsZhjdR5DpH+Z73qw0flxteKMPpM0/55DE63sM+tkn77pD3RoDsj7wEywVPLDKpKFQvXetJmE4FE5UzPrpRBMGtNVwHxcsw8NaNXNieKytiwc5brNJHbO3UmWTqJ4T6FFc3+KI8EqfppfiaCuyzmGyOxOljN+Ki8zM7p+d9T0LyJEE6haktsSA6WMGCBIdW0mEYgo+uybno5d1IUVxQlWcyh0UG9uHwJf1wwegtfXTKl9qwc1PG1hQZL7J4noNwa/exkJeD9RSAdGqUxZrT+gFN/ZQHD/9t2Z8AU/+Kq8t/xtX1DxnGc+oQWClNUFpY//F3qMVbOrsVSDBicl0K/qmg1Sbe4xKI2Col95hxOZvmXeL0MghRNy26XefAbLM+Q588uj+f5FeMJGj5fo/bbbGXV/RvJw5bw81eHJV7Z+jSmTE4yZvxgvYYgs3njjJzeA1GSXH+2xgPPvnfw+kTRm1kzX75zzgs3NJ9f4m1NxTB8VCXPKtOeb9c8++VJzzVgZPCsqnHW0zpINiUUmE2Fbos0G07h0wmcTq5om8PZ/OcF+LnyhTxY5fxKe9+3l3+Oel1SOfQe4XqZcDlspNSG/AOP/b47TnbH1/x859v+Bej5o/HCz4dd/hizdnmY1arTzCrD7HtOrunE9rjyD09XhGCjfdykQvHmAZfNbiywMZcByY1ozJjZ0T+G+P7tGa4EDgzNa0y7Ba5F0aZjLu75w+fzxZRmF7mU4Agh5yfFqL0dITxmPWXMTqmyY7ppTid7tulOJ322+l7SmXiex0zp1QOxc5FZJI2k/7+WYe5PfQtDE4yJbloBMMMc/Bu36HKbZwH6qPrKIxDvA7GfE73/chwOeY8g6HTjEORC6Byb2uug+JzP7PkUxjpzk2CkAsu89+DrijMiqZ5SNs8o66f89Of/ou7r9t347vxr/j4KyNQJ3Fk6fitCkVbiUDdFSKuFEVAFwqnyYnJQA4W8sHHCVPk3wLyRiZPiAtOICQndQxbAwjiQhaH1iw6puFjGAjMDLY5kO2YxZacO32QYJAhSFCWjW6euWlt/juS4E4M01BeXMl+EmdiaqVNo4ot3FURA3g0gv3IQnQSpZafzx/L8z+/DkmUGq2kwXcTXOxnx/Q4HgvT4oiylMMkh087HQvS6eOlI0SbGPbTYkyHdQNalQQ14XH4ADYEBu/EjbpguBrtZEELKgcJuVuO55TYLCnNGl0ZaSmLKdw4Jw5X79HGoYzPbT9pkZvbGOM1Eu46qM2CM7kcZomDqRSmjRvf9Sbz7HLYB3ER9DYHAWEMpuspYpuQKSWws9gF6sFRdiWVLdiFMot1enFw2EWReprEdbvf/YiNNrTaAM/odC1PZpSFXHT0S3FI0DBVoY9Ey1933HSWUVn6yXN9cHx+Ba/eKvbnmvZqoLq+wB9eYUcRp63tpDXWH7sJQ7Cza0bPHRGJ1uoCseh0d6QD/6iSg1pck24SNiVOuGPfJPlXJSZh21I0iqZ2bHRg46XdtEShA3g1u6dTmGv6e9JhNAnxxqxFYDL1UTdIUoR0DDkrinVuFS7LE8rylKI8o6gfo5rHuGbN1LaEWlFU4p4uYxu+ORIvRZwe7bILA47d00uBehY7uyhM96Pw5/teMfUK34E5eJqbHcV+C/35AumRxOkrxnHLNN2g/SShp0vOsC7YmJK1Lo9CUsxiIwuwCzY7joeIUALQIXCqDB9VGz4p1rM4Dbz0lk9dx6UdctusZhFWqGfGu2G+zpKT1unI1qSg84YzX7A2ntMi/m4lXOQkUpvIyTcItqQKszPSLezOOsjm3ekYTqO8/J0hsqgZmeyefrjIIqQu1hhTo9wZd2zZ990HYXZSV0XAfkuIj34XXc0HWQuK7oAee5QbjrmO3hKie3qatthpR8BKUSm6p3XG38yrYx3nrpbIQ1Xyt1QqUFWeYlN+LfHAd8KPDOOIi+L0lDqfsnta1u29t3TeSmgQoFQV3dPrfL8l93Ticzq7x7khs/PT/CUu6uV+ZYHvWISmJlE7F6VQItGrgArx9VXxOJc5kWV2aC7F6YT0MMVGupRSyKE2hCxO6yxO3+eavn1JBaci5zeIAA2yjPggrcheWpm1A2OdHMqto7m6RHWXuP4lQ/+acbyg798wjJcMg8z7ZbD8u+0jXpRrPtY1L7TmWTXxYL3j5IFl/VAc08XpGcWTpwDiRnx7we6zkYtXJa+uG76YCt7E1lmAs4iFOVOaMxU4LRybaqStLVUlOSPNRrqdlFEceQSciBkpTHl9MbHvS27GgktruFaGXcIaKC9BvMxmhmVGgmA+UhdfoNSeKmZKJJa+QWHx2ChI+GhimLyTq0EpCX6NhQzvBsy0p+jWVGXBYEr6WglZQMc92rcwdm6ix9MHz6jA6JqiWIlwW57RNE+o6ueYk+9x8/wZ0wPpdKvffsa0/wVj/5phOKfrXmPtDc9MxYtyw8e65oPS0jxvKB4+QVXNQpzeE6ZxITRF9/RoY9hhyNdjcu0vhepcfLJSgBomQ281exdFA0QMfGXFOX1lB27cyD44RqUozIqyOqWpH1FXj6QzqX1OaB7h2nVkTos4rccexmvscI51B0GvKCOlSmWiizqJ09XsgF8Wp/zSMV3k90mUXuJ5lrgPwYb1aH1AqdmVIHsOi/NDdl96r+j6t/n3VtUD1qsPKYsNh+4Luu4NnTswBEfhHF0WkOaR4ImBVHgJjLnzpcIUDW11chyY2X6AqZ+At3Q3f8bl1R+y3f4E5TrWyrBWhgnPEAQV4mJDkQrJNX0sUiulciddck83aplRoKKwBa0ONEUUpxtHWfs7uImlOJ2F0yROnzzCnD7+2kza2yMxaf3+Gnd5wXjRs7/UbLclu6HgxhbzupPC0MN94vSM9jBKCdf7axRAv86YVhuaYUDvXjLuf8Hbt//oyC29QfO+qXlRrXlRrHmhKx4pxcftyKqyd8LgTRkwjcJUglVMgZMk1q82szP5a5hB8E7WLWfzKe8+1/Pt/XsWohd7kHe5qNPPOnJtI8533+1wV68ZfvFjfv7jNf/8UPIvpyt+2l/T6YLT9Qs2m9+iXn+Cbx/goriZxOn0cXJPJ8zfjPcw0tEU9xO2jvklOsvzd3j06bzrmQujAGstmMGtu5t/EZI+kowRKhqllEGrOQcridNpL2Jdl4Vp54ZF4cseYclgZlvfdk3PnezEDCGVUT3LwHAdzwLprSU5qWW/J4Gt4UiTuS9TaOms9lpJ1/AUs1cG6SIO3mFGj64m1L5HVQVKJwSoFgSnlwNRcFIYdaPHT2B7mAbFflswjrK+pGJT73VGeOwiQvClPWRBOuWajBHjYRUz//3s91ivPmR18rvozSf0pYH/6f9w55r9bnzFCOHe+/xb/iV/zj//X//xV0KgnmygWpyTjZZ5uSqUuIKNoipCFKhB6UBYWACXk6RPMP4wT5RpI5PEhzJWn28zB8eFy9KEeLjI1+Dx5Je2gfPBI4WwLZEhPlfBU2r14EWcTq2hEpB4/LN9dFl616OduNCKssAVGjsqpGszZB51XUUe9Zha9yNrNLm+F25reZ8OSfPvTIL7snV/KUJtd1GAGsUdqTpp0y27kWIYMMOAsiNqOtytbKcNiLe3ROpi3rBrYWj6UIqLWjl03Pza4NFBFrOEZEm4jfT50a/TM/s5oz3KQjZHsYUvOWaV1iijuIX6XlRkF7+PmT1p0NJFcuSu5s7zakrRFpXR6LZFtytU2aDb9dEmCGTjpL0jjD3KGHzbodsO3R4omhGzdRRFoNjL4lwOgV1XYagw5rgrAKJI7XuYNH3/BqUK1kCrDV4/odMVWvsFM9SzqR2TE6HaV3wrDsubznEIluvO8+bG8+Vrxc25pj4faa6uUIfXTBH7IO7DLvKnbW6PF/60FceMuuughtkdvfRiHCNYEnMe+uiatFbjehsPvgM+tm6p5us4qJsY4FJhWkPTOhrt2SgjCevaYJyLRbPoOPCDcJbz5i8JU3JvmGIjwuO0FdRHvJeU0pljOYcszUJUUZ5hyjNU9QBfn2DbFVNbYeqZD3vHOe1jYc7OLmn5+rEonYtXQRzToxVkxJI3vSxYVXtHdRgotm/uRXoM4zXTeJOd05t48GoiR3KjS1amYK2EJdlGJ0WbHFzx8Y/pvguB3jtu3EgXHErBSmleVBu+X53wQldZnP7cj/zC7rm0A4N36HTI1YZ1ZFemFtoqHsvTfC7vRaTu8LhgcSrQKWFTG4Qtqxeb6DJ2fhDFZxPE9eF0YAyaMfh8uEjXZ6NNzijQKIIizoUe7wbG8Zo+cvy1rmlMQzk8lZbQr+h8SK/xaIU73o2Bcfh2BGp9FaiMoxgmWQ/6Pbjh7lqwdE+PVzh/7J7WyoBK7awhCxK1MqxVwUYpqsXBxKhAVXvMev2rk9e9FaGg3+O7Pocai0i9dE+ndXuK7F/h7ZamoSo3ElRp1tKOG0VeAOyAs7vc2p+dTosCUz7IHYnVs4PSHx32ZCglnV0h/gyFkQOtkjBVcwsfoHUlc0gMPkxIDwntvCtOB20khGmxCAr3MkQ1aj4k53/3AYVkTSR3mBzGPdr5jPYy/R7Ga7rrP2YcLxiGc4bximG4Ypq24EfOlOH9as375Zr/TXnC8xh6eLKeWJ86mgdQnRYUD08xp2fodkUYB+zbNxw+u+b8l4YvLzZ8Npa8CZ5dmBhjkPILXXKm4NQ4zuqetras1reC0UpFcdbEvYA+cvOFFMg3WVxnKeuJzc5ysi84OZRcDaWEHClNFzydinMEYS6m3XMp6uj+arSnXbQ5D7EglYRpH13ZE4GEeEpFDO8HvOsJdofp15RlideKsShxZZy7hl9dtPo6o/OOAc9AAAxFuaGuTqnKU5r6MVX9jOL0d9i99wHjA1k76/MRu/uFFCbHKw69FCc3KEG2FC3vacXTk57yyTMRAGN7tdtv8X1HWLSBCSfUxnDTxJSWe3jplE6u94TuGazJ2L291+xCYn8KRuG1PYg47Sf64GfndHV6JLImcdpXTb5Xkjithi1+vMLZXb53ldI5zHApTt9mz8OxOJ3E69T6b8wqOiybmVm9yKoJsSPLWOk8g1To8rJvSsUyPCoopukmCkzCQGnqx6xWH+QurK5/wzRuGf3AEKYsFAML/n3s5NAFWhU01RlVuaGpH1PXT4RDvnqBqh4QyhXKDfjDK37x8/8j3eFz1sBTXYCp6LxjF8Mokw9lKU6nFS2FCWsS5kMfnelmBFREAhBxAErCjKtSilES0BfF6crE+16we5k5HXEev6k4DdK147YX2LevGd/esH+r2F6XXHclN7Zg5xUd3BGnJ1x2xSbsQaOlSO9CYBcc229JhCle/hHD+Ib9/pd0/Stubn6OCZYzXfBedEt/YBqeqoJHSnFqPCfVxIP1SFXPYfTLzB9tVCz4HQfRqbJafNzEwkCTReslWiOJxWncyYd5x9//VeJUFp6jwL10SueP0/eMPb7bYc+/ZPzFj7n+4TV/eHjIv5i2/LC74orAavUBJ5vfpll9BM1jXF3jymWOlEL5cNc9rWa2tdKNZFlULbaupUBczgVi7fxC57i7Z/Ox88YT2GjDA1PzWTT5HH1fDC1Me5IQPCp3aKaid3JNTxEdNDLZw1cI0z5atMI7XdPqljgNZENVKsxWSoLvE7YnO6ezOJ2Kvsddzt7PhsHjP3Z+/pyXucNGFJSbwJQKN4VoZrOx23oZrjlnG6R1RrruDOOoc9HzfChl7xjIRabrMGTt58aPdN5yYYX1PyxEaWLBsSnWNM1j1qsXPHj/P8aePmVoJfQ77K/v+eO+G185QvhGZrPvxp/P+CshUCcebhrJRS1hTsQgr2UIz/H/HyJ/zfsx4z2Se1omOpPbwO5jqR21rHFX5Fr+G8xi9BIPkkTqET8L1MHHTa9w2ZJ7Ookct5eZmUEZ33wPdkBbOfS7wjB0lSSRx8ChoggMowj3qX0/iVH6liA1Oydn4Xp2TpPDKF0UvqeYCj+OisNWEQZxyNXDRNWJcK7HXkTpaSeiup+hh8uN9H2b8mXro9ElThcoHwWKIM3vLkg4lQ6eUunIZg045e99lbQSVnhRioNal6ArM6dyx+q9rA1fHQqYwxHjJlFYkNGJgstO/KVIvXwcsvAFTGVQZYFqZnFaNWt04q0tN0yRcwagqv28mdN7lBnQlUMZl0X4h2OBtBOUM0944fLeecvkOobxMgZn1bS6YaUNvnzCweh4P0V+We05y+7ZQJh+cwHr1dYResfFPvD6Gm7ONdWFpb26Ru9eiutoumayNxKa5sRR71MxI0DwEzqIk7KIG5n5Nbr/foXkYJO/bcRjgppDUa1mHCQwyfejuLXG/hslOKuyFrdNVVDWVjjUtmKlS2ljQzHisG6giJgPrQeMqRcoouik8hZdrCmLE8riBgCtl0LVzIUryxMKs8psWRNxA8LFrJnqEleqzIhNc2Z20CZTmk+4oIU4vRCkl19z/tg1PY4zc9hF/nzVTVT7PcV+O4sTsYV/GC8Zxxus3UcWt6dCsTGFiMOm5MSUnOqKtSqODpsmblTTcLFDxQXog2PnJ/beYoEmKN6vVvxufcYLJeL0dQj80o/80u6yczrhQ060YFnOUrBSbA1Om2IXZgZtR8ghUFLs8Ozi81Q5zSYoyuygjtelDlmkluA/zYjBKH80f5SK6Ogu8FoKc0YpfAj5UOqUuOX6/kIEEFNJG/X+Q7zReF3jjCIUM/83c4AjliUVMF0I9OO3I1C3N72I88lNOO2PipFp+IV7epyuCcHOvEQEWSGuYbkmdeyKSA76FplbfRDH9jIg8Vfds0mcDv0B348iYi3Y02NQdPHgn9zTY0jhdAWmkHb1wqwoqjMoNxGLIQzaYHexS2LM/Ol3PpbguC0dzm7rhbithGQv1BoHaHHRojI7cokH0zq1/t+z7mpZj+8b2vkIptEwxe6iRauFWoQdJyEauIPz0naS/cBwjZuu6KJbenvzk9wxkfil75ct7zenfFyueaEq3tPwvYc7VmtHs/E5+LB8uMGcnaHXJ8Inngb2f/onXP4i8MXrNb/sKl5GYdoRqNA8VSVnSvP9dmRTTzSNo14lcQoRptsS3VToqpTrp0z5ELc6m5wlTCO+69DVJeXWUt1MVFtPvXM0XUlrC669ZhcC3QIdZyCL1GlvmUZpPJWT/WijjHQFJY4mYIMnxP3PtChypGvEuRHnJGzLjA3FPq2CK3wZhY/h23FYHrzFaimS6FioqcrTjPUo159weP4Rw+MKNJRXjvXrV/Sj8Jj74Q1Df472I+9XG16Ua17okveakbNHFr0+kfb9aYgYnoO0UTvhTqfXwo9OHGxjyB0QIQnSC8e0D4rDWDBYTef1kYBwjefaS6v1lR94a3t2bmIg4JVGm5aqOqOpH9E2T0VwbT/I4rQvBamkpylf78HuYvfEPrscU8eEOOOqY3zfrbHkUS/xHTLvbO5y4xemj2VwoopubXnC/JGAZAIoghSG/ZQ7TQFxOddPKctT2uapiNTTlmG4nvdhiCitY+5PwoxV5Smbze9QNc8wzXuE+lREfO9Rww3u8k+4vvqXXFz+Eaf2hmdFgw8hu9VFmD6C1yx+363nCbJ7etn11GoTWbU6dmPNjstKS05EVXuqVbr/patSlYWElh8JqA26WQvWY332G4nTYeqxV6+x5y8ZX12we+m5vii5PFRH4nRad9La08fQ5sSiL6PpIRXpOxxbP7F1w6/92Jbj7av/ntFuGfpznDvwXBe8Xwpf+qmueKoLzoBT41kXNrO8kzhtSnLHqjIqmnKiQB3d00t3ul7ypsv63aGIafyq4PJb406Z/p7/X5X1ne9Zzvth7HE3F9jXv2T89Bdc/dmOT3+x4l9MO/60v+BtmGia9zhZf8Jq/duC9lifRoH5+F5Xzmf3dAj2KBwVEPRWdk+XhEKyHvL/770UIxcBh2kIVG5pnlI8Khrq4TpjBYFs3vNein4qKIKSuSxx8tMcJeGqC8607aK4HfUVH1e4kEClZN60kVLqveJ0zgFL7xfu6eSgzmiPdC9DxrotXdMwn1FuIz5EwA6zSO3inNhDYSPGa5hRXsfBzrFjctCiszjNZOM+0UmnXR+77TrgTXB0Ycr37j6aEQ+LPeTgHfvgBOGhNErVVOWGun7Aqv2A9fpjms338KcfcnjwAOU9ZddRbN8wbH/Md+O78a/j+CshUKdQvuWYReqFWB1XHZ1aX/yMwxBn4pQn0dgYS4nKopYcBIojttHS4SKmoWM37PLjI151CLcETI44hClAJ7mwhjhJJXE6OcakiVctWntnHIB3A9ruUEOB0YZKG+yuwE+KqdZ4K0FFySFZLMSoJEjdFvNvj9thRiJ8xzBGq3AjhAGqrbgizThguv0sStudCE5x8RR36Ly5vu36uD2Wm2qlZhpViPEoqX0/v7+1QAG50FBqCf4qjI/c54U4vAjlID33xsTqvlxYad1PFdmRmS0prqg5ECm13k94WSTV8TWzDFxURolAHrlWKQ1clfVxaxkIZy0L1E12GMhj3aFMD9jsfH7QTzCUcQGWtjBnQq6ohxC4CY5huJZQvWKF6T6nMQ2rsmSnH3AoVAwBhbNWLogUtGn73/yA++W1p1eByy1st4r6zUh7dY3ZfsF0+JxxeM04XjJNN0x2L9V6K2EbKjpIQ3AUkDEQqeqeXg+nUicDoO661vI9qjwjmg5xVI2TCNSuc/iui+2Y26+X0A6RnyfBm6aEUntapM2u1QWlmhYJ2mMUsMyRa1Leyzymyw2mWGPMKjqg5udfR/e0hButKMpTTLFZiNPCxbS1BKz4WmU2cpoHUgFqTGdOdx/mZ/G8Lb42Otgd7rKmVReodyNVN1Dub3Ir/2H/M4bhrbTxj4JzcE6u3yqQAxCfFC1nRcWprjjVBRtVROacinM0+S0+ZHaQu1T2fuLajfTBExQ8NjXfr8/4WNdslLTO/swP/Hy8YetGpljsOjMVJ7riVJciTqPZKMUmORu1FwE0ojsmr2MCd8F1QFr74/XXEdgh902bunDi4zXIPrkCyBgauQZNmlOYETUAThW02lMpTYhrjUGWp4C0bQ/jFq1fAvBg/z0qLS7YwZS4QqO0FDG1DkxW1oJuiuK+lft92H87AnV52FGoUpAeduC+dLYQLN7ucXYfMS/X6LjeeoUwlZURd088cikif1qXbJTO/MH0qCUgMcRAq68OrvL7rdzfXYfrHHYycvBI7ulALkAMQbqdBu9wCoyuqMqNcJ3L0xxmFOKBVnlPcH3kwFq+ij8dIhtSPp6f/+SeTkMpHbEeXg41+etJwFpwIxei1jJA764KblGe3PKsp4lgPEFrtIWg7xfREqYrCdMqiobaTsIYdwNhvMKN10zj+ZFbehy39MMb6hB4airer0X4+Ng0vKc0z0vLadOzbi2njy3VSgTk4qymePgAc/pA+OKmwG0vGD/9JX/2T2s+PTR87iVwKAnTj6LD76HxPKgHnj7uj9zSRaPnsOKqkq6mphUhKvJQ7+tsSgFnGINuthRNjyktReEpjKfsAnosqJxmh2KMcwLcLZ56r9CFFK1kvTgOfl0iFWycX45QcAsHtbUHzHgdURAFZSwW+Milt+O3A6GeCARl4trTUlcPqOvH4pRdf0L3/u/QPa0lQPMycPLlK8L2p1HkvKDr3mDdjvci2uOFrnluPI9OBlaPghQenJUupu4ga3EUqENchJJ72k/gJhXfiGzp2TEtPHnN1po7zrZdcFx7y42fuHJDxHqIOB1iIGJVP1yI00+p2w/Q9RNc1RCMuVuMiftgZ4WnDxyJxlI0MvOe+JZQvRSy870dc1q0qdHVgyM0zxKQrtwg93TGfty62uJcqgPZsCP72REbHF3v8UHcmavVC8rqEUV5Rl0/ja/d2+y0XmJKUudWyrwIZ7+FL0smrTHDgLl5zbD9IReX/4zr7Y8xds8TU7Muaq7dyI2b6FUgpGIbsDwV5YfPLDYuRccsTuvFmU4lYVpELRPd06UWDFTdRkxeI9gJzK2OCWPQrQRfSyji6a/FnF4Od/ka+/ozxi9esXvpuL4oudrXXE0Fu5DEadlHvEucblQRxWlhT494tt5y5Qb2YfqNHl8aV9c/JDCyCopHRc3/un3CU13xSBnOomO61Z5V6WS+W/D6VUIZprNnyYz2SAXAto3u9PUsSEeBemnUSV+DewxEXwcFksZt8fn2SM7i2z/TW5lz+j328hX29acMv/gl5z+a+PTzDX86lPxR95KXfqSunnC6+YTN5ncoVy9w60e4qsYVt+5vH8TQ1e/xkwTvLc/DKmZChKKK/78mlHImCxGZpfzcIf6ukXNUUDwwFSe65NIP+ODRSud1Ix10Q1plFt2ZMO9DvB+xTrCEInQfu6aXezQVZtd0Eqd1FKfTzmXugFh8vjAJGnR2Usu9rOf9v5rNdsk9vQxDdEHd4U+7oPAqRMyiyhiQYToWpPNL71XEt8r39U5MC5OPuWKwuF8lf6ILnks3MiyQcIN39MExeccUtSALoGXerOoz1u17IkqvPkZvPmE6ecChbfFasbq4RO9eMtz8hF33Gbv9F+98zb8b7x7vChX9bvzFjb9Ugfq//q//a/7u3/27R1/7wQ9+wJ/+6Z9+o5/TTZ46hvp97REnbe/7PHFbN0h1MIhbQDYwM6OsVkXmGiU+oFmI1MdogPT+rkvaxUPsbXdt/hgXg208XQxZEnE6sqfj/3c0RcaWPOcnrO1y+7ZSBYUq0NpQekddFlhbYq3GDwpXamyZgoti5XohSH3lU+gheHU32MgG1ATF4KkmRzlMVNcXeTPupitxi6Q3P0TxLR5adXJ61rLBjhzMZUvTcvKQVuVq8blCBR3ZvRzxtW6P+TUUt0SpZeNUFNLGpys9u6dj9R6AcXYepFYeeU4SU1xlwXOKbfhT8Ew+olmCwqmZ+/yuqVBHJwGpna2scwubuAVMZFEft51pZ0UsuEcwqBCRz/vAuokblihSOwzOVLlA4glYF9jbHcNYURYbyuIEO5xTbDe0Vc2+XLHXmqKQIEyT+Ll4mH5zxMdnb2EKim6nCFt4+PYtavclY/e5sCnHK5w7MNk9zvW4mAg9v0BygErBeUd4j0DEvHz13CFito/hpZ5RaXovLqvNYJn2lnInrcXmVnrzrxyRJa5MoCw8FRLIVcewDxPAOdnsmdiOm0a6ZxJ7XjXiiC7LLSn8KP8aXaO1ySKZKUTM1uVG3BdVg6tqbF1ia+EkzRw2EZl1FJrNwim97KS4PVJnReqouNkJB388CM6j7Bz1rqfc79DdFb5/y9i/YhovuNn9VHAe0y6mey+CEGMA4qmp+KQ6ead72dy69x0qhiLKnLx1kwRbuSmjmb5fP+B7pmWjFNch8DPf8/Pxhis74AmCizAlj0zDRkug0lkUp1sFa+1pjGNViktotXb5ebSTou8N267iahLX5DXi5u6iy1GQ5jrOR4vOIIK4wANU2UEiAa9j8PE6lu9Ew4ShUgarAoaQ50IbUR9WGYbxGqUMq91PqFxP4z9E+VN6auyROhmxP4WgoFJRYnfz9S7xXzVUd40ylbimvbi8kyswMZaFPb1jHC8YJ8G8JAKKokCbCoWOZUl5vKkldK0LNkpT6oWTV8n9ZhqVD77vGiJM7wQd0HUSahOdltk9jRw+9n4+bAhawVAYCRMryxNZy4oNvqiyEKic8IBl7rrFfoxC8tHjCY7bt9zx4S/+r0oT8pEu9b/PYal3gpWJ7uxggToeKo04LV0PvoAClCV3EqU15j5xWt3e5Geh2kGwhP5csgPuEaUnu8e7jiJ4fr+WNvGPTMsLXfDEeB7XE+tmomk9ZS3rdnJNF6ctxaNHmAdP0e2aMPaMn/2U/Y9e8uWPS/7xbs1FRHm0mFvC9Jh/7urUZ8ekaY0IJm2zEExWIkadPp6FkngdKVPkYK0Q0RMAuqrQ1TXK7NDawiJ4yowFxotIvZy60h5lOXQ0XaRCXInJ2AJ7Kwgr/6iEbojIKEFi7VFTQQFo11MsXks1He68pr/OsEpR6lpCQqsTquqBiLfrTxief5/D8xZdB9R54PTLN4TrnzEN54wLtMcZhhcJ7aE0T5ue9amjfhixa+MQuxw6Eahv8T+DCzGMStifSZxO7daTjTgPr+i85tIJsmcXZnRCCqi6tqM4eL2lUwGlSgqzpqrPWDVPqevHNM37lPVjdAxFzMWoGPyt7Ah2iDi+Id/zWs+nieX9uRSnbwcdLjsetKlRuhFXpWnkd0ckTzAmsq+lWwWIHQz2nQ7tEIubqXu00JrJOw7BMdjt7LIOjpW3VM2z/Na078u+ZPHYdLERJ3d1lpEEgDhEbz7lsP0Trq7/hO32Z9R+4KOy5bR5AMDPhi374COuKM1ryzV+lqpT89tSpE6i1tJxaVB33NPpPLB0T4s4HZF/RmfWbP7Nxsj+vFnnt99kuPMvsOdfMH7xkv2Xlqs3JRc3NedjwXXs1kkF0Q5H753s2ReBzYk7ndjTANdRnE4ha9/GaPzI82rFs7LlqWn5vmk5U4qNCqyNo9SeJhbjTDY9zOYHZWa0h6nuKQLG7pckTCdzTkJ7zEiPZGk9ljbuoD3SvfhNONZwhBy7jQEJ/T7PQfb8C8Yvf0n/81e8/bnm09cb/mQ0/JG94Us/UJWPOD35LU5Ofpd6/Qlh9RRXN0doj/xQJ5fd07mrbIHoSexpVzcSUFyLezpqyignhWTvhygep7Vh4fqFbOICOFMFj4uG82kvorYu4z0esuNZOtV8dk/n5yE4OYdF3rR3Iz5MC9e0h2gfW4rTiRO/LLIusTzvGkvn9PH9HO9j5nOAgTtCNMB4jzidvteowAQYHxhuPRK3cF47YPIqnzFmE0zMnImC9BgzxVJn/NaN0Sntj0TpzNLXJca0PDj9PuvVhzSrjyk2n+DWjxg2G1xh0D5Qdh3lzRWH1/9PDocv6Ic39P0Fw/Ad4uO78a/n+Et3UP/1v/7X+Yf/8B/mz4vimz+kyfro6BKROuEF3hXQ5uOkTbAE72Io0THewyDu6Tl4qzhiG1WRdTS78+5Oeu9yTI8h0AWXndLJNT0FdyRY+xjyl3iiNuIp0iKSRiBkcVpnl+UBO80bThOklbbalRRDKW1EMdDIa4UvFSlDKRgVwxWWT9qiXSidOT3oKRynDFuHmWxmSOqxg2mP619ix2uc22PtQR6fPcTghDEfrmdsR4UxraSEm5WIbbrOG91lSnl+XMv2xF8xDDoyl4mbUUWpvQiEtY8sNJU3ScvEaHnOhzsV+lRBTSGYY2zlHyPaY/I+h6p5AiWCHEkua3FR3+KJexHAj/7O7NKK4nQ1Cyt5I96sRbjxDu3drY2Vp3SB4CSR3HvL5DRTUIxe4yjoTMXEfO3d+BE77RjGSwmmLNbofk11c4IrC7qyYlcotqfpsYpIrb4FBMD5K03hFeXe0Wx3hKsfMfSvsmvauQPW9XORKW6ISAeZWK2volMmFZVm9ndyUR87V7n1cfp+wTJ4WjSnVnPYG9q1o94P+P0N7ubim/+RxkgXg/FUKtAiSKGM+QhJUOgwOrXVmXyoddEJFUyNKc8oy+vjdrx8X0nRJ4vT1YMoTrf4ssRFVn3eMcaRePXp42VY4ruKWUvczxCRHvuthCCWO+HPV7sdprsm9OeM/SvG/jX9cM44XbPbf56F6TIK0402bEzJqal4YGoemCo6nbUEGsUi023OHMgmcgrQBXntd8Fx4XoubM8Y/SAnyvB75ZpHSmdx+qfDlis34EOg1UVGiSRHUnvPoXYZqtSuHUWzdKFbHh4mnmwN17uK86Hk0snvcyEwqsWmN4ftxssEwXW0qTAaN8BG6TlgTUl4YqPEhT8GhwvSSeCCcP6ckpyCaRSxsjt8SvCW0vW04wuK4QHDYcW4Kdm3mqEN9H2g6+e/w1oJN/xWxniNN/GQk7oDvAgxszgtLfDTtGMYr3HuIAK1QvjJsXDjQ4Agh59CwB8Z75Fd9AFKBVXpKVojgsJXtAH7/TX+sM14DzeF7LQcgxxIuihk7cM0B9gEj9JNDEcUPrwp1lDUx8xm73G+z4fIrzOOndT3sacjq5FCDqWJQa1im/07hO/03vu5CKuB4CLyI9ijA3ISqI+uhPtQIEHEWrwVnIndsb/58T1dEh06ODbK8KRoea9a8QflA97T8LiynLZ7msZRxC4ncd4JvzSxposnzygePgNtsOdfMvz0p7z+Y8tPvzzlJ5PmZRhpMbynqixMn1RTxnmkdv5yzZFrWnIgWlQThemI2zInj2bxxMS8iiRQOxGodb+XDqdydrEGdxPxcgt321iAl+P6V10JSeiplKIKM3ouiW9Jf5jLNek19jhvsa5D2xKtt/PPjMic/NpO346DWqsqi9N19ZCmeY9m8z3G57/H7oM1ug5wFTh5dY66/jlj/wprt3T9K4b+LVWwvFed8KJc854ueVI4TtYTq0cBc7oRfEe/F+501+Enm8MQAXFOu/vF6WEyR5zp3iu6oLgIPovTSZi+cRM7P+WwqpGA1g1lbLdum+fC1G6eUVSP0c0TQrnCx+6MI3HaSadI8P3RfnZptoCvFqZT4GHqMswYD9NIh0ZRYduV8OIXyB0TF3MTw+Nuj9vzQmL5V0pzYiq8DrQRc7J3e/puLo754Gja9ynKM6r2xYwG0gVEfr0ryiyW62lCvf1j9jc/4mr7p9zc/JLS93xYtDytH1IpzY2beG07bgiLAv2tffHCKx3ifwtC2+JaXOA9MHfc0+lMp2OBuDDL8L7YMWluPT8pvC86eqXg+dUdOV813PkXTK9/yfTlz3OA65utOKevg3R1iQvTZ2RYH1w+Q0IKRSwy2iPtea/8EF3oUmD5Nsbv1me8V615YirOVMFTpVjHvWypPaWZX4QlZiEJ00mcLtcSOmmaGhW7U1RVS4dKdE4foQ0X4vT8CxZhhWkY883F6PvGEqWzwOSIML3Fbc+ZXn/K9MVn7H9xw5vPKn5+ueLPLPzP05Y/6y8pb4nTwp0WLr3XimA0QUswn7GCatDDzeyeTsWn/Lc1+KqN5pKCENF8SothzFjp1nDZgHe8IiQ9wS80io0yPCkbfjLexE4q2ZslK48KEFSQcs+iiJac08fitF2I01IuzSJ3mIVpxXxvasRo9s6XQc3hiPe5p82tTgj5f2Zs1lKkdhy7qfPzEt9Pd8Tr9P+lTukZv5W6Msd4vkhaz7QQpSfvc0f8EBx7NzFFA5vlWJReRVTUqn2Ps6d/i7B6yrQ+4VDLGmEmK2eom9fYw+fsDr/k4uoPJTja3qD8RPube8T+lzf+QkISvxu/avylC9RFUfDee+/9Rj/j6uBQtaMqVNZVJydtyN3k43sJ5hpHsKNCDwGG5Ny5YpxuomA6UAZookturcvMGN3oKEgofad9HJau6bld5kikxme2dAqxSE5pn0TpKJYlx+3oRcgWcdofHTayeyA4rOuyM8a5nsnuKcw1RbGhKN5QxLb/qntOYRrKuIldtv2F7IQ6PjjLeyctgdH5tDxoBi+8a+/EDeL8wOSHyIodsfbAMF7mdp+joARCFBDj74tCgzYVxtQUpo4H+w1F0WKiSA3kBVfaol3eVIdbAv7SMTGjWlJoVsGZMpwp2NSWzcayOvU0DxTlwxZzdopZb3ILL0AYh7whSs4cCT9QDJOhS2FZ8XU+hEkY4jHgMo1JaRyBB8ELOiLI8j/FAD7vY6hC5zBdj+/3qKrG93u0KUSATgef+xhpMTCE5OpwFr1gMlYMrA4zj1rHNmPjtBQIFpyv7TBxcDsOXcgtnSFYGqD1DjM9Yj+teFVBfxroRjhbeUr7mwvUD//wU8ow4Ya32PGaffdZZE33uJgOnYTpHI6Ii81fHu8H1mhOTRWxGXKdSNdCahEL8726xHwoRRUUIyp2N0jBwekAlDAVuCzSjQT3JcE5iscfUDz+4KtdNF544WHqCeOIMoqiCDQ6sPE6zjultHy5nmma2/qLYj0fWpWOBalrdLvG6N+m0QWmX+Psfg5UiQdarRuK+jGUm3x4FrRHha0LKVaVCmVCRvYIvidE5MMtTv0CCZSE7CV/fjiIKG0OgdNXb7MgPfWv6PrXIkLcwngELCeI8/WsOOFRUfPINDzVVbxfkztHhKXszLkH4eODYrKC19hPZeRJD/ywv+LzaU8fPCWKD6s1/077mDNl+EPX88PhigsrqIlGF6yMCL5rXWZHUjrUtsBGB04K4YivWyuhlxvP+umxwJXcO0/GEbc/MLy9ZvdW8dNPN2ytYRcd3mO8FkWIXrYoQhXmwlq6NkeVgnY1FZ5Kaw6FzFk3jKgoPk7Bo0LAMhKsCJGXQN29pKkfUe+fUF0/Z12dsclc8gZflPR1hddqDrTbfzsOy2l4TSiaLD5oU6MAb3spItsd03ghAUz7TyW01U9YBcasKQu5z6zrJdQLTxGg0YYTU/FCV5waT6U9nZcOqMY4VmtL+fBUAhLfkSngrl5jz7/Avv2C6c1bhsuRfqc5jAV7a9g6zUUIXATLWzdwbUeu3cDBWyagqk5ZNU9jGNxzdP0EH59TEMyFHjvsdI21naxpX8Gfvg/9cftrWmkJM7z19XSQNFHo0rrExJDhdNCU/ApDUCZ3BiUBLYtDtxnVSz61LgCXQ439tMPb/RFPvhvOmcYbxumCNihOTMlHRctH7RkfmOe8UIYnxvMguqRXaxFRU4gdkAOLitbTPIDm2YrV3/gDVNXgLl+z/6f/iM/+mecPX5/ws9Bw7S1GWc5Uwd8wNafGsSqnmYdaSXG6rANFI27J6rQ4ck3rpp0zINZnmMiYNQ+e3ftaKV1AGfdq8Xv9zYX8/+0KVb1GV5doPYlDcyuCTjMZzFRkNxakjpAoxse5LiGhNsqw0wV9KGPWhaeIOAaNil1kIQsI3hVMeb/ksLajmLYYXVOUp9mRa+1d1M6vM5r2Gav2CU39iKZ5D/29v835Bxt0C2obOPn5JcX5z6QrKjLm+/4V25uf8EgZfrB6wvfLEz7WJZ9UE88f9Dz5yNK+v8GcnuG2F/j9Dru9wXdTDkIMjvheROlub0SYnkSY7q3O4Ye3UR5f2J4bP7JzE3svezgRGTxWKcGVFCsenPwWTfOUqnokHOXyAdRnsrZqk/fTS3FaRXHaL1BGWteo0qAXhaFjPnRxvxO5XOfgUlvX+EIKzbYusvkk/44pYOKeTNtYEPEpu+bd5ZDkbGx0wbOypYmPqw+WSysc7svDF5x3rynLn9O2T2jqp5ye/TVMsZ5FtWknYpTrceM5ffclu/0vuLz6nzlB8UG55t9uH7DWBReu59Nxx7kdsktdCmTxhkgFN5G2jh9wsMxk3fi3qzl0rVQ6nwVaZWbH5YI93Ub3dFs7qlXstInuadxxX2bqJJnxE99cnA79XtaZ8y+YvvwFw6cvufnc8Wc/O+HtVHBNxIIFFx2ZPhdBkwkGZmG6USafWUG402/dyKfDjms3igP+K7pLv8n49+uHPCmqOyaBNLxXmChSpwD6qvY0G0+5UhRtgVnXR/OsqurZNd2sj8IP5x+cIs7jWDqjkyj9mwjSXzHC1OP3W/z2HHdzweFf/hO6Lw9cfG748qLlp+Mjfuh6fjS84dNxx5ZAXT/hg+d/i2b1EaZ5D79+wtSuojHEHInTxWBpbnYU2zeE8Uqeu2ITz+3z3+TWjxg3G/rTGr/WFG3AFEF0jr2n2e5QhzcMw1vZW8d25+Rg1jGnxBGYvJxDjVL8bnHCp8WOz8Yrah2L3NHgAIKPUkpjUthqdE7ns1gynvkU5j6L00vndLp7zeJOTmgP/RUiNSzwnLfMg0vTCMx7Z5h1mpk7PYvNy3+/7/0Y0h47xI7au7lhSYy+i2edTQs2hBx0WJgNZXXKKmKhmuY9wUK17+HbB9h4fYyTpegOVG9/ielf0h8+5aZ7JfkMi7PTBs8zU/GgXAlLPCh+yC9/9QX93fhu/Cs2/tIF6h/96Ed88MEHNE3Df/Af/Af8vb/39/j444/v/d5hGBiGefO23cqhpZsCzehxXlEVEVBvQ3yD0cn7foxii4XSenwOJeoyFkDCEecNTK0NrTazW04dh2jch/YYicJBFBFuB+DBjJ1wsa3Gxa1UEqcTA1i+93jkaiOyV/PKE7y0qGOFHeliyrbPrMGOomizE3nJds78ufsWcp9YtzYKyyIYyHsroS5uyJgOCXgaYgW1iw5pi532MfjpNoNq2YCqUMESVCHBKmGZDhwPU8ahvGzWU6DUzN/2+efetk0seVWlWrgmmDekdemkVbhB2nnbZj6QLviSKd01RKHXu5CDdianY5sPuXI6eZ8XqsTDTs2JZdDitI4C04i4mKcYwFfWAdd7CeHrD/iFiKKbtRQKnCXcEqjDNEhgX2wvvp1Im9jZyb1QFMLKba0EOFRB0caNbq2sOI8TV2zaM5VyiCzGc6rhAWZcU3Y1fa8pYtim0VC+o4vhvvGu+9ttf4zHYu02MyltvrbEWZw2RKnwES+neOjyNKqkjq+7QQoDBLn/qlgoSBuzuy5qtUCCJESPYocTcdIZVkNJs3UUjcVsrnBXr1GmwDx49k6R2nf73BaYCh3ei1ie0qhrbTBKx/sv/p26RLmOEJ1WShmMF0esBlzdUEyPKWIA0lJcSu2/lJvsZkrOaR83xgu0XObKaz3z5m87plMAovfilLZWGNNTP7ulVxHjweWPGfpXUah6Sz+cMwxX8nq6gcSXXinDR/UJT4uW56aOLfiajQqcFo668NSFozSepnFHYSUppMS7KGh5hVaB66GkC3AdHC/tgXPbMwSPBh4XNX+techv65ofu4EfDde8jeJMFXErxQINk66LvBZE7nRTeNraUtXCrKxWYDYVZr06Ongld2UxDhSn11SnlwyHA6ttzdVQsvc6C1OQ8g0WIvXi+a+AUSmqsEAFxWu6VgW1tgzBYH1aX0SwEraeODen8SbPo85JUbGaHlKM1+h+TRExMKWJ+IJYqJy6y3uv7XeNd93j3g0EXeRrL3j5OInTzu2Z7A3DeMk07QhhEqa2KnPRMni7cAeFjPeotbinq1vFi9KIK05VFe8KURKm/PWMDuhHbB+Yhui49IktKKLWEGxu17QEcXcXLUXqWLjPPe2cMJjvEYjSuveu7qB3iUrSLQE+tkXpWz9nZtrOXPrEujWLTqUlXmD+4QtxWs+CNTquj96J+DbtsOO5FBYWB6lpusnojt+tNrxfrvmwaHmhK97TgUf1xKbuqSpPEYOeJHBIAuxA7vPEhV0/VTQfPaH68LdRVcP02Y+4+Ec/4o//5JQ/GjUvo+C3UWbBRHU0xkd3X8R6lSF2Tkn3lCkVqirm/IfokEQLxkPHVnP9DVr5lxkSoVnHOWGPaSzlIKKNtQ4fFI0LkZAVC8WEO10hWoejLr7M5IydAxOzeBOyQBDw3qKimWGJdggmIlhiAcO5b8ZhfNf9XUcnWNO8R3vye1mcDls4/VLE6al/lUNQx/GKffeKTRQt3ytWPFUFj3RgU1vWp45yraXgBxnr4bsJ27nImRbjQHBy3bhJ0XezY3qwmr0zdF6xI6E8PNeRB/rWduy8OKVTR0SvAqiCwjQU5Ya6OmW9+pCyeiQ4j9iRFExNWIjTIGaPjLzx8/NMEF50UDYXk/P/s8Ac3d6vZxG8KGM4muC5XKFjkZm5E9KH3PmonJdwUudmo0kyjNxCC6F0bOWXPBKDYq1K1rqIZ5ySddxbFSjO3cA4XeGDlWDnoqUsTzFmlf8u5/aM4yVd/4ZD94pxuOA9XfKi2vBescIoxUt74JfDDeduZFJKxOn4OFCJOq1FtLzVdRgIggC8xxUJZLNKxvspWKIaQdZZrcQ9nfnIOWvGH4nUKrmpFzij4Ow9PbXvHu7qNe7yFfbNp4xffMrwxSXXX8LleX1LnBacx1IMS2dHHZ2kCetxW5y+dBMXtufGjXI2UaCpvvqB3Rrvur9PYwdblS83BSnvIWISUgC91lCUIRYCFUUrruklOklVtYj8aV12dj7ROSv7p/hpMsnfNun8uYnT3uL317jthRSvL19jX33J2z/uePum4bNdw4+95yf2hp8PW76YDvS6oGmesll9QN18IGGg7UNcXd8Rp10sKJXDRLHfQnRO62wqK+YOHFML2qOt8LXC1CJOA7hBUQ2CB/HTLp/FE6rjTmvBYoiLWvO4aPjlcCl7K/mN8tzGj9NeAph/fjaguYjinJEiS+f2u9jw33QkEdss7mmY98gJ73HbJb10Qo/541tGw/y9Ikx3+Bmpl0RplkUiKRQldMcQZvTOFHwWpYlmoaY84cHp79G2z6nq5xTtc0LzCNeusUWZcUzVboe+/Cnj4XP6/kv6/s0cGu86OfsFx1ppPijXnBUVD3TNqS6pv3NQ/xoj3NFMvht/8eMvVaD+gz/4A/7+3//7/OAHP+DLL7/k7/7dv8t/9B/9R/zRH/0RJycnd77/7/29v3eHWQ3Qj4FuClkoAXBevpbc0900u/rCANVhwEWnhtzgAvEXp5qkPC+5RkcBGqnKDjOAP3o2XRSlR4DYZuliW/btsUR13MZ2LEVtnX6WnNhjG4yIDYoQK4AjynmCd9K+60a8GWSTaGqMabC2wvvxiO98H8MujSRKz+EG9kiM9t5h7e44rTcK40uXtLwfCTFsZcmbku2vIkB0jU84NaEih3PJ08zPhzYo5RZi+JiZiql1KEQBJrcNqTkUJbH0UqW1JYpLrc+bpuR2VDEtOrfucrysB+8JPglhzIEI0RE/hSWixWcHdVqIi+SASO16kW08WEM9OqrBo7VCby3FbsE2jsFL73IWZHF67EWsngYR1O8B/+cW6ejKSqzbFtnopuesiAKM8yM2HiLL8pRivMJ0p1RVzb5f0Rdz4Gb5Dc6377q/D/tfoHXA2g7nOia7O7rWUhtZuocTlRbEbVwFaMwxexrme2wWp++6qNOQ+1zRRwwDHoyWlrLrYGjGgnpfUl17iqanfivBFMFZzOkjeZ2Sq8ZbfCfCVxh7aUueLG46/n1Ll48KAR+fe+XkdTYh8d+qGPIqBwdflLj2DOOdCHfJpZXucdOAqTPWw8eNkC8NwUAwZKHwthh9+/MkWg/RLd33YHslfOm9o951OfjQD2+5uf4jhuFcMB7jTeyyGNDB06I4NRVnpuZ5ueKvlyc8UppH2Zk8ZqdjUYac/m7K47kzuPl+TJ0NPiZnX4fAF67n5XjgJrbUPzAVP2ge8n3dYIA/Ha54bTt8CFmcXl43qT146Z5utKcxPj8+EadD5OGeoNcbzOZ0ZlQumPHm9BF6veHR5c+o6o76ynHdleydhHQtCT/uK0Rqp2TeSXxqh6bVhiYYBm+wyuPVXAhNR5SAwzlp5c8tmq5jmm4oy0vBUph1Lmom/r/3PdO455uMd93jaX3hCOsxBxhP05ZxvGYYtzh7yC4eo2tM0aCUwYcxduSEjPeoIn+6VTPyJR1USi3Xj6qqnG1w9JimfiFOL8IRe7mmMns6CAe093IYGeKcn0iNZbGS7p9CnsNg6syjhdiltBCJIDqg38GEvT2WqJ/ZBS0dRRoWIvP8PgWmKlVgTIXWVfy4zvuBJVIrFbaOhOmlKJ3QH97hu5dMg7il+/5VLEJdY+2OEEbaICFMz8sV/2HzmPeU5klpOW062tpRFD7r3BJgJ51JPqjMDW8qx+ljx+bDiurDF1Qffh9z+pjd//v/wi/+X3v+6etH/NAPdGGiVZpHquRMaTZAq4+F3mMeakCZgDIqhx9/5YhOva87JLR4L51PphCOdVUKd7WUv70oNIUTt7+gPiKSJj7uJPZoHTBB8D8mzEKbXrwZpWVvmgSJiL/xwaK9xSkjbPE4Mgc51GhlcsbB1x3vur+r8jSL0+Pz37tXnJZC1IFhvMpoj4+Khg/KNU91yZlSnBQT69aKo3UTu1G8I3Qdbt9jO4frQ8R46KM1wFrNvi+PXNO7AF0IXOPZBcvOO278xI0bubA9fXS9DcEzKYVWDUWxoqxOqKsHNPWjGecRi3jLIELl/ZFILV87zk8JqkAbCMHkwlz+dy33IjEwnBiIhqmx61N8UWLrClcabK3xtYJCocuEYgrSyDApiDi+1PKfQhoFtxONJtnw4Y86G5crbKm0IJOUBiWFn7S3LkbNW9tziGzqfbGiLK7QWgqbaf+WClXOHWgD/N76Gc9MgyPwud3z037LpZ/wSmd0UyDIaSEhBRb/ppQ+MqikM8Xtx/6uwLXlSHgPEIxOUYY7c0EK3lRA0D6bVTjac/e/0knt99ciTl+9Znr1KdOrV3RfHti+1pxf1Fz0FRfR1Z9wHrJfncXpOdzufnE6hyL6gUs3sA+OUYFWsp5/k/HO+zu+T27UioBWM8M3za2F8RSFZAbMgZNGkB6xCHiETkzCdMw7SBk76d+SUJ1Far7Z3/ONxn3C9NvXjK+u2L/x/PTTE34+FfzYDfxsuuHzcccbN4JpWbXPWDVPWbUfiAjZPsxdacKGn8XpoBV6CmLomOYOSEwDRZ07lYI2hKJibGtsrdEtFJXc99OoUEOg3nWo4Ua6s5wEx/tgSWklGQmZs5DmM1CF4lHRUPWSgZOL5YunRC3c0ynLK5uEjs7u345K6iMK81eNpd7ixKl07KK+hem4T5hOovSyC36+/94tTCfH9KUb8r8LukOhVUVVnlLXD2jqx7TNc9YP/k1U8xhfn2DLMq8XRXcQRGp/jh3Oubj6l/TDG8ZpxzTeRDf8iA6etdJsjHTcPi9XnMTg9jNV5EDq78Z341+38ZcqUP/tv/2388f/1r/1b/EHf/AHfPLJJ/w3/81/w3/2n/1nd77/v/wv/0v+8//8P8+fb7dbPvroI7opUI8BVyzQGh66KFx3owgofS94D3MImHHA2h3Wdkz2gPMDAbdgT8/hiLcDNCoQnqUSV1bezOSJbub/EdNfnYIqaG5HGyVHZvp4GVSQhk7Lr0qSbhRflUzEwqwOOGUlBMFNoDTeDyh7wOoKreWQaV0XBeoyuqdm51Q6mMLc0pscdYlJKY7VJEZPONvhvZVFL7XzxCAE8erJY60RvEYRD023gw88YOMhfwoBq6wwA+OmM7n7yuAxphVBwg/56z5tqBcOuvRsJUf8XGzQtPlN0erAKrqnq9Ut93RqMavu2Wg6Jy4KB24C63RkOEsL0Bj/niHIW+KIQzS2BB/FDFnYOqPpgmaHprQGPZSLtGBPdboljCN6HNHNYdECt3B35yfU5VR7vMWPgziwx5EwjsJoXChf2sim3Cg5CFdORdatyc9Z3CLi3chkO0rXM01byumasr+gqBrCsGKqRKgsi5C5xV9nvOv+HobXoMgO/MmKe5og/Gx/5Jz2+SCTIuEaZWh1sdiEeXRQ2ck+BY9RihGPCSpvgKqQqvJzK5lBMUXeHz5+XUPlDFVXUV57TDnRvnop94+zhLFHt5s5YTwWF5aha66zuClym8OxI6BQOs4tLruoM182vve+wtoDtXOESlwVyj8QYWlaiIiRA+mrFnerHdiVilAo0IL3UBHdURRJxDkWqCdLRIDAfqexnbQUVoeJen+g2N+g+gts94pxeMUwvOX65qdM4w3W7vBhpApwqgxnpQTsvFeseE9XPFWG36kn2mqgrR1N6yIDMr0p4hk1j+BFnBbkjtyTaYwjXHvFyzDw2bTjwg145HD9vfqUv1as2SjFz7ywLm1skS9UEogChZrd9JXStDkYUYKA2srS1I565alWnnKtxT19eoZen6HXp8dBP9FFHaYBvT5jvb1GlxeYcqS48JRdxWEyOQl8yafPm+1b+/4qdgAQZEPcKMNKlUw6FsiUj4EuyRUHTknxg4iJCj663+wOa3doXVIUq7xeALloae34dW7tPN51jx+592LGqhQ5RZyeph3jJKIGMb7RAVWxQucAnySqSCHURKRTrQoa7dEqMPl030SBrwzzgdg5SFk/3s7u6X4vbPn9IbqnFeMoBQ9xT0eB+tY87xQoDGWxloKwjmzYFFimtYhE0Y1+mz2dRJflvX4cmrYQuW+J2Ylju8QAHbFrF2v+7WJ14tqmUOIsTJtGDsfxkLwMRVRugGmPH6+4uf4j+v5NDLe7xtk9JjhOlOFJseZFteHDouVjXfH7q4F1M8WCZoguac3YzaF1LkhRodSBTTOx2VgevOdYf3JG/Ts/oHj2MaqsmV7+jH/6f3b8f/sVn7sDRikeqZJHyuTgVIgiSlCUhLy+aoPMJ+ZuES5ELFZwDuUkxDMXen8dl82SkRoFbl1pTCkFk6r2eA/lWAAiUms1C2c6Cz6I4Eg4XqMyxzOKcEHNe0gE86GCkSBhpXGRRW5JRU8pcHhlcjfK1x3vur/b9oMsTu+eb2AhTtvhHBe7GadpSz+84dC9JriOF83T2EFjODWeTW1pN45ypdAxUMyPI64fcAtxWgTqWZhORY6bsaD3mt2Ra9pl13RCeuzcxI2fpLtNceSarsoNdfWAun5MVT2ibJ6jio10RizE6a++BowEjmpQoQAKCSJVcwgacOe+C4uup3G9xtYFttaEGIwmptGFsOzFQa6mIKJXN1J2HWboUcMNYbzCjdfY6QrrDtnwcdyZETuS4mdp/7xBirROmShYS1ZPrQ1vp44bu+fm5ufxjBFfK2/xYcrdUidoPqikg2IMt8Xp4wBXhcqFNK2ToWa+WdPaJQHZevGIbz31R+vosXN6OZKL+vY4zoTxYLzsqcdRDAfTgOr3cyjmPSJ1mHrc+Ze47XnER71mfHXB7qVje15wcVNzNRaSTYETrMcir8YnITGdJ+J9vxSnjVJ0weVQxEs7sHVjFqeLYoU27b3P0bvGu+7vkbmbWLqGE5Ysml5uuaeLInGnNaqMRb6FMB2cQxl7JD6TeOlJpI5C9SxOx/8PIO6t7u0K/oYj7QNcRHm4y9fYywvGV1d0557tueHt9Zp/PCp+Mm35fNrxcjpwg6coT2mbx7TNM1arF9TNB+KQrSWQ3JUFrjS4Qos5RCuUDxSDRQ83cEucDqmgoE3unJhWBWzARHHae3CjGESK7kAYr7DTdTaOEVEdqRP7XTO8UYonpmKtDDfBcp9cNGM1/eyejuhOcWnfTkD49cey83gpVC8/nvOEjsAvR+Nd4vRSmAbyOX42LR1jWrM4jcsIzy6GY/fBsfOWaeGWbqsz2uYpbfOUun4qOKj6CX7zHj5uOnJu13iNyx2mbxiGc272nwmG1klmgQ6eBsVKl6x0wcaUbEzJY1NzpiQUvFUap35zzOb/0kYIIRtxvht/eeMvHfGxHA8ePOD3fu/3+PGPf3zvv9d1TV3frZDuRyiGQOUClZ25QiJQw36AQy9t524PbTdhuj2H8ZLJ7nC2I/gJFZ3OZiFmlpjsnk4bmQTer1SgVAs3jgo5iIuFSO1QWbiW1HWdDw+GGKyH4AXuiNPxa0uROjEFVXJRx3/SUewWOpKLB16N96McRmNauNKFtPUqfcSevH3IXVZFQ3B3HKshuLjRXPCsglxUuX0OjdGycUoJ87edC0mUTwGCeAlTmGL7OUqj7LwQGj9i4gE8uaeziL1w0CWXdvq9pZ7ZbLfd03Xh7ndPJwe1XoQewQLzkdAMcqCegrR8jwSGYHNrj42LWd5QBvBKg4e9t5TKsPOaSosQbJzGjGlTP2EnR/V2ouwcZt8fcTFVWeX2Y3Vrk4ezBOcIkwjTspGecoBQcJEvHOfiWRCfuwNK5tfOBCdYACcuS2uFnWqmM0y/xxwe42rFWEDXQ/EN9ibvur/H6QalEvvaC+s8tqrldOjsCkgbEyWs5gCtkWLTsqoegTiC88itXwaUEwvxQqROz0WlFH3uivD0sv+KHRQKYw1mX6N1YP1qB7yU573f55CXzC6PLptZ+PJYK+zx+flXlHou5ljE+ab8iIrfl1yWLrLY9djjNxtCWRC0xpQlemqPXFu+KHNieApKTeJ0KBW6juJ0Ee4Vp5Moba1iHGHqFeo8sNr3R6GHU/+Kabyg798yjBcM4zVd9xLlJ1ZKc6prnpQtL8o1H5iG9xJ3trJs6p6HT6Z4TyL3ZSVuG4xGLVSkENMYg/PCHh0981QWmAZNNxS8DI6fxcPDGDy10nxUn/BvVmc8VZrPg+OPx2sm76SIxoxiMrmjxkgegTJRnIa18axKl4X0ZuOpTzTFWU1xeoJ5+OyIVyucysV17hx+fUa1vUAZg6nO0XqiuArUXUE3FvQxjG/JzQNIrPTlRjshplzE9PTaMATDFAqZi2KXRAhkkTqk0qmHgBR+XOzAMbpET1u0rrLgCeCDwy2rAF9jvOsezw7q9LmT9UWCEQ+M0zXDcIV3HSZEqU1pYbEqjc1rgKyAGnH61fH1WuI9UkBiaTy6UnO77NQLjid3OGyjOH094wP6GeU0BpWzBroYgJNQAC4ey7QqMGYV3dN1xnuEW8VEFu7pjN6AowrMEvOxXK+Xr8nxv89i9PL/eZdTWuvmyLF5JI7pglCuWGZVKO8k7C0K01P/ir7/kvPLP2QcrzPG46EueK865cNyw28VLS+U4Xl0TK9b+Ztl7jNHXOBleNFJYdk0Ew8fjzz4UNF+72Oqj0WcDmNP/2f/lJf/9x/yfzo09GFkrQoeacmXEMEEOsgBSc072v/vDOcJ2qOck7UTovM5ZUI0hHH4+sxZHwXue4RtEcdn8bk0Hhe07C+jE9Go4zUamBEFYdHenFzUYdGtFgQHBzo76ZTXeCVvaWg/EII467+pg/pd93ez+X4Wp0OtOPvpBcXlp3fE6a5/Q9e9wdobHirDM9PySBVsQIqAtaNuA0U7F5WCc7jdOBePDio672dhevKawWouraFjZk1fe8s+WLYxAHEfedODd3SJNa3q7JquyhOq8oymfkxRnlLWj7M4nRnsUUhT3h3f53EEbaTQoQvpGDGNiNO3g94WHQpLYToJW/1pRahlvTaFvKWM+YTmch7UECi6RShxv5d7dngrzsrpGmsPjONVzPXoMwogP2bIomhCW50pxSZei53XVLqiWgQQ1rbnreuYfIfKfZNyPikDnOmSD6o1v1VJt+znds/Ph5t7xemE8zCmQZsqn1/S8MHPZ4V7UEhwLFcZNd8rv2pIV0V8Htw9G9rRypw+jvh+P+/xnEV1MkcoY+b9eMTvTS9/hr18y/T2nOFtz+6t4vqi4vJQcTUVXATFdRBnfwpAzuJ0mPcladwWp8dYfLnyAxdWBOq9t5JBEq9no78ZK/ude3RiFxfcCw1JhbWi8Pn5NAs2esrFCc6BFpHZj6CMlUKOc2AsKRwxRLQh8WPlLFQNjL28p4fYafjrhlUmxvT05U/xNxe47SX24oLx7Z7DRWB3KcL0y77il97zj/u3vJwOXLoRqwqq8gFN84i2ec5q9QF1+wGmfoJt1+8UpwHMFKi6AWxEqSQcnzZ5/U2dj7au8GtN2Xiq+MRPo4IdNNsdev+WaThnHC+EDe2TEcCjUocxx2YxiCKtgjNVcGIqrv2INnL/3jcSajGbBO50Pucyw/z8Lr76rjvRh/BODnUSorMonRzPahaYk1lDutkXe8CvEKdvu6bvID1CCiT19MGKuSwK04eIdxuCx6oCU6yoqjPW7XOa5jl1/XRGQVVnhKJC2RG9KPCP0zVj/5phvGIYLyQfbdozTtexyz9Qo2h1kc1XKbj9VFc81SVtLB6m5+G78Q1HCH/+iI9vp27zV3r8KyVQ73Y7fvKTn/Cf/qf/6Tf7/wYwA1QOqtj7OzoYrYjTNwc4HGTjag6Bar9H9RcStGb3EqwUHCZAEd1xtRa0wVxhX4jTzOJ0FZ1ZRsX26yAHBR0UxisICqfiZKgULrqoK6Uzj9glwTbE6n6ctYWHu4z5mAWT/F4J1GLyDrto3ZaNTPoPVNDgJxHi8+FVi7MhH2qP3QgkQfAI8xHfoju6DGRRfymoFdH5mTAFq+hgrbIbbK6EpnCGFBIp/+AIIWCVuEalFVVcPiBuWnkfUQ8uOj+ig9vEg1m5eAyp/e22ezq15pd1kDCz6J5WZXMH77EcwbmjgMTU8j1CDjAZgmP0czhCFqiVykFYnbczPzIvxgXOaaahZHKK1SSc3fbgKJqJorEUTY+utuimEqZ0Vc0CtTHHmz7nRJj2njBa/OixvTi1MhIhqOyYuuPIUvMRw8fDrYReHkREmq7R0wOqbqKvK2whIrX9FlbHyXZorfI16SLK4/h6dHe2QOKe1qx1ebTJSUWg1LlgFk4bh7StuqDzfZGE7Sq2UIrrOjBhRdaL0GpDiZkK9K7m7K0l+B31ZCm6Dr3eSijW4vASxgF3fb04XJtc5Ei/NwWAFChsiMUnb0HJ9Z8cItqPWNuhpgNmsoxtjVvVmLIQ3qRfHDa1ZqrLO8K0OLBEnDa3xGkQUVocjrIJtp1CdYFqN7F++zZjPIZY9R/jBmsYr5nGLc4deKwMz+pTnhUrPiiaI+7saduxWieBF+qHlVzbVZWvbWXMnU4B33VyL44jqrKoTl4ZE+/NcZCAxJ/bjs+GHft4v71frvg36ge8UIY3wfOH4zWfjguMzmIUStPopTht2ChY6yROp1DEIKE/m1LE6dMzzMmj6KA+Q7fru1zEEkyzpnz/t2OhyQCvUcZSbANmFyijcDd5jQsSBuyDiu37ZKF6DPNBUVptZc6rVcGoPXUw2JDCdn0MUZPihwoRjuMCQbvsSHPRqSZu2+PH7r6lTZwUmRYMz4iTsu7ANN3INTTtUEEKoVaBUhWFSY7uFIglLtElf3qjTRb3+oUwqXXI+q+w+p0w4Z2NovQuvj/gdnts50QAG7R0ywQyE7QPx3gPByhkfRWERp3F3tt4D+WPxfn7eNNL1uOyULD8+pIZrbWZ3YbKZKbwbXRHwnfcJ0gndIc4vuVQDKCcm/EA/XnmIh66lxy6V/T9K6oQeGwq3itXfFRu+G3T8EJrnlUTm2agKmU+2ncFgzUcJsHZjGE+OAKZ7f54M/Do+cTpbze0v/sDqo//GvrkEf7mgv0//u/48f/tin94fkofOh7qkkeqoIrdZV2e5+fg24RxWvLq0/A+SmkuxFZ+i/Me7dzddtnYuaTXZ+++uBcjjEPMHLBH2RCJY2tKMDZQTPO+0i+wHqWZmdnxyrjzO5Ysao1CxT2sypgPkRpVMPM9viw8+QqtZfvwbZ2hpmffp38q4rTeexGnu1dZnLb2wDCcC5N4vGQV4Fm14qku2SiVi4BN6ygaMnIhFdxt77E9WZzue8PkdGZNdxHxlHAJu+DYBcfWTdk1nQQG6XjzOCWCaFmsqapTqvKUqjqjqh5SFKcU1ZmEli3mxHeJ0neGWqA8PEd4tqN7L7bxL4Xp5JpWp1BUnqKYu5xgDjW2oxIO7d7OqK3omrbDOXa6ZppkXbb2wDhto4gVTSjJbUny3s97pwrpHDopLKUJTE7R2gLjSlwxn1n2UbBx0cSigVppTk3Jh/WGj4sNj3TBn047fjZsOXfjQpxO5xIVC20VRbmmiMW1NEJwcrZRhvDn5BYMjtxdk0Rq7wI6o4DieWR/E/ciA6FdS6EiuX0X4rTbbxk//SXTZZfFzuubiuuh5NIarpGsDDlHHLulIQrTi5vTKHW/OO1GLm1Ee3jLoKTrKBVbCrP5Vp6fKRxnuLiF6pi6vdL1ebtLJfiISBlHRGUdwcfzizGSO7QQqgPDnAdwS6jWCX2YOtSmQZBKZcM7QxN9moudiNIxG8btr/H7LeNnP8NtdwyXI4cLxc2VONxfjyWfe88vfcfn054f99ccVMCYlro6o22eHIfe1U8I9WnuWkzitC9VNvynLoeii+HTEeeT1mBB8Yk4PdXini7Xszg9jmD3itVVR3lzhR/eMo3nTJFBnTud8YvcAvJ6AfO5CKCN4fLB3Rztz9Kqk7pt0tksuaeXI7PjY19ryJ8di9SpCMY9HQ2xqU7+PXb96Whsc9HMNgU95wkRqIJoK8nAsUQ23ldnWo53idMJ+dQHy8HJWrFzklPQx3XDxo6bdvX+/cJ0uZ47ZKYD/vBK5uLxnHG8ZByvGKct47TDToeIb5zQwVIhZr9aG6ooTm9MyVqXPDAVZ3HfI3+jPP4pfFur+Hfju/EXO/5SBer/4r/4L/hP/pP/hE8++YQvvviC/+q/+q8wxvB3/s7f+UY/pxtAddCUkPIqRict6IdexOn+IFXFdttR7GLb+XTNOO0IfiLjPZSm0ia7AJbi9OxOIbctyaEhfhxkqp2cEnagBueX4rTCxQnUKEWJiNUm1jEnPCU6OxVyS8s9BUR/VA0M2Ch42zxpS0hTEqujpxrnbVySFCkABTRKKRandWlxwMWqY9xcRtE3LWylMrTGxDbqY4d0wkJopSiRoMljATY+9uicHpVnCDYHCQYVokM2EBC+sIsbVsssph8F5LmREMQJXzCL07UWVEujCgm7VEbaX5DDb1tZqiqmdN92T1fNMd85OZKz6Oujo1QzOQlbSK14g3fZUZeSe9Pir4JIqp5A52dxwhOYtGfUno6Czht2Y8mpM/hLRbu3NI2jqn0MdHSY0qJLMJXO7Mwc3BJHcnoHF3Bj5GaPIXIaRZh2i3betBUxqIz3MEqj4+Ym+AnnBqzrse5AYXeY8Yqy63ClYTSGQSvUN2wRvm8410M6TC9d0ziIjyeZyoTQIb+zCLAyBa0u5s1XdAa4RQgp2uLQuGCkIq8CrZL7ShLe52u+iuGFE4rRe1xwZN6AAShxY8nDt6Vcm2NH3U2Y9R7dNhLIll6TccRuO6a9ZzxIKOYUmcPp+U/dBuKQC0x4IHU22NzI6n2Bcx1hvMIMj6CtcYXGFRpdF6hFWGXQClvL/JSEaa2D0D+K2S0t7YIqCtMiSrsROEDReVbJkdVdY7c/jRusiyhMXzIMV4zjlhB61mieFA1/s30aRWnFs2riwXrHyQN75DpOgYLFwyfZdX67QJTEneAcqpQAOxH+OnAePXomL466fVfweiz52fiGKycHyRSK+H1dsQP+KB6QO28p4n3po8CT5o+1KjnNArVmrT3rwrGK80fdeso1VGcV5nQj4vTpI8zpY/Tpo1/p5DEPnuW/SYpL52jt0Dpw2HuKGO41OSmGpY4drSJeKiTn9OyibtF0KFptmBAW9aR9Dkw0+fAgBwcVvGRLeS/hu8GifBKoo9NyIZ5+0xC1dw0fnLSf5rwpEaet7WSzPl7jQ09Jatw20qKsyzg/iHs6dc+keUsKCgVa+aNDiXAxycFXRBSPJ3Y39Hv8ITmod/h+jPgAcWX2VtORUE7hyD1tg4QjgvDhC7MSbMYtvMdR0SgGmiZBOejq+EC4wHqY3PVU5K/dxnRpZTDFei5GL1nSS4d0ah9eODWTSysdhpeOaT1N4sDszxm7z+kOn3LoXtIlnIc78EyXvFeu+K3qhI91zcda8biybJqewsjfPE6aw1jwpi/pohN9XnPkLa3PDyrLe789sfndpzQ/+BuUL34XZQqmL3/K9n/4v/JP/seW/34oeev2fGRaNvH6vEaKxGlI7oQIO73XVCow+UDpNIUPEQ8k82Nw4HVAjT4yqT3eeZTz2bW7dNi8s/h0+zrv9/h+H4WqYYEP8fm2kuty4aaO121plqFtcxhsuq6XHUJLDnVCfMzt3CF2TkQXddB4P8k9Hjw+ODE0AOHrOs1/xdg9WWNqhdl6Tl6dH4nTEnz8VpAwwwVlcDwqGp6XKzbIPq3VEj5btx5dzoK+HyfCZLF9YOh0Fqe7schO/N6rfI1dJGHaizC995Z9FKc7bxmCZ0SCrMriJAp5myhOP5DMjfIsBp5upKCTRrByX/m4y/sKDrX8QxSpE3A9/T+3hOk7nOlWo+tAuwk56wNSZ5N0NbkxBRQ71m/O0d2VCNPjdRSsttGgs8O6Dud6pmmfcX1pPr0vhHXJcjUK6sKxqgLN5NFDiXE1ppBrbucmcRvGv6/UhjNT8X655v2i4ZEqGQn8dLjm7X3idJzXCtNgipaqPMndkyCdYzJiJ88d5+ZXYwzuG+9a0byTwqd3If8a54MUdF0ARtz1NWqMgeb766PCQxgHwjQK0m1/YPeLnn6n2F5XbLuKrTWC9MjMaZfF6eVIHbTLs1SpdBanXQjsguMyctQlGHGiUwGtROSvyhPq6hF1/fwbPDNf9ZxFqnEUBWHuVIK7XR9ijAn40WOMdKkwxtfSGEIyI3gD0whlRWCYu0R9AZMEKytjckh8SGYiU8zZPHDvHhKSUWTO6fHdPiO9/G6H23fsPhs5bDXbbc3loeLVVPAyeD73HS/tgZfjgUs30CnZk9T1Q9r6MU3zlKZ5n7J5jq4eEOpTCb+L9/KROA0oH6i6ibLrBPMQuzJ81UZOtVkg+Uqm1sAGqoj2GEeY9prqytJcXRK6V9E9fSnuWz+belKHccopSGvF0WsaAq1SnJi467rv3lI6dra6uaB19H3xhHJUUBGdxCvp6klfTnBGuYzivx91Ws8idTL3TRHXaEJCNDoMSvZlKjAyG65uV1u/2j19j3Maz97bLE533rL3E50Xg8KEdLQa01JWpzx68PuzMF1spNNGp6LKnuB63HhNf/glQ3ROy7wspsmkZyTDXWL9V0rTakEpbUzJia441eWcC8B8Pzqg/86q+2uN8OftoP7udfmV4y9VoP7ss8/4O3/n73B+fs7Tp0/5W3/rb/GP/tE/4unTp9/o5xwOso4NBZSFtLVNVhx/fS/itN9Csx2pbq7xh1d5k+Zsj/cTJpBv/iRsGo5D1WbGVmT+RYdLDq3JbcRxUvYaYtBNCo+QSUN+vguBkoQT8DH5mFxWvC9YMU/Yt/4pORamKOo6hN+cRGsb3btjmF3VPsjWJ8Tul6UnZxlmOGNP5H0VRfxaGVa6oNGGMk6eyfE5i5pklnF6DmGxIKiQAwL3XtFqOz9mH7BJlAvCrsu7x8S+SmGMfsqYhyK6ussoUtSRwyphWTPaI7ly6lIE36I16KoUZEZyT2uTNzd5wooMSj9O+OSgtoremYz36JJ7OockxuLB/PKi4kK7dxM2ithDcPSmpPMlO+3YRUHs2mp6X7MeStad8G5L46kqT5UCR2JonDIzo3c50lkjub69V7Mj0EaROsxt1WljnINlkhMrHW7dGA82N5TlKd7uKboDVVHiiharNeFrtlF+1Qje4nD50JQPUNHFb8LtBjL5rFGaE11S3nIjpqJIdlJ7uQ4n5ZnQlMHgtZSsHIE2Yn5MDMVrtGF0nkkJY9y7gNdZJcBR8mTXMDnN2TCxGhz1ySE63vXicO0Yt47hBjlcT9KGPAaVgAvyI2NHgiZt6CKLOrkuAOdjeOVwTtk/pxxW2SFty6R8xOfTAIVwppNjWt2D8ViK0mEAcwg03US132O6PWrYZsf04fCLGGJ3yTDIRqsIliem4r3qAS/KNR+Zhn+nCjxeHzh7NLE69dQPC8qHp5izM/T6RISeiMHQ67P7hekYROSjG4lY4PGAioecdF/ubgre9BU/C47XU4cjcBZDEX/ftDjgj+yeHw9X7L2NLg6Zp4ooTre6yJvAMyXYgDNgXRxzp4smUDQGs25n7vTp44h3+dVtpnp9JniJGLAkwUtXgIhSRRcoR88wGQY7d+wIU5pZqAaZ1IlONwyd8jSqoNdxPlLyJoipENv/xVWtAkcHBaUDKqSC5nEL9bfFaQuRway9dD5Yd8C5MQdqOXvIuCCnwJgGUzSL/z8djAIqdh8l/nQb16Fl4QeOD82JBZ6uLbe/jpiPG9xuz7SzjAfplEnIgDHM7OllEO6M99DSjm6E8YxpovC7ZDcLfxoE1WFMld3USya1jq7qd+VGLF3SWtdRjG7uCtLvcEj7oiQYk/EjrkxBTCKka+fFgXl4w3QQYbrrvmTfvczCdBkCD3XJv7d6lh3Tj8uJTS1rlQ+KfV9ymAxba9gFxZvorgS5VqtYjGuBU+N51Iw8fdJz9u9+n+YHf5Pi2UcEZxn+7J/y9r/9H/kf/vkj/id7YO8tD01Fq3TmCideK8j1UIXEZNRsgqHyGmODhLsZj7UaZUSQdpMEo7nR5yKGMh41OsJkUeOUhWozDeiyJiSET86ESLwFmztmMtO838s9Po1zwBqydoPKocVGhbxpKvVt9/S8VgN3XJbztTOjPnwQzIcKsTAVhQWjRKTWSkecm5g9Qrgfl/CNRwnl1rF+c4HZfsHoe+Edx7Dlfjin79+i/MhpDHp6ZpqjjJCqkv1Nej38ZMF5XGexvWJaiNOHydB5zd7pI6THmyhK3/iRztssoArSwwkzFIPRFU3zkLI8pSw2WZw2xVoKP7rJBSIWBgPxftzDao2dEmmEiADJ4aIpaBSyIOXLElvX2LrMAYi6hbISx2TTzMxZayWkeOwVrlOYnWe1H6h2O9T1z5miY3ocL5imHZPdxe7RIYcjOteTZCJ5kOJrTPi+JApBQmRIoSTvQ0tx/dPHCPmC/DxPwaNRrHTB06LlA9NwpgwjgZdu4LXtIwtdxOnkmlaqwBQNVbnJbnalJETXx5DjJKInJ2cKSvwmAsAsTKXOzoUw5pUI0KXK4nTKugBx8wcf8M4Ce1Q/oMu7uD0/WXw3Me0d0x4uXpXsu4LroWTrDNdBmOiSaTCL0waVTU3zD5w/rJTO+9MkTm/9xLUbuHIDWzfRR3HamFV09z6lbV9g2o+/9nP0VWMkUMZzMdGQlZ/b2KmSCmqpECisZOlQ0c6jqgLlvHSDLkVqyJ0ryphc/Jm7RYv8b3m/uOxquBVim+bbMPVHRYMwjri95MGIaQT6nebl2zUXQ8kbr3jpLa/8nte2483Uce1GDsExKUVTP4rhd09p2+dU9TOK+jGqekCoTzJ3epn3EiJVUNlAebCZD0+wR1ifFKaYOyhajdpA2UiRahylQ7y8koKU2n3J2L/KnYyC7RmjGc8LHzx12SwyC25rDhVwoivKADY4brujgdyFkxGb6XlXaQ8ZSyrxkKbE+wwEgpI1KcFDfEKWLlzU92E+PDMS1MSMlsk46V7HZd2hCiF3F6a3fF0y7wfvoj1mcTp1Q/fBceNGDlGY3ruJPhY0nVIY3VCVJzTNY1bte6zWv40pz+Zw22AJ447g+oxWmqYt+8PnjNMNznbCmI4ZAAGHDtK4IaK0mABbLaar9eJckrrCkzif/74QmL4TQr8b/5qOv1SB+h/8g3/wrfyc3V7hjYoCy9zmNo5g++icvuqpt9ujiVvC1gYClgKZBG5zku9LeU4jh9WkwCUdcF5RLmp9zhkMQdpNk7ttwQsUgUBn1EdSL3USDpJreykS3vpaGkdhi0mEYxbjBOrvxOGFhBjIVu542VFwFGaYnpc6tpaUsd29UUUWfZOzdHaazq7zdy0MqRVnRGMQJ+qNlhb0ITis0vJYQ8CphSjnyAFSyc2bkollQlfUSlNqQ6VNdNFKdTG5H1slrpy6kINPWQd0ZSJOoM6bHfUO96YfR4L3+BjGNrmZP90lsXnpno6unJCf4XkRITgmn0IVpc10pSdaXXCjRVhfq4KRkjZoWqfZjAVr42liy29dupiQLanjZe2P7oeZoSe/33slwY5RXJ+cuHdvO3jna10E0uTkdTi8H7HRRT1NW4xZUQw3FEVJbTQDNd8sQu3+4cOE9irzZUXACRnjkp7NOVddRNyNrnI4YuabB3LxJh/mA1jlc9dEqT0+itaj0jhFZHrJdd6qwKQNk3dMRHSLT1X3gNPwha0ZDzWDNTwYRlYHS7XymNJl9l5wgX6nGTpN34mjsIvBa+n+MJFXr+Kc4QhYEpdFZ5FauQEXNz5F94qyanFlgdclQUMoEQUzadVlEqZFnIZZlA5eSQ1mEsdbE10dRXdADTf4/u3RBmuabtjufsY4XGLdjg1a8B3VQz4p1rzQFR8Yz/PVwMff62ielBQPH1I8fIQ5fYQ+fZz5zCn0811OxPlQEYOIyprQ72Ec5u9xcl8etoarfc2nVvGj6YYxeFZKQhH/jWJDC/yhG/iT/pJrNwruIs6tRSzCJXH6oa4y0/YMEc/aytLWqZtB0B5mU6HaFt2u0OvT/Hd93aGaNebkkaAmxoEwimVdGYcykrVQDAE9BKwT3MeysDTGQDXZ/6dQX3FST3HezmKq8nENUFlUDVmQSAF9UfdV81221MC+KaP2XSMxqF0UZ50bsXbHMF4xjdeoYCOKBJQqKUxLWazkMYQUoit/gYYcjJvm/TSjJeEhiSvyRZdbrwPics3BSLtj9/Q4Cjag95qOFJrjj/AeHjmEKV1SFm1EajTRmXy/k1Ll0K85iFLnxMYZ33Eb3fGucENtBClyW5C+7ZAOxuCqGm80rogs7lhAU85LCN9kKboD/vJP6A+fst//kn336igA8ZEueK9a8WG54d8vVjwpHCfVQGE83iu2ozgEt9EhmNzNmWkbD1etUmwUPCwsD1cjT58PnH2/YfU3/3fo9Rl+f83hn/0/+Py//SH/8BeP+BfTDkfgeVGzUQUvowDZx/BhIHdxVUozaoPDsENjvEIrCSQuC4+dAlqrXKjzY0BXCpe6T6bI5h+9BHhNFt11+L4DXWBO9zJ/NevjrivI7f2JaR76Pb47SC6Eu+tMS2JOMj1oFSiLeX2X74k/GnUUtr0ciS+qlEIlkVpeZZHjgiIowbhppXHeov2I1hUhdi19G6PcOtY7Eafd8BbvepzdM4xX9MMbuu4tzu05U4ZnZcuzohVHGMKeTiYCCTXV8pzFzAHb+7yGJnF678xREGIXPNfBcuUHcZPeYob2sTVbqRKja4pyQ109pKrOKIsTTLGmKM/kvoqhofIi2OWTmp50QFzRd04Pcb5citVJmE6M2SXOY2xLfK1gJWJUVYljsijk9R/H+4TpmAWxv8D3bznsfpTX6XHaiqnAdrHzcFhkeETcTHxYt88EQOzOvPv6ai3XpdbRyRxF6utixd5bPIFS6aN1dAyBN37ix8M1o1JoVbAUp010TZdFS1WeonWduejLEPdlQJusA3cxA+8ac6Da8vPZAbwUqpe3guTOQHAKplRYip0w2s6dOUixXM4JAdureK0a3mxr9k7mxOV1OuIX+Ln5rJfPdwuxuoqs2Qp9JE5fuYFz23PlRjoVQJUYI2iPtnnKavUJ9ekPOJw+/lrP068aU4hYhWzCSoasIOjA+GatjoG0Hnq5boL3GCfdKtnAscgZUUaL8WCJxlqKzrcE6HvHLdxhcA6372fU4RgYD7Nh59DVHMaCq7HgJxZe+pG3buCt7bhyMoccYkFL6ZLSrNmsP6SuH4lrtnpMUT+G+oxQrrI4PcViEzoaRZjF6aobMIMUycU53WRxOiFBUgeFaQNVE6gqEae7ax3F6Qv09jOm/hVj/zrjIiZ7iCYuicfOZ7lkfnkHk91AzPDQcT29OyvkwtByElyYGBT+XpE6Fb+IBrlUUoq7zGiauOuiBnKI+RR87FwH7efzjQkKg8sdhdU9OgTcdlGHGIoo4nQKROyDo/OOQ5i4dAOHjILy8voref2b5iFt84y6fkJVPcSUZygtxbQw7qQQaHdYu83z8WT3dN3rdwrTaR8rpj85j6x0wcoUnOqKtYr6S3y+R0LeC6T5wn5La/j/osZfBIP6u/Erx79SDOpfd9id5oCKmoYSfMGkcjhIveupbq5FnO4+j6moF3lSKMIsTheRMVspfWfCXlbcIG1ejjdCJh56TQj46DIoNYzuuIq35AS6tECkiTiZMdWxKG3y9+kjXMZSqD4SqRG0h0/O6RAYgsOFkJ1e8nfcaiFTSkLl4vsULjgznMVR2irDWd4gzX9bCqQSFMrx5OgzY1IxxrcuYhcAGlUwKU+tDKPyGOXn8MfgsjE9OYAS6iEES0J7JIZ4FR3ea1WyVtLq3aIkcEd76sLP7ukmoMpi5jjfPmDGkVilOEcYrWw6rbTed17lDWbnZ/f0lMVpJbL9kRPCMyiXQxQLlCyG2uZWnlQt7UyTOXNtdIFtrKFVgWYQHnpdeMrYDqs1FDHRPZn2lq3B3sE4Ck/VOkGUiBvz7kYlsZeTk9cizitnO6zZM00NWtfU4xVGmzkoxX+zELX7hoTfyL0mOA9xaiR2Wtoa+Xz7iEPgxFTU8Q/P17giu9X94lBvgtxbnpAd1U77Izd1ovUZhAM2qoJJeyYnxQgbvLDUjWejDF0w7F3FYTKcdRPr1sq1VqR7QtF3hnGUg/VgdRS+yFXwNAql872Qw66Clc47rfBeY93AOF5QDGeU+w211sAp1hdYNKHM1a982ApRkAYIk9gZ9BAwU6DpRpqry8ytdOP1nQ1WQnnY/jUPdMkH9QM+Kjd8bBpeKM379cSzh1tOHztWzwzt/+qvUTx8Jlzm08fo9ek3CrGRzoZGBJ70xUU4aHAO14kr/Xpb8ouh5E/cnp8PWyo1hyI+Uoof+4k/7C84tz02zPNmpWXDt9ElD0zNQ3NXnF4Xs2hS1kHCHNsC09TopkUnsf0biNPp79PtGr06Ra/3mLOO4Dy16xAndbqHJURtcjrz4yen0coJ/iOKJlVQ0Zmq8zXbK5fXuhSYqMJ8ILgtUhND2ohulOW4rwX81xkhFrzScO7AZHeMwzXOd1QkzV1jTIspWoxp7rjmckBi7PBposildWCyqf3x1t8QmaG+38vn/R633+L2O9z+wLSz+eAq7mkVswb8Ed4jFb1SoSyJLDq+BVNnl/Kd1z2yoQsjonsKNpz/fXZLF8Xqjiidher4OaaRQMaFIC24jtkhHbTGa4Wto0AW3VzaB/TkKIeJojtgumv8/nMuz/8Jh+4L+v4S6/YoP7FRmmflmhfVhk+KFS90yfvVFLm0mpuxYO80F0FFvMLILu5BPIFTXeTA4o1SnKnAg9Ly9HTg8QcjZ7//jOb3/yZ6fYY7/4Ld/+e/zbzpP7M3GBTPTU2FZhcsn9u9FAsWAmDaxzTaMIYCpwMbYzAYCSMG9DgbDRJ3XyWo+63hEHe17UeKxmL6xJ+9zqiP29kVwVmCdwtxep/d08GL0Bqi4LUgv8hjQcwPVelzyFhyJE52LijPrcnhzp4O5rUydUuoEGmgwcldk7EOqVPp24NQr88vMN0lbrrKwaeTvWEYL+j7C6zdsgqKh2XNk6LloS7FSKADdSHuXOkOUxlVlnBltg/53uytzuJ0QiUk3vTeW67tmFuzB+/og2cgSOCqqjCmoShXVOWGun5EYVYU5elR8Qc4whGp5EdZOKeTAH376VP3FPSW4WdBa6a2zS38oVUUbaCOYlSx2JIeDlGY3kO1dawSZ/rwBje8pY/t/V33JZPdRVFa3NLeD7ETbUaklRw3ZqaifyD/qdlB7aJQndYeIF6bihMmEST7imtT02kptFVKc4Zkv4zARbD8ZNzyxbSPz6u+F+lRFuuIc6ri9TlGl78EpGdudsSTpKD0d128KWRw2W1wJEwzi9POS9eM99Hpamb3b7pXg4NovWfODI6Cdcx3cRNYa+g7uU67seB8KtkF6CIn/444fXsbvhDLU3fq0hh0HSxbP3Hues5tL2Ja8KBLCrOmrE6oq7MsTo9PPma/+XZu8BFPEXwWJkeUuHS9FMllb3L8u4KTMGvjQy4GqtixojLbm3uRhdz+fFHkSwW/5TyxdL67ScLh+50I5uNQSvfiZHJx68JLQOVFsPx4uuHSDtw4KX4OwTMqWbML01BWp9TVGevVh5TVo6MQPF+1uLrOnRCu0LNZJO61i8FHcbqX+UEbfFHh6uYIB+JW0kFRx0DEopB9YHepqc9HVheX6O1njN3nTONFDtlLxSi/6DAuovZQLJCcmruYD4OgJSql2S0zQhCUYsYuLnj1OdMqzSbK3NpD+nyPRtgHXsm3OAIEWbM9oBMuLXDnsdnYlTH7AWPnmZKiN1ruj4RXvY1qhdk5PcZ1M6E8pDsuZotEpMfOT1zbIbumvdIYXVMueOMpn8AUGwgWb/ssTDt3OBKmrd0zTfuIQZQCoQ4iykmGl5y3S20oUGxMGbUAMa01UYcxuUCdRPZjnN3wnUD93fjXdPyVEKjPfvYWvYoVdW3QdkJPk3CcYlr1GIO7huEtXf+avr/E2S1VkPTjdRQCay0u4eVkOOLpEOeoUcKzk1OoRjvZvpX47KBejjmBnVl4TlVxpZgWE4lBCdrjFlssCdJJNE8ojTQ5LcPsgOON16KSlibg9PHtMf8c2ETYfhVdTRXQqshs1p5SB+piOhJC35UN450wmr1HhNAY9pXCa/ZOy2ERxaUumIJjCkVuRfdBFjOrHD742O4lNsHl5rqKDsGNKVnF8IATXfFR0XKGlgOwDqyNZVNZ1q1ltbY52Ey3jeA9brmmE9ojjH3kkx4Wbd+aw95wMxY52OQyttftvV0kwZcYXUnAVQymTK3yCVPiI4O79xNbL4QtbXtho6M4NSVNrKDWSpzhjSpyi89GGdqxpFWKs4O8VpUKlNpLsUDP3PT82kREQOLaTrGAsLweWiXPaRIVvAeCY6RnmmRzYt3AZPdoZXK6fXv1gML/5ouj8hNG64ybKdLzxqI1K94yOkjC8ZmpeFI0OAIHJy2mRqnMBU9BcYK6SS61Odyz1tIiXCvDIUgFu9cVjTL53nsYP79RU279uvQSSHPjRk5MJcEVvuBsqtjsGzYgwZzaYyJDeIwtarugcivyLogL0OGze72Ixay0ufPKyvv4HDur2e1/ibUd7XhOdXjOavs8b5STG2N+XoUpq+2EsiNMe4KVFjRn93jXsx8vclDdOG3ph0um8ZrgOh7ogo/KNR9VG/7D9vd40Y48Oes5e9azfj9QPn9K8fg9isfvYx4+x5w++pWM1q99TVQ1ahLHq7TO32AvLulfH7j83PCTlxv+f5PnXwxv+PmwZSLwvz15we+bljEE/rvxmj/uLrjxUxa6FTKHPC1anpQNz0zLU13ySBkeqcDaOEECRXF6tXbUrRS3yrXGrGv0ZoPZnEahaiMM7W/6t5UNen2GmYb4eYVurym2O+qdBIKV1yEeenXugrBOy4HaaQlUVJrRGukCiD/b6eODuUYYtc5NUdgiFntiBgHEg3Fyy8wLWSB8aw5qZztYuOL23Sv67g3K91SIczrocsGFPaEwDcN4FdPjRZhQhNjyrDkxJY/0/5+9f3mybMnvesGPP9Za+xURmZGZ55w6pSeSEIJrNKBr3Ui32+gegBkwZsrLwDBjyD8ABsajDcw0gYEGIAaMMcaY2ozbbZcLl3u7rxpJRZWkKlWVTtV5ZEbGY+/Y6+GPO/i5+/K1I/KoTlVKQsXxsqh4nMjYe6/ty/3n39/30bBOa4Ov1rbyuFMk7PeE1Y3Yq4yDrO83N7jbA+Oto7+Gw63h7tCwH2yyp4B9AgRmRqZnQhrTWjVYu6FNtgA0u2KlEdLhWgOhaVBhjY4XtNM7BD/Q+H4RmggUyw6lLNpuZ7sOsyrM6GhbwkmIUjTiQx8NRVIsD560tVAOyfaQlBKHW8LhA8bjB9z1H3K4/4B+eE3ff0QTIxe64Z1mzRea57xvVlwqy0WqEQC+OjbcJMbq69CLz2+YyjqbG95nuuGFanihNE9N4HLV8+xy4NmPwvaP/hTr/+5/QJ8Jw+/jn/9/8p//44b/z1HxLQ+N6nluWnyEj/zAJ+7IdQoDy0HRILM210xSH1h2umFqglj2aMuF01z6lqeT4Wx0rFvHZutpXKBbZwWSgBowM5flvB5QZqT56NvoVmEahVkbybJom0XAKyDKq/SRJf/u6BNDX6UPuaetCbTNzE7Njc2QQDOxhDJiYZFs0qbSJJl9OmWuSX0YYq2U8AWFjFpJJhngq6ZyeAv7N0C8+hIjXpjT/p79/je57z9h6F+CP/K0YuC/azouktLtzE7suonV2mMyc9xHwtETJnC9yPBv9i13o10EzO2j5yY47sLEIUzs/cyAm9lv0txpzLp48zZ2S9Oc0XUvFoGi8tgDMKt1BFA98XTXtqgW1GPLYy6UK3udbOcxrVv8C023iaxTAKLWs4XH7fUMSJ998E02/SumXiwLj9Mtt5V9h885IdP+xBpNWnRZgWbT3OiUKbUGMi1KM98ldVFKwEgsQ8XBmbm5Y6DpAuvGY5uB9cHR3K3xmAJiH4Piwxj4kjvwpeMVH/sBr7IqxKQ1c1cCKRt7Vtjq3g+M47XknpzYkyxCswsHU6xJakb4wr82vbYxSvO/AFjIGa8Jmma0NCaIEpeIrt7PEGAaxK/eOV3OOfm/1fvx5DW9F/u2PmiOEW5iLMBY/rNtuvr1WS6f4TJgbVie/0YiN9HxtWnPayfM6dsUfGrsjqY9Z9VdJtuBH4Ef+X9we74haMXq9dV3fA9/2rgNjqA1Jobig5sJSKMztF6zcmYm0RwDjQ20h1DOjrk5qMrX89pT2xXGxXswNwlCaSaolJ2ipXGfzpv5jNMHzTEobqDYQQnzfOQujAWM7IM0nveZKZ1Y6LbZcV7N0bZ9StNe0q6/WBjTbsGYtoRGFWBaTRE1BLH0GCbMOKC8JxqDq/bu8bwhdtKgattIm9aDEMS6dH+tsa8Cz77x67Jf9x+VkL1hvGKc9ngn/vIhjKgwFVZuV5G4utTMz3tkHkYpWhW5UIZz03I9SXBjFuiRAxJDNq9MoPQjVnBAUePE5Gct92sEJDskqlDOZTkfRRS7FJlsxmXyzAhEXPSMXkgX98HRKM1BO7ZaLO3y68r3C3HGYDIOkm08pmTlUftM1/kE9wq07miaXbJzeTbbP5mt2HkAIfSMw0c4d5+AaQGlJ3cvpK7KY1pFX0DpTETMFnXZonStLZd2xSo12rNyQu6zUID1bF9ZKzDG8DkT+LOP+NbsCz8f3/34vgCo9fVv0RxvZgZDdAlk2ePdgWm8Yhxf0w9X9MNV8kw80sSKbZv8fWzFnPYxEtScoDwqsRUw2aIjgskaezRki+LsCxphDLJJjoXlMnfrcvFRWAmPgsYzON2k55YXp1kaS0luBTBKP/h7BaBQDx9DHkeVv2OUsIzbAkj7BEgn1mDle9x0EdPMQS31qFkG0xDwk2IcUtDPJBWHnxSTirRRJVashC9q5QQwTMxRlxh+vgAnsmOJlxYFlNikA+jGzNL8JTgtINO6c+k1gGkipq08zfQSnFbpcwnSeJO9R5wl30NK+3X5EKRbYYGYLqWQ68KKK4V1DOVQEZOncAwTLjqm6HB+pA2uvM51EKD6ztjisb3ThnU0jMqIHUi6No2OtFWwZ83OKGyRk0Akua7JdzmxhYdkESOM9sDEmCc1AMf+Ixovm7IxrwiPT7fPNGw1L7NkOUCxTsnFionye2em4cJ0NMrQ+7FY3WSbG5ctV2K2OMiEU5WONPIAIWmiM6O6wcvnZPVBurbbar6EEBmC55Xri1fZrW65MeJfvFOGtVe0YQ5fJF2+Y4wFaBgr1UMGdlR6/SrG6m6vAq+C+DKO0408Fz9gp2ts8wRtt9jshQbii5rWyRAdwQ8EL76gMX3vw0Dff8IwvhbWpLtlFSNfsB0/uHnODzVbfkh3/KAJ/KEfvubsncj6/Qvsu1/APvsC9tn7mPNnn5lF/J2MmMNKx16sGG5umF4fuftI8cEna77i4MvTLR9MBxyRc93w43qFB77sj3x1uOEQHFm0qJACsVWaS9vxzKx4oRteKMNltW7UVjoiNyf5vZ+yciu/+u/itQHCDE9hrXq9Jo5j2rAn2kkOzcqEZEug0E6srQCaKGCUUfN9kRtOea1slE42SkF82mPl2xmT3LIwqucbWUGxC3jDdvKZh4S0pa+jL6GIHbK8RGUwusPYFdZ0mARoyHOdGTk6zv7TjTKsUUXRA0v2tHiLIlkC/VHmUwmxOgpz+pD84bO1hzeJPU3yn3YL72mx90iWPKYTtvMb7D2C0aiQrTY6TPccNe0xdrsAqB94SKcU+Brcyqxobw2hMQStCF0CpCtrn/lkF1ET6CmyuZbsAH28JvQv6Y8f0Pcfcn/8kH64Yhpv8f7IGYqndsWLZMHwNDVGQTx+c23zYRi5DRP3YRLGWfDkwOdOG1ZJgbLThhdK89x6nq5Hnr8YePYTDZs/9t+z+qn/S1FW9L/yP/H//Z+3/IcBvuV7sW5RhmMMvPI9H09HXjsBHntimrMyT3WUpuUYgzRs0nvVaVMsRryygAG37LBvAGvFWufU6i0DIvmaRg9qSE3gw4Qyc3BxnTsg/zYxpn3E9eJ37ScBp/2kSl5etvOogZv8uJk9PQWZi/lwnRVzn2b5EYiJ0JZZpilgVGmx+ijggU4Awvc+vDuglSgjnDswjK8Zh9f4cORMac5Ny1Pbca6bYvfSIsGQ+fXLtYtlj3Y9RdkgzGlRHx0T6HQTXGmO7FMT6T64B3YewppegtPWbOb1BRIA+nAtV9GKZQFp+dSJUY2DeHK8yuB1+jrfv75bMa47xl0DOzh/EioLD0XfS/iZuQ2sb+9FDXr/CcebX114Snt/xPmh1I8h7fEiHQ+pbo6LfJkMimQQJzMq8xiDT3N/PqxnwHRE0QdF6zSd1bhJnncGGNs28KSbkn2c4jY1D74RBn5zuOWlH4rv9Ck43XWXNM15eQ+CHwhhKOD05O6FFRpcCc2WeZy8bTM4/YbpW/JHmAHgzKIeY2RUydc2CPvXOYXxQJmHqgClIagCTme7vBAEDA3pb4yJ/HHM92t6HslhWT7XzM5872bbx/L7GcSabT+O0XOb1AGv3cBdBqdTWFsGp7e7H6c5+zFuz0Wls749ol+/evwCfcbRR4+NMleKb7ZS+CgM1jax0adkQ9bqQOMinfPFxzwrV4DFPX86igI0gdOZxe+DKiHS2e5sSgSQMZLWhsgx1dgvc0hqmNeGMQfeJcBSGuMt1qwW89PaHV37BNucY5snmPYCVs/wq21hPi+8pptS3KSGsIDT2k2iZEoe0wXQ7hTmSfabj4v14H6vCNdiW7q6fo27/SrjMIPT43SbwGkBpn2q6Wtwukl4R1N/aP2QQa2kdhSG9TwVZX+dg+tr9nQGp/NHPfLvi7WHhPLGrIaW3Uvqzkiq6Zg9HB9hUs/KWFXOSy6ptktDvALf8z6e/dpBQG4hF/iivhpSLkFffR4VWLNL9k/nrLoXtO2TpO4QIkpI5IIQBsbxNc4dy9o8ueOiYSCkilDel2y3oh6xVc3WqpmcaFTOnMjEw1CA6Wxn6QkY9CIo+vPx+fj9NL4vAOp+/+v4YTOzHNKC7Nx9Saoep1vG8TZ1tHrA0SULhZVa3vz1kGDB+KDDbhBbADGBhVlnQilKfFTLoiR1zMdqIcmHisx8yWMRzpgtPipwuiWD1UtgGWqfpYdWDfUwpx9K7DkalSTsFSCdfY2znD2zheyufVRuFX0oKc1+kmLDW/k8DvN1arTCBD2HNlS2JSaBkdkKRYC4rHSbwem8+Wy05dy0nJmGjW4EnNbC7jo3YQEyie90KK9lATClUCPl3bwhB1+CjuI4Eo4TfoqMQ2XvgS+gxX0CvxS6gNNNs8UmoDD76QEFpA7Bp7nrpcOaPJ5lUxuZ3B0jHhvE87RT4lO9D4aNntiZhkMQoBrdsk7S6RYloGh6f7WqQz6zZLOeb9BGSmHZIiBsnqchG4bJhWFiFCnd4Dhqy+QONNMd1m54GwSsjTLYVFABTMGXQ0WuW0wUlvnONFyYlgvb4smA+vwkMjg9BU92Ksxe7ypGLGrhm62r6zJER8CUplJmpTUnIDXAnR9xXh7/qB13wXKrW85NCrSIpty/MLOSjtEvgtfGmEs2Gar6yFYfKmqyN7fzA0ppXDrY+TDgplsJaktFVA4Zyr6/mQUR0vfOHfH+nnG65e7uGxB6LpThC+2OH2h2/Ihd80PK8IVu4vnFHU9eOJ7+9Bd/x9jSD0Zws0fw4QZ/e8P0es/dR/DRJ2t+bWz45emWb457huBZa8uPrs5pleJrYeArwzVXbmCs5o9Gmg3npuXSrHhPtwWcPrNuBqdtrBg/PNqYq4Mc42dkUMcphT4GX1LoddsRx0FAah8w64CdBFxSCwcd2YMEmI40Wuw7amlji6JXKhXtnmnRlBWQWhybYzkowHwwyZ7v8ttVQ+d7HCF6VApk8/6Id3vadD5xSokfqRFwWlQoogTIjb38+jNjNtvwtKiiGMlrnI/M3t1TJE6OcDwKi+l4xPcD/uhm3+ls7eHVg5yB/OESwCFnZwFdjG6EGZgZlfX7nMIHo9b4ToBYEy7QzVYkR8HN908OMyzS364wsReAdKNmb8tTUNpFYXMGsENYWngkX2BRln34oJEf40QX4b12x1PbSWiS0njE83SPL+qsPno+dkdhHAVfmoO2qq+apFi7VA3Pref5duDZi5Gnf7Bj+yd+htVP/clynY7/v/8Xr37xP/IfhnM+CkOpgw7R8bE78tF0z7UfF6CjyifZGAlK6isFhMQE9TFiVc9kElvLZJDK4p1J5AIJKszBwzSPgL3FaiOBJk7Wg2lQFRMwoIxPliFVWzF52PpJEb0oIDLgJY4PKdekav7nvVTAMAHAxqA5xlAYYNm2Ku8ZtdWHqj4vGpwJWVUJOMghiXJ/vaX72w9E5XEpFHEYJFhzHaWh/NR0nOs25Zlk73wJhqzX2CCSJ6IX24RpUIyjpveGY1YgpevRR/ENrf2mvxNwWusUakoCpk+8KGP0BTjNZw6lPEoLKB3zz6Jd/E6xjEvgtO9WTOs1w7bDn2uarUj3YbbvCLewuh7ZXV+jDy9x9x/Qj68Yxyv6/hNhSyeLi1qJF+McKj17MsdHws9n1djWNEXqDxTfaB0cIUhmTX4rMidhTEDg4Ayd8zinsak41FrIKD4Ki/YmKj4II18dbvnIHZNNwhKc7tontO0T2vbp4jznw4BzxwU4XULfMmu6gNOxgNPLuY4QEtQcIu9LM4cU2C618YhavDY/KbyVaiH7TStDISXlMSW7vFqVOCb/5THO/sxwAk5XYw5GBFJdeApM59/bJ8XmtRf1yG2YcEqjzQrb7Fh1l2w3X2Sz/VGasx9jvHwfFSLd/kh784rp8G3exhiiRyX2akjPX3KXZI60iU1dLMeCgGwrrx8oPIGFynNhS1j28GX2RlYi9kEzRkoToFgupjXhEEXpNETHlRuESFRlBWVLxinNTa1buu4pTVJDWbujac5omnNsc4GxW7HzaLZMZ08WVh41azo9edQEdnAY51EhLPbxDEyzAdPCdheKpc84Ko73CncH3euJ9fUN5u5jfP8h94evJYXjjayvBZxO6wIeHeMym6kCP3NTSupEvZhrMCuQaqv9iBBmKPZqFHBaayvAdAVQ5zOuggJox8WHI8as8BEikGxdnw5S66QKyvvcmM5lwU9MiYHfKE+j9cIiNY/c0O1TrTJlclkGpWMoahut2mLn0rWXNM0Ok0OooZylQpAm4TTdLdQej4HTJs7gtJwntVh71OB0sljJCnqx9Jiba/mcWGNJco8IbpWzOD4fn2F87kH9X8X4vgCoD4ffxNp1+V4Kmkm6hykQxLse73tiHFFRulZrI+B0LXEpEpJUyIwx0NQdKGWkEFIaYj70ShHSVnTRXJQIcPnQZ6wvnVo53E2PIHk1SJ1B2pxOewpOt/WG8obP8jcR0EKxAColIT59toFN8sttuohdRexKYVcas25QjRU7jLZFt+0sWUz+zLNH80gYp+TR6FC9FBo2RJzLBUl+HvPzzwXyHFRZgyJUVimUjXalTQGnc7LtpbZcKsPT5Bm7bt2CAV5YkFqdHB4TOF2zpxODmuDS6xIGo3MiHTsiDYg+SBd2DB6XNjWjO5pmWxLhm2aHtVuRjyZf0Xru5uZKCMtNru81Pm1+9zjG6Bl8YBVNkaPda8dgBLxZK5OChrQUhyjWMc8V8UaXsM5YwBudVQJkW5fEkFM2U27kffEKGxSmzOMJHz3H/hXWHBgSU/xtHHBX2tBqW6SZGQyKzAetzGQ+S+D0mW659sNC7pS92Kckxc9SaJD9yCiFSwcdl4qvqu9EH7xYJKCZku2HibN/2yqFlmmlOKbwpdGLVLBVhr2euPG2WLOsUuEBS+/4WmaWi6ZlBpNagNazeDUmT0Y9M4/CICxOf/9grtVBQ9mXcnIHhvGGcbzBuTt+wHT84Oo5X7RbftR0vG8C7+96njwZOXs3sv7Cjubd9+h+/I9hnryD3l586nsZDjepAeTnAiB7SOvEGP40T+rgCIcbwuFWPt9dMb18zd0Hno8/WvHr9x2/6u755njHwU80SvPFZstP2DM+iZ6vDLd8ON0zEItnuU5KmgyUvGe6Ak4/aVxZN04ZjTXDJ/oZ6NSrNeF4EHsPY9H94VODH8vfyAGQ41A8a/NQxqT1VtQbpvEJ0IoLJpcOSW5dhQDW+0DOPtAoGq1poiZowxg9Ywa4E8NS/vpyGKUK21ypHLfzvY/M2AxhZBhvsVFAxUGBVh1Gd2gjwLRJIYExuhKQmFnUuaFZAFGVTzYyssWHHHCTwmf0qGOP9l7A6f3IdAiM9+qN7OncaJ5ClsAHctiwhHxZAdW1HGCiNg/8p6PW+ARUw4poTLKvSv89+6qf+EYXZpY+AaRPhhoiyomfvJ48xnnsIEFMejzCeEMYr9nf/Zr41U43DOMN03gnB6k4YJJl0s40dGlN6aNj8oHbCsia8mEueG79yBh9sU+yqppvWnOmxXrlhdI8397z4t2Bpz+1Y/PT/ze6H/tj5fnf/6//lk/+7f/GL/2XJ3wUjpDe20NwfDTd87E7cu1HAbrSvNAqNS4S0Cr3kIfomVRmF3saL5YjYmHgmUyX1naL9xo/yr3atoE28eIz6AyzF63cY7Nv9FzGKQgCRuW3fClTX7IA81jK3Cn3cAZonEvzcTIps0BxJBR5b2aI14f2eu84BamzLU7Nos7+yiFqeFsAdRgAn9i+ByZ3h42BrW44My1nRgKf5qDt1ExfsKfFigSYwensPZ3rbAJHxG/6Pkzc+wxMS53yaeB0ZsKZAk4niLDaJ+sh+2kKPdQWFe0MVIMwqJUl4koIKqYjtGvcesOwWzOeG8wW1quZNX3ziZHAs+tbmuuPCMcP52D3ii09TvuKKT2HAz7GJgbZ5+oGd24yGqVLGFeupUFqkj74wkocmYGPMTWkRiVNu8krhsk8aNgaHZm84rXXfBDEhuJb04EDAYVFK4vSzQNwujASw5C8WvfJR/sRcHrxOhN4HB++zjIXoagMstVHPk+JUhbaGDkqAVJXXqwjRCkVF39L64eB4vK8Z29uuWbVNUmfs0S//vdCUpoDEYEFMD0r7pbg9I0fufEjo1LCnG7OWK+es918ke3uJ7Dnf4DxybuM647V7Z7m9iWxf4Wfbh959p993HuHV1JHTcrgVUye/7EQqo7kPIx0do2wDgajzIMz6WMjX6c6x8gnMDo3TPZR/IGP0T/wET5lx94Ht2gwOyAoldaHFpuyLjarFwWYtnaDbS4kMNXuxLqrO8N3K4bthpCCDBf7cpDmsHJipWWcvJLsL+06TejEX9q2cxAqPASmd9c3Jfx0HF8xjVf0/UdMBZjOIKgjRgGnBQTlATidFeOZ4NUoU3CGPLSS4EubmstZSRcUWGWWbOgKnM6Bz0ppdGFRp4ZTwlPEu3qCGAhBF6A7RDl7BeUTSSLtZQlzQbFQ0haQmkgO/Q4oQsgMaqlzs8f2AxIisdg+isWmL2ewiazeazFmTdde0Dbn5Qxfn7My0Sc30yZ3SPhTWrMeAacNM84hyr8ZnC7vj57fm/x8s+KjPM+EI+Wf1Y1p/5Zsuv6bGjHKGfXz8Xs6vi8A6tv9N7G2qRaLvOiJvC2no5ICArqKcZuB6RqchmzW79FKMcWTqiuB1B7xZ/Y5CKIqKnK3/FRWlAHqQ5xkcwxJGhxnVibkgkqXE8USkJrHnPI8f5TvExgNlM0/2zw0qfDPgHSWrWem9OY8YFYKuzbodYNZdaj1Gr1ai+S8TSFA7QwmZYYxwZUQIHU8oozGjvfC/mvEO9XagJm+M3AjWxuY3FFNowant1qYs6fg9KWKPOkmAaabkED39FpXEnakF+zpCmSfUqJy9drC8UCYcjii+ED23ki3Hp8SfwWcVBi0abEJnG6biyILM3Yn3Xe7Ex/RPLJEKNnTeHcowQoAk7vHTfepCTNyxOOS7Ue2Fpmi+BZPqmHUgR3Z8kPhlaaN0tTwQbHSgWX4CqATSJ1tbJTmQlvaBMY2yD2z9xOtcnTVax7cLd7dJ1sT+1YA6labAsq6yl+09k7cmaY0KFbKio9gAu3zyFL8DHBnSb7MKunUKwAFqjShQrH70FoVuw+jAh7xh8+Mlzwnz3TLYDz7MIlsMHW474PjTmnW3pam2MbY9Ddm9puPsx1JAaijFF+/neA6BkdQOjXjPFq3hDChdVOxvbKtjCts/XG6YxrvmNwdJkyca8t77Rn/1/WLBVv6/Jlj956hffc59vk7xcbDvvODDwDY2B8IiekcDjeE/oB//bHcWykMRoDXroQDqhwu2HSY82eUhHafFAzpb/rbVwmc/oi7DxyffNTx1bs1v+oHvjbecuNHjNK806z5sfacF9ryH8cbvjnuOcZQeZYL836jLU9Mxwu7XoDTu9VU1g1rQwGZSogaiQ3pKUCnb/eL4Maw2qKmBLwbs/C3l3/vwHsJ6ctWQmMvX5928Y1BaS3rViPgtDKgwwyWFVDnDXVpUeSk+zkzXEEOHi4G7CMzTaXiOae+a5SEdb6lEaNnnPaMwzUNMJF9H1eyjp6wp5f/NjHKoYT+1GBXCKoccDOLzXnNNCjc0aOMAP8zOJ2sPYYZDJyi4hhlPx+r+/NBOCIKra0A6doWn+g3vm6tcV2LauziZwBBK6LREoSqVfGSBoqftCqpXqCCANIqRNr7Ae0mzDCg3Iia7onjNcHtGcYbnLtlHF9zuP+gsK68PybWlcOme6NL7CnxYfTlMAVzGHNer8Z0+M+zQgM6edtapdmoDE4b3rX+cXA6OO7/13/LR//2l/jPX7ngl9w8F+/CJOD0dM9t9IQUVGXMKh2K5aBbgDtjBMhCQfR4JY2E++Dw6b3LDKTRBEYdGbVl9Iapb9i0jhA8bRAmdb4varA533en41Si/hiRqZa119X4qedqZlu7STxtRbWlE2tYwJcJv7D3CBWTuh4FuIuzzUcJraobPjE87FB9l8O5IzEOTGnuESdWqQaXrBBRFmUgriXVr9U1DEGRQ1ucU8VSwXm5DscoBJB9apofEnO6rzxEVVI1aN1i7JrGboqiTesWnS58sV3LwVsVWJ33Ua0MKpkSq/TzGai2c/mewhVjs8Gvt4zbLcOuIZ4rus0s37/fC2P68te/CYdvMd5/wO3wCeN4XUDpECZ8svLyruehn+sMTGfQNqutapLHY4FouYnUpUaBJ9IoV+7txLMvHrGjioVpPIUUtu2y5ZSQUYbJcD1ZPoieb/oj3xz33AYHqVmeAxFrcNqYbXq/B5y7T4ouYU8/Dk7n1mBczu/q43Tke2OK4lGbQXejxKF7TDXdMSpWXoKsdVJEUKka8v2rjTSHy7XUyZIwWRdK0JuAtXOoqQzP8vvTkVV2nwZOX7uBQYHRK5rmjM36XbabH2Cz/VHs+R9gOn+O61qM8zM4Pd4QQv+GR/1s4xgdBMWkRGPojWX0YZGb1MbKmhK519foyjZzeZ6tx4NrlT13mZvFI4HbVG9nQDrvz0P19RgDPgYO0ZPzaxQ2hR62JaBT1oY16/UXCjBt7BbTPBFgutkQ2lWx9Jg2dpnzAOI3ndRLxgWUD7iuIWqF6zSxU5h1pEvAtLUyn0KA22s9Kyhubx8A0/lc2A+vmKYDzvfEMCUFhUPHuAjcqz2nmzeB05UKe/mhHt5LagaVgdnWQ1u0btDFvmcmzADospYGoraSK5UUIPIftDTZogIkhypG+X2bVjBNXPjlk0BqqHzbUwmcFSIZ41k2q6R2yefXwkYmSjMTm2w5JaMgq2yMnpWRIQxFgRoSOC0s6j755I8p0DWpVQlFyVLnh9lEdKqDK+uPPLKqdvbMdgVHmmvReS1ynzOoPx+/T8f3BUA9Dq9wLi+hlGI7lyE5RO80HGCnm7IQ1KNYbSj5uk8S1tor2mNYK0lQb9PmOsv1U0c3saZzRzfLDo/Bl+C2LIGth0bRoJkQyYaOKnklCtM1+0hnW4DTjmANTovMe7Zz2DQereKjoHQGbe1K0T3tMNt1AaXN7lwA6QwgGSvgdM2eHntCAldU0wngkv67PvSoPiyAndNROuSfcqjKr1XBEpxOrNmnyeu3ludvVxOrdShyXdPE9KHQzSy9zcC08k6k9gDGzf9t6pNH6ZS8IyXwsQ+qNB+mOHfplZJiR3zLLlitntO0l9hWUp5jd45vV4RGABcVJABSuwnjRkwKrWvGG9x0LXN9umEyt1KQuHt8GBiZ8JVcMXvKTiawiQ1ey2HCK4MH1qjibdcmBnWW1hU2tYo0MUnyosJjOCKBiWul2QbLnZ4W/m19cOyDY4wOH50U4m+pezsDyyHJxCXdeJNCI3emYaMa1gnMnhIgXEud84buYize1ScQAjkRWSMfTkH2V9PRo6MSsFqpAlRPUS0KPKMUF7al8VJYHPxULDumGDgGh0mF4TY0jwI+GZTOzMzaR7vYL2Q0vRw706uIAX/ifRyiL4dvAOePqdkh7KQYe3Zo3rcrvrh+wg/YDT+kO/742ZFnlwO755HVuyua5+9in72HefoO5uxSQOVmJeDxcQaj/d0V/vYKf3uNv7nFHwamg2c6zM/JNGKvY1cas2sx2w1mt0Nvz9DbC2J/SEBvktCl9SUcbuRvv37F9PI1H3+r46u3G341jPzGeMuVk3v3qe340facL+oWHyNfHW6SBFYeX5jAsNaGp6bjuV3z3LRcKlk3dquJVeeL335mND62fsUAYQzAgDJ7+WHyycbYArorY2epdz0qYDpMA3hH6A8zm/ozdPOzR62Asg+P57kobpQR1miIhbEhyiG9CA6FGdDIaoE8X4e3JIMT5v/EON5A6MUtVVmMWWMSc7pmT0uTxS3sPfJr0+l514yzPPLenD0r/QS+j2jjUWNgOgRcD+O9sDOPxcJJV/6hkSM+hfmGmb0DqQapDmnVQeaBB/UJ6zk2TfW7qvxOPHkR+cCrgwDRygd0iJjJzQHRbkIdX4PvCW7PNN3MDU93d6LMeZ18XHPYZCgBagpEVRJ8CUp78N6l1++rzxmyzdLgRkmA8VPTcqks75rA8+3Akz+4+VRw+pdd5JMw4mPkECc+no58ON1zR0Br2VuNXWMSY8uHSZhZyPMPCQybL6ywq0eESe2C7AWlGWgCIy2jahiV4cmxwQdVQGppsoM+rdlOwOglgP3gkj06snVAearJxkKsaGQ+jqPmfrT0XsK+9iwDnup9ojCoqwOrrrw38zsZiagoCOZv3wL97oYP98QwCKgy3rGKiq2Zg6zXysyHdTKzbAlOqzCz1fP1GCZD7/TMnk419iFMDMGXJnXOA9HKSmC1XdHYtbAkzQZj2lmqnfZOHyQMMYPV8xhl/VEGlX6e2dQZqNZmJQ0jk75udkxnT+jPN0znBruNGCs2L/e3Cv06sr26obn6gMPVf6LvX+KcsIZrUDo3DrL3snyfAy9nJVVp1iWWXs0kzk28vFaWa1zILLLOr5TCBMVkQgJwTn2oM1gohJzJa6zXaCfN/BDgemj4IMAHfuC3xj2v3JBCw4008cyKptkuwGmlrYRpukPyLN8XK5PHmdMn4PQJe5rqM8z3Q66lplRTZlB+jAGjNCYxxA9BcxwsWrv5Pq8sf6RBLPVBY9J+5DVBKekcJxtIrcSKTq7bDFTP13R5bYEHe9gpOH3lJJD72o8Ys6btnrJevXgEnO4wk8Me7wn3HxHcgRD6FPr5vY8heghz41qaG77MJUPtn6vK1xmwNnFmtppH9pg6LDKDjyMVoJjOXofgStOx5M3EbO2U7DtiSGzpZC9TGlZiIZZtGJvmDGM2rNZf+FRg2jdGgogTOK3mgyx6imWfBgiNYdppVCc2Hk0KPrR2bryNo9Qf69/q6W5v0YeXhOGlnP0qYDozdPP+HcIICQC1cba/bJCz0uqEkCfMXCEc1eF89ZgtV1Txbc53mmIGqIvvdKp7jG6EPZ2yQvRJ0RxyAzB6dPRE3Ug4r9IorwnKEYNKVkUer3zxpY5J8RCq9UsDVmkcAV2d70Lwst7EUJRci+eRSE85W8mlM19Egq6zPWduWBizWdR0wQ/FGlEU++PslZ9DXMua5eaGIXN9lcHpDKRLbT4rAGtLkmwFKyC6XzRh8tk/W3zk9dx9Hvb3mUeEh+Sgz8fv+vi+AKib6NBhCWvWgGYJF1R6kVrb6XlhriX2dWEPgHZ4ND6KdMlrkzq3QQrrOIdQwVxgnALTdWf3vtpI62eegYBAFJA6BlDyOrIUTcDvkAqqZfd9ZlCngCyg1UFAaRMLk9ja7Csdk40H6AaaXYNetTQvnqNWG8z2vIDSer1DZaCl7WbgKDEA49SjjgdhOZb/5lHTiDIapeUQpquDefEQy9ctSlRCZpXX16Um4xoUKy3pthtteaK7B+B0ZkDuzlwKc8yPL6D0A6Ap2ZJkabVMgvk1huM9Idl7lAOSE9n3Mdu2JHDaxYi2maWzpWufzEnPq2e47XlJeQ5N5RqeAAcJ0HiCPd5jhyeY8YIYPXZcM5oVWr8Wts4knuqBkSGG1MWNtH4UsECnYlzPTQ1RAACJzaHTPGmyZ1d12PYRpqAxXjMiB8E9mqMJ7LVlH1sOwZXU41s/lm60FITfO4PaxUAOkGm0KbY8a23ZassmBSvlRpOP4oU61uzpBG77qnjx9VOL8xdSQER0DFJOKC0MqkC5N3VUOBVKQTGqUEI4DFL0nRmdGEmGYwpjGZL39RRntr0pnf1q2qXXnUGfMYZyDAsIIyeiZNVRVvyKC1thGU4SgrhqezIQODD0V4TYs4mKF7bj3eaSL6bQwy9qzTutMKbf+wlP+3yLff4C+/QF+vwZZntR7CviOBAOt0wff2MBGg+vHcMdHG4NfW8YprYkqWe/wexxv1oH1tue7qynPb/Bnq/Rux1xHJbrzNgnRvYd/uaG8eUdh08CX70948te5MOfuCMuRnam4YfaM37IrGiVeF9euUHsANClcdmp5DttO56bjheq4dyKV31mTpsmJjsguZ6nQBIIy9ETCV50M8YH4jiie7EmiOu0bj4GUmcLodTkK/7V00DIlh/TKGtTCmiNPgoongLaMpCVpcUh5hyE0/1hPgTqxKDOE68GsvKomXam+npm1b0dQMv5ATfd4P2BNYpeaUxiNyptCwB5GroDVIekSi7JbHtl1PI5ZlBFGH8aP0VUH1Em4noYjil4LYHTvZ/D6DJLs4SYMlsOFQa1NgWc1lqsXeIjDGod4gOQGmZwOv9OpiPnvcE4j/ZBQOgQ0NMkDGk/gBuIbk/0PUP/UQmly77yi2yDHKZWwOm5mZjXmfzaHAqVlDmnI6RDa26c5fciA2BZsnqmWy51w3ta8WI18PTZyOaP/d8fgNOf/OIv8au/ds6XHHwSJvrguQsjH09HPnJH9kSs2dG05zR2k9Qhc9iwr17HwyEH63LgTWzrDGRIIJJjMiuO2nIxdjwPGucda+dYrcAGWQtqC47FI1QqC/k+Lr6ff2++ltEv/04I+UMVK4tx1BxHm6w9NPsokvYpHVaz3UwBqZkVQvXQzFJtRd760jseFTG+LWf5eXh3xIcj0ySg405pVtqWPbyt5tVsaVBfD4X2EZ9CIsdB2NPZeiffl8ck588kgewh6vIr1w0mqTGk+bVGp70TlkxpUV+egtMyxJ9WQGmtTFlDF0xB04lCrrvAry/Yv9jBTmT8McBwo2mvHU8+eYW6+U2Gw9c59B9yuP8A73t8ZtxVjPYYAyE6+T6kk0bM77TULibOLetyH6rSOktXYlYmPnZPy1lJYbSEj+31xBCXDP06WBBSLZ/2IIg4r/nIa74Rer41Hfh4uqdXUXziE5O9qAsrcDoGl9aqe2FQp/DH4IcKkM/3y0lj6AScrl+z8DGToiY3pUKgMYExKpoCVJNyhyLHxOq9n0xlNzN7bMtniDoKi1pHTIyEkIL/EgvUJJ9kzwxUH7Ofcv6IMzAN9VkuhSES2UfHbXC88j03buTOp0BaFVl3T9mu32O7+QFWmx/Cnv8B3O6SYJsCTuvDS2Gih56Y5tfbGFk1k/dfF0PJttDpDJ5BztoLuJA6vhNwOjdAk9qw9tzPZ+kcyJtB6To4zkOy+BGWlDVbaX6bjsbKWpCBaWs2AkrbrZzZPg2YNvOeraa8T8tzz3t8rMISm7NQ2NIg90zfz57zzcFzdrun+eQ38NM1/fAKN90yuTvJ1XKHyte4x/lDAaazbUS27MkM6VYLIe87AabztrRUY8/WcF7g2/L7j4HTOitVKgZ1bS+oK9ukmM6tOoxopfG6EeBX2bQGO4gqWX4I+TCDsDY1wLPlh1ZazncVsWfKMI5Si30trxz5TOiRc5XCCDj9CJs+50YB+NTcyfYeNTgtz3vCe1Hvh+ggrdE6zuvSfF3TvVMxqReEECrlSgVO18oAX+b90hKyzjb7fHw+fj+N7wuA+rnt0EmqvJCWMt/webE+lbWAGOUTKaDoKTiaZf1BRQIGH6IkwqOLx1Zmf9Rd3hwalIHpKQbuvchkj+lQlP3Q8rAJOAjp8WwBEBzz22VAJfllOrCbxOQWRnW6BokZq1VklRjTmREogK2A02alaHYWvWrR6xVmt8M+ew+9vZCPVZLer7eP+qgqbaGh+KzGCrjWkwAs9SgHL6eLn1j2ESuMtEqmWh4nXyPEN2+tLTvdcGEk/f1SNVwqzXMTeNI6ztcjq3VgtYuFrSkAwvxcdGFPR8I4CevKSM8yel9k+sKgHonHI66PJZxnCtl/WpoQ+VA0ERN7+oy2Aqfj5h2msyeM605CMRpFXM/BK9ErCDAODXYI2PWa5rjBHja0bl82erHQaBmUQU0a7xUhjIzIhp/Zw4vNScvVM+n6LexhlDQ0GhMW/rXyfilWzpQ08ougOEbDUcnBcK/lYHg0gVd+EPA1e715x68+mDGfbVil6bQt9+6FbRceziXVON3DffQSUsjskOvSe7IEp0WOH5F7LU81jWzqSpFC2wM5yT4D07nonpSw1WtmtQSNyrxZKUtjNV0wdMFwn9jm2Qe7T4fPPE4LqMyHcghjemYvqMRMsNWc0GU9iKlBkJlXcujrhRUWJ76gO95tn/Jes+F9s+I9ZXjfep5vxV96+zSwet6w+gM/hjm/RCdQWhlLHHv84YaYrDb87TX7//IB91eKu2vL3X3L3bjh4DX7KPdHPnzNYX2wBtY6sr3z7FrH2XZie+5ZX+xpz4/gPXq9LioMUS8c8Yd7xquew0vFq086fj14vuoOfDwdGWNgoy1fbLf8oFmzU5qb6PnatOeo5sJaIU3FrbY8NR2XZsVlClTtbEie03OyvDJvBpogA0zy7rmjJ/oe3Y/oY0/0Hr1ao9cbVLOaQfcatMygtJeAvDAOiVU9EsYZnA6TI47JYqiPIvvPcvf09eQ0k5cAtcekw7JPyL5ioqIh0pwG3cKCuZFH9hqurWfexhjHa0I4iA0RsRwWKYcbswB/TlmNwgItfaxHvQahZqkJ428cNNMwaymGo2K416mpYgoYeEzzeESkxfU1yIeDWK0pRlthZeqT9zmNHJBYg9QqJdOp6g0T9lVA+yAKm+Bny44TQFok8D3ei7pGrumcxyFMzEnWgwr0UijQTbJ3iHIUUjMQtWQpLtm3+Zt6FszyVYotzMZYzpO1xzvtxLPLgac/rFn95H8v/yg4jr/0P3L1P/7vfOkr53xpUgJOJ2/Fj6cj357uOSpFYy9ouwva5gyj5cCYgUXxJPeVN28G+ZagViTL7ilAR4zzAW8KgaPp2DWW0RmeR8W510zese6ETW1tIBj1AKjOtjshfDooffrzDFJnb/RpWDKnj6Old5qDN+yDBAIeY+BYBTydsqc/bVTw+G/7u9/rcL4XFqy7J8SRTrdstOVMt9UePgPTRs2NpRAUwUdcWo9ySOQyuFTuy76qPfpkSTMRRcaf9kttuuQP3yzWlbgATTzO3Vc+1GER+CXPS95fAVcotaI2K7Fv654Tu/PCnFbn6VrcwfrVyPrlx8Tbr9Lff4Pj8SPG6Wb2ls41QZxDyEKQ6mVmEM+MvKx4yLLxGpDOIAjwAIx+k92HQbHG0CqxvOmyB2r6tZrl+/j7rdn3Dd8IEx+6ez6a7tmnG6NmsbfNGavuEmO2aLMiRpfWL2mqCdgzr1k1f7PWrOQmS5y/eeMIZJ/aWTlh0vlRzm0y98b0hwyKgzeYsbacCaVJlUWCuVbIIZGT0/liMlUXy1fAdPFPjpmRnh9zfh9kbgs4/dpPXIdhAU7vCRizLeD0evejmN0PF3BaOwnDVcfXhPFa5k1aG0N4Swzq4PEKdJS55FIzMxM4hmoOFlDuZI9+rFECPDiT12qdGqAO6bydWaY16BiVkDmMbkpeQduepeDldfLtFl9hYzYLC8a4eacA076xJZjYN+nsmPfvZEWV9+9oEBuPRqGaiGnBWAGnQ4C+V7hR4Q/Q7APr/ZH27qa8T8f7bxS2tPf3lafxMdlGDGktmNBR0IGmAqZXKQAxk/HOTPOAyV6r4eoxB2vXJLG6oamKnRaQ2NJLcNqkJv3czFvWb0BpAOroiGk91mEkaIvzAzpYAX4rhdekAjoTdmKk0XOlKuBuJhuK7UupWmJ8UBHm/+ZK7SbkAqWbAk5na7naquRUXZPB6VxrZWsPuddE3VLCW9O1rO+DDP6X90Ut35faX7rO+8iWnjUw7VIdl0+Vn3tQfxcjRgj/9TCof+RHfoSvf/3rD37+N//m3+Sf/bN/9uDn//Jf/kv+yl/5K4ufdV1H378dS6ffrfF9AVD/QLMTj8ZyoJqHQS0SXHPXMA8B8DQBP3v3nbDDMig1KU2TmJJTksr0zAztPGoZxhDdYjERueHs0ziXXLJwTTEna8eyyYcY6bSR9GllFyxuKRR1ARxPAQmTmNPWCFOg7QLdOlTBh0bk9asOneT1ZnuOffZ+AajVavudvRHaotdb6Xj2SZqvM1gdiOngFdMBI6SU7DEqYaSVAvEh+JFhJVnYpcGw1hI499S0CVzSwpxO4PTuzNFuIu0ZaKPfyFjKX8fJzdJg71FtS5zy7wi72vcDfkr2Hl4nH8iYWPIz+OgVdIk93bZPaVbvJub0GeO6Y9w1xLXCriPdak6qDylA0o2KaTC4o8Y3UmC0w3sFnK6HUloqXYQtOylh5xJm9ohcQ4XWwiyURO3MfplD1fI8Kd56qSDfBlfes8kJc3wKimPQ9MGwjwJWXyhbUrPHGDi48TubO58y3m+2nNmOVmlWKfjxFHwaE+t+jIG7MHLrxxSsoWbWT5zBaZWPc0qYgZFAUAJyZTageHRKgSzei3MhoaGwRDJInZnVQclpMbNEDJqtruZskh0fg+MuTLhcbDOfrerPp8A0CKtbYQSQrtnSfizBJbMf3UQTYasMF6blmd3xf+qe8kJb3tORF6uRp+cHdk89qwtoL1fYp08w2x3m6TsCSidrjVMG8/FVYH9t+M2PznnpDDcxckNIITWuhHfl9XGtJFiyRbNWmrVXrIPlwhmeTIaLYWJ3dGzuPTuu0K2BBJ7G0eGPnuEucLzRvLrq+Pp+zW+6O166I8fgWCnDi2bND9gNl0pCer7pe74+3JFL7EigiWLtcWE6+dCWHZr1KTCSpOXaC6ip9SydOwWfMkgdPcQQUGPAjIE4OfSqRbVtCZZVTbvwqZZ/72dbkOAJ41hUHWGcZH0afQpoFXA6g1gFnPZamOphvj9K6FiaNybtMT5ZVOWGaj38yWGwTgsPyeqhU4bmLYWoObdnndQJo4KV3ZBT4OePN/s41+O0uD8dAghA7zXjJD7UeQz3cwhd73Sx9pAsiVDY0/WhIMteRZQyByTqFJCIerzMqkHq058DC1A623YQPKq/Ikx7QuiLbYd3hxLOE8KQwOicvxEWYH4G5WL0GG3RsV00yWomdf19iNkjMlUtMYcdxXRwFTZnUF6sBdQc+LNRDS90I9YeFz0XXwis/9AfKvXB8Zf/J17/v/8XvvylM740Gj6JY1pDAvdhSuC0pmkuWK0uaZvz4kWeZcAisR1SUNHIHJJ46st7wlZGmOIxBrH8SO/vED2t0hxNyzE2vAgN535mU7etwjZxAVTnkQ/J2bdXvo4PrEHKc8h4ZGXrMQ3SQBmneT4WcBrYE9hHX9jTBZxm3k8+cwPp5J47nQvf7XDJTsr7Hhsp7Om1Nkv2dAZGMsiQQiTrMMnsOz0Fyf84BlWUinVuw5hYlB7y0b942VuzTgqHh02vDJqEMJXGh/yCsKVjrOs1iUkQ9mCHsTts9wzVPsFvLxnOzxl2DWGtUfvI+qpn/fIj/N1vcNh/jWP/EeN0WxjTIUzV481hYjkEMTddIKBiWHjEFlujCvjIeQGwrAUfU23W/10aBClYO1np5bNItlhA8aCpoHUkxNl7+pvujpeu59qPTMnaQymDsSu69oKuvZRQxJTDErzYTkhDTT5n254ZDFPEqJNLXUzAUyh3N0rwhXoHeJPyI7OojfaMKUitVVoCIRMB6BgDBy+eyXqca4M25Dq5upbJezvX06GS6fnEog5RVWG7c/N+EYxIBrGTr3r03AYBp18nW499cAWc7rrLBTjt1xdErTFDjx77ec9wh9S0c8k79y0xqGMgxNQUiSrZKii0CosmyGmjpFZlfdqoQep6ncu1c65RhgTSlRpfmQRMC6FHmxaTAty79qnYN5hN+rzF2B3abtHNDpotsdkwbc8WwPSp6kmd7N+hUcQGsJITYtuQzlLy3w+3inCcQenmsEcfr4njNT7ZObrplmP/Ec5LLoSA0sMJWCuVWxtnxnRXhSBmpXhmTG9VU9lGzNe/HjlPp7ZZyjNEyQ2X6pyKQa1yKKIu4LQ1q1QHJYuPZItRW32E6DGGqonsUcoQQosPI1o3OD+A0gJUowhBQ3Q4kr2b0uQ8G0sF+Cq5x5og93iuz+rdrD5b5bNUDm21ZiWNzApszzUTPLZXCDidcwKWDbW59qi9pzNQXbOn6/ti8b7E2TP/FE/K9pcZmM5ZaLMn9+cA9e/38Z/+03/CVzaPv/zLv8yf/tN/mr/wF/7CG//N+fk5X/7yl8v36jtYZ/9rG98XAPUPN1uUNgUMeUymDLN8KDOds/ynL+ybGZzOrKg8TPJ+roHq4qWVCpv8uDXLrJYejdXPa8l+Hio9NxWhUVE2+ZDY1Ahr2+vIhC4sbo/YjkgqsgByBgFTmtyNVxGjRaYudh6RZiMBiGbbYXZb9HpdvF/19gLz9B309uJRxvSnDi2g9MMgsFik6M5JoEqfg6eY7VAy0/wxiWqWJVqlaLVhqy3nuuVCWS5yIGIzg9Pri0CzEXa4yiCXDzMg7SMhA9U+oownJwMr71G176v3hHFK/tOzvUcfdPI+FObOGDxD2jgbu0nsafGc9qstw3bDeN6gdrDaBNo2st1UDxPAOcSHrI1MjWLShqg3NIenaMRPPbN9YJZJ5RHCyBh9KRYJLILR2qhp0YxqZn0aJRYfjQm0rdi/aB2L9678XVJzQScWUwJ4EmDde82ls+n9FEDn8BaWmJ9ozjg3TTmIlWvFnCafvz8Ex40fOYRJ7scoG7QnMSpSpxyyDYYmWW4T8YVVpxDQIstla6Bax1keG4jYzOyKc9icjrMsKwPVTQoLa5Vm1IF1sFivF+tCLrTrYqpqpVA4QzESlaRnRabyX2N0KKKAAEpCqC7sjqe245lZ8a7ueKEtf6ibeLLdc/bEsTkPdE8t9nwnTaoUhKqMwb/+mNAfCfs97vbA8NpxeC1M6Vf7Da+mhk9C5Gth4BCOJTG9vEcJnM6SwikFtLQI4+2IpkVxjJrj2NB7w+RGxsEBE03nSmPJ9TANisNtw82+5YOjsKc/cUf2fkIrxRPb8cVmywsl4NUnceLr4x2v/JCAwogi0ikt6gvbcm4adsokJYx4sE9emj4hKPQQy/0AFB/qOigJWPwsWwmFKeDHEb2f0O1RrIVai24SOG1M+TxftBTSmj5n1nQYZe2SBpkA09GDm2bP6RDyAVCeU5spL+lQIk0pGNHJ7qeWF9cflEN63gc1iiemK7ZZrdJv7YDbxohWmqOKReoNmfX46Sa+EhSWrXnmPf4xBjXMzLUxNdv6oyEksGEcxW80WwfI+p6CEdOcrRnUruxVMCsbxHvRmO5hMzGEpNLR5ft61KD0m+w7xv6jAko7f1/YOxlQi9VHedx0MNSAWBaFAkDWBy95Fem6ZkAoP7doy88KaJYYnDE1RGUt9aWWyWHU56bhPWV4d3PkyQvH9ifeY/UHfxqA/kv/gbv/+T/w1V9Z81+Ghg/jUILu7oP4Th+Vom2fFnDaGNk064NhZi3lUOxPDVGLswUAzE1J0j7gvQQ+dsqIFZMJHGl5EcXS69xr1t7ROU/bQtsFfGJOL65igJjXh6A4zduW10AKQlSLPbY/5oBOYfIfgxZVCnATPfvoOGbGIDMb9LOrGk4AlwVT7O2wiKaUlxFxtKiSH1Lnv7yp/RSCwrmZreq8PmFPz3602d5jDH6281IZRBF2nDSP5lB1WAIORbJdwtXzdTHJxsAkMMWitcGYTkCu5gm2eyYque0Z/fmOaWvEl3aKXH7l6/i732C//xr3x28xTrcCPCVvaXmQZWNAvKZdaTZnKX/O1anZkG1SiNaWCjWDuj4XPXpOOjnAtgmoWie1aaP0Ym6dst2z//LkNHej5cOgeOmOvHI9PbO1hym5LOcSGm6FWh58n+5nAeJO1R6QmNNKwGlBlyKoQESJj3o5OeTmUJpDVZM8ZpBTzVYfurL4kNdmGCuV6h4wQcNoCUGxDo4QcqjdfE0WNltBpVpCQiTHZLtVg9PjI6QqmPfckchNdAJO+4FbP3LjR/ZebD2s2dGtnrFZvRBwevMDhO6MaAxmGNDjEcYbwnhN8ENhT+c5798Sgzo3+PIMMolJLVwN9dBSJs7vzakvcLmWVZOv5Dxkkgm1yna2vROpm8YkZWEGpbVukq3PKoXqbujaJ8XGI7Olld2B7STQtFsRbFPsPOIpMF0xpQFCp0AntrQFpSMqzQ03KiFk3sP2k3sBpYe7ElYp6pLbWTng9gzj60XInjRclzkRBiGeNG8AplfKllptVWrchyBoISnEWQ0u9/XD9yVXg+U6LNjTM3M6g9NGd2jTVb9vidGVv1AUTwmg9n5Eh4EQxBvcJ6BaKV0xlUUVRUw2jAHQBk2cLTIQ7EQhKinPKeEHajWqSntCDrc2xbJktvUoz/cRcHpWqc0KBU7qpMKgTvfCKWiYn3f9/pziSqdkx+yvnu3Yaqu1WP37z8dnGfEz5f78To8XL14svv9H/+gf8WM/9mP8qT/1p974b5RSvPfee7/TT+13dHxfANR/sjVY3YjnJopjrHy9WHao8+cxRm5wHBKYkg+cp12pzBaDWQ6XU1ZPu7+13OixYAaPdHYFLzAL5iNRDlATOXlbZIN9mIMmag/tJm1GK23Y6AavYacMu8Smbqs1SSthxrZdYLULNFuN3TWY810JJTPnz9CbcwGnz59956zpx0Zws19sfyAc9oy3nvEejgfDfm+5OTZcT5abqLiKgas4cRscN048jGsf4zyM0lilWCVrjxd2zXu6lYOv9Txdjzx9MrJ96unONPZijVl1qFY2mMxEDH32kY6EMRZJre+dgNTNiGk1yhyL9Db6iB8Dvo/cXTfcHRquR8tVhKsozIZbP3IIjoGINhs26/dYrb5As/1hpssvcrg8JzxVbM4jm01kt4FVA7uVkER9kI/jCP0Uue+h7yP9SjHea47DM9rDCnvY0pmVsHXsBmvX2OGK0XSMk8hoR3cnm5afcDrMLIPsn6vBqIYxwirPEx1p28Bq7Usjw64UplGY9fL4KNfEE70r19FPivtbsRrILMS78Xtf5P+ANnRqtisQS5UZnN5HzyGKL9+rqee1H5iiJD7ney+nMsPcJVeJUZoLPwEnAj4VNTFWm3uMiwIjF+BNVDgVaZMdT/aoziOD0/LIikZZULABvI5c2PYkwHFpHTAz4uZRM1JyuN1GW1ba8J7dlIbNhVI8NYFz68WLfedYb+9oN5HV8wbVputgNNEHQj8yvvyI6RDo95rDreHrr7a89JpPInwSWl4HuPYDe3/kGF7TR1+ecz6I5Pu0TYfaXDBvDGyLxYy8FmEIRY4ErqLiw6i5OKy4uIf3DiONDoWVNDjDwRlees2H0fNNf+Bjd+TgJ3am4R274ceaLZfKcIyBXw89//v9Sz5wR0ICClX0bJTm0nS8aNY80R3rtA4fY+QTFDfHNj03yufMKD5lOsHM+suex2ugVZGVjrQ6cL6axPu/DdgmYJoBa/vf3hM/DSGIZuYWBZzOTMsyL7SE3+JyQwqMT4B7slLySjHGFNLEvEeOp6/phB3XUoER1e/evaUiblIQzYpVe4Ex3UI6CgKIZi/1cl1OmCGnZ6my30dVQIRaTn3rNe3QEKKiSxrs+9FyP5mFPc0+Maf30XOMEsR0F8ZFAFtmbGV2oDCIDKpiaNZgdI1T5p+boRdQejxCCsgNbs803uDcLdN0i3NHJrdfMHnm6+ELW9oHl3x/ZyZxZjjPLOJPO7io9P81jKtEcfIIoJAZ1VmdsFKatTacm5b3mg1/2Kz5Ixf3/OBPDlz8n/8I6//uf0BvL7j+Nz/PB//+hv//ty6k2RSOkuUQPS/dkW+PB17jeXLxU3TtJdau5X30I87tS9ird0cBtXyfmreRWpOSfR/LAbG8Dw9fS2ErhcjXxzs53GvLuWl5YjqemY4XruHFsC5BzE83YwGrtI5oU9t+vJm5IvYVM7BVq5Tup9wkURxjYk2nebiPPoUBuuJF+RgwnVmvD9+v+SPPW6UbtGpSSN0gdcR098bn/lnGNN0SY886qtQ0bTnX7YMmUu097aMwpUOY798QBOwbEpv8JihR7QTHbRi5967Uj3304jmLLbYSbbOjsdsFe/ohMD2ln83rTWnwqNlf3to1TXPO+uwPolbPcLtL7rdbsW7TCjs4Lr7xGv36q9zffonffPW/4aaDKAxh4X+bm0QhhjKXc/BZjA4dYwl6b5ShM4Yz3TwKRtW5O3JNT4CoOKthJmZLhPqcYcjsafm3W22LpVneC1sUO+DceM5aR9d4fFBc9S2/4RS/7O745rjnFo/SbQpE3LHqLlmvXrBavYdtLlDK4t0e7w/J0mCfmIhVg0BptLboijDzWLOMtP6FIHpMRSYWkCd7AesDSu4bNYP1XgdWWHIGUG7UGuAYNeuo2XnNerKsdGCV1IbZSnEKOs1RUYdOmS0deQBKv2nnzOfTI5598Hxz2nOdWdPRMymFtVu2q2di67H9Ibr1++iLP0jUBuVGbGLkhrQe5kZybpjmbIJpunnTLfuZhlOaoPQJNDZbKqi02NR3+2OrYjz5Ogu0cmsxQd3l/JyzV4yyNNqmwNwmWfgkYNpuUtid2HdkCx7TPQezAtMRbUuwDaFpiNoQtSYYLZ+zhUeIBaSOhhKKiFbzhuIi7EEPgeY40hyPmOMBNdxKk8AdGPpv0Ve5EIsGa5hSk9WVvUzmsZBlLBSyh0mqzDPT0mnBAvIakO0P10rISG1SQzzGmJbPs31ZrmdXqfbO8zTvlV6BSWun1nZWpdgtjd1h7ToB1F3J4cgKidOGPcxkqxhdmq8J9PVD+jyW/AyfwgfH8YbgR6Y4MSJAbeNF3d6lnKJGaZ7ZlWRLJAKZ2HAGpsywT0QlncK38+vJodynTUznjlXehVso1XK+z2wv9tB7+iF7+nF7D61UaZgHxOYs28Oekh39I42aGoCPvw3B4/PxezfGceT29nbxs67r6LruDf9C/s2/+lf/ir/1t/7Wp7Ki9/s9P/zDP0wIgT/xJ/4E/+Af/AP+yB/5I2/tuf9ujO8LgPr5tqdTQWR/XnNwYn+RAWtP7lhnK4nkQZvJs4RZ7pWAoRyAFGOSszF3gF1ZbJZypRqUrrtZMzCdPI6UXgBkALVstgQHKAl40THJTlVgVMLsaZVh0qF0PlfKJPBAWHKjUqwr+XW2a9CtQrd6lpyvNpXH9O6zWXo8MuLUS3Ba8p6O/T3heMT1kkzcHyWF/uAN+yg+ivsohdgheQZmH2cfZ7P/2mMqg14ZkN+pyKbxnG0nAeA3CnvRYbabIqkP45hYisI2DX4GVTPQ4ycENJoiYQrUPYQwkXxfBXy9nxK7LoEXmT09JbCi1YlV016ID+F6jd8omlVktRJwetsJOL1uwGiFD5HRFUcDedwUluQduM5ipg49rdH+Ccb3BN9jzYC3Y2HPEQPeH/GIfcQYAzYGbPQ0QdNrxyoajtHjlSk+4PVQBgGmEzhttqs3Mj2jD8V+wK58uU7OOZr7711eNKXCbGY+zuD0EQGnr71IH2/8WCRdmTuXN+/FYVwZcrhHiAGUQXxsY4FvQmJWL65L+ogIS1kOwLEwpXOxkT3ua4YTnAAiCkiHoXzoy+tOXpNmT8J5rck2RXURulOGNZovatiawKaZ2HUTq5Wn2wS6tQSh2pVKgHTE3wy4fg6GO9xa7u7XXA9NAqUDX3GHwtw5+IljcAX0n4VrM+hjEHuiUEFwNupyGjktmmHJ4D3GbNWiMX3DqgIW+6C5ifBJ9HzoB679wDE4rNI8tR3v2xUXaHyMXEXHN8c9L12f0totIQ7Y9BxyQC5pPu3xHBNjWJQ4FEVOfZifJc5zUEv93rSpSbFStrBWLsc2rVOKnYKtDqyMBDHOwHWk6QKnfrb1ZMlgdAapl+DWDFZnabHWEVPJT3M4U1bYAPN9X8vsqylapPYLkGNeL8JjT/W7GFqvaBI4rZUujcmY5pkGYtQJQFpKRT9tLAMiK/ALWUv6oGncPFdPPaePMYi6B188boek8ilNbPI9kHzhi/diKq+iE0a0r1hHFfNchYDyHnO8gelAmPb46QY33Sw8KDNL53TU3tL5cCuM6oHMtjSc+tMqNHoBlIfyOa1/UdahfI8HpGm3ZCBBXhGB5IUp1gKtEvDsXFveNUFCEX/4kvaLP4FabXEvv8XVL13xGx9e8I0QuElgax89134QawA81p4XcFokwPnAugSnQ5wWsI/41AIkFi08CFHLz/5NMvMpyWZdjKKOSiGKB92xNy37ZP1hFCX0VSe1Gqg33MtU9/J8704+g1sSJnvIDP7IwmIm22cJK2xuYtaNM53ek9PdtzARSYzDdCXynqi1JfgR5494f6D9zGzsx0cIEwZS41LA1DcxJyE30CKT1zQmFKuEzEgt1nAIsLK09vDL+1Kp8toyEHE6aq/px9QHmVmXAS9jNjTNOU37DLbvM23PpMZrDHrybO722Otv09/8Cnd3v8bh+CFD/0rYnbot3qa1VD7bijjfJ6sumc82Chhch56tU8NkYywNhnVRJmmMgjbd2Y8BUl7FVEMFpmhmoINQmuml6cr82KcWIC2KtY5lH9Mqcu8sr73mwzjwiTtyH0VWkH1/G7uhbS4kFNFuyQHPAk4N5bqHxfUXhma2AHhslOZcAofkbwjj3CcmtEuADwpsIh8ENdtX6UQGMvVdo6CNopL0KvlHK40PijHK/dmkrJ88P/PZ8yFTmmJj+FgYYq6DskXeITiuw8DL6chdmLiPgaA01mxYr1+wWb/PZvM+3fp9zOo9eWnT/SKXIIN/uVEawwz+uczefwsjWw9mzmd5X4hJ7Ve+41QT+LDhWa3Oea/KgDSq5K1obVPjoils18buFqC00Z2woxNIauwWZVYos4L2gmhbojYJmNYLcLo8x/T1IhAxK+XkTUO5SLefsMMoYZTDnezl4zXOHVIDRpoCw/BqYQdRg5pZLSHg5li8pS1zmGQdfNgpw4VtEyg95/K0KnvICzDdModGQ10XqTTnRIXt8+MkNWH53Xi64yfQvth6NKkx0BZw2piNgL7JLmOx7p6uwWmeBr0qQLXWUsNoPcjfdUe8btFarptHp/1zwimXipMg1pbp/REyn8VGIfS1wXEISXmkTtEFFutxHiH6pADQCzBd3qNZqRVyo6x8xEQ8fDhq9vSpvYc8Zgad0vv1CD5Vg9NiZDbv6bmRAxBPD7Gfj99+xAi/4wzqyM///M/zT//pP1389G//7b/N3/k7f+eN/+rf/Jt/w/X1NX/5L//lN/7OT/7kT/Iv/sW/4I/+0T/Kzc0N/+Sf/BN+9md/ll/5lV/hB37gB97S8/+dH98XAPXFU0cXZh/ObrClyM/SqjaxUEySF82FwtLWIx86M8i84MCcSPwhdeNjlmDIYS5LCyMJCE+9Mp06dNmbKcv55E/PoUV1uE8II54kV6yAaqfmYIgQI732yds1MKoEykfFKnmeQS1FVyhjxAvVGFS7QjedhKC1b+7cfCcjjgOhPxAze/p4xB96pkHRHw3HoWaoRW6i5ybKpnHnhZXWJ6A3H6QUSw+zHACxU4adUpxbx66b6DaBdgPNzoqn9notXq+AMrLdxhAIY0iAc/ZwzQdGhXERrVWxtlAmEr1KoJD4lR5HS+8N+yiMpj75CY9pzhSvQ7tB2x2hXeE6i17DagXr1cycXjewTmEbGCXg9BhZtwIeNRacFcnY1Ch8YzFNgx4lId6kLnNTybpDDGh3kGAh5cSrMHgsikFp7r2jQQqZI7COqjA/akamBMMlS4L1GtKckclkxPsLij93HEd0e1z45E7t977IH9PnzH48Mh/UD1GYU1eJYTJEX4oppSj+sKEwHHUJS6p9NgWcVsRytE//e+QMnTEHX357HpmF1ClbDo0mFYfw8MCY7YYeGzU4LQfPfGicC841sE5s3a11PNkOtG2g2wSsFRa8aYSdGz1Mh0AIcHhtuD9Ybo8t16NNgLTnkzDx2u+58j23fuSV64s8rqg/krdfPSLiO5ttVTSyBtqKndRgFmD6AixUuekQOCYbChMNrZfXLJYxsl5kxcIhOHwUFvo7Zs0L1dAqxSfR85Ef+PZ04F5FYQUqkQA3pXkg6+4YAwTHgZlddh+nwkrM7IvT5mNe5+uR39k6fCaz27P0cqstnbJstWWnDRdqVcDr50aA6xxo+5gXfB41WJ2/D1Elz9aqMVkXp1ElppcA1T4K0JAB53ynjtXXnkduAOZD9f7R//rZh20uFkzCemSQmnSY1rpdAG85+FJA1Pn1vomlln9+jHAMisbPc7n2nJa1JhZ/27wvjQuF1BzbhVIJgGpmdmYQP3HlRgHZk+80UKw8CB413ROOH+IWwPSeye2XTEKY2ZZJTlq8KZNna8TTRLjQlpVqykE2K69qD0qY1WO1eiPEWOxLTn0+Q15TCwhYrgAKASEbLY+3MZYXquHFauTsnUj7/g+iz58Rbq8Yf/OX+fo3t3zTa67iwCHldRzCxJXrufIj2m7ZrN+haXbSZArC7JXQvfvEsnIzEIMESNfPKavTAIJKzzixmSKxXItcZ9QjpHUspIa5IzJEz712HOLE3qzY65Z2tGy9ZhO0WGX5OWy4tgKq79vTe/aUfXnwWtY9EjhdNUrq9ynP+dpSKtekYukyfx9PPmRPtGVPBJimPSH2SYX3ZhD5M43oMYriiVxbe1T5svJ99c98BLwu185HxHs6JFZqnLNLprC8L2dTiMy2tMVLtPaeDrmOSYBDHhkMzeC0MWtRq5kNTXtJ0z1Dd88Zz57gOqmLuv2R9uYV0/Wv8vruy+wP36Tvr/D+KKzrZkNjNwt2Xs2+C36cWa9JjdAV9aQoKNfastGWS7tipQxrlYEoXQW2zyBzfU2zLZpXct8fCTQqESzS+ahuqs/KoOU8kAwJxUp7OuuxRghC95Phkxj4tpP6YVKglTDzbbOlbc5pk62H1isBp8PcEMjMxPo9yLZEYKv35CGQFGMojTrvNCrMdj9OeUQ8mOoTJe2rfP9MiAIs+1HrUpcFUGm/i+l5xMCIYo2izZYIBUiqgg+hgH+1Sum0bij7bqprszLi2g8c/MS1HxmIBGUwaT3crN9nvX5XwOnuOdhOwGnfE6Y9McxhWDUwGPGleRnCgPNvJzQr+/Uu3o+8S8d5Pa5zC6BqEmZwTuW0IVV9rRfnZbkfbbmHaluJptkVS4kMSmudANIMTJ+wpqMxBZxePP8qVKC291AhoiYwLmAmjx1GzNBj7j4uqqexyobINly5yTxNt8vw8gcqJ1/u/QxMN6iSvXS6n29Us2hQrfPvVeeEHEpejzxPfYWJLFRzWt6rej2ea52M0Gt0YiALW7qdmdPJh1qbDqVXlW1bmo+n9qHBocyKGBzadKmZ0mN8j/f3M7FIaXyet2mpCAGccmIBE0V9jgYfrShNtaEjZTkFQ+OnpHbOO3wj574YqjlaZXek7AGxRJubmYv5svh3mTmdmzBzfVQD0W/yxs/kGR+XQaAZnM6ZSrkRuwSnTbGvFN/wzwHqzzxiJPrf+ZDEv/E3/gZ//+///cXPPo09DfDP//k/58/+2T/L+++//8bf+Zmf+Rl+5md+pnz/sz/7s/zUT/0UP//zP8/f+3t/73t70r+L4/sCoF6fBVbRFzas1lXKd4gYJzerD0um6IIdF2dv6Cn4woBeANQkUEplv7N5RCiswllmkRcLW9gbIiHpFuyJWTIyy3Pz5uW8lo4qEoaTFyYfI17pcji5D5MAWVo2KCmOKInR+UCkdBQ/ZmNAG1SzErDR2OQ7+91PiTj1EqRWPu5wt3dMe8dwNByOlv1oufWGG+CGIP5qfuLGD+zDVBLY62tvlJqZ1An0aRCQa62gs0GYoutIs9XC9k3gtGo78E7CDr0HP/u4ToMAzuOgZ/Zh9psdYvKaTV3I7Lk8SBF+CAKwC4N3Ysjs6fR+GtOJfLF9gu9WuE5j20jbRhoL6xZaA61RtDZtRgFMiLQWRp98oS0MKWAjWoVvjBRVtkXlIAe7JYQBa9cFpDC6gxgIIeCSZ6oOrhwO7+NEGzRHLT7AqwRSO6dwTtN4zwInyuC0NqWJoYwh+gRhrRxxGiVYMoVJmrVj1Xzvm2OfgMFsr7BPgFGW2t/4kRsvgGUGU0xizxXmHzV72hb2hVJaEqFDmIGNWPgBFdCR5gHCuiEx8UJiXNfnt0aLvF0Oj/rRg2M93sQFzUVKmz+UMFobHWmVyEsbE4SF2wSsDax3oXgkgzRhxntZF/ujoR8M+77h14YmAdIjr/yB125mSfdRLFGkuWYgqT0Uei6o0kEN0mEjCviTWegqCofa5eZYYmWsi+pBimbIti1KrD5UAh1i4Ka6VpldndeLPoHHRileGLH62SlRZFyFiW9PB177UZQq2kAUz75GiU+nj5E+eHwORIxzMNqdH+V+ZmaKex6yE1Q5wGTn+pkxJCCYh+gwXsDJ+rDxmGfgpV2x1VbCI2nSZ5FZ5/e/TVLi9lNYEZnFBZWKKNZ2HqfWVwJ+UX62/Nu1AiD7kuaf92+p+G2bbWLJZSZKbV2R/JKrpog+8QWsR2G5I0zB3KA1KlaATUzgnzSv813YB10YbzlbIIevZX/1ITUvsvdvILGnUaXxJc87AafpMCW9apnRKnjwQwEUfJL+Zsb05A7kgENg6QucZK7e9Th3T4wjOgbWqRlyplecm5b3my0X2rJWJs0jPVu1lOsA+wSiZPuIQ2oY99E92qgJzEnxuVlTANHKJkDY0y0vlObZ5cD6By8xz94H75g+/Br3v/IrfON4xifBFVbwfZy4dgOv3EDQLevVc1bds+Jb6dyxSH1zjZTDklQM5RAsF622UMtrlXhXRiYcAZXqPBNlz7AJRC0EhDjzAR2RkK5Fn2wk7o3jYFes7ZbLaLgImq3xdCEUeyKjY2oU1QypGZgO8Q1etbBg8cvBdHmP5iZpti3I/q6py7po2NRNhdywnWXySfofRmLs6aKA9fdqeQj/bkckYDHJ/kkv1vWlBUX6HOUayb0b8X6+Tv0Je7qu32tiw7znq0VzOo9l6NXyMLoEp2fwq2nOsc0Ftn2GXj0nrJ8QtcYOI83hDu6+yeH2S9zcfoX7+w9x7iDMX92wWj1N/tctWhlCIqDU4PRsUTOD00UplYIlN8ayUQ1PdVvAqHUCo0zaK+p7PF9X+VCl0T+mmmREYbSC4ErzaganpWFZv0fZ73oNbBrPuhPVwHHQvHaGD8PAlevZ+wmF1FrGrlImywVNcy5hdKZbyvurNV8rQ1RG6t7KuF0Y8LPdSj1C9Jh0TSdlCN7ivaWExiqXELYUVhqZ7T3S10P0lXm1TUz0kIgEWbEqZywfZ1uv7JxXg9IFmI6z0jXPbbmOLEKKs3rkECb2fuIQJu6D46giqAZrtqzXzws43XbvYponwkYNnjheF9Z0DH6+ryslj6yhh8U6+jaG0SuMbR7+hwq0Kz+Kb15TMmlEvnkckC4+wUovvI7lHj1/CI5mYFpZsB0om5jSy/mjgn/ws9rew04e4zxmcmg3iSXXdF9UT0P/Ed4fcO4+NVKPj/gTT8Xmpw4HFJKMWHlkxVOndKoZZ2C6qWrGNhFhttoW1rScNWZwutSOwDrtQ6UeqqxnWiU1oknrcctMbhgTSAqyfyjqNXT2nzZGGOu6sNblfEpiUaOruZj36fp6B48KDhUdhJWwqGOHz+z85GftfIsPE0oZyeFyso8FT7nH+8SkHrSsKV1Ss5brpwxtsuS8T7ZOIZXxRumFskBr2RcXOR5lLp9kfmT2NN+JjdrD4WNc2HsABZzO+JTPhIITcDpblmjdpHsnqYTfVpP58/HWR9u2nJ+ff8e///Wvf51f/MVf5F//63/9mR6naRr++B//4/z6r//6Z32Kv6fj+wKgbraaToHrQ5I+e8ZBWBd6Soe6SQzzjxUlMkvpF+zpGB41m69v8dMzeS6IM4gRC5gz+/plvzmjrXix2W0By+RvJolLCjrKG5qabApJGApQPSapeUyLMMAhNGIpELV4paEZVfYe/fQFSpkq1PCzhiLW1+FwW8Bpv7/F39zg9yPjHdwfDPvBcutM8m32XIWJ1wlc3IcpgWN+kbqblGG1Ar2EL7VKsdKBznraLgjrudXF1iMHvUXvkhWFJ4w+2RqowuoeJ2leAHKYHGMl002vLUlxh8kkexI4EiTMqWJQiz+XBHJoLZ1617XETgmj1Qro3FporYDTrVGFVWG0TCSjZ6uPnACd5WW+sRjbYGyH9ju0HzBmI4f1Roqd0e6LzCgyMsYwM6mV2CIc1MQ+BilmvKadDI0O2EHsBkwf0U1Aj67YeWSpoDKmzJvonTQ8jMQFBmMwxhCbsYQGfi9jT2CVrBtGRAqewem9n7hLhUYOHk1n80WICqiZPV1JAzODWkex1FFZjphAxuXmrhJkHQhKCskMgOd5mb3EmiyzU0YKRWaJ3eJjMa/n+WbSxM/y0ex1mEGPxiSGtA3F71TriJ+EYZZ9wLNi4XqyXEVVQOkv9y8LqJ892UpDTXcobTDVQaBWe8DMNMiyxOBDIid5coiN8BJm8Mqg2KG5UIqdnl+bj4p1UOxREDWowBgFmMmjlr3ex6l4Xnfa8J7puEzP7So6XvmBj6cjg1Ly/BEGYbY5KOzQEDnCQjY3BC8FK6noS8Wx1haTU8m1FMunEu3FtYHkZRoIieU5RccYJfgtlnBL8RbUiG+vrcBrWx1GsmokKx9W2izDbN5QhAorfD4EZ3/dIg2sGJi1xDszwDNYkVl168yuSz+/P2E7f7dD64eH23KQzUW/EuA671ALubdSxHI/yusaY5azawGnK1A/M9qOCZjMN/EYEyiYGiJjlBDlY7J2yA3UIfqytmT7CDkczCy/4lM47dFBgGoFEJLXYugLy8q7A4f735KwJD8UUN5UXogxerzvuT9+TPBHTAycKcOF6XhiOy7NiqdGQoN3SvNCadZKGlprHWi0F1Z+YvaabJ+T/N0nr+h9w63vpIEcPVdBAroOceLGiUKlVpwVhrWKhRVX5q42PNUNX2gnzt8J2OfvoFdb3PXHDF/9Eq9+zfNhAsX7IPfF3gt7uleKrrtk3T2jac4Akmfnsfh1LsB7xEaobjyesi1n+4aAd71YggSPmPd4dG78o2iSYqXRprAsM1jtY0xgfWJTB8dKGW50w4touQiWnY9sjadJ63Jet+uRwenJ68IM9gmULbZ02RqgarrUI1u2yP2fmoZ5A1SVVDg973ygjahZSYSYVIlFTF/yS3oVUXxviro8dBQbM3vCni7PjVntMGfHwBj0A/uEhXUC2arCk+PxYq7dU0OxNKJ1Qw42PLWKkAaIF+A4P+dk11NbetjmAts9Q62eEbozfNdhj/eYwxXj7Ze5u/0Kt/uvMQxXhDDKSSB5L3ft0wdzcVZBjKnpMgIBW4HTK20KOL3Vlo1u2GorzacTIEpA5VjqihqQ8lGunSiWJKvHKM0xrV6jWtp7yEcse0xuTmd/6q0JbFqHtYEQFPeT4SpGXiZLsD56lJKgs8auE3tarD3q0LSHzQGLUr6AkbmJkJsF9bnp9H3M/rVKGby2yU/d4n0v4Ys4crhaqzQuyo5hlS714oSEJmrlIQpbfESa4T4qvJJ1olWaNsq1yCOz+bOFSn3fngZT+pABwNkLvPZQPybwTOk0f7onS3C6vZDzWnQw9UTfE7yEHiptFqzVmJU2bv9gHX0bQ5tWWM7wINQ4fAo4fWrbku8PnQG2UrO35X7MCuQMSmtlioVE9jQvwLSyco1MImIlcJoH4HRYMKa1l0asCWCOwwxIu3GRD5Gvqff3jOPrKsRvCUrnZmoILp3l50yI7JWe7dekUapYaytWWY8A042afZZrBYV5xNJDyA2RlQ6l3vZRCQAddGJPz499ejYpSnNquk56n1IwYmZPF+b6KTidAer6PZCJM88FbWZFWfDo1MBXZkX0PdoJaK2cxbnjskHlSOcRAanHRJLpg5O8paR0aJJvd6OlmZ9DR1/FkehD9r/DUBvVsFiPfPQY3S4aavX8fmisFYu12KeNnHeWG2Z5/85Brgt8Kj3KqapVzm+N4E9ayBJvy4bvv7nxO23x8V28L7/wC7/AO++8w5//83/+M/077z3/+T//Z/7cn/tzn/1Bfw/H9wVAbbcWKxrgBNJk2EjjfHz8cJpYen3FhirAdAVs1YBXHrH6LlYfEpSUNtVk82BSinBOENa6xZpV8cg69cMT4/2REHyStWicH9C+lUNVYgOcei4NwdNrlwBqw1EF1hg5+PgcNhOIAVmI3/LNV1jT97f42yv87Q3u9kh/7en3WqwEEkh2Ck5LuODEMUiAwRxtROIqikgmJDAhszFzMd4Y8YvWrdhRKLMsQOI0gveEySXrCSrLEVMO5yCbch16UofzhKjonWYfVLInSX5WC3sPnRoSa7TdElrxJVRNBU6bHEI2g9BGPbR68Kf7nFYErUSOZgwxFWHabjFRfEdN9Fjraexm/jsePANDjBCWh4ErM6WixmC8wSRwXu+l5aJMABx6dUCv/dw9NoZovFzrxXMUprU8P4Oavvfd8TY4BpVYjzFwHQbuvDQ0DmEq4HR9ueoE8KgyAzozxnI6s9x7IYOvKkuiVAKpqz+YvPBiKjZqIDaXJPX7V2w5YCGza0n+jWl+SSE4r0+ZtVDPQ2tCYeHVlg95brpJEYImBLg9ttxPhls/N4I+CSOfuDuu3MBrP5QEeKWSV65uaFNydb4uJoW85bC3PArAk+Szzouf4RQ9MQh7OqhAyGBhBqcTMLFL4PSZdaxsKAfo3mmMs6nDp/EqzMyjKAB1n0BCn9aBRmvOdMulMrTAVWJPfzTdcxsmkRArszgEgDAhj8GV921KbOlsZRLSAafVHdrI4bpeu3PAljGb1IS0Dw7K5VqlA0le07OsdsGcS97B9/4ovplBjsmZTSO8iCVo3CidLI+W9kcyh95cCj8WmFb/m7y+Zs/RJhXzOZinr2xrTFTCOHsLQw6mjzy3DE6ng63WFocULkrVAKVavL4MNozMGRLCPJfDSlZkHFUCqKPsJ4sA1sSgHmMQ3+kQ5lohhspGAIRRP8+FENJ77w5iTeEO8nISiy34vthVTNMd43RDP1yVA7s0OBuy5/I47XHTgcndsYueC9NyaVcFlBa7K8MuMRtbxItegOnU0EpqC2uTSkhnlZAohMZBi0pokpyIu9Hy2nfc6Jar6PmmOi5Y1bUtiIvStANKY2WrG16ohme7A6t3V9in7xDHnum3fo39r33Ctz7echPFD7KPnrsETt9Gj22esF49p+susWaD8/fp4D8u2E1Ki+9pBjKyTUwGNGqgOgNddSiVz8zVdI9Oxc7H0yJAu1Uizg3pwJizMUIMeC/r1DenPXemY286XuiGi2C4CJa1FmCg0QLyNWaeMb4CDjM7OAOzteXOYxZQBsVUfR2QLklALQ635V6oatqQ69RkfRGJAm7FCZP+zahA6zXGnj28J7+LkcGPvKYARenkZypCAkNmILohzirAlJWRWX+5gZRr+doXvhAc0r6tkhT9TR7GMIOdJoNkKQjRmg22Occ2T7DdM+guiM2GqDV6mlCvvsJh/2vc3H6Fw+FbTO4OYkApAbe7LrGGzZrauzSEUcArn+e1/DcbKVZUp+D0mW7FHkoZLpLNRgulEVVL83MtkQHqMWgaIlOQtdsoJeB0lAyOMfkxZ7VXC/I3/YniS0nDfWscq85jm8j9QXPnLB/GiSvfc58a39q2wp5O1h7GbDB2u2D15qGVSXkRmSWbfiVmybq8J9miZZb8L0k+MSaverPGJJ96pS04Ld7ejLjUYG9Qic0uwHR5LlGuESqDdlLQyFzVhU09Vs1amNnSGaA+bQjDbPEhwJMv7OkhEV3uU8CnEAcUq/acrnvCevUe6/W7NO2zGeDPTNxHwOkcTCfXpBdwerot/v3iffx29m+byFe1KjiP+o47te+qR61ayJ/zGp7f9wxMC0id54KA00ov7SQKOH1yxlYhvRPalIDiaOavVfCoELDeo92EGu5gEkBaLKWksZy9vH2y8Mh2XCF5SGcldE3kiAmszlqWGpguCrvU4N2kYNLM/l1pU3Jtsk3dHIA4WwA+RoJpUpPUKNKaKg3RkJQ9YvemipLIIHtV3pNqi6iaLaZV8tSv2NPaiHXPApyumOsk9no5x57Yq+Trr6dJvnYjajqIXabbo7RN170tjPspz7eKSZ33BR287D1aoaOcGxoMK0NZX4fxjmN0eB8grZ81SC17Ryh2XT5lgcye+SeH9RgKyaken5a7cDpCtXaEpFbL+NTcaF6C01rb2Uo2n0vCKZDw+fj9OEII/MIv/AJ/6S/9Jaxdrml/8S/+Rb74xS/yD//hPwTg7/7dv8uf/JN/kh//8R/n+vqaf/yP/zFf//rX+Wt/7a/9Xjz173p8XwDUGC1N0nQSXYA4NTAdMzsjpsAjV7HnPFPwVbdwCT4vGNQnX0eqoj8XTboRMCPZeRizwpqVFGimLVKkxxgAuYj1XpgAxvciy9IN3lmcPxKCwjFB6hQeg6Pxsmkdo+EYNUeEHbENmskJqzKMkeijMIqnUQoc7wrLmOA+M4s69gfC3RX+9lX6uMG9vmW8FXB6f2cXDM6rMPEqhZwd/MRdmArIO5ULLQhhBFRMG6SaD2s6d3or0O4xsm5hTh+PhOMkvsgVOH0cLQdnEtM8AYNJQp9BapgPkBLUJl64++C5j1MqxoV1SSqi5L1f4ZoGbzUqzceaGT3Py8xkW37kn+WgxMXr0lpsPnyH9qsi35M55Gib8yW700NgZIihgNQGxbUfpSDR8hOchUr1Fz1EHzFtjwlBfKbXawnYNFJoPACp8zgNVfwux12YuE/p8ROel1O/KOQzOF3fpxlfnu9fkW1nCX6WDAJi8VGxqMsLXwB9SQodAwFXgNjC2nwD8Ff7QM6fY/m+1QLSFsaTzoDuDEhnpmOISsKiPAvf0sFpjsmz9Gvl/trz0h1Fapsk9ALEt+jmjE178ei6lBkpNfMGENZH9IUhUl5fvnaqARWS5UlIz3emDWTVwxrYGs+uc0UaDLAeNc0Q0aPFe2ESHqGA01nelq9zoyUU5rnp2CGAxSfpcPyJOzK+iMjTAAEAAElEQVQp8S1UaAK+yF4cEYJnSl/LnIo4RWpQtKxWlzR28yCVXJqKS19DlJ0PQ9Uo92JwxNAXP71YBdidppSLrcNDxk2IDrfwKIzy92PytovLeV9/XX+uRy6U83/LvtkSBiM2Sha1CKW1SrNNnn45qHMMb8enTfbNNPeT1cfS0y/NqSCe+g45FNcjKnmbc7NoygCWEjBQmOazzceIsP4NgBL7i2ztMaZ/K9YeM3PaxcAYfAEi5rt+DpqT5zkIqJr282xRkZsWzt8XK49xukt7vS73ZAamh/GGaRRQoYmBZ7rhJ9aXPDEdWyVAVbaCyU2wBfspgXxyXee6yNpA00VMA6YRKys/uWSTptgdHedHzdmx5W60XHgLrNlHz62a6PXMKHdJeZD9qfN8OdMN72nF0+cTzfN3QBv89ccMX/8GH3+94YNjyzH2CZwe2YeJGz8R9Yr1+rkEI5qNHEhHOfjnkEilNCa9/yYpYYxZ09hdWsek+V+vZZCYhNGnwKp7QpgKa90n2XvwI1MUEEsFR6cMVknwI0oRlCo+kI6IC46X01HyM1KA4lPTcKkaLoJmFxLrTUfWQS194Zlri/I1s0UPZHVELF+L5ZmwvAFGJWoSIsXqQ/5WapzmRh9LEoVcj1Rv4orn6VFFjF7Tdk9p3hJArUhrTNVIA6l9cnNebOvU/BmxKCq/yyxJr5tIed7l1zvDAqo0rpaM+qXNh9YP6yulLE2zw9qthF3X4LTpiNoIeHV8zeur/4W7/W8mZUOy81ENbQIW26rWlzUgzOzK5B8vwWjCjbOowp4+BafPdVMaUTulWCtY6bkRVZMr8sjzqwkCTrdK0USFSexJlITStumaZ4Z0DXLJ34mlObpTil3nWK1lpg6T4SooXvqR25QF4hS0KRixsdke5UkBEGO1dwjA6FHBFCbuKZh5ClDW9/ZCtRIcShlhWSaGp3MHIftwn9SQo7CWUz2gtSEHjWpisvFB2JfJ4iNP2zHtRQWcrmq8wphOe0feh3KYqcxj+TyF2ZZmiJ4+uBTCGhiIRGWwZk3XPWHVvWC1eo5tLkrdIfZGs6VHjK4AtMVSAYqFlHO3TE72nGKRFN/W/p0VCg/vse9k6PLvlgB3sXZI77vRXQHeRA3RlfqrfLzp/Bp88WdQIX2fn3/OgwBhSVf2W266KQ3l07qt2MeEMbH0k2quqt8eWnm4RxnTGZjOrOmdbt4ITJvCkF76wz9mH5hrnsYISA0CTkMCoKOQaEbm80om0ExeMzIrU4qdWaVKKSxq082BiHkOpnkYTQfaFM/vYJsSRhm1FuKV0Sgf0CEKQN12aDehpwZtW9R0j9YWqyyt73HTch2X907j0lvrlCv3KiGRMEIC4tN1zHlBQ/S8dgN3YWIIR3mvCJjYynumG5QK8755wvzPo/aw/iwj+07X7GkgZY/Nzdcan6ptPTI4LeqBdn5vlCZHRX8+PsOIgpH91zR+8Rd/kW984xv81b/6Vx/8t2984xvoSgHy+vVr/vpf/+t8+OGHPH36lJ/+6Z/m3//7f88f/sN/+HfzKX/P4/sDoE5DGQXT7L+ah4/L1O9j6nDnrnWWazpmz9FS6CoBAB4b+b+XYjgB05l5mJO6jVkX1rQxG6zdSKGRQkJqBkAuNILvMUaKB+vvmXSDdgemtEB6FD6AY0LFyJhkx33w9MpzjCYFjwmougmacdRidTIGwuTQ3hPGATUNxLGH1ZY4DqjVdz4tYn8owHS4u8K9foV7fcN46zi8VtxdSxDbJ+EhOH3tBu4T0JhBIoWdgcEkl8lFoz9Z+A08OOyVETxxFCAtHI+EfsQdPeM9DEctXryD5eBNCSPy5KJBlUN+bbuQ588NEux4lyTJffY+VmAS+1LrDswqdYlJAPXDp1mzpH1IcvwAo4PJz+B0EMqWvB6tqg50krJFh6mKTeeO5VCmlEFNWnwcw5D8ueR3t36YvfV0yxg1frKMQeO8ZhwdznmUcdi+x640ph9RjUW3DRiDaucgSmBe2N/SAn/lB0zUeCJD8Nz4Id23ySuZ5X36sJmUYLtK+l1/ZJCVGITBSiyAZh6qyIJVsYmAUCTfQc2BOzXjbcEIQ5iNnoSkoSBJmDP7MKvAQ/ZATT+YKg/OMTVKjlH8Y28IXIWR137kq8MNN37kPnompdCqw9hz2hTOZO0Wa1Z03fMF4FqPWIe0Aj4xc2qvtVB9Ldf5RLpZfZ0TqlslsuBd69iu5XBrkrNDO4RiqTP1DR7NTUVjz00cndgijTI8MS2X2mKQ6/A6TLxMgLw2a7SyVcEoYKKrJLcBBJhGgGlZl7fsNu8v1mpjtuKZabcLRoiw6AyhYoIs5kxCPczQQ/DY7Duc7B6yRDSEnuB7YTclJudjUtGalRP8OMsJi3VBzEeJav4mkLe8I6ef5e7QsQpyiTMQlgEJGxStMgzaF/a2QeHfEjsjBwvmwCCTmSlhYg4yTSE1yZPUkYFtKdLljlyGyYwExvpxFCUoOTeqM4vQo0ptMBaQeulvO6SGWGGxJBuBYjMBRbrv3BFj5tCvGH2RV09uz+SOeHeUBo+2dN3TB8C08wfWEZ6bhku74sK0fNFuBZRWOgFJmb0nwJ4A7eC9ZkqS3jZkEDTVFI3AeMpIboMyYjUVfcT1gdXoWN8rVofAZm/Z9g3j0HAT5XH30XMIhl4JUK1RUjsp8UReacOFtrzTTmxfKMz5E+I0MH77G9x8beSjmzM+SfYp92FiHyZu/chRwap7wipZe2QgK7OnSe+5Kcy6tgTYGdPStk+TwmEJXOSRGezFWiUMWLdLrEIhAsj7Iv6s96HHxchK6dl6JzGrMzDviNymJnvxpY4tR7NirywXSnz31168pXMT/PR4m9nTj94fKrNeoygA0vvuM2AdZ2AaZvZVZhRPMSRwetakkQBRHcWKKbOZjdnSdZesussKevveRvbJzmoPOPHbTI+d98ssOR8re7q8h2Zrj0w2meqDe5xDPPMjU9RRmhyOWAOaNUhds3OF9bzFthdou4NmV9iYergj9q/oD1/n6vpLjMMVIU4oFFp3tN1TVt0lbXNRAFfvx7SGZ+m/W+y1OWg4h4yuU7juSpti6zGD05qLxM5fGbG5a+zDYM46jHNyGp2COPFamIJB7GXWKI7oxKDWlVVILF7JeazTY2/XDtOIGnE/WD6JnusgNf0YAygtZyC7TezpbQKv5vvx1M7D6G4hnT8Nh60b6G+y+ojao4JNfrX3BczOAKp3FucQZUr0ZP/63NypmdRTUKCdsP5jnodxsYfkexPmwNk8LzNDug47y/dmVqGMaU8pH0oaHMasizVMZp+Xs2IKQSwNpujSebICBiFZURyYxleM42um6S4BqS41694OQF37Q8NDf3B5jx4egJbNouV7ecqSr6088s8W4HS2jwhunmPJ4uGB64IGlV66Sqo1fLZJ6Yt1R4wON90mxcMSlK6tOGP0xXaqANOkumxh5xGKpdtpJsmpnceZaR4Fpmtbt9puDR56+kOueQScbmxSV4QIGFEBpXyu7KMu1lZJjR5Z1DuZHja/70JqyezpYol3ypy2LaFJoLRt8I3FNwZvdbGuTI8uIZRenqOeGozz2GFA26aA4E3oq/d/nkMjzGQGD2Oa3xolGUxa0QeP0bIXibe35gvNlrW2XLmeaz9yH0Z8DETj0aEBI/kW4USFM893/WCKfSej2IelfbA0mGPi2Mc5IDGvIXXdWWpPnRs22at9Vgypt5Qj8fn4vR1/5s/8mWKjdzr+3b/7d4vvf+7nfo6f+7mf+114Vr+z4/sDoPaBqORwBUJ+DEHC3iavJXwmg9MxBx/N4PQsD1yazpepcCr3T2MBTjMDXyZ1E2twumnOsEneZuwW2z6TxTWHN5Q/6opHZUgBK/oEUCu/SiT4gFPyWqwStk+vXWJRGwkfC4rBaToroYC2j5i1Ix6PxNWaOA7EaSD0B/FtbrvvmEXtb1/hrz/GX3+Me/0S9/qa4fXI/ZXicCvg9PVoq0C2nhs3FvZ0ZgsEpdICO4dfxSAhY0E5QmLGucSizIGEIQqTVH4/zYVxJBhTQvzCsccfHdN9ZLzX4ofdN9w5K3YdzIycpQ/XzI7IvojHGLgKk/hyphCTHKiW/Z+sEWkotkudYrUApws7OmYfOoUPkdHDcYwcpwRQpw/nxP9aVXhvlkehDTRbkoFFKRCCH5hcPW802lmcM3jfc8Thg0iqh5B8RU3gqBtGLEev6Y8t55PhOMoDN12gWwdMM2BWI6bVyfPborRGGb1gUwtL/3svgG/8gIq6AE/74Mr776v7NKoZ4IWqwZSYbw87/yIDz4BYCBNaWZFrpWC9PHIAWnG0VlEAbVUlKsf5azlozKACWb2hVAkdMlHCSaBiVVe1pS8HIiWe5zFyREIi93HkNkyl0XOTfLh7bWV9sRvWzY62OccmFnBmgxm7WzbF4nxQDokpXVtTyME6qToSYLr0zxwqsDpdH2ZgOvX3aZEAse3asd5JqKlN2Hg7iYd8CALGj2NDq/TMcs0+q9GAgq22XKqGS2UYyd7TPa/dwKgUje4KsJlHhqkjeY1XaNVUHqEXNHbLevVukXRru0W3Twog7W1DaBqCbRg3HTHb7qRpH6tQHZB7Nqe9qxAwkxN/vWlCuwnrRlnz3UAYr4lBDkefxtiJ0TOlvUHsViZqf93aFiNElw5GMf08w7hpciUZYlDLUBexF4lykIohXX/PGD06Mau1Uri3JBE2Zo3WAiLMnqMTXmk8oKomkvjlpgNvZkQlwCACMcYCKI9RfKZDUOIFrGIJE/Mhs9k8KEP2pc4S7Skmb9CK6Sb3+JI9ne2DZL6l+6IAYI4Y74gx4PwR73smdyT4kRAdWkmAWNvsiNEvgOkuRi5Ny1PTcWm7hbzfJLbjsXrPYG6wArM/rVe0QbMNgckrdjVz0QSUUYt13KwdYfSYlceuxGPW3gXedUayCkiBi0qxD5omysH5EFzxUdwosfe4PDvQPF2jjMXfXjF882Nefdzy0WTF3iP4Ytd0FxzW7livntM0Z4UhHdI1lffZUFt4GLMuNgzGbov8Xdvd0vcyjyAqsXyveXcg+F4UDCmg0rpDAarH4YpjFOuP1ocEFtpk/aFplaGPXmyTCPQucPATt77l3kqA4lG3xS/4Ak1bGkDpPctNOGbLjyWDembafdrIHsy1p34JVkoztSjTogRyNXG2D3JEJgWb7pLN6oVYUnzqI37nIwMopbGVgJRi8xERb19m3/zxxKqoANRxDp8bq703H/aX9+U8HmO8LawIzAxeG91Vjckdyu5STeBQw4EwvOR4+Bo3t19h6F8irEiNNusC7mdwOvsoZ/b0vI9OxdZD1rzEdEzs6U7Lx0Y9BKd3UGyy1q17kEeRRwgqWYAJc1/7iPNZpy4S/3VU+LK/zpZkjZagT/zyuu2Ulcdee0wTOdymjIswik99UigpZbGmo20upNFrd7MvMMyW6dql2j+9J9kL/BE7iFNwegFS18C3NwQ10JTfnVUDmeTjvGbyh1IjZGa/RReiwYRYKE4qAe7lHp2JCIHZbieDedlTOjOpZ0uoGXTqs2o0nT0zSUerNrH2N1KTNGdYO4PToRAGZpVWtreowWl8jx9vFuD05A5zkzvNvbc1PgtrumZI19+fNpBqO4/fbsTgUSpfE+Se1Ba8m+dczMC1hXjgNA8i112P1cDy89nervjI53qrMKbDA9Z0Xp1zAKJNjf8MPufMhmLpoTUb3TzKmIbffi+Q35lJXBmctibb/6SAXq0Yw8N/0ypRboqiJ5S9JarZDm72BzelUZC9v2XftQtwOgPTrhNVcWgUsQG0koZBQsiD1xAgTBHVKMJk8NbQDBPGGIw2mOnJA7b8Yv5NMgmcl/pXSBgCUpukgNLKlzP+mW5YKSMh5a7n5XTkLll+RDWzqX0CfHWq9WpWdb4mEiAv63n8DnfQkMHpOPtQ1+B0Xo+W1rOZdJVrogzYCzidFcJK/fZz5fNxMmJ8a/ZHn4/vfnxfANS+9wSj8VMkjBGX7CycE+/lnIxehx/1iXE8BrH2WKSi1uA06etPYVKr0slKoTPaJguB2W86H6BscyEhIe2TFN7QLUMbqoAA7Xfy909lqlkqFINIxxOTdIxi9dElZtM+etZKbD4O3tCMkWkYafqIPXpUO6D6I6pNwHTTEY4H0Ba9vfhtr3s43Ag4fXsl4PTVa8arnv4aKVoPLVdDw1VQfOjvuQ4Dr50Aaocg3pNjkpwa3aJ0g9FZ3hcEmPYkdtss5awPXWPQsolOEMaIPzowAwYEwPUefxiYDiGB05b90HDrDDdBcZMk3ccEOsBJZzrPMaQoPeK5DVMJ6OuT154Ulk1ic60wWjrHwcwgSpmvAUYPxiUWrY8CUDv5+eign6AfwTn5CE7kSbpKPMjdaOFEpY+U2t34PjG5b1OHu2XUt4VNFHzPwMi1H5PHagp7NB1703CRmF8Xk+XCGXxUbFrxHGy7LA8PNJ1Htw7TqBnoqDxM4vC9A9TXfkQHVaT7fVY5lH33YQdpCduoxWE1d5Znf7tWGkHaFXCP6Ig146OwrzUxZt9OLWBZel6OWY4lc1QLQpkO2wZo41xgLkGHOSgTaiuiWJoijwVD1kxp257xZPs+bXOxkCdnQFppUxg30/jqAfiZA4YE2FyyQ0oRXoGgdTEewljAwzIXkamfffXWSrPrRlZrz2oXaDYKu06WCGNA6wC4Yl3y4aTwmHItWiUMr5U2XCjLpTJcKPgkRF6Gkddu4DZMhU15OrKVptx1cuhp7Jam2YpHZiOHwdXmhzDtBap9QuzOcN2KYBtc1+Ibg+s00SrYlNupehfTYwQl8QBeEQbFFAx6ihjXFBljToPPfnu62YIfMIlhXXtLZpZ1fo+m6ZbacqV+z+b9QRjX3xlwLQV1BqwhJsBI5rWOAp74kHIAkML3rTGozRpr23KoU8rgfI/yx/I70ZVjEkSH97NfLInBLAY8eZ+QRvSRgE9AXKsDrdcLm4/iBZwYhNk2IO832WfeVU1sH0/tPSqmZwJTsx1F8Rr3o7CAE7vQmhVte44xK2L07A8f4N2BJnqe64anTce5acXOQ9viN5m9TSGDmcu1L4Ofa0wJTFqjOXrNLrEpJZNCwKzVGGTd1lpUMW2DaiZZ11uH1qKgedJPmNFinJHMAhStzkoHGX3waKXYast7WnFxOWEunhG9w330bW6/Ffl4v+Iq7aX3UdjTd2HCKcNm9YyuvaRpzoVNntYnqMDpR4DpXFvp9XvSSGpXD1QNKgRU8hXVtgM3YDJjzh1o2kvcdFN8wZ3bswfctC9NXRckZG2tLW0CEJsoAWs54PkQPb3rCyv8rlnxzKw41xZoSoMkS7w54SnPIYH5UDrvB6cje1QWhn+QJpIrwNhMupADs8DgNj12BuUEHFNYs2WzekHbXiRrhPHBY343IzcsqT771FHSZa2R1zyWRZRZTXdyTXIjyae6N4N/mWFUXynFaWjmDGqW38nM6FRra90V1Uz5XSeyfze84rD/Ne72X+Nw/+ECnF6tnrNZvaBpzorNTK2gyM2WDGjN7GlhVtrE6uu0KezpGZw2BZw+N6HYZLVdwNqUw6JngFqsLCJaC0h9SiUVr3PFqBRtAqa9SgAVy7DFvAZqJUHHu26k3cjj9IPhKipe+oFDmJKSAqxuxSarOZN7024FvMrXPFloEIVxubBC0h5dXbf5fVqypmuQqn5Pjd2hYwpVSw0H59uyhuQx+oFJzSBWHlqpBUFhSs8hKxbqsajbKnC6bmzWjaPsJ1tnHznmhnkGp9tmR2O3YnNUwOnZfy/Pq8IgrsPofI+frpnGVwzDJwzDVbEyyvYT+fz4NsYpOP1oc+GN/9aWPf/T/ubpiNHJdNaUuZNfjtLp3JEA6ZjnRn5a0ZW6KvtJZ0C6qAKjJ2dB+VwHPwZMp/oq27HNijZf7m2IBZxulS6s6TYB0hmgXiWQusGUPb9mS8Ong9OPsqfTZ2tmlaJz0NjAlBScOQwVSN7zycYmaMboiypFsJA5s8fUIYmp+aRUCqU0nYDTtsG3XQKnLb5RhE6BVegmom1EVU21VKoSGgGrg4voQREagx0s1ja0bkSP9kFg9mnDZQoDPuEFOni0hvugqjwXse9ZlfBJsfzolOFjd+TGjwz0cmiPIbGVLTGfHavH+qy2NnnU4HR9lK0VQe5R9rRQfwrulMlXD/a6zxnUn4/fn+P7AqA+vAwoLR1BPyn2d5bjYLmfDHfOFiDyKjquwlRC1l67oXjYZjZmBrNmQGv2VM3nsEeB6sIAFuBD/EulOGuac6w9x9hdAT789rJ0FbMPU/lTiWmn3YRtttjhBj9dY4ZXlYzGlAXJOcXRHwl+WgbjmFTA64YxGMaxYX3d4qYJP3m6vqcbXwqTehyI44DuD5heAp1U26GMndnUwRFHYVrnUMTxG1/GXV0xvjxwfxXZvza8vu14NTR85HVhTn9luE4+k7MfrjZrWrOWEBW7KazWXAhkX8gpdbb76DHBYf2IVoqbuGPtNatjk6w+JvwUaPoe0wziqzkGjldwPBj2e8vr+5aXk5VAtehK0OEhTvRVsZZBNXNSVk3Rc+MFJNynYMejiuhkEdC2Z+Kd2ZwTbVve1xiECd2Ps/xydBR/4Wzr0U8wjPLR94pxBD8KyGWmgAoRHSLBaFQwhCYB8d0K5bfFS61bPS+SNT/epPTuW6bplmG4YpxuGcdb7sdr9mHC+JGPpiMrpdmahrW27HTDmRHW3ru+4+J+Lb6HSADX1nhWVoK32ibQdoFuLUBvPiztp++9AL4LDqV1aRxlq40CCiVQLRKIKhLiY8Xw0qRcJcmnyMFnlUKx0PFAsk/I4Jeu2FDKL73Ohih+pfkR7rSk2BdZ3iNd7AJApENNiHPYUw7M6aN83hMAm5QZa9rNc5rmnGcJVM2e9tmuIzNBvL9nGD5J1gIiY/e+Z5z2hcUp/pcCXsx2GIlpEXm0HF408FLzLh+BNRR2SA5MO9fCdn76ZOTsmWf1vMGeb8UeJjWS2uOR9vU9TTfSvgrcfnLGVdS0UXFMFi8twiC7VJqnRp7rl6eerw63/NZ4wOlVAleaOUytFGwmNcE6bLMtB8Cue0bbXtKu3sF0z3FPf5B+vcZ1DdPaEDuF7iKmlaDTdRuTj+9s21Nb8TinqsYSeAfayX2rfKAZEijtphIEQ1KLyEW3wEpAfrOa53KYPeajX3pPhvR9CIMcvBKQ7dyxWIU8dsDKYEkNXi+sQyoAW5qgE9kGREcJ7ngbY7P9YaxdFTa/c7eSu+COOLcXSwzd4KZDYjU5lJL7sIBPyuARUO4YHHd+QivFWhnuXMsT5Wh05NwE9t6wV55jEGCxV/OhpQb8xgpUOPWZn/tjKfQtjIRJwKql9YqHtH5YK8BDnp/jtGc6fIAPR97TLRfNhgvbslENa20KgOhj5IDjdRBP7FCtHXkUlQHQKMOqkgeLJYhhHRXryXIxWc6HRkDn5sgmOFpAtw2qbTHrNXiP2Y6Y9RGzGvFTz/rOshka7kbLzmtulGYd5fNrFI3yrJThJ82aP/Rsz8WPtui2ZfjNr/HyV4/82jfO+Mqk+TCOvPYTH473XPmBA5rd7gc52/0IXfdcwIYw4FPzzJg1VpmFEsQ2T5aNpPWG++0cDly8LL3caxmclkV7oM5tEOsBAbxsc0HXvSCEgfX6C4ldfcc43TIM19y6A6/9gc6LkmOnG95rNkW2f5eUVXfBcRMcX58ONAho/xOrCy7Nip02rJOP+yk4nd/v2fIiFm/bPCezN/oUAvswFWA6g7X5d/PdaYAmMbe1UqCQfYZIVJamOedi/ZxV94LN5v1SY1r7dgCsbIBTM1Dl3qECAqWh66MuygmfQJ26YZsteI5RgnMnfGGcZa5i/uOfxh4rvrd6CXiWnAG7FTAiOuLwkrH/iMPhG9wdvk7fv5QQc8QSZbV6znb9nlgxJHuZ7HcOFNZ0DucMfkg+wKJO0jFiEfBqq5tSe53phkvdcKksF0rx1ATOrWe3mnj6bExEgYhpEqvRJPIeEH3AT4op+843ETcp9DjnWpCvrRcfe49irRQ7Fdk0HqOEzd6nP9oozY/YyPMXA00XuXtl+NZ+xZd9zwfTnhs/Fg/zpj1ns36P1foL2PbZTMrRRu5BAyo4VGKp57V/kadS1eTfiV/yzKY2xGDROu0p0WF9T9s+xbn7ck/fHX4LN+1xYeAuTowhsFIGR2SV5kdAJA2N8gIgMq/L5b+nkS09Mjg9RL9QNGQm9RSDNFmUzHulbAL0Nxi7Tr7dW7EKhKKmOrXEyHPVNLIOEhyhf8nUf0Tff5theMU43ZZA2EVgXwFPv/ch+5wuAGEdZPsYS3tmTDfl+5o0Mv9M1iHv7xfNhbqhBA/v4fox6pHZ0d4PTNNdUTY89npOa6b881C+zhYerjT9i6VHdDzGmjZKsdOWNisk0ueVNqyUlWBUZWiVKvvDY+Phvl/5R1OFsqtIq8UCaLWWRpaoyRSMJJXE7Edvsq99sgvqg+IQU8ZSjKXWyipUscHbliZxsUIyHaFdF4xj2K2E2LFWmC7StZG2jVibczHy+wMhxFJHhxALQWsaJEtLD8LEbo7nmOMl7XCLHV5imwua5opxfI01N4ymS8q1A0Oc8NEz+fk+nGLAJ7+VFYYWzYW2XOqGd23HD4czrnzPt6d7XrqeQyLxyJlRGmPZm1pXBCaFXpKb6vlXNQJisgXlBJwuGRIVKcKnRlaikcxN18raI4fcn9rtfM6g/i7Hf2Ue1P8tju8LgHrYa4wxcu5wmkPf0Ds9WzhECbXLvsFZUlqKB5aG8zVrYwa/4ncgqpExe/9U8jJdyV9MR2gaXNfhrSE0hqDnv65DxFuDcRYzbIRRHR3GD9hUqIQkPQphQoURF46FNXMMTsKttKYNOeVXvFv3g5WwJAPKeHTjUOaIavfFnkEZizrcoKYVqpmlVTF5Vcf+gD/cEA63+Jsbptf39NeR+1vDzV3Lq6HhZQVOv/J9AXX7dCAyiVneNNviizsHyfhUjAlQHoIAMQ45gPXJnmUfPXulOXjDarTYQ0QZRwjC7tUa/KQ4Hkyx9bh1hhvgKnqu4sS1H7lLoS5DYn9loCL7JWZJKojFyK0fxes7eEbE2kNCItr0utbCCNHLAkk2XbHtMJoSyuij/LfJCWt6HGEcl+C0GiLGBVRlWi3px7p43WJTsRe8+HW5CeVGrN1h3B7rLrDjDU1zzji+prdXZOl58ANHHFP0DC6w0o6DEgbYWlvGJnBVM3mcZu0bdhNsh8AqgdXb4yRy00ZAvMF/7wWwS6EWpXmkMgwKEKRxdMKcesinfjhkY59jgEL0GD0R9CSBicHNTamqMCuJ8sERlZ8Z/glgttFzCI6VjkwxAQLpKdTAUoixrEELWXby1x6Zfdnb9jKBqmeLxpcxm4WHtJtuirdqBicFlD4W9kzwI84dEtvDz6znOAPMxYP4pLjJxVOEAtjVuF1myhlUkcE3OrGnQQ7UKyV2Am0rgZtNK77lxmB9oOvvWQ+e8yvP6Aw+JZSDFN87pbjQEmR68Jor33PjB44q0trNQg6qlEZFBSqD0y222dLYDW1zTtc9p22f0q7eRa/fI6yf0J/tmDaWsNboLmLbQNuSCmpoEjDd5L5dkAbTlEDpMuuCEgvEIWKHgB0m8dKbJvTYCzA9HeRA7vsCMn/aqFliwpqyxCjejLUfZWZba31bHcpmX+t88ApKF6A6A+C157MCopJINjncmgSZRZnzb5IVfcZh20uMaZagoe5Q6laucWEpTTJvldiVhOjQqYxRzCqLAuIFz0E7jqFjGxSdDbQqsgbWSkDqPkbGIDYmLbrcx/5TDu9ZIQDIdcGhqoP47AMexSfZrNO8WwMIMD0KS9dEx4UyPLdrzkxDlw6qNUiZ/Uzz6yqN6MS+gfm+ywxVaY7NAGe2MiEGWU+9hqHh4nbENA7TePRqwqRMgRxyqxqLXXu6tcdNfmGb5oNiRAKZG6UZY2CrLS+04uyJw2zPCccjw8t7bq5aXjrDHl9UbPepYd20yXfanpU5nkPUxIu0LUGl2RfYNE9g9Qy/2uLWG/z/wd7fNNmSpHmd4E9fzOwc93Ov34jMqCyKKuiihy66hWHBVwCRWTDzCVixZlEibJBaIoIILFmwYfgCfAc2CMspgZaekpERupvXIovKjIx7r/s9b2b68sziUVVTO+4eGZEZTBZFaMgRD/frx885Zqamj/6f/8vgyYNr9jqZjMuFOV0e5IRJCk7X631zXjv7AQvq018sRZzTsLfa3F2WJz7IlSVl9tZzZz2TU8DhmIKCdZKIwNUIIQf+7fzEezdvLFv2nXUA8AyUvg1c66+D6oNdWdNSmMRAUzrU67XeQwWa1601O6bpHfvdD9nvvmDwb3Duvmx2dxi3Ak3f5ajXbSobc1fmrMMpm1oUvFvZ4/W40I5NDSpdAxKf34sao7qpRLaj9zC9DV3T+7IyLcPyFefzjztw+qQNOgPT9HkDp72/X5vY1rdNbs6r3F/vvVF3FeU+2wAmY9qauTNOm0rGNtB4b9XSYzepRZYbBDuaTUC4sRXzN0posJBdUeBVlnWWFs685q1UgAt2dg1UW1gBMW8s78bItC/s6YvjQ7J8SAunFFhE7Rar1d0wvFXgajg0xSgArs6zUiNbr2B1Xf+6Ziys94LaxL1dJ19iApumSu2A6xvm/DRqmLgJClrPLIrwV3Y3MKBWKEFy+/lgtiB1XSv6puEmrLQ8No0nA8KaXWTtqPOuY0Dq8xMkJVFU2wrTAbOuZmMAEo+k8EhY3rMsHwnx1Oq+2oSuLF99fFcmPhWk7q5x6YOOXwZ7Gti5qa979qdr/uH6s/WzW6vqOmOcLm21wXQDWgOtWXTrI72+j071KbllYdTvX//M3b/VY9qZyfWkjeo3fQtO39cwxDLfx1KH9JYe21wbNnX5Gmhas5PWgFO196i+9JrP5dzKou7tgOoVNxppViCLmBZOrtfzmrWhwcRjI81RmdPWNXKWWFuY0wpO+70wjMJut62l66i1dH1vUUNiyFUV4tRSJ07D5n2rp3d3nyhjCeojnpIQjYbbu7LP8pIYsi2khGHDxNnjGK0292td9dN44VhUcfWenctxoFyfjV3+LaZVVTcV5Hn9eddwrbYe0tjTlUFtGptd58prOoXvx7cZIn/yQhL/exx/KgDq49GBdy0I5NPiOSXLURScfl/A6acqjU8aaDNvwOnacdpOcDEJI4bqJvRte1EtNMDumgRL/Eicpo0XE5ubtHY4xVnStMPlhMmxyVG9m4n2UqQ1CrqoPFlvvE4SPkeGpBufwWgQgAM+RY+70oWpZKwL4D6t79k5zDBhc9LwxHosCkCtDOon0tN7wocj14+J85MylB/ngQ834PTPwpVPKXA1Anicv2MYDoXBeGgeuc6unpO1Y67Ho/jeJktEAfidcTxK5CCOp2QZF493GXsUUvGzVYAaBafnQX3yxPBljnyZl8akvxQf6dgVG7YDqNt5KYu0NjcqA8Ksth6F3aqBEbuVFZ8rg3oFqEFBamv1+wpQV3A6LIa0gAQFp22QTcIxoPYh5Q89C2ibJmzSTbmb77HxM1w44+ZHhnhkGD9nHD8DKN6bp+JPt3CWQMiRK8renUrCuabJqx/ivVk9EfdiOSTLPgjvomVXvM6cFc7fwT2+L0rBrhsP0BVbpLB45cV5qoVi50Xcnee+0yyyI+dFfXBzfLHQcLYrjNyoxU9Wl7bY+WFWX+/b6+dW7nktMs817EmD+/SeMTDYCed33O1/xOAPDMOhsaV72Wdv/dAD0zkvxfO2K8wlYnLAU1kdutWq4Uy+gMs1DK9//33IT/sKbe6ICKbMnd5nb28c907npRstdlCA2gyjKjXQ+w4pMV4XdtfA3ZA4ZAtZG2wJ2AMHo+FQAEcx2vzKUb0b/a4VabmxGnyzVKjspApOT9MXDLsfYXc/JN1/znI4sLwd4A78KEw7ZXqMoxbT9QHb5hIReignZ91jSzAMc2I8z7hlxs1XTDhDOJHDceM5ndJp3RT1PsF2ywh6BqSw3YDXh8pe3YY1tN2gjc1PMQJiXNvItrkjeYW5jMU6e8Os/m5CltbXi83WQSRiC2u2bn5dkSdHSSAByYHcbn3axFLbg5Ulc8qRR+BttgxZgZfKJh6xnKDMyUQqZuJVpt2zpvtGE6zbhJVt3j4FtZmGcaWZdN9Y0yGcNKwqX5gE3tiBgxu4c56hnONFqu9g3sjF672jH7WhWm98FTh5SQpcLRQuImCUOXW6ePyT4IaIHWdlUe8VSDfOYccBCQpgj1NmWlKxTsss4orXtW7mgrF8bgd+bQzsH8pG+OkTp58ZvjpNPIpwlKiNgxy4SiIbz930oOzTDuBrn8+Ouqa6CT88qF3A+A7ZfU7a3xP2+02j30JTGukamDApYeKyqhVuh/GYegl1hF4rWpM0j83ik+6LNdD1+oFTPPJlvPCZm7h3ei731rO3ng9Ja4xZtNn4Pi2cc+QxzbxxI2/d2IDqsQOqa5Mls1pY9NYB1ZuyXhPtYxiDF/0IPYhhoVhQKQs5G4t3d4zTZ83SY/BvChPugHUl3Cp/dwBWHbfNlebnayiZAxZM/bo+r/lOV7s3toDf81Gbqdv5onYCzy0+bhmX9V6k4PQfcTz/58acdqKKS2t23O9/tAGn9e+5DuBavzY7gKJ+oQOxGjjdPfbGsseyR0HjuyGxn1Lzf67gtO3CK/ILSZvWgtjVi79agVgrL0r8x+JZG6Ld2MsMxnKYAn6ntfXp4vlSMp+yKsZSOZbe7UpNfI+xu1Xy39sZtldrb1yPXacmMu1nHUCde4Z1baq+DFzDClRbdohZbTGscYzD2+05T8JCaCC1tXrfr40U9Y5Oem8w5pnCso7b67GaUwEbuwRTQaZGvKCrR6t9mjKnU7GxsLns0Yzb7CsJR9LyyDL/lLmA08rSXy09cl6tvaTZef3yQ9+rNHD6NWux27F+5gqydQzd7nhUVmj7/hWmtbWOXGv6vIZ796B0Ddvt/1YL1uusOepzb7NMbGnq1/d9+7n6QOpVWWhKk9A2n+kKTu+MMqhHSvCxsY0JDQWQ7khS/exxmBWg7oDpxp4u+/yh1N7e6z1AytxfP5NejeqBv/pP1+ZUbnfRytipPsdKKmv+59V32jrEObX38KpCdNMKTo8j7EadX50jpO6NI+BLXY3eqxSoFpLVfUDYb+/VDrASqbsz9QNPSghoTUEhmrTafbAqioKtOSur4tVheMCoTeKob/IcTrpHbOcFsBrG3hjUpp7t7ahHO4tgujotl1qsgdT198oeqzad13uGAVPUQR1hqo5bG6Pvx/fjv9XxpwKg/nQdyc6TBEK2PCXHUdgwp5tvcJe2Xn2/FJxWj9b+xiIIRkxZjAxt6SmS9u3vrT9YF6/bwAeVt9WbdvKWPBnkBqAmQ7YoQD1OKgNPEyZqQrMtIXwpXXB2IFlPL28OhZ005Ig1hsGEtll5zAM2OrhoYWhtwLgMzBhrlTUFmN29hk5Ypyy9VOTk1xP5ciI9vSc9PbI8Ja5Hy/FTsc+Iji8l82UOLbTsMc0KTpsB7+4ZxjeMJcCtFvZ9QnXOc+uC5xxI7kqyYwFSlhKOoyzVR+PYMzAmh7sO5GyYltS8tnKGD+eRT9HzZTZ82THpzym2a2EpoGI/qs9qO8+lo3ktrKhUQ9bs1IAv7w+F0TBtSj/p5P/LIsX/U/8tFoB6WYo1wKLMS5nBBCnetVtwGmigdC7NjBrYBmiWXEtCnkoS8h1ufoNdLozLI354ABSgXpaPygwLR2I4a5iXqAXOkJQfcmc9Fxs5Wc8bO3KxnmNhVB+N5YBVG5lYwshs5pKfL9Tfdlg7bOfmZkE2QAIxVI1DwawbK1hqAFxXKOdNkerLhi3h3V4bIjZgOinf+rtrAS2SlUVd2CKpAAhODLNow6MCvH3gRS8xm2W1F9IiXf3YXQGmK5i6232BL5LPtXEzt010DXMJ4VOz8agWOb2UmOJ1ed/J/+umeLKOvfVNxuqMaUxO4FUGX7Uk6UHrGqSnzBANCNtbLZKNM7rBcq54368McLvf4+4vDHeRwxQIyUD0uHId7a2C0zuXOUXHowhPaeEiGefv8G5qQGBTrpTzdgtOj+NnCk7f/Yi0f2A5HJjvJ8wBht1aSE+lmB6cFtP1UW15+u1JtflI0ZCDwQTBz0HB6csJE87I8pEcj5uAtpTm8nVpm+xb1lG/jihzZaQGCN2GRvW+nM6tYLXIhLUFnE4LtgDV+t7D+rqSWzBhv7k0xSqnMqvtKxv0bztyOkE2pHhsjRZVCNUNY1T2u5uaakgoG0mpTBKDEUsmaeBbuS5PJvAoic+zY8yZoVxDB9EN4cnYZpsxE9drvQCB6QaktkUKm0RwnSSzfRZT4GmjjctxVBAkprmxpkUW7sRwZz0Hp5J+3YTW8F9pzKXex7TeR+roGdOV6aP2VDq/Kyt87P6tfr5F4ILhOHuGU2aYMn6XsOMF55za77QXss1KwHtlWA02M2aLk7pJ1r//uXG8u78wvtWQ4uX9lcf3Ax+i50hiEWnWRRfJ+OGtsqeL77RegyuQBGx9pqcfItNb4v2bTaO/DlOsdKpNWg0k7YEvPWBe22g9uJUjxkRE1CKgjlsfXM11UDntEu54f/kvXMKZz/LI537HGzfwuZ+4s56vzJUPaeYsmWQsRzLX0lT7lBZt+jpt/Fb2fDtPN2zMl0a91xY+F/2SW+/HSTS7IRRQdRwOxY7sM8bxgXH8rOUV2MrItJ4ULq+97LceVd0Ayjh1JYzOVvBFtn7UDawuozFPZQ2jy/SM1a85Tg2kSDjn9Fx/zSZeJJLjlRgeOZ//iPPlj5ivX5HSGV/qQGMGxvEtU7t2/eb527+XVuCugIQVtnQdiNXssVBPVH0Y9kbYuaR2aiUD5BacrsC0ZMVX5QWg+utGBbf2VpgKySBEywKtKbazjsObiB1g/mQ4Lp73EjgW9rSC9qsVmfMHZU8XP1qxbg34hmfWhgCmY661n1WguniiG4mqhiiWIA207oDsF8Fq41fFmYdheLM9T2RSFBaj6rLSB2dwClxFUcu3a04MVhsotyD1rRWUrhkKRYdyhXYtJZ6Rosq1kgtIvr33rOt63QvWULo8HwnLV4WkcNT1s6thc+95LsK2cvluR299cWsbBiuIe1vTr37xq88xlD3AC0zrW2sQqQ3FrkFUVWNVcVyH65SHvRXP7b2+gtT96PuYYtbP1R2B8nlo6hVf1upWF1e/aWM34HTPiNYw2RWk7kf9nbEDphtAbYoqogQkaoiqMqgtNYlALSadgdzlSIxW5/4cNIA8UNQ5ekDasbB2UHZ7DT4t9j2VPV1DEfPgsJMwlpp6v9OaevA8C4VvysQydb2vbGr9/wrRxskQOqjepITLD9gc8VVFKAnndro3S0u77iPVk1oVIT6r8msQbcbVw1xB/wfjcUavlZ/GC+eiPtRrwOKMbddIA4a/AZM5A7aB0x2Tuvv3DXv6a/5Wr+zd/rzyvL8f32oIyHeg/v5+/HLjTwxA/Q//4T/k937v9/jd3/1d/tE/+kff6rmPwROyZxFNA9cAHuFRIkdJPKXAY5p5SgunEjamUrSysNmhAI3bw6ES/6zSXaHdKipIfTuEraRps9BZt3YXXWH7DApOm0Ho1mIFJwvQmAaPnSZl/5SCRD2QJpzbY9OlLBS+gWR9hxC6hc3Bo3iV9gJ2HrCfBF0NMsatbGl7esKEebX4yElB6gJQ59ORdDozf4LTkwYPfojq7azgtAYiPpWNWA9O14TzaXyHH942xk5l/eW0eq3lnEjVjzrPSIqNKX7OgaP1PBrHKA6iJ4lhF90mKOZj8DyK4SiZY/GcvkrknCOnFJoP+dKx4OrpvVWwCxAK1cqWItEPCoz5EtxkS0BiLcJNFnKwZA/RlgW2k1dVz9oUFZjOlTUdBRcEG9Kr4HQaXAOmKxNfHODL9ZOBbDFpwM4TLqrVQPXv2hvPsHzFOD42oDrEEzGeCOFEjGeWPPO+WLTsrOPOeo42cHBDA6oP1rGgjZJLYbyO2TJ/y03SS0MZ6b33nn72VvS2cyOFRd0Byu0f1zCTlcmkVZBzE5IdeApLcyk2CPkVGbgWxd6tlgNGUgGoBSuZa7HZqRdUDcZp3mflew0JrWnYY/NH9s3H/tB8V7VY7jYZXahLZYg0v8F4IaarMkxzQIglhKn6XJaQrwJk3TnPnRmK5HyVGe7LsW7yatFwsxVkSsyifr8trb4AaZUpsitM+8nH1pTp5VPGuSb5NbuE3V/w+wu7XeIuJLIoExsofnrqo3fKlveidk3ZOMbhrvNfyxiTlQ1fCscKTo/ju9XWY/fDDTidDpb9Xd6wPKYRRgejX8FpqB7yWljXUW18qtJT7T1W5rQsH5snfEo6v6pXdEqXJi3tr9WXRv2ces0MrXFRJZcVtK4elvqciRpGlJP+WwWqc/m5MaFs5sJzJULHGgIFIlbX3F9uhPk9xiS1nimNlhr8eHsMqmqoAk7k1LHyFKBTm46EFcOQLe+z2mjsssWaxGiEA5TmmuOC40wgdPfY2lDqQS9lOiqLPKHKKotO80xpNKGbNl9sPQBCPBPDmZhOmBzYo+D0ndVAHluS5ZGtUqFnTb8IfJjVFsBhijWAfzaPb30qa02wgAYozwPjMTNMEb+LmOG6DQCyVkNwi5ftsGQGJ9i0Mi+dUTn8F0Z48y5ix4F8Xbi8h4+niUeBoyT1/JbIsczbXWFPV1VIDyzV0LoWLv0KOF2I77iiNHIxreGj1Xe6/VEH9v7ZNWheALxM1IZPDSerc6ey9XTO7clpYQ5P/CRpU/cL2auNhxsV1EsDPw0XfiYRgycZ4UhqQPUuLa1ZUcPxKps+sZ77dHsNFJVKKkBvbWLUtab5qSPEwmz1Rb02je/avdC5lTndmHAlrPW7Hj1IXT9Fu9nI+jOnJ2XzvCQKXFdmeZD0oj88lHqgqhuk+u2v95NcAcjbfX0GQX3wr9efcbn+hOv1QwOnAcQ4Bv+G/f7XmqKpvW5haG+Z07GrPSqDVfcThuf2HhWY1oBTtKnmM+OgjSQ3dG83STtsFZjO7XvN5vl5UQHOgJNq76Getd4L+WqK1UzGYrg3A7uDgnzzxfIhep7yGo7Y23v40uyoqtHshxZcWoHq7H4+kGNTBamLGqKEnZqcV1WEREycC3CtFld17WrNrhIS3YPUg3/z/AUla05HAanJcG/1nuyMWe0O6rWzAdm+vt7VVuqGurL+X71OJWMrSI3ugayl1X+mre079fw1OldjeCxqyE+ljnieK7Eyp3tO5n+9sXltSW1+r+9hPTJAY4VCZYoWT1+risZ0w7J2BbiurGlXmKz1tatCTOv0dRL0SsgenL4dX8dEbS3BfvN++/z+YVZVYSWBbG187Nro7f7CFqQu77/8TvWaXn9evypJaLDC4LchqpnXe3MOiiWI7p2XrgZpurD+HFQVX/eo7Gm199BQcV88p/c7uNsp2WPs4JZU6uVs2ZC36v97r3Yf1qrdh1HHOWK2wIBNmj3hJGIl4rMqSgd/X/5OQNWuVZWmqpFrTlgMs0RttJe1dD0eepwfjAe/4z/5HRKvBaQOen1m210LpXlye2Mo46XZlmtz1vQ6Xzbs6ZfWNyiEkf7775nT348/ReNPBED9+7//+/yTf/JP+Ct/5a/8Qs//kA0nY4oEUFnTR0mcJPKUFz4l9dI9Jg2vCQjBgLN1Mz82X6/mv1k85CSXELEi19Gy96VqT7rFN3fF6Q2TomykszXIAGYQxa0tLcnWWEOOKsVJg8PPRRbXybdrqJsCFEWeaAp7rDBMbOaZTcV7o8J+koWlBE1YMC5ibcK4GeOO5PtHTFB2o3HKhJJwRZaZdDqSjifi48zl5DhdPB8Xz6PAe4l8yAsfS0PgUwqF3Xho4PRuUnuJYfxcJb12t9kUGXtd2dRSw75OJDsVL+ori2Q+paCMIyyjLUyE5FikSp6EJKZZvTxK4piTMulT4FTY9FfRAILwDcm+yrryLfRq8HdFzqhAojIbdu0qMUqJI0eI1GR1/UuwBaaJsmFN1802rIV6LeqzNYg1pMEgfm12WAtuvJGdZUOOhiV4wuyY5wk/H7jzI+PlhwzLR4ZZgepleU8IR8JwbPYfy/KRswTmHLkUVuKn5Dm6Fag+2gRuKpsqLbQW+YYH9euOtx2xbgtQq/VAlXKVn3fgdA+uFV51B/oVYLlsWI1xzX9dfGr+7nWzsG065cbYAJrlAJKRlIkmYkuzoz8DFSzorTyUNa3NJdsY0/uNJ3treNTXL4B5BaYrOF3BzWrn8XXg9GQc9wUIqQEt92bgrR041GK5MDP2rEVvfc8XPBfJXBCONnIsTMOqQgiSyUYB6sHaEgi2JoNXZpektAWqxwkTrsWbemC6m9kvUQHq8pyheOPN2fIo8LO8cJKk9xd/h7VVGUI7ZuALQK3e3eP4OcP0A+z0Q/L+3Qacdvsty2M3aCE9egWpYWVP11F985Q9bZq9hwnFZiCoF3wNLc35Wu5pKzitliyXdk3eSmT1s2zndN0YVXZRZXR6t6cGgA7Dm8Jyqcyics93E0bWcFC9ji6ksgZmY0k5Klu5e806f5q89jtiUM/zz4qU86w2GPHY1tEsz9dbYz02DxSjJci6AVRbHrWCitVuRxIf8qKWRHhGo7L2vRUO2XIwjqt1hJy4UsGrlZ15y1rW46j3N5GV5VLns64Ddwx+Xxi2R0I4kuIZiEwYpsKWqo2XLEIgb1+3A6a3W/k1G8GWR2VLV3C6WjBVkKv3p6yjzutrtpyDYzgNhZ2ZsOOCcXZd+7NucHWT21sDbCXHI5YvdoHdQc/Z8rjw6aMvTeLMIsIlJ85JA2Cd22uj2t1tQL56jhtb2d+rrcf0lrS/fxGcBm0Gu5gae3rb1F3frfix/OwFBmcudiAScbPH2CvWTc2KxxiPyZ6UVjbjfv8F1o2E5Yn36cR1OXLJkS+GPe/cxJ1V24/T5QMXE/W+j6rejiQuhTjxKS3lnqzhi7V2q2y62+ujNjFqI6UGKgVuLKNwaqU23DGND61RNwxvG/hv7K4pL6Tcq+Ly/tnc+0VGU9d0j/rZUkH6VOps2/1ObWteYlCvn/81e48GTtb/2loeydmp5YVEfeUXQGqRVMDpP+Z6fU+MnxT8QgkK3t+z233OfvfFxm6rf/7t6OuPau9R32uzlCtztbIqNTsG9oXV6H3umrx0gYi3oPT6OznXr19fi+nrCDunwdfWav18KfeloTS2h2lBsuF6cbwX+JhmrrnYe+CavUfNYqnWHnkYEOtIg1dwuij/YCXk9Fk8dSg5o9gbhNSCTxWwLgrTnBW4zQnSrE3DErpoeB2kdn7bqDKd3UMFqW1ZQ8q7gSLP7z2pq5KlAtj6m+v5bOe3AFFmAzh1DYsNqLwCpzmjqpZqZVFCPFuAfboSlveE8GnTiNkymStAXC26vltwuj92689esMDoAfL2HmrdrlZVCuNbjDEFRs9bdrX17W/r/rdkDlWP4AIg1mZ7P2q91IN5t6zpl77WvcLGfgptVonJ5d7V/Z32O6apXFTRbBmMY2/d2ogyda6bZ+qZnkndA9OrlQfl99bzOVhVsA6u3DfKvtA4oUpsKkGqEizqOx9cxhaLjwtFSVYZ1K2R4Nra3BR71q+Np8KeTt4iA+x2+uhr6tqb6mvpkJ6D0+v/C9YavIfsISUFdCNKwDJ5p/eGnJRJnTVAXiSTvWbvCEJOQjJKUjSAF8MpRwbjuEpirOq4LsDYoUzqPzPc6foVr5yJ5NzZ85S94Uu2G/3o20IZipf11t4DnrOnt6oLfi5L+3uw+pcZsr0wvx+/kvErB6iPxyN/82/+Tf7pP/2n/P2///d/ob/xQTJD8T9bJPNYWLLnUvSfCjA9S2rgtEGZLxpsN7VObB3afQ3qY5oXbIZMBFHGw0sgdQs9uWFo1mTf9nu2bKqswVjB3iTZxigYq2CjWNNu+M5PsOhioCE2rgEMxnhMYUIno0xOUxigvTT4jR1IVkgdSO2aHzUYl4AL9nDEpoRZ5sZulGUmXy/k45F0molX4XrRze1TsjyWY/8pLzwVr8WLJLKx7IZD2RipnNR73Ri11N8CwJPmxmR3EnHpXJoIO6y7YCUiMbBI4pgDU3ZFEgswkLDsk9WusoFF4FGeh2QeS1DmVdY0bYNXCVMHycjNqmEwxft7bBYMzu0K+HUooXVTKxx1wRRyUDA5IwoW101G3gLTJm9Z0y7E9nf6zbQypt0GnLaTNjucV5Bta0u9JiNXG5F5HhH3A8bzAX/5nOHyA4b5kWH+ihg+siwf1PrDP3IbphglEbKymC45cnGRvfVkhHvjCxvAEl5hgH6bYYzBdoyHDYO6FAMpaYNHclKg2uRS6CoLPhcZXpaAk1HVBsVCQP+mx7oStDGkxqAOkprVgb5mau+hWg70G4qcM5GVJV076xVUqEnMlWnpSoHXg9ObxlktjgswnRsb67mvXvUbzM12RF+tpog3RnNn5VEBrbfW87kZ1FMc2Bv1sLt3qfjT6QjZsojhmq3aKGF5tGrvccoRZwzX4ufum72H41CYHLpZFnKI2GWBXURSwlQG9bDDDCN28AzTld1epak+ddd+Nlyy5b0kvkpXFgO72iQqAHXKSwEhqhxxbGxBP2jAmuw/I+7vCPuRdGdwe5Uh9uD0fizFtNkyPupIHThdPeZzNEgw2Jh1HscAaS5BiHNpqswrE75j1+k57ph2vUy2sgFfuCepJ+A2zdu7idTun2Nj6PfhQaAKBfGlUZPOBaR2wLUc7xtfaqUYlvf0yzegAEJ4REgtzDPFi/pl9p/zpvBv/y9SwkpXFnVCZeleDHNOfExzY/KPyfHWJQYjPGC4GMfFeBaTuZr0zOO5HwoOsyojkM7uSUP8qgLCGEvOoVgmXRAio6jXu+uUCbaAiQibtbr3et+8hy4MsVrzjGXTuzOugdMPDaDmGZCsr12+ioLUQ3BMn3wJMo0Yt2CG7bWyetc+/ztVbvzufma4M+QlcX2ET6eBx2y4SOIiqrio1lrD/ofsptqoruBobI34BsaM72B8II870qjh0mLNFpxOCmD1vtPrG3cbe4E0TuSXshsK+FWtQZzx2DRDOLbGuckek/qGqUPkLbasB8uy4xIe+aN44SqJMGS+8Ht+ze+5TJH/spx4zAEpDSUYyKKA/ZWET4khBc4utjyAnmQAbK6Na5MuF4B6s8bU+8LIbvcZw/CWcXhYQ3aLdUoPsKbwUW2j4pFl/sB3MdYN+eqh3oA8Y1Y2tdDk5xnzjIRWGeE1xLQ2kGoDp4JBbUsvUtb92IC7nGdgwphyv2ULUqtP/8x1/pLr9T0hPGElFR9vcHbPNH3GfvcjxvEzekslza7wDcxqn7822qT69q/s6fqoiogKdNb5NFYmZAOaCrAUaqPXNPD5FojuwemcDbn//2w2vzsaZV1OPjGOGesgJFMCVmGw6i/vdoZ0FU4Xz6Ok4rGeCoOw2nvs8P4ehoOyp4dhBa061Z84BaelY4TTg9RZ7QjKqSJG21nXlRrZDzpv41CawarpMOmKMSub+iXLD2snxEVcV6e2QMECZs1omOvqO72+vwpSp6JUgc6zun+dyqks4HQ957WFYiQjZq0j9VHr3NiuJVtAQVtJPSXMM8cjMZ6o1iB9wF/1su5VhHSv/V2MjZc05Z5oSvh2UxK+ZMBzK1Et1zQGjCAFrK60X8FipBiL2UpiKgzWDMakde/eeW/X93ab57G+/+331vT393oeCrmsA//1NXNjzUqnmoRubpdHVUgMxmLr/GYLTrv1hUGk2XvUBvPICkw79N5QRxaj4acoSK1NLSnWelK86MvvZg057oeDFpAYkmVhZVBno6+/YVAbp/aLxb6Ujj1dVb1m0oDx3Q3h43akAkhXXPAloLp+NRbsoG0LSRAnXxpZCZPfNKsP5+5wbsFLKmGhGmwvovs0J8KcE3NOXG1kEMsi6t1dZ2id73sMv+7vmsVoTAsL2vA0Jm6sPtbz9/xztnOlVzM1yPe2f9gHHmeEr+N6bZtaQ/lZenZdfz++H/8tjV85QP23//bf5m/8jb/BX//rf/2XAKgDk6zyv49paRLSc1Yrh8qUDQWItHZoG8kKbLyU5JvzolJ6bJH+Jaq/7Ysg9U0HvAeqe7sAsWrHYGzvr6TDew20USDTbGRwVVKz+m/ZwpbziHhyziBCNPpV2aL63ITw3l7JTKUY97hkcfPQQChrI5Bw90+QkgaZVRZVSsjlQr4uxEtiOcNl9pyS4wgtiPKYAtesQUjBaBGontPF1sO/VQbj+A6Ge6T40wGtuLQ5IvlaFpgR7/YM/qrnwlyIkrhmPcfNs9HCgi+hTaZsdpTVXa1ePiX1IT+XkMwadKgNi13rSlZm4O05NlgNYrMDg98rW87tGIY3jT1tbCkc63OyMqIzivPITQH+GjDdM7oa875sqsXZxqDuwemhSKl2u+LxZbcLfcpSwhhVMnUaHOF4h7/sGC4HxuMD/voD/PUrhvCR4fpThuU9Iol5eVz9qZkLK6kGaCgAu7OOxWQuRkGT+FIg1bccUnxo1crmOfMhla41ETC5hNCs523dDChzKaUFYz05L6R01t/pGj1ZEoPXuW/tQG/1UcFDY3ZUefdGuiuJVHzSK4hUQ3FugYP6eq42ydyO20CY9TJZFRkVnO69ChurQ25S2lGQ3KMJ4t6YBlLfmYG9VUDrczPwYCwH4N5l9sVK426MLVA1Z9OCaOfouI9Om0HGc5TUNI/JSGc3oKDgYARrBEmGFAS3xJVBnSOkzuaj+N+6QRimzBgMNq6WPcc48JQsX+Yrj3HBmpFhqMD+gEjC2bEds5oCX9mCfvoB7H5A3N+x7Cfi3mImmgzxFpwem/d0tc0pAEFeQxJD1OZProc9S9tIKyoQy2bpuTem3s/XYtIaq6ycZ6BwYVrleiWhG7rmYadbIVOsB4LxxDTj7KCMtsLK7/2r6/Gp9iD6fmZyYw8FKpxCt9lrSoXvKETtcv2SLMpyyXkh5XnL8CqNQ1MtXCqTB6cQcQGpK1ifix/8IBZL5pgC7821BBBNgOPeZvZWeMiWi/UsqG0U0NjMenzKRsMoM7v6Bi45E1AGlS+saef3eFcVD7mw0GcQbRTVO3+9Z8ZyD633ifpvALfMaVjZ0ysTyxZVhG/WPQ/Wc8DyYExrNNkbr6pc7NAqGJgErslxWTzjk1p9WBfwB55LBm5GvcOPWA7Gcv82Yp0hXjSf4nEeOBZroCC5BSQuktmXcL7e3qMHSxvLcbgnj3vStFMGZln/2uWRwMX8jDmtdgJ2DWwaPMk7wp1vNdh6UCj+1eDihAuJ0Tm1CXETNpy0+ZMmst2VeXsip+pT6tu9prKpf5qOXGYNYf4zwz1/fnzDwQ385/nIl2kmGsG6CWemNrcjkUBiScvKmmsM283bXVnTZUZmaKHftirsSjjsbvqBZn64O/zwVoH/8jn0YKnvcpjVaznGE/P8+Op5/zajXstRVhuouvHfNGCMsr6RFRiw6+rdVEhfJ3uGHtdWmbQpzb6UA85SQGqU5FFk7yRVlKQ8E8KR61X9fI1EqpmRGM84PrAvx9K5u43ffz1BprvP1yZ47+Vfmd31nlDPrQJRfVCXNkeraqEdz3KiV/B5Q968AanL8UsK8Oas87/eA+oYrHDvE/spMk6ZGC3X5FiIJISd8XxuHG60XB8zj/PA+5rnIwpgeevLnuoO5+7ATTrvxok0eOLklVRRQekyB22xOazn7HbUciYHq2rEZGCyqjQcXFEaepwfsHHAoWxp4sqmptr3WBqL2liPlWmz/+rruQjkdG1WABYNsO8bRkFyu0Yr+9Vh1qZJWT/a8wur2oiQTcaIXUFqWW0+TGVk9te1Xb2naQ29q+ZZ5GVTW6wNkX4vWjmZLx/nX2aYG1C3ZoFY60uzuR5kBd/1CK1ah+0ojFKjNlq63y6kq9aY1v8Xyc1tpQLTOS2b+dY3t90L9TWsoPRtWGW9PzYWvlhEXKsv9d9yA+JvTVz64TDtMVaVRFE5jT04Td/4XQMQV3BagemqBgNIYta12CoLeujY0ze92M1Isjawq0oxZNOyZmpIaPUitc1epVh89OGIxbonDw4ZtKyfilVeT/h49jmtftO7/vTgNFTWtxL7jDUYJ8ig97+YPSZPmJzx8R6brgzD21ZzD35fFKWZlDTYvlp9zKKqrsFYRrGtcVCPfx1f2IHF37Um6VOOJAJZnFp9NPD++cHesqDL59OLvNyjbmq0+vWFda6S6F7GoCqJasv2/358iyFs1L3fj1/N+JUC1P/sn/0z/vW//tf8/u///jf6/Xmemee5ff/09ATApxw5s8rnP1X2bgGnr5KYKzhtBg0gcxoUM5Tgsbppr0PBq5WhWAGwLOpnKBLXRbMuspILcq0d3LSRWm1TqeuoAPXt4qFeSxSGQQkVMc9P19rFLMwek6h2JBWkVpsM3cg82qV7EXAMUEHqVgQnxrelgB+XFpxISqTrTLpE0lUIs7KnT8kWf+fEWUI59spWpzDVB39gGA744S1+rMzpe2S4a9505S3pMcoRE4uVhlU2mnM7jL1gcGQTmHPiYiKf0sowWow09i4oKFiB8xqSeS3XRGNOF4aR/n3/tfIc9R5emxqu+E57d4f3b1cmWCkebcq4sMoDFaDu/l5+7jOt4PTNdZLTNhSxdKd7m5genH5zt/p89Qt+DXYLCULU833dGcLVEi47wn5kOt7hL/e4ywM7f8Bd7wtYOzLbj8TgidGQ8swsVa6qY0qObIVgsnpjfguA+rX5rU0ip0VoCcGr50KB60QsDFuJWeWTRcrYZHYCyWTdhEsoLNZ1jurf0+vN+7sy7+9bUd9bfehGYIdzd8q47op/lZUKUTQOp0o5VdSo4DQYaBI53STVotkW0Lr6m740nnnyGocYBxTf7NZJ1w2wpTB/jAYiVmbzaCqArCDyg4F7m3WTOkamIXF3r1Jf41YmVgyGZbFMs2dcPC56vjROg9dMVh+3YvGxs2oZMtpiTRLAJ8hLJl/UzsOMkx4HaI0A41wLZBunjLWGGC0xGeZoeRThqzTzKS16Hvx9Afb9CnQ19rTe36tqw4zvSDu1CQh3HpkMwy4zjjCW8JbmN2224DSsrOlUgOlQmdO5C0dMsvWNl7I57kYPTFs74Z02RZsXtCmhLTmWTWxXjJaNptSNHGvxa5JCHsmYNm+rUqjaoFSwuk+9Xz2sHSnpOpHKNdiD1OvrP78Wf954bY7P80cgFjlumbsdoCsCYiCnwCbU2JRw1MJAriwTwbSgRGsMlxx5H3sG3MjnYtkbYQ98bhzJDJysehiSdTMZKB7QHVuzbtrmyprucghq8JLatAS1hZBI71UtFI9s1o11v3N5DQq2m/83HRtLm4E7W+YyloMxPJQwyMHmBnKBzuGQjW5oxXAtAFYQwzk4/MWzOybckIGALQn21S6gAmJ1Q9w2xcbwYCzTXjddyyc4fvIaWt351p+zArYBeCgs3hZcVkYFj5y/x/oDMtyRJgW56voHNGalLcGIG0uPzu82TmPzwxRvMIdibdYdVO1DGnIy5FnvN3CPnxectXpPth6TrhCOm/ea8tx9bzds6mN45N8vnzjlwF+9+4I/6+95Y0ful0/8eDlxTmec3WkWiht0DUE0OLUT+vYNjvaeqcwr05qezrjiA6xA1uC1/pqmH7RA6hZsBarqqMFS6cqyqN9yCJ+Yl0+vXI0vj9fmd73ms2EDePRs1Grf4TAEk8hSAQLT/h3K81mzDm6bOD0rWe+RCofnHKnhyCtIPQFLY1MnSZq7Ubx8syxU45loYPAHdtNnTNPn6j3tdm3NaeekNVnm7me5fV1Zq9LA6X5UALOqHmwBoap6IWeDRQkGUkBnoNmsv2blUedtTJYQLamj5FkjpSmd2O3V43qZ9Z6wlHOyM47Py1OWs+EpOZ7ypQTOS7n+fLG7G7HVe3oYNuB0ngx4U0BpBaadX1UZ/V6oTudGsqk4c0ab3QPkoOBQDo7kHS56TErYWJmdZc5ybVu0HqSu954KUnuvTf9qLRUlM6cLVtJ6c7a+2TMBzaLJdTVbXWtqA7IB1HJr81FbTbc2Hwrk9oBTZU+bG/a0hgunm1p0ZU+LrJ7ndbH5RTyoX5vf/TDG4QpRAHQtVACukKWqFYasMxTMtiGtf0i/9PPjlb2ZSCZJ1vU2x5Wk0cbKnO73d7dM6Uoaqb8L2sQCyHm1+ujrSyVEeOXHvAJOG2PaPG8BxhWoZht0CB1o2xoexYKnNJxv1/WczaZwsJtwxDWcvFoBbZpZ3X3AsdYJS7YsJdZTf7Kqi3vcYeM93fnLp0HnuR+zgtPDlvBRa+i+/+0q3Zzn4LSeCwC1+pCyfosFGSBlgw0O5wfyuMemgwYrF8vGnAOxKBhFEjlVtXlmyYnZlPBTUrFYyozlGhjLediL5Qs7cvV7LjkSwpkjGppojMOK+rUqo15XoVuVQi74jDXrlf1Szde7xG//wqq6oBBZjFQ7PKs/L+N7kPr78d/y+JUB1H/4h3/I7/7u7/LP//k/Z7fb/fwnAP/gH/wD/t7f+3vPfn7KCWd00xhy5ikthTGduGYFIqMBa7Roqv6Q0/i52jLYqYUPwroAqZfrmZQDxmiirUmWzKI3eYnPlqMalLhK/tOGOdeXjsbdsKMaQ8K0zdPXlQ/PO9YeIRc7EhpInaUu4MJTWhoLJUltmw646HDXAWcF62B3SsCMhNhkvpIz+RKI10yYDWFWhsUFuBRm1DlFrjk2/0NjhuLVfNDNkT80W48KTldvugrCii1bkspwaF5X1yLTcpjkCOiGd8gRmypA7VnKhh10U9PA6aSe03NOLXFc2fRrOJ0tnf/Xj7NrwHQvm6+MJFOLR+vWIJeccQFMyoiz6+Y6r4FOq6de2myy23VVutLJu2btUTRjWC8bcHo3wv1UutXuJYBNWCIsScG481W4XIXz2bBMljjdMR4HxmnHcLpjdDtSPDUAdS7HVkG5Wb28yu5onyNZhMkWoFJeWnpfHq/N7yyBmAw2V8/0oTBAVxBX31t5X0BOmSzKQOtB6mwSkkNjUVt7IcbTxkvNcc8wpAYyVauP21RyfS8T3lUmc7FkQEgSWyGijaweSCil6UYBUUPvhva5rJ02BXTebFRqATc1Nli7Vrr/LOtmvW6SKhtvKP53h8qctpk3Y+RujNztlUW1f8ibIjEFQwowzuvPkxgO2bJguRpLMA5LZqD6WdMYnDEafMjYRRsxsizI9awNquw1iLV0rk3xvHVD2ZRnIWXDKTm+lMjHNKt33O7NFnDNfcPBFQXGnd57xncF7NJmTJ50o+y9BrHUZPEahnib4ZSyaJMn6WMFqE2x90CZmLE0nVJ+1mxar1dtLFTmsv5cGUHVCxog13vZzc6ilq8GbsJcpciFIaWsxXMeSPFKipcGWjm3bwGL3u83761ei/2IQDbLMxbgtxmvzfGYzsqwL00lJ+t1uwGpETKRRMSkoiZqq3Dp/hkF6zS2VFmbVyBngWJHmRAuduAB1ywwDoWBXFHjIFkVJzmXNUNDQa+SiFDWtLsiaZ/a3L0FCOrIRs+TSmYNiVUK/jXkpnVzazqWpVm9avtGkDabDAcDb3xk59WD0tmVRV1VEFkMIVmIjlR+vmTLZfEcPyXcoBezS4Itm9s1dM2sQHd5n3ssn1vB79R+YL4Yni4jj1LqA9FwxEtRL4lxm3DENmxpGrtJ11N/IHm1CKjqoX70cv86ah2hwNhAnCx5UrmxG2F/tzJS670052J/FUWBtGBZ0kC2qgZxzuGswwTXzpexjhRP+Dw3T2rQwrrOIetGluWRH6cTXyxHfms88CM3cb/zvHUj/35+4kO+YEQKuLejZh00Sx/JCjKRN3POYBSQbo1NzcaoFj9V4eV9beKtx7oF7naWQzGemeefEdOVGE9c5+cA1NeNV9fwAhNHyZrDUcEos3qs1lFr0wo8B25Y1EXdUOvYzbXQjgvN2suIRXIimwJM3IDUIr7VESmdCfHEvDyS8oWxMF8XBGt27HaflX3D27VmKM0yfV2HZE/mism1dl2BLf2f/AyMs6zqCChr0A1IDXqNmqzrYZgtMWxDEG/B6b4pBUU5UZRQVRFFeY3JZ/ZTLCGMUqy0DAva5Lu3ns98RJI0/+lPeeFa7D0oa5lan93h/D3ZD8RpIpWatc5B69XaUNddXXv1/T67dDYgdW0E1yDiHCF7o/1fq+xmcRYXdogrQaax2BAAveUHFiSVhnhpFjvX7wFX5vuSr1xrzScGK2uoZW+3E/KWXQ1rwyGW81xtPorgrM3vW5sP8F2d2ftPT7rHkNhsw3LJJKmjejBXuzdVXPWQ1y82Xpvft4HOK1u5gI8WkIwzVt8TVm34KqdLhD4QdXP0SnBiVU7dKp3bGitZs1dktdTUXIpSS91YU9iuxmo2md18vfWgVsu4au3hyHnGmozYEZGsTHFpZ/nFo7zO72rfUzMinttwue6rQ8HpnV3VjUNhSedsCFg6gQWDW8MR3fDavNJ7gDaa9X2NRjQcNZvWnKoWH4b+GNru3rcSsvpwRClNqLG39nAw+i1rPnWsaVcnhdW9qS0kkHb8uiZWtoL1BsmqNhcLeXDEPJYcCb0HpXharT7cREozNg+I0eDMhJIOfE7MJjGaSBBVAqe2g6J5fz/gWNzEdVD72CXNzGhWWTZe96HG8vVVXXceqDWg2XwvrMqjl66lpgwqmBOi2UrW2Jvf++Z78O9HGSItK+n78asbvzKA+l/9q3/FT3/6U/7qX/2r7WcpJf7lv/yX/ON//I+Z5xnn3OY5v/d7v8ff+Tt/p33/9PTEb/3Wb/GYZoxoaEWQzGOcm31DLKzpKsGdxrctIGa//83G5m0d6S50QtKVHI+M4x+tfrzh6VkQ2WuBKNq1m0lZw3UkR4zEDQBp7MqMWBcR7RACWzuI28DFIiutrN5kHCb7BqQp01O9aINkFhIxXpnMwmOa+eBmPvqJD27Ho514DJ4vnhw/uEasPbM7JJX6jkvLrsmLsJwN88VyPm29pz/mmWMOXEpTQIzFV6b68GZlGBdGVE377UcFaSvjsHrvrhYMDmt0cZnzAgUQDaIgwmRdC4yqG59XrV5qoJXbMQz3TONn1HCxnsG6Bag9rqVoT42B4fw9xhVwulxL6osXGkBVbTrWz5rWz5yeA9OVOV89yGsoVB4MMqmthx8zux2bhOTDBF8cDPvRsB8Mo9dHD1IvUVii8HjJHOfMcYbHi3A8C6cznM+eT59G3PGe/dODhtxdfsI4/gR/+Qnev+c6v2/hXxciMUd8WtgZxySOyTgF1b7heG1+S47kwjZM6UJOC364Z/B3LRBOk+LvGYZAjCeW5Yl5/opIwlcWMZRN7YLEyizJjPNXAIzj57gioRwb4Dkyz19hjGWePyrr2lhiuhTbiDd4v1cWrzsS3MQSjiyLMnTErFtoi+muY7X2GMe3zX6h2tko43d6xqBWFkq5lnLsAkTBlfl+O/olNhfWmsWwt5oe/mA8nxvLj4bIZ3cLh0Nkf5+Y3sBwbxk+e9MCJAHyEsjXhXCMjI+B8Sljn4RD3HPBcTGZZFQ5sbOOL8zAwQjOqKddmG25z2VgYeQIKZGXBTuO5TUWZNF7jhsESQp4xWj5cBn5P5Pwb8ITf7SceCLxw/2PGtAFq+BD/18bj87f4+/+LPn+h8T9HfNhT9xb7B6GnTZ3btnTsLI8QC2kqgLhEuDxCNcrLIshLIa0gMxg54yfS+MpdgE9BXQDMEmVIZWBr9df2UzmqGtGXojxTExXUroQ4oUULySzkFLxWqdjybOGNdWRJJPKWhQNhKgNkrnc55zf4dzENL5rYHVlUatPq2+buirZ1UzCWFhQ3674fW2OI0lVBaWlpNeQAnLVQ90XYLY2fJIkLkT6xHQhFWaTIRnTQAUR9RL9lAIf0syP7Ym3buSdmzT4y1iSCJ9y4CqRc1p9kuua0eygrKqw9vsvWrPMdeorZcGvXvXWjrqBkkwyGshbeTF9c6EH43twvoIhTgzZWMa6oTGGAfWd3hvb5vIPi0XPZ3cLu13CD+pB2Vs9VeblMlumiydkS0iGkC2n6EjHiZgsh0tk2ucyD3XdX2YFsU/RcSkA18FYft0K/8O7EwDn94af/mTHf5kH3ovmPzzlhQ9x5kOaORthGj9jmr7A+UMD+MiqkjHGbxrZ1dqjt/WoIcJVqWBTLptjtfGIk1dv+XuYdsJul5u//Nv9S8oi4RpgXuByFZbFcMKSLwPiLN5VRYZTX2fjIV3V0gtw6UrOdy38NKWF7HaFdfs5KV35347/mT+4fuDX/Y7/y/SO3xnf8n8d3/FeAv9ufuI/LE+cAOfuGMa3mzXg1lOyl6zX5ki1qtPaxLX1pDY6RSIpRSSmmzWkBrVeuc7vtZmVZ2K8vjqXXxqvze+aD6PvQfiQZg52UBZqh57Uho0yUmEpoJXb3NO2Pu29328fXlrbZ0JSdUU2hHjBWa/gXdcMVtusKyGeW02zF73XXBGsP3C4/w0O93+OafpClThVxdGFSwJI0mMmNpLtvGFtPguRe+EYOvPST3XkbCDo1/PJEZLdAM09K1r/1vNNdpLVe9oW+587J3z+ZubNu8h4J4TZ8Ok08KUI15zYGc9v24k/+4NPzJ8yP/l4z3/KMz+LVy45kYzBWbXaGscHDUCffshcMh7i3sId+FHn4jgqOD10jx5Ec2YNb9PPXRVL0llqSWkMS8t+yNGQZofYO2xIDHPAxoCbRw1RTDM27iBdFaiuzWNbweO17q9gu7NDUdReOREJadGGpU1r2HRRkM2SFMAu51Abi6rl8yiY7Y1FCkDtBKJRfZ2GGCqAa6wn5Yh36x5E8w3e6R4DIEfS8kgMj8R4btdXzov67XYKYHXyXlUYghKYX7/SXh6vze8lHHH5dTih3beKPURjiRtPy9eAl+sJYzfA9CaDppFG+ubTSvSCNbTO2qHcK8emWOxJDK3JVxXJHZu6jpYbUmq0GC+YahNoz9jsEZta46NpJapFBnpNjMXGp7Knaxh5f91XYHpktd27G1Td6P3aYF0WW+4JDhAGpz7yuykx3WXNlBiUpd6v/Tlrpky9Z4wGdlbwg3A+WY5ZwwOXEoDaTGpMtY4a21qNdYgfu/XXIpNhd5e5uxMe7uAwmRY0rk0LvRJHVFma7JZZXX9v8bQ5H6x+rWqHGBWkVhDXEIuhISjhYrj+kLUy0/MHsFQQN52JBK5FHdHnAFh0z9zyAIADsBjDaEb2g2b4/Nv5kZ+EC5d8bQx/60YNZE0VcaddD/XRBwUDm2ZrtYV8taVUGjrafBINsc6xEVxgnSf5O7Lh++9pCCD/tUMSv8ai7Puh41cGUP+1v/bX+IM/+IPNz/7W3/pb/KW/9Jf4u3/37z4DpwGmaWKapmc/TyhLoko1IiWMrGPINqDUH1p6+cYHuQKmpUoyOWPiggtnxrwCwaCLbejYmqox6byxXhsSVx3ezag2H7d4Xk2vroE/Kxt79aSt70mTjAek3KTqzcpI6e5JJBBW6gFrd78yKx0OFzzvTmVDkwr7163sqTAbltkyB2WVXwqTOeTVX7D0/ZXRY4e26FebEpP1dlw/V/NbjssmUCzneRNKsWEJQNmoaGiBFaNWJsY2NkoWUZuXHAk5Fb9GaOFBBTRS5pLaddQNXS1S2rmonq0laKyxvIxfwekaFlHPawgNaL4FoJ999heA7MoEU/b0Ck6bQXAFVPO++OYWGdV+gMPOsB8s+9GwG+wzgFpZ1IKztbMtOCtFMqZH95SFiGXOO6YPD7h0xecrQzyT0pnB36nXmw2knFaPSZRhYjG85JH12nhtfmsBWs+5ENNlo1IY/EEDT+2EtaltxjXRXGXSnlaugkAyKvdN8UpMV2w4qpLCThin59b5ewaJpdGTmZen7v0oQ0UtRhTUE9m3f0/x2hhb7XxjaGF2heXWg9Pe75ua41ZmuD0eCeyEKcxp5xRkaPenJsUziBFVULB25oEuoMVwMMLdoAVtBaenzzzufod7eGgAtaSEWRaMs0i6MIZEmDUpfGWArCnkarVjWtEdkzK+vFcmtguQLhHcrEnW9R6XEnnZJq/nbJiD4yk5vswzj1FtnDBeJesF1O9HawT4e/zwoD62w6Byf2/Vu701CNfnbQrkm59Ve5zr8ho4rZY9a1hb+UOVaSLK1Lq1NFjPrTblXNZ7n3N3+CK3ryoeIuV+rmdVz/l67D1GWUdUiJdmf5WQcu1XCbG+njUW8fe4stmrYH89jtZog6j569X5+C2LrNfmeFXa1DmyBjop+yuQdHMvUnykDYMxKsknN3WCfuZcVjQFuoNkBuOah21ImZA1w+CSYwsMBbiWwJyqwKps32AACgBoB/Wbdrtnm90+GNm7SVlzaVHPVdEwO9NzYqSG36yqh3pwK3htqVYGlQW5BeXWDZRudEcjTD4zjplxUgZVBajXdRxcUIZVzjAkXc+VJq/s6vPisSd9HR+K3D0YlmC12VQsPhy6HXzjI3f3qbCnHcfFc0TZ09V7uvrVGuPwQ1FUdfO2haXWRm/Jp3geZqjqo9tRQ9jiZMl7i78X9nfC3Z1wt1uVRYcJRldBvVVVdAlw9OsaeBlELfKDxQXbPK1vh7XrfPYecnp+3zbGsdt/wbI88p/jE+fLzzjvHvjt4cCv25HD7jPeuIF/Oz/xs3gkF+9oU0EdtmvCJqiqyOpvmYD1d7MkbAYhvhi0W5tgMc3EcC51V/zWm6jX5jfonSqUOvmao1p3FMVCDQbcnEukA6yf/1uffwErX80WTYU2d1ibXZLIqayZpdbuQ9VSmolRA02NaOjVUkC0YXzLNH7WgiVXi6FiEXETPGuBnK/P1u+vs4/7ulE/v5aIarMVkiWmFWDq2dMtSPGVZK2mHkBB7GlI7A+J8U6wo0HOMEfHUo7tvfV8bgz7Q2Y5Wz5Fz1M+c8nqT10VYfWeaMv81fmoNasfpYHTY6lXKzC9H56rlfrR1t8erIoKWMemYBJdi4EYLB5l31cdUD0TeruNGCnM92bbgTJ6C5NaJOqeQFJRNawh2ItknCRsXj2pK0s6iOaP1HDT3kPWGoMVwRitkasLc1NDVQ+SG5l+I8TYFTTN6bqqIKpFT6feyW2fmMvfprVyhTK1vyVG8uoePF3ZJNa+Ml5v1JSfv3C5bp331+dWYFsB41C+T5vnqYqwD/azLXOjJyLVPV/bz/VWH33zqey/s9H7iBT1pBPde2ezlBrGgJi2ovej9ynvVRKqmhAwpnlCj8C+eE1XcHoc17DUnA3L0v9tnc+997Rxau8BbAJVG4O6Phdp3tVZDAsUtVj5DF1Aon67WujUfb1Y18IRqzJxqLYeplfySmFK16tRP28qm7RKBqkWIEtkU6dH3wHuhbAshaWRBoPJDheUuGSsEshynvH+Tvd7aS6M9wGTEkESA6ZlJFSy4yLCYso6ZAzj+nZ5wPIjN/HR7zimwJKDWuqZASR318H2/Ne9WG//c+szLd3X2+tHofhq75dY35LGLtYTWs/Tt7HZ/H58P/4kjV8ZQP3mzRv+8l/+y5uf3d/f84Mf/ODZz3/eSGWjvgax6DIlGLVsMEMDIb0/KDg9fo6dfohMbzUZvjB0QEHB6gXs5h0+XVvwFKwFQ10XUlpUrgRY8/Uexi+NbQjAc5C6jcIsrqziW0lVlZZkKV204gNmpQbELKQoLEb1cTYnLItK/o2GNjgLLju+uGpZl7PB+9wtcLDMlmXRoLQLlFRbvaHHYiUiqqd7+VgUdrSJC/hxA9CacIZwLMEfx8IAqI9l021vnUggirBkDWprnUnR/1+KpUcojYtsyjks8luVZ4/NS7ravdwWKA2grgBiAZ02i3QXFtFL+1+y7XhJ+t8OUWNPu8YI6z2n3agb4Vrs98Fuypy2HHaW3WDZj5ahANT1+kpZ2GUhZSlFQ30vyhStDJUcIe6tenqFA84fCzhzh3NXBZXSFYNT6b0I2ZTNo/n6IKNvPlYgDlFfXcmqDMh5BTKr7UplLC3LE8siZGaySLP7cGhxnglQpMzOjmozkLrmg93hXGTwyoZzRR6m0kmv86l6ILu79j68JJw/Y7qglr5ANqVp4+zQPPB7cPqlaw/YAmBd4GrO82qBYz3kyqc1bY6kwratG/oe1NpZYT/GtkEd33r823vs4YB7+66BRpIi+aJsERsi9pKKx51spIm12bXHsTdaPuXid6sbSYsLmVSsPsxFz6FtAHVGQmx7tOp7fVk87wU+5IVPaVHZtSvHrrNoWo+Xa+oG6w/kcV+C0nQuFcXiM/ljBaJvWdShs/SYF7heDXExpNlgZsHG1U++Wvts349HjMc6qInwjaHTM3WaH+xc7oHqG11ZkYuxpHTFGAERsklUtyg99hbfbCE0cDeLMGAIBaiOZFUSpBL62SSaqRUFPXvoNhBoDeH8boYfDni/+svnHNqaVZurCfXSRHIJxrXscWXtkcJEK++RTLX+qFt0/TnFaiAxp8ylqG7G0tSM3VpWrTySMVpDdDkFg983cLo2qPR9rxvb6t8tw3N7oGeNu2dWDqmA13qucmGEUtbYl0LiXGkGueI/WcHpyqAyzmzW8RQyKRh2MRODFDalY44akBSSzjmAcdTnxaj2IBqgVJhXwFuXedgHpn0mXpXdeUqOo2SWAujMWS3XAoK1I+PwRsHpG5aasdrwxU+b0KX27x0w3fu8Z2dfBKffHITDnYLShwn2g+Fhb7fzW4TLIoxe2s9zhuMo5GARJ8X72mlj8EbN1t6bqQ2o1eYjZ/V0N3lmHA4461mWkQ/hkT84v+c4BX5nescXduB/GR94Y0f+9/kj/3H5iM8RP9SaZM1e2FpbuQ6sfg5OV0/k6pPdA9Oaw6DsUGVdrnYBpih+vstRQeq5q32ydfimAVmHQ1WR+rzndURtOPXDFtVc9fhdVQll/WvsVABlnNVQNT0OF5DAQGFxG3D+jt30eQtFtHbXgMLWSLGFmJCrWJ4CglzbffubHsskRa1jerits7pIHbjUsaGhtwl8mT29OVYl/Hhw2szaHTJup38rzKYoJPRFD8bxmU+Md5lPX3keK7tSSqhlbbwXyzvrJnDTRupfbeiqiqECV2NVLZmXQerWLBZdl1OGNKwWW/OiQPWy6Fq+WAjBEtmC1CbnNePG7fTaSNet1Yf1qnI1DmcnxGszx/l9s8tILBqu1vZQhdxjHN5YkqS2J70NRqx3jepQC9qElLKWY2C1iVzPvmsWdF0zpHjG31p7SFU2lTWlhgyuVeG3xqV/7sgFoP4mll+tCf0NR204vxga3ZOXWIOIs6nP6z3BbXff1JyXGhbtWt1d8y2KfUVn3wPoviNf2xpfVy4RbfLX+ltfN3U19zpu71kbcLr/Wfn5YISdy0xD0nm6T9RbiU1Cbb3Uue/d6j3d3w/UskBB3Zx4FpLqjAalgvo5L0CQRJQa5bfeZzb3M7PiJs2Cy+plWm3zVhVv+wv0IPVLVnr6Vef56HXu1xGiMoO9V1JaC0x0QC4ZTc4iwx02aBhwVcS6Yn+V0ozJrmAmhdgoq1XsYtbaZTFqg+IQ9aMWwBge8Pya3/MxzqrQbs3f4kVd92AGbm/HUo5CX8f1v/LSmrd5tmTEWC3mCuPaGEMyW1xBvoWK+ftRhsh/fQb19+Pnjl9pSOJ/jZFZZREGq3LcAkKqF1+R4w8PyPSWtL8n7PfNPqE2gU0Cm0f8PLKPAXcThFL/PxZQuG5Aq9fVrX/na+PrknXba1WwowOleoBq/VsDItugDoDqj2vzCEUCtrDojS2DTSVwCaeglTV8nAcFlFJkHJRpBZSOrUp8r8lqh5G14xg7zyRbCpG2Uaop2jmWQn4uvtOu2XrI8hFJV2J4JKUTMZ6I8aKeiF3AQS26MrJ56OZdC8LasLhKau+vsqc15b6wuwtYWH3zrJ3W8Bv7HEhqoDRsgWnrtpvtnOAGqN7827MT6F5gT+ujJiJXD81a7FcmSgOnB92AV+b0frTsCkBdh7MwlGIjRIVsUraknFmSsB9gHmEZhWWEMFnSNGFn9QStgIyzIzWYDmPa3Ku39ZcCjH6RIY1nosMUL86U1mJcJDNC25xb+4ZpeodIJgSIXDGiNgH6N6Us6oEQir92s3eZ2ibU+QMikSHPeDcVCWUg5YjNS2ueuOEtnhWkjv5ENG4DoFcQwVVVgR3Vw9aOnT+o2wRYrUB1vS4UhK1MMCiMfrOs8m5TZIZZj031/8xsiyFXWNQ7F9ntEtNeGN86/Ns97uEBe/8G9/YH63lYitw7J+zlghstpiR+r6EurPLFLpW8bqRzNmWDvbKos8tA2CSm1OKgsj2XxfIUHe8l8T5eOeVINLDz9+3YbVi/ncLB+gO4XQtrElvA6ZsMgCYjTvpYmzlb1tayFOb0VcPUzCzYILiogai1uWljaCoJPVEeI17FNi81tzYXfcTliIv35DTj3D3eP7UGTAwn4ErOWWX69SVQllYNw6w2R1n03ugKuys0UDeq6iSe9Vopm0DPujatvoslXLTKaWWrEPhlxm76jGFY508FzEyy6gMoKknNREIBqS2GyTpsBiMajhobYWUN9kmmsgVLs4TS1ETUVzolHJ11CFL8tsHgt9YnTgN765pRbXlWD2A9JsY4bJ7bnGyqi479tTndhfmm6/MqW845ohqxSECQEtI41o0UiSQeTN3USgOe3LA+7GhwQw9QC3ZAVQwh4321GStzIjpCNlyjMnezJKwR5uC0MZ3tyvIy8NYnDoeI3wmXx+JjXfxr1X86MktilkQy4O3E2GwSbgBq45tNlvjxmQ1YHfZGuirWvghOP9zTJMaHSW2vHu4clcyVRe099oNwnNWvG9RKwHuITrZWa+0FtZFUv1Z2Xfsc1nP7zq0NKyOyeFP/m/mJYwr8pd1n/A9+z//o77i3ng+ffsxj/Kh/ezioP77brc9/AZjW13gOhvaMaSm2HqkwvlZwWkFaVUVo1oe3380WoePNKUiNkHNq6o7JOHIJ1q0S636t6uuIdPPz20aNRdcjW7QK6kWtgcVZIjbHMsMp67kGJysBIjAKjMaqPZAZGMcHxuGhsKcPG3DaGK+NlGrdZErNB1h3xcQ+Q8W2/UE7L937fumzUD5Lv36CrkfVRzoJLSzNmW7+29drr/o71sI4ZYYpM72x2NESTolltpyyZSEyFG/7hyngd9p8ehThlAMhp3KfNNgS9ly948WPTervx/wimaIC0/vSAHPdNOvD0/S8Qxq6DIgIi1Ogey7gdIy680uTwpMVpE5dI8vUJkJRYJl63libOcYkjE2YXAOMJ7IrYaIpk4yC88rSN41JfVea+XPWPccKXhuiNJOEdubXBopeDdVXtv2k5o4U67l2r+xyjW73gjXQu9a4sGahVKXVeu19W5OPl0dKV0S+KehcXtOYBiBXn+nnv7mqovqhtgbFW7swp6sVWPkFZeO+MJ9WyzJtpihhZNooY3uFRF+bGQsmu239LQlrl1LTR62/TUDEIGZ9C7fz2xmzWR/atV/YuqBqqLGEl46DgtPDtIaWh1RVVXX+FPa0zyW/Za3jct7ae9Uciiym1Q1DqedjslyK4k4K4azarNjGQt8yp+s6LdYgDoxdGdR9rksLRCzs6c0xaOtsUTdlKXNd2vMvBma/fh5b2dPQGNnZGpJX2xFTwoKtnZpK1pa9qzWejEMIJFFyY1Ua1gZobRQm1kaCKnE1v+eHduSrYcdjWrgW33drc2H+b1tCsvnu+ff1OuHmZ9vRYkXLta9ICMY8V0WIkL8HqL8f/42OP1EA9b/4F//iF36uvZFS6P3atG5tBZ+cnbTIdDvyuCPs9+qRNllkQG9wlVkThTiNuPCA9wPO+uZndCvBT1nZnC30rHhPtsWu3swr0GRfXI/baMrwxCZoq5dy1dTm/n285Jusz1sBhpQ8JMvCDJKwCQWojWU0Gpz2szSSFk9Ihl1Yg5ZSNszRMUfLKVmOZQNaO61bQ//bQAtlBWKUL4PbAXOT3FVPtRSPxPhEjCdCOBLikZSummpf2LPU4rArsCoAp0KXFaCuC0+igg66+dKC2jd2Yl3EbFnQem/BBiQBG6/yej67ImbjNf1N5TU1SOfGd7pKltNgXgWnp/EGnB5eB6dvx260pCxtk35ZDPtRuIQaXlM36A5xPbt4asVKTSyu572yp7+rYUWwnfYv1zAVyeSktj45R1IOTJIYhwecG5nGz9pzQshEFg2iwhSgWjRuLZ4bq7laRVi3w9n7BlIPeWbwh2brUedTKoGL3kVl85bX8/6+sLN8A6VqAOdaHFeQ+n5TIFdwHNgw9euQHNeGWVSfZQXKtdkiVkFEa3w5F5EsFXiTxkqrBfLghHHK+B24w4g9HLD3b7D3D5idHgMJWpCblMCet77UmVbAwQp8j7XIFN1ghy6cSVJlcUphg9QiqrKo1Xu6Atlq72H5Ml94ShrMZOyAq5Y8Zd7WY7YBEfxB7T38oEqEWkCjRXQtdCsI3Y8KUKuMWIHpGCEtBjmCjbmxpmvYqfrO3/jKWw+pbH7dTXPLTw2MW184YXLCygM2nLDhHhcPrYkRwlOTdkrKVGdjoGSnWibjmpw0FYDai9ohOTFY0WCmYJKCU2VRsg30WuW41dcypqva+kgsbY/vCqD+Id7vaLYjknBlnqkCqLKh9HqOosqdPY699bjCeDaSiej6X8v4CjpXC5RYNlxqtlFHPXoasIhxOsfKJqZZ8ljf5m8Frb27a3ZQ1Z/S2gmRPTkvOLdvn6kC0z0jvZ3ymhlRGmCV2alZFg6RQOxS54NxmyZg20AZNBTRsgGn7WgbQA3KvsouMwZlPRuXyzJUJkF0qqZJ6xoekuWabNsQjwbeusTb/cK01+DU68Xx6cbeI0hu9h4Yix/uGIbDCvK1N7XWSdXa4yVbjdtAxFzC0fLe4vZb5vTDHTzslDWtqiLDw936mtXu6hpyYXJpOOZl0fWvc7TRKySnQkHrQsqa3D59LUid89CpJ3Q9WOaB/xQfOZ+/5LR/x1/0b/izduR/2X/Gvy92H0tekPwWP2QGf9fmZy9V17/5ev13y5quczpVv9ry/o3VnA/ndypX/g5G3arX41iDQnMuzTObFaQubOoKovVAdbP7KH+l/fwFYLeHOVY4Ttpx0J/0DSEFrUeBqaopjKqypvFBw9Td/VrP1+t2OGzsAas1oMmpACMVHHGbWoliAVDb7z2EkLs7aw0vvQ0/1OOx/Zkzgne5AFQVgH65DrOO1sTyXhjvBLcv6pVFuF4dl1IzjMbyYBxv7s+4QVUVj8X+KFQySrHE69fibN1G6u/9czKF5j1ozQorg/o1u48lmi6oeA37vhSg+rroma1ro67fKvk32WNyIvsBmxPGT9i0Uy9qG1eRHrE1gZydEJe0NnQTNsfS0KgBvELIiQXDBQWoq12U3u8yYJtK1SpFujVhKsu/vnJ9E88sMG78kBWY3loe6s9Xi4+NTUh5VMB8/bvfDUANafNZ+r8qt1+7blUmAAYj9R2aAlzru62s0NuxqoxWcFpbqWa9P/RPuLFDaqGTN9dsJTU8U8dCI4hJB2Lre0lFxThiTLGOyKrXrHhhneMV+OxH31huR6/czwYjDFYteLSRJLhByRVVq9GD094pa9p3mRPtmCVD6kJVq6qxjrE8H3SdX9CA6MwKpLbD2YMX3d4kO12L8WZlTzsae9oZQ5/mWAHpOt9Htz3XKWuQ9BINlyAsToHqa6jEESmfR1nU1eajfWZrwU+YuN6LnRtxacRZTzKKBeTcnaeWcZC7e/Fa6Q5GsEbf217gwTh+4HZ85a58yoFF1v2XBqJuIejGnC44Rds33/xO/VofpjxxJWDcnJXNZdX/re8B6l9kyPfe3b/y8ScKoP5FhysLmvp7FflU83ZcO6YtAdl4TYafdi3hvYbOWd9N7EJavoQ94+CZWH2h6mislXQhpnVzr5tZDRJwFdhr9g/frNMs+YYl1BUl/Saofx/1/3t2DfSFS1qR8ZRZWDCSMGlpAPVgLI9mgKRS3l0q3lSmeFNlyzUbjmK4iMp2r7mwo2S9Hfa2KLmBelftQAOmtyso4HVYviLFEyF+IkZNVI/xVALCaiilgiO1N7kFqaVJtYECTK8MUjDrcannytSQDL8Bp5u34C0g/RoY/XNGz6TePK9jTr8ITnurMkkPriSfVybK4Fff6cqc3o8qpxrK4+vG4A2jt1yWjLNFhmVWL+rGorRWmUE3YOkKZK2WEu1jtU3YLzc8KzNCUMZbBsSsUvgYV/k8wMgDw/BmU9Qv4ZEoAUMHUosQ84wJ5xU47hmRThsXfnjA+4Nu7HsWdbqQ3Y6UZy1+/L2+5waWOmzXRKpBVhUM78HpTYEMLxfJUNgT1xKaGHESNZnaLo3l7SSTJKM2EBrOVi146ma+3ssGq1YAfmdwuwl3f8Du7tujH2a5bsBpKXLjHpzGCCN2BagxBAHXNxmyFm2SFKzOVmDJG4anPtTv/rh43ovwMS18yoEAq01A11TS49zZ7/iDMtz8qOxpV1QyhWkh5X3kbAr7SoFofY/1oaB0WIyKP4Kypv0lvwpMA9vA13I+W/Fcz6krNgZ+JN14O9a/ZYc7bHzALo+tibYsH/WaXrRUzSkX/3cp65RhMJbJ1vuv3gPnnBjEYns1jmQiyiK02Td1QCr3xlSBrHgp4HRYN4XfUQ03DA94PxbW8KJAeA4361pxlpXqLa1s4p3RQE4rBpPVvipJlfnqG1wkMxVGucc0T0ENZuw37P264LG2bmKHTYNJQ6v2TXXTAwg9UKmA2NzW69cClYHWcK7s1pQu5Bza2qcbsaX5n45l7V2seiVitsFilSFpLNjRYke3QX5M0vk2JAWyzAzW1tVb3+9cQGoKSB2KrUAS3dAOVngzqvf0MOmLX2fHqTCwqkT22tlsGTOU4OS3z+5ttWEjdV64dW3ML7GYy8+lZDTYSRh3wm6nntMP+xWcfriz3E+O/Wi529m2OQ5RGKKC07rxLIzqsRwXu13XyIkasqbX67XYYqwBWptfl1SauuDcHblYbaxMaIsLI18tH/hfTz/jvIv8z9MDvzO8ZTKe/7A88ZNw4bq8L8ByYBwOAHi32nn08vXKBF2vxURK58aaXpurKzhdfTO9v8P5vd5bzch3McbS+Kr3ISgCeIEkkSSZaDOzJA2ds67liDTyielA6q8Bp+u4BamFrHZBpoKAUualwkdDAac9prT7/IY93daYCk4Vj/Q07VpWiMkJa22xkoi4YlVXGXsUBnWTfvfXSfk8idz8t5OpDd4VqO5B5zrfrV0ZkNWj1vtcGJQvsEgdmwaW3znsbtQA5NlwnAeOxWpkbyyfG4q1gNHmk0TmrPV+H6KrKpNdUyzJAK5Y0U23ZIpRQ9O07uy8ee1z4Kp93oEGUCtwBZcgjE4YPQzlFrcsGm4p2ZAxpGQxyWHToE1j6yD7pmpCfLP6MMUXfcuiVhVuLt61kiLJqKWdKnEyVjSHZ2fdM5C6qjpriLEVaXuXxArstiSCrpbtVXRtjblVa9wqsPQJ7X83dXnhdhpjeOWW+q3HUFn8FVo2/aq6Dq3fVxJTWj9xB+bW6V72FGIao1jnTXl2Z5Wlx7JgAaKvZEWVE9UaC7ZAf7X1eImUtOYJdaSy0pQ05d5Kv97n2AI1k5mpwYxSfKhrsGsFPhMv37McgBGSdHZdpeE0dHkSeuzKMeyaV87KpjlVVYKSpAHTMaz2QO15RvcBg8vkbIqF18om1mO37p0bxtDti1eLDwXQ6/6xho47U6w8ssG59V5ef+6sWZUUdmVQ1/V49JnLop/xeO3rcw1LzXWv6uqjkL3c1BqKptgQ1eawsR6TDNmU67JX59ysK9V6aTBa+2AzKdnGov6pn3gfr8wUZaHxr7IQXwKl+5/f/n8/zObfnzdmq1qifv+duGx+P74fv4LxpwOgxmKMYcASje0K0u3MXLumDqwCxRqWBXbS0DmVuq7PiRHmZJndALzdgNQ18ddaV0KsNMG+glAa3FbYuVZvkFLASHErAFg3kq8N00yjVlkXPN/s9sB0swvogNCcU9ksrSGPkoSFgM2Jx7Q0sPe9HUg4Fiz7ZBizxaFd20VgAY4iPObISQLnUoiF5lfVu6x1zO+ScG5t2vxbTrrJW5b3mqKeLoR4bMDIytxTcMSJdssHo+wEb2xh6dwwqssGRqCTKW3tPXomUvV5a+C02zVQuoHK3xSUvmFPvwhm1+vhNea0t+TJdDJJLfaHGzbKWH2+nILMP485fTvcCz5gz1gs3yJsoZ6Hr0uk/6aj+s1WyW4qm9wKVGeTybIgMW825Pd3f5ahbORBgbgQnogSWzGLQJBASmdMsIQiU+2vhwo8D8Mbqhd6qJL9HDR0I14a2Fx/1xivINPGS3D92/6G/ftzvc27QnnL4Ih4f9dYHM4GxI0rWzNnsoS26Q2SyzEs58pWGwCH2e+x+3tMAafNMOl5d76xqKUAsGnJ6kmb7Da0rTCo60iyypT7kbNKCyUJ4kyN+CgfUUhBA1mvsyv2HpGPaeaSI9kYJrdnHB6az3TPNG8Agp+Q4Y7sh1JAm41cX/IKSFtrVp/PUvzGCDkqMC3BYII01vRwWV5lTDeW5e3orYEKCJfHXQlvnBobFGj+uvU13LzHzveMbsdu/lLfZznHISci102D0BrDzjocVtkgRT1QGfT1F7MIgVTAmwHbNTOTJFWvxEuR8S4IGSe6Dn5X3IxheINzW+ksdGucqDdzX20LysT0xrLDsjNO19OcuEpSUAcFqvX6kxbG5kQIxaOygXvFHqf3iq8NuK1/pa6zFZxuoWmlttAm8iq/trZ6/77sW9x/VvXdnov1gnriWjsQ7EAMOjuWdMFVFrXNbRO5lLZtD1IbZ7DVe9pZbMnZMM4hKSEp45NgXcY4IV4Fa9Nak1wgZEtIpjGuKlPbGuGtT7y5C+zvE25QNcLxOnARU8BpaZ7Dc1Z7D2dHxuEtzt1v7W16myzryMPQ5u3t6MHqCk7nyTDuNBDxcAdv98V3emc47BScvt+pqqgPDNZGrlsB6yTsg2FfmJ91j2mzlLmutVhtqud0JcVTCx/8ulG9yvVDAHZs4J6xnnl55A+uHzjmwF+/+3X+x+GevXXcWc+PlxNP8UnroBwZhj6kd2tFtmVbqtquB6djyVKo1nT6JL3+x/Et4/CWcXxA5LvZIkzGlQaTNB/qniV2lUzMavERzQpU77vmRfXUr2D1LYDw0r2o8TKlNLSbiqG+EwWyBrTOqBZgi2Scv9uwpys43WrD0vis9VrLrinrtEszJu5w/oBP5/U8t0rVlPe0BSpqCGoq4VwLZe7luj7dMqfL8SnglB8UzKre8363/f12PTuDHZ2u+4PHOEteMsvZcA6OS3lPe+P4zEd2B1U1nZLlVCx7FLxS0L0P6az7K7zBebUQmroQ7wpOV2bl6EyrQfta1NnnIGqWVfWQBhh9Zj8YjnNuYNj5qhfJFSEkS54gZ0eO2kBoLOpy3xbjoQKPbFnUxvgCPFp6CwjpWNSeTBTDLBrWvrN6P8kiXCSWoF61r/Foo6YP8+xtaNRb9oYB3dV7z65x6yHd7gVt/R+MWMRojoFhVZjCdr/0y4zaEK+gewPACyCvr7UdGdTfWKTt1ZKUplWZn3X9FjH0Kk2o+3tp7OkWOmiMNqnrHG+2Wn1mUxeOWOrHTdB9VbVZt93v5YRJM8RZP49EnBxU8eX2uLzgivJJjMNIbKriZkVZSVOlAQXVOqI7nmV9Hayql8dJQeqaJSFlke+VFd7p7/pBVYk3IpqmWsxZa/YepB6MMDi9f+QES7H3CZXQ8oIFy6011/bfVv/pdX6vth6wWs2MJR9p9Kr87RtUK0Cdy/5WldyHXW5BitWKK0UFxusSrLW+bTVFJcytCuBCrjJ20yzsg3dfG84IIxCMMIppLOov3YVPUYkFxu0xbQX6+eMlcPr2XfTC5Nu/Wr+33f/r0f6OulD/PQ2hzbHvx69u/CkBqE1JOYdQAEtbOpV101eL9H4DoYw6wJrml6QP3ZytNz4hYpnZgtRV/LhuZHu2l1eGVfM0nsDtGpOvvubPGyaLygX7TW8Nwuh/7wacrizQmk4MK4vZdu9TJJJSZkEle74s8O9dIFlhwbEvbEj1M6X4TgtHSZxy5FMKXLIyKmoIodp7+NJFLsywDnyoQHVlmuU0k/LMPH9FiCdSuhIKY69u2BGNu/IFHJkKcOlvCiH9w1svpyaTwbTudt8NNqUbbGzpCnfgtLips+DYekSv5+lGklf8p8uHXf9h8/xyXoahMXDE2i04PRhkI5OUVuwPrgDTjgJM62I/tGL/my9MtRCAlbFTF39Jpn2+W6/NXrauS2FfkH43C+NgLEN3zWazgtRaQFUgKpLSGZl1zk/j5wzDG5WSd88P4ZEgCURBai9CJKjVR3dNrME0WtQMw9vCmNPE8JjmDYs6xlMDnGtoooZkldCpzitUPbyn9bq7lQ7fANP9NdiKZMBIbGFM3t3hS9p8G1ELedP5Ji6SnhVg1qIbVecww4QZd/pwXn+zBSUq8JqXQA4QZg1L7RnU9QGr9UfNmu7ZHv2ob7nN2XLtLbPlvHgexfA+h2LvkZu9h/d7Bfa/5rhlPyjYZc0zFqYqYVf2tP7MtAzAHAxEwQRwIW98pv08b4DpHpR+0Xe+L+hrY8qPDYh7KQcBwMWMSQNumhguA85N7OevsMYhkrkAOUdiDATUaqlaWuyML+fCsZCxznDtA8qyFI/mymVaA5pqKG2I52IPsAWnPUZDWr6D4Ye3nSdwamsZaGOpbvEqv6qW/alIrK2FnfXcm0HvO1lBpojoWmDQYKtyXIbCohZyQbBss/IwGzB6a3myrhd2tYSyu3YN1lFVQVWK/XVjvZfq19qszWnW4NZiBWSMhQWWfFFWcpHZXyVyFc+CsBSmZT/PNBzRYqxV9YMr85y12WTHiHER4zJukeYtD3CZVYQ8x9J0RDdoO5c47AJ39+o9bZwhnuGabLP3WIr911xyIMQYnNtpQ8IfeEmdVEG/lr/g7Kvs6QZOD9rE3e3y6nE7wGGyHCbL/bRaXr22LlY10eBy21D32HhTRxRQuoLTynifC/hbrdjSZs3pfaErSG2Mx+SZlFUNMo0PzfLj/wgf+e145rf8nt9wO2W5GssfhzMf0pV5jsR0ZRyVuSeiAcHWvsymrGvQa+B0VQtYN7GbfsA4vivr3Xe3RVCAWY16LCtjuBIIYs2WEMGZTCxMZ19q+jpqY7kHqykgFUYZs7b/98oAFFqAlAFceY6Fph4EWlaJHw4b9nRTj5XasK4tcRobix8cyTslsOSMjTM2Hqm+p1qfe7W5kpVFXZmlFbyq0vKlkEJuwxD1OAi5Py6FNel9ZVwKbmfwewWhyy+139f7wXpPyJcr4ZQ5nwaekmMh4Qw8YDmMM36njeNH0YBEZQZTGOG2I8aUBpMfNvYeGpa21qz70TT2ZAWpKjhlDa2G7QGrOhpAnYX9aErAKRyv6sN9mvW852yQLMRsSNFgww2LGl5lUdfgRNvAzKp882RxmGTJJjUWtRNVKFUbjcFY3jjdJR5zIEhutVEj1GxsPvRKkM4qI3cg9eZeKVsGtW3rVV2nylqlFABl8RpdC6vFlblhjP4yIxWWcvXXduVz2TIXnbFgTLMfq/u1tU5UC7J6TVXgOlKbNCXbyGxBO3PzqPcJvQesx/Mly5QNMaSC00UVofZSru3N2vNyxoYR4yZM8B2h4tpZRwykZvOhzYEkK4t6Bae3TGjQOV0T9XSdhaHYdqi1h2n+0xVsBgWzq63XLeFtJV2YogZcvevbcysY7guDWpRBveZ5dfWEsds1pifBFQJIJd8pOL2qIvT209+z1j3r6C33O8vo9c2vGTBCiJZxyeU+kTnOeZMNo0qxavNRrD6QRgjUvX2x+ej3/MaVdsp2PMMTykhF8QDKON+VWuuA5TM38NaNvE8zp7ovNs+VxV83477u975uN21e+Z3aGPl+fD/+Wxx/KgDqwdoGUE/GMRhbAiykFOUVVCr2GJUBU0eVwdoVAOyDBeJOMFYIBaQ2+cBIAamNxyxrR673hPb+XkOU/EGDuob7tuCZQf9mb6PQj1wAEpNKQOILYRj9uAWnbwMgAGwpaoxxjdVZwfuUr1wl43PEJsP7dCXIyMV69say7/q7i6jv9EUSj2nmlAJXScylsBcocmjfNvf6GmuKfH3tXCXNaSGlM9f5q8KavpYNX/U73QIjVb7eFzvt2BW5s/2Gxddt+GXvF16BwWbBUZjO32rcMKdrwVP/Tt2MZ2c12OFm020GaYnItdDfFPslIXnsgOlvC05vWCk9e1SrRW2SdBtyPZ+hBbL0/KVaeLsa2vBLjslYxr4IKuc3ouBU6IDqRCblK7IIl+sfI5LKZvtNe75IJsYnkIyREhgpQmIhposWnjUw0U2Y6NXiY3hoFgQpL6QCVKsM/1RY0bN+Hd4W4PmkzJ0OpNL5ObXgmx7gaszfjk3YAJvKkksJGwvYDdisNh/K4rh7VoyrKW8m50wskvv26GkWbbO6TS4HIEUkRSRcyctCvi7EqwLIIa1FG2xZ8w2gLizqGtz0df6YoMV3mDWQ9dPieS+Zj1mTsqNRQGfwewUPSqbAbVhpPW6NielW8Jes9iEgZSno7h9BAU4TBJNfDkA0OeHm0iQowPTGzqMftwBlxxKtjak0eLWaskazEDZPd5hoyaGAH35gnP88xmh4XS7FcJZATKdm5VL9Q4eyNg5iCWJx5f6TEWV8VTfDW0Zi9UIu3rUikaEoV3zZgH9XPm3O32vpLxFXPD97MBhWRZQBbCdjjGiwlJfMYD33BRSg2H2AEKA0V9USZDCWJIkZDXt0xZR8BaHLJumWNVQawRvlg7/f2kGV9/jsWniFAVfzF3K66jrv7xv4aVNl+qzPjfFIYOGaExcTy9fExSYW414EswCMswpOj2Oz6am/JW4p8z8QbSoWAHkzR2sgkyvWHvsxcjhE9a8dlNUVZs2m6MOTrzmxlOa1weP8nsG/0aa9X+2MKlutzlmxjuyqbPh5kSSl4VTXSTusIWz7UQEwtb36+eA0FGDMcrOGlmsuS1MyUM5TztcS5HwmxktbF5+DIZacCxOzgNOqbOuJAlqTjYPT8M1l5PdPP+F09zl/wR/4wo648Q2DsfjlxIe0cIlPSA446xmGhMhOGd9mBcdXYkYq65bWwbR1m2Zj49zEOLxhmn7IOH6mAcHPYh5/sXHOkcFoCLeql9R902mV3oColhtSlB6Zwmwu97Hbpne1/1gzaARvCvx9A16nwrZsz0WBCG/U9sdi1GpENGz1fnzLMBxWgslNbVhZ/s2GrWLAwbAwac0U32LjEedPeLcjFvCqKjaQtILTpgvmEmEpDMsFWMQQsmUqFh8/zyVQGZSqnnD3kwLRY2mM1Pq13gOKmiJ/eGI5w+niOYo2/0YsD8bw5j5gB8hBlZNX0WZ3RsGrpkI0rh2r7GxjUu7G51Z0PWu6AtQvAdO38zKVNWeXhRC1Zh1cAa9MLgBWzZYoX4sCKg8ri7oCV6TOgquzxqlhiTA3YsHWR7yQb9Bjlc1KmrjmhLOGwTjeOF1rjymQWYNAnbFESTccywIpvXAfaeNmH2iMQxnfhfxgB7INOBlL3Vf+LNr0ySINFH/1Nb7lWAzdHkyB4X6dtpIau3nANGLRvR1KXoZpczuXY1jrmCiZS04rIaW9whactjdEpZo9JKZgANXish23qnoq4PRwr9ZSHWmgEoZgJSE5P2DjgCthqEYizh9KYPKCTRet59Oi935ZgcKM+jqHYqWV2qegWCuWG5So1WKtk6tdR58hUQPHgWbxc1tXS1p/P4XV3qOGI0LBMWxm8Mq+vl4sS1FA6fGuEPWWRb2xNev2yD2eUkHqrSqifjUdOK2q3/vddr1xVvdnu7E0kBe9RzxeLEvMLBGubW9sbqdGeW/Kom7qSutZbbG2OVn69utx0fWmhr7fqoGdgZ1LBDHsxfC5Gfjc7/hpvHDMaoKveSY3XZX6vupx5Pk/f1NA+/Z3eiZ4bea8wgn6fnzdkJU09f341Y0/HQB1YdK6EqgyGstibOnGroW5AqHFD1Liynq9WaPrTbV28HY7vUFrJ94yJ91UTTkr+8J67PIIrCyoKiNRcPpew1SaHNBtbuD1NaGCgq/fUSTHBiormzrfpLmv6cSV4XXrG6zvc2X6pOJBGAicJWGy4TEtJISrpLahrzfoUMCtq0SOOXDKoQWmJINyBIpktQ4F6DQEymTXmgU1uCemKzGemOfHZ8B0ZUwPxrbiZjSWvfWtKOnDwLJZg+BqGdCPWlBvZduvS+gqsxloNhybv5fzNwKt15Rju/m7afCNgSPWkAaDeGVOV3Da3YDTNRV5dOv/bxgo35DYGAoLRdOSpQXPXJcSDLcYZY/OKmvLaW4NhRa82UVjrou7ebaZ/EXHvRsY+2uJlYkQyzyfO6BaGS1XzuefknMAeAZSn86ZGD9hRJiM1QVJMjldiRhmoyGnzZvcqgywsf0H/fwhnkk5YtKVlM7EeMK5uxbYB5CSx9rY5lxVNTRGdZWg9eB0500s1jbABoACVlvrdJMtK1vT+/0zdQXQWLGRpc3dhcyCJnbnzBqv3T8vRSTM5DAjYUaWGblcSJekAHKwXNN67bvunKfu8U1H3S9JElKwXGbPU7I8ytKUGmBxdmIom4LGfOmsePrjtkqwy3trtBfdRm0OVwWmo2BSZS/nVwIQXwCmf54NTv8em8eubcwTGQBvdDNi12OSg0W8YAa9T7j51/DAXmKznclpZk4zcwUPRDfDIxZnaoiegu+pWEN4o/ZYugfpm3wKYKm9koJvVjK7AhT5IofP9rvZ4Bp3jzPrmlQZh95NKpfMlQ22tkKqTU+9zywFpJ6M440bscaU5qneE8Roo6TKrUdjyZIJRET8s836LTjd3mtba33xrVztZPpU+/UPOX6e8sbkhA1niDOkK8Zedf1Oq3diXatm94EUU1M9XXJktpGjJC4iLNKHkZbPVJpP7TGsYJVxjrwsmGXR1x0j6RILi1qoftR1YwswDYm7fWR/nxjvFBCL1+IXL4YLSUHqAjQspXltjGfw+yapvrXO6sHpapvwTPVQvq9hpzKAGdSibfAre7oCYYPTLIZvuiY2/9vyskoUoAXg9cGI63q4+ju/pG6rD5FdO5fWugZYi2hIWwac2zFNlsfliX99+hmfdoH/aXzgwXiSV2WODYaPaeGUL8zzIylHxqFKze/aBryRMkojVSQ35nRvZeOd5iGMwwPT9AV+fMAN7wj5u5nfV2OZC0zjBEbJDRg2BbQqWh1iqSaSCOccmQshwRcrN2/sZp2Bys7mGUhtC3idEAqBtD2zMjj7e0hE1Ccdx+APqoC8ZU+XRlT2VfmiGSEVoFYGocHmPTYEXHiHKyxq53bYVABPFl1/yueVzqd22dj2qPf7Ov8KU9rlTTMq5eeNqaaeGMfWmDLuuW2BpEQ4Rs5Pjsd54FKalQfjeOsyu33COkM4Z44oAFvvqQYlo1Q12Lq+WWxH+HmJTNHC014Ap0dvN8B0/f+hsm5z8Z2OmTEqs9KVvdtxTq2cUY9aCJNtLGoXtnW8MR4hvvj9bebKSz7im/NnlA18zXrMJuN5cLSg2FlSuY6rZVKxNxNVBypxYs1UaXvKFywVdI7HpuK1xUbGu4lIbY7FFoBarbKqiUH+jky6Bv9AbyepezdBsjouKwtaFbBWwEnCY1rDeLSukct6a58KUp9zZKk5BrJ6tFd2aE2SqGpajGUwQpBErCrdRlLrQ2xdW7/FTc/s1tLgNpZwJgvJO4ZZG6ceMDkqScTV0OS92qIVFrURSy7KkFgsrxbRfIaEawSOOlzv41Bf11WWME1deDteI32oCpbCnrbFkq9XpGjmkHdZbbpOsMh67FdaQPd+bv1D6nnvGsnW9nvTrQqift+D07vx6xfovsF8mBJLNCxJuAZlUS9Lwc/LY1M3tBpqVbvb0nDafq4198Bi1F4SUxTkz8fghF3OLOI4YPmBm3hjBz6kpdWTt9Y0sOmdbn720v+/9rN6Ctef1yaC1srW6qzI31VQzH9HQ+B7i48/AeNPBUCtC9pAKt3pUKRGJivgmtKVZX5sgKQrwWfD5beI00DwhrRALFK0nPubagWS1Z9pGQ3L3nC+2xH2I9PxgL98jr+e8NevmnUF0MJCGO5Ju3vi/o7lbiLcO/woGzuRfjTz/2AUGAkB4oyUMJ78AgDV+9pW5nbPzqwbZ2t3OHePs++LzYAy1ebZE8KRhYWYI4Qzu6iFw9Cx8IDW3V5y4ikHLRoM1HApZyf8cCghFPr3UzqTGzCdtynyncd0liteYCqLw2AGds614JzKpBmNZTJ+y9YsXqpBMiFrUeNFvS+VacjGh/C2o74ZzSqgK7o6cHoLOLywdHXemZUFVhfMCkS3DbY1Ki0sdjNYME5wXkM7ldl/25HeqDU3IxXWyGv/3o+nc+I0J96fEo8X4f0JPp7g0xFOR0t+gt3Tgj39jHT9Y8LyFcvygSU8soRPynRPar/iRIuOuokcjOW7SlGrPuODsS2ApoLUIecmIb/k2AI7z+Ejx/jE5fIl4/QZh7vfYJp+yDS+Y7/7dc6XP+J8/mNCPLZCJEhiSUfSdSaGMyE8sQ+f2O9O7A+/jR8eGljt/Z7L9Uv1tU4zLB8bEHx485f0d/I7cr425nkdtYG1CeSsnslNYrgFWFcZMZg04WLCzxP+osFE3nimdMX7e2I86fyKZ23++BNLOBKWR475wk/DhZ3x7HF8NQ98cbTcXyJ5WRSEDjNSbD3y9US+nkhP74kf3hM+HDm/F05PnuN14JTV43hzDSIslCAUY3HAvlRUygapLC9pssU6JEEKhqengS+vIz+WzH+OF34WLpwkY/09w/iGafqcYfoBjA8blnn1ce/nXR6cNn7KHDSpMHIL+KQfVDcgrjCnTcobH+gGJlav6R6c7lU5rzFnn1l8rBYG4mwDp21pSpkNU64ywQzL7BH7OcPhwPT0Q97tfsT06X/n06f/A+smLpc/5jEt7Apj8WAcozHKxpPMaC1kCDZzyZWdDBb15kcyYflUQvo0RHdEG4S+26jURtF3MdLnfx4vjiGcGWZt9vplz7J8bEBa5EwNCkwmYYTWnKyAeQ3HnYzjc7/jnZt4Sgs/i1dC8V2/IqTSeL0zroT4XTR53arNR7kcXrH3KKG6RTZq/AGZ3jbmVX/9AS+CrO0yyJWhm3HhTQGqAzYGbFxwyyMuPODDI0N4ZBjekNKVef7IEh55ygHCpZ2H/WDZp4lx8cwXixsEt2TsEmE3KYN6GDHjhB0n9ZgH9aMOV2SZydcLflkYLhem68LuGLg/Ldx9KECJg2ESxjsNVs1JCGfh/OT48DTxKGr/dZXEWQLHrBkV2VgGf8du+oJx92uY8R153G/yFyowXZVEdZ3sRw8EygBmAr8Tdjs43MFhB4dJ2dOVmflzr7/CxszF77I1bBdIs2F/WfCXMyyPpOWRsHxFCE+E8IkYj8zLB2KaVRXW+zqXUa0dnN8rQ9rt6MNya/1WQzLFjrx79zvEeOLfzB/5f3/6j/ym2/E7u8/4c8NB/S7jhS/jhf+yvCeEJxa3K7YUCqz6AqzWmjEVJSFQAC2Ldwqaquf0O6bpC6a3v4PsPyP5gSjLzz1232T85m/837BO68CUFs6XPyKEE5d4Vm97VJ0xYJiMZShrfCjM+3NHjbsFlq15SaStVgK5QMCVqa3noqxDHdsyi6pJLpJJxuH8PbvdF3j/9rk/rZvI45407VjuJvK9xXUB65INaTFcp5FsH9g5hwd25z9sTPZcw76zkAgKXCE40VpmlshVHEcx7AuLbxcdQ1CfWWtZA83Kp4/JEmNmmS1uyKSQsUvGp7xKwAs4XVnT5ES+XIhPn/j4Y8tP3+/4WXRcyOyN5deN5TffnLj/LJOT4fTB8WVeOKVQLHuKGsDYcj1rw0682p5Ue4/7qWsaFVXD6Ks9wQpCw3MwKzWVzjYnpQLZg3ekLOxGS4jC/aRzbz9k3pemlbXC0WZmLDH55iffwhJZiUW9zYdphCO3sUZcR/VVX32Um42DEc4pqhWA8fy58Q0f08xX8co1R22iWDBisAW0jCJkk8hiMHkh53ElI+WI8et7bfOh3De835fvB7LbM3RWkL0FpOajlAZWNvynP/x/vvC5vt34rd/8vzOMa6B2tQGsVlUpz8R4URJHISOFeOHj/BHJC+SZQVQtUUOP99azt56DG/i10pgLaDDwXGr8S16b8VAVEZaxNL/IcCwYgI0jyU1kpySOZq3nD8hwR9rfE/Z74tQ1nQpJqH2uZCAKSxjwc8bv94ynHf50zxRPDbjV/WZtMAiJmVDvMTlylsBFBi5kFmObjc9gs/pPtwDB1+urGuDtGnt623eSpNbkNRxxmS1LsMRUVI+FpT3YzH6M7PZqDXSZPUfY2vh07OnXwOn2um6tXdXOZ21G1WGNNqC+KThdx+AN7w6eJQrORpxVzXbKEKM2olJ/DHpwpbNS1M+xfc1qvTMZx7313FvPwTgOxrI3hj1wb7My2wtbfbCZN6PuGYieP2cnnqa3fMqB97KqGpDnPGm5+Vr/v4/q6f+thoZqc8zhrAY+Wjfi3IR3U7EK+7ypdJ2byBn+w3/4/36j4/v9+H78SRp/KgDqsbB7lVXhmaxjFsdUFvwLulCGeMHHEyE84ZdHxssJv9+TvCUNlhSVNVoldLYD+QbfAcejpkPHZIEd2VkG5/ASsfmgQEXvgTruSNOOUBe+YZXp9SzqvisqWRdXBUZqanxNio9NtlmHAl6rx21lfW6sA6AxLZ2/L/YaCeeuWDdi80hOmcSikiqjTA5vtmzYzNoJvkomVta0Uea0czusHRr4DRRQOmwK9FgS5FO6NsZ0TVKvhUotUqaSjL0zXhPhu+4m1PRzIUgBHExlNNKaFgkhUkI5yiZyZaJvPd30HDrIN2yTV0a/EN4CE98UkFaMXypBY2MB06+zKd88hC7p2BSrjoy1Xy9pvi6Za8hcFuGyCMdZuARlTy+LIV4Mbs4Mlwt5+UhcHhWMjWdSupDSXHxp1TWxSmYraGRbovYvN+actNNtV4buQBdqZTI7UXbFZBwXEznlQCqbqJBOyHVlZ+52P2Ia37W//+nT/4kVWW0LJLOgwYnLstp9TGnGeWVN+uFhwyQnnkg5EOJRNwj5irP3BYAu8zL5jcKiFcg3zKwKXvYy98rkaAF6HVgNeiO3OWKXr8pmRZnbtz70kiM5RE4p8CkvPNqBD2nH+eR4ewqMl4sCVWEmO5W/SpiR64l8+lR8KlOz37gmyyI0RgtUUFpZayOmff9NhoLTahUwB8cpWY6yqjSygcEoQ8i7O6xXZUqadi8C0xtVQj/v+td0BaS2yqjOtpKsLcmBSRXQ0JEHsCEo8/2WMX17D6lPfM3e4YVxO/frsFYZfgBxb4ERmw6M8deY4rE0Sq6E5RMhf+Sco3pRG2WA1D++kFevxuZDaZqtS25BfRpI61mVEbEwvdRj13xnHpaXhzdku8fPb/CXN0zp2tQ/dYhkJGaMJBAhmdxk+9asEl9YgYLJOt6ZiU9pUWZa4cVFClhfmGyDaFhwzlE3Lvb5Bual0eYubAJub6+/10aG0gwp11jqGEiA4UGbBt0Yh7fENOPSlSiRsySmHPiUPE8ucjQj12yJwZCCIYcSRJqSeihTgSqvdj7DpGyeMCHDjBkn8uVcWJcXcGfsGICojc/BYAdwZVMpQYhXw/XiSrhaXtnTOTd7D3BYN+L9HmOL12cBp1+yuerXzH5s5rE3jaXpvTTGVj9qwzZEAf8c/Fp9LnXdzLKurctiMLPgQsQuF3I4kuKRFE8FbD0T06XlZVQGtc6LHqS2GOt0brkRm+YGDnuXGkitzQ8NvCVTMkwGrBv58eWnnM9f8j/vP+OdnXhwE0EyH9PCWSKpI0fU4ezQ6pzuot2A00MJ9R1HbfjJ/jPi/o44Tcz58uq1+23G7i/8PxjcThUo4Ux8+neE5Svm+UsuV32E5YlLujBLYp+l1X99vbkG/CojutYYlYldjjTw3Hvz9t/thtyge4VkwJgB73Z4f7/Jh9AnrezgGrqrDcXeGlBYLEQMIXpc3OPmN3j/Fu+f9Hs3l+sl1qq0sW/r51tEg8AWo83eIBpuFpPF+6SBZpLJYQ07C8nioxBmtd1xAfJ1KZ+73G+cQ0JpSi0L6XQmPs6cT55Pi6ee8T2Gz1zm7j7hdprLsMyWU+4DEk1n8bGdeOIqA3p9VBa1syswDWzA6XZOcs93l/J9WZmfMTJN282mrAD4oVcE7pRhGQYhD4Y8mxfDV3/R8fPUgkHUm/pdmbPVuqICqkm0idIC2qTw6qVmv/Q5NhVg68E2j7MT4tL6ffn12lBVAtMd0/43cMM7mB4IAP+vXx6gHn/4V/FDyV3pm/bp2uyrJJcw2aI2DOGJ8+WPWcKn1hA/5ZlLDkw5srORO+u5twPDYHXvx8C9G1hs1iZOTqqykNSOZ7VQodRLS8pc0JomphlfAog3lpndnE6+gNPTliwAhb0cIXtDtJZsB0zeq+3e6R6fHxSQLwHHyc3YvCApkAqTPCFcswLtyflih2Wo8L5VKn3JAvrFVKh9mGrOSviIUf2Sb9nTg1OLHO8zxkEu/tPKPi9tvXKv/CY10Uujzvf1+9pcUnXTtx370XLYWS4hsx+E3QDn0gwLVrftL41a496C7OqTbpp96GCcqrTrA9gbYbRZwyudrBYsCJMYdjlzEMtnduSNHfiqhLCuagsNge9tOG7Hrcd6Y0VjsHZUfKWA0oO/26zfNbR72v/GxlM9/DxV5/fj+ZCXVQrf8Ut8P37O+FMBUNdFqY6ddUTxxFLQBknqGRuvLOFTmdBPTPMTw+We5NVLLpbgQmtNk8rkDiRQdrUGb+RRiHeGiAIFACY9aFe+jBqyUINU4uQRrx1ZX7r6t6OC4JKBmhoflw5ETe3Rj162otLjnQJjfXgYYNwOKxGbandtxrsdg79DSsdUsrBIIBVWqrvZ+Ff5ZUSIxhRwuoTs2LGwhHxjnQGkvFpCpBwU3KwBiGlGiHhRSWEFpffWc+c8O+NbV31EFwyHYTQ1uFGKTEpYjPpjj2JxpZj9ZCyh+L0pb1IB1Y0vebM8KT7d/bHNqRWzJudnhe0tU1qvm+J3VzwyXwKk12CH7rWaRy/t623gRc4QErhYCv+4bswvSwYs10XvrqO3zwqAuhm/LpnLooETlyBcFjhf4XqF5WowF2G8BPzlXDbkp5UBUc6flLSOmqTtO3mUM+ZWGfYLjUtODfBMRhhssfQpTYqdcWS8NiZsZMqOKTtiYSwYySz5wvXyZTvPPUh9Ov2YOV0wpUgZi45uYSGEY/EsG4nhscn6nb9nkM8LY261WKh+1DE8Yu0O43X+OVOT3+MGpF5PfAWme+uH7Ua4b3Co7NxQo1pNzrj8Fj8/6N+Lek/Iqfrlrr66OUc+xSce48IbO/LejjxdRj4/B3anC+5yxu7uS4MmkS+n8rgU72khzI45OBYxGwuPasBQN1zJ1GCR2kip1gPbc1y/V2sPQwpwDo4jyoCpFkKGutkaW/Mt+WEDDPZg/osNoReGWCCrl1C2+h4VOAS8Mpwro9qF2FQTFiA7DIUdn6F6Cm9fIK54ldsuuzapjYhJDlECszYob+4FoGtQREiTJWIxecLGNwzh19mFR0L4xDJ94hyPXMv9GyjhTGrzMbJ6uWrTTo+rwTRJseSAEHGiU1g3ze3DYNB1dxPi9EuM8ENHHibMPOIvd7zJiWk4YN0O5yZ61kuAcu8JLJKUvSeCLyB1rQWql+XOOh68Mqk1ILLI5lHv6qrIURuEudk/rSE3lNd+zqKTXNaKzq7lpWvw64ZJagmwjtWE3OaE8RNWDq25PI4PqkAqDcIg2lA+5sDHNPPejnyeB5bFsguJFIS8ZHKImDE1Sb8ZwDivcx2QcYcMVyRMmGFHvp4K23pEdheMOyFJmm2ApKx/d9GG0mV2XLJd5csFVIyFXag1wqCNpeHQhVBtra7qutnm7u3o5nIFB3t1UR1Jqj+tcFmybs5vLBDqJqTZXBVP2yVpszYsBjsLbpkhnMjxRA1FjPFMiCdCPBPjGcmBLOp7Ls0ptRvJIDlgs9pGZTfjvNqCOLfHux0tL6SwIi1g3R67U7b1x/NP+N/OX/EXpwc+9zse/Mhd9KQUuBYQhmhfBAxhBRi06ToUG6s7huEtfii2Hvs75vs74uRZbtiav+j49Bff4cYDEgwmCOPTn2M6ndmdPvHu/FOWy4+5nP+Q8+WPOV9+wnl+zyUv/MCNjIURGSU3iX8o0vOqlkxoIFuz76gg9OazmxfB6ViuUTUlMMpM6wJQW7ZBp6gT51p4pykKt3GUrm4zXBFCsoQw4mfNohmGt8q6r17UVsP2hNSavLE0dpJRH/caSq4+1KatoRpopmsqRbZvSwhaDIYw6z7GX4q9Xs7YZWke1JKSrufHwPWjcCpqqEW0sXwwhjdjYH9f7D2umevsuMrcpP/1iN8GxPdX/hqWVkMRt0Het6zoflT29GrXkdsx7lnX/c8Gb9gNhiVaDhNcQuZuB5ercB0hDLVx+O381TfKVak7IXmxxL31qwVl/zo8n7sdUTI/DZdWjlSCVZLSADZZ7TEqkaaE7r42TLlmPdtzUa0enbtX257phyxf/AVOb++Ie0u0x291DF4baXeHGe9bA7Tug02coBK30lUJBYVs5f1brJ0KWP2JEKvK7xPXdOYsC6cYOduIM4aDy9yZgb113Bf132IzdxI5JwWplcyi83wyjmyE2SQNBs9LR4iat4QkKOod1zINqipiHHsSWWl2LkpUSM4Q8ohNd0zDAZevqpxMZ4Z0aHlKxjgyCvhWS8JrUWwsRlqNXEcFqfU1TbHo6FMLXh45af1q6wrUGNQ3j+pxXXyvvZemYgzJstKOviMF7LNG1C+Wl1THULyr94Nl9MLoq1KC7X66RxlvGv2rijoXCJhVpWucYhGs4PTOCpPfMqhrps5gM3ub2SfLg/W8dSM5HbFMDWB+aTy36YAVlO7CTu3AMBwY/B3e3zP4g34/vG1z2/qDqgH2n2ltVZr/MX43Tebvx/fj/9/jTwVAvbKnAaOd1mRXr6eQMhdU5pPiyBKe8Msd++Uj/nTPWAK0gnVEp4UlGHJefX/rqEGKORtkhJhWkNqmO/UprEnuZeMVpkE3XXXh88/ZcbBKdmqohwmsAYnp+qL/dD+qB9zqO30TugaYHIulwIzNc5GB3BUW9YwrhVeSldWxpkyv3b+Mrp/WDOo3bVzr7Kn0pGdPr6xpDd2am6WHSGgS8tFYHvzEwQ68cQN3duC+C2kcCxNwLOD0WN5T9bldEBYsFyMcZd2MPKVFQZ0sJFFfcikp9s2XUZKGUtmdgg4SIWtIiljXFrpbr+mXbDw2IYcDYIuXdGVG+n4j8xyA7kf/b/Fr94r9EpfZDWv3fInbgJkKUFdw+jgLxxlOM1yucL0a0sUwXiLD5YKZPxHDx07SfCJFlf/nGmDJ6jvdQmAwr5Tv326cC3NWQ/0SzhiSFe7toK9pjDYwjGMnjqtJ7Kxjzgps+hwxkpi5Ml9/1uZNBal3+1/jcv4vzHlhX6C6ClgFZkL4hDGWZXmPMY7B/gBTbT6Gt4yVbVpUAildWZYPWDsxFhAVPNZ4JF+RXMM6Ou/p/kxau7musjWbRof+jlEw01lgKCBn0rCWUnjndFVQSGLzvAZIOXAOH3lMM4c08KUbeT+P/NqT4+4Y8KcjeX+n3f6UisXHRdnTx9i8ZkO2hGzUyoNVxdCPmnqtX2+k+ql8jq5RlwrrM0bLJVuOkjnlyDlHgmSMHYtnagFz3K4EVfnSaOzArc4XtM7BOk9eI4LUW6qkcu2WRmENKjQJ3OBKYGJSL/BQNmM9SG1ZQeqqqGkvEhXUzm5bQKtGuL2HnJ+vEVDuGYOuQWHvMOkOGz5nWH7EbnmvlgPzB67hSZUwVhtYo1FWTlOdlM1SFMFU6yKpFgWxNZ3qUUtNJF/KbZFna9AvOt5+lvH7RIyG+Wr5xI/Yf7xjGO5xp/vOBkHnYAwnUroQ8qUwo8HWe75hE6iWRPiBr57wClJL2cAFlAHjUG/TS16apYcYSxarTOYXLpjb0OLGAC7gdCr34NogeW2Iree8A3myQ1xeJejGa3M5zQoo+nvS+JaUFqJEtdPIkce08N4FHo3XBtKcGK6C3wluibAr4HRa37txhUkNMEzqNz9cMeOELDNmPCG7vYaqJX2+eltH9a6dlT19WbwGJBI3dltRMqlYAXi3Bs61EFO3BfV7tQM8VzwAbT6bTmG0URl1qiJnlWmasmGJL69HbV1Mui6qqgjSAuMccfMViUdyYQHGYkuW0rU120VCudOBL42d+tA5JEQWUopgHFmCMu38jsFrs7xnUytIrTWKNY799AOcHThffsr/5/qB3x7f8MNhxxs76DHOUVUAyZHMldgFjW7Vdq6EWI+FKbwvYd73yqrc7wl3nry3r/XzvvV485BhEJVhL4bZDcTpLf7+jvHyDn/5TR4uv8Obyx+zXH/C5fJjHj/9O748/UcOWO6tZ2c9ezxzUUvNOTVlnACmk/m3JpppW32siNasmGYJUEMJY7H/Ue/OsRAsCtuu3rtvQepKWuiuv9WKTfcQkoUQLX7esx8fcOEjw/BGQ5XdjE0LYoJm5cjaVAuSy/xxLCZrXSuG+2xLZkTCuroXyc17OheWtY+CncHajL8KOUXcmJExtuaSJCFeEuEsXI8aRnwpN/jRGA5GOEwBXzJ4wmw4L54gl679Yp418W7HFoBeLTx6+52XQKrV2mP9f53PtOf0eSu3jOr9qPP9MBkuizCNMI6opaMvNZbxwGq99troM3saOC2rO69eY2xsY2DbCMkiBNRz+TM/8bN4baxfW+rOyqKOZCgBvmrPcwOo1oZtx6auza36sxrkW/3k5fBnmN88cP7tO6Y74W7M5Pm7Wb+rAuZZPo91a1ZHJUylqz6s+menpNYE1k54tycOB236hRMxnnifrxDOvM0jb13iHRP31jcgcSeqrL1K5DEu6udda03rWSQpi1oCMV1waa/7z0KOsrfAfyUQFXB6t1v3a5Ug5H1h5KNKapMnpvEBm64aiBpPRHfBu+n/x96f7Ni2pXm94G9Us1hrWbH3PpW7hwfBJQAJbmZKNMlO0sgUvAQSogEtmjRvNpB4hRAvwEugFEoJpTKlRDcu5CV1gyICCD9xil2Z2VprFqO6jW+MOeda27b7cfcTBDhnyM3Ntu19rJhrzjG+7//9C6LtSNmjYiCVkPI2b3NgikIiVYWkgMbVmCdlqYdzzGzLrXWfuXotUh3O5QWQDl72hXTFyK7e09aKvQfl55gR68SctzXfr6c4eM7G51cBp0EA6r7RnKZUrLxysWPNqI99zfI6V6Lf8umi/nVKr0ptbQp7WtEr2JtEZxKtjQsoDSxANUgmWR8zh6i5My3kB6kylWjhrl0+LsHpZ0DpkidWLTz69hXWHnDuZhko2/YVyh7A7cV2ytXncN2H0/c0ZP7vbf0Qkvhnv34jAOrlcFciiemUIerElAS08kqCEmaE9TL7FmseCPMbGtPhFqZiR0ATEJC6aQSkBjkMKpZQC9GUMrkVEKay2QS4KGDmxv80tHojGappu3xw8KUEMShyVOiUVv/p6ueVN6nsNXStBO5sV5WyLNYBmz+rvIYFbFnU0YwSspMTKYkkOqhnmEAoKamUFp/ryp4uPkjbDRYqQH0NTo/CVM5p8ZvuteGFabkxIpE5aMNBWQ6sHlCNgkZltEoX0+QIjEmK+AEk1KAcVHvjpFFWxTubRMpBWPUpLEXLEqBRGZBqtfnYHnlZ68KqLpL4K6/bCibmtoYcPucl/bz3uLxXF3+uH4eglgn+BzYfRaZcG/PGJnzMdC5fhCdKIy4+m6PPHEex9jiO8HQWcHo+K/SQaM4T9vREnt+L7/T8fmGMxSJnruxpw+oTXZ/HGk70666JTMoRmxOTUuiolibuxjj2OIxS9ErTKEOfDTMW7xLH6LFRY1LApMCYZ6bpzfK1u+5zDrvfIufEMHzFlDxtYWc7xMIgxgHvDdP0BlOGP7YBpTusu18HMMXqI+eI90/UkFRTFQ3GkrW9YMM8Z++xvc9EAq8LY/B5FrAMyKQ5McMdBmlYorLlOdsEuilDzonz+UseoqcLI/em5Svd8vn7ht3bAXv3hO779eeYp4U9nTz4SVhaPqoNOzovAHXNljAllcoovTCoxSezMjnE3gAvoYA5CnM6+iIljpqByCl75hRLyJpZhl+6BCMm64jWEFp7qVYoYYNynfOCEattgfnRmjsXJYsqjGZIXkPJBghB/kNhU2u01uhgUKF4tlaQGrjwpk7ApmkDJx7XSXyvcxJwPIWMtuv5c72UBuXk34fWMh8OdPOPaaY3NPM7muaOIRw5Z7/YfBhYVCcgDXMoAE/9YZfhZynal4FkkR5um5RMJn1H65ZftD55AaIQzoxz5lureLy9p32zY/96R2c61OacU0rDDCl5ZlWGtSmgNbisobCpTQGjdsbymav39AwlVDVBsQYS5sxYwIBqg5BrKNbV+uCsuFo19PIDS5nnmqeUISpSRMCjlC+yDoShbZdn2NodKd2sNlnZM8cTQwoco+dtHHmrG46zpR0jTZuwY8J2iThOwog2Rqx8ysBVmbL3uBbTdORngGqA7GfyPJf9IBHGzHxWjJPhFAwDFHmw+IJWADCzPrvG7MVr/8rSI1p9OVj6WKNZAIRqhbU9TxdrjpCZl+uemMMayLZd13YfK3tawpc4QzNMKH9erT1qKGIcFoZcBadroPOFR/Lm+005EUjEnIQEoCwp+6ImCyQ74+xBmOZ2R0pm8ZEGsXfR2nE+W/7d/JYhBe5tu7G/SCQ8MU3oYAsQvTLy6/BFV6mwbgvLshN2o9sx947Ua+w+474Pjy7g7hZwmWkWYOeUFFHrJecAik2VNnTNPU33OV33Ba+143z+ilM4cpMid6YRdR0wqcJCTIEpr3Fv21gvlXNRc8nWa1diIkDxhy1sQcVay2pHDTAWmfaHQ2SQZ1uxAtSVxVfBEoBTUEwHx665x84PWP8oA6Y4EvXAh0FqaQGq51wY1MXmY0yKMWjaqIGEdVlqwpzwQS/hqLOvTPmMOWcJP/MJNaYlaC1HCCOMR83xSYZLNUi3B25tZLePq8/8pDh7g08fD0/7WKbLFpi+fnsOYI5JlKzbGrgOkdYs57z8d9eAV/1YAhnFWqRtSuaPy2SzWvHJz70BrzaS+EtlpfgKpxTKRDEv4LRRYjFTAem1J11rYQCJDNTslWOnLcfoiTkVdr98nVgJQYsFYen34iTkg42tx1aNtw3mBqT2tHt0+wnx5jPOr14wv7R8+lmkbYpt5YeuQL/Sis5izKrmS46LPlgVq0QVZnlfVIW52CCsYfVr3oMp1kYxjLz17zj6M8foGWzghW25120hMBl6JTU/UFRSUt9opdhnV+ympOcL/kQwbVEgjeQ4osK8EMuARRVhbV6uVV0+iF1UvW89Co8h7G+xccKE47Ms6qRmImlRdp9j4KQDB2UY0Mys9htiIyHXLyapDaIHG0G7jcLWyL+FleCmzQpMQ2FVlz9vvz6wsIB1yYQBmJNmLhY+CUoQ6kcYwDmgahbLL1jX4PRzJL3vui6ebwuNYcOgzuULlx1qs4lsn+1UsqjIqah/xX96p514T6M5IL7TOxdpbaRvI1pnrsNoLUm85nXikAy3xsnVqyq8GkR+tVZwWooZhUFpg1ZOlKKmxdkeZw/0/Y9omhdYd49tX0F7J97pm2DpWlPBekZF9f3kSPywflj/pddvBEANLInrprCnXDbsjC1FXsQX9myMI8GfmE3LPH6DUhanLU1tfFOLTwYfpVFMzfNgoq5WIFZAgoSAFtHqJfgIWMHKkjSvrjblFZSUQyTUfjdk7CSp8dV/WqwEpiJP2vgKXsjrzDpV1x8W1pWxqU2LTh2psKhrwngNEDSplUKMuDAFyjeQWV8BoK3pRGJtWikoNsxpYCmuPmROr+B0pzS9ttyYhpe241Y77pTlThkOSnFQ0BUJjdNycNfJZZUr1TTzMQqw1aAxWIxWvDduKfpjFrDTIzL2GAaitiUQbFpYpygrjaW2KCYy7XJEX9t8PAtOOzB93vhjroGY1j7nk7kdUuTFQ6x+rt4jtWgPIRMseFsKpihMafHcy4ukcm7yBwEVVcY8+LSC04NYe0yjgjO0R487HVHTY/GeflrB6VAlcpLKbWAJ0nTFD35bqP+6KyuDVyvTyUa/FHkpZ7xJ3NBAZdsrTY8mmp5OWZFtRfGa1SkwJM80vi4NQKLvf8ShMNWm8VtUjgtgRU5MORHDmWl+Tw0BUtpinUXbPTaHwqKWe10CYE4CZNudMAaLikFh5XEtLNVr9vRHr0Ft3jbMQmWyMJCNgNQqOhq3k6A1kHvYtORUUsw3HqWNu2OY3/AuTPyJPvGfTMMXQ8vdu5nubsR0D9QwpTQOAkrNiTCyJIH7pItP3iU4vdp8ACrRILLhqNbnNPjVhz8BFBljCLKPzl4zAEMWr75qE6BL41L9F7NpxRqgKlRK0GBlwDzn5b6qFy6VDNdrfRbXZy4GJR6EXjPhsJPBeIstFg9aG1QwqDgJ8zWFD9mzKS42HypGlNYYH1DRofzKqM1lWJmeOX+WpRXJIcE++xvc+BPa+Q1t8y3T9LY0dAJ8VJC67s4ReZ7EfqGwfbO8kjpvgWkpoBcWfgVsc/q5suNfZr28gZsb2Rdjgl2XebiPvL+zvDv8iJuvd3RvDyX4t8GM36KVJiWxifL4BaSWy1KGZUotcuudcny2YHUfgtSN0jhgyp4UFbE2DUqjtudtWRU00MVv86IReg6U3jy3F18nKvIyAC+szCQZAlBA6q0F6XJe9zTuQIoTU5oZSxjhQ5z51sycYs9utnSFRR3GhG4CaRiEDa3PKGNJfkKbAsYVNjXaoE3x2zVW3vxYZMPCoI5DZD4j3tOzZUyKYbMXVDuGSKZCtcII6iSbw7kL1cMyXCrvr6/TdilNsdC+HPTHXBVDMPi8ANZGZ5pw2SCXq7+cxRXYljwGGdi6U5RwxOlBwOlwwvujeL2HYTkLIeKKF7ItXpam+JtvWZU1F2UFHz2xWOpsbaLEe7otA5k66Jd729k9+/2PGUzDfxq/4tY0HIxjzpEQPUNRiMU4yznFJbN1G/xZm2Bj96JGsY7UKkyf6XffH0D98gDRgu9gnKW+maycW541tE6FVs4ve6DpPuPF3V+h7z7nPHzJ8fwVpzBwrx135Xfus9i/vY2T1AOsOMD6XpSAVV1RlSEiWKmezzJ8UyXwbwXMroNtzQU77fK5XEHq+ueUMmEHg9fk9gY9iurKhidMOKFNg0oz5FDAq7yA09UiZ0Zs6yqI5ZPGhxWAbtp136kgtQ8arTLjYASEcgrjLpmgsdiAnE+G0+iYC3jVAHc6c9uJvYdxiugz01lq66l4rG+ZlVuFyQKaxu2UdnOdFIv/7DVIXZerQ9RCvNAi2ICihBSf+BWgrn7WW8uQ+n0aq+idWADYwgWIeuNBncPl+/p7lLOkqlbXcMvKLE0SDF52N1uJDeXc0Rtw2myug9gmChkn5MQppiW/Q8Fi9RGLzUfOsWSdbFQvG0VWvUe17i4+dw1O+08NN/eJT+6gbwS0n9bZ1a+1otX4xi2h0sZ/5B/aRgg/xTbH5CDnTqikqUepoa562pRmQpp5nWdOc+Apzpxt4BPbc2vcUvPf65YTAU9cwirTZr89Zi+Ek3AmxDMmnLBxRMVJ1M8xsVUy2TLYcHbFGGIjPddUbDrPwJwUvheveRM/wZZ+PYRLFnWMYcEkphwZc5CwRJWYEcu8TmQeaJUXxnMIEoDaxEQ2CmXK8zxd7s8pyTDp4s/pctBTl1FiTVEZ1CBDK58VcwHSfxmLD5XialWXhFxRh0mLlc2vyZzeLmfLc6+Kp/0zgPcCnG+enYuhT7H5rGz8VptNOKJibxI3TWDXBLo2Xuy1qQwOUpL9q02RLhj6YLhTFpcFBFfFg3r7Eqxe09UiVX+gRL+289jt/zymuUN1rwSYbrtFuVDt0Z7LPJn19/SQ/3e0cv6BQf1fw/qNAKgrI6y+b5QmaYNPUSQb2S5NwUQQFvVsGac3SwiKRQozlW5QscUnS0ianLbAxiVQUD+fLUAmtQrlBaxWKX8Q5rO1d3jOV7iyp5NX6CkJG9ufSaEE88Q1lK16OitlFib1tpi+DHYpB+6VnK3+G11CNExsSHrGGPE8U6r4Xm8OKVUkfVvW9NbS45o5Le/TB7YekHBApzR749hrx51t+MQ0Czh9h0hr9ibS2UTrYjlMCwO9/FopsoBabZC08y4YmigF42vdkIw0ItXyJeZcWN1zCZwaCCWFWWmLSkYAMW2B7gqkXjf8ZVpZrRg2zGnb5MWbsFrFbBk2dVVwOiYpfEK4HlywsDmhAm5qAbutzfgAo4XRw+AARPo0eJkw10NcQhUlOGbwmYdBwOlq7RFOiuYk1h56eiJNr/HzG0I4EsJJpPXbALUszYRjBYSsqqGlmqx+fQmh3FsgefeRc45yTeprsACiGUxlUxs+1Q29MlJ8aIMNwu5WyTPkwDS9BaDrPqVp7rnZi3xzml6jCmBllKLJMBKYpveFAdhQ/Sm1tR/4UeeSGu6VYZpeUy13dHMvQDWAKjYy18/od1wrg1CkgGJXYAn9DpsiKgmvemFsgzQsQWx/+v5TYpp58o984wcBqFXD/bue/nDCHU6ophEmdYwkH4izeF7Woixu/KcrOF29ZzevnnxOKWmu4ypBtk5St/XmXo9e7EMmbxhyZqhy5xQLw22VwNUVnRFbAAeqZQGmt+CV3YRYrYytLdtt/RxsPS+rZ7s8l5IUrpjnjEeLXHiSZ99NemVTz6AqepH4EMgtNh86QDZi9WGCNPRJCyicKANNq4jpkvl9sbQMMELbYnef0gyf0zZf4+w3PIZHTjkQaYRBDRcM6lhAHcVauENeCmhFyTXQDq0cumQL5Ordp76fKu5Fr3hxo2lKF3jXZx5uE9/eZL45ZN4e7uj6nt03e3SxrlJK48MAQZOiITAxVL9OZDjmzBqkm8jc6EbAGhTvmC5A6pAzTmlhI+JRaUJFvXhSgyPliC77/+InnwqLKF5di3r2b8DWyvrdrqzzMpDIlbVfZJpZX434ypltTIu1PSntiW4UwDSLFc5jnIVFnXbsvaEfDU2bMKeM0gFlZpQZlsA0PZ4uCP+qDk+MheaSlQfIsGqc8afEfNbMs2YKol6ai4RZBsGFoZ+z1AzaLhkZC9i3PTc3dljX16lKm+vnrgdPddVzdC6PW1UVGQWzzktj3BQ5cx1e1LNx8HmxvDqfFc15lHOwsKdDrAHBQhqoZ+FyDtYzQ2lseasg1TbHw+fEmAJTkvNsZibG2jQHYgoy/GeH1lKfpWQW5r6ze8xOfKn/8/lLPnM9N6YRq4rk8SUYPEVLVAajWZ5b4KJWW8JIrQwNslPYJtE0mf5XZLhdrxc7he1h8DDMAtyebOasFV5r5ugwvpXw2TiVn9Fi3S070+LcgbZ5wWn4ijfjtzz5E69My72VN4Bj8hfDzLpbCvgsQLXKAg7Uv68g1lZmvfp+bqw9niN7fGRtzxWQ39XPGb+/oZk+wfgHnL3Bmyec3UlNnPxiq3cRCElR/SmxAhhQ9Elq3BRZamH5PsWPujwrvrCs50mjA1h/Ca4EL0HHw2Q5eyPsaaBXcGMD+z4s9h5pzvJvs1p85bO8SM9egwoMbdV+6/X5kEH9McDKaHmufLHqmUNlUdfhk2h85GvlC7C68oSWgEYj9bKqqbrw0QHrllFdmZbrW0BGGnlhPZvCgK4Kwppr4JRZnvu619SBfg05DTkxpLjk+4DsxXJfriBaKoGDmBqubZbXuipmNbJfa9Oim3tye8t8ODDfGva3mbvbzKc3LMxy/zGvs19y+d6itSGXwF+9ecFVShfWiNXpQNGiisJw269u7egWW7pChCJqRjxznDmVs+6LZscr03GrLXfa0hQlVB2QYmTPFauPGZ9mghffa2t2xHBC+6OAy32PCnbptUB6tt5d9myz2f65+FL34jXvwh3GHzHhiHOHC6VNUlZUuznL3h8Do44M2TAow6GEI0JRYCzENbXY3+lGOGkrJrEyprXOhKA3e0IlOakLew+j1v+2+k9rDTHCXEISq/Ips+okKjHuuRys67U8+xfP4aUNz68LVNeBVGOLp/bHQOoUF1KQ9GlxtevJEYcq4PSGPa0yexPZNYFdH2h3CdfKL1PJNNGrpSeyVshzvc7cZYNDMeaIwvHcoA5Yz5tSXxsjGV7O7jbhxS9wzUvs7ifk9pbQ75fMnQ9sDXWpo+rXj8jg/4f1w/pvcP1GANSwNt31Y42iUxav00VgorBnpxLI8HABqFoEelQpolPPHB0xKSYtvtHWXk76l83QliLOqiVsa/HeLSB1TQO+tvWo74U5uLKnjc/Y6Xn2dNyE+9WVUkTrZ8LX6tqkkEvFXmVi1be6wZh+AbtT8qWhsZumpjAlynuRia6s6Wv/uctQRCnCa3HXZJaU9r12HIzjRje8VI6XSnOnskgMXaRvAl0XsS7j2rwwQaotgABbCT8JuOWmhJ4zxhuaaPg2OwFlzZqeHVNgQlilUVm8dhKItymUjIUcizfnFqSOq8c4rHLuLVNeW/G7a5pVIuYsOLMWzHXNQQ5xXy1rU2XfrH9OhblZXkz5fy0MalP80JpGJLRjMefum0xjsgDUWq0MgFyYYl7A6eNZmvH5rDDHjbXH+IbgH5jnt8z+Ee9PJWBkpoZa1qbcaUk9bgsgvHrA/vqHo7U3KJXF7zp5pjRIgGdcX095wcAU9oFBcVDFt7x4VC8/V1To6DkXkHqa3tC2r2jbV8TkSSkw+bfonAvQAE3OF4GJWjeIH7VZ/Khd87J4BUam+X2xBnlC62/RpsPVwFLbFkC6lcqmeFF/19CerbwdwLSZZGQw5vtewE5ATYjXn1mffV1kn7vxK1LynJLnIQ785/nIS9Pxctpx+Lah2Y3smyesMeR5hpiE0evXkJXq/b71n66sr+2alWIoYSO+eGiGII2zTXlhb6Qkz+/s9RLUMpZ09voVha21sTTSpvhxK7BqsdN5TrXgbGVuFQBBbaXHz6saFsuAWKWdMM3y9c8kolNEowrLVC9sakAYgfWLXc9pUkSpYq5RPKyNlwc316EX5Typ8MmmmL+6xGUP0sS2w/af00+fM4xf8TS94THNzKZH4OZif6Sq16VI2w0sfvL1Oypk8Chs3abc+66AtYivb3y+wf9l16HV3PWGpoTfvNhnPvWZT28in94k/vMh8eXO8dj+lBvbcDAS8jv7R5TSBM6opIhpZsjSjNSgVmMcLXZhS97oZpkxPjCLv3m5FnZr7ZNmOeuiJiqD1qsPaao5E0WZoOOESv3SmKtYB9eXz+sKsK7DhmojE734ytegI7H3udoTCnBSWdRat8KyceKDPOaRp+h5GybeNolDsLRTwp4yxgWMS4RCb6uhmbp/EE/qGNDdnmys2BGVz+UUyTEUP/rVi/7Se7rYeyAM0MTKXkvki5pBLUzUq6wGKxZo67X6OHvrUhGxEgfqs1pXBbEunnNVWdUClRhBgzYAtZyJw1lxGM7gTwt7WrynKwNvcxbWc7CwprfgdA1eqgGe1f/Ya8eUI6foOaXAkCNzGorvbBBpb04Y00vjappy7wlQbYxl33/Om+Fr/HzipW3ZaUvMiacclzyE5/zT61pqxaIay9osId5tA+331Nt+ctC43kgYsxeA0ZX9+agTU9JMqUOlhAvzAg7Xga9Slq77FGN6uvYl5/NX/Mn8lqfZ85nt+dT19NHyVICrMYslVN0mK9ACebH9AKhxlqnK2Df2dNce80A5b9brqTcKmy1L0SgRKdDU+j4zHXrscI8Z7wSkdjeEOC4sapU8URWGZYoELT3LkCKdMgwkBhRDUnRRL6CUcRlLoil1X4jCsE5J4dEwynWeJ70Bs9Z/NwXDnPSirtnrxKEN9Aex9wCx9RomyxGWgMrnVgWApIfKK/HmIyD1dYD3x5azCp1WkMvHNdS0vsJbkLqxG4a1Upu/K6SiEoYsN0HN9gmL2qz+LvW92AH6Z4PB6zNen/OtinA5g7b9abG+k8ydpniqj8tQD1gr55xKTSq2QimOH1h5yM/Zlsyh0gOaDkxH7PdM+xZ7A4dD5n4Pd73m0Mo1mb8ngDq3imA1KmRU1AuTWkctddDHQGpbQ2Htqu7VbWFUG5Q/AhDiRLXSFXau54nAHAbJX7CBz92OH5tuqfsruUGXAsdn8a1/zJEYz5JFZXcY/yBEK38nYaa+Eb/mcv/WOrFaSQDMVv689vKZx14z+R3ae4y/xwYJlbd2wMVBsgqyxye/DCbOKXBKgb2yHHMSv/0kQ3Kn1wcmZRkoVZsPZcA4UUZs19o7rgqEa3C6LqOKvYfeKisUcxZFWbgqMvMHRSzlWV8VZFqM9EVVnmoWxOVu8Zxi4ldZ1yGLW6IJsNyD1ytt2NOpqCOcrliEsKfvlGJvIodWwOn+kGh2CduJ0jPHjPHgNRJCrRUgJLpuTvRJfKyHAoIrpSCrC7KfPAUCTovNVoOzfWFN72mae5rmJa55hW1fkfafEPodoW2ElHNVO9U6c3sNcgL1Pdn4/He18uV5/sP6s1m/EQD1Yu+xTKozDZpEFpBaJXpthdlT/NpSHJnmh+VrLMyUFHDhVTlkdsyhZdaW1EJqVrDjeimd0Y7FQ3RLSVqbrkuJXQUha8G4ZU/bKaCDJ3lhT4fF99cvUrPle38ADD9TWNfPbYputUyuiyeYaUhJOnebPEm7CyuRxb9wIxGVQJnmg28X07xc11SAaQFABNhslAQS7I14sd3ohhe6WcDpexc4tMLi6PqIayXoyXYK40TitPxqMRO9SJjbMdEMCXtKGOVghi+SAyMg2urVWK0+RPKlvF68hvXV9dRwAVKr1FwUW5UFVigUApA1eQGn2wY6VwocuzbJIAe40SvjaxuMtrCnCzidpyIpLfdWBoKBYDXeZSarcE1mbqSwqsC4TP+vpczSyFdwejorOEJ7msTaY3yLn97g57d4f7xsyHPAFHC6vo5bcLpRGoO8j9+DRLjrXqJULg33BHMJ+iPgS3heHUBFs8o+awpzoxS9MUXCbwqIoNFh4pgDT6c/BqBtX9F3n8o9ewwM4RGV09J0TFkCE8cymKnendZJIKltoCkN9ewfyTkVqw8j/1Z32ApQVzBAbYYdV/Lh7VoUGdefr3uMldti7h0q9RKYeC1vUxZch3YHdtOfI6VIiBPD8BXfhpF/Nz3wUjsOTz3dVxHbjZhuWCT9dR629bLbrvp8VaC6riErGiToaa4hTlGjS3OZol6+bggiTx6jZtjYBKQLHkf5tYq1QmUPVH//plkZ01tgeteujcaWVbXIDq9+pTrIqaCXqA7k601Wns1ZZ4KW0CVfB1Va4bTGzBNaG/SMDCGuffpyQCWkuI9i87F876hFNeFKs7Fh4S7/eVSwKf6TViL5617StJ/TtZ/yNv8B78LE0UZQKwghv99aLuec2Vo5SViYE3DMdhJupx3OHi4Ar/Q9VXGdU3ROgm8aq3FWWHMv9oaX+8hdH7ntE3/Uwbv2R9z9saNXlnF8jVLfopQhBisBYnHknCMkvzS1N66hQS/2M/emvfj+FaSOxbeyyjNTnIjKoJIlJbt4Y8o1i6uffGVRV5mwrQ+mKKe2oOuHrN8C5LjCnE+QkiGFKDYfZW+4XlqZwqKecHZHtCPeB8458C5OvM2eQ27Zz5bWRuwxoXWWRsYEYEDHSGwa1DyR54nsJ5RrFwsaYiD7iTScSKcn0vFIeBxLsJphnAxnbxiKvUdlXvllsFQsZAr4B1J3VK/Ea3Ba2+ev0Qe/+xU4/QGLWsnz2liYQaT4aT0HTVaYAlxX4CwmOE6ZxwGejorwBGY8keb3UoNt2NMxrFZlJlOsPLhgSl+vGr6rN/u4z1Kb7pPI1o/FgirmyDi+JTUe5yJwkCGRMhhjiFHqK2N2HA6/zen0M74OAy+KR3NIWZQTaUJFWxjsK7XqMjRxLWiz1hehf9d74q+6Xh0stjfFQiURU9wAPBL055OWIU/w2DihNiz1SshQytC4O8yhYfb3nIdv+EP/yF/Rljsrth+PceYhzhyjX9QR1UOfLKdIKhSSFbhmYQOvDMFVIYHh4my+CM7eqNzquh56+pA57g3+fKAdPsH6B4x/xJpuYVEnJTkW1R5nSpFWGZLJJSC6hCWi2GdhP1uXMWSMg4aENjAO9XuuIHXKl2dHTBLu5qOcteI9LVZ6exvZ94G2l32r+k9PwTAUW7WUM9sSYGUXx3KuyV54kZeSVx/pX2WtYFRRzC1fNy82PgJGZ2rzVf++viYf3VcuLAC2YfQVzCq919LHJCE0FTDaolZyhi5ANWZR4W33hERebrpOWV7YlilFHuJcfH8LSJ0hq6r0lNo3p1F+Vr2yjiuwrq2ltvQCULfEpiW1il2X2XVw18PLvaZvNM4opu+oCvhFS3WQjdRhykMMBhULkSZV+8zyvJQXQAEkKz9ysquCRxcVa+lLlTLEKDe1ipqAvLopiQ/92zgvgei3vTBgG+S6DyjZbxN4nZhMxMeJY56Z/RFrHpaAWD2+wbodtu8Jkya0itCs9494mUud2FiYzdpTATwdwAeLm3bo+RYTjthwxNoTLu6XcyMoAYBdTgxl399ryyEbjkpzSJouavomiJ/0xubDT5IlYTc2H9bmorqtvtNXFh9ZibKirMqu1irLm1k/F72cl9sB8/VxtqgInhvgUXqVzdAuprVM/Zjn/K+zzC86p7bs6fJWiX4yYI50qmGvrbDwleGgMzeN4A/9IdEdEm6vMb0hx0yaE9pnlEmEUciFAHaWMMVDMOy05W21VSw2H+uYtNZESpjTpcZ27hZnDwWcfoFrX2HaT8jdS6bbW7Hya7XkdJRMM3FlS4tCdPm1y/U3P2fQ/8P6+PrB4uPPfv1GANTXyxSmWAWWOm3wObHTtsias0ytC0C9FCJlE7NxxMRPZCIYPNHeEpMiJyVAULpsihZAcSP5qSjANXNqu0KoBw/4WRFnUJN4T9tpxgyFuRNPG/Z09UG7DPL4uXKbytL8OUsrQypyT4BkOnQNEShrK62vLJParG+T4ut/U0NFcl6DRcRjTcDNThkJJTDbyeUKTt/sPe1ODgfbKWxnML1FOYsyGmXMAp5ZH3BzxJ8ixqWLqfBdaIk4oqk+xpVFXYYVaSZEzewfy+v54bWqlgnQFfliASk2YTnZqQuQrO+guwKnt4AYXE6XY/rQ/iNV2bdXmPMaplZXBcSSUwQnYPXcZkIQgLxp4Gwvp8tbO5EKTudHaI6e5nhED++J02uCf8D7R2b/cNGQ65yxSFNeAem2+Hd12uBKoW6UWpUEv8bq2ldAEIDctJATIZxJacbjSTkRol/BzJyJJvNSOxpKeGLONLopjGq9eIKqOPNufL3c201zT999Skozx1NkDCc0WVgyWTzs/fzEZFqM2S0WQcbdoXSHa14JaDF+W3zNPT6c0PN7CSnUBmO6QuM1HzS9ci9d3n/XXo45qoVduL4Xhm3YKXxq0HEHlG0oTtJk17BUZWlv/sLCxKne2z/zJ/6NcRzUS7q3O5r2SPvJhKoNxUe2kMV7ukhXqzQZREJNgkZrBpUYk6GJGR2K+iClCzmij8LoGpNmzmFhFW1LrMpgzSkscvB6DbZ2HtfKhUO3gtJro6FWMGEjV65Nb3RqCU6rss6hMGp8qKB5Ke5RBL0CUMlorNZFYliGEQVUv1gpooMwrrdLJ2ksshagOgdWabJc3HVgBcV/TpOaDtPc0TT3eKUEsMmBGcdBFQb1xuZDgJlVFC+eeAJOW7dfQlqM6XHugNEruBu/QzjOd1lr6I2mawSg7hqISf7cOc2hDRzayL/rEl+3n3JnDLvzf0I8K79d2GARRYwjJwKpAHmf2J5G28XfEy5B6kSGYg9gs9wLNmfmqrJhZQDH5NF6rRdyDhDH8jp6dGoWZmVd15Yz1yBJCNKrJ0qmhVdEazDeXAQlbm0GqhWVMTus9Vg3yZ4YTzxFz9dhoreGHkszOpyRUDVlkvzG0WNiQpkH1DyTxzNpPKGbliVRFMR7ejgTHx4IjwPzY2Q86sV7esuenknLECDmrdVCteYpTF1TmKh1qFvAaWMvSQD6I83VtvZ6zvu3ri1rsxoPL2BWAarrGuY1LPh8VLhjglm8p4N/LDkMR3wYyqDWo8iIi4uEpKUsigQyBBJLIh0sZ45BL8zKTsFOZbyJ9NrSxZnHAlT7MuRMVYac91i7KyB1s9Rbffc5SmlOpy95E47clroq5iwhqYVFrZ/xolzu33pPXQ2crlUlv+q631vavWWcE51TzDGXxrnu/ZmnpPDRYKce7W/QYRImdZoKOWNiJUtoGneLMR3j9JZ/e/6SH7kdn7mez1zPQTveqJGHOBcVjoDUURV26gZ3kce0Wj6sQOtzNXUuWQMXn0urLZsPUvPVa7cA1B2oA0xDhzvdY+dXOP9AjOeFRa1TQw4BnwMOxZRjIVRExqzps2FQmR4JBJ+8ofECTKDBOMqzDSXTVALWNoFpwEVmi98Mm/c60ZnIofN0fcR2oI0ijBk/6RKCmjcBic+vGh5rfGAKHSHkMuDNC1j1q4LU16va1a1+1PWaJ2oo+MeWsD03jOkr9nTOYbFVTJU9nfzCnq5qm0ZpGm2EQf0MOO2UvmBQRzK61EmN0uyU4962EkyX8uXgmFwsCWYJZg0njLt/1nJmtXQse6xtJMDdKaxNdA4OrWLfag6dkSHw9wRQuy6jbCbO0pOEpLET5JQlQHFT2lwoUHWNlJ2ATmzp4qVVpVaGGM8oZRZLki1IHVTkKUe8P3NvW76wO7H62IDUtXyOxerDx1nqeG2LQqUQSIYDzakjtBbfGuZG7N2iK+dGqRmh9nKrvU67ywxeM/kOM++x/h4bjrgoyhtjThjbCdBcrXtyXFjUR2U5ZM2xANS3bGw+spA35knjxlyedWFRS1CqHDrXz/rHllGrvYe1CWVWstyMAOjXdff1SmUYtQykYh3Qr1/Ll2f/ORb1r7s+/JoXPxwq5fIzyc+Z03bwlBYGtc4sCu47ZTlQLI46z/420h0Sza1gD7ps7skH9OBRWqx+KDh00yTaKdLPogzXYRRrqaKJuKTZiP+0Mc0H4HTbfoprX6HbT8j9C0K/Y9rLsCm3CtPmYsO19jtuA1Avg4EE0/eUI/HD+mH9l16/EQB1zzoxhTLxVEmCKUpTqpXCRSkemqgZUuB9eGQIZ2bTMdo3DM3XNOc/pm1fFt8fkVbcTr8jG8Shx/eG2OrFxkHbDetMX77ffv6aPT3P64QxBUUcFGrKNEdPezrjnt7D+IZp/JJ5fsc8PyzS0hrUUUE1Sy2o4gYkLiFsOfDzXmZpci1KRywCasX4oY80sAGn19Rlrc1G7hypafOrhMYvwGa19miUhCIejPhO3+qGT3XDF9ryqvHc7ycON4HukOnuFfbQYvY9qu/RXY9qWpQxi3VBjoE8T6RxwA0iQe4fR/aPM/vHQPwTxWFy9Knl4Cy3xvHGjnzjB96FSSSh8cR5+IbZH2n8I427pWnuMGaHc7cYu8ekEW0P4HZSZFlHKuzJ1Cp0m3FdpusyXQf3ewkj6R30bk0cvvCiS8L4GFReWCbTvN4ncVakAcw50T8OmHlCxfgBmJW1ITm3eFON+5ZzK8WpWphpm3+fBLNUj5n2OOOGYbnn/Pg18/QNw/A10/yWaRagOhNwGdoCSu+0pdf2Apy+1c1SkDdKMX0PZ+N+/+eBCe8fCWFAKcPsWwm4jCMxTeIpXQq9d2HixjgSmc9Mx8syFf8UxaeqZdAtb23Pt27m2zDwb8cHHs9f8np8Tb/7EYfdb3HY/zZt84Kn03/mNH6LTZ5eSbr1FN4Tj6OwysORLpzouh/JtLu5ozMtIZyZptfM/pGUZobxK0I44v0j3fxAs/sJqntF7O+WhvcyePMapIasQflMdmoJh85J7Ieg7EU3itBqQr/DnVraY4cdzuh5WFhCWRvii5+ib3/Mq/u/wv3Tv+fx/b/i7fv/P/9y/Io/mU/8+/4V/+N/uuVvugduPsuYRph1rpVQpnaKNN5Q2wtg9VbNAZ8EqDIoRq2FAUaip2POhkPS7IPGFYmhUZmYxaP6FA3HVCSaxeW6cNsK+0EkryE80oxvMOF3iJiLvIAKUNfhUN/AXXf5DMrH6mJgVFf1uKyBonOU8LQKbA2zgA5S5Ivkc7ZZLD9aTZocerKE1tFYJ8ClF6mrCvKAV59OlQTSM9OE9h4dJHzxufCTKkvOhiWgSy/FeBkMGgP7H7ObH+jaT/lq/IY/mp/4omuKqgD6ZYAkZfLiwqrEwsa5G7r2BW3zkqa5x7lbrLvDtq+WRjjnQPDDr/pYX6zRp0W2HVNeQrKMVuw7Q9dobneGz+8Sv/tZ4Ge/Hfm3f/GOd/+Pv8X9N/8b/ek/Mgw/Y5ze4v0jPgyEcGaIA0OaYHzPJ67nU9tzW4C6SOZT23NvWt7HiW/8wJf+TCg2ABaFyTDnmbAwKhONSzLQrey6OKH0iPZntG2w00zSCrV5Ts3C6H9ehVWVM/MMAUVEQQmPEzZiLLL5IGd2DSIryieXDyVA1DJNDaN/5N+Mbzm3nqM9cMwNP009r2bPzeDZ7QPNLuNajzk+oM0jutEoo1CNXYZSADkl0uCZ3gXGo2Y4Ws6D5WFwPAXLQ1I85BLklmvjnYqf7gpmLUqvHMq9bchOmq1r5UMFnK+94bfg8/XnKrOt/t2zlj3LH+rfy083B3gc4N0jvP1G03zl2b19x3z6j/j5LcP4NeP0hnl+xIcTKQ6oLCxKi9jlVJbqmBfxbvGoLbYfSRNMQ6vkrGyx9NrgtKah5TMjA75TCryPE/9ufOA8v+Xk3zGaHc7d0Da3NO4W527QRbmmlOFgf5v97ieM01tOp58xz29pyBzQzGlk9lKXaVP/Gy/AaBjEHiac0P6Emfak6YZ5Fruw59SCv8pqG82+M+w7U14fxaGN9C7ROwHPmibx3irOpiNrTas1zekzlHoD1AyAYyFpzAuQ7OwOdfeX+DZO/PH4hhyO/Mh2/LQ58D+oO87ZL7XeU5Ysg3zlnazWE4acAjGOzPNblvwI0y37NFA84gs5wStSsVnTOjNWCym9htE1Fo6fJN5rzZFP2GtxC74Og5uBOTwKfStywbxdQE4tf7otCXcpKXb7gGszrgXXRtqN5d04mRWovlI+aZXpjDwVOyfM6f1tYHebsJ0mxcz0BA+PjtdR8zaNxeM7L2BLRl6HmGZCOJHihPEnzDQShxvOZ0XbZB4c9C4tNk7CptTfGayqlh6jTwyzhHzL+8swVFEkrsHgq2/1yipUsQxj4kguTP2FXRkl+DRFsdUI4cg8PxHCiZhGbM40KHba0hVrgL58fKOb4j2tC1FKBuH14+V3UZljjsSc6bXhC7Wj04Zv/MCbMDLmVBjquQSyimfyPH4jvYi7l7DZNBJDIKWCkLlDuVnaxUaJct70DfSN4pNbR9fIvXvy3w+L9eYmk01inhV+hpAUAalZtJf76zo4UaW0EKcyLRhQpkXFDmM6tD1g40gMJ5S2Ej7uj8Q4iOVgCWyvRJAzkX89vOU/qAc+cT0/cQc+Me0anK4MfQnB2/uBfx/ekwZPiBM+HNmFE1040oQjN9NPGaZXDKHh/S4vgB9k7rRcx8Zo7nqxhTq0iXHOPNjEyWme3D1762hMS1cyM7Q2aN0Qyu9wLAOJOhKMJCI9UTcQDHfeiA+8TYvKep41PAqxoxK3+n1Ea7Hw2So5tkC10Zm0AXS1Er/kCk7Dmv9yLDV8tepaVgnJuFBFxwmdAhSLM+MDJjjiZJhnGGepletwSn6W727t87G1+tCvffOS5RSUPN9RCIbEiRxHeVbiSZ4j/0jwZ1KeOCjNj9yen9qe31aGn/Qzn9yN3L6KdPcK92KPOezR+wO6F4wkzxPxdMQej9gytDdjBhL7ELj3hs/djp/5E+fkUboBpclEFrxYSS5H297TNi8WS4+m+2xhTc8398x9y3xw2E8yuy7TdYldJ/3NoV390et+J/vkRvXZPn8Nf1gfXzlfPj9/Ot/kT/fL/yas3wiA2hWf2WUpRZMlnKtBbAY67GLzUNc5RjyBGAfWcJoSnBcGulK0NPaASy/KlHCHT1YODPlmF8DfhjDzwbpWQy/g9KRQPuOGiJs8ZprE99C/L4fyE6EG8yS/pkvnJFYPV6EFz0pvnkmzrSEbi+ceYWFQf2zVhOUtgG2MKdevMqmfuwB58VWzbD0ay9BAKRqgtZGmScXSA0xv0F2D6nvM/oBqWnS3h+KTCQWgdpMA165BLQyXEYjcvp/FlmC2zFkzK0vULd6mxSMzpcAcPwRbmo17yRIqecUalCAsYbVubQUau4LTUtBcg2HCzhQvsA8b6sqeVhFMSJh5wkyjAFyVFbsBKrS2UpjaBuNviE4Asmi1eO5ti4IE2mex9BgG7OkR5gfC9AY/v2Ge3xW2mBSB20DERumF/V4Z8J2ydMrQFf+3WpDnj4RD/DLLtS/J8bRMv7WWiXNKHpUsWsXCXAuE4p92ip63oZpvdcLOVOKD3ABGGRrdYqzitR0hwEOaGc5fo5Vm1/8Ya3fs+y/IKTBNr+VnURI0NTPh50emYn2w2H2YDmU6mubFMjTy4UTOkRAH5vl9CbixNMpCf7cEoi33U2l809UNsbX5yFGRi3XA1hbGFD/8CPhkUFGeZwsXIDVAbDuyMRj9l7grQ6d3D44vz/+ZZnqPUYr/w5/s+Aln9i8S2hXGhk04Ix55jTI0Vyz56kMtHsdIKGlhmjwoh8EU2prBpUyz8dqbk8YXFsd2LQK5HIlJQOoQTsT5oYTJGnL7odQaVgnglil9wZwuwUp1/Srkrm1gbk4yRCi8SaJbj1mVEkqLL2O+sv2ogLX2nmzSKoU1mpzE504jTGk2W3wFpk3Y7EvaFBb1LdP0hvdhKg2xoVHQK2F8Lb92rlC12NE425chnbA5bHMnzK3uVZG3C4SKPf/yF+uZNXiR/rui1XT2+QCdxgoD7NNDJn4W+X/+xTsO/GXaby6HqduVouJ9tURAYaziVjsapUqAnuLetEQybws4sA2sMkAiil1CsATt0Hq4kIxSWNQqzKjUCrBcfpzFhmczPNmGc9bm11phQOUGQlQkJ1Jp42XwaEILcUTrroQYix1VXgLvNNbu5fnIgYcSgNopKzZHscFMDr10SIEcwSYZEqmxDClM+HCYOWdO74Q1PU6G4+gYY7H24EP2dLUBuF7L4Lw+pEVdVq/JtS1PvU6ubI91S9xujduzc3m/sdCCSxuPugTQKt7TszCnHx+VDG1PZ1EShZMMRuMoQVexgKMUn3+kzwg5X9wzsILUKqeFSalReF2uU2Fwa4TW25eL3hs5X4cm8I0feEqeKZ7IqYY6yS9RQWqtW7mmytB3n6KV4Xi2TONrYmHj2pwXmTxAVBqd5jLoO2PdSA5HdHiB8pkYlDBf/5SaqENn8DHTz5m+UfQ+0zVSb80thNZi207u53DE2n15vg+oeCZAAanFpkopjdGOvv8UHw78bHrD++Etv9Pc8LnbsWscBz3wH6ZHppyL9ZhagOktg7qGVIYwEOMJEw/oOIJtL9Rz27W1+ahZBY2Re0sUO3DYwThmTreGeTjQD6+w8wPOPxLsWep700kgOokpJ1yO9GXgU4e8cxYv6jFpnDc4m7CTRpmEMmtGi9bycbXOSlotQDWAMRldAGujMvs+sNuLtYcp3tPJF//p2TIAY44fZVZeWKPEUbyHfcbPimmWzBPxIE/0Xs5gFxSm+W5AgA+ZOaRlaFzB6ZrhEhPL4Gk7fFos7cIKYpEQS60r6f/W2iOWZ2PbeylkeFpJGltwutbATQWnN8D0aj+5klMaMrNKVe/PTjluTWRMgRC9MKlVqXmiWBKEwqLW9nCRl1PVPKK0WT3+5UVczxj4/qwVtqttkByUJH7raE3Woiqu9UuuarKylvqmKnxTlNoiG8ROsfy8gAm75b9biVIaX869EAdSnAgEjjlKCGJO+GbPZ6YXFaWS7jPqzGgiO3/mHM9i67ix7VPa0piO1jqie8H5hV4UuQIEZqkfndrYJmpu+oQPYrcxTJrp0KPDLTZOuCAq6BhnrN2V+2sQq48UOSlPG+Ue6pWmxzEFQxsiTSM1dwi6XF/NNEgt3hiwXQWfE8ErQqiHozz7WuUPB1NXyqQc62unJEfio+e3KHrS9lkv990ySI8JFc1yhgy+Ej0SfbMOpH6d+3C1D7kEqmvPTFoVEovHfIolz0uGEilN6JzptOVWO+7Q3JrEofX0h4Tbg71rMYc95vYO3e/R+7sFb6g2aNoH7JyKkpvSH2VutKNThlNekKKNi7cqSkVh8Fu7w9o91pU6u7kj7G8WcJqDeMjvd7DrBJgWcPoSWwBE7RlqTZ3R309MzA/rh/VffP1GANQN6gIkiYiUTyiHicVvA0ibjXnMkTFFphyJaSyWFJWhNxdLjUkm1jlg00uANUARRYxrsM/PWzkJgFn7spzEVzh5YU7bIWEnL2zH6an4HsrEOJTiKMSpyL0qKCloeNoAwgt4XSXwhlXe/8yqBY6AZhGdIBcJ6Yf/1lz8NyuLrAY3Qc4W8B/4Yj+3apjlWsSBs+KjZxxoh7C5mgbdNAs4rZoOtJH3McjHxj4jvUy4OLHbi4dczDDPjohl1gmfW6ItKe45M2VPvMI4qt9qTZbWpi2SpspWFJaAcjWcTXynu+YSnK4M6po6fBkY8yHjqx7AOSp0SBgfBZyeniCOJH8UJtp24FDk09p0NP5MdjuSdQuzOhm9KQoTOibc6YienmQgMr0m+PdSlIfqtymycZ0Faq6WHo0W1nS7Kcw7baQQLGoGs7l+v85SzUtMtMR4QqepvBaabWgnmxCKQGbKiffF/kEvzYLDKE2v4A7k59QN37hevlGA92nkPHyDUqaA1Af6/jNinAn+QZhwiJQ7xoFpesCY7jJsxd3j2lebhi0RyhDMh9PmfrLY+bMidzeLL+ty/2q9sGcvVsqgVSU0AArKviZATwGpDzCXZnopHgOLHA/rxKPQOpz+i9yWgBqjLX90/EMY4V+bn8Cf7PhxFJAaCou6SXRzogmZJhf/5qt6ttqtaKUW9sZDbqRJy5qYFL1S+KwW0MwnxZAFoK5gl67+rpmFsVqHiH5+gxsGkWQ6TbCKYKVJ8kGAri3D4npVVswWod6yp2Mq9h4hL19j+7YNMl3uVy1HTzaQnCIGSdk2RnymVQm/E/mhuWja5LVav5gEDMm9YShDixAv2Pb1v9ExXfy3yh5o3C3adDzEkddxZtANdwgDrAa3rf+BQmkjYS0FnK4+eLr9RBLE9zcX3zPO3y3Y8xetcc4cp7Q0LW7ZK1dWSG1IAPpG83Kf+fFvJX6W7rhNf5H2ajBbz6AADHmGOMu9VMDCGqYUAYMF0/GNbSFMC0hdz6ecc8krGNHBErWVGiFOZLN61S4+1CUwKBUfzmu/5ArAQgFiEwRb9/1McnJsRy8DDh0cOjSo2KFNuwFVIirHomQyGC1BOyl5xvDEuzCt2QBoGizNbJcGtUviEfOx41oaV0mrP58ss9ecZ8sYNeMiB85rUGrOi73P8jqwbg31+dXloJVgn8oqX0GAJdDUVFDgCohW67Xbvt+uWBrVLUi9BarrOTyHEhZ8VPgHxe5xlJDgUoOFMMgwLAzFZkJkwYtFBHkJ5Mtq/V3FSkIG8zpnQmn4w8bHV4DqppyX9TXSNFrj3YFWGb72Zx6T55xG5nlrQZFomjucbdcQ2RImqLXjSWmm8TVjnrEZYpqWaYlSutSUIy5NYh0QjpjpCTt8jm8NYyOesn8aq2s03azpm0Qzra9502RMIyqg6CzOdBh7IOeINbslIFfrlhglsBLGAjhI3elsj9ZfMM1P/K/ze96Gkd/t7vlpc+CYPO/CxDlHgqosYM1WeJ1JG/bsGWOOaCMDaEy7SNmXlVaZvzAdV8ZlLO1HYyQDYbfLTGNm2rc0xzvs9ApX/M1DHInJo2ZLQGquKUUGFUrdFRiT3BuNEisAFw1uzthi32OFRYBxWSwAohA45kkvANfWl9Yi7Eqt8qKqqNYeKWbCCONgOAXDcaOMuF5bW5QUR3IK6DCjp0ycFXMBqY8T9C7TmMQ25OwXMSp9yIxzYvQbYDpywRSsy2jxB65BqHKGyz4gQfQK7bMMiTfBiFvLplr3phI0WsNQtwrQ+rbXllaJGqK/ImhUQLo+RgYJSDRK0ZcgmQpSN0pzYxxTaiWkLoV1J82p1ONSh1YWdQ0WzMhQQKUAG+sqlRLKZwEeNyzW73t1TuhAoihTeI2QpwwXw/Tq3V7rn/o5KE9gimJdouECpLaHD75nVRD70gcEFCEexXEhJ16HkZATo4t8YXcctLw2e22ZTcutcYQ448OZGRlwVYKWUrL3dM7xdL7jXAc+y1kkAfSHTtM3YpF2twMfYZ4zfp/x3mD8HjONWP+KlEZCOOHcXgadOeDxjDlhkoTlyqDD0Bt55lpvRFVUnhkBoCUwcT4rud6dwrXbZzKVIdRq+1GX3tg9aJ0vnD9zlODUatX3sedc3kdiVUZ/JCgxhWJfGgQ09VFAamfVRQ7Dr7KEJZyKXdBa4y+krhKQWO09yKIyiGlahhkpeRpgpy13yvJSKe7bmd0+0uwSza3D7HfCnN4XgHp3K4PiLqxEuCgJy9HPGA/WZVobORRVcY5TGV0Xxc1y/yohFZiu2LTdYtwduAOx2+P7Hr+zcIBml7k9wE0vPvKHVnHoFIdW/OS1WgH/qjBpbMIoyNMHl++H9R3WDyGJf/brNwKg7oqEp67aMJmlUJAH1WS12H0YFJOOIsPMkSknPDM5FAlL8R2LyUuSaorYFHCpFqd7ZpyEJyYBKJ/D4i4Z1RsfuAJOEzJ6ytgpYKcJPY8wPZDCieAfllCeLTh94Qu9eOaljdXGpiJIYZn0fWxJ0IYE0KALY+yKjVaDA9UV0G2w5CRAdUrTwuSSr7vtbqqE8vm1De9aQhyMQmnxmq4gNMYuH6vqYWasANUgzUOM6BQx5eDoDjMpRXwM+KSJwTDjiLp4bRlpFk9hYMaToiLABgRdwekYTmv43HJxVhZYZX85U2RgVm3sPdTC1pTmuDKnP0T3UvE8J2SMzwJs+TP4IykcieEkjUABKbbXW5sOG44oI1I5Uxqr1fOtfpN48TXDLJ6IwtgvjLEwklLAwCJdbApzemWOrOB0Xxi11fpBfQ8MatpbjNeY+YEQzh+C3jkVBujmU8hre0weHUuSulE0FF9qnWkUmKT5kVnZGSlk3ocT5/NXaO3o2k9p3B273czj43v6wrh0GSKREI6MU1OYbMJmU1rkia6J6+szI4VRmgnRME5vUNrixreYAk4vkuECTAPPgNNUSicYFguBhZBYAbDmGqSW39EOoMIszZkx+L4nO0t0L2is47aA7Vo7/ujxD/j/hROc9/g/2fOTMHC4jxgHXR+Z58DeG4Ykfn+VISg/5grA+JRIpTB+rOGu2hGzJqJo8qqAiVlCWrYhizJg0Jgc8aUwjnEs9+oj/dP7Ym3TE61mthmt1dJQQGlaY8aUrTHmvFE0yB1Tm9lYgNDKRFg8qEtI4hykEfFhZZ0sA6XrokZDtAIux/LaGh8WJrV49ukPvF8vgOa0YVOnD+1g6r9ZQ/qq94fF2gPO7jmHE2/iyGD33CnoUXTF2ziTpVhGAluq57RztwJO91+Q+vvF5qou4yPBfT8Uy4cp044ZiAsI3dhLgFrAxNUKxCjFj16AD4mv/Ute+N+l3QztRlZWdYwDA573cV78f43acaeKL7XKGGV5ZTthDsV5AalBWguTITET4iBM6nBG6wZT5ODaiqWW9h7dtJIVcHU/bMHpDbEeR32GpaGMVhQv1yxqnXZof9ms5xSW/IiqMHG2x5sdj/GEC+MSZNsrjfHyjWvjKsGJ5WttglDr+1RA6mEyTMEwBc2YNEPesKdzWoDg59cKqqY4YmqY5IY8cA3eO/NcdoOcl9cAdV0LAJ3lWm4B6e3b8rliqXU6w3BUNI+R5nhETY9LMOKiJFrCqVddUMHAi7excKq3rXdWmYyA9jELoysqGaJ+AAJoK+oOpWlQfG7aJXTtq/mMiTOnNDPP7y9qQGN2l8HOytC2n6CU5agd4/ANPg3ocu0BCRsrtZr3T1izE2bm/B43zIS2Y3IK3J+OzNVtrJWMVjRmHd4oXQawWqNMlce3ZLNVizUY02BiLxL/6U2xk5uK5Y6lae8wtuOr6S3vT9/wu90dv9PcstNnXoeRp+iZyCSVCpwogyhVWNQ+nDD+Sc7DIMooZVtUaj4YKsqwWMDpCsp4C025xwxisVBZ1E+3mvl0oB9fYf17muJTG+OA1g05RgKROSfOKQgZIJtLFrUyNEnTBM0w2WUIpgzoNmOcAgdNyhiXiL6wMGMF0tVSa1uXi+VPRrtL9vQ4GU5JM+TAmAP5mkG9uRdTqnk+I8QJOwWmyTHPcB6Fadu7TGMzRqdlLnx/eL5HiSkv4PQwJ45jKizsClSvzGhRw5Sz3opSbj3P5TUJJfPShSRKpVpDp3XgV60KQ6jPvqhltuHuvbbsjWOvLbvClOyVWYaeWzuP6xlP/btY69gKUqPpEOvDIYWyp6aF1b9am51xxVaqPg+AnEG19yt1vo4JFbLYLRQG+9ZC6/taSoPTMH+Hcj/rD+sd+XytRwqvjLgA8NVmJ+eI0eGjyEVKMwkPWUgqb8O0BKh/YXfcaodBQOo7I4OAhxSI8cw0vUdrJ/2etmjT4rRBPd4ylXC/lUktgHFjFYdOY7TmrhN2/zgLQeIUFFNw2OmGJszYONKEU2HKTmUQkpiJmByxacuiNryLLc1sRSFhywDK1d9T7DiUSdhOlBKX1wHEBbJc0SQ/+6Ke2FiO1q8nntGiPI8f9FN50Qdth1FLSPSVD7X2mej1Mpga5szcrrX1r3v/+bCSSOaYN8+3EHds6ZlrgHV9xsXLfRRwnUCnDAfjeKkML2xk33n6faS90Zh9hzkcMIdb9P4W3e3RvdReeR6XnyXPE3oYsF0gzRHjxD6lx9Fri6pnbiFRbXt9rW1hT+8w9oB2B3J7Q+h3zL0j9RrXJXa7zP0eXu7hrtfc9frCS76x64t5GiPOxIIxJPyf0hn+w/ph/Wmv3wiAui9vdQkrSjEXr7BZKZmQEqUgzgqHBCc6pbHJY1IsxV8gxihykCL1G8evFuaMzWFz0faEZAlJS4125Y6xBae3H9cQpEtwesZME2p6FLCwMlnjQKxezkW6uxaEdjksfp219bQEoDC66t/Bh+zpunIOy7/Phd2Sc4sp4YNaO7IOoBQ5y9YsTd1lg/ax3yBvCpkcAyoWwP050F0blDHopiXFgGoalLO4dqLtE/0UCTEwZ8UcNbO2SDkT8bnhIYpk1DND1ATOhbHTLE2S1u3ClBNQUVhG1/LkvpGmegtOV9892DAqnmFOL155AZQH7SNmXm1fYpDwTJGMTVyD1EpZXDjJz2uEcaeUXZo9uValqPVHchoJ8wMhPDLP7xav5OBP5b73q7VHKc6r/95eSZG+eLwVNUNlUKN+/cMxdjscArxfNOLUYikjd9ZqIwPCVJtT5IRfPQGNwiiHyYq9TtyazE/ypVog+4F38cjp9CcoZWibl7TNC5TqmPJIu4DUmZlZwrNsz2w6jG4x9oDtP8c04Mprk1IsQxyRiPtwRI2GdvgaqywWCP2OZNoL1vRi6WHKx5t7pYYlXrOo4RKkDr1ixqGT7JJ2AFJEe4/VGt/3RGuYbm9x7i+wM1251xv+1eMfMHeJmQP+6z2/5c/sbyOuzez2kckHhqTps2bI+oPU+hpIWpuE93pait+oLBFdQixZQNwZAb3Ew1q+ni1N30wkZY8PZ4zp8P6JdPoZTQkEGmnxNQ2tFOertFWK4yay+NWaDYhdVw1dimmVyy1+bl4K4WkufsFBFW9UYWYtrPZN/5UNRAoDmgTOFsazvgKqP9wFrz+3KDeeAajrv1cpUYNxre1xbs84Kd6HiYc28SmGXkGnLBa1+WHFE8+YDucOuEYSxFN/j98fmHctfm8W/+sQNPH8odz9V1nvTiJVrdcbKnjFBUg9XzUmvYNP72D+UeRh+JT7MBeQOi4DW4DgW2LMnLMEa2pfhtdWQOpGCXPoM9uvtk8leLWeUfX1S3EiKEOIIzbNK5s5jqgwodyuvJ7PA7AVnNZ6ZQLDyvZvmrzs/9csapUSynQXY781dyKSUhmmaoc1PT5F3qcR688YJJi40S0mrOenLaqluiqABbVxFWZVBaeHpOUMpZIB1rftYKquOgTJKZByJMYT7Tyg0/3FtZHXvOxdV+B036iNTc8qZ90+uxWImsMq7b/8/MqyqssHOJ7h6VHD+0z3eMQMD6T5fTkTK3u6hAQTl212qWUUaNVIjaQ0Wz9jlvNJrtBc5NFVUXItozZa7steae6UoTFyrjqlcfMZEyeeUsD7h0Vu3TR3YHaYDXPSYOnaV0uQ9Xn4hhgeAWG4hio7VhodTtjwhJotWnc0xyPRGmbtOH9H+4VfZX1M4q2r+kQrAah0AYxy8YNeguwEIIkl92QJsIyTEEzijDYNbfcJ3p/5V9N7/i+7L/hzzQ0H4/hqPvMuTgw5EVSAbFFKy72aJRBZaqG+1FItxnfik+vKs5g+BIbgmYGIEUXd3MJ0yIxjYrxtccMtdv4EG040zZmUJkbztlgAjPgS6D6ksKjXKot6KP1NEw3a5wurD63BGlAGmh1En4he4WJcwtlr26CMqBdcm9GNWtjT0Us44nm2DBkGYrHuemYtJBmRzosP9RE3efxk8aNibODcZB4MGJ2WZzdlFhb19p6o4PQwp8IKTBynClBXb1sZFtdnPeky5N60M9XCR85sRZ7ATh4VhMW6DQrdBiNuSRoqJ5qyf+424PSNbui0ANPb+hdWOw/gA8BveQauQOoGzY1umExcw/yqsjenwug+E4paT+lueT5iOKL9Hu32QLMoSo3P+FFzPGceBgH7qwf197WMKsGFv+SX3So6P1jayAEIF3aU2rSkHJegWGs2irM4QmQBqRWZx+hJnAk58ZndcWscjdLc2YaQBYx9zDPeHxdCUrWy7JRl9+5HnOkZUAs4bZTY4vRNom+ktzt0Su7NntXqw2tGv0MHj40TTRpp3J0w8oudTEwjU2FRP8ZZwjaV5kE39MHQzrYoJCLWyiAjeKm/OEPbxxKaKOGJKQEerLsCqX8OTCCAdlFWVIuP516vLTi9eLZ/xIe61MZ+YzexbxNNUIsi6ldZ1dJjDmlTp6+EkexVYVBHagiq4DnVskf2KJuhN4Y70/BSKW6aUNjTGXto0IcDen+D3t9h9neoTiw+SIHsWjCWHAO6P6EPB8w4o8dUcjQyh6K0MLkwz0ttDMj/hgABAABJREFUkFUJTSzqXxm27tF2D25PbDt860itwu4zu51Ye7zcw8u95uXecNubJZvlet0fbNlHgwD3f4pn+G/syuv5+MP6s1u/EQB1p6CvjBqxoRc5tipNVAWrlaIh0RcP3UTmlDxtMhyj55wCtrCpZ0ZykA34PHwlzIAyiXNwAVKDXQIhgA2ItBYlHzDrFnA6Fd/pET09kcOxMKfP5W0UudnifZhX2iSrH2FlPKelWf2I8ZCygAQtSUEei3/h1a2gPwSlK/i5XTmL/3TeAIcpxZIa32ByIqoJhSnmC3k5AAW0kqYtkpkBHzTBK6KH6DM2JvI8k5tZrBA+wgbPUSRGF7+qMejGYTqFmTJdL8X5PlSfW8OsLF43JCNhJTGV5oTiWx0sQVus6Zbim+trqxXaJrTOC3tamutLcLqxeuNZtjKorxvpJTzTK4yX+0N7v9i+BP9QLDjOm3T7TZGmHd4/YYwweo1pS9FVAGvdbV6rcQG8fXhinh/w4VgO8cIoIRWQUC/FU/Xc22tbinNNj+agKnv6Q+bIr7pi05IjYq9SX++cVtZLgUZ0LkzHjbSyBvcdo198QIWhZmiyotOJL7TGcAlSJz/wEB4YhqbIhg807T3T+BqfJSxytfoYF6sPrVuM3WP7z4XB7u4EpE7Vj/q4gNQhHJmnr1G6hA1uvANjAaRTGYDkjzTzy1bAet/UJmEFqSV4bUrV7iOJ53iYMQhzJbQNobVEdyDZ36Fzez5z9/zbhz9gOH/LufcM3DO+PvDb85nbO4+1iZu9xyfNITgGpRmUplOWUUWxjygk0lDkwe/DhDcC+s06MWvLAXNh0xRZa2nNet9ZpTA5i/w6jARzwuiGefgZrbZ0gI53DLHHJ00qTULoxO4DpFEVD0E+6v2+9bSs3pWVMV3fQoBxlAK82jXlJEMDQa1WD+LlPrYarRU5ZVRUC5PoGqiGZ4DpX/Tn+t+Vory+N7rF2j1atTzEmbfJMyu52/fa4or3o0Itja6zewmGdXfk7mVhTnf4g8bs1/sueU36nphY759ANfL6DF4aj8Un/CJUdgUh62vUWLi/hfHHcJx+xE2caMt5DQJkWXsik0kxc84RHSYMCqcMxqgCUitutSXafjmjKEy2BaTOEJQEaYVwwmsnDFbdku2+MHYkxFanRnzjnwlbqeD09v6rDOSUZNAZmizXeMOiBlDhFuXtB9qUVEB5UwZh2jTYvMP7wNviwe20xlhFo1pMkB26HWOx16hWBVURoPBRL5YAFZwW9jSLDc8FSH0FxCxw7QJgzYRwBn8SZUC8ZhRd2nbUN2FQb3zjnxt86i1jem1ct89w3OyRKQmr83xWhCfYPU7Y09OiYEtpWtjT4ncs7On6EwtrWqOVxZjdpe0UtZlPBQSL5OSJzGWWKhOIpJ4BrjQrSI2i0Y5G7XEYrNfoMPKYPD48kkmMzVu6cjTWsx6k/um6T4olhuPxcSRlD8TyOqySbaObpUboT2/pjAEOnP+UApYuvUPzMjh4DqdSGxYlcJGTknPA5Ch2Wf4JF47M/pHZH0lxJvizDN1shzGf8S/P3/CXuns+sz271vFNOPONH3hMnlmFZeqQtSLECR2O6HnNmKhMTm0bjHVE+2GlkzY13BwLi7rsU4dOmKyHQ+b9qBnPB/bDS6w/4sKJGM8Y2y+1V2BmypKpsdZfBpc1M5kBRZPUYvWhlcj2tU4ok0Qx6kAZhXGQY8amXJ67zTU2Ak4bJ+B08hBGxTgYzt5wzFkCUNPzFh/yWhTv5jhJ0GDxobZTyzwYxkb2tXXPS0sdrBXP1scx5WLrIcD0cdqA0xtQagtQaw1b56mY5NmfZvCzKn3XhCps+1qb1d+h9l4hnAj+RIwjDui0gNMH7bgxjr1y3GpHX+2iUBf1L6x1TCxWUmw+31TrIaXL3imgVVRZrD5yZEqR9wur2xPiIKqBUrNbtz4bKY9L2Gm1+ahDlDQpxlHxMGQeh8i+MC+/73X9/F7XQNt1afPxDKu62DNUgPG5VRW7kksTiXZHREMcycxlEJc5Rk8q2SiennvdcqMbopXPxThxzCPeK5S2mCWA1tI9vCWZTxh0x3mpw6V27JtM7zLdXnNodSEzJHwUFnUICR80oz/Qx4iJI01zX3pJvzznnpkxR3Rk6bHemp4mW9xscVqAz66PuDahtVpse6Yh0VKeYS3DJgD82gtc2HxcEFkKKzqu5338AKyov3Iiq61i2y9AdYqj7I8lg0PFhPKGFBTzxn9+9KKe6H4NFrUvHvQpb0LMN3W58llyabYhqKXPDXFcsJQexV477k3LrUnsO0/bJ9xeo7sG3fVi7bG7lfcFpAbIflyU29lP6OGM7hqM80tOT680e20xgM+5cLWu9l2ll7NFm47sdsSmJbQWdtB2ma4Ta48KTr/Y248qTuq62Zll72zMDwD1D+u/zfUbAVDvdWK3Cdpag3oEqJ5zZVErehQDmoZENFlM7LWXwLfkGVLgnIJ4UyPSn3GUFPEtU7kprEcAlXpUcnjM6ruli0XDc1PCVDdR2Uh18GLt4U+LfUMIp2XalwtzWlhIhSlbGIJ5A1Jvi6xnV51I62KJoSxKB1Qunl+bc2kLStc/K22fAagr+LYJeTNSUJkybTWmFfAjGqIKxCxQtS+glbzPzAp8kkM3hEQYE3YIYCbY+EurGIqVxxVQXA6LNE/kGMml+NFGYVwqB0ems4kuZg5RcaeMMKlzYq8dIUuTvbIVRkJsCHHERPEcJa1geCqs1sqgrh5ljYHGfAhOVxuB5Ud+BpyujExCxoRU7o8BX8Bp7x+XNOvrRPv6mlWpmtGNsOnsTgYGJQRk8WcNZ2p4R4yrjHmVPEqBZ9HY4lvrSpNUAxGbAk73SnFQMiRyOhfB80eKnV9i+daSoipsEUss1ju1uCMnahyjBHCqJYhzazkxpsiT8sVDW9EkjVOKWyMutJFmZQ/kjPdnhumtFKw7R999Qooz3r9H5YQtou5q9THNnRTKc08XR1SRbNkqLyvFXIBi9TEs4Yst0tRYPlm9p7W5YE4vj1j5s/i3fni9Pg5SayYcsF/CNtU8LPtY0orkDNOhI5nPaZueLx7/z3zz+l/yv5zfcIyeY/eC4f2e3/Ejdzcz1mVu+5mXQ0MsATQ+JzptCDkxVdC5MK8e4rw0XqNt8LllKEMOCRcqz8Pm93FKL4Gcc05lXx7wXu7jafoWpayErIYZHe6Zph3zwTH0Gj9nXCNBMs6u7FVnLxmsdcV82fjWwjcEKeLrx3FWz4DSFWW8/JqVdVyDDkGGEFug2niWAMK6tkD0hzYgm6tUz4X6ubJPadNii23LaX7HmzgxmI4DcCjPcLEsF4uP4sNozB7d3BP6PdOhX8Dpbrf6rfr5g5ngr7yenhTKwbmB0ySNR2PzAuLWtfUT3+6dnYPb28y3nxum849og7CVapjPND9gC5M/JfGgfRvG4m8uFjMHZTioGqYsTGrCeAFSK6rVR2D2R4zpiPFMSrvirTyi4oSKXWFRX/6elSFcP94C1I0BmnoOiG9odHlhUfvWiRVI0wnDSxu0tmXozMpoSlOxG3JkkzCpw8cz7+KMno7yvRWgWwiG3WxpN0y0rUeteFIqfFQMNcC0kLFizovSIeaVJRivAKzKJ64y9RjPpPk9dpogdKSwetR/EHB6xZqu4PT1PbF+vA4ursFpH9Z/WwdN57NieNC072bax8dFwRZLHSZKogJQl3FMRljTEnLkJIPA7cp5W5RJmyZeJS2/u5bnOaq4gtSAzgqdrvI4tNQmRikOiDWVsdWaRqGD4iHOzOHIOL0FWEBqa8XOqQJXTfMCpQzj9A4/Pyy/i9QNxcJmc5C0w1dYoI+R1H2/TMu6qmWDKCFYAIaUIAaFioiXKSz3t9IWhd3UpmstqnWLtTtCuMGYHmM6Zv8kAGOaIc0Y3TCYHb8/vOV33J6fNjf8ljvQa8vX/szbMDGoYmGRFTmFAlKL9cmiRJvfo7XBaI1xFhWfV5HUem4OVa0jVia3PYwznHeZ+eBohnua6RHrH3DhROMOBfwJ5JjwKjDmhCss6vo25LRYr5mkMd5grgYezS6hnVrsPlJc1ZHbNkEAbAGnc5Jtbxo0p8Fyipqh1E8+J6peTb5IXhjn9Z5fAwdHzDTRnB3R9nirOeu02CTINUrMhdHd2DWDAC4zIKrv9MMg13P0H4LTsALU0cm/M7r8+8KejjO4KS1B9D+PPe2DEIRynhfm9K1puLMNt7rhVlsOynIotW8P9Cp/UFPUHnQ7eJecJLVeyFKPD0XVu9OOg44MJvAujiXgrXpiD8RUhgCVQV1sGmM4oucW7fao2IF1AhZOmeGseDhmvn0KdE7z6vb7bf+3g5nF+wjk+28G6M+xpS8tzeJizbAE3F0FWF78t8qgVSLrRlQkZV+NkQuQ+pwCKZTa3iVemY69dnhbFH5xYkojfn5k0G752t3pSzptgBcMdJxRCxmpsZneJQ6dWC4s6q6SgRJC5hgUs3eYcKALn9K2ny691fLMxIzPxY86iuLzbfaS7xINzeREIeEyrUvoViZp86SZztK8u7ZYJJmiaNZZ1BDPkdNVvgCn5fUrxD7yB2c4Oa/Yauk1q63nEhJdbD6095gQUckWgFpxHDOHVgZNnRMrEaPzLz0k8WEdai7We0V1FwKEWaGC2Hto7y/sPUIZOsU4AlHCEU3DC+24bz1dny7Y02LtcYe5fXUBTgMo12FuBUfR4wnd79B9j+lHzMmLZRKw08LWn4mLBVgpt4UUUhQB2rTgDiTrFva0aURNd7ODux3fGZyuq2s0jVWXOTM/rO+0MpdDnR/Wn836jQCo7xrPvkwNY15TqmOuILW8+awErM6KQWlMVgwq0mVDpwJdMjxFAatPynNKUhjO8yNQGQKrD94lk1oYctlQNJ+5fFz+shZehVlnp3Rp7eHPJH9cJuMhDIQSNrIwWVNcvmDOGlTesJN+AXO6Lm2LVKqA0oVFLX+3+XnL2gLTS2Ow0QPnZMnqMqxve01Sjhjt0cqRlRxqgYxPkUlFvK6p5JE5i4R49hp71kUSHWmYoTKp57lYd0hootoA1zlGAaljJPsZtiD1AiInrEl0JtInCSo5YBl0oteWKUsRHnLEI9c+Fc/blKaLUMiLMDO9Ab0q6+vCZ/HjktbrJi0ERZwVyosUsRbTW3Dah6MctsX+JV97kystsljtsKYVP0XdFLZBDQIpfral0IgLIL+ypynMZKXVFXu6ShpF1lgL9E6XpkkntMrEn6cr+44r2WIrAEuRugSZFga1ZAMJOO0K06gpAHU9oENOnJIvLGpFT0OTNJ81Xhq7YIF2uYF9TnwdBqbxNVo79v0XdN1LUpqZ4xGVJUTNlgA1749Y0zKbjhQEvEJZdHOPYwWQmN/jS6E9zw/L79kCRtsSa3hgNroAmOvQS242AaefvVYbcLourcHYDP0KUjenDpOi2B1sQOoZmd5P+5ZoX/Di9H/D2Ru+efP/5d8MX/IYZ951L3k4HfgLs+XTmxFrM581HpYA0pVN6XMixISnDAlyxEd55qccGU3kxjhG3SwDjwv/xgLI1NdTrBgSMU34IBK5cfx2uYebcMT5L7DDC5pBUrD9zjK0Cj8rjM0lSHINZXvuGlYGadiAJoX0uADSyhdvv21zdXW7PxcytoLU8mJWoBrEM/J6fciWjhfI8AJK1z24JJeTw2JLZGzHNGfex4ljTtxpYX312pZtX66l0RZrewklciWoZW8WcHq3yxdM/Ry+Hw/q+b3iAY3rMmOXOY8SNFsZtSsTSN5fh8yC/Pub+8Tjpzvs8BlNOT9zDjjbk3NEbxhL5xx5F6ZFVWFMW0DBAlJXq48gw42QxbahjrxiGJn90xJyY8x+tfkooZUmJEIyPwd4fcbmqZFzoGlEAVBZ1CkJK0aljmyKDNm06AuAOhbgMaKVJmsBUHOOTGkUkHo+CQjqFOiGbnLso6a1EWdLc188KSs47RdwWl3Z8Fw2tNeNbR0AyCA9EJOXwfv8prAYC5k4rWBTTKJCgpVVLmqjrfx//R4XzPoo52n1pq2WPB8wLZMoIIajwr2PdE9H9PB+USmlNBX/6YGUfTkLC4iuQGHL8KdHm4bGHdB6VeHUoXFASiqVxecYpVE5E1VCZQhZaqEZxaQ0LmmcirisGUiYLOCXDILdAmBrZA95F2fm6d3yfbsWdA1zrvdaCRe82f8WJ+2Y54eSXxHJWV4PEFA95Ug7fEmTAyYF+uFPh0J9GkvgXfUSntfaJ5WLttRXG4XftgatodD1zzp2i2LM2h5rOmbTMs2PxDAS4yjPgm74D/497+LE73Z3vDLdYl32jR845UhMEzG2oDRBSZjyPDdLHWxVef0nhwotKerl/rheVYlDKzVhnzI3PQyHzLtRMQ09dvgEG46kOOLsnpT8CgQl8Z0+p7CQBBqlGUyDQdHkLPdFFJAaLlmS4k8rYJWWtGiAi8D4aush4LRYe6zsacUxh4VM8tyqrMpKmKg2H24eMM5hJ0caHN4pzhpkYFWfWQHbtrXyyqCWv6/P82kSsLk+z1vWvdYCUDsrA6l67Ue/WnJxhuYsNU/yx81zEJZgzFpbBy8Atc6JvWm5NQ03xi3g9J2y3ClDDxyUkDL2Ji4A9bb/dFmGfnOuIGABqzcgdUTY0xFFg2ZnLLe5wYWRwExMMyFOGCMB0daeUcpeBAimEniqJ7EASc6hUxZP4FlxPiu+fUo0RrJAmo9Yj/yyqw4Fq/qGlFEpr0MmPmLjsVlLXZMDhAkKCz8neV8VrDHW91U9GpdBtFaaVFirEnZ6CVKPKfKOiUhmpxyuBFOGnAhk3sWZEM9Mk4QmKqWZzz+jVZa2qBtH3XDSGq3FSqd3iUMb+fELR8qiAKugaQWph6QYU4uOd7iHz8sgeV4JQTkQc2LOEZUCOirex3kZVjbBYM4NWgk717WZtheQ+XyycIYc00VYogDV1du/1Jf6Y31DUU3lXwDKLaqgtKglTBxFPZYqSF1qH5/xkyIU1chxErZ532SaOZWfS3+0L75e1dbDhxq4uObCCGNdfgTrS0BimIuSQ+6XEIaSJTHhMuI9bTteKkvfDPT7iNtrzL7H3N5fWHtswellaSvM6vGEPj0ILtFYdBMwLks/XOy5qM/ZdihVv0zJLaI8r8kZcqtwTaLvhHxxaBX71nCz++665Jp39cP6FVb+/sg3P6xfff3SAPU//+f/nL/xN/7Gs3/3T/7JP+Hv/b2/92v/UL/s6ppAby833y0LaPl402zNWdFHw1EZhpw4KseDduy05ynNtNFg44yNnnd5lOLmGbriFqSO1pCNvgSqQYDfDbNOpSy+wj4s7FgJqivg9GLvMRSgsCRNE8skUwkzNSuy+g4MVS3Bgms6MgJMJ8iFRb2xIV0n33ptClT1Atw0BfJ3wp7O6fJWslRAvwRb2K4wQgKRgCczF2+9s/YM2XFUiVM0uNEtUkV5LSNuTpghYMYZ5Sy6caimuWBWy4tQgPp5Js2e7APR5wuAYPUQgz4joXkl/KRNhlFFbPEmy4SlMFxYLSmgtwBRAQu3HqO/CJSOaXPIlmJmW0inSdEMJThzeiLN7xdwevYPUkDXEMPqQb34XZYGDoVSYlFSwWpT3usq6S0gdW0sYgG7F1kywoTWpTFqlRGJaQV5S/BWZY/0OuG0hERolck/T+P3HVcqgUlA8TCtMq1QJL4sHtm1eatgegVIqi9yypkxB47J8FZHmmz5DGht4pXy4J0wqa0Ef4Wc+CZOTOMb9v0XNO6W2HnSOeDziCvMbZMzMZzxvsOYR8L8gLYHlD2AKaGJ7SUDxAdhd30AUqdA5WTNu5ZstMBier3f6lZUbMwkWGp7zTZN2/LeZnIrjdC839MAZkBA6umpBMBGYEdorQC7P/of2Le3/Fb3Ga9f/7/58uEPeDh9xZvunrf5BX/53Z4v+pm7voQfzo5Y2Ccxr2z0QCalKAA14GPCp8iYAkNqOOvAzlj2pWkwSi3NsKlNuTa05bkcc/ECRjHN78p9MRPDSYJopjua4RNce0vs98SmZTj3zE4xOX4uC/1Zq466b8cVkFYpF5/hzX975R1OYhN4WV6zuH5uC1TnlIlXth91VZBaXTOlr0Hp+rm0Dg2NabCmZVRGfKhz5IssqoddaeZEj6MX5YU2Lanp8X0DO2i6TNdldsUdaJwBMun7saCmfz2R/Y6518w7xblbBwk1nAhWa4a6qu9/BbGbBuzLzPB4x37+DFcaW2e/vbQFigmPqKXehnHZL14aS49430YjQ5VY/BiHFEhZAGqdkWGet8ymLSnsEqam7WEJIlXRkUuw5TXbDzYAtRKP2grOdI00XNaysKiTV0RnUMmKysI6dHCYwqSuJ7AMtSNKvUepVIaVDgMMaeBtmJbBnbGKOxwR6JOiTemChbmtnSIrOB1LEHXc+E3XawVceCvXXIDKoA5xxM9vaYb36OlTotN4W1/LAlxtWPLX4YZbr/36uepNPswy7N1aAEwy3xZVUlnzrDgfVfGdPovlUcljSHFcSAISEiyMY6Cwn8SnXYKNeqxpadztMvBNJQg2pXkTGK0hC2tqHXEIoO/JqBzRqSiUchALh5yZVfEZRnJWvtAWo3o5z8qZ9mU8wXR5XznA2FUppXXLrv8xWrcM5mvm+REfTuV3i6KkyvL6NO5nMuyLE+gd3+eqgXePQ+RhiItlw3Xt46a4hlzB6kFbatAlT6PUqDmuJAp5q17skqUwzQ8EfyLEQYJg3T3vw5F/fX7LbzcHfuT2/MQdaJXhmzDwvrBo62unw3EZ7kuImsFMHcY2GF+GWAGqU9j14LMCro1R9I3iEDPnHYyHzGkwNOcD7fw5Lo44dyN1WI6lxslEJmFXpoCNMngfbKIhMdQw+MK23FxtuRfaKPV4KsGJZekrqm9OkOZMGBXToBkmwylu7D2Ii8f89X+49aaNRWmYoqhCzdTQWEc2Gq/NoqqCvADIYunExd7znM3W05llaFyHyMvvo+XMiFf7bL2v/KiwQ8IOZ5gfyOkSnE5ZnoMQTvhi7ZEJtChuTMOdabg3LS+0K+C05gDsTaLXidYmWhsxF/uTqFB81IxRo7PCp5qRVG6XAlr1JQdBgGvJiDiYRKc0p5zKvtQQTbtYkGjdotJ6zwtAfUT7drk/k3Xo1hInxXBWfPuUMToSE+zV/PyD+kuuECCkNYtDRalzKkj93OC9riXgOcwfgNNitTQS40kGCGmSPmVjbZg2Q9mUE0oZskqLTcdzIDXMvI0jN8Zh0ByME/uPFHnKkRjOjONblNKi0NOWptjIJf2CyTiOWmFt5q2Duz7xO5/KQz8HU+7ZxBzl3k4JxqQYYk+7/wnNJiejhgeLBdmwBKO+DeOqqtEO4y1uEBXw3gRcK8Gm45Al/DQpUkpLYOIv46GbNgPpD9jTZeViU7FafNT8jViCaccSJtsKruEdymvirBjLEPI4JXq3UUNpBfbjfXJd1Y/eL5Ye27dVIZG9QhdVuqr+00VV5sOR4M/kHGiV5t62vNANL5X+0Hu62xdrD2FRf/Te7fboAmDrrkc7i3FyXzQq0xeVIln24u35D4VIVgNAy7MancK0mabJtI3YQh1axb777mA+/PJ+8D+sH9Z/beuXBqj/5t/8m/yDf/AP+Mf/+B/jnHSnr1+/5u/8nb/Dv/gX/+LPBqDuEru2MmWvgZo1hV4YceKzFKKm94bb4ql4zJq7bHhQlgfteKy2H8ow+jMDI94/LV93yyy2yIVsrCO0DSomkjOkynxMAljUQBUVwQTZRM0kaddp45MUowCFIU4r+EgqU7gs/1PXbkbPrOfY1BWkTvJeZQt0wLgC08ZSfamvgektaA3C2lIgzLHaPET5O7OxHKmgqIRCiO/0lCJWBdpoOOnAg9I8pBYdDAwNKXuCj/hJ4c4Z1yaMm9DNjHEK0xvUR9KSchTZVJoTYZSiO/qrglZJu9kUxkIFNhulmZTC5ywleWHsxlIEVTnTdm0Pgwo4bJfUZ/L6zxcT4NVTr4a4+FGhh0RznqSYnh6I/gHvnxZw2i/N87QJzqxJyxkVNZQgBhVNeW3E8kNpizEtWgkgVVeqbOycpOmoX4vChFMKp/XGx1kLuI+A053O7JxIxZ0RKWc0v4DR/x3WwkIthUaIU5FeenQNCioDhqaA6FuAGlhYuVpVkDpyzJGHLMzAnUkYm3mFJ86OufjTpSxA9Zt4xIcTzu5p3A2xnZjG14QSmipWHwEfTmjf4ue3EpZoOsCCO2AAl1YGvnhSC0i93Vuq3YcDktFk3ZBa+fkroHoJUF8OSLbrmrSii9JkOojVxwJS+zPKn7FFgjmnPXPvGG9bQvsjdk3HF80rdv0XvHn7r/ifh2/41g981b/ir+Qd/6f9yKENMviZHYb1vloC1Mp1r6xLnyNTlH3gpD375Oi1F29kZWSgQJWgq4W9n4rV0ZTF6mOen4olj9jUhHjGuVvs9Abb3GFOB6w90Dy9ILbdAu7JtdULWLxco7pPl4tXm6trGWouE7RleGIEZAaWoMvnvMO3rOrq4axBwMeY0GgSl+5QFyzqLTi9YUvL362SRpY9vFr+OI7J85ADM45eSePtlMZTi2Ujnnj2gG9bQquxBZzuO9i1AhxUoHjxO/w1V/f6S8wYCf2O0DZMB0ewalUObIYzyzXRYBoBJZpmBbS7Dp5eNbSnG5z/BBdOIvtPM9pIoE9KgURkzplTCrwPE502/LbpRBGC5qW2RFoixRoky45YBychiyeoWH084NyNMDjDHh3vUGmPLn6vKeVy9nx4vbY2Jg0SsFttZkLI+FmRrCI50EkRrSFag04Z5SzJOqw2xeIIATLSJBYfORJV4dsqg1YdZ0ZeF3sTg+aL5o4YZR/skqa7YgHGKk/fMP+eY04vFh8bAEtTzo6cSSoWNdLAPL+jH77CTn+e1DpSEBDJWmk2twGS1TZrDmug6dYqq7IsY2I5S6ulxzhfAlp1DWdFeoT9uwH39B7mB1I4rmyrwqSUzIlEhaYVplh6HGjcQQJF7X6x1aiAQwWG67o8UwEkLCnlFeQPS02kcSowECXkO2dMUSg1gFHyM4Cca2/GiekZkFqG0u2SHeKalxL0ZxoG8y26gLYxDuScxb4qP/J0+o/M/oFufocxNx/cr7/K+vrdzCH6ZTD/9iTgtHjiSlDlOErto0pwuJnEP3T9fTbgdFEnVYBapbCQLbQRMoRzt/J3Baz22nIeviGlSfY5s2PWnn87P3FKnp82Bz6xvdQR/swfx/GDiZLWLbpcTwnOttjpnugcyWpCyDSN3GvX2QY1LLEOo256AainUTGce8x8i/Wf0DQvlvsoVmVcTARmhhwxyaOV4jF6CX0u4nGjNCYptp7YKQWsTTQpY1wmR2FWPjeUrXXyNGjOJ8MwV3uPxJDjYvHxsbWC1BJcaZIAjcqfMZOj0ZqsO7zRTJTw1ZCZiq1RHTIateHzpMvshxpM/EFdowEUIeSLIWYdUI2jIg3QDTNmPC1q1QVgK97TPpzw4VwGNhNNhp223NmGG90s4PRLpblTmb1J7FyktZHWRZrmMnA2eOk5Q9Q4bxiDZsTgs/y8cdkO5ON+40fdKUNUjhvtCHFmyKJwrAHRJgwYfSoD5W2uzESYH1C6Q9u2MNgt0Tliq3j7VO/NyGP69etzKAzWDYtVBQGmqxfwAkJfDd0r01WlKLZk1TO47sVRwGnvHz8Apms/tgC8m/fLfaEs6ERKH4LUb8NIypmdsRgUh2L3kcLEMQd8eEJPlql5vTzzTll6rcnmBbO2HG3C2czbnbB7G6vZtxvwNFbFmbyfosbf3ONyoIWLXoCiUAhpZMyJ93GSM1qVgGAazOzQp1xsciLNLtEfIsPRlOfCYL1Ygci9oFZWe1nmGYwEVrb/dpVYP4rpwWrnkzw5txu1xCiqnThK3VNsPrS3RK8ZRjg1Utscp1TUxdXSR/9ckLqC02O1hAppubaiwFn95dWUy/f1BVeZlryQUJRRJmduyrDppbbc6bx4T5t9X7ynV9/pX7T0/k4A7X6Pahp0M2BcxOksAfDakFM9nGsqxwak1nKOZW2IzpKtKD2bRtjTvYPeqV862FQY8eDj91Oj//e0frD4+K9j/UoM6r/9t/82/+yf/TP+6T/9p/zhH/4hf/fv/l3+8l/+y/z+7//+n8KP+ItXv0/0RYmoTPVhqlPEsvkmmSiGoIheEbyiHSyHoDl7wz4aDklzyJZD1os/585YTsmjouccT/JNypS2vgFYbTHTHpUioW3RKROdkQAtrVZvUhBf4erLlaIcypW5U1Owi/SnsmLzckhAbZZyYXOtHtTh4j2wFPAouwAqKiGvfEAKfUag27Ch47NSysWDeuN7KRYjAoSkOGI2ViDbZef3AoDmgMqBkP2SXDyowFOaaZTmQTUQNakwDXY+Yoe0FH/WSaGtNbg2LMEQ6hkz2VyKg/msiR7mSTPPGh/0Ir9bXpPCKKv2ELZIaANJ2Osb/7NcgKELD9iPrBoAIx/L+wpOD3OWVPIZzhMMY2mcB2jPATucUcM7on+Pn9+s4LQ/Fe/oMsGuNhywOfrE8zfnSFJeAGtlyMmjtCOnUIDqJLK4hQWTlml+lSWVEkKYrQUMXtnTil5BpzP7UqRbU5KMXSb47+dwVCkVCWZh5xTmV4N4MPba0GlbGN7Fp1HrC7uIurRSxJwZcuSYNadopZhoAjuV+QyIsyOaFl+sKPycGMbXqN5gTUfb3EpQX3gk5lRY1AIOBX9inN5g3S3a7qV50EZA6hxwm6I0FIlp2DTiAE0S1lML6HggtDuy5iKPqYLTW5b0FqB+1ntOQ9YQ+9WPugFsaRBUKiB1jKh0YLjv8L3h9OlLuvb/yP3uc/r+t3j77n/mZw9/wOunn/GfuzsOfMaPGk9nE581nsZbetWKZUd5rgyKsTQR4sFYfGxz5BwjpxRoSxBRWzwf60AhFTsVXe6/qDIUSaT3j8Q0E8OAt+cySHiPczeYSZitxuyx4x1aSxgJpluVJbDsZ1mbDy/aBxexMCWtgPDZmOIjXQrMZ6gLz1l91M9XRrVJH39WsjGXEtlrcPoKmF5UN+Ve07pBm4bRT7yPM7Ppl6DERmnOrAB1LZhD25JbRdMUcLor4Gn5MdoG/PdkEja9/V/ohs9xzR1Nc0+7f0lybgkNvR4mVPA/9BrfKnwvPuNNI82b3WfG2wN2OGP9K5w7CLvMjKTk0WkWNY8S6foxed6FiQcXMMrSK3lQXmonwxQnQb4p5gJUS9xvShLE5s0j8/weY1qRWPsTZtphmhZCs/gsfywI7jqfQNLXpfFyTa52nMQNAFW/TLRyjRxlny7MQD18tbB561LaoFPDmZnXQfacP2d3fKqssPqiWKE5lRc2Yyzy9EsP1bx+nFdQ+jpArTLANGIhUdVI3j8xj1/TDBPJGbzRBK2YixJuuiL2fRhoul6n6ks+BzhOKyi1esd/CGiFJ+jfzzRPD+I77TeASGFPT6VmyUVfsAWn2+YWZ2XwZW0v9U+aliu02lBdKpIWksHmOiUxQBG7j6LaWXI5WFnUEWgUiKDfyB4GfO3PvIkTczwzlz5Yl9rUmh3G7hdChdV3BVhtxALDSqBg8OfFymSeHmQv9Y8odRke/Kuubx4Dp+yXYcLbU+I4weMgrNhxVIyl9mmGiJ1m9DwuQacXNag9XKoCc5A/bz2VlQUmjG7JJtJwh1YGHwaCP5JSQKmI0g7snj+OJ85j4LeaA/em5afNgadB1JRh81otdX9RpTnT4YaB6AzeKlIrtlBNsw6NL4L/sgCwjVUcuszoYTwkHgbDOB3YTy+w9hbnpsW+oAZV55iZ8QyF2FFr5qaC1GWQwRVI3QyJlET+bzb1M0jdvK2T/STBiMNseQyGI3Astnd+M6RbVy79Se1BrsLTwlECwOYRYwxu0EBDiJo5KWJQzCUf4mMD9nXApIRhn7gInq01kNh2yT5b9wUBtWXw4Y6J5ngsw6jTau+RCvEh1GBEsfawObNXhoNx3OuWF+YSnL61kZ2L9E2gaRJNK9d4S5IKQZGj9B7WJPRkMQrGKH4kEYRtJDcXMQtZZrH6UJob04i9SvIyeNwERBvTLKShet9Xxmj0D+ipK5Y3jugM82Q4nxVvS6Ds/rsocL/DmmaYoyIFYbFan9AFnDY+XIDTqxqsgNNxep41Xa2WwgnvZVgYi7Xfsr9esPcT5PU+rG8oXRQYlkxYQOpTlLPR58TBOJzWHLIjmESMmXPyzPMjs39c9k9tWoy2dM6R9Q2j0zxZeN0Vf+VGc+jM0uOJHV1eciUgMdzL0M+lSLvpBZaf2WcCE0/RL+cngDEKksOMUndqPaJ1pjvI7zydpb8VNvXlfQgCTMf0vNXHdStbz+wPVpagxGo/JNlFE8as9aaKEzo0GB8wwZEm8aE+j5mjg8bk4jcv3IOYcvFL1hee1JV5Xm09KjjtY2bwaVFLjV4GV3Gu1qmTsPHTyp4OQYgEKU30RRFxbxpeKsO98zS7hOkdqu8Xaw+9v1vxk5+zVLdH9weUawtAbVAm0Ki8EKZ0Zrk3a4ded9J6tiUnz2guDGzxOF+zrH4Z9jTIdavhsj+sH9Z/i+uXbi//+l//6/z+7/8+f//v/33+2l/7a6SU+Ef/6B/xD//hP0T9kmbsv/d7v8fv/d7v8Ud/9EcA/NW/+lf5n/6n/4m/9bf+1i/1dXavMoeDRhklm4OzKKPFn/gZCwgJ0EuEx5EwCsN2PuuFOXCcHO9ny7vo+DZ3GDRvw8jrMPAunBjjiXl+ZGzfMc1v2fXv6Px7OsA0d5ipJ7YtxgtLr1p/AMKQS3lhT194T8fz4j1dbQykOI0bFg9ccKeXAzlevV8ZdRch49oICJMK8FxZdtcgR/1O16C0bT8Ac2qohU4HSAEdR7TdY8IJY47EKICq1o6pUDdizgwEQvILCHg0nugye205JMMhGprZiAcjlT0EjZK08r74HBslB64pn9c6L1PircWLLyyxOWnGpDhmxQDCECFi0AtT2CiNyRK+J0BEWJkVxXdLpsSJ6G1JbC4FcaAkjif6pJk3xcAy+Z1zYRDBl2/geJSwJvc+cvv+Cff0nnT6GePwM6bpW8bxW06nnxHiIMnjBFyuoYACxlbP5bq2Ta+8eYLykCaSstKc5SQMO6UXCfyWkV0B76awknfasVd2kTjeKbg1kZsmCMC7l5RpazPGAddBlr/CslPCnh45jV8yTt8yz+8hzRyU+PTVZPVWGzptcJjF7uN6XQMoQ078LELMllfAofO8agMHH3hxbnmpDnxiGl7Ylv/P6Sse/ZH9/sc4e+BwaBint0zjW2IeMRl0jnj/wHn4kpwDhxwFZO4+AdOi+s9x9oBxd1h3R0oSsBjTLCGYcWSeH7DD13TjlzSnz2h3PwF+l3nX4ntD6hXaCZNa60tgetvgbZlE1+91m8lOMfQt08HRHvc0p1ORup8w8wP9k8VOP2Ha7/A7y/HTA+rVHvtbv8Or4/+VHz28IT79e16//1f837/653yhG/5q/4q/ZPf8RCl+ahI/NZaTafgqHfiqmfmD6ZF3ceIYxeN/JhNUsR0B2YPSjAK6vAZeqiJnB5aUcaPE/3vOMyF4YjijZstU9ixjmqWhqExH8ShtVvl3BRsKQ0aXRO1r5YiugPZmD1TaFBD1Q0Z2BVDl44/f24v9f7ELqeztOsCsjZ0MDOI6GAuTANHFZ5kiU14DqmrIaWkGlQxWzuGRP/EnvnUHflsZPtctL0zL++hXgFqZ4j/dYPeZwyFzt4eXe+gbtTBZffj+ZIRff/v/onH9orRx9oAxTfF2Lj7ausWZTsLKyqAh7z4j9nvm/Z7xtmE8KGyXMTYzvbSM0wv6MNN1P7pkWi1e9hlPZEiRN2Hkf5sf+Ynb84VuuFOGTzEcdMeds9zohm/DwGs/8FSa44AnhCPDEArbcb32DeC0QU890WpCs54RvjQf22UUNE7RmGJDtQFjU4I5KXJUCw5Xw1PpNXNy2ENHezzQPN3QH++Z57eM47cAjHFeWJkAWjWccuIUznD+mt9pbvmp7blThiaWISSLYwFQfadZgFMJSRR/3IQoTSICYiXy5ixV2KwIRGFPT+tN89nXfwEz/TbTdMs0OU6DZuwzTSfDhqaRQchpumRV1xXzJcuyqpC2wFYFs5TOpKCIg+L+D7/FnN6SxtekJCFkMRzx81uG8WuO5y+ZpreIxkEsb5y7oW1uaZsXNM09zt0WhrJlmlYf/MrCjEuOiC+DglS8qC+Hybpw1FJhUYvUXHz6Z5WYC4u6KfV1ozKf6MzLrPlU7Yl95kt/4it/5iEcGeKZeX6gbV/Qt69omjua5gWueVmY1K9wzSv63U+XIEjvnwjhyOwfmedHUgpM0wPpezJi/F+/jPSHuIC0x7MM5MdRMY+KeAJ3TLTDTHM8YsaT2DDAJTDt9lJ3aiN7YQG30vxeBtiF9V69ard7oNYSdBzdQWq5AkRCwuieB6V5Nx1x+T1f2J7/cfeShzDzTRh4598zhif8/Mg0PzD7B3a9WPL19oCZPmH094ypYUiq5JEIyGCcPOsyRMk0Vp7xu05hVMYZsDbyvnU8tF9wP/1V7PmPce6WafoWa3oZJMyPhHBmTBNTnNHzkaPxnFzHvW55qR1zyQQ5JMWQLH0U1m5nC8nDibLNuksAKyXFOGgmbzhOlqdg+TYpvs2Rt0mA+inFAu5tV7lzy54a4oTWA9o/yZnjH7CAzgEbJxkYTzvC0BJOjmg1Y6sYWr3UNNdrgzsuhKO6RFGmyBYo9kAhyL21+Mw/aJq3gf23b9CPf4wfvyb4h+UeifGM90+chq+ZxtfENNBnxZ1peGk7XtiW37E9L5XhpcrcO8+hDez7QNdHukPGdmA7hT2sPk05pqLgTIQxEEbFbogyAJgM74aGOStMBpMVTS4s+AWUDKDhpRX2lY4SjDr5d+KRXoK3Y5xx7mZRDMjrOeHnN6Q4Yv17mukL8TmfbnnSPcM587TLfCTK5JdeT08l++kMpuQrVQvLLTBda5rl2Z0eSijtaXl2Q6gWl/MSBC95O2EhbaWiLMhcKVN+DsNfyGSarCJzDpAjPkp44lOc6bWl1/Z/Z+9fYmzL0rNs9BmXeVmXuOxbZlZluco2Ltf/Y8vSEQ2rEMh0EJcfBF03DA0kaIIQNGyBbISQjSwaliyBkZBAQhbCSLhzGgiQoAMIfAD98B8wuACXnZede+/YESvWWvMybqfxjTHnXLFjZ9XOTGPwyZEKRewVkRFrzTXnHGO83/s9L5emoVGGmzByG3v2h/dwXjpqnNuxGm+ox2vOuu+g7x5wO7R4D//jbYfRisfnFW/Zisooahsyozpys4LdNvE+it35JfX5ltX1E9a7L9Gsfp3V8dfouqd0/VP6/oobd8XRd+yjYxdGrkzNc7vimal551jxTl/xzm7kK991ZPs4sSUw3AaOO0PfaWLU0zVe3KB33dN3h1GJOu+DbUbt6ZyZAJmlnM85pS3O71/pFpIoQLCT2WPFcV9QkhnB5SL7IXGxiqwqzapWtJVmtXAJh6nQNHccl3DEfZ+46RNXB9jt4bDXqF2i2fdi7Bp2xPEa724Yx5ccu/cZhhe0KfGFas13N+d8zaz47trx+KJn9chSPX5A9fhtqre+A/vWl+/nTr9m6LOH6N0LzGZL3O+x7UhrIltnpfgBuJRQ2pDu7IlV3lMkLXhY3Ug3YGXFELKq1clx+XZGP0Y+eOl47zrw4c1nU4T6/6uR1EkR9PPxmzM+kf/pv/yX/8Iv/dIv8aUvfYn333+fX/7lX+Z4PLLZfPsXNMCXvvQlfuqnfoqvfvWrpJT4O3/n7/BH/sgf4d/9u3/H933f933bv6faGMzKTmxivd2ijEFVNRgrX5vCqssVyxCwh1ti1xEOR1adY9wFVreBdhdYd5bVsaZ2lisrThVxtcjk6Bnxbs+QmZ0AVfMo83pPnp2IFnfSB+8LjFi6dOMkPL/5CuJuyvE0ijiNTCCJUzc1WviKSt1xYBeBOjtWygZhchvGANTzooO7x0CS5UvVO0WfN20RT6RPAZ2f8jPVcTCWnbI5NE3cujXFvTu3NK6UFdE6f9QKDFmwVulElw+UFiZJ1O6ALiU6hK8n7cvxFb6eSgWcUbhb2ZEWZfFlXEA5Q8gOOeelxbi2wsMMMZ46aCJTMNBNJxvv3U4x3Io43e6Okzg9LsTpbniRW5RGVApUMIXGtcpQa3EOF94yMAnTffSYpNB5pe9VboOLmhg9WltZ3i0Wdyk7vVSa+dNl4SzvhxQNWh1pTZxc01WzdOoobPj0N3njA4yy0BjdnphGGpiS1be6Ym0srbITfqTKCJL7BI27jLWRxD5pNkGzioq6glUTeBhHQl8TUkVnVpxry1XY0/dX6HWN0RKOFcPIOHoiGXdDwPkO43aM4xW2uphc1Mk0qGoj7fjJ09SX8iSySC1tvSP4PX3PLHbdPETFS2CFwyxwAQrsEvFx935xf4r3NDTERk1uagB7QBLu/Z5q9xztLjB+y7BpiJXCrQzBbvBNTb0558H6S8QYuN79F/7p4QP+H13zf7QP+d5qwzvKsFWJdzVsU8NYn3EWaq7DwLUf2EcRqh2RpDKGIE9LvXhWUUR0nJ38ZbzqRYSyWUbJuQ2c3E+1dsRYZWFpFLE6CtZC5ZvQVJSDU3HaSJBJ0oZka0LTzG15C2EaOEF73MWwnwYHzRxr48NrhOk7m7rSdVME6uyWFqFtFqbnz4vXhaaLnn3yBGWkC0JbUrhjWVWWUCmaOk0LZXFznHa9f4vco297eH+E5CBjh8S9aVBKC55DV1NxQesaazcYs6YOPdY9RoVA1BeMuiJkwUJXCd9UJFujTYs1a5y+nX6vzNuKlJ38ISX2wfFC95mrr9kqxVYpwDKaenK4Rp9EJEoIuiKOeHdgdDthUbsGO16jx4uJURu8uCvDwuEXIoTMnTaZilMCduuQaCsYauitZLgGA9P0XBBi+VzzWgMtKkZqP1JV58JRjiPa1BnlMOMq8l/jI9fJV0qBadkqI1iJab6V+XVmTy/CEfOpvGRPT0zq/FiZk0yS0NyYHMF3IoZ271GbFpFgzhlDRUAzxNk96b3Mq8uwzOX5V/jSRZDyXkTpZfe60sJGjYOi2oVJnE5ZnJ45lbeMbod3B1J0kLnsld1M4nTTCIahFLJivgZD5haH0BPCgJ9MBo5EQKd5816E6XLcl9PU8hgu56pyGylrm1pHHqL5YnZSRxLRJXbRE/yBMd8tY77+jVlPzxlA61bWzLrB2jXen1HXFxzUe8SMmEv+1IH/SceLHWQKH97D8SihtSEH11VdpFqK0+4w4T1OxGmbSyaLQl26I3AVVm1x+C3vhQV3ZBchksWpTEpy70mK93zHpW04M5WINSheBEGppDGd5Hc0w3O0ttTZATc2lr6fiyswY9+m8D8lHNbCo+63MI6JvVeEzUPJoYjz846L+zherrdD9PO1ZfW07jPK0JUzKip0MJNBo/EShKrHggkoxwC6wXJ0wp2+iYp9ErTHtO/JTv+7owTHLjnU00eUwilujy4Bkx1TkFqoLMEbXDSkAWJZtC9C5ZejdKKW+17+yydBq4I0SIyjFD9Ul2j2Hbq7Jrjr6TxZOqdHt8ONt8QcoLbSho2uuDA1j0y7EKc9FyvHeuVZbSPtVtAAdluh23rae4LsMVPXYfoBux9xh4gy84TZjXLzH5FC4IiI1LVS1NlJPZJolGWtA0MKuUggzF833goXXRmMqU87ZyGf/wcYRQTTSEeeW9W4qDl4xemd55MP1yt0Au0TxscTcfoVx/QC5+GHFwQ/m5iWwrQPHYJWlPkiLswz0uFZMndOOz5PT5hcnLzzOhWawB1kTekM08WMY4kkXvoDTlm00tM6RGlLbdqM9azoG8OzfeTJWeDB1lJZNTmppStKT39gt5XnPGBJ+oI1sgVvOR3e73GM7O/DsBggVtDVPHgxcGE8zZmmvRD0h4Qnln3C6dCq7Bfmz9qo6XHJZ1J3YBT5+ComF7VcP4LVM6bOhcEeHRpU6HMOR4VxNeNg6XNA+bEvWLNiIouEqKZ743LENK+XltiUgvY49lKQ9p2iHgJmHFDuCKGHO+7plJwUIGzDY13zUMG6CrSrgF416Oye1jkY8U2GqpvsoG5Eb8p7sVopWm0wKByZ8SQgbwq7X36B6CrFzLK8Nxen+ZuMl3vP1SFwdUhcH97s//18fD7+VxlvLFD/1E/9FD/+4z/On/yTf5Kf/umf5ld+5Vf4kR/5EX7gB36Av/t3/y5f//rXv+3f9Yf/8B8++fdf+St/hb/+1/86/+pf/as3Eqh1W2M2K2mvWK3QmzNU1c43DWNFqF60b6cYSP2B2B2I/YF4uKXa72l2B5qXntVNpL6ONIeaZ8d6OlJDCrI4zGFtbrzFmgbnWuF+5YWAhtNW72rRhjXZGecW7XTPJJQ+phoMiGP9PssBs7D1upG0eVWkjjY7rhenxWuE6aQ1aXKnV1lIyeJ3FrQ1TO3mxqyJMWCty21aeeGNw+fQM3JL0zHaVzANhZc5CaUZGyDs6CKcChNZNtSnm2tYsDNL6ywpu8HEBebKInyBtshHa25piiUZuEf7UdrXfEX00sY0teaMsDeJOsyurxKGWDiZtx0cjjDcaKpdYLVwTo/de/T9hwzDFd3wQtpuY49ZMJeXWItGm0mcLaNwviulp3a2mKQl06sA6KmtrLzWZZtcOQaFQT3xpzN7WvAaEojYVGFKly7itK7AVp/eYll1Pb57Sj9cEXyHTSJOtwUHoQ1tLmhMfOxFUeNkqFN2ajkvRuAQNGtv8mtJbFaemCR9u6PmiV0xugMHd4MZV7TNQ4xZYatNRkzsBf8DBN/jzJFxvKaqXmDsBl1tweRrr9qIq6g6P9l83hWpp2NweJ86BlS8RIU1LloELHIqUseoXhGpvxX2AyBZxbiaRWrTyZGLx6cYP9B6h3FnDNsVvtHESjFSEfWWqm54FH4vZ+ffy2H/Da53v8I/P77H/60039Ne8F3VlndVzYWC7zEtD3XFlWl4aUZuwsAujNyEkWP0jMnhlRTKllxFUnFmvroZUUo2WirDNUU8sBJMNv1bn4gKclwKl70RV252UBu7mRy6EwrENCRbk17jmp6eS+FVF2d0+Vv3pNkv2dZLQXr52CTE3EF6xLIAzy7BIpKdCNPZYXU6NH0M7GMgaAmIXRtb8rTy8cyLZX3aaijhNiXg5vW4ik8ytK5kLksxoxYyq0BplNpnB3gzOaxtDqkDqJPHAK0xxOoCVxkmBITNYYKmmQoP5bwoo7wzkcSQAsfgeakcK2Oolc2MfcVDKkYjuQQuRXbBFSpjvmYHhvEmO/VrrLuhHm+wwxfwTU2ckBOzsLocIYowDVCTqI0UBo6DIAPGUV4PQ5oLIFqhSiiSVng0Q1yh4iXV9aNp01/ZFd7tkXLcLFIrFEeVeJpF6lAnvmhFpIYkDj9mhn9gdk+X+2j5OjKz5k841ErlQmdBZjlCGHG+o+8+QOsWqy0NoOIWF2v8SjM4jW/kdbft6aYNll0hajqmfhRh+j6nZRqg2ss8uxSnQTrOgj8wjjcM400W8wNKVVi7oWkuaeoHrNq3qeqHGLud/r+UvBQCQjflQ0in1SxOmyxO27yWWT67TAifgiu1WrR156KwyWuZMkxGsGxM4J0o8kZ5L5I7sitM3VHn98BQ1w/kWCyzRbI7XIcWYzYUPrNztxJm6Y58FuP2VtG5GbfnDho1JHTmTdfdgBn6WZz2+wlDthSnkzZyr8zO6eT3hPEmu0VPQ9Tm+6GcKMt5dhKqqzXB6+n9Fg1G8mN+bbjlC/WGral4u1qjleKFH+jCgaHcnpSm6Z9SK4s1DY2tCHZDaARH4XJ4J9xBfehsqjCwbaTrbthKh0V3ecE6Rmyai42l+2FCGpA4+lxE8eUcUhOTWp6c/EETBZlXxUQfNJWLVGbuOJRjoyZxeh+VBCNm88a4wHtE5i60kytsgVSYRMXMC1bRolND8vtpPVnOZZnnSkemWiCcPgZ3pfP1E6QLLKFIOmXHW+42GeX4hwOsdiPV4ZY0XuPHG0I4TnOj3IcOjG5PCEd0klDCra64tA0PTcsTXfMwIz22jadtwiRO1+cGs60xm/W891x07abNgO47TLtH1wfECSQnRHUUYwxRRGq5R5Ru0bKfiWJC0YZ1svTaM4ZIh59DenWFUhpr1sIBXh6r3NXhi5MdaHdrVFzhnMHdD3J445FGhY4JO0TMFFL3mgJ7Lj5Fv8eNLwSplLuHizAdQj85piUQfcGbntZ/8jFDZ+45Z5LMcfMZW85aRSgb4DsidSBN+89WGUwc8H6PngLmG4yRdaLpNjT7Frfa8vwWrs4jj88Cj84r2lqz8TqLrjHjNRK7bXmukUEbjlywyoiupUg9DNc4t2ekn4pRZQRkQgmx4smNYDov8LSXhtUjMFURqa0gru6ype9527VOVDpOoeR6IVKfHCDMdL2fXOthIOqeqFsRqMOAdoL6UENNqFTOmcidJf38nok4LcdoibJYuqhLzsSU2+QKX56cW5AzvXxZE0uHhDjfb6kTbE3FI9PyRFnOTWDVSNikaRv05kyCEc8fvnpwvsVQxk4fGIM2KrvRoUL2pV2K+Xiq6ZxdmgnvQwNOR/0NfIrXe8/zW8+z28iLW9h9LlB/ovFZ7W0+H598vLFA/TM/8zP84i/+4oTh+P7v/37+9b/+1/zYj/0Yv+f3/B6GsnJ7wxFC4Bd+4Rc4HA5vJHIDqCqzg+oa1a4x549QVSPpqnU7VbbQ9sRJndyQReq9iNS3V5jdS8zmCtseqBqHfRF5t68g1gQDB+sYYyDExDHJImEcdxjTEsIhp9i2qNCifT2xQ1WMr96A7vBPv41XOn1eThslKf4+53RKHhV9bok089/kHpFaM7VOLp/bfcJ00vqE16q0lteptSxOQFzG+fvioJaKZrRrCo+aoAkMjLmiqKJjTAGd0RXAyYatTJoglW7DLJwu0Q5GqUm8FiftYtJbbK6LQN3HMLno7h7xQhwtFeNUQhLDgBkH7NAwdobBiqBzXFQ+zYL/VNLIeyeV3+NRUrXra0+7E7dqPLzH0L1P339IP1zRD1eMecNsszhdhNnSklZC5VplptcZcrhfrTw6Zo5vTDgV0eU1fqw7P07OmMLmPhF/lRJxWscT5rTWTOK0qbW4tj/lsH3HODxlGK/x/kCDmhwu8vqrSbBevudLtz3cz09l8b0xKQYvAarWBuomcobjraAZh4ovVBu66Bl8xzi8xJoGazdU+XxO0RFijyJJ+2h2CVbjS2x1QW23qIXQqdKGqnmU34q5mOTzZrmI1CkFquN7VFH41ZOjOTSEqEiNOAa1LQLO68vtOrs1U8wiznJtXil8tMCGSmtp0RueE4fnKL+ndo/Q/iHjRgIUkwG3tsTKoP1XqNqHPNh8he3Z1zge/jv7wzf5/+y/yb8/vuCL1Zov12f8v6pzHirDVussVNfscgvxPkgr4zF6+hg4hkPu6LB5c2Cz8zXjkpbFufx4ccdOgnTucBFe42py4AoCRNARS6yHNhIQiGknlMfd+x/IxtqMw4lotBSXp8fyxmz6ejnuFhDL95fFyoxeKufIXZzHXWE6hiELMQv3+ALtgFLSVZGCOLeUolV2uhdMP6cNqcqbluycrk/4gPnjs8lYYtU+Bnze8MytvCnOBFhJipdNotcVxh/QWiyKtbKYak3VrfBNK7kPWRVMRmaPu7kR942YRKQ+JMdNsqyS3PNWAEoz6ooxRXoTeK46Qha1gpp51KPbiSt1vMLYjfB0XUVw+gQF5SyY7AwuemqIKRcBlDjWgyS5Wysf3iTuC94sPPqIwmFQYc2meUSVw3Wt7THmNiMNkjARSaQcFNwtRGqAL9qWlTKMC5yOBMEyoz3yPOpSzHPq6+/1ZaOrk3SYFBd13z/FmAalDQZoYsS4NaNr8I0lNorQaKKXVn51p/iWopoQAClCcgpiesVpySAu3dX1LdXuOd4f8nEzGQ1xYBivGcaXwjvN14+16xNxum7fmpjOwtjtM5ot4zHcPovTfb4G44TiMkpRoe5F4cl6R01Co1ZFoNJTkV0+Ug7ESxPe7KFKjMrQmRpXrbPDvxd+ci5yaqVp3LzxNnYLkQljZGy+z6YWlcVs748M4/Vr39M3GeO1Iqx0fm+g6gLaBarBZdzdgB47wXqEBXv6jjgNCF/U5aA7dzO1cXvfTZzaZefI3XVxEay10iRl0KbOYkt2Umesy0scftzzTrXm3EiBGuDKDxyzSK2Upm3fRpuW2rRUtqZuavp9TV9DXQu7P0SoG3UiuBQXdW0U2ybRrUXQfn5eYfw5bQxUJ9igZSBcxKlOjB1FpC4OajN3LMhn4ciPSmFIVElhwlzkAPn+IWi6pNhDFqcDfQo4AjGj4u6OREJNTP6YC8kSWFxQKzo2xDBI0Tj0sg8jdxOEgIo5y+FOxsD0Nxb3u5Lnk0x+PKYTe2GZer2XIki1D9SHA+r4DDe8IITDJE5LYWk/M47TyBrFma54ZFtxTuuKC/QUhrhqBFVTxGl73mIuzjGbLXq1ydzaubM0jT16NRCqOuMmd4AnBTF1CN8/YZKSm2OU92LpohYzjqFRYkgZYsClQGDEhw7lZF1U15dYSgeYmc77GAfRxZENf3V7jvYOO6zo+WwmcNVFLCJOC3N6IU4vXdNuf4L0GIZnrwjTPoi7fVlkks7VwjpfyM3ptKtOTd/N506e4xb2gMXeWRGUdIkWY4kcMEDnYoE2tFFzSBJkXo5twY8p3VKZhrap2e0tz/aRd7rAZXZRb1pz0i0FkfPV7Fze60iHATKXWptJpO76p4BwzIfYy3V+dxj4sK+zU7qDLFI3Dyy6Dpgrz2FnGEcpUpWCVBlaJ8ntygx4o6BGT6KqycXlcjQhd9cqCUsMOc+jBAtr08wuandAmUZczX5FHDSDPe30lMs85fuiMNjNnfkxpLnjbEZkyh667xW+V9huwZ7OQZvS1XSUgM3Qc64Ml7aw5BVntaddRWyb0NutsKfPH6Gqu172b2Noi6rbrDEZwc2qMlfn1zTttzWLgzrrCa8Z9znLP248v/V8uAs83Qn+pOs+R1V8Pv73HG8sUP+H//AfePz48cljVVXx0z/90/yhP/SH3vgJ/If/8B/4+te/Tt/3bLdb/uE//If89t/+2+/92WEYTgTw3W4HkMH0Ik7rdoNqN5jcpiEitYjTy7G8ZJPrSf2BsLtCn72QStrqI8zqJco43tmNhK4hUHGwK7ro8T4RgqNLpUXsFud2GLMhhV5E4RI2pjXLQ30iVJcU8tfA+JVSkOZWNlBT2xKqeG9Ox9TmncP9VPLAncp6FpSXIjWIO6U4qD9OmC7BVdPLCPL7SiOThvx35XNhiNoiTlsnExwaFRUxjvSZ9dznzdyyYnz3VarMyCqOJFsc1zmUYClar7Q5QV8Y1OSgLe2LBYcBs0NEnF9FnJbnFqOTNjR/QI3XmG49uWa81Ry1oqQ2w6lrZplEfjxKcEvawfbFS8ztR4T+Q4bufbruKf3wjH54iXf7LCr4qR1/ibVYq4pVdk+v1OwYnoV3eQJT8JKS11vattJCVFg69kso57Id2RTMSnZ5VDpRGXFQaz0H8CijRJyuNeoN1r+vu745PqfrnuYWzJF1FqUbPRcklm768nmVN/fAiXAPJfBLhOqlgN1FzdqZzGqMtKvAZRxwUfHF2HIbRUB9HvaM427BzF2LY84FYhqJueV7dHtqdysOluoCHbaygdGGVK0x1WVuMZ830TGFyTESoqAX+v4DYhyoY4/x79DEiA5bRi9c6tCIUO3vhCbCKX/6lapwFgyIgpuIWhEqAyLJUR0vhe/p96hDj3UHzPAEc3bBuG4IVhMqxbBZE22FrVuq+oKL9btstk95cPmU4/F9nh1/nV89vs9/G274Yr3hkWk51xJGV5uac11x0J7eBg7RCWrB9wwpMMYeH8nOaoNSlYS9qQqtLcauMHnjsBSkldIZ5SEbCmvWWeBsZub0PbxpORl6+WBZFlyIxHCCB5gE4Tvs54/rYlmGyZbnA6+fC8rvL7/3rls6TALLLEzL+z5MwobK974+eULm2m7u+Xty71fYhTi9uN0TorhX/BsifF53jbfNY5Qib3T6HHz5KnOS6IlqJJqalIIEE+oGY7dU7iitxS7J9ZC9KqVwUI7LdIwW97jlCFmMOUTPXgnTVe4n8FAZRl3hTMsH+oCPSQQZgOxWG8addFa4FWZ4Qd0dRbRq6ilErTgrTzAf6TQuojbysargmDEf2sr8quKpUF1M4UpLuJZbW+HdjzdUbkcIR2y1wbk9KUnh2CB7pnEhUn/gjlMH0du2YYVhRATopYs6JKauo+Kejinh4owCWHapyN+Tc88TpJinjIj53VOUMjQgaAN/jvYbwtDgmmoSqkVs1vNioNzLFvcwHSMqMAlYCsAlqi6cFIFT8pPbMCWPczuG8YpxvCWGEZJgHJrmgqa+nMRpW12gTCsOwCxsO7cTl9aUUdETk0OnhEXE6TJH2cW6Jp4cH/X6QnCeb1cqUS2yNqrsMt2YyMNkGLPD/2Al1yOEgUOaReqhvjo5z7Vp0bSyX87FuZTMJL4bs0Gp03Xjtxqvvb6vRmwtj5fgNO0d2rk5KC07Kye0h2mh2hDrVf7/gggQ/QuCEzes9zuc29H1z7Jzus8CqTtZz5RiptbVK89ZMEJS6DoRqVXFbXIkd8SlyAPT8DDj/nQYOYQDfQ/jeJ1DKSU0sT60M+qjjhz7xLbJbe1GMRbXYL7eC+rjYiUom6tz6GILPBCROs85cXm/TwHvazzDJFJHN3f/AZK9kPTELg/ZoTsGJc/lpItM0SUy+i5OH5N7mlNsz6sjnriolzi/4qJW0ZB0Fqkp68q5oHsSiLsQZJai9XzpK5KWTqWk5wLVJFD3Cn2IwqTdX0082mUBV8KpO5w7EPxxclg+tC0XpghZhq1SrKvApnWsN34Sp6sHa8zFBXpzhtmcz3iApQlq7In9YRKu5PEbUvDUVSTEQIwS2k1SRCVO6uKiNrlgVd1xUQ8h0uduo6AqnK5w7lbOzSQO35N3ZyFSV4f3se4S063Rd/lj32K87vq2Q8RoCTdVMch1vXRNL7odCtLDuR3DcCXvgT8KMz566SKcikzi2Yc4idGa0zUZcLJXlPMji6nIHHfit54E63xd5A2wz7gQOV6JWhm0UrTKEGKiix3OVXmdeZWDp1vqfkt92LDfX/L8NnF1CDw+i5ytDW2t81w/n88Xq4xc0uUZRnqjOehz1toIOhFYdU/nF+R5RaQuxq0PVUUYKsIVxNhzGTzrtwzNgxpTObQWkbrv5fx7FQNYupNkL7dS1RTuZ/OeUqdy3PJ6KUViyg736PChR+smZ001r7io7RBxVpBOYy62Gw0HPXeShTt75jLK42PITups8iruaUFEjZghzyF5PR5DL9rMeItJgY1tpSNCVTwwkVXtJS+pVeh2xnt84qHNlHumjHSyCnpUi9mu6CFKMXvE4rRHuA/7erJGzOaFjxuHPvDeS8+HN/ByJ9lWw/FzgfpNR0rci8f5fPzPHW8sUN8Vp5fjh37oh974CXzta1/j3//7f8/NzQ3/4B/8A/74H//j/PN//s/vFal/8id/kr/0l/7Sq7/EaNAGXYtTuojUenP+bVXDVNWiqhZ99ghz/pCwucjCdo0yz3jw0YDLLsq9btjZOTDEZWHAu0OuBB8wYYsOPSo0qHiagh61tEIVoVdxKkgUd5deOAWnilu+qalJMjxt5YPZLVLEC/mjWSxX85ZxeTMsz6N8vXz8dcL00u2gYyJkwVueTt4MxCZXuT3GbiksPWNG7LLdMojbMUbPuGhB/tjbQwId5wVLaYO1KKosXBbRequrCRVSleO72CROwU4l3Cl/ryygIWX394gPA+P4MrsuG0x/RaUNK63pWOGiuL3GUdiZJahumULuekmrr/aygDa793FHcU53/VP64QXjKMFFMQ7oFKlRXNia1UKc3qiKTRH5Fo5hkODHEQUaxmRpVOCo/OTQUimR7jnApX20jHKmlc2zVNjVzP7OoZTazILoCXXm7mrjY8brru/Qf0TXf4j3R1QKtGYORGyUnVjcRZxeZdTLatEWXdx/KLVwUqsTx3zhlLugpS0uKqomst4EHoSRd8YV++yiPg6efrxGm4amvsCYFlttREgL0oIYkyOG4X4XdS78qGqLmVp5Z9HRw4lIPY7X0/fqGLDJU/uHaH+GcSvGVUV0CocS/tmCSw3zxq04DuXB+bPKIk9BUUSt8E2DXT+RolMOoYrdU0zoadwRM4qb2jcW31iS0YTKYpsW262w9QV2fJt2/WXOhhe48YpnV/+OD4YrYnjBFs2Fqbk0DWtjp1DLWmkubE2lNENhYMYwF5LigI8JDzgFylUZ6VGCDu3ktF0K11rXmCxgq/zzcowKmmhx75vcR+HkXlo2TcsiQtmQA1ML9vJ3LMfybyyd3iKm15OwvnyOBUVyn/N3Kbje91xPXs/U6i4C7EhihWzA5B4Xp+eYshCo9cyero3KbZaySfAehv7NFnGvu8ab5jFag/cHbBzRypw4qjTMwUiLjyr0+HCkCj1EL5vjKCzeZETAUDGeHJsSBluCYHUWbkqxE5CQOhXZp8A2i9QryCK1ZTSRM1NLMOCETcotr77PrjzhXrfDLXZYo4eKMJyGJRo9u6hHn3Ih7Y6L2ibaGg42ZYE6H/PISe+n0nPIWIgavznH9o+oxhc4d0tl1wymJvpB/kaeM1WKOBJRwaDgQ99lkfmCL9iWGk3I7f5QBOo0BSNKcTfkkMT8vcXHcpSCpxRVHKPbn5zbdQzY0GPDBaZaY8Z2EqqXwaPLUe5ZanEsUlTk2ix28LS3e+zuGbH7EO9u0LrNPxfw7oZheM4w3kj3CgGUQpuWpn5AW8Tp+pEEcy42wCVgcHR7cWFmcdpkcbpeCM62bFTzKMemrDkqpWl0wXWZCaW1UoqVglYnah2psphQhOp11lyDl+JJb1dzl0QYGRlx/pZueDFhLurFsnQpUislXYYpCfojveEW4XXXd3tzg2nmNaf27kS8ImPTpk28aVF2eypOuyMMN/jhBW58wThe4dwe5/f0w1Vu6c6uSxLzREc2cygRlbSdOm6W35csjihaawrSe6VgnxzRdcSUOM/zFYAKI/twmJyOSovIb/eC+vDNhmGl6PpEt8rXej53xzC3thc+9aqC8xWst4lDFLSYDg9PwkpTFoVSijizJ4WAx2WR2kO+ducDbVnlVdDUAQF5L7FEBkgmy0hGe7Ccb09F6tMxYxZSnkOKOB0z9kinJufOBDHvKEtxLigAW6OdI5mYjTNzp1I0GhOzqSeGXDxH0EZ3inQg132IwBGavaO+vSH1L8Q97Q+EOIurIYwMo3SY6OTZasuFqbmwNQ9MzYWybJVmqxLr7LZst4nmTGfn9AXm/BJz/kjQAKst+uzhLFC7njQO0sWbs5BSCKRxJI4H6ibivcKbGfURkCydyUWNdFJEEi67qGtlaJSwqMeM+lBO4/OxtbYcomWHqxSdgj+gxxt09OiwRb9hH/vrrm87eqwapXs2hHtd0z53O3h/nEJZu+EFIQwTxiNOaEqZgXQq+7tFF46ad8D37S7mZe0sUheuv3wtjwW1+D7gKXvs+ZhY5N4dlMangPcHvLI4bRlNK1kYdoM9XDDcPuTlLvDsNvL2uedsLce/rXV2CItLeNuc+rwLuqrTioPZkPQXhDvevS/vndIMgwYHQ+ykGMWM03psBCTBWMF1LkbgWL8F9qLhrHaYKhCfqUl0K3s2+Vpesa0STRVYUUvYfDaAmWzUirlbQtqtZ8zH0kUdYy2oHNOeuqhdIAyaUGn8CP0kzs9DQqNTDoi+46IuHOogXcjFPR1GlTFRuQMnFzhjkO6N0UkBc6M050au64dKs7GOuhYkpW21uKc/AXv640ZhbOu8tpzMYEqj8uZbGP393D2ZR+HoL9nb/RjZtPd3/4WYuD0Gnt96vnmV+OilZFu5W036HPHxicbnAvVv/vhEIYmf5ajrmu/5nu8B4Hf8jt/Bv/k3/4af+Zmf4ed+7ude+dkf/dEf5c/+2T87/Xu32/Ed3/EdAFN1WhmLLs7pT9Cqoc8eoTIapDiJzx+9h/cDfdDsveXKtByNZ0hBWtGTy8E44qAxZo+2G3Tc3vs3olZzu/gkjhRRZRYjJoYqUVzUaiFOl/CH1zCoYW4dWWI+VAwnIvT0s3ce+1bC9DIMLOWgL40IVMYhi01byyKltM4Hqezb3CpZQmu8HojBZodyXtxl/5u8yNc4xZOXiTrmVOY8bZsQJt5jozSd8VM1uDiUtFKvYD+WwyppN/LkcCclDmrvjvTDVcYEGFIMshFFhJDBr3CDYWg0flxumCE6NXEX14dBAoG6G/rdL5+EIbpRFm8xjVQJ2uycLkLema4nYXqrrDj8ssuvDAN0xS1ZXu89kv/9SzymdiQFE+9b3NM6tyzNbcZ3w/k+KdXjddd3f/x1huGamAYaYJW5220WpyVM81ScLo5HEdFP/44EJeaPLFiXFuqQwEURqWN2XlZNYrv1PNkp9tTs7JpdGHnfzwx6Y9oZ9ZHRPykWxmFekC9d1DnsKVVrOcZ3nLfAiUjts+tI3hoR2mzoqcIjQX64NeO6kQDFShEz0jcwFwxSnD/PrfDyWBGnl6F9SWvc5owK0MrC8Fx4gcMLtN9Pbmq3OaM/XxPsLCCFymKHBjOs0OMFTfOYarzmi/VD3HhFP7xgGK943r/gA3dLGHfYlKhQtEpPRablsEpJIFBSIgjmDYeLDpHY5PV6NTeBquK3USq7r9V0QO4r8M0H+fQkTncW03NATxnx1Z+bvv8611n5+zNDexam9R2hvVoI1+IQl/9VnzgF4x1Rugh/S0ehHLM4FWpqdbcxFsFimJk/LQ5qRXCzg6XvFeEN2wdfd40bu8Zkd7tsdMLJ3OYBdSL+zyE994YCx3zv8tJiHGOfQ2Yl/K0ELqVMcpd72pxvAOCySNOlSEcRDGCbedQXts6ZFJGQgmx8VRTsl9tjTIser9n0L7Dd2eSi9o3C1zCMCaOhMrLpqo0IVzWzW90oebwygguwFnxuU1IxQVCC6lkWpGwiNTBuNpjuLarhBZXb4f0ea9cEfyRlO51F0eiKPgX6FPEKRgUf+h6fIqG94AtmTa0UYwoyw+bzesJ7EKfNckxJ/r/iqmYWqUtHkk4QclBv8D1jPqdLoSgljwk9ur7EumYSqqOtToSr5Sg892g0wYqcYWLCOGnxt7tnhOOv48cb+fmqyYLNnnF8KWiP8TYHIyJdMdWWtn1Cu/oCVfu2OHqBNEqLuvc7xiUWJPTENGITVFlYKs7H5dpjCpRUp8emdH+12rDRlq0yWSCDjY60JkzsYJvD1oxOk0B/nhRdMHS6pjNBcFS5MOPw8vqygBjCSF1fUlXnYE9FamByUat71oofN153fathj4lx0aEyiKC6EKZLYU3bLcpuSc05qSDjhswQHl4wDh9JYPJ4g/N7KQ6Mu1fELZgl2NmYkYuZuhQ19SKrQGN0LffFOyL1Ecdz3xMRkfo8O64JI8fuo+nerHVDo1uqak3T1HSrhr5VHIeUGfPilmbMIrVWk4u6topVnTjbCkf5GBVHKYnRLHEf2ehhTStfh4hXgWESqee1AsCFMZPAfTePZfo6M6dHBO0x5iKmoCRm9/RSpFZi+p1GimEKTwvKYGIWHcMgc1q0GanT51WnBEcrz2vPs7vNEirI3kPHNLmoiYkUCodapu7qkNEe3UtcLo77MPPUU2G0uz0h9myzgHVuas51Ldcemi3SodA2gdUmUJ+J6Gcuzidx2pw9vDdcTbUbKZoebqYcJBMCyY1Y56maATtobIiYoIlKUB/FRW04dVFrBGe40pY+BeqYCCkSGQnR4P1hEqWtBXRzIlLPhexeJtTkTwqc38547fztPFrryTl9n2vajVc4f4tztzh/wPkj43BDTG52TOcw2SJKl/yhWumZ0c+pY1ov9j3LczQu/p2Y14uluFr06CRNyhLIRwmGlw5UQO7d2tDGxDGF7BK2aP0Sa9cYI52QZvdl9meKZ7eJl4fA4/NIW2sqqyaRGmA/xOwaTgv/juyjjlpx0GvgCe3hu0+MFMBCpPbT631qW4JJQA1jRbyRLt6H0bF9B8ymYfslz9A53KDxbs6pKb/a2kQKgmtcKcW2IBO1wWRUZ5h86JBSkkbu3K2ydFFrPaD9QUJ4Q49yR+wwErUiVhJi7fQp6qO4hKWIx4QeKiOkgvjIvP7sno4drDo3uacLWiuGPgvUso8+0w0PbMMTXXGhE6vaUzc5M2ll0Ztz9Ob8ja6Fe4eZER9Q9p/q5ByVvr47psJsrlBhNhNNWJMwC9QgBY8i4Icojx/6yMuD58ObcCJO6y6Shje7xj8fn4//VcZvukB9d8QYX8uxbpqGprm/5TAt2njJoPpPOlTVYt8S4ZvgWT36gLPB82AYOexbnqmKa1NzjJ6j9oyxuGtFpI5xoLBDl9zRIuyqsOBRF9fK5AA0uV1QC+8KRVJ5Oi6iYRZZ1HKBPR0/Wbzq0hZY2G/JIyGI4V639MmxvCNOh8qeCNOvuJi0Qmeh2rj8/5cPW6OSz6Fjg7hFF4xVl92N0TQ5PNHl13jKkl2KM9PzzE6N8v/FMOYQwxGXPCNSRHAhLVy2uTK8FKoXi51KyUIxkojF/Zwk4T0yEgIiUGfGWx2HSSys3SNsd4ZfrfFNnUPnZFgfUSFSDQ7bHSUMqH+B659yOHyTfngmbo5xNyM9krCWC2/6oW3ZaMtGyeZ1pbQ4+9TS0ZwncyV9j+MkKJ9OkrKxeI24lGYH+xS+sxCpIbMwS8BOnCu+Mea2y5AmJ/G3O153fR+794TznhLtxOIz04Zfns8cJCULe3GiyPPkFfZaTCoL1YpSR1iK2fJ6ZrdBs4o8qhzdWHFjG27CikNwXPs9o2tplMaYFXW1nXALELNYPciC3O0kOK24qOsVKQvVOl6e3Ixn3mQOR4rjRAucAvBCTxV6jB/Q4zlm3ADnEgxXyeZtYrCevnhhtN5xThdxWr6O6Hyf8qv1FLADiDgzSruscXvq4TGh+jK+qeTeUBlxU1tDZSt0I0K1as5pqi2Ve5s2MwhLevs4Xucwkx2d79hntmtp8VwKDuqeU+pko7z4aqKNJ0XCT86F03H3scW/7+HF3jteEaNLeM9c6CnP+2576rRRAqKaf8O0FVvc+4pD3NjVdH+Up3n/vbz8v8twreK+CeQWxNInMjmo5X6v8iZCEtfl9wkDUDYIY6/Qt29WjXrdNT4VaPO/rV2RUsAaEdRU9NNcd9q6n+fMzAyPtpo7e4ZEfZRUd3FudTi/n9w1JAmvswgb2BZsVJ4XQBBQHYERzbhwUV8ozSPT0sfAGAMuiwWeCMlPLmqja/zwgqq7pGqEq+waw1hLov3EotbzJizoJYu6FAgkZ9lauaYndFLugF7WU7QG6sSwrai6M6rjI+zwFGNWVHaF05W0n+efb7WhTpo6BQ7RMyrwSvEsjPjumtgm3rUbjFLiLM9uytJ5FEiTy7IgP3yaQ9XK04TZQS2OfbmvBa8Zy3maBVUbemzsRax0B6y/uJcFD0xhzfJY5tnme1i930/4LDe8IKWAsSIixTDgxiu6/hnDcC1FRRJaWSq7oW0eslp/h4jTJRQx81O9u6HvnwsW5I44XefCuCCo5gDj0i4d1NytVcS/KZRLG+mMKu5NoM3idGtFQChIren9zufqJigeRkWnLJ1pOCZHFz0hZF5o6MSNR1k7DTlA8wxbnYvrTbdvLEovx2vX6MOOkyJYcY5lbj6ISKntFlVfkqo1sW4ncTr2z3H9U4bhWS4KXAlSxR2yOUSc7woR9woGYJldIp0jjkDOilD2FbFaftYSVemKiSciNV6e60ZXbDIu5NbvOB6LQJ1F6mpL3bT4xtKvNPtWsDgiviioRaM/ZVGLi3rdCgIoRuhRdGGFio9kTZMF6hBGenMlhe0oXTxeiWtcLUTqSOKJrtiqzNFn0U0GmSM/h5+OSdjyY8Z7LAtP0/mGuuOmzus8lUtSCxd1CKMIVtlFHcOAKcWPsifRvJLPcDezp3yVtCYWiGB2URNkrRNzCCc+0ew77P6K0H/IOHyED8eTgm0JRwyho05z0eHSNJxry4Uy0rmgE60R1Fu9TlTbCnt+dipOnz96fbeutuizRxPKMY09xvXErqNqeuomMjotjtYkwlxAzpE6zeevySKtY+7I8ErnTihhfks3yp31QBapS+AoINcd2eDzButzeP31bcYebdTsnB5uTlzTzu3yGu8wBckG3+ODIBkUaRLlS0ifWWAc65w3tMwguo9VvETRlHPXp0hUiQpBHRaxmozmKo5qkHkqTN0XGk9CZzmxUpo6JbrU47xBaYsZrjBmjR1e0BwGjrcrrm4Dz/aRt4+Bts6lmMlFDatKE7IKWURrrXOxUScOWnPQax7cfJl71Y4sUut8zTzznXCaDQRdEZyF25YYFSmMnL07YM9XbB+P9NcBN8x7G/nbwqE2FdR1ZKtgpQxrXQkuU2l0CvO8TQGOJmL0aKUnF3UIR4ypcwbPXsKpQy85A95iB4PXmmBg1KD1qTliEqjv8YyMXtZHxRzhe4U5Jqqum93TsZ/yWUIYGMcbVklxZmoudcNDZdgYT1MFTJXQtUK3tZgaPw3e41sMq/QruwyQNXfwBwi97LliIgTJKnF+FuQ7lzjkwobzsjYsrvzDELk5Bj7cBd67hptrjb8Fc4zYwWP6e9jln4+PHSmRQ01/I8fnDu1vNX5TBeof/dEf5Q/8gT/Al7/8ZW5vb/n5n/95/tk/+2f8o3/0j97o96RR2gXTIrGptFl94qEt5tEXSGNP9WDN6rDnbO+4HCwPo+WZrjiYikN0dDEI0zP0U4thDAP6NfzRZLIb2eQ2fyObgsJG1VMbeuGSyrSrli0ik2j7qnB78reKizr0sjnUBqI9wXrALFaXReFdcTpUZhKmp4CScqyzm0FDDqfKbXomkmKcxQcjriVT0B75eS8ZqcUBqKfjYE+CzbQy00KrCIEltb0EbTh/JPhOeJBx5BjHHBioqVWchOqoDRVannsRcJOEL+qk0DFIlTdCnzffHpn0CnrB+47K7ajdDXZ4gW0eUR+21NWGZummKGEhw47k99nV8YJxfMnh+GuM4y3eHwixx6ZEq3R2S0sQ4JmpeGSaSZjeomUBDTmsME3uGJcUXVSEhftiOQrEQyn1igN/yaRWiaml7q77WvAYkg4doyIGSAFCrs4HJ3/pTRfA941j/5yYBhHjcwv0Umw3zGGIZuF0rFWiWgQBLQOBUImQxGFulou1Raq9LPBANVBViQfrkT4Y9qlmV4mLeu8OOHebA/fq7Lzb4NwtKfPLYxA2pnN7an8g+j06bFGxJtoKbI2KG3Ty2BKIFP3EEPahf0WkludYnNTD1Bbfao1vGoItIrEmmVffgyXOY+maXorTU/o6EJoWwwNpj+6fT+7DGHqMP7AyDX5zjlutJqE6acNoNCpUmKbBOE+lDdpfoMOAzcJOij3rGIixn5wPRbQuoVd3cRpx6aSdsEYLlW7x/emhj7H2L6+Dj+tKWY5052+IAJxZnHmTk1KaXH1R0njQaRbqyseEFcqbpVlKjsQ0C9dFtNb+cIo0yS7A5fNfFvmmUNo0I4yKJGCQVPGU4iT2Jm3QWRSt7bwZHAN0I3Q9xB2sbk/dep90yDGyk4ty+fynbqI7ozgerVljqgtic0aoZG7QLmEHT3XYk8Zr2SC7mznELjogzhiGO2JirTQmyyJjSnQqTeK0UbBKcK4tB9PQRT+hPmJKRCXin/OdBDq6G0z/HNudYVcrfKfxjcosRtmIaC0bkXw0JtQHkFEfM+ZDFOg08VeJxTmoYMGgdyvNsFlT3T6i6h9hx5dYu0HrBhe76d7cKIPWilWytMqwi45jigSleJEcoXvJ2Ea+pz4jqJSFqziFI7osRhcMQBGnfRYIwj3X3VKkDnFEeY1bvMdVJUUEYw8YuxFkmmmloK+tdJ6p06wMcVjLu6acx3ZH9P5D3PE93JjFabPG2A0peRGZhxf0wxXOH7LAabB2Q9NcsmqfiDhdX+YDOreqi+v6KiMC9ifidKslsLjOxeVSDC/XkF6I0yV39ESc1pYLbSf35rkNNDbQVEHCiO3p8YxRoX0iRoWLmotk6LRlpxv2xklBITi6OOKDHONyrEW4HrHhKNdRblkvTup0N9j1E44UDsQxzO/Zgt8PTOG0qr4kNWcyLwKqeykiY/8R43jFMLxgGK+zOH0UjFYcSYRJmC5t6RP2Tc3sYp/PR0diiA6nHCqORFWhTS2dQhTcScEnnYrUOkguRAmpXnvF0d/QdXZaA2jTUlUbmrrhsFpzbBX7IbFtFHUl58mqgs6R8Q5MgYmbJk0OSxCR+oisJevkqXPYeNd/mOdCT/KeJOWxEyd1SIm3TAtaWqpKV1kNjMh9PWSResxiZ2HLL7sl7huzOz2VGWQxR8c8b0vb/+Si1nY2zSgP9EB7Ypz5uCE5NyJSa60Ik6NAZkeidChWh1vi8SlD977kGYRx6tAoe4XR7VHRsdWWS9tkcbqSrsR8rFodaWyg3aYcirjBnF9gzh9+a3F6MfTmAqLHjJJ3ZLZbquYFthSddMSFeQ8nYaiyljV5KjBKUSUzdVqMKuaOjIjH526UpTNzJQVNZTBaCgToXJzKOJA3NFC//vV5j0rj5Jz2wwu8u8a7HcN4zehusjCdr9s4EKNDJU/FzOkvQnwpFC9zhZZdr/d1g4Kcw0txOnI6P3lUdqrPburAMnpx7oXTeQ1n89+0SlOrREgBF3q8q3BGhPeqekG93zPsGnY7xYc3iXcvPY/O7eR2bWtNjLlTIqNoJC9xUfzRoHVkrxXd47dYaQnGvDvSmOgRNMQujCfHo4jUYS+Pxeg4/+KR1Re2mOrAcBvxvcJ7hdbiopbabqJuIhsduYiaTc47us3vgU8xh0pKMWpyheTrvZjFvO8mJ3XwB1AWM/SiI1iDqhTRaYKGUefrdlrrvGqKmBjVSQr6w5jRckdoDgO2O8J4k/cSOSw8F1+DP3CpLQ9twxNdc6FgXYVTvMdqlcNNPzs5LBWEU/63cLzzvVKZqQNe7pODXI8hSMFtQoKCC3nN7RL7PjL6NIWVh5joxsRNF3m2jzy9gatrCNcSCG0Hj3Ee7z6bOfzz8Zs3fuInfuIVtNLXvvY1/vN//s+v/X9+4Rd+gb/4F/8i/+N//A+++tWv8lf/6l/lD/7BP/gb/VQ/0/GbKlB/9NFH/LE/9sf44IMPuLi44Ad+4Af4R//oH/F7f+/vfaPfk9xIHEdUNZDGHoInhbli/EmHqlrMg7ewDx9S7zpWN5HtwfNwrLjQlmttWGlLrRw9IbcOD1MFD3iFLVSE3eIwFnjv7KI2usmiQ43RFq90USaYloQq+1oXosTJ3zgJ0PKnC8IYsmNBntuUjI5s9IpzYeJPF+e0VoRKPpfVfmF8lnpqRMTpNDG29fS7lGlR0RdqitykwxGjm5Nwr/I9kxnPwnoWZ482zbRBLS2oc1jR7MYUJqQsiEa3ZxyuGJPLrdhJHEy5TRotm8PCgJQ1bpoWR0PMzqcYGJK0UTp/IGXHtq8PWLfJi5QzquEjrD3H2C36kAXq/D6E6XkeJ0fB6HZ0/QtxACVHk2CtDBtTcW6EOV2QHg91dSJMl9AkEajnTauJmjoaxiy4L10FS8J0QRy8IlInEdK+1YYhpFmk9l6jDRiXW4/zytf7Tz85uvEamxIrbWm1zZvP+TlL4M+MOSnu6VbHCUOyxHxUFKFahOjl71qOJZ7PVIntmeehGzkcW25oua5W3ISR50GcXEZXwqQzraAKklSuU4r4MBBCJy7q6gLt9ijTQG5bl06DDTpmkTqVUKSASVHYqAuRehmCV651E3oqZTHDilhVRFtNBSbgpOtBL3YmhR1f2uSLMF2S2MtI2kC1RvMYCwRXWjdfoG6/gXXvYIYH+NUat1pNvMhkND47qqeW7RjR7jI7H+5v9279YQpZKve0EIbF/S2L51kwOA0nvB97UY7X68bd773673jyvaVQPr8XM0tFFqBj/jo74rPwHBaMxYR0eSzF6jLKZkv+T/kvRC9itTKoYHKxyZzMDUpptKlJyiyE/FNxq7QglqGVsGfHyqK0ID6KkxfEQX0YJOS13jnq3cvXHss3GTEMBMLJe1iO68kxzaN0GNX1BXX7Frp9zLhaEyojifQu0BxEoBz7p5Ow5d0xdzf4jE8SUXpdsEGlMwMzp69TxBtNUIoaCZd8qCo6EzlExxCFle4zBmNiUZuGcbzCVhdU3Uvqg7gqXWcYrbiodd6UhSo7qNUp6mOJ+bC5lSFphQrpBPOxDBbTGnSTcGsrLOruEbZ7H2tabLXG+9t8BsqolMbm9vE6Gm78wG0KeKV4SeCX+2verTZs83rhNiZcEbIW4nT5t18IBFMPxELsUkkQF8JG13INn4grufiWN28mDOLG0u00/6MtmBaVDIkGFQVhpr3DdAc4vM/YP2XsPxIkgl1jq0uUbic3btc/lYJzdCgUxrTU9Rlt84TV6l1U+0iekB+IubA8DM8YhoU4HXqqBE0ubLTKTOJlEZ51nrNcCtMybukEbJUUBzbacqEsF2gemMhZ7dk2wsusmzi53abjFMB7OW5NDKyj5iJqumh4YCquY8UxenyKdHktOHfilGJfyOuTEROOVHGYil8h3G+yeNMR/CEXlcWBHONc2NK6vVec1mOPP77HODxlGJ5LIcHtcO4gRdup6BbuLfq9zoE5MfhToIuBLgUcgeAdSdcoXeV7qMlrodK9MzOpCSMxpbxOqyQQebzOIrfJwa0b6krQW8PRsO8TXZtYVUowH5SOlCRdTlmk3jZyHyhh2zHCEDR9XKPiY6oYaGKgqd+bxOAUHTFGopIwOZ8SXQzAwAfhSGDFO7rGKD0xrScMuZqzOMJCsCx3h/vZ0/l/hdPvTs/HE4uzMowodZTrNuQQztjn5XcLSjpNp23OxwwdtDwrbXJhPYcl5ievfKLZO9T+A4buvUmcnp5e7hwY3Q433tKiODc1F6aesDpT3kB2T68aT7UBs61zKOLi4w1QknpzQRoHdH9AHXaYVmEqKVJqJ2vU+zAfxYDhyCK11jTJyH4kGzMCKbtWNe6OWakEgCpl0VEE6zJi+IzEq4k53RPHa8bhacbwiGt6GG8IXjodYnQkPCYhSD41M/oLirEUikvnZqvsiZv8Pj9qyUQIUwFwZqiXrp7S5eNThAgu46lcdlMv++BCkpuKT2kyxJiMEvQpZNPJgcFcYe2K1eGK5rCl27dc3Sae3QbevghcbmXTa7SgPtpKEaKiDrkQVS8EWlVE2sSLJw1RP2atDS2vdsmNY2RII/vgTo4NALoieEO4XRGTAkYev13TfLFGP79h3AVML/cWEakTxoCpFBsbuAgVF8pybWp2YZQiPDPmY3JRL8VppScWtTipG8H5mAbtR7SrqAZHMhqXzW4ydc0itdYLkXqxLSv3wyJQ+05RHzxV16HcUcJ14wLvEQYxDqXAg2rFpcnuaR2l0Ful7KDOAvXqM2BPx5C1p7wvuePAPblX5g5nEIxj9AfM2GNcgGiIkSmnpBuhNon9EKm9rAkL+uOmi1wd4NkN3OwUx52iOgTs4KYg4jTeTyT4fHzcOO0y+I0Yb1ob/L7v+z7+yT/5J9O/rX29vvkv/sW/4Id/+If5yZ/8Sf7QH/pD/PzP/zx/9I/+Uf7tv/23fP/3f/8nfMb/88dvqkD9t/7W3/pMfo+/7uRGl28M8XCDqptPxKC+O/TZI6ovfCex69h0z3gwjLw1WK6Gin1u8T0ERxeCLP5DP1XEUugnoQeYuM0x35yjFRHJeHGPmCxwV3EWuH0YZHNeFn4pnnDzlkFgZRQhZ/p3YdfFXtptTCubu+JGAhHKTTMxsUF4jjG37IdKkayakQFFpM4OrtJmxx2xT8XMoq424k4JPUq3kwi1dNEoZYXdbVpYJLiHpsFlV6iEsc1Cv3YJ4yN2cFTDwOpwixp2xOE5bnhB33/A7vYbDMM13h/o48CYAi5EYgkx0IpGKc50Lc65hWBTFjxD8sIbj56XYWCII+PQcxyeE5Sa2kWlcmzRpqay6xPxtwiVJcwnhJ6URtqUOFOajWmnxfJaV9nNYSYW5cMsutYq0pZW3xxSaLQEcMSoODowGEISjtqYIsfgJ6efRzZbSldTYFA+UV49/9VMqY7I7+tSZI+GqGG0uKBoXcQOkdUQxBVSJaom0X0G61/lDzysWta5oi9FhkjFjPcogTIrYKsSrU6sq0Cl43R87o5yvGIW2stYMj5lkkooozh/K2KqnupFpN231FzSKMt/7q/4cHxOjJ62DVTVOavVY8Zx3hzFMDCMLyWsL2/+rbaoWsTkYAzKVhK86bYo3WLsFmvXjONLGK4k3TyL1DGOhOhyseMWa6+wdkPtbiS0xW7lGrJS1CkuQ5i7JU6O8X1OufzYK98zDXrzLjo8xo7XhPGG/vhrcPw1aXesLlnVF6j2EbER5E2oLMEaxnUDdxoXjQuvuLa1c1RjPwft5BC84rgO/jB9xChOax/63E3RE2IOk4p+YpOK6DULDsCiXLMY97rGPv6x099z92cX3SYnX2uSyuE8eQMl9FwmnI5RigqdWyFlFIFFHKzC3xae+qtYEB09WgvfPxXXcC6+1WVzm2YUiTErTHWJW9Ws14ltA6tK/nbnIh/u4KPnCv8eXH7zP3H74t/dc1zefAzDc6ydk9skcPgoyKaCcMpoKGOkS6FtHnH5+HeSLr6T7vycYI3MA12H3T3D3X6D3fHX6LoPuN79CsEfUcnTIsGQK2PZmCoXvoRpf6ar2X05bfpkY9YR2SMM9JVOvKM0RjfUlWywtVNoP3BIAac8PhxggMPxPQBWyVMDa6CL54zRcJjQSCkHJWZObRKHTHHLGA2rWtr/dZVIXS4yRXHpJAPR5I75vMGr2oS7VOzDJefuO1n5PT4cafwhh8vtGFNkSAGbtMyBtuIhLaHecAyeZ77jhR/Yq8j/e/drvGtXfLW95C3TMhK5DiO3YTzZ+MucGad26VjcaszQG7ndZgxODFIA9z2kSEwxX8cdxuyxdkVVnee5NRess1ito4dqi1IB/Ei1/xDfPeXYv884viTGQFWd0TTihtamJbhrbm7+I7eHX8eNN8Tk0bqmri/YrN5hu/1OVtuvotdvi+O3f8HYvUfffUCfQ4z7/mVuT3dUCc50Fpjz+bTRdgrwLeuJIgJqIpUCk9v1W2XYasNDVfFQaR6byKNm5O0nHe02YbMBVi+qrDEkooPgEr5PeK+wwyI8caiAhjGzyQ2KzpVQNZlDdOhwYyUdaqaZsxTcbT7WhvAZCVje7SDNa9Li1DbVJbSPiPWKmIO2TXdDPD5l7J+y2/0nRrfLGJU7IYgU0ViRCNk/LK5fk+RzpRJog06RSlvOTZ3Z4NlNS6SPgX1w3ISBQxzoQodTCmPWOTgxTU5yyTEwHJLnGAY20fGWXVErw20Y2R3fx407xuwcPXM3nLnfztF9Bx88thidqG3iSa25WIvYcNNFOpfRDknEa/k5aGpYtYnDOnA8U+wuL6mvtqxfPOTc76m6XxdEjWkYhpcyJypB0gkfNvGN/oaPTMd7tuGJWfFuFmtkrSSi9Fbpye1HAqciVTI4FWf2r1JYNIqQi6q54yd3BgkywcumIE+xzu0mUVg6GAZsHDBmgzZD3pO00vWQOyOUWnR4LtYsM/Kjyu9dRgQ4uRfawU+8+f3Lf0c/vCDmYovWTX4+txz7Z/T9c5I/8J31li9Um6k78UIZLpQEI55Zz+Vm4OzS0761pnr7beyDJ9hHX0SfP8KcP3wz16W2mAdvkdxAcgP1xX/DHQeGTlONMYcl6lcwHzWaEel8Mkgxy6nISltxDMdETBEfB1JKxFKICkO+plfYbJrQ2mBSmDpRvf9sxKt0fB+XxqkrdH/4pnQruWNGtUkXWTWJ0jLnnpmatbZUWkTo0r0k65M5+F06mmTMmMHTUVA1hakue580dQSU0M8+eVyM7HNheUwBv1xT5btL4VQPBGySjAqdn4sCutgzjCFnJznWu19mBST9nXyoa/5THantwPd9SU3hdpVVbE+C7qKEJCsJQ15VsG3hcgPWBvaPLNe7t7AvHrN59t08uv4m3e1/mbCQx+NHXLtrhiSZA8foubU1O91wZSquUsXTmzWP9y2/3b3kwVcUzRcfUX/REG52hMNAHKN0wEZxb7/1oIOXEIaKYFdTxgRermGnQu70K25lWbNGpTOecnFe5LW3qS4xyef1fUSFBu8sYa2IXhE8jCN4f1q0n45SFmzHUdEfFc2zkdX1DeZwReyfE/1h6sAM4Ug/vODQPeVL1Zrvqs/5bWbFuwYuG0fbBJpVlLDTB+eYyyeC4fk057/rSWNPcgOEQBwjPmhKaawEe05dkAvDoXO3uPEFtr+i6s7we4vThn2ez1zOfNkPBQsj/z72cLtXHPeKcIBqH2nz+lc7J0YgP5Lc8dUn/Pn4325Ya3nnnXe+rZ/9mZ/5GX7/7//9/Pk//+cB+Mt/+S/zj//xP+Znf/Zn+Rt/42/8Rj7Nz3T8L8eg/iTDHSKhHlH6AMYQDjcSdPgJgxLvDtVu0KsVdmUwVaS1kXpUeQLV1Npgg8JHPwlIy1bl140TzIeWAJHJPawbzIKZVmqMk+BZROo8xHVWzS695EnRENUgKb154hA92Z84kWWR1aIYZIebww11yA7q5ZPO4rTK2ICU/SqJJK7sO2Nyiis7nW1aW5gCbRbHWVloLkimIdatODGbCt9YYqNIjcI0ucpqpfqbosJ7wzhYdNdQbda0txvsYUNjtyhtGTJ7cgoIYhSRM83J5FoJPmK5MCojkBhTzZgifQqsveUYRfDtUwkjcngcLnbTJsbp+lVXWBbkJQwkUUN2b1RZnG44NwthGs1WKVYKzk2YhGlrojDLskBdXsMQy8aLzBRMsiBbLNCiYhKwTs6j16ANIrNQP6bEqBJdkhbEkjwek6LK7cOVV1ifiDEyhm8Pl/Bxo1ksWoGJiRhIk/ZXxLwaxFWupW2ysvHkGC2HVgpM5lHfqZYK5/P0522rWJ9H3OC5HD1PQs2VbXhuV7wcRlw44nyLMfJRVadu3pgiPvT4cBQ+m9vkYIx8HzDmhEk9FXFSwLnbyQmcFp/F9DwvQLS+ISWPLo5D30r3QrnOy8ZPLW79H3evuitOR3+yKVN2Ky4fdy0hsW4n7gl3TeX3mOGSenw0F5pWq1dCVn2T26qXDOymwbh2EqvLYksnD+4gBT2/x483OH9LCCEX5vpcBBKhehKnCSjShK1ZfrD4DK86mLnnZz5u3O09uMvrnOVgTr5e/ru4d8qNv8TEahSFi60RcTskaUcVrLi46Eha7slJ3BiFDaqShE0WXjswhQFpbSXAttriGy2uzcJHzgE1+yN0e8X26obx8Kscj7/+bR6Vjx8hdNP1FmOY0C6l2MCiMFvE6e32u0gX34nbbElaUw2O6rBHH54z7r/B8fA/OHYf0vXPCX6PSZE2C4JrbdneEadbZVjlwNXXtRBLcUy+t1KJC3TGKdTcakevPUMobcaBmAOUpcPmHDs8xx421HWDb1aEjPrQWtwywCRUlzNiCkzUglxROheGYXIRKocUkBdoAK3lUvVrhdtsaXaXWLPGZsEi+D0BEZWLuyymRKUUrarY2Io2d4l96I7sleaboeN49HxtdclbZsUj00zXiwgls2t66fwv53VxqRV5cX6VsyOrFCRCRruEYNA6c4qVyWsbO09XuXChnJ8Ch8fxGoCqOqOuH1A1j9DVlujEBX3sn+HdnpTCKXN69QVWm+9Cr9+WANvjMwnm6z9iGJ4zjNcMw00WXdwUiFhyIra6Ym0sG1VNDsAlG7X0SGhkvdEqI45pZXiiFI8rz4P1yHbrOXtbWpDNyqKq+Z6bnCeFSBwjqo/IdCAhV3UNg4usdGQbtIRdKXludvlc8jq1cINNPu4mh5VpXeecjW997X47Q1r6C7bHijjdPIb6gliv5s6a7iVxeM7QvS9O9fElzmfXZb4HCBBATp8JqbTIawhK1nWCV4pTp5yOQUwJ+X4qxQPLRiXOdM3WVFz7gdvouA2OPgzojMZQSlFCcaU925KAY5KcE6uk+8DHxG3Y0/dXaC0MeFtd0F6fsd8/YbcVJ9zFSrNt5WMMwvUfvVwZpWNlEWEyXSUxRsZoUeGCzct3s1sxhxFGCZsLsZ8QMgaFT4lDcBm3k92lpuWJMuLSlWUQF8wiYMAQVJqYxy7FeQ5SipQ789T0zHKoeRIxP2kJagvRo/Le43UYQg1SgE42V9gCKuWfXeAIVQwS3hsl2DZpDU7EcuMDdhiwhx2x+5B+eDEx16Uj1UzcaTfeEsKRdXZPl8DxelG0rXSSfV4daVYJs92gV2sJQqxbdLv5ZEgAbVFVNgIZ/UrA+HIUzIfJnZDz8RIXtY4Ki5reF8GKeVIsJYQ7vy8FUhKMZFIGlVnmn8Xw4xUpHqfw0mEQ57Tshd3cYaL1dK8swe9tCeQrIedZjC4BkQbynLw8NvM4CfukzNEQ0Iyq7FnEWDOmSJU0TonoqlHopCZHtQYc83US85kt02qc0Awaya3wyU24GDdeYfvnNLuH9LvHXO/g2W3k5d5PAjUI6mP0SbKRvMp5E8wdU17+fbEtXGqES81DNkC7CJSN0XHrrxlSxEYvYbshI6WiBFsbLCZonj5bEWPPw/Cc9jseYx8+QNd7wqEjjoEUEkFHmnVk2zkeeMPDZHmpa270OK1tQkqyxjwJ+ivdgh6tw9Q5ofWAjtJ9pLWYuIzWVFpLntUgiM1S/vOe7OpO9wjUiqFXhEGx7gZMfyCN15NzOmX9RVAye8bxhgem4YGpuFCaVoeFexp0rVF1jarvzzV7k5HGQXI9gieNIzEIQnJkLkyXoXJXfMFphujEaOP2mGFAuzXKacKo6HuYROqRfE+VgMjjUYIQzT6y6hx2kC4GMwyCE824HT4XqN94JMidB//rjP/6X/8rX/ziF2nblq9//ev85E/+JF/+8pfv/dl/+S//5UmYLcDv+32/j1/8xV/8n/BMP7vxW0KgHvbg6ogyA8rsiYcdsd2gV5+NQK2rBlXV6NpgrQQ3FRZlpZatgz5vrvJiOUoQiApB3IEhzqxno8GHGfOhbA4SbAV9kYMGjLbEpD+21bkM+RlPjAalQm5lLj+3dCoHlPaQLElZVLISrGJaWRwC2lUT8mNqpbOIW/pu6NpiJCOi8SssaltLsJNFFqEG+ZswCWcoaUeOtmJcSaBUWCtUA6aGpo3UtUxcpbvB+zRVVseVYmgqYnVBaysqbaiSp64vszA4EOKACj43yovYWVq52ywKr6aFammfQ9ibWfDdaMshem7jODmTpzZvEi63zfo0nohPCtBJDoFF0eT28sd2xZmppoCWrbKTML3NrumVjqyrcBKStFzcSqif/J2YJ8aSyN5nPIm4A6SCqyfHdw6VKlzwOwvbIgbHlOhToMWwT2FaNAcUIWhcVFRaRLLKJCoX8T5wjPdULd5wrDLHE2Syd0R0UuKOWowSclg2GEWctrYINqc/Px2vmLCmuKXnxZG1cxiVMmBWcu2uh8DlMPJ4tFylirerNc99x4dxxPsjwa5om0cTAqJ0M6TJGTgSwgEbs0O4BHtpTazEF16Y1Ca3rJWCVeGxLREXKZnMbQajJXTGGFnE6pQ3iK8UpD5mxDuCdfn58ng4fVyZFltd5m8dBWWTu0HMeIN115jmMXrYoOJDQt0QM/JDBabg1cKtjojwlrKjTtsK7R3ayWelLCq0mMIL7cx0bH0YFq2kM5vUIBukwjFcJsJPL/NjJOgl87z87N3HTg5hXpQWtMG9yfJpxh+k/Hg5Q8tvjgizOjK3mercZhqVEqcgEU/CZ7SCShByq3eMHqXF3ZYIWJBEemWp81/pUgQUSlusWZOqNalRNLWgJSTAL0lQyxHSDqrrp7zcf4Nj98Frj8GbjBA6wE8ihs/BZyUAN6WI0pbKrli1b7Hdfjers+9l2Eh4XdV1VLfXxMN7dMdvcjh8k65/St9f4f2eOkXWGb2wMdUkJBZhWtqMFauC9lg+tztfyyZY7jGroNiieWAqDqnOxcpASOLoTNHh/BFrN3NI6niD7TZUTcVoK7xVeCvhN3DqHDJ3TjGdqV5p8QSNj3INRRGoS9tuKeSGRjGuG5r2EbY6x5hVxmVJeOaYIjYFuadGjTZyfrXa0OoVjRL8yf93uAFleZEC//fxBd/TXPDFasOD7ErVQbHHcYx+Cv9Li48iTpdaoCr/KXXSWQDz/U2u64GUVkBzD3LHg99LHoW74XD4Jt7vAbB2S9M8oW7fRteXpNDj+qd03XuMw40ItEjXQNNcsl69w3rzXejNu8TmDBUDYXjO0L+fWdUvcifWq8zpja7YGgnOa9Xcnn5yjudjUr6/1SJOP1SGhyrxpB253IycXXpWF4n2rTV61comugRBhkAaR9I4osyIMoE4Sk9UjGBjoqkCjTesfGKlhCV6yMV3n+dyX+4PSZiiKQV0rPImP2K0rA3iZwSpDWHEaIO2gr4w7Tuk5pxYt+Ka7g8w3uC7pwzZ/T6ON7mDMIjQaOpXfm/pLpyyX2LOXCHk0MCEShEdwWqFS4vOqwkfoNiABFDriusw0KqB931HKBkqC24ozCJ1RMTfjalmkTo4erejH2qs+UA6qg6PGW7fZrcN3Gzg4SaybTWVUWwbzeiFLxpiCQmbXdSrBZMUEnsiQ6zYfPRFmpzZUBzKMYwkF4QkneZCZyQxJOHVFqE6mJYn2nKRJK9ji7hEp+4RLV0cUWcEgjbS6YE6EaeljrostU4z2tT6r5TGZ8ayUoYYTsVqpfZzIX0Sqi2QxeoiVIeAyjdIFSMmCppMe4c93BIP79EfvynzfwrYnOcTYyCEjmG8wfs9VUpsTc2ZrmnzHq5emBxqla+jdaTagN5sJUitGJ8+hail6gZVtyitUUbl9ebHX2eFQz39GzUHryoRWcudVtadDhW1dJ/lUXBx5T3Q2kyYuE87xv45PtxOobHjeD3dI9uMOZqKeKaaePvnujopDpQCQRGkp9BzJYL9dCzgJPi8iEljUoxZ8AyoCUsxoumU7IfqpOlTwKUgOK+oGfK8MiYlpgzFnAeSUvYEKHRKqLxutEpRpYTP6/6+f05VP6Tubqj3F9zuKp7tI89vA29fJqrcDVVZRW0VvVPTdW5KWGCUjrXa5g4qA5WV8+MWEam3MdKGOQzwcHgPx0ifIiYGOuWpgp46dMr1/GKo4IUUCx8jIrXebsEYVNeTnEeZQLMKrFee8z7wMFRc6Yqdndc2LmPMSGm6zhV6KhTG6KZsqcKfj2FAhdwt4Wu5XgdN0vW09g8kxry3Lx2DWi94zKMijKAPkepwK9zpEnodMt4jDhKG7XYEf+Bh8xYXyso+2pT9YMx4D4NuV1Iw+rQjeumMGAfi6IgOXFAn4vSJFqBK9Ca5G3Yg+gN2uKXu1qJ9VJoxrwWthXGUTqlxBHfQ6EOkOY5Ug5uwiSoEwSYmL+J06Enu5tO/vs/Hb8gYx5Hdbnfy2H1BtD/4gz/I3/7bf5uvfe1rfPDBB/ylv/SX+N2/+3fzH//jf+Ts7OyV3/vhhx/y9ttvnzz29ttv8+GHH372L+I3cPyWEKjHTjPcAgSU6YmHG+JqQ9i1qKpFtZ+SL2SsLEiMxlTirqyVtF5p1JTOfurkkIUyC8RHGfrOon92UFvh8ZVWVj2KgBgd30rmKyxBlTQxC9MlFCTmli5tGvBMYSWFe620EbZj8hJEBKi4En6R1uJq1JnJY4AoLkF1T/jaK89rwaHG1tKHfNdIocVFHquKcbPBNxbfaNJKYVeJpk3UdWLVioOsssLjBAkRkOpioq8TR6tw2qDiChUDVXhEVZ1TOQkhFD6bmiaLkgpdKX2C01ghjL5ZIFCEBKOCbdJ0umafavYmcIieY3Lsw8wiHVNgiOGV981olcM2hLe20pa3qzXnusoTqZYPJCBppSONFTdwCUl6/YJ2xlWMwD4F+vw8+igu6qAANeM9TEn2ThK2oia3kFoIC7K5qZLnEHVeTHmCMoSkGZWiToo6qOykFgezi5r+M1j/Vnlj6PLi2mSOZGB2wENZzMrf1tldXo4XvN6pMgtCafFYwlZpDhABlNGYFTRnns3gediNPDm0PDM1j+2Km8HRhw7nDqzat6jsfN8p7q/S7irc9IOwVb0hFAGiXC+ZSW2iYHCsfZZ/03ESqcuIKUwttT4cp5t6YdCfXOfqDtqn/OxSlM6FrPL/you/Z6rI763Sguax5C4IdoQw4Nwut2UfsP6ArS6wgKnWgjfKnOwiVgOTsxoEhSSBSFBEfBDfhgKIHp22shhO4Y44PaDTHILXZNdslUVqXZxJ3+Yo4vXEIswupvL16ffm1xAQV+rd8J7C7F1+XX6miNdlqHuep1U6n/sxP7v8dRJXdUpkl0vID4uDvMrOwTY7hQH6FBD+boOtzgmrDWYloXwFMTF66MbEYa/ZvDjibr/B4fge/XD1bR/DjxvOH0k0k0AtgbdS6CBFtKmpqy2r9h222++mOftthPMvomKUMLzDc9zhVzke/juH43t0/XPpOggdJkUuTH0SOLvOQmJxTJeumVKYXI7SNjy7C2UYhFO6jYotlnNdc2sch+hwMYcFEiWrIGM1KneDHa8x/QV1JzzqMGhGmxiyma3cb4yWgJylLGcUUnDIz7GEm6qgKWGJZblRRGptwa0Mod1gq0uMqbE51DVGlztjIjrKhl1HlYu7mpUyPDYNG2258j3PwoBXhj2K/6d/yT46vlyfsdGWt9SKWmkO0UHkhP0+zSWTOC39ANKOpadOnqmz584o96ETlFnsiV7WWt7dMAzP6Ae5Tzb1Q1art2lWX0TXlxB9Fqd/nWP34dSKrE1LVZ+xat9hs/0e7PYrxEYW/ModGfuP6Pvn9MMzxnGH9wdidk4Xcbq48Ys43WbecTl3YHZRlS6tbXZOP8lIj8frgYtzx/YysHqksecrqrffRtUNOoth4s4aSPVI7Lp8FEZ0HUQ4rCA4YdpWOtLqxCrq2aGosnMw5aKXitm1Lra1qOLszFPCeE+fkYtIKzNhPWz9iLR6IIGW3glDtH/BeHxvcr87v5euCqWlE0gVcfPUkBFy8Uq+jjkEPGbxJExOfl/ur8UdWYKTUazK+j3fDwoL/Bg9u+gYGbNf8o5IrQ1E2MceFcVFXyvNShtc9Ljxhs402ON72OoCs/s/2Z8pdueJfZ+4WCU2jWbTaLox0TlFNybG7KA0Gkwki1XzsYwxcYiK8eIhTRio/UHOy+iItRMUmI8E5VFTcXReQ+2jI3g5HqNtQddcJEWt0izU5kJdGUHcCDgVZf2Fyp07CE1EzS5q6dyRomeK/qTAp5XBezl39VRgz2uU8nkpVEPu6gQVmRABAMbl37lkznfvMQzPCXHElGB1bSR02e1w446URtbKcGFqVnrumJnFUGFP19UySG2dhek2O6A/xda5dMsajTJMTPmSleLy88gv75Xt0kmBPX+9vErL8Y/Jo+KMbpnF6XKPbfLM9unHsXsPH/aM4y3O7dFxpM2dJUWYXms7dZe0Ooe9K8uKgvGQ4sBSmDZZmDYqH5/pGKSTz+X4TfufpHBRPo9KAuPrlFgplYVqTcimG6NU5sVIl4XWQAx4Nd+3J+RHFqlBVl0WhUcKQ8N4RdN/hD0+or19yM3tA17u4Nk+8HLveetS1rCFRT36lD9URhAWvrC8zouVojZpYjJrHblBs+cxZ/67acNATBL8671w9AvqwypxKffRUGvNXkV2wWCGCl4CzCK12W5RdU3qOlTlqM+ObFzgchzYecOTVHGjG26NE5E6d4jF0jKd4tShVxBdOp26qGPs0aERkdo3aFdhJmyPxaPFqW7BRVnjzB11YnoLI7CH6uhRwy3RzeI0MKFNQzgyjrdUKQgmE02rc+exLe5phapE19GfVh8CYnfI6J6RFCPBJVwUNM8r+Rt5DlNJT3tC7zu8u8YON9jujKayDDSEqOi9Qtts/BsUurtfmFYxovwI7jDl+QR3gxs+F6jfeKR5Hf0bOX7u536On/3Znz157Md//Mf5iZ/4iZPH/sAf+APT1z/wAz/AD/7gD/KVr3yFv//3/z5/4k/8id/4J/qbNH5LCNTHo2ZtNCJQe6pdYVA3xHaD+bQ3oBwUoxbWpmX7lVFzi1XMLmZxMwzo6CcOtY4pBwjKcmISbmFirxXMh84Vbq1rUpKWtnK93A2RishirziCtCqBXZYYAyYHZclkJtgQFYsrpAjjAW0k6VlHL2J2fo7GSDuOdhKEmCpxUafw8ZuXpKU3vIjPKoijevl9QZzIcQiVZdhWxEahV1C3kbZN1Jm92dTS9ljazkEW7t1IDvMCSBxiwjmDcStst54EfzmulmVeeBGnW2XzpnEWh0v4YGVml3JIcOEtXdR0yrBXib2JdCmwt4FdcDjEtdxFP7eK5aCN8vdKeNJaV7xtmlmcBrY60WbHdMFUWCPthtPpsnROByaWsguaMSn2SVrajtHNle+8hTDZPa0W7PLCEJuDNyWoJWQBbYghF2Jk2Ry0zVzWjETJG5sxZhZ0VLRRM3xGDqylC3WIAZ3dUCWFu4xpIXsH63Ev4uPOY3ePralE4FYmoXRe0FRQhUTbe872jsdDxTuu5qld8ZHv6LKbImU8jzUrOV4LNpugOfLCyg9gGlQIc5hhlUOiYoOqtujQU1Xn0/8rn80Uorj8veV3Lx/TupH3OtmT7on5Z7IgHecNY2mZK0L2LBCdThlKG1KUx8s9Q8aOECDEIb9WEeQbEDxHtUVXa5KtiVWF1XoSq4HpWNwt7iVjSDG+4nWOcST4bhKn7+IcygZpmQS/HEunwzIpvoSbFUF74kJnFFApYJ0wi++KU7ndOiTBaZR7QkHuuBQYU2Qf3BQ05xdidRmz63v+LI+nzLGGIlLnHkJZHitE5E3y2poswKyQfdkhekBT5RA5t1pRt4m2yvzlKCniN50khDdXH3C9/xW67rmktH8GI4QerdXCQT0Qo9xrtGmoqy2b9btstt9Ddfbb8OdPSFpTXz8lHt7jmF3Th+7DzGKdedMrbXls28wGrtjogvMQAfY+5xacuqWXorR8T2HyPLtViouk2WvLzlQcQiVsSxDMR/T4MOD8/o6LekXd1PRNTagU3qdJVIZT9/QyMEhLn/3J8dMxEZ0i3TEDiUCdCI1m3G5ZXT/CmLUEuaoKp+T8dHljfowq4w88dZJCaukq+p72knq85anr6JXC6YpvjHsOwfGV5oyHpuXSNBys59oPecESTjZnMjJcRylZ76BYhj4XAUVlxMfyniPrqn5iW8YohbBheMHodqQUaZtH94vTx1+j65/R9y9ICMaiqraZO/3dVJuvEFeXsubpD8TjU47H9+iHZ4uW9QGb0ok4LefUfF4tr/8l3sOg2EzrDEF6vFU7Hm0HLh56No8T9cMW++ASs9liHryFMrm7LAYRqKuB2B9OOj9M5UgBUkA234N0DxmVps6ACpNRAGpywDIVsWY3nCqdVEq66j4rgdrYtRQom0eSTaCNtCHnvJAxh1aWULXZ3d5OuBFgmvOW3YR3g2mX49TBL/fWJhXpeh4FKyD3BHGd31YO6ztugqPD5d9iXxGpXVL5HgrrfA44FbmNHeNwQ2+f0XTvs74+cHt+xs0+cHOWeDhGNo2mtpqLtXSoFBc1MInUNRDyJRBiCQxLHB6s0P4xlTvQ+L1gPnKhtoQmhjLfLOYpAJ8iVyGjQGziXVXzri77mpzrgZHnsJhtI4k+esGnKC2FrekY5yNdnJUqEaPHKC3iudL40E2/y5gwfZb1Qyvrk7tCtbCsskgtSDRg4RjsUcePGI7v0fcfTkXTch+JMUhQ33BNCB1tEtb+VlcTNs4sROpKJxobqBsRqM22RlVtDkRsPptAtc9glDVHEapPPZpQcotUKvlFGT+ppeT5cWHRbzr2xw9JscvrXM9GGVaZMV2Y/KUovF3gPLZTYfjjRWmT1/Rl6Emgnp+DrNvl8TXiYHVR9kN9lD3KmIXqWimCSeyjFGSNUeg89xUkkBRZ8vWT92+TSF3eA6WwKeFxjO6WfnhBPb6g3l9R787Z7TTPbhPPbz2Pzm0298wu6vJxsv7MP2O0dLDVNi32vCJSH9zbbMNAG3vq5kKcw7GbMJR1CrgY6VWgSpo6KfbKYILGjHYSqR+GZ6y+4yFmuyUZA11HtR2JzrMdPE+GkcOh5UpX3JpmwlqG6BkyXukktZfSyV3Mel7uS6En6nZ2UY+CNDRacq60FoxK0ApdyX5r0jsiRKdQQ6LqJPw6jdfCnc7Oafm7XsRpt8O5HQ8n05eiVrKHLu5pUyl0XaGMkTn2U4zk+uye7onjSOwcwck5V9b7BXO2HKUgX7rEQjgS3DWm21LnRaD3FcFqkgHjEs3gscMownSYzY8qBhGnc15PCXR24xXd8OJTvb7Px2/c+FN/6k/xV/7KXzl57K57+r5xeXnJ937v9/Irv/Ir937/nXfe4enTpyePPX369NtmWP+vMn5LCNS3Xc16asUPNLtbaYuscrXbWMzlW5/496eczJpiYXXK5FmEDJ1b41IMMz8xt99IuJcky6vKooIwCFWYnQATo/nE1Wwzj7rOHK+7ra2LoK8UsriYJwVdT65ppcRRXQIyiluhhGQUsTrp2W1J8mjX3kMxqwBhRiXSvEmOCVXclK9Z80ws6pPHRJwuDkrfWOJKY1YJWyfaNtG2Ik5vGgmJEoFaTQuTMcxukxDFTT3WCd9oQmWItppe+9J9o5hbPCWgQ5zTF0pYz+sq0Nhw4loGEYIvBoPzmqMz9MFwiIZ9MnQpcaNruhToUuSQQwnvikxGzS7GldK8o6qM85Bwv409/dvWijBt7f0lvRikvdd5QW24qNgnzyHKRxc9Q4p4VdzzFca2UyiSLCQ0Okn6ehEGUlI5/TrRZb5ZcYG6FOlzq3LZBEuYi8lhhYpVUPh41//x5kMcqGHCI2itsEnSuUcVJXn+biu8ehWBcndMzmqz+FrPrmmtpdpuKoU2GVlTy+K+GSObY+Di4HjoW962DR+YhpswMoaeEB2VbTDmVFwRhmrMzEhZTKjQoGItgaL5Gik8ahUDutpizGbamAunbTgpWk3HKgaUkm4KwkAxlGmYkXHZUTs/r5lpNwWqli6QxfU8tzpnsVrb6QmU+5Yczza7qQ94f5TFczhOwrmxG4zboO02fzQk05Bs/UrRCphCGlWMaOfk37lDpXDnQujz3xrRKbJSmjNdTSE8rTZUysy83LvLxdI2SmGTqqk9spzbyzDOOn8trMRZuLyLZAAYU2HCw5jSzIdHWk5LkM9OO4bkJ+F6yQUOd57vJBoojSdik3wtwsGMC/HEKdBGMCfStbFVhlrBTYJDFGxKXZ1jm0fsNw3nbWJVz/fVbkzcdrB5dsTv/huH43s4d4NN99+T3nTEzMAtc1jB4hjTsGoesVl/ifXZV1Hn343PAoE93NK/+Ld03Xvimu6eT/iFJsE6h9ZtdMVbdp1Zo2YSoe6+j+W9XI4A2YF1B/WR5k1zQLpqLsgs6oXTyJGIyeVOgu7ERa3HC+ywxnYWVxm8L+3e+T1eTJdLF+VyGi3dWCkmVEzEoLOLuqCNlGBBqoRvKmguqKpzjK4xpsZ7kztnyCiEQLcQPUyS47NVlq/Y9VTw+bVxz21yoCvejyOH7iVfac54Ylc8sSsqpdmFkZswQp4HyxmsskA9Iz4seuogq8Q1m1vzy5DN59zpEVOYAmJHt8P5jpQC2/UXWa/fFY70HXG675/R9c9w/oDCUNnNJE43Z7+NuHlMrCpxY/YvcP1ThvGKfngpomno0Sm+Ik6Le9qedCVIUSNNjl2Q4NMLbXmiDE904kk78OjBwNkjz/qtCvvgHPvgIXpzgd6cYzYX8+sPuYU4zycRZIMaArru0CGgXJ7zDIIC0xGDmbJSCg7gLodf5MQoqA/UhAVSSfGqf/OTjbqVkEqaC1K1Rg+3MNwI33t4yjBIx4MvznZd53N0dXIOEMFn3nLB/8TMYD4Vrk/vl3FqR7/jaldMwmTpnij3h0O1yRiFjis/0CmfO1vM7OhGoVXFwCjuyzx/rLRlDCNjONAPL6ns+2xvXlBdr9lfKK4OiSfbxMU6sao1IWq2TaRzipsuCZYqzveAeiFQ56PB/lzTuTPM8A6124vAEUZC1RHDiHOBiMOliEni9kQxFSpiStyGkUBkNIknuqXVEa2Qv59EpK51nvfyfHiMEkcZY8gOUunYCZOLWtzrKimSisTo0UBQBjgNUSvva2HLa9NOhXQNM4LQtCJSmwbtmfdiYwf9C4bDr9LlwEgJV11NwYghHBnGG5zbY1KY8l7Wxr7SLVPwHpWNVE3EtAqdnZaqbqWT9tO4p+++9lxYArL799v7/wzSCWaVnjvK8pj81CfdBoHldn8qAH5G17d3N4BHp0iD4sIK031rKtaqemXuXVGQWnOn6seJ0sVdDqfGkqVoXX6ujErLuiIkxeA1Y9T0cV6/jYhgbJSIiXqZPbFY1qTcBbcc5dsC+hEXtXcHRnfDWFzUu8fsbi65ug08uw188Ri43Mp7UFzU3RiprWL0SviP0+tS0hETlQjUZg56jzFy42qq4Qs0ww3r9gluvCVGhyfnDcXAoANtCkSsrDFTolMKEwzGJfR1LYxo85Lmi2C2W8x2S+x6qk2k7SNnnePxaLlxFXvTcMiGJzEHRdlnKNmJlGIIzGaZgjwV3Ed2Ubs9Shu0qycDHIDHEqq8V9OgTBITXATlEraL1McB2x2Jfk/w+4U4LYZA748M4w7iyKP6TLqhFTIX6pT3esz86aqFTytQ9wdi/kjjSBwjbsju/UXXZNmmTg7qxfUZo8P7A368EQOPNjQxYptm0knMOMz7n8VQfpyRHsnjhxd4dy0ZDsML+s8d1G88EhB+oxnUCeq65vz8/I3/1/1+zze+8Q1+5Ed+5N7vf/3rX+ef/tN/yp/5M39meuwf/+N/zNe//vVP+mx/U8ZvCYF67yybbBrUOrG+GdDVTa6OSYVMVQ16seB/k5FiEBd1iJmHVJxy89CqID5idnn4qbqnwiDMVOdz6OCrm/qkT4WfpYPo5OfKAjz/rbII8TD9vI5O+IHT7zDo6OR7xUlcnNq6QStDzGEGWjfynE2LSOl3xyxSLydUonBjdd4oTw8bffI7JpeoyQGMWhErQ6gUySrMKol7rxWkR1OLOL1tszhtpOJchJPimg5xxn/oMrlpJVXhk+MnVXGFtMk32rBWlfAgEXH6onFsVp52FcRBUaX5dwaFGwLBwThoxlHTDfY1YnUl4YLMAlNxPRTm2grFO1o4060JtDayqj3WJuqmsKZPURPFVJqKczp/uKjF2Z0U+xS4jSOHkBcUJECjdY01szhtcjGj8OmiduhoSbpCBWkT9bkVjgBO5yRsHbLop6kwU4jhqKO4I/LHt7vg/rgRALfApYyFl5o0jiBV6lfq0+U4ffwkU47vXWG6fG2qhK7UIlCjxmQXb3vouDgbeTxUPHEVj6uWj9yRAY/3BznOdj2/juwKK9d0cQPquJ3DEhfCbKwqeTxtsPXF5GoGSbROyaPSfHXdFXS482+Vb/elELV0HqToM8eyCL7D9P3lKMUtbRpUPG27L4U1yNiP1GAtk6Ae48g4XmH8AWM3aH2DsVu03cjG1LRgG1DCmyyBkdPfjkGQSSX8I/NGhTl3IIQelcIkTj+0LWemolHSeg2cXIflc2mZNVmIXjIRV3daT2uVN7Aq0RovGyotnRaT8/6OM995PXU3uKgYo8YlRRc1ozJ0CAf6SpkpyKdPgT55+owM8rlbAO6I61mYFkdkJCotYm9xSWbxSSdyIUmzNkWgTuyjFJ+MaanrS2gfEbaazTpMIV3FPb3bQ/PyGTf7/8rx+BSTwnRcP+1IuTWUSagWR/eqfZvt9rtot7+NtP0C0VaYoUcdnzEefpWrl/9ecB7jDSF21Ak2yrCxIkJsTcWZrnlsalbM+QJ3iwtL59ZyBBRmUWCAu/N+olaJVUY/nU8uarnvjinkDZrPyJIO74/4hYvaNjV+0IyjsBfn80juQSWgEkT41IWOkYc4CVXGfLxiIp0wH77RxOZMCkQTh1oTUkD29QXKz7RZLxzLmsiFMtR2RasNjTL86njLy+RQqmKXIr/cX7OrRr63uZTwq/xzuzByjJ5j9LjMP563a687H0o3iPzbObKIlZEeoc9hSEdiDvqy1UbOlfWX0XZLCj1+eMHQvU/fP+XYP8ONO2IcqewZbfuI7fY7WZ19L3H7jojTQ4/qrxi79+j7D+iHK7zbZ3E60NwrTldslJ3F6aljorj8ZoTYu8rwtg28te158NixeZxo3z7DPnyIOX+APnsoTs2CEijDLfJEgnS5pXFAjaNwbDPLVpkyp83/63SPWzDsVcrx1vltSKT5PcnID5S5x/f1yYauH00B2MqPxONTKQBk13RhBospQ0wFJjOnZ4HD4fxeNvNhEHzExJ4e5bmmEtGZpvWrKq85F9iXo6zHCtqi3BdWGEbTTgYGjeIqDBzTvNJQMOHSVEwMyWFSmLIN1srgosNlZ2U8vMfq+pLd5SU354Gb88jDjbioV7XmYm3yvTa7qO9UoI2eheoYod0mOmfoh0vW47vU7iajPoactyKoD5eFQ6sk7NCqWYzTStHHwEd0fFPXvJs050bc91olCVpDU1NR5+NwG9z8pCL5mBesVCl2zKiP0v5fOmKUclmslrWHtRCnnI654wuQbi9alPIiWkU5/iqvA1IuJPX9BwzDFd4fSClQV+fT/ULQHrfE1LNRehJO2zvdYGUeqPQC77Ey6JVwauXj02cakbFtKd/cyvp9OV7JPbjnMpy7d+/eR3MnyklXymIvmK8va1d8VhJAiD1t7khaacMj27I2gr26m+0jn2XuXan7Rem7gvRSqL5vvG7tVUalNS5qai/M6TpqxrTogNPZOb2c3Mvck+J07yydGMtjbkoWSOhPXdS311S7M252imd7cVEXgRokLHFVawlLtGqa4wuDvrYSoFjHgvqQ+5p0UET2wxrbfZn26m2OuTATop+ySFzee44p0qqUWdyKLkEdjCxorgAGHpJF6vMLzHZDipF67NkMgfPO8cQbbnTFwbR5XROFtZ+irMm1mqZzwY1q6erOSMOy14k6h7b7Aa2sCK+LXK7oDOgkWVYelCR/Y4dI1Y1Uhz2qe0nwh2mvIn/T48NRQlDdLRuleWgbtqrgPdKJg1oZBQt96BOP6AXv0R+I3ZHY9fg+EZymyx2TU0ekmuJ9T4pHQD5Okk0UxhsMGTczNqdGneSn/REw74WSJ4WeFPqp4NsPV/TDFW78PCTxk4z7TG2/WePP/bk/xx/+w3+Yr3zlK7z//vv8+I//OMYYfviHfxiAP/bH/hjvvvsuP/mTPwnAn/7Tf5of+qEf4q/9tb/G//V//V/8vb/39/ilX/ol/ubf/Ju/mS/jjcdvCYH6NmjWmSavdWJzO6LMUW4+VY2q5yrZJxGpU38QtlCIU7V7OcqCNJGy0FMcHXLTUNlBHasK47yoqK8bauGiXnAXYxqm1hnZxPsTF7WKfmoZkVCSYXIjza2yBq3d5KwWsXqcUCJKDVi7zk6GZl7c332KwRCjIWo1hTWpwCROqxDz1wuXd3ZKT18vhWmtSI1CVbM4XdciTrfV7JyW8AhFnVcVQRd+lyxM7nMvAnkDE3LYlicRsVkkbvKCaqssGxM5qz1nG8dqG2i3EdsqYdDVi2rnGAljJPReKqVHT98ZEatHEasPwXARDaMyryT5TkEsyALtsvK0VhjTdRWpmzKRzgsvZVice2oqlMSQ042dYfCaPmr2wC4n0R+iLCKcAq1qjG4wdoUxLdasRKjI4Z4pBaxpslhU3PQJrwRZElTmFqrAkAxd1FNQS3FSu1RTlYVqFss+7RhiIKrZE1UlPblLC+ZjLMndd9andzlSMc4C0CyQ3BGk82dlFLpSmFqja1nM6OygNiFQn4+s9pGLW8cT3/KWWfGebdi7I84fqTOWo2y0SztXEXRTFljJXDalF4JyEalthY4N2m6x8RTpIZvzZfipnbjzJ2LxwvU8/f7XiNMxB4n67Ehc/mwZRTwQMaE5/TtxxsaU52Ey+qMEmEQtoSBGN4RwQLtGhGrTzEGx2k48/Im9UpwD0U9tbMGLa8X5AwlBOpxncfqhbadAMpCNhWHe0BVH2F0G8UXZQGUxWqtT3E8Ro5tKsAilw+G+Qkc552KU69d7zTjoxTVr6INct9tY0yUJwZIujIpeB7oYTpzVS/RHyKJMccZZMh+UHOiTz28DVAju4kzXXCiZsW5S4Bg9Vf2IpnmCO7vEbhLrdnZP33SJ6wPc7jTb22+wP3wT53Zsclv8ZzGK26bMaW3zgM36XbZn/4dwgVeXklB++xH++B7Hw3+n6z5gd/vfCeFInRLnynBma85NzYWtX2FdFozHvR9ZnK7ubHAncTrJPXvJoib/f+hImxSrpNkijM2VtjTa0IdIX9pco8OHDuduqapz4tJFPVjCqBknvnTCLXAfr8bDyVAxooN0XgjmI5GaJYdaOk6UhtAo/GqNrR9h7UqC8JRFJCwRmCCKwzL6CSVTKU2tNQ+V5aHSrHTDqhFE1X8fdjwPI0FZRl3xTXfk3NQiUCuLsVIE3gdHGyVAsc+4KY8jRMSDmezUyRW1RWuP0bnQHkfgMBXnfQ5dKuKkUpa6uWCzemcSpwt/ceje59i9z7F/xjjeTF0cbfuQs+13s9p+lXj+JULTYIYB1b3EHd+j7z6gz4J2CB0qBWoUTel8ysigja6Ebb4ogI0pnXROFXH6obJ8pXE8vui5fOLZfMFSPX6AefAIc56d0xkjoOoWZQwphAkxB2KWUMaStJXgRCMsW8Hbqek9B+5NoS/3vqWDelkrKJiGlFENr/bofMJRrWVt647g9vSH/za5pks+Q2VWGFPntajMKc7dEsIxh6b2U0EiRk9MToQ+xIaa8nNViHeirF0Lo7ecz1NxUqmpE7Lgfcq6DOCJtpNzGBBB50Sk1qBSXlfXxFxYVNGz0lbCaEOkCz3DcMNw/Car3dtU12fsH2QX9VnkfJXYtsKi3jaiSheUR+kOLKOI1CHBep3wPtK7Gjs8op5E6o66OiP4jhQdIfgZ06bVfF5qPR2LmBL/I3SMpuXLwfDYhsyk1pgEdVKskhVnuS0hbBl1kEVqwXuQ+d4xl2kktGZGTQibdjm8P+bjF6a1ghyFHp3F6ZQ8EqkwSJdm9MTxGj++mLojhvElIfoc8Cm/x/k9w7jLQbmwMZatFnHaoHIhScQ16WxMVCZNeA9dm2xMaMXo9CnCEcso13Rh1b5uBNSJUF2OqBwfNa1l9IlInUNny54vd6WU0FOta6xdY8xasHHqMwiIA9qk2OZjuzUVFzm3YJv3VneL/cWp3mbxeSlKT2JzfgyySP0tgiThVMA+QfypRJUildZU3lCHRJeMsNZRGMJcELojUg8EmR9PHr4jUgMujicu6qp7Srt7xH635cVt4tlt4O2LwNl6/gNLF3WIRWRX+TpXuWuVBZderq0YE+MIx8MDmvee0NSXpy7qGMRMFCNBlbUi0+cuKulUcmZyUl/ykobspA6BOkRCP3DRObrRcjNU7E3NITWCjIyBfnGdL/UJKKiPMBletG5mF3XuGNe+nkxkYs5RhEqh8pSnAhgfsYOj3u/Rwy1xvH4FLSfuaQlBDeHII7vi0jSsYCp8iMkMVOmGNeZTu6fj4UY+ugOx74j9iO+h78R4MqaES2FG8C0wZq/8rphd4O4aIKNW2zkvSFkx8JDF6ozzIGYzZOzx4w3H4/tT55d3e7x/tWvl8/G/1/j1X/91fviHf5gXL17w5MkTftfv+l38q3/1r3jy5AkA3/zmN9ELV8Lv/J2/k5//+Z/nL/yFv8CP/diP8dWvfpVf/MVf5Pu///t/s17CJxq/JQTqlylRBw2jvJyzvRemcn2Ae25CbyJSTzefriN0QZyqYXaGTgFZKFkkZ6dACOMUhqYXwQBJm0m41SG+2q4xYT7MxN0DZgdCFqdjqR4uBUCVl+K5eq61fYXraE3zWrHamJqUvIhOymJikJtkko+JpV03Od1bRGZgck3fJ07fJ0zLZ0WqACvcKVOnE+b0UpwuzunaqJk/vTh0Iea22phDFYISR7dzM98p4wAUsmlslMmhHZYtmsvacbZ2bM4Dq4tEtTGYbY1pm8k9C5DGkTSOhH6g6Ry+C6yOjvGoWXeBs0HTDYZdX01uyaVwWhZeRfS6WLmJMV03MWMlZtf29BpRk0hd3NPea3zQDF5E8X2Cm+ye3kdHFwMjCYVFmxpbbajsmspuMGaNJHmfCpjFyegRTTClvEhL4uZ0SlKwrdJY1CRQW6UZTaTVhl5ZOmWmVsxPM8YUSUpN+2iXIjYphsxZczpOwsDSTLKsgC436zGojABZfpDZZMInU0ZlTlkWpyubW8KyQL3dYrue1eHI2c7xoK95kioe2ZYXvqd3R3zdYeMWa1coZQjB3IPq8ZMTGMiYj7JgM8Qqi1B2i44eW0KsJvE4EONSEJ67IibG/J1Q1OnvskR6ZG5+ruQX10PIhYvl8y7oIb1wupUNYblnLfnmSplp4yn3xUCMIlSrcJTfkT9r3aBNO4nVd8Mcy3OmiOl+zzDeEENPneDMzOL0JociljF3LxRB+lWXdI0E31V501TpiFESjKtz6681cRKmbZVOihrzdatkMawLQjaLRk5Ysm5Q+UME624wtF3NIWj2ybDPqfP7FOhU5JAMXZQgHJci/TRvZKtd7qaJKU2b1yJSg4jTjRbkxQNds0Xul1dZNGybh9Srdzmcb9lsI6tKNkqdS+x7uN0Lf/pw+yvZPe2p1GclT4vwVi5RY1dcXvyfrLZfRW/eJdlaNiaH9+jusKaNP3ChLedZmD7LzjjBLczooQnBQnG5ysZlKTiLSH065F4thzmgJh71CR86FzK22UW9yWFQbbSZTZv5n2EkhF7mIn8g+AN64aJ2riFY8HpmUZ84YdWrBbcyJDws3eugBiRY0Wp8I2GTNnOola6IExc25SqgdKjo6KmU5qgctdKMVKxyAWelGlaVYHPqYceHvsNhQNf8t2HHY9vyVrWS90JL4FoVdA4IlkyEPkW6LFWnIEJzTAYVc1aEmh2AJ+ue6EgpoZRC64a6uWC7/hLb7XehTDvxF4fhGX3/lH54wTjIPYKU0KZhu/kONmffg7r4LnzToJ1Dd9f443snjusQOiBQgTgEtWVjhF97loM3tzkU8T5xurgHHyrLuxq++NaRiy9E2rfWVE8eYy6fiDjdbuYQNmMmjICUKvK0FoMw/0vBzmSRGrI4fcf9v5jzCkf1lfOifC5vfVGs78yln3rEAOMNcbxm7J9yPL4vwr/SGLPC2tU8b2lLCAMxDozuZg5M9Z3MH8nlc0C64UqHiFm+nvxRXMJ2IeSd5AqwxHvMwplRM+LCaAU23zvuitQR/n/s/VmTZEmanok9upzFFl8jIjMrs5ZudDe6MQQwQxKQGYLk1fAv4Bfwx0DwT3AF4RWFMhcUUIRCiBDkkBwCRKOBXqqqMysjI8LdzdzMzqIbLz7Vc465e2ZlViW2QmqKi0d4unuYnU1V3+/9nlebSgqEusbHniFFbAxU2tAozZAC3p/o+y9pjp/T7j/msN/ycC1u6dtNZNsa2lpzudLUBg6lY+KJSD0hP4wYONbrxMEr+m5NdXxDPXwk4cRxwFcbQhhxsSMkcnh3fm1KAzP2KpI4Rs8vU8doGoKv+NgGWhOok0JHPbmpD3YlYZ9aY71GM9JF/0SkFhe1fE1NLmqiJ2Vnc+GMA4Lm0udrekF8eFIyskbSoIogk+/xvv/VJE77MEwOYcEXnXBuj3OPqCRc5IuM9ijiYlhc56VQWWkxiExBasagq+Z7w3uksTBrPSmoKT8mpPPPUNzTzxFf0zEq13T5gjrf/2ld5UDcajKkVPYCW11i7Jakvq70+d3Gham4Ng0bU3FhKm5MPbmmn+I8yv1VqRxovhCmy95oKUiXv8P5fLgcL82LZyiszKe2RjJ9Kmfo8zV95mZ9IlJHEn2SDAD/5ByUZ3x5zowp4EM3u6j7t1SPn6L2Gx728O4QuT/6ZwJ1cVGHqBb3u6LKe16QvbB0DkdCTISY6MfEVyfDpnlF29zS9e/w/kRIHp+xEmf5PE8+u6hwSkxVDw8JZUauuGf9N7fo1QpCoLkJrIfAdTfw2ht2ybLTDSfjGVLgIfSQlKzftCIlubPOEaSRkhehYyPdEoU578fJVFN41CqKUF3MbtXgsN0J0+1I/QeC252ZclLyhCgZH+O4Y5XglW250ZWYTPI1VvZ5ynBe9fsNR3K9aEOnPfG4I3Ud7uAZOsXoNN3Cwe5iWN6li73RLFaX/CAdZV8jXxTHtNIWVV/L1xbCdDFBFmF7GN7R9W8Zhge8PxJiPxt7fhjfeqT0HwDx8R3GP/kn/+Qb//8/+2f/7NnX/uE//If8w3/4D/89vaL/MON3QqDeEWlTgixSH/fiwFHGo8xhQn3MTjwvIvWvWWzE4474eJdF6k6SWQf9Ddb/NAnHxY0Yo7RdqLQRocmLe+Apjxn4xteTUshiUvwG3l5pHxG2Y4xmEq1FnNJT+7S4q/uJ9ai1I0YRnKIZc4K7x2TWawl7NDFzD31FtNVU9QXOhPez4/gSzkOLOK0a0DahrQjTdQ3tE+d0CZJ46iYBSTwuwTLOC07Ae1BDwg4O5SW0zueHeEwem8Q9stLidtsqIwzoxrG59KyuEs2NxV5u0NstenOBzotTZYwsLoPHdCdi31F1HfWxozk42qNnPCnWg6faRVwQATmk8za+Ing1VaBtw5kwvRS5yjlNIZEWC/in7umjNxyi4pASu+TZ+ZFDcHQpEJTCmAZr11R2RWU3VNXF5FTS2p8JkMs/e5D04DgQiPjMgzZp5mkbVBaoFT5FGm1YZQTI95HD4kik0p6cN1omZQ513nQJ5kOcjnHxIdfI+bHXOqGz8K8NGeOSiwL1LEwro1C1zQzCGt2uhEVoLNFYzHZDfTmw2gYuHj23oeaVEWH0mN1edTUAqwmtEyfMR3FRh+wOChPmQy0wHyVgVNsGHVpp5cqLs+CPhDigFuB3EYybSaieQ1DbM4c2MaM+MkdaqZcCFwsr22WhetGxoXTe+AgyZip2lIVXLnroJyKmFESKq6IEco0zJ7/gQ5TF2M2ii+S5Azxmsc+Nj+gU2GrLjWm4siIc1U/E6Vqps1C81UKULiJjKRy95Oh5OmbX9HlxQ1dIy/2iuHH22p2nDZHQBXwvH0Pnqe7iWQfGIWoOSnNIkVXSHFSgT+KoRi+7MmaR2iqNJ02BiDolNNAoLW5PU3GrpVvkfdA8xIEuei7bN+j1x4yXhtfryKoW185hgN0RjgfN6q7n/vhznNuzyk4t/z0tfhMRVEVdbVmvPmVz+/dJzaUsrh9/SX/8OcfjL8QN231F8AeqFPlZvWWrKxGEF8K0YA3OBWlIjGQhIgH5/I9AnYXnSj3nWpIyzirKz4jrenZ2AVRJXNTbpLlSwqI+aMde6bn4Ez0hekJ0+HDC+gPGHdBjhx3WqKEmVuD1jPrQec6LUf75UoCdrsGcZaGR4nDZfp59j56xV76xUF9lxE6NVlayCVLxyorANOTQxC6L1Efl6XRkhZJQSKDWlrraSpfCoPmVO3EickTTuxOH4PioWrE1FQYlwpAqc4XH5K6mQCIoEZ8lAE0Tp3s3b97IldIs10pnxoq2vWW7+Qnr9c+omleEcfeEv/iBYRBXlTh1LVV1wfbij9FXfxO/WqNixHQ7YvclQ79wXA/3QKBKTK7pl8TpVT7mY+58cClilJrE6U90xacm8um259XvQ/3xLfb1R5Nr2myusmt6FsCUsaTgZc0B8uevG3lRtHzUei9Cl7DTZ6HiKXt/7iGaxfBE4vvemqXhA2M84cY7xvGeGIdJmLZmPYdyZ7dd4Ys7t8/idJ/nojL/nQvThoVTWs0u8SLemVxML1iE0vG1RHusOC9OtkCdcQBG12AzV3xMRD/QEUhJxFetLFGDTomRHpNEoDVK06TIKQ10/Tva7gtWD5+h7zfsrhV3V4k328jNJlFZzbY1bBvFGBLdeC5QP3VSN7X8f+8Tx0tD392w6j6hHj4QwglrNxjbCWdeBXxKZ9kGLkZaUzr69CSmvI+j/NnXfGoUGxvQKtBjMAk+QToGNsryXg002vDgB1R0WQyZReqUUubIxGn9EBcOaukODYSM6dEaUjRZxDa5w8si7OqWFA9Ef5zu8b5/Rzd8mDILRJxeMQcj7oiho0WxMdLZUorW2fcpxzN/VLkIXYrLymgxJRj7/YjTOVAtdkfpxHTgnXq2RgVyqPJzZFAZZ8geNbcYKhSF6W8mkXo132/VJba6RtvN2f7ttxmXpsoF4pqNtlwpm8XpxTrrhTVWlQ0iT4XppaBYTCQwb+GXIy73RE+O4TJbpnyPzoLlhdfokIMDn4jUYsCS495FL10BKT4TqacfUUrOUnSTi9qNd9Snr1jf33K4XfP+MfLu0fPTN+eu9eKiHvVcZCwO6tpqdJ7/ayuiNUCIge4qcTol9OoT6uMNlV3j9B6fZG1YgrbLkGfdXIgB2S+ZqDiNFn2X0NrRfLxDb7eo1QozOtqrE9uT51XvOIaGg645GkF2Wd/jVBCROilm/OgcZguzfhHjgE7t1DmKtihvpBiVedSpmN1ixDiPGXpMf4RhRxh3mT1d8nxkbSWYvz3BH/nIyD5slTF2xViyvI6Aqbj7jXPrN4x43BOyPhSOB8Kxw50SbjCcRkuXn6dD7hjLd+YkSut8zT03I5ZwyZzHYGCS6nwOQcxZDSmKruHGDxPWo+veE8KJmEbqBOp7n81/GD+M/zDjd0Kg/kt34lFFblXFLhnqXcvoRradZ30aWR/eUx2OmKsPmMvraWNgrz+aXSjaSkUqhMwTOkyVsfGLLxjenzjdKU5Hw8kZusXivyT8JqJMUGHA+SPWP2L8RlxSyuat1gUgrfsvDRGUnjunhbfXTwv0hEcnOYHihZgZWSSm1NhYPgSYh/JWfCOFQf01AUXOPWLMOrcCN8KtzB/abjF2C7YhVeuFmDZP8su2Hahw1hArg2/05Jo2jYQh1jXCXK7haltE6SdYDysL6aJ9h5Q49InDICLKPjNS93uF2ylWDyPtwz3p8Rd03a/o+veM4x4VHVtluLENt7bltan5TFt+UnlefTSyeaNoPr7C3Nxib96gL1+h203mQjYvXyf9kXjcTxNVPBwIx57N+wE3KIKbW/zLAmqJAqjX8UzYAnHwpuK6DEmYsoP8vBuUtBANRqrfznIXFe9S4Ms48s53fOVOPKZAUJbKbqmbK1bNK+r6irq+EUExIxTKwqGqBmEn+212nDthQ0aHc8d8Lcr150mL9lqpkKuUqMM4oVNabbKo8NuNpGu00rnxOAsAeaM1JMEfdKmiU5GRjB4JsjCZHCkZ7VFcsdYm2lWgWUW2n2jMyqLbWpwDE5tMilrKGFTdTGxQtBE+WN2AMVyNbwmuY/hSc0hrHpoLvjp9YOg/ZBG3oamv0Xb9zIlcjr+KHuVHuS+zi3ritduK2FzIvepaKtNiMt5COPdhanUvrmlt2vy5mSvwC5F36aBmUUzTme0m7XjDxPtcttQX1mdhGxpdU9cXGNNm0WtGCsn7tBP3/uy8LhhyIZzOjskSIzKFL2Z33fTz0dP1b4nugTem5qNqzSd2zaWuJnFyyXsv6I6yGS1juVgnqbyY5BkbsdKRKuoJ8REjWKuoY1wIgikXNuQeVpXFXF2ii/t+2c0TPMmNxK4jdh1X748MjwP9QTOcNKfOcugr9t6wDxUHKg4pctCB99E8Q3+YJBzFSMpOoCCt80rzyra8ti1/w275Qy14j38XB34+PHIAfvLqv2X/09/n5rPIm9xgdHeEt/fw4StN+4ue+i//bzw8/CmrFGiUpo+B4fuoQAHXl3/E9fV/RXPxB1BfEQ8/5/T+n/N4/DnH4+eM4z11ClyZmo9Nzba5mjbDpVA2HdYiyC26nGriGW/WKEWdZvdknf9OlHClsoEmn/uQcu4BaSp8lXbiSkeqPPXFJOFLHfXUVr9znoBDxYHgLU7vJ86uUpY64wCq7QqHwa/VwgUt11mzCKyMEfAZpxXnLizjA9pZgtOkWn62jIlDvdKMV69oDp9Snz7HVneM7n5qA1YUt20gxgJNyNeDqfOxtdwqxa1OvFaKP9Qb/rbd8Jdx4N8OO/7VuCPoijsMH8YTOnm2yrDJAm+lNI1pwMA2OnwuMhbOeiQSMmu2EIWdAoUUrZrmhs3qE9brz6ibj9CmIcXA2L/lePwF3h8YxnvG8RHnDqTkAIWxa7abz7i9+W/gJ/8Apw3V8REef0l3+AuOx19wOP0147DDhyMpObZotsZyYepJmL7O7sCtmp3TX8Zx6mpoteFWVXyiLb9XeX5088irTx3rH29o/+hvT+vPCeVRSdGTJ3kZiixohZCDuoVdSwwZc+QzLiCXFnLg2jho9l3NfZDi1i55TtExpnDmpFZP/q05+CvPIdq+6Lr+Tcbu/v85dQlZu+by8k+m53qMA8Efcf5RXK/+OOE8nDuQoiMmP2E8zCRKK2x2R1favJCXMiNNSpfXMrRtqwxXynClNFcqsTGR1kQqI10yRourcfCG187wxrd8omvemBW/dAe+dCcewogPIxikq0hZQjT0ocdHT6sEhZNi4PHwC1IK3ALXynJX/Yyf14lVFVjVnh/dVFysDZ/dWIz2vDtI90qf9Vytc5dHfqNtVYTrhNaRQ9WS9B+y1uW4ikDkxh0xjnikwKnj7LyttKZSNa02ZyL1fXTsoucX0fJZqPnURK5rOX/VaHkTNQfVsNM1d3bFXeV4iAM7P07M+T4FDqmXorvKuSbKZOhHGbJ+eVrIBiaBK6o+Xysi+g3jA8N4xzDu8HldqrXFVptpjXs4/pLT6Ut8OLBFc2tbrq1gJwCG5CHJOWNaK4jbsvCnTc4dIWcY/dZ4j+gJ91/hP3xBeHhH/xAYMhrQ567cOZ9CcUAQAV1B2S3dsEoRk1zTpXtxqqtmtIc1DdZuqOwmm1Mkf8BW19KJEXv89xSg9iO75aZqpoLdG22lG42c2aHTdHx1xqgYlab77CVBeolNe4o7fDrKMsT7st/K6Jr89bL0tNXM/bZ2YJv3UEdv2AbNTkkH20ppDtrSBJmfrPL00aOmOWo+F+VPNoFnxLk9XTdzv9faEqo/4ee2QuvIn3wa2LTnLurL7Krunby+EqLY1lo6OPK4iIlta7hceVa1x+jIn372+6y7L1l1bxndQbq08GevUYKOFVsleUfL9Q2AC4rDUOHeasy/3rF580h1s0avWprXcG06TNVh30bqQ8tKbVlpw30Y2IURhydGKUgJQrMlKDPx5kMYJwTg5A5GlqkqegmK9yPaZU59XtcodxJh2j3gcuEthGHqyEwpMI73nLovOBz/mldK8zfbGz41LVdoKTgV/nSVpsKTXDOBNA6k8bshMIpx0d+/xX/4FeH+A+79PaevHI8fLB/uG971FXdx4DE6HsJAnyJK12ddDeX6sKalMOGNbuY9nM6dpHkvF7svc8FO9nvBHxjHe4bhPcN4zzBKt0jyRxoE57c2FpPg336nd/jDAMVLiLQfxn/Y8TshUO/DQB0MxsjGc+8NuqsWk14EuvkHggTMACIILUSD6OSBlfoj4bgnHh/x+z5XxjRDDsN7yhWGvKFIKTudSzhSCR7LLkk/orS4JIEzFMbZ7yqL96kCGSchKiEOVgs5pE4W6NN7yBNoymEJUk2Vr3kcEEhBqnhJzYiHWaiWVG1JSRdno40DNg7E0GPCgPYHtN2i/IDKXKQJ3q8NeDeJ8OU9xjLRakF6aJuwdhan21paF4s4XVzT02lbHO/RS3hX5+A4wKmHvlf4XlEdIvXxKDzJ8QPOH/D+REojNWSHr50q/VsF6ypQrxP2qkVvt7KJvHyFuchsyNXmmYMiuR5dxOl2Q6hlERvrGlUfaMIO0wWiSwSXcjvfeauaqZIkhZssaC16x5VRxHHRKhWYHBfey8apOKd3eSP6EEZ2YeSUAr44p6s1dXUxidPWSnufysGck9s/9BNX2Ida2mlNS4wOkz8LBiJOvFgRt/3UdjswToKDS/F7Eai1ruR+iSGL1HEuvuQ2NnFSJ0bFlIa+FKdDAqLCGFkMWyubkHqdsJetiIjtCr1ao6p2qq7LScoCabuRzcriXjPdEXv1QLPq2daeW9dyrRsqYIwDznc0cSAmSaUvKAyYxdhvM5LWJFujkpeP6DFWnhNSTc+IjSfCtDatXLdFnF60jhN97uj2qCBsOADjj0QzziJ2dn9KVd8v3IyAUlNImTbD1E4q7vwsNmfBeomSWXKtS7CsDMEOSfp3NYnbch0UVv4sbAzjvQgNpuE2u9eLOF1PraV6QnhAbptd/PmpKaZsVk0qfNIkxbGk5NrXiqpsrHTEu1J0yodYJ4KOUmSaYMCCmtJ1cxZ+lkJAb3piJwK9rjtsG6geA7bKLal9RT1ameOyDNMpO7WjahVEmM6FUp1m16AisdbChrw2DW8ya/+9N7wPI4/BYe0lbD7FXRs264DR8nx97OBwUPCQWL1/y/7x301oD0/CkXDf0xru5tXfp774PdCG1L3l/Vf/Fx6Pf83Qv6dOnjem5sqsztzSxSEfSzvrIpQOeCZcf92QzosESpLXiyFdnPWzSC0nLNuN8zCL9uPKJKqQsstY5peVthklkp65qEM4yfog9Gh3wriA95roNMkmvJ+d1M5DXAjUKhTH9HINYdEx8bRkoDPXWmlIBkJlqe124lArNCVYLgEhv0WfXVhSBJQcgpXRdEQ6DHVSbFRiZYMET4UW0yi+cEd20RFVkvlFWXZp4BRkw7bSdipilvNUKwlTlvWKMNVlzZKRKnpFVV/RNjesV5/Qtp9gqyuUsvhxh/d7nNszjBKUNo6POTBNNrzaNKxXHwk65vrvMmqD7U6ow6/O3Pnj5LZ22ATrhTh9ZRouTZXXDGZCxHQL5E4Rpz/Tlp/Vjs/edNx8Flj96ILq408wNx+dFbxV1eaC6MKhmYNwY16jErwoLaGI0vm5vOAhpCBrDO8luPnoDQfgkM9bH8O0BixjiQ8pfXgJJLdEy07eqJeNFN91BN9RVVuq6kIK5HabN9nHCcMQwixOS1F0/Fpx2uauLaMEMdZOc83L93sR8iqlWWUu/fQBtDrRmkhjA00VsFbWCDEqGh+otJVngLME00xOZJ8i98llt2/MzriKpATHpJMw3a1SDKFnGHcT6mP18DH7fcPdMbHrAjebgvkwHPrIYQh0I7hcgwgxPwPSLFSHJMUr1ybGNQzbinZ1TXV6hR3eYb3gxSRINxCT3GM+Y2gKozakRK3FHFErNaFqDinwZXRABaPluvZc1J7aa0wwmKioVTUF8FYYmYOCQkfFEEYJRU2eFJMI+HAmUhcXtYrD2TlTT3FouSBdxJjg+7kwry2VXWPMCoAxs+PrJPfk0jldckuAM9FXrp+0EEKzE998+3XaN43Cq039kXA44HuFd0/wHkihXJzTMJKkO/BbrKMF07O4vxeYN63rqbgfYy/rhdDnLpHffmy0kdwZzBSCuBSnl11pRZzW6rlb+uvyPEpXKUgn0EsNyDGCcrKf9F5wiFHPYvXSTf1SV1wA6cJWmoCRfUUO+nUq4pXO12yUDoGn1w5FAwgTXmYY3lN3b2n2n9LtXnO/T9wf/JlADSJSOy/oDhcyVgzOxOny94u1IcTE7Sax6yLDTcW2eZ0xSRUodbbtKl2uNSJOb0yYzgFw1t3rg+ZwLzPbhhP2MqKMxqwM7dad86h1zZWpcTFwTBJWLx2ehhi9HMdseJsc1dGT9NxhzmTcyx0vmfpTGMtpfJhwPt7tpwyJst8JYcC5x8l89qq+4NJUOehcYVR83hEHEKII1LmjIfVHVLt5/n1PRnz8QDzu8fdviY93hP0Dfv/IuPf0Bz0ZGA9JMaYoGVAxENS8D5pzwQoqccYkajNjDmUOtllP6gn+KPu9KH+WLrE7RrefkB4xDqw4D3L+Fuj2H8YP4z/J8TshUD/GkSrMD/w71WK8xXTLiS6iTK6UhTAt7p9WxdM4ZLaQ4Bvi4YA7RsaTpu8k1MpNC4g0VVNjSjkRfU6sjlGSxmNOV1Vx5jg/G0XYXTgdy4KitNuL2zCiU8IiIV9ls7daOMmWr0mEu7m9r0uBQCSqSExKFoFKo/Bn/EcAoy0hdLllbsicuCM2nMSB64/Yqkf5dgo9UAXkryw6BpKtz3Em0sGLtkzitLWSG1lZwXrUJjtDFFNgxJIaMvrEGOAwyMeph9NJ0Z8UHKA59NjjntB/ydh/xTDuRXxNkVpp2ixOX2rLldJsdGRVe+pLg9msJ5e9ubjFXL762olLVe3iQ1xQoSR9a0MaR3Q9EjqPHiMpzpX+ok0qrbArMwU3TNdhiKSQ04ZDIoVEjHragA5OJsJ90OyShJ3dB8djEAfLqECrhspuaOormvpW2HP2EltfSXFhIRaqXK3VoZUiRNxkdrcUWEpoXnG9phQJOQxUEBCy4HDukRhHBkLedHwfAnUtq28VJzTmctkWsjiV/dwvitMxqbM2Qlsl6nWkvjTCAr28EVdbu0FXzTOnK5C7LSwZKkyKAb3aYDZrmoueVeO56hI3RjZsQ5J2Px966omZZs7ub6XPXcHihqwkrV7P7PZkMs/bNBK6CqRgJzE6ZYHkRWFa59dczvdCYC/J0JNLOQxn/OgJ9VHE6Vwgm1TdhJS9HOhYk6IErBrtKEE9cdoomRedUvFJO+C0cY3j9DMSMJkDQjLSZBwfGIYHPjI1t1bEo3pajM/i9CpjGcLyI6WFSH1+jdYTukZE6jov7qWhoUAKNdZEvFdoXUJLEzrMG6VoIrqOE5endOoUFz7lOo4beWbEgKoP6PqA0qO0oi5XlyMQpJn9UDZRqrRTJ/lg/gwRjZ5ab290xRst98G7FHmbuywu1h/R375mdRVZ51zK0pHSHxSb+xPh8c85HH9One+8MeXg1a+N7/tuQ61/BKFn3P+cx/2f8f7u/0MVHa90xU11jvEwC+F5XIgNZSMmZ0lNresTh3rCc6gzJrVhFrXl+lBTOKL83hdEambnfWFlVjpS68gqalZJEA9rI69XZ2fRjPsYp5yK4I/o0GOHkVAZnFXECoJWZzxqkGsrRRHRJethgfcpk2RMzzjU0xSsFcEaqLYYLcUkaQJd4KRIBJXQT5AAYykCUj4ULSLqXNqQj23DXzaX/Hx45CHjO7SuMXpNiI7HNNKFkWrhflVKkSYxOmW3oAjlIEWpzeYz2uYVTfOaqrrE2E1G/BSB80DI/E/vjnmzNmb8QkPT3HJ58Qdsrv4O/vpHmKFHH75kOP6cw+EvOXVfTCiQmMXpGpUxHrM4favy5jc7p7ss4gUSrTJcKctn2vI3GsenH524/iyy+skC6VHE6aVA/XTkLq3lmBzUS5E6hryWlbC14BTDSXPsK/bZPX1IgWMSznxIs6RSuMNLcTqq4p6Wj6rasm4/Af5fz1/jdxxVdcV6LUUFbZqzooL3Hc4fZtZ0kHVzyCg78rrXpoJhmE0ZJQOj0eYstGwpHpVngQjZggFaYVih2QIbE9lYcTE3VZiyQMpUFZzCWmkT5wQ4y2jaqX37wcm1ppTBKHHJJWpSCLjkMClSKU1MDucOdP07Vt3ntA+/z+nxU3bHwK5LdGPkMsKm1VytdTZgRMYg+DqQ+19rEaohc+kz7qNtE8PGMFxesjrIfTKODyLg5iSSuDCsFFduOValuySQg+sW1/i76AELo+Xj9TCvpYIRBAqGWqspVLJSmiY4uugZUsQTpz2JhjOR2kN+Ds0jxpBxYCJIpYwB6fqvcO6YDSchd2bZCV1X2NPjuEflTp91Dqw1Sp0FDeu8V3ppzGLo9yNOJ9dPSICwvyccTxKwPmqc17igGKOezBUjTM/ap69xxlbJdX3GoH76PpbogMz/9m6XRdQjff/9CNStWhR9KEiPbxan9UKctva5a1oZ2R8qIwI1FFSVWuyflscFjIPgEsqRQ6lBh/QiltPal81hIWgCmqAsQUmBw6Uo66ok3awpl/aeFvx0gqCk09T5jnHc4cYPrI53NPdX7G8s98fA68tIWy8QdNkxPfpivfnmsWkN3Ri5WmnsBaTmUoROLR3SiVyYVaWDULNSiZWOtDZKwHdez8QkiBkf5PX0vUHvQetAGzrstkIZTbXRrE6By+PIa284JMuNbTgGh4uJlCJOeVLURJSs2XU1aSEhmMlFrUI2R8W++AHkGJbuoOSJbsb5eLfHh/meh2KcGRjdnnHcc6EMt7aZisel81Gr2ZkPTGsjyZIacgf0TgoM3yBSJ9cT9neE/YfsoH5P2O3xu4HhEYaT8LwlCyrRp8CQuwwTaioUnovTwss3Zo1ZitMlL2jR3aqUuM+93zOO9/SDdJO48XEy4OkUaRcBzmttvxeT2H9pI/GfFoP6v9TxOyFQ74PDLkSXna4xUaO9oeqrPKl5INCEjhQjZikaFDEqt0zObdc94ZgfPp1mdJrBa7qYHQZPJhJZ7CfO0mvjgC3c2PxRROpnHOpFC/7TcLCSkCvtM2QniDyI1tpyZeop/AUgMHPmXF6UDSlgwpg3ndldTcj03kCKskRNOoCDmB3VNqMefOixpsX7TlhmdpMFqXbixirTSpCJaSdntdYavWRVm4SaKuazOF2Z2UG9DEMsQ1wkIk53o6A9Dic4nqA7KeIe2v1I/bgjdW8lKGl8wHvZdDYgwYjacqFrcUIBGyscaLOymO122kQWwfLXDdVuXlwgxr5DmQ7MgB69cKTD8jhkMaUo8svfSW5BCiI2xDi7p4s4fQyaA8Jg3yXPQxzYh5FjcIDFmJa6vqSuLqmqC6r6lqp5hbZbMO1ZIrCKwgRTus+bf5kUbRYlq2qYeWLR5xbwYXILCApCuhR8ZmQ5HEn99iGJMlknQhYml2xJPQlLM6cvqOfi9HJYm6iahG2VhGBev8HcfITZXKE3l5OrTX5xyGLAU8EgoIMnba7Qq/dUG816E9g8Bq6CpVGGU4yEKNgUuWc2k9vnRbZy8kCNCiJOL58RSWthUcMkSilmB3VZqJ8J07lQVLoaliieZAwqhLmVDlDJA9LyWZ5fSyfbEi1U3CIggpanJ3kJMNNhJJo6PxOWjgE9M6qfMNfmf3N5vbgzgdvk/6dyyJK0+t5zXW+40HUOw3vunIZ5wxeyuPZ14UOFVS0BWVnYVnId1Vm4NEkExxgVmILtSZNjJwVIOkkn/himOSXVDcWQqHLb8HSNV41cYxkpg3lEmwFZKi2uvRGCF7xAIBG0yVgPQ9DiwAlqfl8rbdmaimtT84mquLGeLmq+jI6vfIcyKzbrz+huW15vI7WBboTHk7in9X2iuX/H/vHfcTx+QaOUiJUKtJKQve9jhMe/4tT/kt3+zzgeP+eGxE214TKHWhVhGuReH0tXTn6fJfCssGVfCsKcBepf81qyOK3V8+996sYpm7zCOWxipA5p2qy3ymKVwqVEkNVB7jpxUwGwFLC1dxhXTy7qqBPRyvXlfZpYlNEz4T0A1DJZ7BuG0glyDkSq1hOHGqUm0V3E6pRXBuTMgcJRDCJSq0iHCBEuKqJWtDZwbSJmtPxxfYlRir8aHnkII67w5U2LTjUxjvTJUxjCJaAvZYzqcgNn7Zqq2rBefUpTX2OszMfe7bJL7RHvD/iMojoXpwNKVdT1JdeXf8jl7d/Dv/p9Qt3QfPVXDI9/zuHwFzlUaDetE0xK1CjW2nJpaq5Mw43J64VJnIYOyXs4Rk+tNFfa8pmu+BuN48efHLn+MTSfnvOmizj9UkfW+YWVi4ll/lngPVI4/4hjJI7S4XfqLA9DxQ7YJc8+Ok5BAq2ezsQ6C5CR7JpH3IPGrFitXnN9+SfU698D/g/f6vr6prHe/Iy6EXZQDAPD8G5yTfsgfGkfhglnF6Of5qD0RJyupw8z4Q2aHFQJM3ZvOSqlqbSehLSt0tLyrhMbI+L0qgm0q5AzKWaXZrDl7/l3nmB0ltG2DMnzhTvRlfDO3IlodE0JHXYpYpCCT1y4qNvDr6gfPmK319wdE/sucrONk4ta1riR0YtA7fy5QF2QH1rL+rmuodpEhk1D295KMSC782IcUGmmkRexOObn0iRS5yKfhAfGqeDfEdglRR0Mr4KeBC6jwHjESY2mpmZl5Lw86IFjdByDY8jFLa88MSZUSpAiOtWQIkHb6Xyr6DC6mvJWSoeVz0zpEAdSdHIFa402NVVe4wKMbk9MAw0y/0kXizrbCwFn18vTUTxE5R4rxSB+k+kuemIRto47wuFAOIxTwLkrwjSze3oqBKZ4VkD4VmOxhopJCodTALY/TYYTMR0NX/97vsOo1YxSkz8zhQ4v8zyesaaXWI8XkB7FQf08eLq4258wp01CV+dCdXASuLc05Jflp108FWNUbPJ+YYzSTTUqTaMswUghJ5Ay+kpNwl/pRNF57qTMn77P7tZ3NN2XtI9v2O1ueXeIvD54fnR7Xtxfuqh/3aisyrz6wGodCKtNFjgr4ZHnYVC5Q0nR6sQ644TqOk7HXLKMNN5LZpILmr4rz7tIi5syeWwbWW8C18OcuXOwjtHF6XkS8cSoQY2oIC7qEB1al+wZCTNVIZtiEElePcEOBn/Eu518DidCkEDFsnco7ulh3BNTz41dc22aKWfGcN4RsRxxDJiyLu+PxP4o5zL4KWcIyHNvmAIRw8NXcg/v7wm7HX7fMzxG+oPh1FkeR8suKg4E+uQ5RMeY4kKcLh8FgyjdDU/FaWDOMIuSFRT8Ae/2EvrsdhPiSNYtw7RuKXkZjTYZL/VrL6cfxg/jP8nxOyFQ9ylwjHPF8C45DBV10JihOntICe5jmCy5qq4XsPyQq2ojsRfnqztGhk7Td1rA91HLAoIk4tfCRS3t8ikvqOKZUJ1iEBe1aScw1tJJnXRefigRl5at7TEVEmPMaA9ZDJQN1EZbbk07hb4sxTqnI32Sh2VpQx1jmJwERayWRWokkoOKUpxa8mMY0aZGh4GQg9FCEKG6qf3UllLYt9o0qNCi01bERC9cXV0m9jzKwqMI1LUtTD01fYbZPS3O6ZTxHrM4fTxo/CM0e0ez36NO7xj7t/T9lwzjnbjAU5qO2ZWpudQVWzQrnWTCbiJms0W1a9lIFqzHtxxLkbq4m3S7kkBoY0jVSHT+3AoOYGbcy3QtPHHYi4lIMQ7ZPe1ziFrKaI8oaI9DcDxGxykFjN1S1RfU1SV1fS1oj/oKXV9DtSGZZhItVd74qtCgfStCtWnRoVmwisMC+eBz21FxA84ibEoB5Q54NISewMhvO5Q2ubiT74GFI2rpmlo6qMMTzAdAxeyerppEtTHYywvMzUfY648wNx89Fw2qc7d2EaoLIij2R/TmArN6R9U41lXgyjXCdIyePo44f5K28XzMtGpn1ryaxeplgerpSBObOqM+poPj0cvXbNrJLZ20OetgSEa41pOD2lZo79BuFspj7HNI1YgPPcH3E4c84c/4n4q5QDCkKNy7OKOIdPRoUxMXC7IiVsMclDS9x4yPmf8ep59ZOqxUXvCO4x4TnaTHa7sQJc/F6S4L0bvsdBTO5vMW37IBXBWhu4hRoprJ9yRBaJhvqK7HKMdIOiaSzCl1PTvxYXbjm0Uo2iK41wKESB1GhEMccsFFNk4rrxiLSK1K94DGIQFtVX4PW11xrRtulbinK534pdN87o/ch5F2+zPW658x3CbWrTyeToOI0+5Rc/HwOLmnndvRIHMfWKxdf+M1+13G27f/Z7r+LfgjF8rw4+aCC1M9E6ZDSjjC5IAz6Em0ml1cZhKlC9plpeaAprNzlZ8ToZznp/+vnC41M+2LSD2tKcr6ImZWuUo5HMrQKnF5Cr4ikmLBfLgJoRXjQPQHtHMSCuQsySZSBcGLixrExRkjRKcwIU0BicvxbTpWolYkW0umhK6z4yr/nBIntUoQVJi6U0rgUnFdSqGnHDf5aGzgqnH8sW8x1SUAvxgeuQ8jQ+xlw6gbjLHZTS6hUpOrt3RZ6FpEp1wEL6G+skk75qJfNyEh4nQs3bk4jaGyF1xe/D5XN/8L4s3fINQN2jvGg4jT4px+WDiQ8iZPG7ammsTp27JeUHJNHFJgF0WcHlPkY9PwU13zR1mcvvmZovn0Febm1Zk4/W2L3tPIa4lz57Qg6oQ/HfB9ZDwpjnvLrqt4HzR3+fU9xlE2yS+EmT4Xp+XY31z/LS6v/hb19g9w3xNjvlwPxTk9jg9SoCnYsK9BhiWChFpnx32V7/NaiwjaZJG6XRhUps7GhUgt4rRlq03mhxfudGDbeDYrP4nTtpWw20nECmBdzIK1J0TF66gZqensmguzx4WREB1KV6gkDGCTGlJ0OMTZZgCfPG58ZBjucP1bVg97Hg833B9FjO7HyKY1bFrDdhCHZOdEpI7ZqFBwP1oz7eDMQqQ+rhVhtcFWV1i7EkVPSUk5qbnjLDJ3WsKTzhKlMBjpUMnzS5ciOxSPo8UacWFWNqLHhHEGEzUmys8Z01Arzcl6rNKcol+4qbMknhnZMVWgNFr7qfMq5Ip72UOVQrn3ByliK4XWUsSq7JrKblHKMI4P9MP9tN5v8/URMtak7HlMtjkU8besHZdmhqWZpHQv/CaeuuK6lM8PhP2BcR8Yh/rMPe2iYkwCo5y7VM6f71OnT1m/TOfx60dKPueHyL1c3OdaNzTNR7/BO3o+pDgxF4ANRZR+OWx6Rnuci9OlMDQHxZfgaXUmSqsnAnXpPk0hokMi1Qk9RowD3ycx96DORGqtRRgtIrU8d6SQsU1GXNTARltiTDgVz1AfcjxfdlEngnRM+BPj+MDYv6U9fEa1v+LdI7zZem629sxFDSI8r7KT+ine4+lYt5ptq2lbT1fPTOPp/SGM+VppVmhaM3eItKuAWRRbgouMg0aPCR+kcNJPVNRItQmYSgLkm1Vk2zhuRstNrNjbZurQCRn1kZIjRUVUFsKQO23FRQ0Qw9xJCtkkpcv/G6buKJ/3TiVEdWkZKO5p5x5ZJ8Ur23Kp7VkH5HLEqLJJTO7tODrUOKK6I2H/AYJHuUHMIkvTYsa+xv6Iv/+KeHwk7Ha4+xPjPtDtBO1x6CsxjaXEIQVOQbjlHuT5pmwuIEhXaCkeSidbc4Z/LMJ0QRil6BmGd3ItuT2jO+DGR8klW4jTtdLT3NhqQ6XM92IS+y9tiIP6P/ar+GH8TgjUQ4p0MaBRNNFwiIGVzlW0oKlHuxCoIcZIDCO1OaHH8VygDpHYj8Qx4vuI7yV0ZnAGF8QxdJas/GxpUFp546J13U+i3oT5CGEOEjRzMJrSs8NSPdn8J6Q9zuaE+LW2XJiKS13zRteslJ4eyiXAsUsxfwSOSgSSTmXxKCl0lMWEP1u0hlxZl2pfTBUqjsKPMwNaVwTTY4wEnAg/qcbaDToO6NBgbEYOIOKXbKYXbZdTGIb8eXJOW8WTori4AiOSbO7E4XcczsXpeh9oHw+Yx6/w3Vv67lcMwx39cCc8ScRNcWlq1rpiqwwrpdiUSXudUHUtDqcSiPIdU7tVu0G5Hr3aktyAXq2BuWHLGDNdY2c/9wTtUT4XrmRp312iPY4T2kNcUgXtcYqeUUFj19TVlrq+osqp3aa6hmpDbC6IVTUJlyrGOZwiO28nV/U3jeRJ2f0X/HEKvzBmhzN7xvERVPfNv+NbjqnYQ8QW11TefMyLdnLY10K0zuLJ1KafHRq2BbNp0JutiNOvPv12L6QwnFthp01u+7amakaaKnAFGb3j6JIj+F7E3jhg8gq58L+VLgiO82utPA/OjkERmmOEIlJrAzRS9HpBmF6K0lPoYr7edFh0ceRzKUzQR5w/MLrHLE7LE6/KxbHSmr9MPjfM7bOeUa7f7IjW2qLyJrmI1V9/nmfmPjBx8s+OjTI4JyLHdcb1TGgPNTuflziCLgUO2c024WBeaH0zSoRfEadjbo3UhKTk+ZrIm3BxPcmGdvlcO+cjyoI4ZpF6FOZd3aCChxKOlvnUU5Er33cmBKqwJ0VP4yLeBdlABcU2VNltpVmpUig1VDrODhxFFtgksO1V5XBR8Xn0/HI8EHTLxeZnNBd/QLVNVFYCufYH6E+Kah+oH95O7mmTAh6FVwpr1xjbotX3g/jYP/47rrTlyrbCyrarM2FahIUwnTcR4SV4bylMFxFR+JdzINC6CtNmeTlc1MSY5/UcULVcmJZW9On8vsCfns+5MMNbE6iDnliARmlMKo3BBdcVp7b1GCWE1PoxF4wqVKUmFnURprxXU0Ci8SJOly6I9C1b0ZVJJAOxqrKDusqIjfz/s3Ajl3Wcjr3Pbr6QC/MhC10jUjBpo8LoRGUiH1ceXAVZlGQSqTtSShjTYktA7+I+JxeirGkwpsXoGmNWkwO0bFSlm6s7E6ZTkjVdEadBYcyK7fYn3Nz+fbj9E/xqjfaOav+e+8OfL8TpIymNqBSpgFZptrri0tSTOH21EKe7nPewj44+BSql+UzV/I06Yz1+zLk4Pc0Rm+8mTpdiaHZPy0Z5EDZ1FDNF6KXD77g3PBxrPriKuxS5ixJadwiOIQb8AuUATKKWz+K0UhZj1mw2P+L1J/87aK5g2NHf/3+//ev9xrdyIsTj5IaT7qs4idMhdxWEMM7idPJUWZwu/Og2M2EbbQTZkTfjVb5LIwmNOJZL8Kd0VpgJ7bHNaI9LG7hsHZuVZ7UNNCtZF9hWT45BOf4J34Uz5JIIOA2f6Job00gYKl7MHMrKXaTFHZdCwBPyZisSQi8c5e4Ltvt38HDN/gB3x8gnQ+QVLFzUkW5MjD7hFqiPEOc/V3bpok50K8W42bCur2VNnkWRJZv2Kbd/ORfOTl0RecdJ0BXh9Bg07WipViPWiFhllIjU0lKkJuRHX63RSlHl8OxjcPQp4pLk4cQUUCkI5kNZQnYYzklmgksQgSt3oqLyNWswdkVdXWLtihBG+uEDbtxN6/2VtmilhKUfZf6XLJ58HImTOC3mBpWFrEVxeRxyoejXrIdfuu4fPxD3HzLa446w2zHuRsaTYnTinnZ53lm6p8VNHadC+jJXAQDF7FjNH0la6s64F1PQZBxIyU6mkqq6YLX6DG2vvvN7emno0p00fZ7d02Us3dPTz2XDSBGnl0gPKRJJdoJd5c67JQrxadep1qgqr49DRJlANFE6dvsEfWFSL153Rk5CpK5FpC57hjFoxlxo7lWg0pomZR51irL+TfFMASigLCnAOGIYcf4oIc+nt7T7j/nwuObuMnL/NS7qb+OglrevaCtNU8O+qTBLwZc5GFbWRorWSgDo3CUyo1OCU1RNwHaJw6Osa70XU5Q+iGu8XudrsUq0beB6dFz5ilem5dFIETRGueZGFSQ7IA45f8bhwxxGqJQBD8nMImwZpWhfTE/F5b/sOg1BitTDuCOEI9em4do0uYtycYxe0PiDK8ULT+o6ojHE415MWlmcLmJ5ikEyyTKnOtx/IByO+H3PuA+c9prT0QpWyxt2SdzThxRyUS7zpzk36ExCtS6dpuXf88TUT/sg6Rb1krczfJjEae9OhNBPRXUDUwG3dBWVjsKXOkR+GL9+/BCS+B9//E4I1EFpTkmConRQPEY3tfmuELepHnJL0aHcrBFTj6Tay4SXQccpxIU4LW2T3qupFWtMJUDkeXt4ITgyLbwzZzJXBI3dUJLMy1i28qvcij+5K8++UUiBmtzmmIM/LnVhi1rZlC9+ZARGZehS4kDkkH/nSTuaYOiip8vCki4LtUm8KZxqaXsBTVQWHUdxVZsBpUslvsaaNjOqRahOyWPye9XKov01KlQQFxVeXRzTiw/FE/f0y+L0qT8Xp1cPe+z+HaH/kqH/gmF4Tzd8wLuThB0pw4WuuDAlwV2zVdDYSF1HqdivVqi6Qa+2L7Mhv8UQ/vRRRO6qRYWAjlLGSOMoC5gsVANnxZFpZHG6VHtDCUV8gvY4ECeXVBGnhxRBGapqI2gPe0FVv8I2r6C5IjYXhKYh2upMqIy2QsVmEj3OLr2nztvyXmNAOyebfneichLiIOEN72USHo+/0XE8+/dTygtraQkvrbqNlo8qT8YwM4ZhnmAkCC8v8FV2aVSgVy1me4m+vP2NXpdahF3p1QrbHqirKK78wj0MgvkJocf7jqoqm6xmdk9/jQu1oDyeooCmv9t6vp/yp68TpqPRs0C9cGZon/8dPxDGHeN4x+h2wnUdHwmxn6rzZQFU5wWQRk0O6jEGqiTdGmNm0cWY8rmbi22TWA1nGyl58bk4s3RRI7ijlGSDr5QhxpFxfETHkVf1lo2yE86hcDRnYVo4rNJl489Ezqdt4FqJ88Ipe+bKDSRWysjrUxqTMqP4yQJm4iKa898rG6ZAHEdUNZCqgVSdZx+oqkG3G2l1DF7wMW7EjCN2PFGvA95HvI+0LrJyUCdxTIibVRNUwqFBg4tybm5MzRtV8bER9uAvTg1/4Xd85XvazU/YbH6Kv/kJm+Ke7sU9HfeweXjE7/+Cx8Nf4NyOFYqeJIF11Za62pK+p0XcJ7rmdb3mKhcQizBShOlxcU0YpWhzCOGNrs6E6S2w0olWxyn0rLKRtgmTU2s5vFMZoSHP18NoGaOendMvvNblpsdMhW8pjBktbrFaJepc1KiVplcZC5M51IL4GJmCg5JHhQEVNxgf8MGiXJpY1FrPQrVyoEI8409/W8xHGdFWWC3p8eKwLG9KS4twMkAiKC+u9fi8uBMUk+swJAhRUTeRm/WYMQgVobrAoLDjgTs/cKKfuoiMqbHVBqOrRdtrwXtU06atOP5CRo0tBU1SyfzweSMb8nlp2Ww+5fbmf4559bfpLy8xzlM9PuB2f8bx9PkiWGiEjE5bK8OFqbm2Err6RldcKcMqH51ukfdwTA6D5lJX/EEV+exNx+1PE82nNyJOby6n+7q4p7/LWOI9lu5pgieOoyDoDiOnveF+33A3VHwZE19Gx30OQD1FnzNIsktwkdVQxGmtG5r2tWBQrv8uaMtw9z+x3/9r7h7+7Du95q8b4/AVZOODuDnnDItSZAi+Jya5Lwp3ukLRKE2lzZS1UgTqOrff14si9ZgiOimcCpOYZ5DnuIRiG26V4sYGtrWfxOl2G6nWkgeiVxLKrOtqMhTo2hNqjzKRGCPeO155TTdW3NqGY3R0PuBwhDhQAsclXNoTCNQFDYVjHB/phw+suy9p9z/lcGjYdYndab6P21qzaTTbNtK5NKE+wji7qcvHZPSowdQJ31ioNrmzUedG/wIgkLF0D780TIYX1EpPRUGALimO3tA4w2blJdhOu7OfNFEK2K91jbYyTz0GJ6JZdlOPmU0dGMXRiJFnz3JdsOxCzVKgQqN0hTUtdbXF2i0Aw3hH398T4zDN3WYhTg+LeUR0STU5qqfnWRbmvFc52DxCDEQ3oHM+0bfaG0RP2N8R9x/wD18R7r8i3N/h7k+4U2LozOyeXojT3Rnjv7zWfB0v3NMhd71OzP7Ml9eTeL8UqWNeU8k52m5/j6b9FNu8wrnvx0DyXYc+K+7O4nQRTXWtJoFa1xpVWxGgn3If83jKCk8hoCq5b1XnKaT94AD3VKROUClsTNQx0oQgJoCM+lgpTacMTlmcijTK4FXpOFbo3EldxOmpvJOkGFVc1K5/S/34wG6/4d1V4s0xcLkOLwYmQvy1DmoQQ1dlIVYGO7GZ5bWUwt0qz1+lU3jZJVKc6SYkogNTRcYh5mK43Ad9Z5B5NWVBW+b5Ve25OjV0quLBNHTRi1EiJmKKeDwpKgIKH56jZJIJ6BTQas69KQiQmLukSiFzicPQyuDDSfYp454mwa1tuczrRigu/vMR46L4FCF0HkzuhG130729vJamIMVxIPYd/n6HP7iM9dB0B8Mxoz2W7ulj9BKQmIK89mI+nNY4NuNKZG+0zOApncrl68Efcf7xBXHayXVCNg7lPVrB3emSyfItgsJ/GD+M/xTH74RArU2LSwNdCugAj2HMAoO46eqoqYKhGnMFt7TutRETSoCi3MRxjMSQiKO4VmMUt0Spqr60DSwLh0wiXWw6c1rtwkUtG4wBmJ00S2fkMmywtIIIe1omHYOgDQoE/1JbbpXljUq0OlHrOLm8iqDeR80hGQ5ogoFjMlRqpAoiNA0pSCtKSrjFoielMq2L3ybiSUFaQWMcJv6oNc0ZozrGkcrK+y8uUe0cxgdUtMSgKcvksrAu4nQZpYr8teL0idk5vT9gD3eE01/Tn35J172lHz7g3ZEQTqyVZmMqNqZauKc1rRYBw5ZqfVVLBVWbZ+GZ32Wo3L6vjPBk08SVNdNW4KUpI4VIivEF97TGDS+jPY7RswujbJBiwCmk7TEz+Wx1iamuJnHar9aEyhKsIeXFnsqCgV5wTZ9em6EyJK3Oxc2YUDFhB4dxF9juRB16Od9TGOD38IiZ3NMiUhbG1kpbcVAhG5Fy/SxF6qciYglkkY3oSlquf8NiBCDidLsR930lwSutjoL4UBoLjAvMRwyDuAZikH1YcU6fBReeOyLLOXlaIHj6c8DkjF8K0/KzWlr7F+e8IAKUOxHHB8bhLUPmtkvwxoEqJZqFWFvax6onAvWgZANoo6KL4ooaVZBnSIwoJWGsxW6y3EAtRxGnzzajKQoqJEVUdk06t+daS0hLcU+XRelSmO7yYnHIrFifN6PL1ubpUObFXa/D5NYblWVUhlElgjLiqFUaojiZnZewxOlcTSK1OH8k5DQSR4epa2HeuR7iRja9C7eGyn8uxS3drkjjiOlHzBiphkTdRBoXqPvESsnGNqCps2OwxQIeo8U1eKsr3ijNdT3iguYXKfAXww6vW242P6Xd/gEPr6+5tolhzGiPo6bZj1QPb9kf/5LT6S0mBYzSJDSV3VBXW4xZPcMR/abjs3rLlW1Z5WNRigljRkuU81NEqY2Wdv3bzAUuwvTGBBobWdeeuopYG6dNmZn43/L7UpD5PQVwg8L7gN4nBm8YvH4xJKU8Y0rAk/x5bl+2JlKZKOFQSbNKZnKzyLYzCU5jElYHQpQCNqXgVzcYH4UVHRQpJgl70oL80C7lufQ54iO9sKmVjdn59ySt0abFmFo2THlGKgKRUkCMpCTIMF9a5JkxOSGDNApKqQRRrVeywQpHRfA1o91MIpgJI8c4CjIkygmJ2klYkK5QKkxFqOUIoSeUNVX083MiSYBryoK/vIeKdvURr27/l9Rv/j799Q06ROrdB9zD/4/D478RcfpJd8hKGTZGnNO3puW1abhShm1+DQfgLgXex5FjcsSUuDYVn+ian74+cPuTQPPxFfbmNs8J7RyI+Ju4pxd4jxT85J4u4d1+39N9iHy4X/Our/k8wJdp5H0Y2IWBYxBXm09SKCzFBU/GeqiKyl6Iy/z679Be/jEoy/2X/wP3u39D332FCb89ogvAuUfpICuOzmzgKKGIwffinMvr5OIKK/No/YSr2eYiYhEhC9oOEGEvmeymVjkYW9Z8V0pxaSJXjeNi49hcZnF6o7HbCt3Wgv17Af2nqh5lpAgSoxfxJhhus4PwMTj8ZEypMEpQH9rUJC8raw0EAj50DOMdY/+WZr/n/vFjHo6BwzDPSW2t2baG3iW6MYlIHWYWtVt4XSp7jvk4NXrmzBdXck6OSDPQ58xV/3WjOGPlz7IHcknl7hPJ9KjrxDm2S5zUt8pOQlulDFXIDj/UVMweU8ThiDhUKuuCaTcFee+jE6QsVBndTCYMa1eM4wNd/x4fjiQiK13T5LlkiGESxEPhTystppx8X4yIW9klhQua4DIOwEkxqLT4T3zab+iuTDl0LR53Ik7v7wj7HX5/xB1F2Brzer4P5hnaI5RulXxqluG/MHfvuiy8jyngSJNwrychLK/dS4CnrmiaV2yu/g5oKx1z492vPf/fx3iK95CvkfdeszhtW9CVwtR6EqZ1ZdGrXCJ8qVPopeJskFyVZEbBKBqH0gFO+XW45/sCU4GNicaHbEiLrOLcneVUxOXARKv0WWDiUxe1XKu5SyqHwLrxjub0FafDj/nwmHi3DdxsngvUJTDx24yqCNT5Hku5sFd0gpU2GTeWqOtI1cRcBFDYVk2dIgbpGNBVYNUFhpOWLIwo64dxyKJ5pSY2uLWJKwWdMlybmmN0MzK0uPozjzqGgaf9B9J9HSRjJhttpFMiZBe1dFiA3K9F2FXa4ofinj5xa2pubTt1kL/Eao9SZ5qLemMi6Ijqcufwfjc/85d7qhjy/S8F4XE3Mj5KJlkRpw+jZR9Mzn0QtNYpSnE4W/QWzGk9Fd9nfaegM2fXtIjT/ixnY3SHaZ4sYfUmMWUxFfa4UefPih/Gdx/pBQPSD+M//PidEKiNWRFCwCcJ4zhERxVzkIrWE+rDOGmB1jkAwPeRFEBXaeJbxVxJLBvXwqyKcRanl9OhIQs10xavuAZjdkktOJNhQOleQPhn/OlFtVvPbCal7PSAprhHs1jUZEfIVlmulOa6cs/SeV1hSXlNGwyroBl1RZ1yKwiOSmtOwVMpLa2gecFYFvzFcZMgC9byX0gelbnfhVFtF66wGAMN+WGrjbQuh4iS+ZNvo2t8kzh9POhJnK727wmHnzN0X2Rx+h3juBd3VBpZ65pVRgHIMTO5BVxakoujlklY/uYF6HcdyhiSA0z2pDx1KGeXTmlNSyERcvBRcIrgMmbG67Mq7T46YUwGEaclp91izIrKbie0h66vSdWa0DSTOB0rM4vNVkIsU0ws685FkE4GYqMkNUzPAk8IIjg6Jx0KdVOz8p9SL/A038f0GONIzJvWCjWFg250Nd0PT13UcVFQKtzY0oqvDOjaoNvVdxMNXhgSqGhRVY2pNbZKtCae8TGH5Am+x+X2ZhM36NQ+66Y4+72La6QI00vH5Est/V/nmi7C9FK8Mk6KEWboYdjh+recTl9w6t8xDjt8OEJybLNbrSRDl7bB4lTQShFTkudJLO1lHh1Ap8iQnx7FBRG1NOh+U7B0OrtqhBKYoifpipCD0FR2T1/rZmKSl83zIeM8jtFzTHNI2CkL1P5JW2YZxVXlk7zPIQZ6HSTFXVUSQljuD6W5DIbKJKqgiQtsz3SNPekvLCzqNArTTlWNiFCFRa0Nqm6Fg1c3KNfIormymNpjqoC1UURQlZlzC6xJmJiaFpSwE98ow8eVp7GBnx9W/Knb8aXvWW1/xnb7+/hXv096pXA+SdjsQWH2kdXDDn/4+Zl7OqSEqbbU9UVmfmpCes4S/03Gla5ZaSNiQYrTZgeY3CBFmCrP8CtluVWarUpsTGRdhUmYLm2s4hZi2ow9HeVZ27iE7+X+6rtAN1gGL+LBs+tk4Zo+z7dIaK2wRrAiNRIeVTBEwqYs7NUZgTO5Z0KPypgPFSpU1CRfmiSUpFB4qHwuLoXwcpeFVhKI+PS9Lt5LNBpMm8XpIl6VolBpIzeoFAhKRE6XiwUSoDb/3sKhBpnXbZVY47mJinBqGFPNaNdTBgZh5JQ8IUoYc2l1DdoyBwkt5qGFKD27AXMRK7unU3ISAqcMbfuG1zf/NavXf5/h6jaL03f43Z9xePw3HE+fC7s6DKQsTjdKs9GWa9Pw2q54bRpxTyNFiUOSzee7OLKPEjR9oWs+MQ2/rxW3nwXaj7eYq6ssYuVCU92iV5vvlGcBLETp3F7sxL2Z+tPEv+w+RPYfzCROf55G3odx4k4PaUZ7RMih2BCUwpg169VHXF/9V2yv/ja6vib0X3LY/ylfvv3nqNhzrQyX1Zq/+E6v/JtHzFkWYmgYCL6bMTc550An2Zgsi6Il3FoQH5ZVLpSWzAER9cjkcQWqMJXV1OZ+pSw3JnK9EKdXV4n60grua9VKF11VPw9Pr8csYByAjhQ8wXmuR8cbV/NoWx7CQO8DQxKGto7ZRa1ropJ1cRGvYhwXYYlfYvZvJsyH84nKyv00uagbTeeCuKhrWRv77KjWGkH1ZaOHtYnUaELTonV7JlaenYsXzk9ZQxXP5FLsKeJPuTOLIxGgbmLWdWQ+EEOPYI7AEHQlWKbFOuEUhdE6xMAphYUZZh5LR2rpIdXaYmw7mTBinNEe0rkpJgaNOhOnCz9fgTw3SuBvRmmMKjEm2TN5p/A9EnLcdSI61202sFi5x58aG6LPwvSekAXqsL8j3H/A3+8Y957hEVzOkunDjPboyM5oZjyjUUA6F6dH5H30yXMKmeudM4WUrtGqQpsaU0JWU8CaFXV9Rdt+QrP+KWhLHB9wwwfG4fsRqJ8W+5/9/6gw5ulcmSbDSBGnbaswK4OqLaZtpmKRblfz/bgcwc8hliz2VosOVWWkyCY/PYvU4ZlILQaTugYfAi5oNklRe3FRj9rQJ0OlxMDgVUSjJhd1yAWxYiaLzBgvn12wrn9LfID9NdydEvfHwLYNXKyfi9TfZiy/b8nyr5QExxb82caIEcuWwNeCTzEKVWe9AaiMoj3lNd2JSaT2Xp4fNs4IO60TGx3ZJs2tqtjrmkGHvEYQxGnhUfvQZ+vE/FqtkQJ9EWSByTEd4sxM11qK6MaIezpFz+h2jOOOKkVuTMOFrp4/q17Ee6jJFCe7UzE9BX1EmW4yksk35xBi50mjJ3SBfgfjSVzlx85yGCx7bzgkOGRTzHGRTRFU7iDP/Gmt5x53pYzoOwt3udLzcSghkN4fcF7E6ZCLuOQ0r/IWl2+1rM9i/vwSyvCH8cP4z2H8TgjU1q4hOQkgSUmEhRjoVKBTkYOK1BjqoKmckUlxSDS9LHlAZXHu64fWaREAkavaSU0uwqnlPSWSKkFInvAS5iP0qBjOGMDfNGQDK3gPoxSNEhfJRlnh6SnYNpJCXjczJy9GhXeK1SjMuHq0dN5gkOApY7K7XM0itUuROkX66GVTkyIpiYNKwPFLVrUk7UY1omNNyu85JWn317mtRfsWkzfexjeEqCRAIaZnQnVIQMw84fj14rR/hMv9gerh7ZlzehjvGMY9zh8JsadOsNaWrRb39EpJYMRKQWuiuGmtFCietol9X2MpSJdgo+XXl+J0HIO4+HP6tBtyOKLT4p4moz2SiG+H4HIIprCujGny4n2LtZeY+gpsRnrYahKnQ6XOBEvZ8y/+nsXoJHArTJPQNi4mdwA5f8ErwqjomxrjbsVli7QqhRfCmb7riCnzKMlCgqm4yOGgRZguH183yqso7YSqkk2Grn5zpzww/Q5ZCCtMJfdfq7KYi0IRs6tKMB/WHHNicyOK03LhHbPz41s8G5Yi9YTvyOiWJc5jKU5HrdAxSRjb0KO6e1z/lr7/FV3/lmG4J/gTKnlaFBtbsdHVJA5UWXSvn2x4uxiolaeKi4JddBADQ8YFkaSgkQpG4On7eWkhNX3f3AZX3NOvbSuM37xpnoKckmcfpHhTNnBFoF4+y87+GcivW4Qci6LWhiEFXJywkTcAAQAASURBVLI4nTey2hK0iMBXUVN7TaXFbWKdPEuAyT2taz2xEqcQXmMkNTwL07pwqMtYFMqUMei6QtcjphL3i7XSKVPHHOaYhJMobokZeXOlLB+byGXrGLzh38XAn/X3JLvhYvMz2ss/5uH1NautuKePB006QHscMI9fsTv828k9rZVmSJGqksKXMavs/Ph+BGqjBDXVJz85wyC3qeaAs3YqyhpxtirNjYlsTJB0+saz3gSaVaReJ0w7t+ybzfrFNmBBrziS89LyScgt66CHhPZGitPp6etNE88e5tOnY8qYjyxQo4SXG0ugq0xwJUi55FTEOEDJp4gR4wPRGZJVJDcHMSWnMC6IiL0schtDNPqsw+XXDi1ORBGEFSll9qsqd8K8iSqOvTEzXF9y5hSkkqlKK7AjRkV/auho6K1sXn2KhOAYUiJmd18iEZN/1p4OuUW9yGln+J+UxX4RpzVg6hte3fwdth/9bxluf0Q0mvbuPeH+X3N4/NMJ7SGsao9ditP2XJy+VRKi3EXpWHqXuc59DGx0JcGIyvCzyxPtx62I0+1a2oSzmDVxp79rwTsIczq6gZgdmWH/IAzb90eO7xKPD5a7x+ZMnH4IC+50LsaFXFxwClAVbfOKq4s/kCDE1WfE0HO8+xc87P41h8Mv2aSRG7vi2ja0PBc2f9MxBSqHHuc7cdWFPrvf5xBey2zEKK7pRhnWxk7PgTqLzjV6enaEHBAbUVNlvFKarZZi1lXuJLnajpM43dxYzKZFb7dSsK4bdM4fOXNQux5ViZBggRROtEPkonO8OTXsTMOdaXgMDpdd1FFVmIz60KYWXBbZG5wCwfeM4wO+e8tq/4ecTit2XaIfI5WVf7utNatawtA6l+hcpHMypYz5VnB+FqdFZANVJcH4mGa6nwTd8/K5MRlv9ezr02eZY2ulqBVUT1jCykBlYkYRzcGptVj12ebfZPS8VpuL3UE6o7IZpoidS5d32alpXWEy2qOurlDK0PXvOHVfidiF7NMqpQXtkV3aQ5Ii2/yCQeX7wyFCmmT1iKFnHDVuiMIeXw3ZPd0Si1nAtahqEDMLuaDkBuL+w+J+zc7pe+FOD9l52XeSJbNEewRm93Q53nJe5OWWYGeXMWqPwXGI8nFKgVGBzR0xS75tXV2xWn1Mu/4Jpv1Erpfjzwn+kMXA7ycEdQ4oTwQl86XOyJSnuQ/LcERx856L02YjhaKpWFQ30un4RKCeg2MzhiEEyOHlyiz2WMZgjEHpHhhIUXAVzwXqBerDRxqfsySUyV15UjBzZV34xEWtlZrEwCXmIyWPK05Yt6Pdjzzua95fRm7XgcuVZ93qby1KL0f5GeNLN1Z21maNYJs7gFozu6eVUXm/KzzvgjMCSJWluRAXWbk0ijgtYrUww8toTWAVNFfKcGkqTqm4qCM+oz6ckjBkjzw7XQpY00x40GfF6AXuovy/0lEOEFMQ97Q/cqktV7ZmpczX7v9KIa10kgVXRPbcpREDKfRn4ZvAhNkMeT/uezjtDeOgOXaWkzM8ejt3NJc8qLLvSHE26Gk78afl3jTTeywrGj0hWsLE3y7itPNd7hQLkNJUBJleK7J/ikqely5FKkTPeb7b+WH8uiFa17//f+OH8c3jd0KgXrev6VQiDQEXO07RUwVp69vHBeoDjfHzW66bSIzisippwcshYQ1QV5EQhUvlkmIbxR0wKsOoLY4KnyKPYYQU6ZMTB+KiO3LJF6oajxm2GN9kZuzskFRhgNzmGMKREDqCFxh+jRLnqKkkSEpXvFGKj2rHzfUorYqN8LuAzC9O+F4xdJ7N0cB+xTYYtkmwHztlOCRLr4MgIhDWZB9DnnxnQXqaeHIbj0sSvhhSwCcJWFOqwts1rpIgI+9PNGGgXn2G1YbaVvhmRVwJ38r5hPMwmqzjjLlNM8Doz4Xp00nhHjX1g+fqYQ9f/D849l9MwnQ/3OPcIzF0mBS5yGLmR9WKay1hYbeq4kopNgXvYWXSfuaui/47byrjcTe194XjjnDcT+yqNI6zGFKEhTDjPCa0TJ4I3SDi9Olo6AZpI/oyKt5Fz7s4chd63vueez/wGB2DIrNhL2ibW5rmDVXzClVfZ+50i2sqfGOJ1UJ8LtfncrrTClUllBYNraoj63XC2rmVtIjUoquLwNX3isdqQ7VvWd+11A8t6PV3OoYvHtfQ0yjY5pDLT+yaG1OxymiPMgwiCEEucCQ1OSC1YnL7aA26rkRI+C0d1NM1Yqws/DQ0NoiQZiqOseLkA2PoGIYdprgWS9iiXkgAOqCSIdGgPdN1UpjSL42nAYihsmcoj6UwDSKgaReod3ekx19wPPxbDoe/4vHwC8bxAZU8K5S0uduWn9UXXGrLCpMFgTkMR46zbEx2OtAROMTAYw7tbKLhMYwZrZHwQt8EFCot6//Tu3nydyWOKaVloR+9BCMS+eP2mk/sWtr6lJqE6Ycs0hyD4xhFqHHl2ZX/hZc6t1Sa3Vo6BNlERyUBXQv+6UpbHnIwrWFF5yw3OejoMo7zpqtl2gDoan6OpHHkrOSQN1nFbUl44qrXJjv3OnTmM9ZNpLGRNka2QWcudsIoK0UqYIvmjVb89OrAw7Hhf+gi/6f9X3GyF3zy5u9x/fF/z/0f/y2aTyVY6+4rjb5PbB+O1O/+gt27/ytfvfsXhPGOldL0KRJ1y83mJ1TVBYCIK4vgm99mvPM9aDWJE3MgmrglN0qEackO0FwpuDSB15uB9cqzuQw0F9DcWOzlhQhOmwvhALcbzOZqEv7TgumbsgCY+iOxO1K9/ZL1vmO7d3Q7T3fQ9L1hcGbqypjCnvJGW5xJ0zYD6+X8rEJiFaWTQrjtCpM51HHBofb+hDFroj+gXYsZ6qmYqEuoU64DmCFihxEzDCgvC4yJO6+1PNM1Zw7q0taaomBNVLnPTJMDeoooHVEoCXlTWgRrIMWEw01uxy4GLl+YG0vAmNZynVZNoG56ml1gc2i5UltuTMVf+5rPxyM7P/CYAoFADC6L4iJoqbNnw3JuLu7pBClMwYYBSGbF3/jD/z3+079LV1ma/Z704V+y2/0rDsdfZOb0SbIyoqNBsTUVN6bh42rNR5k5/UZprnSi1YEvvOEX0fFL33EXegyKN3bF37Rr/m4T+NmPHrj5maJ6/aPJeavqBr2+RG+uvjNCSlzSR+Jxj//whbBr9zvc+3v6947HD4b9vub9seGtN7xLkX/tHtmFIYcyFeZ0msU5JV2GP/rov2Oz/QOM3eDHHY/7P2P3+f+RvvsKmzxXuuL3bcNnzUestDhQ+/D9FKCc25HIG+8wMI47YhhJyQm6K+X5O4uW7QK3suycEIPB+VwUgN3kOGUyjdRKs1UmI/BknfyTz06sbxPNTY253GLyc6IgWQSvlDEOxs7PiRyWZfoj4bhHrz5gVjtMNfBHe4cZW8kqJvH5eOQQHZ6jBGMZyWjp/SMqG00iEecfOZy+oK7/lOu3H9Nd/h1+tYX3j47Kzm3+F2vzJDhN7oEhs6i9B7dYk1kLtk34pqa22zMHtZqKZHPHkMkF5aejHF/ZPyGmDh25rqUjp6kCdS0IpeKCZZUwlcPupUi3P4kBYIWCRWFhoy3H6HM2hGTiPN1fhBRxef/hFYChaW5YtW9YtW8A2D/+OYfDL4hJnoV1gktdTULuhPZgFoIUsm5JwCFzsQ0aDKySZuUqzLGgmxwp9pjNr4jdCbO9RD3ezfN1GXku8fdfSZfD4UDYH854tcNJc+rslCXTR02XZJsYUpJic76ejdKT4HtIgWPy7OPIzkvezGMYOWZhumQANc0NTX0tx2f1Y+r1Z6j6Wpzd4wPj4c+Jof/eROnlOKRAkwJBacjOeZPye3khpLyEI9ZrYb9X27lQZDbb/Oy8FHb/aoveXD57jpb5u3SZlMJAGqXYm4q7OnhSG7Lo3aFXJ8xuyIxx8pw1O7vFszIfoytvQBmCnvEqywJtjCJSq3TOodYJosooI3eiHz6gdcPrt7/ksfo9/lrrjDtxxAQ/uqmnzolvO0JMnHpo9wf2/Xvc+IhNiRvb8Mas+ERXfFx5rjdDxpylSYjVtUFVFr1qxaVei7tX1TV2f8C2I/1DYOgS46AnJrX382usTOLSRELQjLohmDQH9QXNYxjpU6SLHSqHRmptCbpGf03HFDChMLSuczfwFqMbcWWPD3SnX3EN/Ky+4I1ZCeZvgfqbjk8S1KkOcqPFmDLqI0ku2YQsiWfh5qWDPkZFcGIS817zcKxzJ7NhFxW7lNglzy55PoSBhzCwD3KPeqXRusZkM5Ix7SRChzBOQrUxgsSMKRDdCe+7KQg6hB4fhjxXhnJwUClHbivpbE8pCus7irnGaTESOBX5xnbVH8YP4z/h8TshUBuzwpoGl9tVQ27lcjESdA40VGUhIE4fH3SuqIkL1BipmJUKmtZArhRaG6m8pOC6GBmTkXRfxJ3hUiXcUm3kAZESDgntCd7ic5uf84+zo9gdgCzRLFv4/UB0B3Emh0EeTnEkEanUnFwuieSKlU6yWFxlzmYr/C4o7wfE6ZpoY2TdBXE3BE1QyzAohdYKlzTjIqBhGSgWyBzK/CGpvdKSrRJ4FSBJqBHIJKN1jQ0n2XyHK3FRuxbnNN6niaU3WjBeWhdDFHHahZfF6dXDHvvwqxfF6RBO2JRos6C00RVrVQmDEDlmNczIhxd0v9Jeq76DQJ2KyJE/Un88E6fTOBKdPxOlpwqtS1MxQZAeiqHLnLopGNGwW6ALHoPLVVpJQFdYlK4wpsGadg7f02YhXvwaN1Q+50Wc1haqWoTpphZxuqlZBFkWDEtJkk+cVgnvNG61wnSXqPHxWx/Drx+ROjun1tpyqSu2ysoimPk6hfNwjBnJI4vlfy+jJLs/ERaLs6u4hAZkoer8icqe8F5c1KUYpUIPyQItigFidtVOz4Z4jgJ6QbB+6qBcOuR13uBqF6gGhzp9RX/6BafT5xy7L3Fuj0qetdJcm5o3dsWVaaYQOuHYabl3WIBgVEEfZQeDJjssZ5a9OJfk2RBTIqolBfObRhays2vShx4K2sPM7Okxt9btg5sWiLNYM29OpT7x8gZAROt8jBJTYa4s+nxxyywWeztdy6YyaGpnaKyhHiJVE4gOWJH5h8+du+KmHkjGEvvjuU+xBKItRwk0zd9oVMrigWzKUUoc6oigcKvgo9rhg+ZPh4r/sfuCPXC9/TGb7R8yvv4pXCusTbLhOEDdOarjI+70OYfjL3BuT4vKAoGiqbZU1QVaN9mt4wgvhN/8JsOliEkzNmYpTpc21ekD2OiM9Mji9OoW6qsae3OFubzCXN6iL19hNlciUF/enhUcS/BNSWeP3YF42ku4Ur1DmT3SkDqXEwZn8us7b1MuQ5lcANJMIrZBUWlxT1tmDFhhUC8L1yl5wf7EkLuNrHQ/mJndbnzM7uknmCgtyKakFcrMbbjxKaIkglqIXSqL0QvZOn89/4L8/yJMbfJPubXmhXu5/PtVk2jbwJVzgqdSFQfd8GiEj9wH2UAFlZC7TUNSc8FUKc6hauQNV5zE6QhEXXF9+QeET/5nhCxOc/enPL4gTqfkaXKx/8rUvK7aM3H6xkRWOhKS4l0KfBF67kJPTIkLW/Gpafl9o/j4uufi44S9XOXzbxadD/aZ4+/XjeR64nE/82u/+mv83R3j+yOnu8T+Q8XuUPOur3kX5bW9i+MzcbpwffsUCcrSNrdsNz9me/HHxNDzuPtX7B//nNPpSwgdl8pwlR3T16ZhU9qMSXTfE2PeBzFZFKzHUpw2L4jTJQzxqThd5v2CNoJ8daTZ8VSECsF6GK5yKOLNesyu6SxOX16J4FjCjrPoqIwVlEM5L5kFHrUhLbEf40hz4dg2nitXcasrrkzNne4ZQ6RLXoohpRiNIeIxlDlmdlGH4T3NceBwaDj0gvloczd4YdK2Y2RVKVYVrCq5x0rxKSzCEouB4Nt2U+gnzmmz+CxB87DNwbPrKnC5GqXzsEpUC3Ha5P1SFaFdBUanp6LB8nfXOdB3VBLw22rDEM0kkseU0ApcmgvgCYVW1Zlzuu/fcTp9OYnTOpF55ZoxhQl9UZjrZSikIB1yN4egvDx9NHQqskua1htWg6E+RkwVCMeTzOMxoMZBrpd+DgAvLt6wfyB1HeHYTeL0eNIT1kOCEUum0eK4qKw05QJCEadHIvdRsD07L/f6IXq6FIlKo1WNMS22WrNd/5jN5qc0q0/RzWuZ79wBP3wg+MMifG12b4bviTE/pECX0ZCjSozkDuM8V4YE1eL753DEzJtua/RqNYnT5vJ2KvDpr+H3T6c0emJ3RPdHMSGYI2nscxeEJwUzIz9CwIRAGj2mcvhwfu0rA5o04T4qG6cumjo/U3qlp6JO+fxSgafM9cVFLbz9jtR/oN2/Zv94ze4QuNskbk+BTeN5dVk9+z3fNJxPdD3Y7oTPrvgawSButbinGyv3qJ6ndNE5jIROlqwkclaS2UrqQh32pOCzRpLw7hzrM3VMqUStYJUUW23os+GtSYYxGWKU6yNmfSBGpo6pUgw/W29MHR8akx3WSwTI6Hbo5LmwKy5MPYWjvzQkGyO/bi16jzjCI9rI3wuSr4ylczwG+VxCtGUvrrNrOk3dzPtsyjnmYOI+Brn+lLinC3InpoBKeoFxnV3hJUBY1tZjZnDPSDOVi/ckQ1JkkTrK2imVoj30SXQZQIxov4YO8MN4aUi45w/jP+74nRCotZa2Jkkdmxc5MPN3ioB1xkvMjOkUOJs9VWY+ahJJF6e1klbXwrYNmhFNUJZRJ8ZU08rsRgjSriZt/Qbn59CK0uJhqysRJeJCCI2e5A9EfyRkXq0k2krrY6XFjdWq7CRRilYHqskFPIdLgAjUpVWnahLBRSodqXVklROKA0qq3nkUdIlJc7tSLIuMzD9zUT4PSpinNgb6JBvNIlKHOKC9JZhGNoZhQPtBQqBcAK8JXuGzg7oEvhgli5lhhH6Evp+RHvV+Fqf96fNzcXrcEWJPtRCnL7QEI65yQM5UZVVMFf0yRCwO02YkjcO3dj5NoSiLcBT584E0joR+II3+zCmd4mIi7PMmw+mJNz2Omm6Y24h2UZ1xpyXYUpxShXNldI01TcZHtGjTikhdrusQwf46kTp/b3bh6cw0LOL0qpINUL14coweuvwsr9tEN2jcqqauW6h+ewe1TefBiNuFYDqL0eosaZ6zr2euXyoLrAV25bdEkKTgiW7I1858TRnF5CSoyEnf0RNyW7PxHUbLfW5AeLARoM/itLipl0K1YIEW7XBPhc8Stvo1hQjtAsYHbHdiOP6c4/EXHLsvGYd7iCMXynBjG17ZdhIqluL0CjJXN50HmiY5ziQN2cUbVMLpyBANowo5sCoRUkCl7GT+Nce2PHfIDuoYeq6UEbSHKmiP+b7YZXG6YG/K5rQI05ND89f+u2FKZS9Io5ASSaUJbxBT4k47jFbUylIHwSg1VaAeIraN8/XwEi+8oD6Y6b/lrCU3zCJ1DNkFtGRcy++tdcQlQXwAWbCHrUq8qsU184vdmn8x7vmr8UCz+oTt5mdUV3+T+1cbqlYKhEOvqA+O+nhEHX7FKQcjquRRKEYSRq9ommuq6pIUPS6MU8jZ9zFibs3WhVOa3XaFHyvX30IsMUE6FS4D7TXUty325hp78wpz/RHm8tW0yX2pE0ZV7fx8n9ihW2GDT639u7xBm4VelwvbT1mayw1OYVPPSDA1hdjIJX0elDi1tcYwYz5CyJzpiMmtyComjJP/RwzT8+CsAJkpHWfHduGg/tqhNJDmDaKSLbdWlqQMKulJ0AnkAC+1TCx48uvM3EbbrCOr0XM5Wq6c5Y2ueTAVXWY1CuZE7lNp5i8O6iLanI9EzHkEMrzSbDc/5vXr/w7fNNSHQxan/+WE9PChz6xqKVetijhtWz4yK97oik+yON3m9vBjMPwynLjzPUMMbE3FR2bFT7Xlxxcnrt946ks7tUfLyX+C6/k2IwssZe0QHu8I+zvGL76keztwvNfsdzX3p5oPruJdTLxLjruMHDnkTpE+i3Jdafm3Wy43n7Ld/JS2/YTu9EsOx5/zePgF3u9Zp7lT5srUrHUla1iYHajfE2M+hJ6YnDCn47k4XZAeBetRa8k9aL5GnF4WSiEbTxazicnidem4uDGRm9XI5ZWjfX0uTutcwNJFnK4aCcjWc7eFQp7JWhsxHgSPDgHdd9h+YLPy3PSeWycM8wtT02WslIR+1Tm4TstzPhUZMhLigPNH3PCB+nBgd2oF5THGs7Z/oxW11axqEanrheAEs0i9/Jo8DwqLeNF5wIy0EjFf58/zKMewPG8vrD/DKFVNERjne72Ye2SvkbAm5uLVy3PutNdAi0i+uNUnI0x2CSplM9pDQhG97zgc/1o6VafXLAK1Voou+DNxep77JdIuUrAZgv84BU+rLLvkxUUdNJvB0nSBqomsDiPwiAkBNY6yP1gi1kIguZGw2xP7kdAF3DHi+xnT54POXTjkThym4gwsDRUwpjR1pL3z3eTKPEbPqABl0aaRwOL6krZ5xc2rv4dpXkv7VuiJ3Xu82xFDnwuRgpsRF7UX7GT8fubvYwy0Kch7Qs3r7bxffor5ANlnSx6MICbE4bwR5/RCpP61nazayvetNmIuqprJKEQwk1B9ttYaHabyBCeCdJnTJ5Nq9oY8y/tAT+uTSgnmwyqNJ6GTIhVH69nqNk05Cs5LwcAeH6n2F+z3ivtt4m4d2bZBmPPtt58/Rh/pe0V7esfo9sToaJXmwlRcKculkcDoJZZD3p9CaT0Hwi66fzBWrskQiOMjwYUcMqinjq6YFGEhVhuSdFokPYXSDtHgtMWnhM1dPUWkJkZQGf2XkWJiaLMTykfE3QpjpFIXU8D7jtE9slZaumsWaA9hL8/PmnKf6ZRwUU8AbB0TMeoJM7M0GcASCYKEZXrpkBy8Zh8KbzpNhrEpCyrOXZsjKYvv9muNblqbWaA+E6fdAnUS5/WYyo7zJOHVGboKGaFYgt9VDKTF/aZ+cFD/MP4zHb8TAnURfdXCh1ZcAS9x1b729xglk2be5KX898rlB0EeJTAxBE1IIlIHk9iaCgJ4HQnRMxIIcQCvpypheSDZ6gqTPCq00wMshV5c0+4B5/birPA9KTkqJNF8Dj4w1EClJTRLECU5+XgSqKK08lQJ5aRaXdlI5RM6pjlgK80iddlQV0rPAnUR97PTyamIS4EqiqtQo2RjvRCpU3SEMOJ8R2W3BH/Ahj47wwLKVUQP4yguvtKuCCJWF2TE0Cv8IzT3jtXDDvP4Ff70OUP/hYjT/QfGcU9MPVWCNrcPbrI4vdGZWYjOC4yXHV/yBs9bxn4t5mOxsUz9kTB93uc2v+PENi0cqxRSFkiLUArei2vaO4X3wpsenKH3WhhXUU3BiMfkpuCXsoCX9O7M+35ScX46JAxRHClnDKsnayKlS4ujfFQWaiPCdG3OHdRLsbKuE2OTCJUiVhWY347xDLMrpjjiS5v/s01q3mRNIT4LlkNATdX0FJS42F3/3Kn6HUcJvEtunM4tFGZjDm9UGpMCPnliEBZ1CCd8qKny5kEDSVlUygGTyZ4J1Qk5js+gGIU1/YIofeaUDMK1rboOc7xjf/q5MKf7D8TYca0Mt7bl2jZc6Hpyrc4LcxGnV1l8qxcLoJAUY1CZPagYlQTKtNlJMSQjnRZEbMrhq+X1l9f39H2x9K6Kw5Q48vqJezqQOCbPQxi4z/zVU/Q4pC04LYXpM3TAgoP9RNFLMRMVUySoMG04JPh2/r7H6BabbEPlDc1gpe3ZCbvOhPhi8ApAHEfZMBm7iKhj8Rwazpj1yzEhJlRipUobrRQPrnNLZ11H/kcX+JfdB6JZcb35MdvLP2G4/RHpUjZk4wj+qGgHhz3uGbvPc4jcI3U+D14p2uqCpr7OvGCfw396wveE+Cht+cvQ0ykErTy7lZrazFsbWTUF61FP4rR99amI09cffXt8j7boi1eodkPspLOpHPcUHgkuElwpUi9blfOPT2I1pCebnSK6F6dVkUiKWnwelJi7KZJHRXFKm8V9XdjxZw5qbSb+dLCalFtW9ZPHwRSQGBMqgF4UPMr1r57ehQuxmnyvle6pwhwFpoKvWTjLp/dfJayDuhbsydbDVmkudc2jdrLOyPcWk0hdOizm+3Xe8CdMmlFOnUqsVp/w0Zv/Nfbj/xZzOKA+/BmPu3/J4fgL+v6DiNNBnNOJIBgAW/OqanljV3yi60mcvqhlPngcLe+i4ivfcYiORhmuTcNPdcOPa8fNq5H2eg6YemlIC3oPxrxY7J5c/AUL9nhH2H8g7B/wd/fs/nLk8UFc0x+GivugeZcid8mxj/LMK51UfRTGfk8C3bJqb7nY/IT1+jO0bvBuz7v3/4Jh+ECVAq91xZWtuTT1lOdQXICSaeEnM8L3MZzvUARxhoXxzDldirgyzwtvenZPm2fidCmUwlLUKx1URVg1bNHcqsSrxnF16VhdxZfF6eye1qtN5oc307pPgRhH6kZCiIuDOgZBCHUdq+0960PgylludMVWVzzqkT4Exuyintb+aQ5RU0CKjtEdGMd72m4Hp9fsukjvxEVt6qVALR+rWrGq0uyU/qZTNBVlmDIelnd5cX+eB4zN4vSliVzawLZ1tE2gXQXa7RIVIL9xOYVGlKCo6jgZTkrwX/n84kvNAosvnVdFnEZ4yrZaU1UXpBQ4dV8wDHe570Nmz6aIhSkyLMXtQv7OLmUFIugkpk7QQWmO0dEqw05pVlSsnKXq5Fm63o9UQYwmuq1JXYeq58Czki8RjgO+C4Q+TZg+7zL7NrO5l+vSMko44kiaQp6L8PWVO3GInj5FvFJo1WDtmqq+YNW8YrX6Eav1TzDrH8uepH9PyMI0gC4dlZROnZC7c0/f2/x9io422lzoCHS56FEXMb4Yu6LCZvFXUFDyDFWrFapdizBdnNPfRpxeDm0xl6+Ii86V5AYYe7lK6ixOx0BatejqhKnSMxc1sBAvmfI+prVw0lM2hrjExYDydJR7XATqlAVIh3c7qv6O5nDL4XHD/V5c1FerSFsFaqu/Nepj9InuoLDdW0Z3IOHZGDGYXCnDxjisiROCbOZPL4oCOYBS13mPUbXyrAsB0w/Yvsf2iVClyXEcg5qyOYrhTzBApQumrP2D4M1Q07wua+vMUU4JpQ1kC4tKeuI1i/GwORNxR7djHHa80RUXpsr7q68/PuXaixEJRfVaCmspTd1uyyeirPFm8d1FjQuKPhhcUuxSCUPMOVDRT90NJe+mTwGvwGb3dNGnAHT+s7Dia5SyZ+J0XIjT8nP54S4EorOg6BISvRSzgwpCDEhBOj9TQv8gUH/nkfj3z6D+Yfz68TsiUM8A/eUoG8NS1RXx6uVK7vRnDbo88QxEnbBtFmqjbFJX0c/V4agIaALCnC0jJamajrhn+kJKgaq6I4b+bPEQQ08IR7w/MQzvGd0+LyAC7XLRrourMVGZNImIXzeWzimd0RbCkWXa7IXy5pNsNsecAFtGQMTpkFJuoROngsu/PJKF1xSJSSahmFxeCHXy8PUHtB9lk+0SIWM++l5abZydmXrjqBhOinSA1cNIs99jHr8i9F8yDm/p+/d03Tuc2xPTSJ0Qt6c2Z+J0CUYsbUBPrxLhUWUHtRshO2LV2Evb2OqFgKPoM77jeNYeHo87YnckHA+5zW9erIaySHX6jG8Vo8p8r7laO3hDHzR91BwK54rIMc7J3VMquZILuFSbC9fq2TUeYxanE8ZB1CJKFwzEJJxkW9zZNaPn1tHyUVu5r4IWDpqEWgr/UNuEt4poqxdfy3cdVW5Za7SZ3FSFiVjuZ5PDZuDc1Vc2R6SZkSpuwpg3Fb/dAj31xywmjoQxkhaL3bL5s0ok0rTAfBjTon1HyA6glLyEJib7olAtJmArjtpn6I9vPsZFnLbDgD3c4Q8/59R9Sde9x4cDN4g4fWlqNlo6Dpb3S3FXGcUkTheEQTn2dVTSlZFFhBIoU5wUXolrySgRomRL+fUrgOn/lDbuOHCZ3dMbZc/QLkusxyl6xixOl+bLIkxPc0QWC6b2wif3dwxjDiRx8pmAQ8JiSXFSkh/DiM6umlorVkGzGi1NH6hPEkoTV3OafHlf0xUSwixSBy/lVW1lkzkOueiRcSAhPrkn0yRIo6FCzsu6ClxvRuomcjhY/u/de94nz+X2Z1xc/BHq+o84vlpj6swuPWrMIWK7E/Qf6E6/pOu+guTQKNzCPd00r2RBnU6E0OWgs+9ng1uKokbN/Fij1BlbsLj3Kx3Fqd5Eqo3OotN1dk1/R3F6MVTVYi5fkaK0ARMDdnTU42kWqON5S/wUjlg6T8yifXlyUctcqdUC8cHsaoxLzEf0KD+gTIOqKoybC2hFnC5dH+KeNi/wp8/XA0XAKtdPwf2Q5t8t/WJxcjKdHRcUKE2MXpyNMX6tyHT2c0ZNmDFbCYqs1ZFt0lxqy4f8nHG5NVyKQIhxOh+npyigsl4xSnFKkaZ+zcdv/juaj/5X9JeXtL/8n56J0ym63PfgqZKEIt6YwuiseaM0r23govZolTg5w33QfB4d+9wCf2EE7fGZho+ve9aXEbOqUFqfhSDLAQ9EN6CNnQRNcVyeB6o9XTuE/T3+7g53f6J/CLx723J/qrn3lrsEdylwF93s2MrFuMcgQWleGarqis3mU9arT6Zuh8Ppcw6nL3D9V8Jvz8/64pouBaGSNbIUp7/Nef42I4bsc44SeKzzHGCzOFppM+GwmrzGrTC5g+e8i2c573dJsTz6Jj+Pt0pzqxTXleNqO7K9Dqxe2RfF6YIQUHXzctdcDjpUxhL1ERU8OnjM2JP6E83qjk3ruBwqrpLlwtTch4E6ekYiMXqU8hMuZxKok7ioYxhw7pHUf6A6/h6HQXHoIzebGfMh6y9FZRS1EaG6ysYOmLsklmK1Ci8p17mIlAuCevF8nY8hk3P60grSYw6fFWawNvosUGz67UF6o0x1HqZWxOkxF7fG0pkkq6LJMV3QHP4J2qOyG5r6Cq1r+v4dx+PnqOSJ+ZlqE1T5uexTmgrUiiIO5RWHghJCsXRR6ygh8UftqKKm1po6WcxQYVRis/e0MUoQ8hjR9YiqF+7jjO57Jk57YdfOSMknDk/EXNGlSEfikPxUfNpl1/RdGBkVKF1hzYq6vmLdvqFt37Ba/4Sq/Rhlt6TxgegFD5lyZ25xTsM8v5Tu3MK6/T7GMTqqmCdDA6OyjEgIpElkkfD59SIGKouu6/k+bMVF/Z2DZUF+1hhKAHUsGJbgSWMWqYMXnEitiS4+c1HDLE5bG6m0rK3qpKbiTVkf2wXuo5gMZmFaRnG6JmJGHB2J4wO2O6GPK04nxftHEai3bWTVBy7W5luFJh6HSNrD0H+BdwcpvppawgOB1kbqOp53eNVaQuKzOC2FOXFOL4feXGDHkdg5fO/xPmFjPk5PsBEFh1Cevy7vuRtlcDpiYu5wTWScl2BBkyoHbS6Pl71sCf1UykrQpHtkGHf4cOTCtjTKzlk4pMWe4MlHdlETZnFahPayOZSxRJcIhkf41X3UjEnRJdhlnOCZczrn3ZxyMKIgN83kni7mRBGk9ZnoXgpGy2DIcgwAjK7y1y1R5yDLMzScZPNId5j8Lh/73OWZd1g/ID6+8zi3pP4w/mON3wmBGrITKWc9G2Wmza5RanJgTaJscfqYWZwuHKKSbluGMYroSob0vOCbJltvCVE2dBeZSQpZsA1AFqljUCybJU3/HmtXGN2gtJWHTAqEIGm/o9tL2nwaaBKsjITGrFU1tTxXOk4sZYAYkoQBlCChiXM8O3afVu8nASoVpqnOqISnE5D8vSRNF9eFM3H6/xGIMWV2Wsjp7F7aO+MgmI8woL3DDp44VPgMqSvhSjGCGxW+U+hjZLUfaPZ79PE9of+SoRPu9Kn7YhKnmwTrjIDYGHGwlMT3jbZn5//FayfIsZM2vdlBnfqjzJ11c7a5jMe9fE9hTk9Ij0fC4UDsesJxYLj3uEFN6A7vdXZTLLhYSdhWISkJ4cyTYR/11Ep0ILLLldrCmhxiwOelj8ZkxIedKrTzmxNRIxmDKW5bLRX0FBX50hVxIypSlURktV8/qRk9c6jFkqCoTWJcOK6TEVev+qbKybccU7tvdlQtA3sM5CAWskuj3ONzBXRyWZWFh1OCXOlP8wL2NxnRL3jjI3HBaDNZRKmyq8dQrvOFi1rXE6+9uCe1blHaPxeqAXTIqA9mkSoLnzpEQj7Wy42pjgkVI3YYqB4fiMfP6U+/kOKOf+BqIU6vjaVSenLSPU1mh/z8eCGVfSp2ZUdxPaEasuigDDFJgEqRppe/Zin6xVRkqezzTxGS47XdcGvas2T7LkV2OTToXJw2kyBQ3NJKVyi0uBdMI/dLLuqUkVIQ4TU62cxlxx/JZXzRLFIfopvEVAmSqqi9pRkidRep14lqlEKI1JGE8VfcVvImFiI1MAdzydfTOC6Y9bMAYXSiMoJaMElR5SyCi42jbiJ9Z/j5fsVfjn9N07zmYvt7rC7+JqfbV6SVXIu+l2ds3TlMt2PsPufUfck4PmCTnCWvyO7pG6rqUs5PzEXHMBLjb9eBsDz/c8iNnuaXubBc3MhSlC2uILNtMrvyEnNxK2FKv0Xwqbn5aA5RdD2m66j6kdA7vI+5y4WzzWwRpYGzTXgRqJeMSl1KgaU7qYjUUVqAyRxqFQPazSsGFYMUGd05f7qEpIbKkKx0S5nFs3spTqegUCGh8jOBGCYuqfwj3/ysljk+TbkUMJ+TZQu3HINybNTkRqtMpFZJREYE31BrM4lWoQTInVVx5qGzOG2Vok8Rbbe8fvXfsPnof0N3+xo7DDze/795PPzFuTidOW4mi9MXuuKTas0npuETZfg4i9PWRHyQrqXPU+Dn/oRLUTAYpuUTXfHJauDi2lNtMk6pBNmWQpLr5ZmsBd9D8NDbc3F67Ofidn8k7B8Iux1+3zHce057zeNDzReHlvuguUuRu+TzGkA2w4fsnD5Fz46AsRu2q49Yrz6lrq8BpIjff8nx9CXe7/nI1FzoanJNt3mdDPKMd5ld7VJcnN9v34H4TUPc656YhOs+idNljsxiT6PNGeJnyZ7fkpn7+XqLSeXC8xxaJl0WmiuluTSRm/WYMUAKe7mamNNPxekXjQjPLkAr3xczk7o/oto11QbaVWRzDFyFYoywHJShi5FA7ozIc1HKRdq8IiCEEe8PhHFHfRroxpbORbox0tazm7KI1EYrajOvtb7OQa1jyuuKwjEtLFPOAhKLiQcW3GkFGyPO6e2Fp91G6jXYVmNWZtGlmc9vmJFWmvPW+VkoSrM4vejGWGbalOtvck8ri7Vr6vqSym5w7sD+8a+IsRNTtIDDqFAYJR2dLsW5QL1YD0voa3l2KlI23DgiOimGKKiPCrn26qQw0aCHiou9IwVP1SdsG7BtRGk/m5mQPYQ7iRlF1v2lK1KMTC6K6DVGjUuKDujy+v6QArvoeYjDFIR4iE6C65XFmpaqvpwCIlerH1O1H6OrrRgXQo8fPgjOQ9uM+Ftw1OPcoRMWjs3vK+T4MYxYLaHlJio6XWNSwT4wMbefitTiws8Iu7pBLzoZftOhqha9gRJALeS8I9SQxryfCwGzsvh+ROsXm9QmzIfW6QzzUQTpShkMYSr0vPhaigiblpiPR7zbUXc7qtMVw6nicErcHRPbJtBWisqqX4v6cD6x6wKbDyf2p88JoWejDFem5lZVXJrI6gneQ5AqBr1q5zDKIlDnkYKf56vVCbNpsMcgLmpX7mtZ/8RnBcJsZElqwqCU53tSOez8JZE6GVApc6ctxqwmITflLhTnj7jxEZJjrbcvsqdDtoCUZ46LKtemNFGlHFyZ125x1oKKeakYD8co+VwiTjPdq7vk5xyoLE4fgqOPgtwsXRt6ck9LyLtSJoc+Nll0L8+kIGu/pVkgP7O+Kcx0Fqizczq6ac+C13K88MQkWR0/jB/Gf47jd0KgjnHIm5BIIi04lguuXU6irlSi0rLBLVXSwk9T5fNCpE4hYdvyEEwZPh+mRaEwtmQberMQqEuwYIzSvuoYpwVcShGta7yvs0Bi80PY4UOH8ye8O+L9EZsSa2WmNsyNtmyVnfAGZWMYI+gIcYxnr12C9+bwvRBfrmTP7uIETxwVZRThulQrjVK0yRJ03twgk1FpK0lEYvKE6PH+SBV7cAfMcEFVN8TO4IzGo4gzhhtOUHWB5tBTHQ9n4vTp9EVu79udidPimK7Y5s/FvblSM19viXspE5L3WpzxLonIOA6onAgNMrclN0zCEiHzSt3cmltc0/FwIPYj/uDwfeK014sEYDU5pJcV2jIZuryAG/PCdURaiboSABfdc/c0uVKrl61EeeOcvDj0fQumQTtH0hoVI6GyU3BCqPJZj4pQAU6RdN6D2eeunGfXzdcs7kBEU/U9tAgXgbOw14uTsjh5QRb98LzqGRZfczkcNTgIXRYA+yPJ9b/RgnjijXdHQi+p4N6dt3BqpWbWY0pERPT0YUDrjhBEoLb5+k/R566KcCZUa23n+phwIXjKOlUxTl8rDociTtvjI/H4Od3xLzme/ppxvOMCzY1t2JhqcqyBCJNjihgMY16Yi/tJnjlhkco+v8+U3+OMCSp8y0rpidVnKQvC57zw6X2ozJMrxb7k2aL5qFqxWjDnxpQ4Rj+xGYdpY/pEnM6sN2vXGNNQ2TXWrDBmdbZQLA4EpcyUnj2d6wAkhVd+EqmPQVzGxYFYa80qWWFRd4H2FKjXiabcIMX1DlDXL4rULF3TRaB2njie30dFFGxtRKtEUwXaNtCsI8NJ88XDin/uB7xuud3+lM32DwnXP6W/rNFVIozAAZqDww4jqf9A3/2KU/eWmEYq5L7RqqauL2ma1xizmdoRQ+gJcTgXOL+HUe4XmMWx+VoqG6AcRFiBaRt0u5pEp99GnJYXIG3CyQ0YNxC7E/pwxLQee0rUjZAsJZDsOb+wDPPC15/KvxMXdnLQ5KDEOIvUKmhxcyP3svKjiNglANcYQmUF77EQrUS4yvdPuXSyRqVCzE7suf1f5c3jmXv6SUBPQtyJMTttp/da3p/6+uMBeaOv5blSClgTnzsxuag1TOjp8ts0TBiIMUWCbnlz+19z/fF/z3D7IynAvftzvjr8Bf1wn0P5wtTJplKcghGvbcPHWsTp1yZy1TiaKuCC5nG0fB7gl6Hnve9olOHWtLzRNZ/oxNV2pF6nWaAL+UhkBm3hyqsQUE5CUKfndAyTOB27E7HvCLv9VMzuD5rjvuLxWLEbKr4ImrssXBW3Vh9Dft456ahKkXb1CevVx7TNLVrXhHCi69/RdV8xDHeY5Cd2/zabHMozSy6LbCpIEUeYxOnvc8Q4ytnMrckaWY/ZfP6Le7qEgFf585I9Xy+K0vK6ZywCiDBSo9miuVKJ23Zke+FZ3yaqmzXmauGarhrhTX9bcbqMzLtNIaDbDWZzSbUxNKtIYwPboeIyZ2W02lBFj0ccblpbUGq6totAHZMTNq17oOpOHIeWbkz0LjL6iF4U+UWgLp+fo3yAKTDRxEia7oN5/lCAUucOaijuR9knbXTksnVstyJONxdQbQx6VaGrBUIhRFKMuQArf1/uQUDm6RFBfI05+G8uhgRcjFOg4RIfpDAYs8JWG6zdUFUX7B7/gtHdYxLEgktMskZcXsdJKemQ0tXCtR6fIe1DLri5GOhykeTMVa4hBMPlY4P3iraVjImqT1NhUuUE7hQUbjg3o4yjhCIO3jB4TZcdmV2Cd9mJWQpPD4sMjVP0DCSiMrSrj2ibW1btG9r2E+r2I0x1LazpJLlFYdzlLjzpyF2K0zEM035AMAKzOB3j98OYP8WALYGLFg6pxihLjaFOigoRM8va+Cz6JRfulbHCgf9t53CKSH0lfznuiAXllzsSVAioymIqR6wiwZW5Up3NYdOctciUKMjBqQshC9Yqoz5SXr/Od0CZzGQ+9f5E8EcYdjTHE+Phiv5Sse8Sd8fIqgoY/esF6mMf2HWJ5u5XdP1XqOS5sAXvodlYR12XAioTBlRVFrPdzrzvdoOq8/4ndxATPCp4wa6sWmzbY9uA9wntnruPzwI/83pteXyM0vgUzjqlJGMmyWSvMtArm0ZEzJ3fv/cnhnFHCCfqJLjTyT2dzjGT5yK17ElGCgZPQtqJwkV30x5DTfliLonzf8w/t+xw2OXcjFNykzh9ip4+hUXXxrwXF4Z2i82C+1NxesZ5zKGJKpWHejV9TT4/JwUs9y0iUo+o0RK8rM9jGAjq+7nH/0sbPzio/+OP/6gC9T/6R/+If/pP/yl/+qd/ymq14h/8g3/AP/7H/5g//uM//k6/R1rnxSmjEASFzRykmaPKJGhVJlJNArUsMGY2U/nIbsT8PLBZHaoaeRK3MQJ+erARNFeLRW6wsomLpLzhjDgcwadpU2hMM1XX5AHjMxKjl8VEGrnK4vRWVxlXYeYFu46zS8HNIQ/zggkRzZ4EdbioJkG0OBuWw5z9eSHqKqYwOlSENBcARKAx+JgwSkKMAjMfKcZR3lPo0e6EGVvsIG0rMShCcbIPierkqbuB6viI6u4n5vTp9Dld/xXDsMP5R5qECPZZmC6br1Vx2mb3/NNpvgRluqgzdkOOU+w69OqUeYN2dkCZOTCH4AmPd8Ke7o+ZNX0gHE/EzuGOAXcENyiOe8voZmyHi3NlNuZJMCwmwRKOMmZnaIckYx+j5//P3r80yZatZ7ngMy5zTvdwj4h1ydveua+SDgKOADtFYXXMOIXRKXrVqj9AX2CG0YMeLX4CTWjRLAozqozq1AFKVqdKB4RAOhIIIbEvmTsz11qxwiPcfd7GpRrfGGMO94iVO/fOtaWNyJHmFitjxfJwnz7nHGO83/s97zHMSZwWrtfiMElsQ3Xamh2TEw8/oGZbPtfQNCdheypYotYp8d0kkRqiVkmkjkWk9vXjBJq7fD//rPIUl96XHdk93arEo1W50BSqhUkQbkl2KqpY2GiUYyuFgWnUuMGngsKBcLjDPPnJBGpJbL+R1uzDntDPCeMivwOWhVp2EMghC4UB6LUtDmoAY3xxDGizQkUrXR5ATKxqkNepVApK8+JSzyzqWpjWSYiyh3s4fMx4/D7H1O69AZ6aToJGtEErVRiQGeMDsI6aXoGJugpQBYI+4c7WovzifFUnrL4m8SFRZyfPg4Mri8zS9BdnntsLnpkVbdXS1ycm+zEVbbJrSsRpI4xppdFKglZW3VPa5oqmuUyLxdphlMPaHFp3eN9jUrFQOS1hix4yY58YGaLHBse9rxx/VcDS+uBpL2bW05w2RFQ86umhSN0v7bZZoA6zI0w+dXjEgpDRWkRpEL5v2wWaTlqLP3u95jdm+Lf9Szabr3F5+Ys013+K/ZNrYqeIM6gx0iZx2owD8/Apff8j5vkeE2VL5RS0dsuqe07TXGHsFjfcJX76WNAJb2t8EbfmCVqmibK5bVPAmVmcql9mSIvxNWE4YLZXhMMeexixK1c2aHnkInfZN7xBr/8iWRg5KDHGhPlIbPoyUjBi+XltCLbBW0NoFFhVgm21jhXOSBW8hwrCXlTegx/wj4RcxiiC08I6XKjQITkfa9eqvL83vKecpnhyLNJmMQlCVrZ0qTPr9M6Q/2WDYqU0M5FBaZ4++WWev/9Xmd75FioEmpuPOOx+S8Rpdzw5lhFPC1yUYMQ1H2jL+ybwbDWx7hwhKPrJ8qkzfD+MfDIf2fuZ53bFU9Pyrra8uxrZXHl04gKLEBdRJpTruIjT05ic02ZBgHhX4b963H5mPgSGvabfW+4PDfvRcjtbdlHxSZjZRcedn082xPswsw9Oin7NE66238ZaCSMehhcchxeM4w3eH1hHVQr316alU7bgc7Kgl93rM74w1sNbFqlj9JBdc8i1rgCTPv/aUFIcrGjWSBh47pjKa/gsJNQF6JbktE5oj8vNzOapp71qMNuNFLKyMN2uRKD5ScTpPLRFrzbE9ZYwHNDrhqYbWHeOzRDYRhGn19rSqpkxeqISW8f5UIi71fkRN9+xGg6M0zP6OTK5yOwi55jzLFJ/XnNacAozS8Erd2lktEgW1PLafXFSk8IlI5etY7N2XFx5VtfQbC161UogaBUOqHIxVYtQzRlWZEqZEwvOo3Lq40tI4RQ9vtxXxOVozErc082Wxm4BOB4/xsYkBCmN5PMspqCSy6KaIk4LutCXrhWZ3WL5k48RpQQ/0gdXOm8hCdgatmPD4DWXk2PdOto2YJt4UqQMYcmRcU4VYTozbA9JmM5dkR/5kfswc59QHvepMyIL09qs6JpLri9/idXqHdruPWz3HJWOBX5YkB6p+06bjjoYPYYciDgs687EQg5hwr8tgTp6VPVcd8aJ0z8VFdsgZoUuhkcNUuRCnjZvZQ4HmceVd6h5RNVZM8ah204YzO2ISsWGPPHk16d1KtJnXJdKeKlYFc3TIwuxeU7UUg6pXo10TYUgRjTvDvhZMB+2v6Q/au6Pkf0adn2gtZ6nqYPiTWM/eF7cR6bb36EfXtEhobdPdcMzFdmu5gcFY91q9Hp1wvtWq81Jh09BlTSdFPPWa8x6jzkEWVtkfvjZc5+vBOvjY1M+jWfh76ejcrI6EEF3cU/L5zExzXfM0z0hTlwoQ/MI0lXuL6poGl6JyEz6zILK3bYPz79FDzkVpiWsVIxifQyPdjDlQHZ5/zqhPRq06bCmSyzt5kScrsciQJ/+XQ5RXHAfXUKGPCJSp/1LCCPWrJndnmne4+YjvKUuia/GV+OPevyxCtT/8l/+S371V3+Vv/SX/hLOOf7u3/27/LW/9tf4nd/5HTabL15F9a7H+ZGQ2HYnASuJXyeBgpGVCak9WBKoTZMc1Cfu6QTaTUOZJWzQpCC0JoTEL3al8nYddFnseiLeVDfwFCI4K0fwgRmpCuZgx5jF3MToE8cPXNqGJ7bj2nRc6YZtDi+rNuohqFIBls1yLEgPP+siTk+TZkhV/Ckxe89DZvJY3Gun3/OIUE3UeOWTCCWtPDmmMn91BNkkBkcIgi8J7oCeD5jxAmub9PmZwkLu9gNmGrGHOxheMfUfMfQ/Yhg+ZRhfMY47nNsT41zEaWlZFQG/ID2yOK0WsSxPWlmYD0Ectc5pEahnR+h7VNMKdzAlQteTN8Hj716JA+qwJ/Q9/jAw7x1+iExHxdhrht5wf2wYnC4BC30K1yyCdFqMi7sko1FOXSZ98Bzj4p6u+XxLvM1DbmhMxQ6S+1aR28R94ZYCqNCU//chooLBoROiQzi1zilmF2lMLVJH0Er404HCoHZONkfKRUGLPCKA/KRjSc3WKRxvWTA2CTGjtRJxKBUA6pH/f4oweLkOpqNnNUyEwz3hsJPFWHZc/LgRHP71ZynQ6oaw3wt7MLVzzkHhK5lFHDkanTBEOUBUaXvSYhmjw+iuFHW07paNh7LCl42Ox27bKoQloTw517WbMeOAOn7GcPgeh8P3uT/8gHF4yTtGArKyi042dvKaDYqASSJw5jYDUXjOBIVX0OhlsSdhKQ8PVb72rNJ4Jd0tNvJGnECINXdWEWNgk9zT21RUyWiPQ3Ds3JRa6zIQRJzTSqnEsmuxzYbGrtluviVCq9k8zmdMGzmjO5w/Ylwviz2zR817HEfpFojglCxKj8FJx44XcUUcfw1bZ7noPau952p2ImC1rWzujc0e8CJSLyJWat3znjA7QdF4CTatmxGyM8Y2kaYT5uc8Kl68WvHvB8v/Orzgh/OR99/9RVabX2C+eof5Irk0xkhz8LT9iBkH9DTQD5/RpxZhm84jhaXrrmnbJ9jmGm06vJeUcQmd84+GA/20wyPKeFAVSoJTIdSfbS6K80on7uRPwa18bOjNFSZ1yOj1Gr1uMI3HWgkLcnPNn354EPxjm/CT8XiBpnCoowM/nkq7UeYfEns6NA2+sYTGgKbgPR7jT4dZoeZYCofazcVRVzul66/ycIkPkru/ls8mj4wZOz8OuWOs4KxCda+o/r1WyX2GuEvzpnW5C0j4cQD2BK4uf4n33v+ruPfEyNDefMzx9W+wu/s9vBvS613OoCZ1WW1Nw1Pb8dx0RZzerEW46EfDq0nQHj/yR177ERcD16bjWlneVZHLi7kYFPwU0ImxrVuNH0a090mcTkUnY06u5zhNuLue+eBxQ2TYa8aj5dhb9kPDnTPceZ0yJzwvw8RdmDh6x74IWTNHFTFmzap7ynr1roQguiPD+IphuGGed5jouVSajREm8lpbaUlXi5iXhUM5UgvaI1TFh7fFoI5RHKwgbdbn7un8NbsTy700hfWtdGCthQcrJxVVcT8mNqywp6915Ho9s7nydJcae7VBb8QxqNpVcWmq1U8hTqdROjbaFWbVYVcDbSuvcY2YY7qMGowelzo8T56DjADw+BRax3xgnKCfJQDNh8jkwgmPtmSBqJNtShlSlCJd4yNLoFZExYT4qByO9Rq5BTYmsO3y8YP2ukWvWlTbPgz85az8ZHQxyISQxZ5qXVthZOYozum8phUIjIjPWnXCW262NHaDMS3TtEOHucxNxCBiYSUmZ+OGTm7DzNYvJ00quOVjL9+VDJWZwBB9WTD6ipPd6o69M1x7w2ZsuGwdnfXiYq+6yWafTEBelxyZPkhXZBamM2f6o/lQsjP2fmYgEithetU9pWufcXn1p7Dtc3T7hJxREd2e4PbFHa2URdtNydPIuKga7RHCWEQsHyYk9PntCNReGY5R1rYAd2GqQo5VEXYz1jAXT+tRCsxvaQ4H0OuNdMB6ORZ4h2pXgl1rW3RrUMYXMVo6o6p/r2P5jFsVS2F1ybU6DRk9hcg8JFVFQuqgFBe1Ge/p9tfsDxuGLexH2I+RdRs4DPJMj4nUs4u8Pnhe7OCw/894d+BKG57ajndVw5NGkFWwCO6mUQnvsT7lfVdIlTgPhOAXkXoehVO9atHNhGkiekzz/Rna67GRjw9Q5ngVq5DYfKyUEpyP6TBJzAURXzN72vsjTYS1sSfYNOCMQR0ljyhKwW3KBQUEQ/jYGT/F0735Y0axIfiCEszi9JjEaYcI4CqhPYxuaax0adpUaDvFDeXONYOpC35K2NVamSJGK2XRuivYnoJ8rApRlP3LiDUfS8h5QsUO4/3nfkZfjYcjQuGqfzX++MYfq0D9z//5Pz/5/3/0j/4R7733Hv/m3/wb/spf+Stf+HlySjvRY4G1tonVnMVcCRRc61Dc09YGTCMbe93W7ulFnFZaS/taWnRpo4gtmCBOZd9ErJMW7tkrtr7BR41XhknbstjPwwbPkIQg5w9JxpXbdExVfROlsaNVmrW2PLMrnpkVV0bE6Wtl2EJZqOeJfh7rCT/dqOeloj/NmnE2DN4UrlJ9I34sXduUr/WFKktSo6BNrkqdk4xLu1M9MYdUNR6TUD0Q5j16XNEA2q0ISahWwWP7I6p/TRhfMg2fMo4vGMdXJ+J0RntszSJOX+q2CtBbsB555AksT0JtUAxe0zlx1DZjIPQzoenLAlzNEppTAs4SY9Lf3RL2e8E67CfmQ8ANMOzluYbB0E+WV2NT2vnqYz2xcPiy2FZvFpcFvHCtxugX9nSs08kzvuCctbcsSmMYiD4JYkn4KKKcNilkTxOaKuBTq/IIFpyLzA5mC8bVm6K0iY3QTzDMImb7UdGOHjMOUsH9kuMBk1ZROiHyIkwHJXczRykY5YVIEagRplg/WqajY9pNmM0Of/cqnaruxyaHx3kQcfr+hnB/gz/s8YchBePI5kRwI4vYWzaCqIS+yQGi00lIjdaeaDw6dsTgiMahY0rWDgZYpbAlJ+pYMKiQP0P5akIovFrTH1DHzxiLOP19huEFq+i5Mhd0SWE7D8MyKCYVilhQpglFur9JIKIPUiyQY7wUvPJzlUV73gAnEULyupd7o1aq/NkpOZ9i/oU4npk175p1un7l2hlS4ebOT0xEWRxyei0Ys8I2G7r2CavuGReb72LsBpWDafNmzg9EP8hmr2Iq57AWY9Z06c9utszzHpJby6AYgmOvtIQrKc3aGNbBsBobunvPs/2MXokInV3Uy8ZesAAKToTqMDvBB1Q5AiBOXdNAZ0LCXIggOY+Kly86fufY8a/n1/zBeEe0Gy4230Fdfotxc0G0IlLaPtAeJQtAuxk1H+mHT5nGXXFEewXGrOjap7TtM4yVgrEgPnrZ4OLfyPX/SUd27qNAk5x0Kt8jF0dM7j75WQ/VrIqDSDUturHYlWI6ps2ZUan76sv9nkUQduVBdFXHBOlar8puyhJtW9zTvlHERr1RnI6VPmNcwMwONcsG2fvppP1fCuXLP1zCe2J+ivJZeRbkyjnyJ3pxkEWvlkDg1OJdu17rkTetJrnP8qec7yP76FmtP+C9d/8n4gf/A8E20t58I+J0P7xMjunE+I4BEyOd0mxMcxKM+Lyb2awd1gaGwbAbGz4J8APX83IeGILDKs2VabhWhivrWa19Kf5DKtICwcu6M04ONUynqmEKTwtTwE+BYQfTUTH0lmE0HCfL/WQ5BM0uLiFMu+h45Qf2Xu5xBz9zHz1eWdrmitXqGW1zhTFrxumGYbxhGl/jQ3+CPVtXuAmdi/Tls4zM0S9rj/R3NcLFv6GQ8pMOcU4vwkTGTGSRenFQm0XYSjivdQopa+oiSFDJ7Sav3aBYo9gCTxrHdutYX0fs9Qq93aLXF+Kc1mZxUX8Jzi0sDkPVttiVSkGggfVsJdQ8dX1Z1BKye/4cpGJQcDjXE92eeVJMLpaHOKjjiaBnlCqn2bmTOgQpSOl5ZnL7gj8kO6iVKoiVBrOI08mpftF4LjZeuNNXzQNxOq+HcwEmTtPiiAwi0fk5Mo06sVvDCXdanM6C9jhhUMfArECppszdco5fMM/33O+/jwJC6hYMcSrzT35umb21OBhL8XkRprN7WsdTATHm5wi+qIy5szQQadHslWanDOugWPtWWPpJqFteh3BvM6qvTw7MfE3X7NpP5iN98IyVMN3ajSC1WgklXq2+Rrv9RbCdzAFe9k/BHQhhSOKVCFfaJJExYbfK14Ryinkflu7rPsyPnpM/zbB2S4gDxzBDmNm5STohTDYLCepjDorZaawJKRspcsIIfEvu6TJyt8M0oBOPOk6DFLbbtmA+nJGyBywi9en1lr6WR+WcVss618eHorQM6T8iBnGu+0kwH/MeM43oXsIS98fIvoNtF+mnpTB1LlIfBs8nd55XN4r7/X/BRs9Tu+E9s+ZdpbhIxXTISweFMkg4YtNK90gWpysHNcZI9w+I+7zpUodai2k1uurarkcdSvjox/DIUZE1sBLTi9JobZPbeOls9F7c024+EuLEJukipQOo2muUbAy1rDGm+jPLbuqz1w3CmK47mKe0DxfntE8IQZe48K7sy7NzWvYf8vqNWaFNW8Tp7Aavnc+nf34oSKt0P8jXtjIrVPskYd26YlIoz5HMZ8aPmOYaP++Yp1dM02usuXnDp/LV+Gr8fI+fKwb1brcD4NmzZz/Rvzv2L3Buh42BS93wzK54x3Q805ZnSvNMRy6tY9s5YXWuA01qidatSpXFh6nUSwDOGf9TZ6EgYudAlxxC185igsIgTpW10qy14RAcV6YtDth8YwsxlsmtDonJG4oL1fB1uxLXNNK6uEYcDm1ykIao6EeL83oJjkEcXLmSPwdFH+TrLjmnF2H68Sbtx8Xph6PwQitHhsqidcWhnt0BPd2m4+qwYUBPW+z+VCiajh/h3B3T9JphvGGcbpmn+yJMtxE2yrCxDR+2Gy51y5VegiNziAUsQtkiwMv7FqauwnsDI6miD916pu33NIcBv7qTVqiqupkFpPn1ETcE5gOMvWI8miJKH2fDwRv2QfGiVF9TBTbWnL3FsTQGX9ptcwt1iBEXQxGsfRSkQanUIqwurRqZDM9afzLbOFdVS+V1sot7FFBmBbbDDCJ6+G6FmTv03DAHi0cLg2sQp/TcihDdVLP87GGYoB/g8FrT3jg2L17B/Q+Yj9//3PPni4xTjrywwzJHPqN6AHGx6gWnMkdTSvRyvsvBa4YWfRNRZgR2mOv/LGLz7cKoVNk5nxdu3olzfjjIz969xu92zK/39K8c/U5zPBj2Q8MhaCmIqOXayG3MLnompNXSAeN0hzEjPrWC5QWNMS06jBjdocPS7h8g8ahtuUiV9wUFoOcZPfUwvGI8fI/j8Xvs7v+A/vgjmjDxNdPxpLvEKl3uR3MMuBhO+L+ZB+qJHFLY6EplJqihRUTquhDkSZvRyvlqlKKJhlUKJUFTzvN65HCjEEUSmYmA40Oz4s+tn3Ot7Ylz+taPfDofufUTTilyarbWEqrUdU9Yde+yXr9Pt/o6dv0+YfuBdA6EAG5CzUdy8r2bdjh3h3MHhuGFhCOGqTiMcpu0sWuUFsbb6G4l2DZEXHr9Q2Jp9qajnxum+zXXP5q59Hs6H7DPUojUegN0xLZDNSNxnvApTDFMDz0eupEOH9NIh4zSojmM9/DZRy2/dbvhN33Pbxy/zw/9wMXFN/nakz+Lff//wOHZU1xnsX2g2w+SHu9mQUaMd7jjR9ztv4dz99jUXaLUis3m61xe/iLdxbfQzZYw73GuZ5r34jSPMm+9jXEfJkYfCm/eGF3OF4NPjiVDGzTH2WDHwGaUjpcwSWaATsG1b4NhCUiA0GGXgoR2mPVAeyGOdpUKY7kTCyq3csiBO0lQL/f2k2cHOMMy+dL5kr9bF1JIfw7tGre+wHUtrrOEtcasI00bsXZxdIcAPhUM1RixoxQmmsM94fgp4/Ax07xLbjpBYsirjckxXYs66b2l67q+frOTKrf8+jmJZhl5NCqGXnOcrMyNwD4Klmc5Guneo+S3ZQREvg+9wvD+e/8jT7/xf2Z89jXM/Y7ww1/js9e/yf74MW4+LuJ0mAlxpomRrZIQ2A/aC75mLviu6fiO9Tx/Kpvw3V3DD/crfj8E/sN8x/ene/Z+xipplxb2tOL5ZqTpRJx2jyyY5uMp22XpYFP4mZRD0XB7aBmdLmsEORaBfZxL1kQWsH4w7TnGQFAWay+lm6G5xCYhanYHDv0nDP0nmBiSGWPBS3TalIBeHyP3cToRoee0vsjrjYx4qj/b8BYyJOSABKISA0YOSLTps+2UKV2PYjIwXGvLNeKGvrSOlV2K0aMzTKnw3yPF1a0yvKs03+hmPnin58kHnvXXLrDPnmKunhTOql6nYLAv2i31OUNvronDAb3ZYtav6daOi9Zx3bdca8u9brg0LUP0uOBwZ949wW2Ax+P9IBzq8RX9UXi0uz6wXQVaq4pQtXSsnbXuJ+SHDzBNCnMX0IeXTNPrRaDM7G8UrcoIktSVphTXwAeriQ/e6bn+WqB72i3idBKoVdOeGDaUSSUM72GaYHa43tPvNDf3XeEs99ELpzUGhpgEnuCLE/EQPV5pjLnANlu69oq2uUIpw7H/mP3++5gw4VPXU4wTNomBOY8l81+ltV6ukZDwijkoFQJNOgcz/77G2swKQvDMyOu99xOtNtyacWGjK1vwZae5NrG8x9pckt/nVO0BHIBeYdsr1u0lXfuE9epduu5dYUx370CzkXv+fCAOr4pjGmReMHaD0isRpvMckQvslUhdHNQZtxgzEjO8tQyJ9979Hxmnzzj2n3Icb/jBtGcfZo7Nmt6s8abDYzDOlKyCdgz4yROmmTiNxMQ+fttDrTZFnK4RUnq1Rrd7dDsW4TWEVFCt/n1+vY2KD/B1hiVHAaToRoyProoyKCuEGef2zPMddviUZn/NRdux7y54XebvyPXaE2K+5iOtlcDU+6Pndz8e+Y3fh/VvvGK//0O+3Vzwp1dP+XNmxYfrBVvlXBK410ECTrcbzPYKfXGFzniPqlCntJX1k5H9Rgz+FPPRjCn4OCb0yel7LF1vVffBw+NQryg0WlmM7lKn46agMJzrGcYXHI+f4dwd66i4TEXX8vuSqSHn46ACJqb9fcKKPNYNvrze1JHJ0sHcp2LZEP2De9XOTyeuaZ/uOSYZWYxd0dgLjFnRNtcnWI8sRJfjnMRoYzfLV7MShE+zIbRrfNcxdh3eGqZtQ+wUqpH1f1kWpnVXDILljPtfLGv9q8Oezd3H8O/+b4+8+6/Gm0bk4Rz71fijHz83AnUIgb/1t/4Wf/kv/2V+5Vd+5dGfGceRcVyQAXd3d4CIcTHOdEpzkYIEJfVbs1XSHriyIma1rbinrY0lGLEe0YeHbTk+EqaQOKCy6SjrHSpmlcqthslhiBEchqaEaQ3KF8dAXtxkHpwsgEwJ+JNFdyPPB6xV4mhD4vABXsvEOqvS/hxCwgwkzvEcFH0SpveVMD09MoHkyjDk6mJ8IPjWX4vT5uxiXo5hLFVjCeY4on0HE2g/nrTYBz8wDD9invdM845x2jFP94IGSeL0Oi2sN3pxTRfsyVl1FNQiTkeZFttUXSW3/XiNmWXRNPYOiCKgT+I0q91QcZKwsunOn6A8+lHE6YMTztw+ynG+ia4I031e9CZBsN4gZoG6LJSJlVNNEs2lBZIHTtGcFFxzrEJy2wlzbkCbFcFTgvdiSMJHZpxGB2YlG6aE+zBGE2ZD1BGvFdO0NGT5AHMJ4oLZwTjB8ajQh0C379H9LfP4iml4yRcdb7q+P4/fmhmwsHDipUij0eHhuTuhOATNZrL0e0fTOVY3NxJ6NI2JLZlSrWs3RwrH9Ic7wYLs97i7A9Odxw2C0JEOBdk4Z9xF3UqbOwskSEXaIWNwBCWM42QAP7kpK2VR2REfbMI3OzBSNc/OyhxGqcd74vCK6fgR+/0fcH/4XhGnn5uOJ7ajU4Z9mFMwkbTXBuLSCcEiRA3JUaRzGnY6lmsMXilJuq+O8eKkqBzZ6Rg0CSOjeShQzwQRqGK+r8AqKt5vLgraY8oicHQlnGSKoQSSKC2u6a57wnr1Aev1+6wuvoXefIhfX+O71eIa9iPM+xNxep7vmFNbnPPjkop98nkswqJSDY4ZXTmpG6W5D5Ns/LVm7S2HO0u3nrHrEd3uxUHddktLaw7uaVtIxYYwiUSvWxGmdXJSg/y/6z3jPbz8Ucvv3G74LT/wu8NrfuQGVqv3uNp+l4vNd5k3W6LRGBew43wqTvuRmMK5nDuWUmVQ0CT3dNM+Rzfb0k5YHFgIL/hN6fVvGm+6xo/B4RUEZfAq0qSL2kTFhF5cLQjH33nNPOqEQZHNrTwGVNu9nTbhjGMpzkEtLiQDOjOdz3Y9tVvYF7fwst2tz/tzLBPUgoKR61yDCizvJ6E9otb4xhDShkXbhT2d78shJL0iIMil2cu5P97j5h3zLAWZmtcs2+jKbZlebu02DClfoh7nrirnlAhmWZz1mtknZ2FyVOaMjtJJkX6TdFgkdr9SHILj6bNf4em7f4XpyfvY/kh4/bvc7X6XQ/+piNPp9cj78OgYaVCsteXKtDzRHe/qhndV5Ol6QuvI0Bte9y2fBPgkTNy4gWNwBCI2iaYtipWW9WLOq5AwuGXdtxyhpUiR8wjOg9JuxoY+CdN91fK/D/5BUNo9Aa1XItYVwU7jw4xzB8bxlnneY2Ogq/AYNp1XPhUZAqq43rMg7XIRHCmEx1RAySWJ/I5ymPIXHW+6vuuR3dP5/pGdiLlTKheiW6VYaU9jlmJ0MWCw5HYA4p7Wwl1dbzzNJrFWm3YpNCf3tBQH385QbZfcmBZlpK2+VeK4za7wzFnPCK3aRZ6PrghXKafFyZrKJ3FqeoRDDZzjnoFUe3Vgx4SBKI7Z5ByGkotRvqZ181pHtt3MaitilmpsQiidPvK6KL/+U856wA+R46HhdrL00RVcXe2cdhV7eowep5Q4DivmtFKGab7jcPwROkzpvBEAVWaZZ7HLl3WxRauGUsFlEQYjoRRIssBIOh71eR+St3MOnqA0IV0Dfcif53wiTmf3JsAQPK7Cl0xJzMoPB0SlUapltX6XVfdMHjn8MAnTMeVjKD8SpltiGE7E6eKqVBaSGE8tNit7+v/VyHiBxVn/xcebru/t9Z9hNT7B6Ia90uyPH2P8VAT9tTK0WrFFs0nz9zRpwuyJs6CroneCUfwZDNV2qMESTUI3gsztbVvQnvU439vXIzuoYTFo5c7h/Od8Pjy2OgrZiBFGgh9gPoiLelwzT4pxivQT9HOknQKNkUDU1graY3d0fHQb2H1qePryd9iieW4lyPepCVy0cgydk3VILuwpo2Qd0+S15+PtX8okjIw2BZ322M/m9UZ2KBdcaFzWOb6a52Pq0snXbEZTCq+5TbxmOe9j9HgvZgjvByCUgqY41WV/otWy96ivQxDR2isECfkGI0Xes/TRC2+6FNH8gw7mqTIXijitkimmlZybJE5bu8GaVRGns8bxGLZDaYttrh8I07UBwTeK0CnMBrQNtK0YI7QmGRLyu5E1ynAl+/XD8QJ1t0bdNo++96/GV+PnffzcCNS/+qu/ym//9m/za7/2a2/8mb//9/8+f+/v/b0H3/d+oIXiHFkpEXe3SjYXKxPoUsuLbWJyoT18fnFGKcJ0apFxvRcG6BSLI8a5HIahT9KJYZnARFgWv4jWijZqOhVO3UdJuM4u0YyoyOnl10rRJmG6UfFBO610SCnGqE9SaH2kcKZPmErZkXsmNkPlli43dlVE6vL78uOMYXjuvAGqBWSqGqe25RwKqfxhOfbRF/diDfjP4nQToUuO9E0KRMwifgnCrNycU6wnqur9JkHNKwVRJEPjDXqO9HuZZkOIhMmjh4Bp0sYzc2CnxI7sNUMvuIjsmj54XRxROfG3rsLmRWtewAayS5oTcbreLObjHFjEadKkLmEM4qSuRWqtjbhmUltRTEKHnOOC+IiIWB0AFRcfpE74zMylDrrBN2KOyZ+oc8ukmDdE06QYj4rV3UBzf0voP2EaP2Ocvnh70Ruv71iffw83zLmaL4vJUPivxpkUyJXOg1Qs2aNZOUN3aLBNZPM6uc29JyY3ZmbbFuafdyJM933hjk93jukIYy+L7dElfM4jrzunfJsUFOJSu58PU/mZkIWFqtig1Ig++wxPRkikrNTiFY6fMvUfsd//IfeH79P3n9CGmXftiivT0inDHAMHPzNEX65fWTCCjcLLDmkz7WJgDopRu+JoFXXcJ9yHPlkATpw6JzKapUHSHr06vU9kN19e6GcnclDwVLe8Z9e0aKbklOuD5+gdhzDLZhDK9WDNuojTFxcfstr+Amy+zry5xHWdoA28R7kJZgmpcdOOebphdvfM8z2zO8ii2KVwoazwZfksB5ck50eIHpc24CYq+uAKj3qlDOsoTrK2C5jGodtehGhtpO28Eqm198RZzged26e9J/pQunkyMqC/gRefdvyH3QW/6Qf+43jL96Y9unnC5fZbbDbforn4kN5olA80WZyeBilsRAduFIF+viP4aREcMNjmgrZ9gmmuTzbAPov2b3AJ/bjxpmv8kARqpwKtMnTBlMKI1qoEFPVIi/VxNlyOWrBMQ08cJLRWrzbEZkSt3u7SRoQZOQe0hpgE2Trz4aFombiW1RyZt63qc4T9UoxSUkxEi0sHLUXFYBvmrsF1uqA96o3KwnwW/SGzp43zmHEkTrdJoL5PYZdLmGBuf9ec3m7y/eG8VVdwS/LnOhNDE8VUOUpgWMaL7SNlDTLHJZQPkmiZ7gUmidNj8NwT+PC9/yPu+XdFYH/1e+xu/z374w9x86GI0yid/Vs0yHrw0rQ8syuuUzfd81bQHm5W3B8bXjrDizjzwvXc+Uk6SZK7d6VNWlfkTjokTDiJ//XnXb6m7zmXOticZg6aMWV/7IJiH2Udtk/u0kNw3IaRnZu4T2FpfQxYu6Vpr+jaa6xZA4Kzm+Z7pnFX1kYrFE16zfnz8Wmuc3G5x06pO8UVsVDuqan5vAgH5fOAn1jAetP1TTnzl1ElaBSxtAQhk3NjgjxSp1TwqhgwTvAeSrExjlXnaS8iZpudv0uxShn79opX5U2I+K20Li5muSaWdb0tpo8kFFUHuRR+kss3hFHMJoGC+BAHZe2gfmwNRPp7mCfFuh/x006wIVFWk/n6zQXzLLJmR+jGCNqjvQCztgl3WG2Uklil207ExPzagyEmkdrtZ453mvtjw2uvC7tVwhBd6SAcg2cIjj5hD6Udfo2xa4xZoZRmdgeOx08J/sAKxUhEKUUIp+J0LqdpZdCmLaaNzNHPTPrsWK/PNyAV5xfXbF6fhPS5BBQEx8TCS6/xZZCLdrKed3HhbBe2trQrolQjIlaz4cnVL9F179B272O759BdE5uL9CJ8KqIfijgt6/2EADAr6X6sO2zyMsWfF9Ut8OWzYOBz1ujv/Rku7t8tOIMXwwvuw4z1k3RHpND6rWrZBk3jNJ1P2T+TBEQvhebhS+N3zkcuUiljU1HlcdE139Mfw1i8abypSP+mGT4jVgqK0Q/oecaOAeeMNCL4zKCH2UfWyLU/u8jLe88PXsDV92/Zvf4NntsVz82KD7Tlys7SSZ3C2kNQZV5WRqHbVgpMn4dSMaaAmk8CK41O7uk3/9PanHIqUp/OMbKXTTkxymJSB2l5ngrtEeOMjdBofXKsRZSOS5dsck8X7BiqMMNPZ7bl39eYzXyfqo1kS/eDT93vmTe9iNNGdxi7om22j2A9fjy+Q6eiVHZMu65jXreyvusUupPuuIuLSNtC10JjYdXIkrQuXvoAhzGmjubIcKXYX3wlUP804+3Fv381ftrxcyFQ/42/8Tf4Z//sn/Gv/tW/4hvf+MYbf+7v/J2/w9/+23+7/P/d3R3f/OY3xT2dsRjacq0s10qzTdzpzvoUjBiKmJUxHXlkd9r51+AjfsjuGXXWsrmwnTNKIwu4i0idq/TgozlhJuWghSXUTyWxVUx1axVZ6VBE6TqQoPAc3yBKF+B/xVTyMdLjH4QU5dcjLfni/vAnN/Uzh2RqhcnP45N4FCrm9vLskRg8Pji070uLS0jCXBarJVl6ZJxeM8+HxBUfCKmVr0vsqVViKm7qwMjiuiG9TqrXe/paQYITRFwDosYEBc6y7S0hKFZrYeiZ5jT4KYdOHu4M06TpJ8uQ2nVrcVoeC7cqV2FrgdpVov65eykLGeX/0yOL0zkAxpiUDqybNFE2ZQIsYSnFCsADgTMnNhMXRwzaoNyEdg1Ga0xjiKPGT+JGD0Fhq7tGCCJeu0HBHrq7O+EeD5/S958yTq/5ouNN13cePhVOQjrX8xAmLOgSSirvWRYpp9Xzicg+RlqvaceGZh+4vB2AI2Z2mFVfWlphcQdF7wn7fQrSnJkPnvmQeaKmFCr6vHF+TEhPG0NVxL28KXXijEsFhRAmEaWrlsxHR3TirvQjmU84HP4gidM/ZBxesoqed+26BCJK8KawELNAUb++KLY5QnKEzEmwEXe1x8SMAUnWzrjcy+QzeqQrI23oQpRwV9RyLeoYmREHcgjSMZDf7fvNBVcJ7ZG505kDdwyOGWFPm9Qi2LaXXKy/zmbzLbrNt4nX32HebJk7WaDZUbjLzAfCvMe7g2A9/LGI07M7ips4zOKg5myz52Xi0MqSknUTrieiY8BGCU60XguDUSleTS3dbSvzTzuhmsPC8mwpIrVquwfnnEpf8akV1gfmvePjj9b83mHFbyVx+g/He7zdcH35bTabb9Gu3of2GuBUnM6hpel88e7AON1KwSpSgl7aZkvbPhP3tOnkHCNhKGLeavzk403X+BADPjhmpZlUoPGaECPGpE1GVLQE9mm+bIKmHw3zYcbu94TNFp1EaoxFG/PWN7mQP/KISoKRMg+PQwhU7ulFIFwKQUqKKkqjCzP97H4NJfyqDG0Ew5SCEaOVzctj7mmA4BRxVqgQk4N+RI/3uGnHNN0wzXclZCviUQiCIa9davHl8z7tHCS1vP8UguXBudRZ4jSHoIXJmtr9z4MS5eCk4DwUUwzcJe60ev4rBK1pXn2P3e1vsj/8gHm6J9QuwSRE6SgZHhfacm0FAXatLM905Go90XaB48Hwamx4EQMvw8QuhR/5hF1rihBFMQQ4tzSIZ3d0FqZzK7Xz+o14tT4qdp/jmr7zkwh2KoJuuFg9p20uMWnjngv387zH+75s3E31OQUlAnQ+tFIEl/vqmO73Pr0LEQlSKUIpOS/LIiGkospP5mj8vDm8FMErkTQ/6tb5Vi3rucZEmtTxCJTFnT9zy60RdvJ6K+5ps+rQbftQhHqb4nQa+Xfke0FmEuf3mDEr+f1nUVqTWOsRYowLciF1peVA6tzmD/JnOHVP6xSbYzSMAfwEtj8y1w5qTgMSazxBdlBvW0e3DtiV4jx98cRBrRdDQ3G8ek8YJI/lcNfyamy4STiu7EacKsHnEOYUAO6ZlaJN4nRjLzC6xfmBvv+MaX6dulGF05zRQyqeiV3KFu50FoPy3J3d4yq7p6tiSB5OLffoWqzO/35KHV6uEsRqXET+t9kpnst92dktbNp14mpvWXXvsr38ZZrV+0WYzkxZlfBjJJRWDP7zxemKRUsyoAifwaJUDmMToezLii5vur7vP7yCu2esk6v7bv89xuElOy/dZF3Co2yVYRsMjTes5oAbFGEKgk+cB+I0CC7mbWtqWgTpqMV4EnOmQ+qMOh/nhcefxQip2ycGJwxhHwizLaH0uUhVj/3g+cNXnhc/MDz90b/j5vZ3+e/tiq+bFe/qyDq5p3NYZx6Sl5HvU1/gHqgXMb+MlInyecckm3J86rI6R0ctnQqqGEsEUdlgdIvW0gGc57oQRiJ+KSwtO6fSbbncjCh7i1qofvx1nuJIDsExk7rbQyhonrG6b81RGPkZS5J503LfWp+I0+KePhWnRbS2S9ihXqGbLXH9FN+tmNdrXDIehE6h12BbcUyvVpHnT2DbyWPdKNatojUqIaDkfU1O0FD9HNn1CCqqeUuYrv+GRuQrgfrnYfyxCtQxRv7m3/yb/JN/8k/4F//iX/Dd7373c3++6zq6rnvw/SbCShnBPpiWa2VS8reEluQF7rl7etHuIrXiFZM7Rm7GIr45p05CB7MraA7Sujp4U5Jg88itL63SmKjKjdQkMdrAibiaA2FyYrA4R05vsMK2lD8/hvDIorRnCePL7sOcon3udM6OAoOCqEol0qfXWm8EinO6CL+LMJ1/rg7ekMTsIMzd7BANE8qZRayOPgVHDIzjDh9GQpjKBqxNQv9KmYJwWSmzOG3S8avbjEh/lvd8+r6nqFIbZkitcLKp3AxNcT+1Y8A2kdqdmzelh94yOvOAJdlX4nQf/Yk4nSe4GqmQheksYNSidP0IZe++iNN5IW4qxEf9ABaxWp1e5pk7p1RaqCVshFLiqlTKoueZqDV21ETdMo/JbeLApc1iDIoYEMZpH1ndTcI97D9iGD5hnG4Ypx1fdLzp+g7VOScLiiUJPI9cSLCFB5ucV1Fh/FJFn2IEFdhjaL2h6Rue7KSk00wDdj1LsndjTxau0Qf8YSRMATdEpuMiTk/z4p7uSU7t6nOtR2nvjRBUEPeiVoSgQYkjWQKAPDo6Cv/hwUFJG8MwkkPV/LRjd/d7HA4fMU03bIB3GhGnDYo5BvZhlsT45KbL55gcHVn0KQU2shRR1Ok1PiN4Ip/uFS36Ub2y4IKSYATLplxXfqUQlbgSiCI6I673dyv3dGHCpQ3uEDye1CaoG5okTl9cfFjE6eHJE1yX2utmj55ncU/7geAOKSRuxLke5we8H/B+PBGnM6+ynAcEEdGVw+hVuosHPEsBSiPs3Hs10XrNC92dcM+VPpLPcu195aQ20HbJATWl30dxUodhYnztuPtM87uHFb/le/7jcMsPpj2TWbHdfMh69S5N+wzdvUNo11J0GQcRp+djwkZIV0BIArX3xzIZRsDolra5ommfS7uxbVEFPfHllm1vusa9MgSVkEYx0qpTXqtBOKytkmus9Zr9aBnvodn06O0evTmgVgfZWOXN2JcRqb0H75b2dSjhiPERF1ERZvMjSrEqh5DGykGdR50b8KaRcUzZPV2CEbvH3dP5q5j/I3qO2HHGjCOMOTznVrqU/PBAnC5t/1X77GP3MpD22XJsMvs6Ha5SwHfSYdRH2COMx3NGpZY3Kv1mSuNi4C7MqOaKd5//RXzX0dx+yuH1v2V/+D7jeFvEU1WgQRJAm0Omr0zLpW5TuLTmSTOzWsmLu+tbXnrNTZy49SN7P+OTWzhjmQxLG79zUphNJd0ivme3enarzSF/FRTNcBaYtkuu6cya3iVh+t7P0masQKsVTbOla5+glZEujdTZ4eY9PozEOBdcAZy5PeFkbTGnLq256sDSymKToKe1LQUTVQqjIvY795M5L990fX/eyMUQo3IXXFobpzWwNafBXD7ywHCwMYF162i6KO7ftkU1Z3NnVQT8WY98/WQXtVEKHZa5tjiny6gCSUMyxMRkBnERnQvAmUGd//5Me3AOOArqy7m7FIQnHOYszmb+d77OQdbY687RXgR0K45w+YX+xEX9mLgVvThg3X7m8Fo6hj71ml2cSwdhFn2OwTGkAvkQA7NSaNVVLf4tPkySPzPe0MWIQjEpmZeEpS2i1LJ2sXIepzwWrdMi8AyhlIsCCk5wAQA6dzSmO4lK9+vyHkvH6Ol7r40lPi7rl5wTk9m0WZhumyvWq/dpV+/RXP4isbusQuKDiNN+lDWKH4hhSG/lEXHapnO5rO99Eq2Td0BZlHZiVgkZD2K+0JzzpvGm6/vq/cDxaoW332VrOi53v00MjnF6xS67qLVhq43sz4NicJp5VLghYocR0x8l42U4YN5SjsTJyMUpY2EeP1eorfcW56HM9QoovGFezBiKeqjqil8wKxKKrNyEcR5cLNjE+lwzWkTrT3eOP/gRXP+XG16/+l8Zh894b/s1PtCWJ81MY0LBSc1e0ZgllwqjT4oZMWWefN6I3j1YAy3H6PT//dk+bcmVWYTpujAq16y4p3PXhDzviHMHvBsI0aHjw4L5HH0paucim3Qa5zVLemeP7EtqZ3fWBfI9ak7ooTkGprBw83MYIkgXhNyvRJy2pqOxW8mEKuK0wZjKRZ1wHsU1bbfQbInNRerwbJnWDaGTdZ1dR7pVZLWKbC/gcg3feqbYdprtSrPpNOtWs2qFS54zCkACNA9D4K73vLj3fPaVgfqr8V/p+GMVqH/1V3+Vf/yP/zH/9J/+Uy4vL/nkk08AuL6+Zr1ef+HnyW6ZrWm41A1rJTy6lfGLe/rMDQsiQEcvrS/FMR2oAm5kAzKPOgnT4oypHdNT0Mxx2YRM5Bu1jLzYpvDK0mIwi9JqwXe0OtDZUNzStTMpu3LQgvSoxekpikB6nkArws5penYdTASVuxEJFjBKUCSTCiVc55QxW/GrY2RmCf57DPMBInx5P0kLbgwYfSo+hBgIYSb4SdyL0RFx0taDokvidKeFC1mS3qvNzHky78IsXRjQ9WvLLfheiTjiMWydwUcl+IfZ09hQPgc5N2Qjuh8tgzcMqTBQi9M5FDGLaW8Sp2u0Qv1nOV6PiNNpyywbSZvaGE2qzLbJRV1VbqsWI1W5hs7F6uVDEgFKVQsmrTVGG7w1qFGuBWwKYvDS6qzmiBkDbT/T3Ung2tD/iHG8YRhf4+b7x3/fTzDK+ZvPO9QbRWr5rMTb0oyRNsR0nSn6dICn5GIzaMxsebprCMGxmgPN4DArjzbzCZcu+ogbIn6OuCEHfxmG0Uj4l0vuaXIo51kRKLvF4uJTS148EVZyK+obhtLioFkOygBeFriZo9z3P+Tu7j/j/Z4nGN5p1mx1g1aCntj7mX1CY8xAVNWGubzcmO4HoB55H/XizquF+3bOeDMoUJE2aryS+85KGeZULGvQS0gXlEXgnI5Bi+JpSp/L7Ok5bXBr97RC0zRbLlbvcnHxdVbbXyji9LSWf69DRIconO7sGI2SaO/9Ee97vB+EO+0nQnKU5vtPo7Tww7NgFyUMaQqTbPYSEiUL+CJSzwXfdBM9rTeYYwcvQNptk0jthSOumtR6WW0GovfEvscPI34/0b8K3L6w/Oj1mt9wB35vuOXj+cioG9br91ivPmC1+kBcWc1GWPLjgBkOMB8E66FEnK5F+tkdyqZfoTFmRdNcou2mOLvetJF5bHP20wxrt4DDhwmHxwZXBLZyTinFvjhjDGtnGfaa9s5jNnfo1VpYk9JOUcS7n1akjvMgG7RwukFTRlzJp0iN9PDiXlq6mZbuIsciUGcXNSQ24SOiQbl3axEjom0JTSPBiJ1CNxGlF/d0HlJklXu0miv3dH+LG18xTTeM02u864lhJmM9sjjdoGiq4yeuwYeF7eVzOe3uEqcxpYg/Os0QtKAt8nXOgvfIG80sTgci++BwuuWdJ3+Gq2f/e7i/ZXj977i7/88M4+uCRlJ1+Si5py2Ki9RpdZU6ra4VbFcz2sjxuZ0sNzHwOszcp4Kde+T9iZAu8751ch9ZjvGpMD37VJSo14RR1oR9jPQEbuLMnZ/Z+ZF9mLn3E/sk1klI3JqmuaRrrz5HnHYn16OPkagSTibIp5SxYF5BTCGyNrlTsxhozKrqvKpd/FKI8mFmmr78/P3YKNkM5HWxLg65jPcwClmDpfO7uBorI0hev651YLXyNF1EtfYUTVGNL+Qe/AnHcr9+eJcs8346U/N8W7NrFacdCmrBOadHHX6+YD6yQHQekNgcPIw7nDuI0SOtJvPvzY7u0sWZCgMXG49dKXRrClLq3IEevVu683LhNCHPjjeR29uOz6aGm+i5CTOHlHWR18HHgr0LOKWWkO90PsboGacd43CDjU5ye2JAqQalG0JybOfjlbnTSjdVR6EtocblddeFtPRZZD54SOsXr+IDoTrf83LBBzhZqy+MXdL1JtdaXo/b5qII0133PIUgvo/u3sFvni2FVO+TizZhPfxAZkifiNO5WGm7IkwX5zWdCJAOEamjTS7qpatSharYkNYub2P80jfgRR/41Dbcm29w/epXiDHg7yb27o7Gj3TOcKVb9qphi2bljXQiD/4E1RWn4a28pvORO9XiPJ6upauRi8vl/73svUM4NZ990bGcdanj6kykzpgPAO0Dyp8Kv0ZDk/Yhu6PjP37qufkvmquP/zW3d7/HFnhfd7yrI531YvbwgpSS9/NjXqD3YNzDzpKENYzBl+s8+lDQVo8+Vf6atIEs/maXckZ9ZLNV7Z7Oe1lxT8t8F+IM0ZeuD/kdsewVZI8BIeaObx7sQ6heE1T7l2q97mMse/QxeqawaBpz6nbO+U/GrCre9Bqtm8fF6bT/PndNa7uVAlMja2vfrRi36xPXdLsKXFxENkmYvr6AZxeKbz1vuFobLi/MiSB9PjYrw2ZleO9Jw9eeej5dvR28z39L4ysH9c/H+GMVqP/BP/gHAPzVv/pXT77/D//hP+Sv//W//oWf5yIH4ZiOa23ZAo2KNEYE3tweWDunA5D6NWBmSe8NS/p6dkv3ozlp2aw3IFNcwlr6UkE8HbllVlwhsvjeqkijBUHS6EhjQgmC0dWmM78e0KkFPoskizjdI2iJLEz3SZyuRWmZKMKJoKCVYo6yOWhSu19IN32iLu0xdfiAjxTn9JJYHcpiLi/UIE/JsrmN0QnXVbvC2gUKJy5EJ6FxcSISijiU28PaLE7rhdf9mDgtr7FCkeT2ndSqE1ILb6s0swrMKjBpERHa2NA7kxhphpXxGMWJQO0j3DtbNp/52PdJnN6nqusQXTk2mU1X3BZ1RflzxOn8yEdTKcUSCCfuaV1ao7q0QO8Sz6tLrUUJ3/EGYfrRhVrwKOXF0RE8zTgTGoMPipjZZERUiNgx0B5HbH/EHG44DB8zji/px1dpQz09fP6fcAhCRo7lpIJcc0k06IpIHSW8TIMywjPprGf2irXW9KFyUafzV4bmybGVhd3s6C4C9ih4F1O1Ri2dFBLONo3iDjxOgvYYQipQVede7aA4ue7S9ZRdyyqGYqeKZxsrccvXLCJxvgLEIA5YN+84HL7P/eEHKLfnXdPyjl2xNY1gfYIrLj0RYhJDLS2XI5GYemZVeu1KwVk97wuPk0WiihAVa1XjjdKxUZoctiatdeKK1sC1aR51T2f2dHZPa92w6p5xsf46q80vwOU3GZ48Ydw2RC1CYr4hKTelhbe4k7wf8X7ChwmfCmTSueFKyNpKG9rEds3hY4FIFw03fkothkJSdcqjY0ApzRQDhzDTeM1NmKUFzxtIIrWfJy6HA6t3JuzVdIKVidOUNv4D/jAy3Xn2LxWvblb8cL/i90Pgf+tv+NT1TMrSdc/YrD9gtXqHpnuOsluilecq4nQ6Z7KeF/xACAPOH1MIzXI9GLumbZ+i2yd42xCNQU/27B6izu5PX26sVs8JcUq5AwN9GPB+PhExi7NVJxxW0OzvLU0302wG9HonbvQUAhSQjb/e/HQidWFiVkxPCVSK6EdWr7G4akWwlLkyidMxLMdLLYiP/CjPfyZUZ0Eimg7frXBdR2gUWIU+c0/Dsn4JAhsu7mnbH4nTLdP4KeP4itn1+DClQEGW4DCUzLepCJznLgKp82HZLEqhgJMirrwGeR25kJ/d03269+Zidh417iHEyMHP7IlcX36Hp8/+EuHqG4QX/477+/9EP7zAu+QqTCFLubgXo7y+jAPb6KZkeWx0oE33czcrXnvNLk4cgqMPTu49MS64DDK6TOaa0RlZS5oF8ZHbqH1UjE4zBY2Hk3WZiNNLZ9UrP3Dv5xKEeAiOkUhUFmMvaJptCYnzqatsmvc4dxQe/hleJwAzEeLSeSVFbVXEO5PcXl33hMYmTqZdl7VC3kiX8zixkL0faezPRqCuR7muzwwHTSp8WBtSYUHEohqfQ/rZzgbh/K8UusnBpo+seX4GiA+8K4LuibhUidBWnQrUWXQ5XSOcrjf8ySMbVeLJ98vv0uK6nCbojiNufIVzPSHMcm2wOKi1ksDifLxbJIS96WLJXAGIIRSXZfQelZ14SbzCO8LQ4w9Hhpczd68aPt2v+CREXoSZ+9StlUWfYtogloCxjOWwpiNGz+yOjOMNKgyslBYTjFJY3YmsnBzV+SjmoHCj26qj0JwV+5PYXn0n33OMUjTo1L0jQrUENktOSAkYZRG48rq95rf7VOwvbnC7CNNte03XvUPTPpfi8eo5oV0Tmso5ndzTpf0EQC0olZNAxJRFEFMhtnxeiHM6p20rZcVFnQSyEMYFO/CWhOk8fvl9y7MJujbwcavpfvjnufQHnO+5v5+59z0rN7I1DVfaslUd65ACZMeA6z1N34uD+rAjDgfUz8JFDQ/RFWnUOQLn3/NxKYzVaIjyc+dGjkexWKfzvDpb158Po6C1gnDwIfKDG8cffKR4+vs/5MWr/y/D8Ckf2ovFPW0Ds9McZ8MUcvH74UIlX7vkUEqf7lT53pixciF1kM0DcZoExeIfR5/UWM06/NintU9xVacunto9nTGVSlm8P0phzU+iB6T7Vj6mLgnTsoZQoJdjn/WM888hvy6gdHyX6zmZX/I9yhGZg2dOQriEIS6Ob2vWaNMKisisMAndk4VprbuC9dC6O2FNnwchLrxpQ1wvrumLC3FNP93As43ieq14tjF8+Lz9XGH6sbFZGd5/+oYu3K/GV+PnfPyxIz7exrgyTWENbpVhndzTdXug1uKWRnMS4lPChHK4TYXwyBuQ+8meuJXPgwfzpDWdvR+TGYZn4vRawcZIeGOTAxxNSMmsiaebNnz59eiQNoFBJsratd0nZ1KPJNEOsa4A+jKZnrvd8gItb8YazCIuKQRLIp8UpPeYHQPl+VMid3FQP4I0iARCmFBqqRZTnlkY1RFJlFYxYBEXVAmZSV8Xdp46EcHqKTg7WCUQMruZXUnXzosKSVj3zNowRIPXkVZpJkTMXKNoQwqAq+YEH2GfzoE+ff752PdV1XU+Oyb1AuaxorZi2XbWR73+fvncztzTurhHuuREuUCnBW12X/zY8cjPqOAT6sNgR3fivgAws8eOk/Bt+1v88YcMw0vG6TVuPpRW5C878rGUJPTIhIgAc1DMTqcOCYUhCyWKppPrynnNHALrYFijmJJbbyKwTwf21dzINeU068nRtiHhgE6PfN1JIc5Ak8RpXSF2quDQvCh7ZKn6pmVGbrPWpfpuSqGhXCeMhCROj+MLDsePOBx+xOxu+U5zwVPTsdKGKQb2ya2XW2oFlboEasqGTxLugxJOYyJWltckYrL8uQgJZ9zQLOzkkbsvPOK0hnydiuilifhkxZAwIWGkRqBD8Y6VDpp8PxuiS+3BsojMrGStOzYXH7Lefhd1+S36Z89FnLbp9QRQyT2tEnc5+FHCqNIjoz18mIQHTsQCq9SZ0ykjrjN1ekxcDNwnN7ecfWpxixCYouLOT7z2U0FUGK/xx07OncPE9d6xvt4JN3XbkkMQfe8Z7wP9TnO3a/nR/ZofeM33w8gfzns+cT2zMrTtE7YXX08b4GeY5klp/c287ej2wjnUFpVvPqnQ4VyPD4srTSudeHoXspBOm+ji0sqbW6USD/XtzOEX6w+IcWKyd0zTHePoGKKTQMaT8yplOiSR+q5vae8CTecw6z16fVvEaO0dOniCd5jnX/+JXk8cDimwaSwM8DyEQ53Kr/40IDGk+dmXOWIp4Poo5624Jk+xTFqfoZm0oTBGs3s64T1ick8bGzkPLMqhtcEp9Bixo6Ppe1T/mnl8xTS9Zprvins6xpB4uYnNmsTpzAwFSleD9wGTMzVSQftcnJbXoFIxXzN4mU+zezo7qPOGNbug8nx+jI5d4k4/f/YXMU//DBHY3/8H+uEzKXJnwakudCN4DwM0qZi90Za1MhKgZ115ndOk2UUJMT4EEdCyu70UjdPGtScwBHGBm0pQyB1t4q4WznSoTAu5WFmHId6FmZ0TpMc+JHFagVYt1lzQtJe0zRZr1pJJ4Admd0yBrZkcDeQ7tir1PxZnvk4OrlM+ZmO3rFbvYu2mrA/yxjnP/YszNgXE+hFjdl/wivnx47E7RX1PNSdzizjzrV3Ww4U6UTuokW6bznpMA6bVCys5j+CAnxHaI3VXxMnhk9FF3M65GJvwHixt6CWLgjPR9BHRMLull5BEmLygJrIYnklks4P5oLm83zHOtzK3hVkCyVnY33kNrVkKAmsVxX2enyyp31ELH5iUi8A0Eo1PYdI9fnfH+HLg/pXh5W7Fx17zIk6CsPEThzAXhuuUTDRZnK6xHPL6j4zDK4I/sE1F4Z6AVuL0jzFIcS/xlbIL8zQs3JDZ/hWYSd7LybGW45mLznJsaqErFRyiBBxm3EItTkuHzymyoGm2CedxSdtc07ZP6Lp3abrn6PUHxO4S360qrIcv7mmig7P5jsLUzrxpYU5ncTpWArX4igyEZXckGTPSMSbi2VghAbOX/MuP/+7ra96fW9bNRGMj/+Ub3+HSjTh3ZHZHjoePuPUT63ngie64VpY1RtbRfaA9OtpD/7PFfOSi1XzqKI2JrQyLe7r+mq9pwQrJyOv6nL/040feV7+hIK0swWiiWToiWqtYtxqjFa8Pjt/9UWD8TxH/6a9xu/t9rtF80F7wvpGcLZ/Co/NcpJV0XmQHuLyh3O0h4rQKjjghJMHcnZDF62mQ9c80EqcJP4VSfH5s5Dld/lwZs8oe+HH3tNZtWQc5PzC7PhlFTnfKIT2fRsKTjRLhvhQCq7nkXJiu9+BlfxaXYNMheHwMRZjO/Phc6C0O6TSfat2e8aYXcVobcU0bu11Y02ZVkB6hXSWzQYvrbBGn1xciTl9v4XotrulnG83TjeHp1v7E4vRX48uMx3Ok3u5v+Gr8uPFzEZL4ZcdGNWyUiNNbdHFP5/bAevhZnNR+rliRyflUi9JDSl8fgmZfuSMnslP5NIAPKBuuHH5o4hKSCHkxLUiPVZpUusYXQUzrh6JYCCq1lS6vdyrurNw6KpugCbnR1qEkhQP1WD03qhPRNxBpMEv7/iPpxLUje64d1I/gPTI6IKq4cA1VHWokW8I8dSko4nTeqLSVQJ0nokdfV/36kCCmPjkvj96VFsNSbU1OsTF6OmWYoxe+qdKsETGzjYmJGE9/Txama8d6n45Fzdw7FyjfxCrL3w5kV+1y/JZ/kbeg9eJGFyFTAhsWcdrYzenithrnRYLl+XIauBNnRjCoYNBuxmgtiARSK1oI8v1xQPWv8cMnTMNniTt9h3MHiDPtW7gLz2kBsVIhfa6RFkUTNF3QEqhW2YlMIw7Htg2E4Ji9Zh0064Rk6ZENR58WUS9CwzRb+qDZzIaLRq7L806G+v4wexFfHt4fFoe2Z2Gtnl8by2dcuSm1LaFpsiAypT2zuKYTmmKe7xjHV+yPHzP0n9FEx3um5WvNBVophuC588I43fs5uZZAsTDL5XWIsCMG6sxxTQu65Gh8TE0/uc+xFOLykMBVVVrvCm9WhcKuJi7Fhyw8G6Tg+I5dF/d0/vs+tQc7kgtDtzTtJeuLb2K232a8fsa4bQjrbBOO5XajfSgbteXhywY+BlfaLU0UbFR2YWaxrr6X5+tau5G7MDMph0JwJi5KOKeKgQm48VXLqm7wXjMMLcfZcNd7ti9n2jawWsvGaRo102Q5DA2vxoaXXvNJ9HzsD3w0H/hsPjIrS9NccXHxAavVu7TtU2xzLQ4rZaULwo+E6bZy59Qt/K4S6XMRSaVW6TW2eSIurwx1T4LpsrFVaWP+dsZq9R7gkxtlhfcTzh/oo/DAz6+fPDfczpZm39J2AftyQjWvUY2EoxU5zzvU/Sv05vqLOSiDk01yv5dN2jQ+YDAqc9rq6twSmjd76bCS4rEUX9zJPUCnIuMSkLh8XR7arMCsUitoV8IRVRNFpzhzTstXCn/azpFmnDH9gTC+ZBo/YxxvmOY93g+J4RxOxCvKK1w6BgBmpVFVoN2CZkg/X+NOYg4JVAxBV0XjUO6FuWCe3bMAfXDs/IRurnj+9FdYP/nzBNui959wOH7EVIUiShZDEp4yHim5q+pQrrzmaszinh5nwx6Zq3NosTghpUCXu3WG4JP7WfIKyrHJG/8kTs8pBDGbF/JcILztJE77mWOUQMR7P6dwOOFNWyvidGMvFnE6zAU5FKnxT4rFiyviNErKBVqn4Ca7wpoOazc0dkPTXGLNBe3qPYzdLBvm7MbMxZD8G6JkURg/ENXbcl89LLUXJ75aCpzZPS3oiSUDJBeegTP3dHLBmoBpksCaxWkv0JafBdYjD+mymEp42HmAM5x2CBAp4nTupCo/lUSamF9+pc9k5/TkTr/Ccu1NE+hDQPWvcfOd8OXjEpBolDi5xZxhThzUKx2xKxLuUAQ7KcI5otEwTYKjCAbmSbAe+wPjy2Pq7un40djwInpep+DPEmZcsD4UB6XCFCyHMR3Oj4zja5zfpz2cFtFI6SQASaeErJfkPBD3dY32aBb+NPNJd0ruFXtsH1SbcjJ6zKR1mSOgKzzA4+K0TZ0K0qUgOI9ntO1TmvY5tnuOWj3Hr68JTXPKnE4PQuZHi2u1BB3CIk6r6lpN4nRMH340RgKcoRhJFEB0KLNCp4K0qs0tb9lF/bVnLetW09qR7307cpx/iUu3Z57vcfOB4/SSGzdwZVqeGsF89JNlPXrpTtzP2MOecLgjHHaYq2c/m46HNESIXSbxJb+hFqdJ3VCylq2Djx8zfT34HQDpnFVKpUJGXuMvc375LLXC2khjYdspVo1mcpHf/2zmD/5A8+T3f52Pbv4Nfr7lw+6Kr5kLrqzsVUZnEnpSPtcHd24fUjFtlOyhIH9WLcRpuU/mwnyYR0J/IAw9YXYlm6vO2ShPDYsuEpeusQWRERM2cHFPS0FJJ0e//O7ino6erAnAUhSSO7pHp+DsWYVimjm/tOt917lrOovd0miWBGriQ2E64TSNWaFNS9tsHyA1RWC3RZxesB5LEGJex52L026taTYL0mN7Ac82WZw2RZxetW/3Wv1qfDX+axh/IgTqrWmTW0YL21n7B+mtJzdUx6OidC061QiHXfRFnO6T+yfjM+rWkbzgy2KGiJsKf9YS26j4QJy2NmCahyzJ8toTc3cO4p7OQltx8MYztESoXLw87p7ODoq8UcwtvSJWG/RZOAQsra/171gSepd2m9LGCBAh5Fajs0lEIYFo+WcLukOpEmJyXiHNArpMKOrEud6nSbKPWayXFt4+OJko00ZPo5iip1WGUXnGKGzrVQrzWCudQhj1A4RIKVTEpWVZMATu4XGpqsfl2Kd3no9V3pzlZPJFRM/HDnLDWO0eK24RLcyr3FJk7EZCGMqi9vQyVyAKxmNCdfXzKi1iMjJc1yL1PKOnHqYdfnyZ3HkSiihoj551VDRfIpAljymJCHP0DFHTIwJ1G4S11miNcxo7J8eVRD7TdoEQFGvvkoBg03Wj8cqn8yRygxfnvNdcB2lJ38xeEEHVfSQLEiGKY26uBO/MGC0u77PiUO2kr4Mws+NNJwdQjWzRui14D+8PEjTqj0zTLcfhBUP/Gfiep9ryvNny1HZopbj3M7du5N5PHFPwFpjUetYUUZwYSJZpogIVcyDi6XmYR+64WJxXaYOrZJMrv2UREU6+KkSsjhRxWo5plOJRlDtppzTP7Iqnpj1xT4+p8DbFIC5UZWjshlX3jHbzbeard+iv1iJOnySHgfLVJhCKOJ1T1H1whJAQQ8mFmQXqC21ZaUOnrNybqnsQVjoxtFPc+kneV+Wi1mlBffBzejmpqKkbrqNmioa119xOllbJuZazBQ5es4fE8hx56Uc+c0c+m3t2YaZpn7Fev8N69S5t+wzbPBG2nbayKZ0laCmGgRi8OCXTiEHckcEnh13IYXPSMm3NCm3FPe0biwpBONRaQp/yJpeoHu0G+WlG272HwqUiWyvc3ckyz3tGhgfOMo2iRXOjOpqxwd4GTDOimyO6vUEZg0mngApe2nqnEb25/vzW4eAIh508kotaWl3l3FFGoY3cu2PiRfp52bjV/Ok8L8v5ENIGTaeuFl2S6xdWoZHOF23kszQrMB3BNifhiJJpl+aIE5E6i9OKOCvs6LD9ETXcMI2vSneLd0PCRcgdKF/rdausqebdHDyU/XbL34uIaM7WLLPLaynh8vcs87K4k5azJovTLgZ2fmLSDc+vfomrJ3+BuH6KHu8Z7v7jCXc6i9NKabluCakbL5Z1Q6vy3C2vMzOynRNBOReU51Q88KklO2+CpyRe76NnFw0mCATFR0Wjs7tyyQKpQ6rrPIq7FAh3CHMpGPYx83e7R8XpGKXjLCSH+8lZn9YCmWWazx1jWrTpiltaWNZbrN1g7RXGbrHr95eNsm3xXUfUBt9klq3M72Z2aDdLqOzhi2fBfNlRFzgNSw7LuUN/+RmZXwxgbUwCtXqcm5wxPTkk9i0NcRhK+7ufYXY6CVmnd8Y8Z2ZvhWW5d5ZidcoXqcc55sNHcVRPFavWJP70MChWdyNhfInzx3IO5YDELIpbtfC+M396ZVxBIIYpuad9RJkIRqJBA6CMETfloWfaTRxeKl6/avm073gRIzdZnPYzBz+n9VCoxNyMqEvij+nQStMPr3DunosoWC0fAwMRrVfpHpld09lxuqybzsPC88+VYqpSxLggqer1GFTOy1QDKZk8Z3um5d9ncXpxV+YgxFX3nK57R8Tp7rl0NK2e4zZXcg9vls/XhOxSl+NB8MkYsgQdygs8XcfHSpyOphKpq/U5CfGlglgElB+kayKMaa4ZeJsM6jyebC1/5uuK3/nGkT9wLWb+Fa6nHdO8E9yHO/DKDby0K7ZWslvWo2HVe9qDp9kfMGnuDYcd+vL5W3199VjYygvPPfjzYm/iT6fCU+majotj+LE9HqTzRaV1VW1ESR2S5Rw1K6Jt8an4bG1k1cD1hcFo+MGrmX//X+D6tz/j5rP/N/f3/4V3TMvXmg0f6pbOjjgvaI9D0EzptDXIniWb8GISqAnJHd0kZvmEiNS5k24apDifnOyh74URPsWSL5FHZnPXwn2+5nNnZMFbqnP3tE3i7hLO6/yY3NOeUoRND08kBwHr4EumTx2WSP65NPJ+/0SjiMt6LK/Vp2TgoQjT+rQAZjop+pp1cVNrbYo4XaOySndS5k1/jjjNBV+J0z+HQ863r8Yf9/gTIVC/azo+0C3XSnOd2M71hiSEHBigSstLRncMQS+bqOJ6cSei760fy802C495Ylp4jIq1thK+pw0XumGjrSwAi1wr7ulWBxorSI9zcTo7s3L11s2KaZZgxuNsOHjDLrXM7gmlffQ2jMJ3S7D/8lqJJzfnfKsrrg4qV5TKgWAKrdyDwIHzCuR8PgnlBR+UimaeKpa/Sxur/DqULNrz5tckUVrn11g5MOcYMCl4ykTPPmomIm36DLJgvEubwvsg7tEbNzCmSm6e7MrrzA4cpB2/S+3N2bXdFpG8dk+eBizUQmQ+P+YyMS+TYi345fd3MtSyacnnV04O9yoSosNEc7JpLZgP02HsBttco+2WePEe0bZlEXvya/zCl1YuMaKjO4Wvpe8plzY2U7/8nBuJbo93e+bxFW6+YxhfMYwvGPpPiXFii+bKNHRvYQF8DJ5bN8pCwgRe6JZJW6aomWYrTPig2bqZEDzrjceuIpunkfYisjp6untP17esJsvaW15ExQ65zj8NIzepMLJWmtZr1s6chJnmI5gXYjkMtSc8cNIP0bPzY3HtL0FBdeCGtLlae1Ecb8asygIoRo9zPXPcE8LI/eGHzNMOH3quMXy9WfO0u+BCXWNSS+qtH/lP4y2H5M4Dg9KrtHnLwZqL67A8tGzgAqJXexVQUVxX+RzO5yMqO96QAk66v63VeSHnTKjOi8D0/TkG7sPErRvZuTGFKGq+2W755e4J18ryA99zHyZ2bmKXnIdTch12q2dcbr7Jk6f/A8dv/Gn65y16DUZHYoAwK5QH5UkBiUmcDoKN8H7Be2Tkh7inIxfK8NR0vNesy328FKyq97mPLb0NvGcnXrqej+cDd8HhFIwxlut056fCAb/RAxfGcqHkebfa0PqlO2RKqKB8/9r5iRs3cOdnehVRqqXp3uHq8jsldMk2T9B2I+KGH2CW4EzvDoS0Mc0t7jk1PvgBH/JmIGTpEaNbCUhsnzBsNozbBjNHzHxB2z+haQRDEPxEnH3Bt3zZod/5Fdqo6aYd6+kWYy6YplvGScJW5/meG39kPx+58xN3ZuLerjAKdrHh9f2a/Wh5927kyW7H9oM97fs7zNPn6NWGOBxAG1SbBOB2Jazq9pRNHe5elRbjcNgR+iOh7xPmIxUHjfR8Rx8lq8Kp5HrXjE7m6JsIL+Kc5mUn1352u6omOW2kIGXtWoR5u12Ki822tIP7tmO6SKzCTqW1g4jTdUCjdwo/QRyh2XvWN6+Iuz+kP36f/f4P2B8/Zp7uJXwIihhaPgNOw8OaJHzkNtq8Xsjz4lppGj0XjFre2Ge0xyFIkWUfc+fL0tVViuJo7vzEj1yPap/x4bt/iet3/yfi6hnc/4C717/J3f1/wrkjwCJW5QKbXNT5DoVNmLK63RdETJ4mEc5Hp5lSl1ktzOcjMUWxoAfgE3fE28hOWbbRsA2GFlPcaXku2CV8wT6tHQ/BcUwBjPvE4j0GR68U2qxpzfqBMA1yX3a+L10NSmlU1KiKES1FaRHmrOno2qcPBGnbXos41l0Tukt813H35BLXaWIDWGGp19OzOOQUqhd2uXGBePGWtghKJM5YH+9H3IelG0clvrmhZEvoR+rpmZ/cdgHTKAlIzO8no3mMIRpbuiHU6u28J3/7Gf7uFe7unuE2cjw00mIfF7EGWLoUa7MFqpy/UYHRVrpH7Eb48gVnIkgP+XOknyL7MdJPcjtq0n3gbg/TZ4pnn36f4/H7TNNtmtumUnRtUtF1pQ1rbcrcfa3g6cWEaVQS2iMhqVzKKNTBozRSmPOR6R6GveJu1/Lq0PHxbPkoej72A5+5XorjYU4dT5U4hSlFOJtCw0KYmaYdZr7jiW5otaYPjls8Orn/tW4IYT5Zv5QcFtMV53Rd0I/RY6InaOFcq+gJqYPDJQOBzWt1woO9Th5ZeJzTGi+HpSklxUWbhOm2uaRrn7Hd/oLgPNonxNUz3HpThOlYVROl6KvL9wLIvBQ8mK5CflRrcm2IpkvuaU1omiJUB6OLQL10ODZo26KnvuxeYnRYu06dUxPGvH0+7eWF4f/yFy/47fcH/u0HKz569//E137326x/9P/k5avf5AfTS8IQ8V3kA3UluRwATChzBD4u/PhGW+l8ehujckvH5B6O04TrPX5WVVf1ohXMLpvWFHtyoTWv810xI9Wi6DIbnZlQVFPcuHK/vhJjweo502bL9MRy+STwwXP4pfc0jVH8xvcG/uf/xfD0f/k1PvrhP+Xu/vf5Rbvhv18/48+aNd9pHHPQ3IwNuxTSnot2REUTpSDrnMb3DrPf41frxYQ0j+imgyHzpx0+McD93Q3u9Q3u9R3TnWc6qpLNVQ5ppApAToz5yhSWufOuXDMd1kjAoLWbgsmI0TPNO+Z5L52M1MVzuf58TEGvlXMaZC+tqvm+RsfmPX/d+ZCfM2RBWmlBdiQnt9YWfdaVkV3TxlycBiFm1nQSprNzWtstdNdE0xVh2jeWed3KHFwxp589Ed709RqebTTPNoarteHJV1iPr8Z/4+NPhEAt4oEsVOtQOy/AR4JfOEw5bX0OmtfOpJC7LPa64rw9xLm0le/9LCJscuDWN0CVNm02h+tocR432WGtltDE0g6rTt0hJ1kJZ0GN06RlknSaPonp0ka6MB2H4E/E6TH6Ihi7yj1d4y20AqKEClm0VCUrN3V2T584BtM45zc9Vj3WnPd/VwtzTieVk9ZidUpFy5O9Tr9rDopRO0xyqKEyk1B+rmA94lwmyTEKW8qVLqCl3VTHiI7CNXY+Cm82iMuksK9zC1F6rW9iWT3WOgTLhFkMEWfHqp5cy6kQUydjTBiGmLd3sQiLp89h0XqVEoIlJC07pPICFhLqAAqiQ2uDcpO4NYxdFsVlYVwnhrjE8B0I7oCbb3HzHWMSksbpjpCwHq2WzVD7Fhh32aE+Rk8TNIfoaGNGTBiM15jZnLQEKxOwl9AWnrvsbpcilZFNZJRFVOYhT2kj2UYtImxcRMlzhIUEaIXSWTHHQJ8WaMd07mUnXn0O5nZeKSy0RahSyhCiJ3ifHL4Ts+uF5z3dcKUM7zRb3mvWbFJi0ZSE6Ts/8dqN7KInJidWaT3LG7uafxeF9y4ORGkZV9GkM2wJdDt3G52PU8THI4Gl6UGFyskO83x/nREu50ZbntqObQpUzG32WegX1nNqpW2vubj4kGbzbe6vWlT3kxvjcop6CI4Y5X1rEsM2uaZXytAi2J+8oW+z8wxFr6RAVlj+04F99AS1YE1M2tSEIMdxjJ5Be47RcB9sub/4GJmRe7kEqIkL7ZBc8FqtaJqthJ01lzTNVXHcyvvJwTfCJ/du//A9h1PEyTJyG2pyodmOoBXRKpxWuK6laS7SAl2CYpRvHha1fsoRbENQrTjrzIoLP2Ltp4tjLo3JH9knp49B8dqsMEZhaDBTg7kn3QMcyrwu7f45NC3OI8pYcZibxOjPra3eFdd0HA5V+74k2J8PPwt72qeciLnCWvQxSGBuYq/mLZfODsK0KSrtoLorQTrnzum5a/BWhEVVIcCWluQF6xFnhR6DZAYcXzBPrxiGT5Jzui94J3EV6tK2o6v5ue6QyMe5FI0rkbqEJFYYJHk9VYB0KUydFWhTAXuMnp2f8Lrl2eV32F79aWivUeMd/f4P6PsfMU536d8s97E8MsLgwfmUi7ukzIIUqAuyXqhzJer1R3bOuBgZg7w2rRRzLopi5fqvzwNgl9eO0RfHdC5KyVzgmbIjNIla1nTFQba87op1nt6rMcLfzf8vG+fUdqxbuu4ZTXOFMRfY5gmmvUa1TwjrJ7j1Ba5rmdYNfqtRTcQkB76quM4hQAyK4CLBLeCXaL98BxRkxELlQj1DR527VQEWvMfD56uzXd44clESubaldX14O+FrwRWHod9PzKMq7vwckry8Vrl+rNIP5tHSSaVsEkNW6Ebes6nedxGpk5t6SmK9SUWqYVCsbwdC/wnzfIcPMz64VHyU11B3JOZrXPAegbZNTkMv4rSIdZwde3GaHu8M+73l9bHl5Wx5EQM3YeYuTGXNnUNHs4uU5CAVoacFpaUjzB1x/sAT3bDSRtrtY4AcSJYxALpJBfRQ1jHnAlId/rew/SWEMSqDiq6EIfrKxNOgy7mYg93qjrf8czXSQ5+J021zTdc+EXHabqG9JrSrR8XpkyOa5+4kLiuvBdERPASDUkmorpz1UZvknJa1vW+szNVGo7zCW4Nx1X0keJQXR6f24zLf6PatYz7yuLww/KkPWvp5pB8C94df5Kr/C/TDC5w7cOMGbuzAPl6yDZrNZFn3nu4+0GwGzN0tZvOKsLlGrzdvt+shM5bnqaArTpCfqRMq6wWlQyYuCL9T3MuyPo5xMUHlveYJ8zsFetqU82FaKSCO2xV2E7ncRt69hHcvDT+4mfn1/6B4/pv/kU8//Z+533+Pd1TDN9tLvqU73tWRi8ZzOzYFM1juO0qczSGqSk+I8n7nSYIPZykMBO+WQFnvBLEyHPCHvQR1917+bdAP+NNzcmzX2NO8ds+ZTxIIn3EZ7QlmJq/vQhgTFlL0FZXEaVCEtEZJDQ7leJ+Y3d7gk8iidBGmi0s65zXkvVhXir5aN2luXu4rOrHuc9ZTzZourumaN21WRZzOnYiua/CNInYK00WaNrJaiVt+3cC6UawbKUysEnv8q/HHM2J8fE3y1fijHX8iBOpVxmmQ+IBBEZSCqhJa8wKza/pFJUzvg2wsjkmYPuT06Rg4BneS2pxHruaZhPKwSqOjwqY21pDcr/VCXD+CHtE+3UTTzb8ObBTHz8KWOglFTBuiJRBxcTOXtpq0yKpFdblpJ0EaCEmYye0ypW2GJSjxpEJcCd4PncFJ6CCeCHqfJ0K/aYQ0K7mzlmAdFTo62rggSYCE2fAcw8zRp1C1KBtDV7cXls2S/OeQdqKYhNASxFg5zGvneXltUI5x/l6sxPrHIPsq/ZtaqH/gpE4/mLGLMYnUgSCVfxWKuAZQGKY5EFEbfNeVxXFevILgDgCM82XRrAFqN3X5ANIuKIW3xHgqfmVxepp3TPMe546YGOmUZqWMuHXegkDtEFHPBtlUHYIrAV7yOWmMl1Y1KfzI5ra9kOKPXcGKRaTmAH6y4ivScIhORKQknBqlGKrPHzhxP9VYn+yeEP64OCrG6Ln3UxHVc4urnIMiHuf2sbyhCiGxdmMghBnvBpw7EuLAOir+VHfNM7viMjEWh+iLu/h1aqkdicSyqGoWzm12S5yJfRHQ2sp9MgZQiohK6IZcgJL31rF0DNShifIZ8EaBOo86XMYTC3pniJ4QJaD02nQ8NysMip4F7TFl97kCoxua9pKL9QesLr6Jv3xP3AithMZloeV81GFCkDEfgZBd5MnbbVHl3F1rk0LWZH5ZF8c4KexW7sctCmMWZ7ifjxzTZy6b9IyC0gQ8zudihqZRcznH8v27dp6MRILSGN0lUXpD21zR2Msibpb3FBwxiCPcO3HePxaQGoM/EafVGzapoTHERkGIuM4SWuHlWiOOf687gn6LArVuyt3Crt+XrhCzwaZQml5ppmkRqTWK2zBK8VADSaRmB1r3KDOzMTcA6LYrDqrIiJqGsimrGbWhP6TU+iROT9OJ8wqk9T0mUVg6tFK3U8Ja7KO4hjPjWDZpIJtVJS6qJK5kBqvcv1OBMYcipo1NaAyhUaBVQXuEZUosWI8wK9QYaY4SjOjHlwz9jxgSdzrUmBSlyRDt0s1EhfFRD13I8jNLZkXLKZIMKBiyEKvW31ixKc/mxEOYucNzcfENrq5+GXPxDYgOd/yoCOvBT2UzmcWpkyJtDBCX+XgJ1E24JQWDlwyCEBRGRVqEwytucZW6UBZxYSYSonD8NYpg5PX3OqRukSX0zhOlGJHWHock0h384iIdiUSlaZKoJUGka0HmpPbm086oVChKF0QW33QW5sxarkN7kboorjHNtTg3uyvmzSXzei2txJ2WTfE6om3EWpIDv3KaOUUIEachzFo6BAzEt7ZJFkkgZo4ZyXxQzSefF0pUoz7O55jH5pzo/YL6CL6wV0N/+OIs+s8Z4bDDJxSQGwLzKF2Ombme58qT9wCQ1pIBcR+GJLvo7MSzG9SZOJ1rY4L2ELzH7OVntIZxEkfzk7s73LzDlZAxyVTQUa5rm67dGuHTKsVae2wTRZyeRaybR3Vyj6n3JLv7lv1kkzgd2UXHXbXmzrxZqAR4cqC3FGSCn/C+Lyi4C2MJSFFoULEwX036nAKQ+dL1dVAK/QXnsSA+tG5QyXkdgljxYxadU9E4m0jK2i7Gau2z4H8ym7YgPUpg2kUJQ7TNVel+Ce06OZw/f/17/vdvEqqXk8ic/JtgdFnfe6vB6pRZtAzlPTpcoIJD2w3GdHh/LJiJn9V4ftXwp94P7PqJf7/X+Lu/wJP+Y8bplsPhe7yce3adZxstG2foesuq93SHgN3d4a/u0Icd+nD1VlAfWZgmBQTGaSJOjjDFKotKLaJu0QxOA9CzwSJ3A52PkOaRHJ4pvBZ9gvGz5gJjt6j2CdNmy3xluN563r2GD58YNp3mn//7mebXb3j98f+D293vsQ6Ob6+f8k275gOledLMaBVLp1IWiIGUoyKFYh9lbeKGSNPPhL5POR1Wjke7gnksx0e6x+6JfU8YJvy8FKxO3+eSu5CF+xpxuYQhc4LkWVCGIvrG6HB+wPmRSEzFcyCJyBEJcJfvyJCpYGFUPzZLRTJPOj/XIkpTUGsZNZQd0/n1taVbaxGwT4MQF9b0Q3Eau4jTrutwXYPrNKFT6E7m4baVuXjdQmslFFMemtZ+hfX44x5fIT7++MefCIG6TZul7IrxEfAVkiFShOkpKvZRRN5P4sQ+eO7DXBwvx+CkJfdBS35+tsV9KwK1OHAtqrSNdXERsPKdszAbOXV5QxKps+CZNlEutQ6LOC0tRn2sWLf5EQNjdEWUXpjQFLd3nldqBzVJOFFKlWqkVpRAkCxS112V55PxeWtsvaE9DVxakCLnf1c/V40iqb+vs5tBpUeehHGsqgVWPhZ5gzhk9nRxPTQPuGsSkCbT6IyDJDaKYJ8+4yJpL++xPhb5T/l1vWmblZ9L/pxDKEXMr49PfpKQRGqjFqFL5abkMwf1crCtVG6TOO0bIwtXIBpQXhaw0WjM7NFuXha82pyyGs+EaUEhZIH6wOzucW4vjh3XE/xEw9JKemEsNrwFgVrJZ2uDR6M4hFkEal27mjV4g5mWo7++nrBGoRtoDCgTUMaJgH2IMDSAYacs4JYFVhJNgUfxLiCff82ZrrE6U3LRiSM2nvEXEwc6bahicDg/VdzRKbnQI08qtvSHVlxfh+C4DaO4pU8CEJW00Jn1CaP1/Fx/44ZEZRd1cs4pX1z7tZCQr7/zwtvnCdT1RJ+DXI9erk2fOjbW2vCsck/nzpAs8C/u6TWr7hmr1QeY7bc5Xl1hOhGnixvw7PeHWmSp3MMhiUKCvQjpWpPw1FUOWVMknq06EadbJbimdUzCNQ3GKHwj58Onc89IDnVJxyEKPy+gcCE+uC9OMTAnp/gUQ8K02MSW3dA0m+SUXBf3RnlbiTUdgnQ4eH8kBoexX3SKV9VdDlBS2EqqJa7T+G6Fba5pmktmd0i8wLezjMvtzqERkVqZFbp9QgPJdSStoQfdMAwvmfyRQ3Ds3LQ4fbXCBAtTg95FYABGLvxL9GqNXl8svzBYmCWUsr5fh2lc3FXTtHAqQyjhYcELfzo/3KxKsPKQ8VtVHkR28eRW35pFWZx+5sx5c8adjg15nyuvs2izSsRyB2qM2DHQjDP2cE/ff8w4vmScbpewPaVRtes4LmuZ3A2WHf0G/YAXnYXrbAjIXSv1KLxOKO7p87FgiSaMveL68hfoLr4F2hCOnzIcv08/vGCeD4To5J5WtfiX8+bsas+Ox8ys7xEU2MFrLlzqslGRdSqi5k4pwyIcRiX3rBjhmAohWbS6iA1D6rIp34+R+zDJfa1qbc6vYYbU1bIEGNY4AliKhxqI6c8izi3Fxbx+sWYlbunUJt2u3is4D7++xq0vmLuG+cIS7eLYWl0I37RtKQ5dnwotWsckUoMyIk7XedZfdqi01qk7c3jk62PnSn1+mUqklvPvbC2ZOKsKToNNpxHaTsK/skj9047gSpBbONwzHyTYdnQmdQ48POfzdZXP3nqtKFx6K4U4s0LbU9e4Dw/d07MTvAdAP4B+HdGHl7h5V4Jvc/BvRtllF3eTMDi5yNToSNOF5CSNzKNOArUqTN46JPpmaLnzmpsYuYmOXcLZ1J2b+Q6T1z06FeQBvJ9kfooTF1GxNQ1aKabgi3taxOymXBfm5Fo5u3eeidMgBZ2oDEY3BD2LKUB2cnjlcTFiEQOBJ5JLo3VnqEOc1p4cMK1RKoWj2VXivW9omm3BNRTebMJvlNd8ru5V4zER+1yoLoiyynFdHkmcDk0y3gQI2i6mlNCk5+rQfrW4p09CJX824xvvdNz1gV3v+L37Jzy//d9xPXzCNO54Pe+4iTPbqNkGzWo2rA/mgYvarzZfXqDOfOUsTp+w46UTyjldsB4iTsvX/kyEzYawsl/NxdF4ipAAZL5NvPWc4SFYvw22e05YP6G/WtNdB959Bt96pnnn0jLMgde/7gh/+E95+erfodyeD9st32q2fKgbnlpPYwKjM+yi5B5M1T2nBSZU0T5mpyWIsveYfkC1EiStqe6TQY5NONwT9nv8ocf3njBFolcnodAhSId6Ee/TMRmikzV7KszPMWdvJPOU0qnroa3c03PBES2jyluIi+aSvwpabnm/9SxQf1el3fuJKI066SzNqKzzgld2TStlFqxHxZpWymLsVvJdqlBrbCdruKZaw1lNtErwTWkOtlbu4UantWu6DZgvv2X+anw1/kSMPxEC9XmrnwQKyp9ziI203ZKQHsJu/tSNHOPCB1za8oU1tixKLBpdUAziRhaR0CufnL6Pt8ILq3UR0B/b0J2EIaYFYeYlHpMro4SxcYr2KAnZZSN8OmmW31HdtkMSRAOLIB3SHLCIzZTN6xcd5y7jLLzYyu1afz+/Rgk/ABQnx/DcmV14kdVab1a+PF9GAhxSe/yY2qszF8pUbTwg7cEkJ1YILnFoPVEtC9NTanXeYnEyI/64o1SqvJEkRqcyR8zPp+u6x5nQL2/XpB/Irzm/7uySAdICQBzUwegiTov7Lr3WhO5UPn02oyGacLqATuJ09IMEZ0RXeLbeH3DuiPdH5vmeab5jdj3eD8QowvEqcbwlLf5tOLAMM5EhBlQU/EHZmJ5M5hqclWCQqLjYOdYE7EoJn1KD1gFrZ6wNNDrQDC372GAi7LPYFiHgC5Yhj8cY7DVv3BGZg0+O7xTCoZZNaFGX0mfnmXEuf36BNsKVtjy1FzyxHU9Mx5VuMCjugvBsX80DOz9xCC65a5UUX5StUA/h5GvNbYycqg7lZ8iM0Pw1u7ziSfHLU6OLHj/zTwqF1ThB8KT7bCDSoLg2Hc/MihZdRGwXQ3JPC8NOJ/f0evUu3cW3cNtnjNuGJjkRPmcP+PgmMHUhZKxJ3sh3yrBS9iQkNc8xtTi90oEVsIpKMDNYsGsCkSl4XvqxtBfm6zgXBvOxUUoR0zmWC6LFraWa0kpsKmafLJar+1jwBdvh3SGxtRNTm89vZ8+FEh65TqMB3Qin1gfFtO64aK5pmiua+R7vB7x/OypWMLoIc6FpUO5CNnaATUn3mfdndEPfv6R3O3Z+XBy/pPtcsDBktuYAzNinO+kSaVpBfZy5ovF5A+sXrMckDuqYlKGYuNMxiItaQpYlaHmcTXJPK/Z4DtFx9LJZk8LOgmworaM6z0kdWi9oj3P3dNTJPZ0YOXWHQBan4whmjDT9RHPYo46f0fefMoyvEtojc8ZTy33toGdBd2QB+k1M1txZJO7L3LES0YbSoJLXXJnDWz9Iv2sKck/ZE3m6/Rab7S+iV+/AfGAePqUfPmWcdvi0adVf0PHqYywdN8cw02vLnsBNtGxmw0XjMQqeKcPONNwHy0EZBuVLjkQ+o72CPm20S2iinumUKXxugDlIl13emOeutqXIZMrnXW+Ez0W12v0p77kp/y/MSxGVrL1IAvWFOKe7d4irZ/j1JrmmF7eW6sC20k58cRHp2mVTDItAPUwgCAcRHEDc0+FtOahTAZQUhhvjqbADVWcSyV1cnecqobp0CpN9VJyuxoPrm4nQC5JDHXaotkM1q0f/7Y8b/u6muKf9bsfYy3p98NLu/kCcVkvo99KevrSdC8alw5oLaLbYIlqIOJ1D1rN7up9FoO5a+ez2e8XF7QE/CN5DwjUXdJVOxyoXYmr3dAt01qNTQ4WweFPRrQqRD0HMMnNQvPaaXYzcRM8uumTwEVOPtPWftvYrtQjNIUx4P6Cj40Jptsay0Q1j9IJHI8r90Qh+4twVXc6HM2H6vFNIKV+uMbnfWmK0hCBdUw4xD9QhajqZdXKRq6zpYiAqVRygxrRY09HYLU1zibUbyQ4wXel+qdcb2ocHiL3HxnnYoQQTL0J1+bnzEFCtiAbQMmfjFVEj3yDdQ0JAOUFInc47P1uBGuAX3u/Y9YHd3vP65he5Ov55+uEFt7f33PqJZ6phHzUrb7gYLatDoL1zmNe3mM0WtdrQfPjffanXEL2YbQi+8KfDNONTuKlzuoiuWZyeg4Sh5+DbKS5Bv3MJP172qqGa54ohhYU9LZ0vKxp7SdM+R62e0z95QnyueP4s8J13FN98Zpl95N98b0b9b/9XPn3568zzDR/aFd9tr/iW7njfBC4aj4+KgzMpkHd5LSbhPWSdLnOxcKgVfgj4w4hue0I+jyq8R/Se0Pf4YSRMvnJPP2IqyyHxSY/ogz9xT2dxOiiw2r7RPe3DlMwOaeZVWZ0weZN8/pshaS4Pd9+q6DQ59BuVRWpLzm+oMUFa6YLLqu8p2TW9zL/ZNW2WIMSEZavRbNG2J3i23AEXG1XMNDZ1MhWBWlU41c/Zx3w1/mhG5PM7ur4afzTjT4hAvYwQFVNybXqQSSaehiDuguMQHS9dzz6IOF27XXKAmUmt+HWKdG4tDdERw0yIihjnJEQsGzBYsACZWdjmxXWF+ciaWPDqgVNhdCJOZ75UmQiqFtbs9jx5PHKManZyPbJ4Qv36UScC92P/7lyErt2A9d+dM5zrUbiUtTjNKSqjfk0+gksu6nzzmNOiOzOgC3c6uTFmSKEUK4xdlxaevNiVhbygFfJGXri8SQQmUsJs3iDYv3mblP5dmkyjWgLnFLKA0EBOJrZpcq35Wg9/T82hPm0Lroe4K1QRp2O+SNICFqK4706CWxJ7uhKna2SA90e8H0/EaedHvBukpRRPw+JKazAn5/pPO5SyRJWKDSl00Pjq+Og8mVg8Gu8MPirWO0cIjourAJuIaRR6o9BtxDQe24x0957D7YY1LTdaNlyH5JrLruraJV0L0+e88bwp85WTonwehCROAlEkABNhozQbbbk0LU9txxPdlVA+kGv+pR/5g3HHPsyFZVqKZ+iE5pCFN1D7/dPxU0UcL2niZ+iVk7uGUhAVGU3h4sJYn2Mo4vTyeOTazgXC/IjC7xvS55c5lQBdck9fJxEq39/GJPZPMYAyGLOma5+wWn2A3nzI8XJLWGusDYt7um5LNvlx9l6zMJ2vnyifVt7I5xA4YZyfMrYBDCKUNDpgFKyAtQ60zkKweLtm7jzTENiFuRQEsyhR39fyPaW47ZU0LmaGeG4ltqZLApW4n5b3khzhqcCWWX6nCI9UuKrGCQOwYI90cfITHVELOsVaGAPMFxbdPsGOVzTNHc4PNG9JoI5aEZU4wrSbibaVjg6W+anlVLzre8vd+Gpx/doqiCwYGNo0pw6sn+/Ae/R2KyL1+UjnYkhIjxywFn0gzu7EPZ0ZrTkw6KF7Wu4hxUlEdimb0t1gdFvS4XOLKNoStSnOm5AFwur0rW/3pVY5gh4jbT/T9D26v2UePmWcbpjd8aRQVRc480ZPvK0UYboORKxlvixeNyoXbiKNDdT0HB9O0R5FpK7XE2mdcgyOrn3OdvNtmtX78u/HlwzDjxZmdr4v5Y6Q6s0/nPtkHTAHT68c936mUxZjFG1UbCsH9bWCd1XD3qzKZyXCmidECqtyUBEXPbOX+1GjDW3luia9vyEV3KRYGUveQO7cyq7LxzpYzsU1oyHGClWQWbq6S+LYRQlENs21hLFtLnFdt4QwNaA6MC10K2knvt7CqpF24jwmB5NfhGr3Fl3Tp+/RpPWUSuXApWtO5pBQnS9veI4kUjc6YM56dYInFZCCIHlSOOKC9UEKT8OB2HSEwx3myv7EqI9w2EmQ6t0r/N0t/tAzHjX9ZEu7ez7nz9fNmbuOEsZ57hbUShx8xm6IzUVClC3/rsyllXvaBzlPjgPMO8XV7hXjtBMBOEyFPx3xy/2RpfiU57ZWQWMDpsmhr1J0myZBljivT8S6IYhzeheXtdKQOjjzue/SumBORdZcOBcTw4SNgQtl2GjLxjRoFPdhZoqBWNAdS05HuecXoXoRpR+7nvLcp5UhKCNCt7aoYEW4jgGPK0JaQNBe+ePKWUP5/XhkrZUZutp0IkqbxBE2F+T8l2i6R8MQ6+yXB6/3DQ7q/FWFUITq/L1zZBkgOC4N0QIupuKSRnmDbjuU9xg/YuwW7w+Cl/ojEKhXreYX32u5OQz861sNr/4818cf0Pef8dL1PDEt19Gw9pr1ZOkOnm4daHYjZnODXm8Ih92X63rwORRxkMc8EGdHmBd0Tc2fnoNK4euKPq1de3xxUNd4D1+t5WoXdRZDJXRPipPWrGjaZ9j1+8xX79A/b3n+TuC778F337GECL/1w4nf+Neau89+jWH4hHdUw7e7S75j13ygFVfWYVTkfrK89lpeV1yCGk2UNX6L3I/mkFAlo2YeI6b36FZC76P36LYtfxaBekjok3Dimq6H8xJMv5jmJHsn58WUzgMWk584yC2Pu6fHMtfLHiVf65x0gcoLPd2X139/2gWoH3ST1jzwGhOUg4rr+8q5OJ3Z2V9InG4WcbrMx8nskQOuz53SeY3kQ2RygeYt5T98Nb4a/7WOPxECdR4+5sVtajGNOVBwcU3voxc3oh+5ccMDRqBSLdYIf0inSnldZQ4pfCT4EY+GxG/NlMlzzEV24LWwhCPWAnVVmcw8y3E2zEHS5vuwiOt9NUmKmH46MS2/dzEZK6WKS7qWUj+vi+R8YX0uzCqlToTjc3E6c+7yn/NxOWf46iT2oZabcy30ZZZXehUoRBzyydkQYiy/CxJ7MgWvDVFanqLSqaVKeHH1RLS8Py+hMqYrwm9h06YZ+o1IjTeN8u/zQ/KEM06EGPBJsCZmzt0SYJPf+bnQmZ8b5LzLr792UueR3U/irqgmbh8TW7JyhpfU8IT1qMTp4AfcfIcPI871IlCnFn/vekIUx46OYLROzunUBv0WipDGrFIRaGKM4larh4+xqIceg0czec3q2DJ7jZtnNrOnu4zoBnFTX4pI3XSR78wDV0PLtbe8iJqdMuyj5xC0XGfRo6MwOomysXusaAMUsceko5uDAfP3RAA1rJRhYxq+1my41A1bbdK9QvjLuwrlcecnXrmxsB0jmcGWgBFx+b35U60foXZxJ4Fap3Y7eW1L6WN5Hyp1EkhBqDios0hdXNTZJfmwpcBXjxyiMkRfwiMDgoO5NC1PTEeLMOUzqicvdh2gdVvc0+36Q+bLJ0zbBrMWNwKcO+5yASY5AY2mVtIymiK3QaetnBRW0jn86LlYfW2MiCUAHdIqbSYLocE3G+lwGe8ET6NUuRfXfM4626CI0zlQRjWFw5nZnVovbrGY21YTssS7Az6MCRXjMeYRIbYaStkifuUZIQSHc0dwgr/QGtpWjm8/a2ivse01jbtL94L5c3/HTzJ8Y9MmXOZbPc9oLtLrPF2q5M3D7XSD9+PpE+UPKRhITOqrT/ZcTHc004zZbkqLa+20zK7pLFDX4nSYAn4KaUNLcRlmIWfwhl1U7PDcpZC8XGBZ8B4Lf/p0M5QKCNUGp7inTwKUl3u2uLgVuIiuuNN2f4M//pCx/5hx2pVzpIjT+bliTmAIS0GZRYQ+xRotblcRuoTF3ujTtUweNX8aTjspdBKRjyl8+vLqW1xsvouyW5j3zOMrxvHVCTP7QTGtmleXTapCJXb+nAphezXT+KVo0WqFcZYr41npwLtR05uOIaEJXAy4ECUHgHxfVMwqBU5Hj/WhzG31WLrYUv03CVoq8Wp1KYzrk/dx7g5VyhCCnM/WiMM3C9NLwWpzwpyef4w4vVpFthfwdCOhwVmg9gEmC/sBZivCZz1UiA94tj/t0MoSokehCiYqsJxbueC78KjVAxe11mBtTG4zmVvzOZY58CJSp9koF5rSnwMQ+oPMA8ZKi/tPwKMOhx3+9jP8/Y24qHc7pt3ENDWpQFXzp5d/l3EwBlWMGEC551vd0NgttrlOnP944nDP1/zkoZ/kc8p/v98r1q8mYv8pzt3h/XS6HowhuadlbmuVPjHOtCpijRR4831tSjzt0RlGp5lCRgwq9nAiTtd5L1OsOjrlE5PieAz46Ihxpouw0ZatblhrS6N0mecnorTKPyI8FwZ7djDqx/nJYjiR6yhfX1LccWDkrFMxEnCCP4gJg1hdlzXSrOCZEpot7wmF/77G2ouFQavsGdbDiwu6EqUzqqO83vT3WZAOj/X3G432+lFxu6zxtSoCGKTC/Cw+VIdFh4h2DdpdlGwHrY9o3T38fT+D8d6Thl96z/Fi7/i91+/w/PbPcXX8iJc3/5antuOZalgry9oburGhvQu0FzP2bo/fvibc30i48U8TcBqcCNLeEVIAcuiP+N6dOITnJLr6iIjTBe8RioN6joEZX+Eoly4QwYHGhVWe5vZ8zhizlhyR1fuE7Qfs373i8v3It9+HX/6goTGK3/5o4v/zG5onv/7/4tPjRzzF8O3ukl+wWz5UhqfW0ZjA4DR33rCLIg7X9xyjIiYqJhWZWBzUQy9mDtMEtJnBiDYRztdAs4jTIXWM1ffgzOmeXdInUkG+zsKaoj9DGy5uZWNWb3ZPx3BioCnCcjVi0gvOv/9ojsojgvQyzy6YIFNwQg+F6bxGzt17X1Sclq8Lni2HuGcUYX6U+3zMBchIayPDFDBawhK/Gn/04ysH9c/H+BMhUJ8IIVHUGGFGLczmfRTR5z6J03d+4tZPJUBPq5W0Tye2mDGrKkU6IyEcIcw43zMXR7UDJeFXeZiyiUuhWkollmmkMQ+TyfPiup4kRZyWCuWU3sNUTZInSdOVgJxdGlYl+SrG0r6tHrngzp26tfD2JsdwjLG00eTnyHy7nBZetxTmFsfy89WGxOS2uvSIlQs1Cze1vJ6F3JCs3y6G0pqXEQtZnPZKoVWLsWva5pLGbmRBqdsT15J8rlNa3LsTZ3J4Uwn5c8a5Q9OHOTkT5+R0dCLqptb8WTlMXBbG+ZiVzyTWbhw5RvXry5uRWETmVCwJEob52FBp4yntg8k5HTx4YdgGdyg82xBGnD8WduDsDtLe73p8mIhBliMWsGr5vOV9/MSH78Ewdk0MBu8hMNEHf3Ju+qSCex3xOjJhmNCs54bBy0Zrmia2o2O1jTRnbuoPGLi8m3l2aHhnbHjtGm6iZaebEqA6RE+rdMHqdFSu6rTBqRnqddHGKk2XsCcbbbnQjWzSlGGbFky5M+J1mMr9KYdsuVScaVIngkWCIfOmM/+eugB02qoaEx8y4kguQeXlFSot/t4HHQ5yt8jn5DnmQxaiguMwSj9wvS3CdL5/SXHtkDpWXOoeWCnDU9txpS1GKfp41iIfA14p2nP39OYihSMum+t8T01mCWlz1bKJezPiQ9wYKmYhgTeK0+fuvoxraoxci40Ngm8aGnxomdpLjsHxh9M9DkGZyIa9LrsloZqliLC4x5ZujzrxPLumC4c4poJpKiAtRbWFOa7eIMLkYJiCryLg/EB0e/QckyiUGbWB+fIJzfQOdtrRNIe3xqBeNtpaBIFgCKkunJFI+ux9KGXY73/I5O54XfELPSHdCxp8YlI/e9HgZ8fFfKSbHWazRrWtuCzhzDX9UJyu0R55Q+ucCDnH2XDnNfsYpTsrdfBIYFCmOC/86eyGLRui5KLOaI+o9YnwUI8TFmQlTrf9iD3cE46fMvYf0w+fplb/WpTO+QUeUkdHddYtTsuzuSeP/HclRJiEXdDLJva8Ffg8KC4QmYMEgd6Hma9tv4PthC/qxleM44tTZjZ5M/kGG/nJEEFmijLr6aAezKXQ4KPhygS2OvJBMHizLq81kItWAadKXxNehbIumaMvRUHIm5nsutagTCVOt2lzey5O+8olJpviZXTlGs5/p3WLtZvkxE5IgRSImEOYCqvcKkzCemRx+nINzy4khKkWP/djkI1xCd2T80G97YSgxGKNXhdZ50SYToVJcSimNV48FaejXu63hpg659KxDypdGzF1O1RvILuop4lw2MnLSW3t0Xv05urH4j6KOH33Cvf6M9zrG9xdz3QP/WgZvBG8R4wP5kJYCj8FCZAEUKV0Eju3GLvBdStae+agDpV72i9z3TDB8U7x5PYWN77CJbxTzZ+OBAxLF2M2juTrt1FS4FVGOLO5g9P5ZQ+S8Yj7NI9ncfo+TGd5L6fMdQkllPWpip6N0lwYy4WWh1W68OLnGJKYle57Z3NYFqczC/YxrEc2aOT1ACyFH6OtmCiCBR2I3hQWdVRi9lg6nJb9R76uTbqWjekSDqCr7uEZrVfNTUl0Pheka5H5fE2Sxen6/g+yjvfJQV0jQoLRaY2fnltXa58g10tIeyXvDGYW4SznHRjToc3P3kGdx7ff7bg5BF7dBvoXf5arw/f43ov/H6/dyI1ZsY2adWJRd71ltfPY1YTZ7PB3r1BNhzbmJ0bziHN6TNzpQb7OE34KwmVOKBvpFhAxd46KPmSDWzxxTmecZh51cc0jJgOdChomh++ZFY3d0rZPUZff4v79d+i+Dt/+WuTPfs3SWsXv/mji135D8+TX/hUfffR/Zwt8s7vkl9pLvqUb3rGezgZmr7l3lpsIuySeg6z7DdL9OKmAQaWQYEGcjrPB9hHTCOoQRvABNc3otin3zNwtFsNpR2J2mIcgx6gPmn36/TnQPGM1F/Z0EqdPjBYP3dMhGbjqcHfg1B19JjDrR9bp2bSV/64g7DgtAj+GCPpx4rT8/RcTpyX/SRXutNJLQPG5/gPZNQ2TifRTQCvhUgNfidRfjf9mx58QgToWbp5hEUb6KGymfXTcBcetH7n3IlAf/EyvIiDtHbbZ0jZbrN2Im8GuyYmtSlticMWdpuYF96H8hErxBMUlkf4sjLcUrFXhPXLQy7KpW8TpPEnm9qISzhBlklwQAqcM2ILWiPLnwqGuN5s/piIUWARrEd1I7/Pxf1fc09Wi16rFQXsqVC7Pm3d2GSVSxLTkfsocycyvqgVqFbNDxeNDLOFGkFvzYoVAMGjT0jaXtM01Tfp882STq7jyHr0wqINLou/jva7ni+LzUT+f91PhWvswJ2fjLG5tPxL8RIgO73sCHo8EtQUiKi4JxfmzSVvH9PyLwzuEyjETHCp4EZ5DFCHaL47s8mSQ/j7/7ENxuubZiluyx3nhTQt3OonTxYFKETnyOBcofprRNlt8GOSlB8Xoe0L0oqnHyGwShgNPoGVSEY+hDYo+ag5Dy3E2XA6Oy8PMxUaEarsC3cDFs0h7MbM5ep72E+8dDHd9y50zHHzHTksHxk2c6eMpY83zMMlbKyUM43QdtGjWyb3UJucSyHmcQ4Zy4SwjanILoVHC8V4pYXp32px0KZxfX9n5mF9Xfp1j6SyQReQhepwKRcUV5+7DakKuJLu4sLbnJCSs0sK9RTPFSJsZatWjLq4Jp84xBZ+KU5qNaXiiO9YYfIwni90cGKhVi202rLpntOsPcZsrcU93S+CXnBvL65b9cSQ2iljaXdN7OitCESvMQSou1gzeN2FMdLqXW7vkClgTBGvTt3hahu6KH0z7FMok7znb3APL761eOSJynS7M8wgh8ULTxh+Qe0kYy/1m+dksTueFuU1PXS2+1SKCL8/X46cdxsmMkHMWVysYrraY8QNaP4gD5i0C88pnlF6vrribGlDRoZBFSxYGLi7eo+81/fwa5aciBIEc30kHptDwdLfCuRE/z7hhZPXEYbYtZnXqIAvTTBQY5Yk47edTtMc8KvoxidPOsEOchYfolqCgmBzUKm2YThw9Cd1gVulzEfdd1LoIFUErVEjdLiGmCTodoyDitB0DbT/SHO7h8DHj8fscjx8zjK/EkZSc07U4nd3TeWYt9+6zQvL5qOf5FkWr/YONFiydbOfsaZD7Us77mJSmW31d3rvbM0/inp7d8cQ9fe46rr/mIVHDKtOrBAuUO23cMk94Il63tEEc4NcK0BajJEDTzIqXbiD4WTqbVCyOLmIkqCxOnHWVYZaWYt1IB4TJXQ+pI0BpQphRKhXVokfFeiOdr9Pl2j7nXxZx2m6h2RDa1RLClFjluhHO5WoVWa9EnL5ew/Vas24VRqu0IZZVqw+Bflruo9Gno+kf6d76KYesm3w6H7OQG5aOuViLgsn5F3TJZDFElAHbZLxSxPgleya7f0VYCSeIj1xwUsYThr4wV6N3kB5qtUGvNw/c1HEQbnW4e5Wc0wntcbdnuvOMfWIzV0Fqb1rz5GvHQekCJOWjNM0lun3CtO5Y6SrHIZ3mPp7iPRoLd3uwrwL68JJxzniPOa01XTqHpBC8hIFWDmol17BtRDCZBukKmROyKIvTOVRe9lL+RJzOeS+1OC25GIKNCnGiiZwgPTpliqkkrymyGUWx3K98mNP54onRpLX1aVdQHTRa3xFkfpAUW7mGspvaJmd1U1jUeS6u9yi1OJ3DbXPIXcEzVUKW0o9gtD4vFAOK29o3tojS0egHRUkp2EaUVwX58aaRAzZDIGUViEjtgkb5Bu0aCXZz+7S//fwuq7c5Vq3mm88sv/C1id/4zoonL/48/g9bPpt7ntqOayVou7XXrCbL8eBpbmeazZ727v/P3p/E2rKl933gbzURsbvT3O61mY+ZJCUWG4uSCqwqUoYmBgRINTE8qLk98UA24LEnNmBIgiANauCJamBoVqgamGVAqLKBKpRFy7INSSVRpNiITZIv82W+5jan2XtHs7oafGutiL3vuS9fJh8pKf3WxcE9zT77xI4dsda3/t+/eYlqOjAWveULg9Ri5SGgdBwOmT19yD7LOUciX/MhM42nnKFQCW4pMKU5d6aQwypJrNTHZd9Z7dnaqtxt7Ja2vabt3uLw1tvoryu+8X7iZ9417Faa3/juxP/wjzXX/+M/5KPv/Dfc33+Ln253fKO94APd8dREViYSo+LOG15GxW0K7JPsFcoImfRF0rSkyqLus4d8M0VsX+anCDjMWprxJTV3Zk/PDfFQrFBy3sbRGQ5Bs0+j2PzEWRlZlET13im+05/Dnp7XuzfbcagTQPnN9hcnxIzF45YWQeVnZT9f1IafC04XK7Y3qN5OwWkjAcWNrMfaztYeS4sPrecGpDSKE8aXMGDBOEJMrFpdAeuvxp/M+LJ79F+NH3z8iADUAoQUMHbKIGWfYrX0uI8Tt2HiLkzcB8cxBdAN1mxpuyu69jp3OK9zCM22bh6XAVTBHwAqIzbonrDcSKuScq9zyJaq9h5FEnsui405mGH2e5MObkkEn9ODl0V8PP2bKdtpLCSEIpX8/luM81DCAk4XBvYD+Qgnlh4FMFuC041esKczgyOSQEVI83Et7TzKou8XxSEVOMvFVpGHppn1UEF1FgFjFN+vVU3abtvHsrnLXdAyCqgcc7BYkUWfj8LeK4vakll//lwpekI4ZKD6FEAqLPwQBnyWp4ufubxyl4HqJXj10Lt4wtSOXsDlMKDDiHGeYA3GZR/RqKr3i4oJ4xLGBbRzKD9BGLPv9HACTgsrZzoBp30G11Py+ZgjJs3XRBkPbeR/mNG114TYo5TBO42LExNBQOo4h4K6FIkmsdGNMAi0okezToo+Ge6C4XKyXBw923vHZited90FOUgx0W48m8vA1egYj5phMLUgu3HtItH7lC1V2QuQ/eZPg1vlMTObuNgNfeyPpwFDpMq4Xnq4LwHp5Ti/x9YZwC6jMDumFE8CYfGjSNsRqxmVhEnNCcN3bnQVMEFYoXKeXYo11HDKyo0a9JHPTWmulY1tsT0AaJXm0rRc6oZWKfYpVIa6SClF3WLMiq69Evb06inDdlvZ03axIYPMnioswMyiPt/wLYcAXamC0/rs/BZwev6fDFZny4PMopZNfqLtRIauVYJjR2DNr5qWV2HCIeFeEhor82DKp3upkJD/zpivi3td7sd57lk2w2IUcXXZ2D80auCgma0D5GSJ9ZAPI256QXscGf0aowUQgcT9paE97uimt2nDwJfkACC+mgt5c8rMMBUlxDXFCKbLTUqPtp4G2G7el03IEY7uFfixXv+1WaPgD1zHdC/r65V3+CHQXQw02wmztqgmn8+F33QKiTBFYRJlcNqN8jGN4jt7KNYeWfZ+FycJR8xMIl/rkuJhWpLiTZWFkz/OvUV1TASjZM4u38w6XuUzOH0csf0RdfyM8fgRw/Bx9Z4+Ob/FDiNl7+nMnlZI/VAY9Msm+7IekPM5e1CLa1RRg51eBPN98vooG9lD9DTtI0x7Jb8z3TJNLz+XPb0MNT4ZSsBjpYCkCSqSUr5v4uyPW8KtJhO5Uht2QbHWiSsSBoOxm+ov/SlH9tGzJ6CSYg4S1cz36FxzFmbYOWP6nOUVl7YknAJsy7piGXysC8s+h2kKOL2bGfdGi6Q/+1xqC20rH5sV7FZwtVY83hlWTb4nYmJwci1MXtEubCUyjVT+/pdl8aEtKYZsKKOJxMpW9WluME9JQJ4lM3o5t2stvudtDkokP86HHALmEraiugtGYJQP1ff5Z7lmi4HoRvRqSxq21foDhHkZC0B9uBVbj7sb/KsbptuJ8R76vcnhiAvv9QdqnmXDMy5qXK1b2mZH01xCe4XvLI1dNHTyp5OHwc32Ho2F+zvN9uUrwvCx7E2qvUfOyEmx2q4VhVVlT+f6pNEJa7MaL6tCir+s+O+egtP7FLiPsofqs5XR6+D0rPTpCjhtGra6qfuD4tFdcj3m1S/UGjwqjQdMXv9UFBpSYTsa09Zg3YeGgFNu8bV4UZt8bCl4xEBMQPxS9hQV3FJfsvSyrSCZLuG9D4Q0lmvPvH58hTldgOkSZp4MAmqd/YpypWaXQGUVVLXeKU1MIIeAzx8S8C2/E6PCB4vxHY3t0HaHsQfMn5DFRxnvPm755n3ge+8FPvngm2x/631u7r/FczdwrTt2yrBG03hhUbeHSPvKs7p7KcGmubn0RUDq5Aa5h/uDMKfLvTz0xH7AjTlHYsGenpKqioHirzzl+nmZ+VRGyPNXyKBstWfL4LSEaQo4vVq/S3PxE/TfsPzk1xM/855mt9L82ncm/sd/ZHj0P/39DE7/AVsS32wv+aZe8Y5OXFq5ng5e1FovM7ZRCDPLEVGgYMr3ep8EtD46U1V/9bExYp0oSlXuihUrs+BSBaVjVNX6p4DTt5DVpTn3Kc01T169670iVqlvZk+XsQSnS4BhCZWW9XUODj55r7+P0lk9uM6WPJNlc/jN4HSp1XRhTtsukwoMycj/BZwOVpOa2XanWHuU/UoBp5ej2nyEhPFzE6HkQ2xWX4HUX43/dY0fCYD6LnlSmllvfZ64S6d/yZrep4BTCmO3XGzeZbN+j9XqKW33FrZ7gmqvSc2mJjEnY7DjICDedEsYn2PHF5SgKmEsTCQvxVNZvErQ1tLeY7mZK0W3D5oQF0FLwVS/tx7YL6w9wqKDa5BEcLRGp0Rj9OwTWdiUlVWpTr5fxjLkoXaFSScbumpbcGIzMYPCrTa16CwAtTBHTWaRz7NwqGyFOdixWAeI72w4ZT8vpe1n8tgUHT4tXXlBwGxZxIxZY+yKVfeY7fYDmvZJ9Wyk2QoQUJiF+bdNfg9ZsqcLCF2Ag7IgLYNQmNkSJWhQGMkjhEGA3zCHDcY4EvwBH4543zOMn4mfc2FVx0lsQAgLGXaqbLLCiKxNktDjwxHlLQzi4Nrcb9B+Wzu6haGhY0LFiHEe7R2mvwV3ILo9wd3WMETvD3jfZ3uPAefuZu/1MGWLEieg1oIJWt7PIQYa5d+sxv4Bxnb7DVIa83EdOfQf490B7w/s48QhTHTBscoM41WWkN7bNVttWSlDqxTrzKpuXcP62NG+hDXwyAY2TaCzgcZE2lasGrSBzTawIXAV4O1FsVaS7V0s/6vZty6qzKjMrGFCtQmpIEm+t8pmttxDyyBGFyOH5GpoTxnl3rO5QWQX99+VbVkpec0rbeQ168Js7ggWDsnz7WnPPgpgXSw1fAYN5qaQXHmehEGKdBvDKZCrIWDmTe9iby5gvMzFd8FxmxniABtteWbXfNDseKwtU7ZHuI8T++C4DxNDimizZrt5h8vdj7O++hnGp1+jf9bRXUQ2G2FQF8mzzK8qM34TvjCrPcTmYb/KMn+cKwCElaJrQ63oZo3StGkG3wo43XQxS6Vhcxm5uPY8Oky8d9OyT+/x6+MNfzDecYyelRYPcl+8vREf8ZgSIdMWZToZ5uPMH1o7YmwI2dKi2E7FxWPkuNoTCbJSFswKVWTQYUTrAWM2tM0V1m7wbk8i4d2B+/vf4a1Pfpf9ez9PeBx4vIbrLUxT5Ha9Ydp8je1na5q7yx/oXv68cd5I0G9iZ+dNgtKW7e4n6LqnbNbvcOw/5nD4Hh/6G16FkSd2xSPTcWFaJiIfRsPVXcez+zVPTeTxamK79qzWnqZzmCbRdMvNGwQnDCI3SnjY0MsmbT9avjM1vEyRz9LIq+C4iSP74LgLE8fMKhJ7HgExdGXglQ1XAThmebhIwsUzNMWEHYVBvVQA2NHTjI7msEcfnuMOf8j94Vsc+48Zp5sTT26xk8qKgZp/kCgwjMkYa5lHHmrQ1PdDKZlTlGGtVLUrW56vmNRrDGryXztGxws/8NwPTHbDO0//PMqsCONzjodvsT98yDTdETIQVUAh1CLccXkZKMkMSSlClqrP6oiESx5H5JA8d97z3A+stGGjLS/bHc/smmep5bEy7IBvasMHasut3fJx5/hDf+TX+xfso2dCmt7CjjOce2Uau3pwQy3HFGb1VBghRQI92nSL+/WqAtFLgFp+JhYwhTmt7I7UbAjdStb3JXvapuo7fbWDZzt450rz7MLy/pP2ZIM7TJHnd44pJG6HWdWnXEK7hPGR8H1YoF90NHZNiIqYPDFEQppwKWKSwqbAMXq0UhyUZ68MaxSHIGF9rYvELuX7EzZrz2ayrBfA8HGybI6e7hCwKw9mRJem00IREcKecDhiVh3q7hbVtujVWsCvZlXBaUBYl9NIPNwL4/Juj987hpvEsFccD5b7Y5OZhNQaHeb7pgDCYZGTMqTAmCJJWbr2iu3mfVa7H2d89IxwqWlsKGRGQMDpwyiBiCBNB4D1b+/Rn/4mQ/9dnL+XOtAfJFw02641SCO4y/VAtR1EsVOwbn25daTx5mQfcgia25RDX5mD5e/ixKeufwCYpmrnEh6boEXx2K5Ya1sb7uUcRFJtyosVQPEUd4QQCHFEOZPBX4HWq/S/MiBPZfzL0LNlkHB5rFZaAG0tTW8QtZDLLWedlVSl4i6vCaVmwEwvLUZmkPrkby08pWEGpMu+oYBYbmtgI17xqxxkam3KzeD8nng4HhXTBH7QORBXY1zKrOpsaeBSZkwLQ9PalJW54jPvrSJozUhHu7+SRnn0NO3hzTftDzCcT9//QYhtwb/1Y2taO/A/t57db/2f+O53fpnfu/2X8oAOgumYgmE4rjg6wzSOdI8+pD3siYdbzOEWs71Cb6/qfYsxKGOzKiLM4HRuLsXhUBtM4fYO96pn2GuOB8NhaDg6Qx/lui+ZT8W+4pBZykOag3BdVgOWTJUhRdCtWIPaDW2zo20u6brHrNdfo7v8KY7v/yTDjzf8H//3itZo/tl3Ar/3vyTW/7//hvtP/r98cvg2W+Anmw3fbC/5t5uNeE7rxBDEc/qzmPgsuWqzU/YTy3XbpNwEUmJ5WHJ5Wm8YouboDJshsD542jbSdpGmS2gdUUa2dDEW8F5LM3409JPlrgLkic/SxMswVOLfITjGNGc/6Vynyfm4xGQrrRhHnN8zub3YyWVixBKYNtpmK50Wmy11Znufh619HgKpH/reObi9fE5d7+mF7Uf2nVbanILThT3dNIS2OwGnYyfgtGkFnC73pM7NxcYKSL1Uykz5HpLPo/xc8xop6fNUyUbNNl6tVTRG4YcvLyfmfy0jfY4S6qvxJzd+JADqPkVUCpVRUcDpY3TcLzaMhwJOmw1Nc8Fm/R6bzft06/fQ3VPS+hFuvcF3HcGayuiy45qm7zFassNTDJld2mP9HqcsIQPGn8dYrh5OWlhRMakTcPqEOQ1njOnXb5jiN10nMMUJm3IJUJeglteOicXfKDYJKXGInm4pwVOz13Uk1ef6fuD0klFZxnLTetKBzmztWVLXvOZJJaCsl0171FA33IBSuXvdZS/xjfiKm20Fp1N3SWxX2evzNNBERSlaH2I/FHbbUoJ9PpZJ3dq7yk5WYUT5EeX3aNMR/EE2nUFYUTEKWBR0g9cjMdgzP+x5kZVifWlXEEQq5fsMSB3Q7pZmvBOWm23RvqnHXy09QkB7V8Hp6A9vBKdjToWPVY4lgRaF97JkeUdmVsEQA+pLmOSb9jGkAe9kU7CODmc6nF8TvGzK+jjgUmAMuaGTgdTB2ArY9jrSprxBS/NG7dYbWm+yFU/2il9Y8hTFg4Av+QNJxw4opsy2qMqNvKGbkHMwVdA5zPdZBqjHDFqXJs0yJLRY+ZxcY/nd10qh0uwLWwOQgoR6BWOLZ4/44eePoBJGWa5siw6ZLVn8e1PEJ4gqsbSESXASllgB9BToMzO/VQqTTn2wA2mei5NjTGLtYVGsteXKCGPGoJiYA5Yq+1RBa9a0zSVN+5i0esy4W6GztYe1c8jIkmVXz5WGKN4F8o0z3/nlWM6MJfxmCVKbJCBDZfal07lUi+UmJsulTQPKBLQe+ebhir69ZEyBj6YDLkWRXGeQq/xVk6SBJyB1Zg4qeW/K0Zb5wGSwbglML+eJ10JTCwgaMyvTdChvs6emeGvGMBHiSEqRyd0xHf6Q9uZnmd6V17pu4cm1sG5unUWFR9g0ez9/WWPpj38+j+LHakVE8mi9whhPtyCCHQ5w72/AD/V7jdI4FZlUoleGfTIcjiseTZ5d71l3HmsTbXcKyPnsNz1Nwr7uJ1s3iy9T5GX2qD+kZVjYIugXMsBhTmSrnzd0ENDGuGJ7olmuOG0vrGnd3+CPH9Efv13B6SWD/hycnkXw871druKlh30ZgXgyB83sSxHaG5WWuaOnv7tQl5SvhyhA5EBivXrKev01iB4/3TJNN69Ze5TXcT5e86Refp7mAMWYfLWgCnh6Ii6/P3o6cIieO7Pi1nQ80w2P0ewUPAbWumHd7LgJI89dz02Y6JUXu7MIaDlbsqHOG9kzEKuwoyNlEywge3mNhQmulJEAM91mgPpUwrxsMhU7mNdOvHTXKouysRKIuG4V60az7V5nX61azbrVtIU5F8F7YecbHzEukL4kBrUxKxIBrSxJmVonlHyDQoKoPtSINF1CjrPveiPzqm2SNJO1pQ1SK49ewOzgAmGKmBBJOqKKr29VRQSUiYTqvTqRpqmGpi7Pa3ITse9J00Q4DLi9xx0TY68ZekM/GgZ/yp6Gz1ctLr1qtW4qe1q117hObKuWa9jkT609VtnS6nYP7e0LnLvNdZnUgSFnnBR7j1IrnFuCGSRw3JyQZmQ/4qKuKghRokowex9DVUA8BE4X26ACTq+0EWC6KDIW+4dzH98mN4B1yvZk8ihU0FQtoVrakJX5oaztujaNtLLYZpuzFR6eoGQOyT9PwtyOCoq4dbm8n9fb329UQNrMRJZoG6LRJK3xncV3Gn0Jq83sE9+1sG6owFTxHb9pE/0ARwtTBpqTFgVNOQ86Jnwsao45iK2wqGNMxAZipwjdCj0N6EZ8z7+M8QefDjz2LdtOs12Zz/XNNVrx9pXlG08Dn77zszza/w77w0e88ANPmxVX2tKSc5y8pTkknr3ao9vbOTMiBlLw6PUO1YyotptZ+NNICl4Y024GqdNwJPU94TDih4R3uqqWpziHnFbf6ZRtNZd2HtXSQ8IAxyjNJqfIXvIPgNPXP8v+/W/Cj1t+6scSISr+4bcCL//hRPMv/m989Nn/zNB/zA54J4PT37BrLk1Aq7SoN+BlmgNKh+QXhLV5r1/ysIQ9LWxqgwScEhUhmbqP2SSP94rWRbShzgXLumdmTQs4fZtStheZVZFCcFmEROb9uyiY19XmSqw9HD6InSYpkmJALe7tZTOogNPWrjG6q+BxGVLb5HW2+tY/rIBejofmBf0G4PpEMb20gMp4wGkzalZAPFC6AHJf6/Kh5R4PUe75KUtmzEJlX1Q0xQbkTaPshVozzyGtUcTxy6/Rf9RH4ou5D3w1/njHjwRAfYwepWcG9RKc3udQrj4GJgVaieRm1T0ScHrzAXrzNn73mGm7ZVo3xBI2kwt632uCNbS2oUE6zzEOWHeHMWvxGvRawsfSLFsLGbASEEvRJHBRg5eFoDAwSzDDEDV9VLWD21PCY8pm9xQANwU8yYA0UAvQkjRfvOYM88dyLH0ii5Sp+LEVFufy9VRvaxaF70I2WH0qH/CyLL6D5e/ODO0Z2CySOtngScjEclFKKVRPcNSUN6S5aFRafseucmryCmM24rnW7EjdJWG9rd3OeM7Yy+zi87H0h5Ov1YO/C1RWg/EWqzWqadCuzd6UFuX28rgFWNY0FycLZsgskeJRrZKRM5O7zPOBRUL06GzBEUJbn9tMN+jkUWaFnrqZMZ5DWwrYE6ebbF0zg9PC9lqA02GogVslzCKJhloOgwJO58Ithion/TIYWGb1FjoeBFgLXWaSCks+2B7n13h3IISePo6M0dPnIq2PVhg82rBK5tQbOoPUa0zesM0M4OW9ct5kWbIDSwE7hzulzLaY2dKBVO+jAkZLaKGAt34BZkUWm6PFJVaIioqU/XhTBqvFYzBlANkqL76p8iIgyobAqCQANgIkXy+knYFEDOW+ljTwpfd7GeVvuBRpMpisVcAkRZ/E7mP5WwWgL/NIyMdslWanGy5NwzrLfaeUFudMPhSy0Wzba5ruCWG9xXca26bKRigebstR6kVdyFaa1+7XN3nJyxwrx4oqIIqEzrSoLEFXtWg8/7umUegS7teCaQLffD4R+k5A6hh47gdcDFgt12K5o0NRSyQIyguTOnACumntMdoR9Vx0zr68s2/tG4e2kGapoo5j3gh0BCMZCzF5nO/pj9/m4rMXHH/sGSEmWgNPL8iSw8h9bJnil8egXg7jxEu/gtPuCG4vjHG/Jy5YwkpbdOpo20f1ewWk1n7EoNgYS0iGSUV6Zei1oY8Nt87y2Bu2Y8OmCWxGf9qQikvrLVVZVns48Y8/hixxzazAEhK0DP56MGm+jOhzFoCA8tDk/pLYIZTQOh3TDE7v/5Dj4Vv0/fdw7u7M3iUDoQvmsawhqX5eVC9f+D0p9mXMFh8gjZmCfZfm3fmYUsx1mCcpy2b1jKZ7QvR73PQS5/eEMJ7Yd7x2vhZfv8mfEqiWOALWuYUqacLj8UQIY2W/HZPjYFbsdcszZblSip1KfIDhtrviQ21Zu56XfuA+z+dEi9Iy+75mOXJ2/BpAt3J/5vcmZYsfPDilBZz2PTYDRtqszp5r4XH7pq4ASBhTBqjaBUjd2oevveX3nReAuth/lRyLL2MY3ZBSQzCt1BQKYqKue2XOH5OnT032ThWFYSF2pADKCJO6awJrHTlke70pZrBpVHQuEaeAPiMSFNseAGUkcC45j5ocyvQCUC9CU+PkSM4Teo8fIu4AY6/F+muU8GUBc5c1weujEElKfSTBv2fN1+4Ct7GYhdVKASRcOLX2iBHu7hTr/hNR5KVQs06KKqjae+Q67IS4gjTmG52wJpaszur3HZI03au9YGkuJXeSkeGZbfhkPkmYJGHOXW6YwwxIl8+LcmwZ8G4yuBxTEqg7lUpi0aJ/w6W4ZDyX/YP3R1GsZKXNDJAtyR7ij1tEmInw4IQo9e7pff79gOpCblmSWoI1xMbgO01aKza7yMVOwOmrNew6WDeqNpJCTDm8NHFohYF5tNBr8MjaZNzc0JWQy7w3qwC1vIK2VaQIPihCYzHtCuNOrQ7/KOMPX3hug2O3Uuw6zdtXDduVobEPrzDbleH9a8PdB9c8efHnuLj9TV7d/Ga1+lgbQ5sS+6hoJsvhlUa3E6q5my14gidlex7l5vkyBV/DEGff6SNhvyccenwf8AMVfHVRZWLYHOp9Yqu52HvP85SA00MKOCXqGmtWJ+D0ZvsN2uuf4f5r36D5Cc1Pfj3xwWPNP/jNSPoHL5l+7//O8xf/lGH8jCs07zQbvtbu+IZd874yNNrhcr1xDk4foztRYRbCRDjfd1eSSqDP91hIihAEpHZBsbIRH0K17AKqSnT0poal3uW655Z4Ak73C5BabE6kSWR0l62pmlpvL9VEMfpKhEkpSXdooYooGSnGtPW5alOpvNcpkHJ+ikFwgdqGPyehvLFZtQg3XbCnP3e84ecqN4RgLr1i/ciNoijzefnf5cM0Z3uZuACkl58vl7Wy1zn/XrEQMSrB9OWooL4aX40/6fEjAVAPKWLSnOhyH6fa6T+WYDASSjVYu6Hrrunax8Kc3r7PdPWEcbc+kVyVQj9G8I1isk0FKNsYsH5P09xipxtJQ9Ytzh8kGCmDN8IE0Uwo2qgYcoRjjAatEy6I97R0bwXEXoLTxUd7Yg5mO2dVlqKzsJXL523dSM4AdVuYE0uf4MzmCORAhQy2aQSgHlSolgQVUF5092wGvYrn9DKE5eTvlHIzLVgzC4uPslERcNrWBORSXJZNKFA3nyosNuLMbKaStC0d7TXabudAobbDdQ2xMYTmDLQKM9C8HHHRFRUpbf7cUIGDiKr+ziqIn6oO8cT6QyVfZfYqebRZkZLPcvyANQ/IkaKuwHCtns824sXTeg7v9MIi9we03cqie7bhFb9pj3e3xDCcgNPeHys4LaGO2RPwBPA4XfQKe9oluXZqQNWXIZPZPMW4tQDUXl6HMUearGIwZk+wawlu9OKTPcSRz8JIF91sd5GlpmIDYmgQyetW28oMPG/iSCq2fL6UrIcM5IZF4Vq8nh2BY/Anhey0uId8WvqsZ3/T+t6qxTmTrVdC7rnK7sk/LUoGwTmkgTFET/Ea10phtKbJQHxIKVsOKXbaEGlPrHak6ZCZ8QmW71x5fyPzPVx940szLieHl/Mzh0nOLHGrNGttuTDtgj2d8hw3nyuXIroU/O0jdLfwnl74uC2HFGuLuclKQRgMs6/jGwrL5WsVq41yAmJmoJQgSGH2BdRrLGplEsooTKurn59pIm89HojPFX1a4zq5Bm7DxJQiK2WyJzW4YidyAlInYox1k4yRe16/ARQDMIvAw/nglqzLFTp6UhzQocPoTiyRzEjwAzE5YhgZhs+4ePW7jK/e4vhWggt4vJlF0DFG7tPngK4/4KjM6TxvVnB6vCP5fQWmvbutYZDFI7B8fg5S32Ym9aVpWelEg6ky+15HbpXhVlmukmHnxaO+1fO5LUyjYt2zlP8WcPo+TOyjq8CNW6xnteFaVEGveSfK3KpSAeQhNs1rILWcn4gdR3R/Qzh+h+H4IX3/PcbpVc0ymJ+46AByM/GEPV0+ZJSw4+UIZ/P7HJCo61ypz9iXp7+//DwxJvGrHVPENpds1u+h7Q43fILz93h/qEA6fB5zWoBoUzyecxjV/LOSGXIaTOzDKGtDnIhh4BgnpjDVDfbReO5sy96seaYbnmHYKfgp3XHVWr5tOj5yBz51R26Do2cixfz6I6gc6KYWDfOUSqiTvIOpHqcm5c15CEM+vxqtDM6dWvPU114txr5YyV7lwVoArzcBRY0toYl5E+0V1kmz5I0WOz/EMGZNIqDDmF+XqqSHUgMuw4el7hVl4XrSrFygyVha0yXaNtLZSOsTU74/R2eYRo0fAs02ia3H2XHESkcTsFqZiJpCna+XjOs4RcIUCUOq3vPLXIriWftFw5Tq6yt7kdx8te0T/HpD7BTd0n86whRmAKPJ4Vr7I/QvFO10m3MHxloHpsqezvks1TN+Jo7MHtSnbG3ITTlmD/CyjxlyPsQxemGMcp5NkzIgLtZjpqxpKXL+JixJLuXzPMNVuyE5lsUclfcSoieZ5yu12GOkTHYJJIY44BOEcESpFm3arK60Z40uAyqWl/CGFsNprR2zKiOGkWQ8JaPo/A6r7OnMnC57jtQpTJfYbAScfryFq5VitxK1Q6lrJp+YgoSZtjVYTeacAxqfC70KUnux+RDLs1TnABAmtbcQG/BdI+D0tEGZL4dB/dEruIuJdZvYdZHJJ3YrzbYzbFea1uqTOchoxeXa8OT9kfG7P8nj2z/Lfv/tyqLeaUOrGrlWg+butsE0DtP09R4FIIPUJUBx+b00DcKe7o/Ew57YD4Te5/v5lD29VC2XoNOlctmlUEkmM64Qs8O5yUGnW9rmktXqGevN12kf/RlufuwDNt+EH38/8c6l4uO7iP7vfpfn3/5/8OrmN5ncS64wC3B6wzvKcGniApzOGRfRcxcdx+gq8aPsAQqprLCpJxYKhQxSr5XJXtlKQmiDZh0Vq5BonZGMrKWaIlEtR/fZ7uc21z0l16vYnJRgxCV7WizNLMasKSHcxZZS1r+5eb68j5cNZ8lIKUB3XhcXa6DMd+W5Ze+j48ymVg/Vwn+UEb1cZzmwtZAKlsQ2FZDsm6BIOhG9qrk74uk9qxxOnjrOdVQBtZejNJ3k83T29cOHqzXE8eGffTU+f/xxM6i/4md///EjAVAfoyNGmZgDiWPwNcCjSHCS0hjd0bQXdO0jVt2TCk4fr7eEncZuxb+vbZcSqVlaNRkDrNH+Euue0vgDrbtjcnc4fY9jL3+vBAekhl4lesAkATBDZmvCLBXvY04Mpvi2SoEuEvlZ+l7K7eXmsQRBmUUhWv12s4XBWgnjqQXWqvyeMLtRxTMyL9BKLFKMFlZkkzQumbwIzWxQOY60CGmb2dPno0ikHOEEzFsys0PKvVQlvnNaSSGpdYM9k71KSq+TeJMU5s3s4vHWrIU9nf0bk+nEK6qx+M7OLPnFUGEGmutYgNHy9QxQg5ARgYLcyQotWzGiKRvTbK+hLDAuNp+ychRfyxjlNWrdyIKrBaAgejSWyGlHuIZAATHFWgBIQfAZNhzQrqsBD8sNbymqfZaIhgz2LpnTMSfCl+c9HVo63kne8ZjBtWWitE6B+CUwqPtHjzDHC/Qhh4kljzFbYhyx5kDT7PC+p/F7fOhx/kgII2665RAd++RovKvMnk4b2gxUNxkwbbMEtsG85t1extJ2I+SmUbmOywa7+CoWf7gCRIfMNFIYlC4KAZGFL+GhUrQVxnzxZ0t4Ubl+zqoWAZ8SUwzCmohZ1ZD/l02pzD9rDEHBpGVu2aZGAOco4UrF3f0164s0B5WWAn5mSOkT+54C1i/nrkZpNtqy1Za1kmOZkjCthzg39wIJrUXtYpsrUneJ7yymK35uM1Ng6bC2LNpiTHhfwhJVtfRZhqTIuVf1/BXA3eVCfimdNCpmcDoHmiT1GjCnNCij0Flnp9vIxZORGHrciw0TG4Yu8PvjLYfgmJLKHunC7qUwKytILRZGKSZQAjrqaEnaL9gmpxvuVPTwDw1lZf4yK1RYoc1Yw2Sj3QiL1XlCmJjcHf3+d7j47p/h5t0N7z6CXaclUE0J/Pplglgg4LSOSaw9vEO5o6g8Fv740/SqWiBZu8kgZVftERp7wUbsDitIfRcmoK1zd2maHJRmrwO3yrBThsfB0AZ9skaL1P10bd6nwE0cq61HYRCVOaGA0wK6KD6XPZ28MKj9BLbNsnYBpDVU6oyZRsw4EI7fod9/i2P/3RNwehlAdBqK+Dp7GjJhaXEYb8qoWI4Z5Eo5af71cQ5Ou3x/H6PHKditHtGu3gJt8e4W748ZTD619zj5uxmQFv/uU/lv3cRm/8gUfba+8XVNc/5AMJ2sDcri3B0T8jjnZc4pQPXBrulNxzNled/ALmkeqy2PdMN3TMf33IHnruc+OkIKJDXXICmTJQpjc2n1UcKiChszpcIi62GibsolDLGj6Z7MJ+BsY35ybnII2kPDaClZPi9cKcQkVhIThF7R+YBxxav+y7m/tW4xqcVoSzQt3hui8ifrZ1lD+xiYdKQnZYWh+L8HF7BG5ve2i9Xmw5Rws2zz4cZIM0R0G0/BLPItUUgFLklTcck+M6qC2GGQYNQSjjqNemZd5iDBCuh+TiO+WgOU16rkfNTma3vNsF6jOnJ+wsyWWzLsCnv61Y1i85mEWZeA3FBrtZi95iOKRbBpXhSXAYmtjidASWFPl9dUGsfDIghtiL7WBvMrnsHpplhXIevplE5bXeeB7Cl/XQCc5Vk8n4+W4LTJ9Zou31MzU1ysYhb2C2nApQFFDi/VjVjNVHDMVAanSsXebHEkKdVGYskcCmFC6xETR2IYUTrnO0RZe5eWgCUIMWpFsuJNa9skAaYd7DrF1VoC81YL0kxrE/2UWDeJEBPrBrILITEmjhFCVEKsIe9f/AxsLb2sYyTndSRRoY3Coqb5cgDq23voo9iUdC2EGNh1kat1rK9r3QpQXa631iq+9gz++Y9tePz8z3N5+xu8fPmrM4s6W2qiNK+OLfplQmsHHCgO42ka0estaItqcwcrA9RxGknDUfzj94ds7RHnZtMZe3q+5osyktf2rX3OlhiikN5S9ihu7FZwhdUztrs/hXn007z88a9x/Y3IN98Vhvy3XiT+5a9p/B/8X7m9+32cv+ERhrcyOP11s+YdZbjSQoS4C4bbzJx+uQCnDzn4t+xFypoc0wKsLgQKXcJgYa98rvsVbVIEJcB8HxRt1LKmL265KUlI6gTsU8wfoYLTxzCD09Xag7lprIuK+cTeY6rzFIUU84ZRiQcLq426l9VG5jkl+9gYZjs3NNSA3DPbu4eePyV/tjdeqixs/XltRCUvCqpFvaa0rmtmOYioM+CsM5N6LtlZVl6LMu3BzCalpS89By2+/phyzy+B7VIT+P4H0cl9Nb4a//qMHwmA+hAdPsy+yEWGtpTgaGWzP9SFSMbbx/jdY4bLDeFS19Ct9UoW2CKRiHEprVJMGFTYsXFPsX5P625pxhcYu2JwMKbIIduLbFWT2cuAEklNG4R9FNJi48vp5rdIi6YCdBFOAtXKEFlcRGNm6V5mTq+VzuC0qsB0qxIrHU98dYHK4g6QfbgE6O5VpE+6AtVDkhC3xshGolkcR5EQLseyaK/SvoWPl0geZ7BLALEC0tocltDUBW8+3nDKpl6w0oy2mZEsDGxtOjArCTOwjRSKBZy2CrVIdUtBlYM9HQX/Ngn1wKZcSCIimE4kiApVpKS1wxoEiMiLaVnsSuc3xtcXT6UiJyFRiz+YVAaoQ0TXDa98mCjgjXOn3l3leevTpFBZ0yGIrceSdRYqW6SAHPkYlJRBJEPK7eICUockICkEwdq+BAb18LRD7y9Ya43pO2wqRcmIsVtiGGiakRiua/Ck83tG02VGtYQ69nHimJmKNoFFYZWiUwabfZyXAYBLgLpKUvP/Jbhw6RddJL5SF4gKoLAJGrJXqS5p8OYEtFraNJTGQ/H7ThnoP3ekLn7U58OT0HmzP8SA0ZJM3mpNiyR6SxNLM2m7sB6xsvmMM8NpFqzJqCB1mu/noCKhVGGL87W06yhzQacNG2PZKvEZBPJ8N0sni6qjaTbCMGuuZnsPK/YeS3ZQPR8LNoHWIle3FiYtjAb0MgDljMm6+Ly8JqksqYqSme2dmFTOE0iKs1tX2HhGS0hXA+snAfDE2DO92DKxw6XAH473ElAJtMosAmVPQeqopJCPKW+gtVwjlY0JdZ4AiGkGWE9kjspmkF6ubB1WwqLOgJg1axo7VEsE548cjx/x7JN/yYvP/re8fBr4qbcVa1Q+/5HmSyKniC++gNPGecw4oNyRlMFpN73AuTuc2zNOL8V2KMUciCsbxKa5wJoNSlsae8Gqk4M7HjXP3a2AGEoURoHEFB1GKYbkOSjLrTLstRXlUVm3oQJQU16fxRoicB/caZ0Rw6Jps7D3qN7T+mz+9ScfsvExqOypqHQBqsXqRE8DarxbgNM3r4HTtaGVHmJP52uqnPM3vBeBuZZajtnDlpONbBllQ1TtDoolUkrVmxssq+4Jtn0CyhL8AecP1Z6kHlvxmc7/m1IPmHX1+jRmkxsUp03YlOZNa9OMeH+UEFB/xNot3h8yk2skxImeQAoOF4MoXpJ4iu/Nmp1acaUTb+vIlWp5rCzXpuUj0/KJO/LSj/QMhGhOFA4WmdO1bkiL+UZeQ96ch1z5RHHIVlMJieowpqNZvb1Yt7P/5QOBbMshQWmnLNzv59IxhUTvYBgUakzVXid9jpXIDzqs2QABY3p8GFFKwN2ZRT0D1UubjyGKzHwagwTRkrLNh2LdBbZjkJo1s/1GZ3BjwA8Ru4pyrhcLRQpUm4/y9XIEUt3g+0FCkYNTeKcWlgBi9zOlU6unz5sKxcYqSG2kNLbaezwhrR8xrRtMtnEA2R8swYYT9vQrzeObV4xhyLY4gZmd6Cn3u64fS9Z0qW04kfTDqQqiqirzPmTIxJsxhkWNI0Plv7NMR1nW++Xrqvxa1BYsHn/+veXzl1H2GjFlCxOlsfmSt1pXr+1L1VKCGMt+8Jg8Lnipb1UjAYy5ZldKQVJyryaB38s/RaqNAJQm6IagW4xp5zwZ05GCnTNeYiRpQzTZHjCrMFOjKtAkQWZiw9NalT/0QuofCSVMLX80RvanbpXwHgaviE6hx4Tyieh0tREAqh+9vL8JaxWuU5VFrZrNg9frDzru7zVNkIDqtpW/f7FO3A6Bq1Ws7PB1K8FtxVronUvFd9+J3L3/TR7f/Dnu7r/FZ/5YWdSiYIzcOIs5kIOoPQWkTiFkX3kDg0UZI9+bRpITf/nY98RhwvcBd6A2mx5iT5e1vtj3FfLFEEO1Cz1G/xo43baXrNfvsr34SdSTn+PlT7zFk69HvvZM3uPf+A68+tXE5b/4f/H7t/+SEPYn4PR7ZsU72nKV829CUhWcvk0zY7mA00XNXG+QIgzJ9b3sVRQhphyWGGmiZlKJdcmjgUxcK+rq2eLwoaZ8CYw8JGFwj7nmEUWo7IG1spIbZdpKFNPZTnA5T5X65LWRInGxjzjJYtAFpO6kYasyezqWMFw/X/c55+BNAPVDzOqIsK9PGNrJSzmu8v/Ro5QH5WU/4TlDPUota/BYkpeQ6zRCPFtOi/q6KK/rW5lJcEnkKBVzKOD00t5wbi6eAtPez99zXwHUP/BIPEzQ+Gr8yY4fGYA6qBlQKrKTMQnnVGFyCvqatrmibR/TdE84Xuxwl4buIrLLXmCbTsKglkEVssjP0qopNBh/yXp6m2a6peteMrk7hl4zISzKQ3DcaNk8Bi0f68VCMPtTz0EkfZqBmsI+LFIemG+YAqAVxrSQfhcgLZkhsQCnVzqy1pFNM3tNFQZUyB5/xQ97CAaCpsewJ1uGJAmWG7JVgSESkEXynOlQ/FuXX4csOVqCVstwxIQUvUYp4UgsN6ULCS+ASnoh69F1sSmg3zKBt2zsig9cteiwCt2csmew6bVO5oKcXceZDXT5TEDqxX5RLD4CKgTptvoxW2sM2fdZPgrLK1a28tlCvjiouqgXGTESFqKiJaopszmOhDAI08y1GeTvMvA/Xycxzt6FhSld/cFSrOB0yqzak7EAqYXZqVBJ4VUgLRjxX4YH9fXbgf2uITaPWd80NH4k+T1KryB5kt1KNz15rN/LuQwjjd2JN3f20fZBvl8A6zE6hhS5T04CB9O82YLTjVE6+5g9mvP1qrM5iDYYZTJw0tSgnpIuP3urnYLTy7C7k+ZA9Pl4xe4hKfFnLLzfql44O2eFraVjoFFaGIIp5IbZ7Lm9VpohW6BUb+wMerr0ukT65G8swOrAG+75M5lupwxb1bBTRjyd8yZ4zIEvS4/Ojd3QNJfo9ppxvSZ1KgPUb5a0LYMTseB9Eq9YAykrM4piYQ5bE5uU0gKYw3ByOnoyOCJGZWlktm1yOVTqIfai0rp6mtpLWNMDjhiPuJdb+uaCKUW+Nx3Ey5vISlt0XFStGaRWCYJKJPI1kBnyKmXwkwJs2ZP366QAL0B1uf+jXbCoxQoppYC1k9wnzhP8wDi94nj3G1x8+Kf57O0N4RtwuZZwtXUT6eLnMIN/gKFjquC09mLtgTsQJgGnx/E5zt0zTjdM011Nf1colLLYRsKJuvYRTXMhDNTmQt4LZXh18xJcT0yJa9tVkNrFyEDgiKfRmiG12Rd8tqgqTKWprl2yLktqfWZOx4CjqIJOYWA5xofPUyqBeVFAQaUCxEDSevakdg499TDd4vtPKjjt/FHOXWUoxdfXjNO/Vv8vV+xyvluOE3k9aga5FqqCc4ALHrD6SFSv5ylFTLNjtXpbPJaTx4cjMU4nx7tURJXAJLHsWmPtDmvXNM2lhB/bHdpu5fnKxjLmJnAciGFEgog3NHbEhyMu+5U6f8Q7WSt7RnwKuJBqUOtgAztleIeGZwouTWCrFc/Cmseq4TqzqT91Pc/DkaQaimVXAafNWV0i502TTCdBpxlUTNHh/GFxDgyrzdfR5noGpsvre5M/5mKDGmLKHsYpM6QjjX0dcHZeWJrHAdygsGPxQP9yh7EbUJ4Q1gQzMOkGFQJBhddUSIWh2KtAH8UDtQDFwSmaLonNRxdZZZuPPimGqOgny3b0dEPED1GCajO3QS26KjEuCAmL78EMWrtR4b2ENHovXvTFEzsUz1dOLT4KuFWfkzkIXOwyEkp11d7DNFfV3qO16QRwCPF19vTtnWL92YjqX1VygxAcJs79p3VWb9SAxAU4XZpM2nBC0ijSfrH3SNWep1pvcW7tQf5bM07mc2PsJCiWU/D5vK5Iry+hdRQujcrnU6U0s8NJEs6ssr+rElVclwMad6ap1gz76NgHl21KBkJSaNWhlMqNvMw/VdJsX3AcpS5LEtro1PGk4ai8reCZBKKLSg57qmJKD6gYis94OOsizfY8KasfTn/eWFhlkNo5XZnU+FTBqfK48nnIDOreanynMa7FtF+OB3U4KkgabxJTtlY7DonDBvZD4mpd7D8U60bR2khrhTn+9WeBX/1aw/bTX+DR7a/z/MU/rizqNgeJvEwa4yzNvs1rTgAOWOcx20XIaTnXUwanJ0ccJtx+tvZwo8wn5+zpZbZMYU+X5kyx9SjgdFT6BJzu2mt2Vz9HfOunufnGY559PfD2I3lvf+33FPpXD9jf/Xt8/OIfEcKeywxOv9tseTurdXZAo1Mlit2mmMHpGRT2ad4/zy+Wk9q7MKmLwrnUswbNShmCNrQZgG/Ri4DzGUMpZJslNnHIx3EMvlqazXY/KtfV7UkGVNn3zPvZ0zDvN43z4O+6p9dmoSayojxTHqVNzSWJMZe5Yaz+1Od/803HEAFCyGqssnbnY9AWFU3OhfInlp06drVWi02DcQbjQ82vAqpFrFqokpaWolErYmOEed0p0EKgK+zp1Wre+5yrI8r/MQoxx3uIXhG9qKK+Gl+NfxPHjwRA3cdAVDNIM5bNIiI70UpAzsZuaJodtrlCt9e4jcVu5xTlizXsVpKk3BpVAWqjJSBKRmQfNYPvsOM1zfQ2nbvBuT336kM8A0NmUVuvwVK7sWs1h5SdBxMWX8xio1EWozEDFqfhiMIi8EpjlSaoxEoVlp+pIWmlEG2VSIYanVi3PnfgXmdPlCJ85SKMDW2UTus+pRN/Xo2E4E1JEZUAUYU9XeRFS+YEUIPSSmK7zxv5spmvR3LGNjsHnWGW3egK6E11U6t1mwHAGaRejuInXaSd8pHZG1FV8Hm5/s/75TfzO04en8GWGVwYZLHMPqp+uiWEA94fhcUVTj2fKzicgeGY/bpkoa08lPr3ikhSKUWIOTov64nOpdEV5F8w7paAeJWJFluPB4Hp/IKVQfJ/knhvkiApggoZ6HtzgNQPMr72FjzvI69azb655Lo/okaLCgNklrEcksfYbWVX2+ZSLEvqeT4NfyxAcPD9yXkuHfzzDn+xhND5vits6Jnp39Trz9odWhu0bqVwK+f9TKa9lKMvmew+DIQwEKJDwoMcMQhIubxfCsCkzux1yj1mUIwx0CpPm9UQBZg2SppOK21YJYtTkbW2sx+10rUQPi9xlvNRsflYnq4Tn8kkrA4S8re0qcqSKQN/Uyoyb5kXE2DtFmsvob3Cd41IYxfWHnMI0AxY13AQTQ6jzfdtSduuLHaTlRbyHqZUgMjso55mFr3MYRaTBJzuiawRkKICFu51wANjZOPUtjTGAHseB4f3R/qbLVN7QUyJT9wRT6IFWm0gylZ5RHIVfD63QUlDSqVEig5Jt0oVGSisapgL8OrNdzaSbaWwDiuM3WJ0RzQTNorvdwwTIU5Mbs/h8CFPP/4NXn70v2P/s5HLteZybVg1GuO/nBJCLcBp7Ry4A3G6wbsbpukVw/hSQNnpHu8lLHGGPhTe73HTHeN0x3r1lK59jLVrySDQzzi2T7mdXoAXKei17WamUUp4ImMQn8mZKXyqoDgH0s49p91iTYtZ7loXGQSYrOd/sWlKMbyW+L5U3ih3hPEWN3zC+AA4XZ43nM+1J5vY19euE3uPxUb2TaOcF/n8i7FL5LwIw9wDXbY1wKxIfp+bs64eqzpZ/+e5tTDkG3uBbS6xzTWmvULZHdiOZDpKCLCK4nVMGFBuj1KW4PfS0IhG1AJ2W+sKE1p8GCR7AY8LU32P/1A37E3HXre8kwyPTOTd1nEZDO/oC75lWj40LWP/kmOcJCg7enTyGN0Sc5P9NMxR1FHatHV9jHESkNrd13O3GT6lUxbdPQXbVWBarAMWzLLFJjctNquTFw/jySecf/j92g+B/Zg4HCH2sOonVAg15O3LGsZuUHi86TGmr+chprBg60baRS3cpyie71GYyysXSEFemzKJbh1ZHzyryXIbjdh8BAkwXI0BO0RME0+AaWUKi1q9Bkgv/T9T4DVw2nkJGHMLK4wyzuGOpYKgAKRTbrw2ZkXXXtO2j9GrpwxnzVd4HZwu7OnDC82jmxvidJNJDdMZkSBQGlDVEkMtsmHUTGB5fQ9Qjl1VcLkcd2nEhZROwOTyd0CW/7BYvyPF2kweOfOrPw8wSWdfSVO+fp3mv5kyWB1RlKBon8OgrdJic6ZEsWXQPGbFITruwpRzAzz7NKCSyXXt8riWr0rWVqIT4xQP7g2Ba63diUWhN4ugRE2KCRXTSXCa83KP9i7Ru4QZ5A1o8vVamkxlLAMzQZrxqxVEn4gQmY2jAAEAAElEQVROYVwkOkWYFD7f70Ytcj8jeAumSwSvCKOB9jSb5ocdeh8xLpKM7LEOUTEMMAxw3CQOI2y7xG4lViW7TudASHi8Vbz9TuSz99/j8av/A7d3v89n/o6nzYp1Ps+3KIgahqKkHYHAKgw0k0evWnQ7NwRSCETnib3D94EwJKaj1GnTKPPJFHVtxpwoBphzn4q1zX2YzsDpdQWnV90TttsP8O/9Gfbf3PHsncDTKziM8OGHmqt/9j0O3/5/8vLm1zj2n7JD89SueLvZ8LbteKYadkqxzveigNPwMjnuoucu22mUPJvA6TrdPMDWKPvuE9uP6HAqMKVFUHxWWp83nwtmURUUKVR7kapIiJ6JhFeZBKhbAairtUe23tKGUC03Fo1oFJyR2+YGe1GEhEreqb+3yFRS2eJDbDAFG1DRVsuPuPg9wQoeBqa1JpPcBJQOyaPSDFQDAkgDOtv5qOhRYUCZFcqPqCBrtJ4MaIOxzRdaR6MVSyAaK3hIzsxRTcK00LRiO7tePQxOLz+8V7hJESZITol8aviKCfzDjD9uD+qvxvcfPzIA9ZJBXTyR5onTYqwsKNZuMSU0b61ZryLbzJyWJGUlqecnALXYYpQRY2LvFcO4w/bPaKcbVu6OptnhXGRME30MWOWkmNGRozZ0ytaN78wmXoannbKLC2CzHEvfNZuZAl4JyLT0l5uyhKcMoxKNibkIjthG0tCXQ6SMkbaJYkfiNW0w4mWLOQ2PU8IWFtnu6QJZPHrr1ynVIr16T6dUweqZFyzPv7RAmAHV18HmIuMRxtJpOncZtQP7AJO3gNN1fdezNO4cMHiIsfnaU0aR7agA2gXMOIgsu0jVJ/FR9f4On5nTIRyZ3B0ljLBs1osXsAAxKUuffAYaZohyCaKqVEp3Ja+7nMdiL1FB1XJOC5h1ai8hX7zOxFvydB/ywxQmsKtsZq/Ca2ybH2b8qbcMjx18ZxX5tFX0+yd0dw1mOEAYBaiGmkZP9JgGTLiCDFYXybcAwcKkXvqUzmyk1wupMkoadWGiq0UjxFSf9PzzM99vtQAUUix/wy+OK1RgPcQRk68N5w9opQl+AB0zSyhUKV5hSS2tSZZjuckcUqBJminbe4DMmW1mVgw1UDF38WMQn3rKvPOwx/z5OL//dQantVJs9MyeLnLKpaqihK0oDI3dYeyO2K4JVqMtlPCfk7+3AKlLAVce47JftdNIsVgZ1DlcT8lsGpXcWmUOblKxy0g5GV0kflqLPUqPZoiaVRA2TknoTpETCbkyRmSnxtAAG/Y8cRM/HjTT/ZqpvSCQeOkHYkqyacggNYATXWEFqQX8XDSOFnT6lGIOaTuX/WdzyhzskrQRCb/ppLgOKwmhiSPGbGhSxDcjcRQW9TC+4HDza1x/68f5+O5x9pU0XG4MNrzB6/oHHDpEAe1yQy/5Pd7dMk2vGMeXDONLAafDgZQcNs2ep8Lg93i/Zww93h+Zuns2q2e07TVat2y376OU5m58TvQ9ICB1ozVERK66YCaV69yo02brcu2q4UALpmABp8s8rJgVQfWaeCALoPhQC8hqslQ8SGNzusGPL+iP32YYPsH5owCri7n8iwYBLf2n3zRCaSgtxvLr77flOvegLvYASWm69qp6K4s6pH+4kamKT7+A1E1zQds+omkfC8Gge5qDj9fEpiFmtqKKATNmFmP0b/Rtrq8l/7wElcYwMTERcobA2h0ZkmcwgV539FieJcWF9fy4CTzzLc9UwxAD33OHHKA4kLwnaSdhz1rCnmN+LfUlKoM2C+uyKEoZ5+5JKXI8fgQgILV9W0DpDE4Xb1v5eJ0JXJiZU2ZI91Pk+oHXfxgjLw9wPCqavYRwllopvUmm8kMMY7coAjYcCWGN0S0pOlQSLZ5YximmGBiVlnOeLH0Sm4+jM6wnTTtGWdsbYVFvtoHNGMAbJgTcOU6WVR9ouoRdSRCibt+gYAivA9Mxq2IKOB2LUuYsc0BYlvNznW9oS3OmzCtTiijdZLXHldh7dBeLbIWiaHzd3sN5YU93LyYJSY1DlrTPAM5MKEhVXbVkTs8qiMKgfn0SqBmSzE2DE2XTedN+IZxaAtNFYSZ/bQaiHjYly+9Fee6650mVlf0653omjpZquARFT4iKtuq/tFiBrJRhay1PzIpDctz6iW9Pe8n5ycZGp3uZJUidMmA2yXG6uV6ugFomSBjyPBQDrLeYzKI0Tqw+olUEC8dhtvowOlYmdVuDS1O9h8Pino4Rxim/NJ2wLYydhl6aVdFlxUFuXJVaKFiILdg2B7d1mtR9Oet3d5ywPiuGrcFFi+sEKJsmGFaJcQODg1UDvYusG3i8FaD62VXis/cV+pOf5/HNP+fjT3+F527gUre0qqHP64OJGj02cJebesETnceuAmY9fW7Iqfdi7VEaTqISUFUtMC1IY0MUm6f74Gozo0+RuPSc7q5Zdc/Ybj9gffUzvPzmjqfvRK528PIePvlDw5Nf/11uv/vf8er2txiG54Rw4JFZ86RZ8cR0XClbbThhBqdvU2QfA4foPxecLjX/OTkFZhWUkFXkZ05pJhVPMnfaTFZ5k2psSL6u4QWcLkrqGWNpqrVHseUUws68T4J5zzlb0qXXSFAVnK7z2rxP0iYz/ksNZcTxXiVPCpZU9oLKooLN96Uh1FBtKki9rJlCKLahoaqMlQrZ8kfubaXl+aIa8v5uzJYjg+wrfFZRZMWT0ctgck6PGxbrua5M66gVsVOSR7BKtK1Y5rTtbD0L8zzgvMwF0yS2Hm5S+EOx6ooYHwn9l6+I+mp8Nf4kxo8EQD3l4qHAc5GySdIoVQJ1OgnNMxu03ZGaDbqTzlTXCnN610mSsgRBzUWCFBAJowvbRWRU/WgYxkes3ft0/kDXXcvxOAlnI1A3s2MyWOVrsbjcEE8xVD/mkMGIanuRy7ay/CxDCY1STClI4JsyUnVmvLglisdsCUFMwvrQOmFzca91QpmFj1GXciBMYucdpk6mBqISZkWlGIvsvITinQPSZSyZZyfAO7MMsBSYZTv/pY8wZFaVeJzGMLOey8v5InuxB0FqUvZ9rN+ocvUS8lXAae9u8O4O5+9x7r6yZCe3nz2HWQTjpcUVkBIiupqhfJXOWwNzKR+imNuUELgK9i9A69ni4HQswYI5SEa//v/Z9+Sc+hpgFmP26vojjg+etjxNDbvOs+kSv31smV48YXOzojnco5ww54iFciTddd3same9AEAl7Ibi/RrnAqgc/0OjSDjl9YrUTKnZE3T584e8QqvFApwch3gAr2oBVhgAsw2FwSmDMQcSEZWCMOwXrYk5JKiKVGdGJBJqWJphLhmmpJmYQSijBOhbKcugAp02GQif5crnd+V5gOTnjWJD1ORNYouuAPWEAH0igQ6zJFhpmkbk+6HriJlhdu699trfWrCrlx/KpMqg1kYC1aqqQBsI0jRMaRn6SE1Gl+Ex2eqoJdJHyypo1kGYdsLMOwWoAVTTohqqBHUX7nkrjoze0Pcrpkb+1nMnwGkBqXUO1pXrJ54FSUVhkykgN6YS54V+rNd2yt7rxFBBLgVgO3TIYXO6I5lASmu69poYHd4dhUV9/A6rT/4p3/rk3+FqFdh2mlWr6d4A/PygQ8U4ByOGET/d4t0t4/icfnzBNN0SQg/J0SaEAYSiW2wAChO/d3ccQ0/wPev1QNc+pm2uYAMozX74jOR7AokndkWjtYABKZ0CG4sx5ybkpkUSaes5OJ0qMKNnkPXEd/5UwfLguQijvE9hILo9fnrB0H+PYfiEcboBStbCUj77AECtNK+Z7C5/vHx9D4BrZZTgsbKJ/bxxDnAVX/kCzrXNJdruAMSCY9kUhdpELfZIpoIBT2naJ9juCWr1hNhd4NcbfNcSmvlctkfZiApItBWVgJFAuSWYX2xFln6XJeciRUWIE3sCL/wg4FyM9CYImzo1vBMbnjaeZ6uJC6/pecwf2BXfmfZ85nvuo8dFkQGnFNCxEQueFE/WS6X0GUjticnj/YF++Dg/xtBpi1q/TbRtBeSLbdlDI2a2ZYjiMe3C69f0/THw2X3g5gDjvWbT9wLuZ4uZL3NoeyVzqT/gTY82LSpOsp4RCAkcCZMiNgaOwbNSnr2J7JJhCIZ+tLRtpOlCBam7dWTXOUzfZmBScXSGzWho+4hdBVSu25VRrxEPludrCU7HxeduYetRa+nF7543ZIo9wAkLOUoWjjHrbEV0je2eMG0v8Gtd1zajZ+ABZrbccYDDK831zS24PekEmA61yZNS8U2e7+/z8HLZO+SfPaAKnO/hVIOfC3t6ucKcs6eX4LTUnqVhv6Rc6wcAqfKbJ99FIOtZwVXq3WInUjjPWqn6dRk+xfqUMSWCFh/eLQ0rbdgiQHWjNK/CyF0QUtGEr2Fv86tbwOSZSR0WBA6xyJsIzYSxW2wYMWFAx2tsDKiwRcUVPraAxaPxKI7H+XmFSR3pnaqe1CD3rzCsRQ1RQjPFxkMeYy34Ltdp2eZjmuZrqLUZ3E5ybVkrdh++U6T2y4EAVrc3mJz5EJsG49f4rsGPmnGt8VNimhL9Spigwqie1clXa3j2NPHx157x6OUvcHP7W3w6vuBps2KrLKiFXVzQMAqwHqNi6z3dOmEHj13lZlNIRAfBpRpy6nLIqQv5I6o5AyoD0yVjYkgyBx2CsIaHJTjdXLDqHrHqnrHb/Tjd9c/Sv/0BT9+JbFbw4gZuf1/x5Ld+lZtP/z43d7/DOLwghCPrpLi2Hde6Y6cMOzQtUoNPSbHP4PRt8txHxyG6BXHjdXDaIBY+MF//xde/ZjuV34ngVGRktv1pVKikuWWOVLHvrNkw2XN6yJkbxdpDahoJHjVmZk+XAGO9yI5StR5qBPBFy9Ge2R0urUDmnKYw79eil1e6BIDznqnuyRbBhlGNKG2zX78X4DkFmfMrIWmxB0yneU1aG6KSbBClRmFVh2MluZxY/BQbEhALSmYy1/n+UNmOhADuobFi7/EGcLqsA0tg2nnJjZgm8JMijAJMd3cTJgcda+8Iw90XvY2/GnkkXs98+2r8yY8fCYBa2Y1Ad0ms+gsgJ5ucjqa9kECS5gLbXEMnvm8m3/zbLqcprxRXa8Pl2tBaRZOLhMt1pJ8ij0dJJb5aRzarxItV4na9wq2/ye6TCx6Pn3I8fsQwvqDvn3MXDtzGUQoW5gRtoErZiwxu3tRmoY2RAI8yqcXCpDuxZPDoKG/iMXo22rIzDWttOZiOybRcYZkwhCCT5qVX2EbYfqXIN41aSB8j7UYK17aPdKOhGRoabzBB02JEbpXHoEJdAJdhaMWXNi4AnwJQVzn/gnFx7kE3S3wmYUrH8cTmIyV/UqAvN+g+d1FLJ7SbbqSwqGDGCo8mdBmo1hCXTOqzsQxfK6PKQ6PKrEmFcgntEnb0tIcD6vgZYXzONHzKNL3EuT2Tu2Vy9wTfi9VEmEhpoqSuF0bK+Qf1+tG1GNcKVA73g1Owetns8Jl9XUAUXzcQKl9vqv523UwU8BlF8bnV2kK9r2Zv5WJrUUaIErLmw4j3E/D7D5/YLziutpb3Llb85LtwGAL/9GnPRzeJ777Y8Orljvg8sXnV0xz2KD8JwANV9l0YZw+Nk03W58ixlr8f3xAepRbyMQnKCFWmX6Tn5KR3VcCLYCtgrpRFJwGrTRiIcYMxEvCVUmBye9ykIRzxTKiUKK7DtoLUc5FaRvGiLiOQaI0ArZBZ1Bk8vjAzo0YjAGl5LlFt5DDJ/H9TgokWc5s8XIMSjzsUla3xWDdcKYNRij5JKvghh8+UwjcpjdEdXfcMvXm7SqDbNp16TJ8Nk9nTqyYHEJksdW8TY6vwXYftLtDTDttc0vh7GndH8Gu5XpNjTGLdgJ5tD4rdRvHydiky6ciVMgRvoJciXPw8Q2bsCZsntS0Yi247WG9Rqw3m6orm0Us2j/c8/XDgG8+3/LpZ8T+kz9jnDUnx6+6MqZL3AhSolHBKmHL1bVa52K/FvTBQYhiJYSD6PWZRPJfCPpkO1exkXSxPpQzGtFizoh8+ZZruud9/iPN73vt//zz/nz/7Fh/9xMS/9X7guvly2Bl2OGLTAO5A8nuG44ccjt9hf/wu0/iSmCZsgiZfqyZffyttxXNUmbphK/Ybt9MrbodPudENTx79W5I/0VzhN+9xHD7jw/4Tvude8izLbbfW8tynat1RQlBLM6isaQWMCcyANMyghlKZq5gbTCUwqCTaG9NWpcVSZUEQ5ngKklEgAP1njKNkXBRbj1X3uOYyiC3TVM/jrJzRkGQ+f8i14yGYuQBSTdJnjGlZAx5qSsUoPrBAtTwoM00g0cfAjR8ZSbTtNdvtB6j2GlyxuuqztHYORTSmw5qOxu6wVsC89cWfRq3fxm8vmbZbxl0jPo32tDnstgY9JoyPtMcR228x/RZ7zHVUGHHscf5ICKMEgiZ/AprJ9S+e7M/jwI1zrH3PhW741HZ8ZFoudMvT2PJsanlfw1+67nG+4bPhbX7Pw++Fno/cgU/dkVt/ZFAJKMqauUEsf29WOGkta3WKjvv7DzkeP+Vw/Dbr+99hu/2A1fbHMRcfEC+uCY3FdzYzIRWqSWi7IAdE6B3sx8TtMXCz96xaacbcHQO/9+nEP/924jvfMlx8eE9zf4MKI7G7IJncxPKvK4l+qLF7h2Zcy+vVlsndSvN10hDAI3kQ5xYzn5lOSpNgFvL+CQi0m8RqF3miJ57uVzz3hh4I3hD2q5wP4Ni4QLuJFbxSRoktSgGj3wBOez+zppf/hzNrj2VAcpHGSwaOZ58ZmIfo0XrNZv0WF7tvsrn4U4TrDzheb1E7aFuqvccSnG6sgNOffldz+Qc3mPtPicXi6CRou6gQFgzqPCOZYlmklgzq06D08yHes8KerGFoZy1QNeNeJ4zp2WJvUa9TC+bq8XxKwJhn1iUYvayBS42xfG1L9Vhp0OvF92JKjARilMDEo/KstGGjG1bK8PPdo6qS2afA8zDyMgzchan6VTsSrr7lok5USdSOPhxwk61KiXF6+aAdUdNe0bbXpO6C0K1w6zXHfsVhrXnZJdpVymBUyu/7qR95YUp6P7Mlo8/sWZuwbWJaa2wf4QjOao6ryMUmsdM5jNFCb2DYyXP3KEb35Vj5jJ/8T7TdFSXEbt09hfZK1G9dh1uvmdYN/UZzswDgbg6JizVcbeD9J6B/LvGd7i/yE+013/qd/wv//PgRcZ34oNnSZ+D2pdJ8nCzPQsfjvuX6zrPrPOsusNn6rKTMa5ErNj2ayYm1x+A1h2C4TYp9SuyJ7LPX812cuA+uvv+H6BmUwTaXrNsLuvaKzfodNttv0F7/DPt3P6D/WsP148jdneLun3m23/qn6Jf/mO/sv8UwyL4vpoFNUlyblmd2zVPT1joYoE/Qk0MRo4Qi3oSRceE7vazDS61jl7XPQp29tCMbc45Vab6XPcI5+3qpwCz79mq7lwHponD0uYmjzUosVO2qrtvLEGOxyFgqxhYziNLVxlJCE2NVgUiQ7um1WchDFiRzglUuui0YC6aDZotOHvyITh5ttzWLIoYByVzyVUFbM5hCOb55Ti0jhBmsnklKM3h9PteV11wB7Myq1lqUisqsxJpMWWK7YtxucBtLXGvMWu7lEoYIokCYJgGj3aTwvUL1iXbvaPuRTX9Ej/dii5cJDSl6QhzlvcrKhq/GFx8JTvKT/vj+yhcbf+Nv/A3+6//6v+a3fuu3WK/X/NIv/RJ/82/+TX7qp37qjb/zd//u3+Xf//f//ZPvdV3HMAw/9BH/SY8fCYDa2gsUQQr7zD4tHqPFsF8kKKaa7BcPvwJ2GC0TvDCnocmJysJqUDmoYg60mELKnezEvTMM4zXdZ+/NoUcpMI46h7Q5fGW/5k630oDYWJSCrnqi6rJ51dVfcmZIhEVwmiPGiSl3W0OR4pm50A+ZcmAQgLkfLVp7YVLbnDCrM6ifF3aNgNfWJ6yPdDbgoqKNSsISM0gwIX62joWc6AyYDguAurCnY0qZ6fE6cytlNnzxQ1ZKE+I0s5sWFgxLcDpGl89rRKlAUAaVpdDBH1DTDdp0mKbBjpaoG4IRvz3dJLRVrx3LOaYZ46nv7ekP5cP4KJ1L58RDdbrFuTum6YbJ3WWQ8b76ByYCTWWGzAU4LAqH/LXJwKBGJMnLQuUcnCwheTXcK28wlsweKQlywGHeDqQCXCdJNk9Ko1KU0JcFOF2AaVOlXF1tCJTwxSY6nPlyJ8PtyvDT73U83noebz0fXUY+2cHd5Qb7YsXq7ojtj+ipR4WRRCf8F63zplu/BlgvWWinQPQXYwmXoIsijZZwTDlnAlRrtM8buOKIs2RqL7r3ZQhwFTCmIyWPNWvxJ7cuh/WU2FFeK1zlOU+PsVwTU4o0SbzlULEWtJA3skkAZ680USWsUsTFdWjrNbj0rRMvuzKMkufU2aO+HFubPe9K2TnbHM0Nq2KwIHP3jmQ6QmMkLGTBnJ6T7l8fJm/IJi8bfGtB6USwhmglcE2bVfbLW0vxqCxBOUJWvLgUKyBXJZOkysrSKG51oFWWddCsJkvXB5ou0nQiL9WrSJomCJ4UDCoD1REwV4HOeR5NPd73TK82/KZdgxd5sksRFKcMGcGgUQU4VeXdV6gUkc3z0q4niF1MtrRRekD7VeaDdfmaFUa1WHys0FEKd6UC1m7o2kfEFAm+Z5zu8J/8L6x+59/h99o1rQ18bfPlANSqBLNlMH2cbhinV3gnYIxJRZaem4qLDZRBrrMGaZhslOUiNVyalo0fhCF3/wdst+/RNldYu2OzEhby8fgxH/senyLvNlvWy6C9BSC9ZEpXtuCy0Vcbeepkw6LrXNnkNT6H1S42LmVEvxeLn2wDVby3nbvD56ZbYzc0dnvSqC0j5bonqZhBcjVPA0pV6fybZrWYDV7l3k0V1IKHi/V43lU+G4GEQ5oqUYGxa2xzVY/7NW90tfTzl3uzaS5o2seo1RP89pLhYse0a0jrsm6fHlf0EDfir+q7NV1jaY3BAjarVGw4im1SmsHgVAEyasNW5eAnj+eYIiFM+MKINTL79jrS03B5bHm0mfjg6siToeGd45bf1i1/mIMUn7ueQwq4MM4KnBJyms7AaixRQwoS7tsPLwjZXziGkXUcaONPwNUTQmNIDdJQs6eqETitV/dDoJ8iLiQ+vvV863nik08V3WdTViIdP/f9/KOM0HY0XGHCgA0D1qwIZiAaAQxSiHjl0alYUmXGXgr0ybBHs46alTN0g6HtxOrDrgTsuuoch6CZkrAiD1GzGi3NIWJtzEzhhG4Q1WAQYkLSifNgzwJUy/kr1//ZY5Kq9ldwBlTnGquEbRZlh7Vb2uZSvKe7p0zditgpzAKMkL85N1tDhPu9Qr9K2P54qsRajIcUFLVuXBznD6J8Kq9jSSYpp+GEOb0Ap+vcp5vahHkt5HsJTieZUb8fQePcIRqyWLTKiJave2aIlpp6WRtNhQWtEmtl2GFYK81OaZ7pht5u+CxOvAwDt2HiLky88KPUz6QMxmcwPQkILjYAjmHQTGZP4+5o7I62vaJxd1h3iZ1u0cMW215j+kt0eIzrGtzG0neKoVOYVgLRbL2XU22ilAC0En5WMi+iB9NCahRxVOiYCGcsapM5KG1uerStqICn9ssBYfrhu3j/Cms2aNPRxoB2e7S7Rk9btHMYt8GN8nrdqAhreY3Oi+pg10kO1PZZon/vT/PWq1/gDz/8Lp+6ng+aLcCsOlZJFLzKME0NQzBceF/3aEUZUBpNLmhGL4GrfRR7tn1K3KbAPgXuouN+CU5HRx8DI0lUPAtwerv7SZqrP83+3Q/wX2u4vM5V6+86Nh/+Onev/hmH40c4LwHttX7JTfV20ewN1UIO8dxPgT7Pe2W/vASnT67zvD5rpaplh0HTACiqfahGoVPA54K5KPFe61yXhlNpymfFRJnTSn1eFQYVt5Dmalm3K5ahTLXkEBvElpTWi+PX+DCegtT5Q0Hd/8fY4r3kFugo9ZG225mQZeFEsaqsfC9adPSkJbs5CiFIyECeGEz1qT73p17OqctMF1GtzWzrYvkIU66/xBYEQOv8+gvUprJ/tu1IRQ3VGJJVdcIOXip0sZea73f7ItL2I7v9HtPfkoYXRL/HLTKtQjji/fHk2OODgMVX49+k8ff//t/nr/7Vv8ov/MIv4L3nP/1P/1P+0l/6S/zGb/wG2+32jb93eXnJb//2b9evlfri6/+/DuNHAqBeddeAr5NdjL5KJwWczmb9pps3dlpnKWcGchdBMwWQLgxq084AdXnsFGINn5mmyDC2bHY/xoqlpMMwuT3BD6ddOaWl62jaKmcVhtUakzeyS8/l6k8bXWWnSvdeGEAhDIxhT0gBF3NhnI396zusAQzXzpzI+gQuUZhcYpZRAlSsFVZwo+XDhIWH3VnJWDfxZ+B0CV+KqUihz8XoMubiNdb/C/BcxvKchOzde+ph6Tm3rfDuVsDpaYXRhqYm61piBxFFigJS57cHeB08X4LTpWBMxfYvynkyLmCmET31OH/ATS8rOD1Otzi3z6wxh0ny9myUwSiNPWGDLN6LYsWw+Fkpdqo0a/EYoDI9Y0riX6YkhX3ZDZcue7GBKEEQOnNYBElVcCLBKsoEsc1ZZdscub+KD3NpovhwRJv+gXf6Bxu3B8/2Yv76yWXDdmV4tDU823k+2gW+cxl5fqm4f3FBe7NmdbenuXue5fIWDaQYiU1Tm1PRiPdXkYgXL89zYDo9QDJRi1pmBqgTKkSS1hh3upFMMVIEnSp4QROCf6OlCFA3e0bnuSFOmOiEdR8dgZAtclIFgus9ebYOxQxoSuMiVO/485dWgGSnJHy1VUbksjCzpvNH8bhcbgIh3zdpBqrLcTUqB7LUjWJahCMW0JU6d2sjRVzxn35oFMnbUuVQbD4KSK11lsE2RuSnjeQQWLvN13CHVyX+VRgjPs3+P6X5Vu/JCDBxm9rcsDM0XpQmdp/nzFZY1LptSGEBZWhLUT3aEFiHyGM34X3PN9wGgOe+h+hrkO4SpEaDjrL5IEFUEZWU8PcyGFCsC4qVgXiui39f8vu66S9SSGJg6c2tlaSfA8JgTUHYjWHk7vY3efztK1z3i/yOteyvvpj38fcdYQQSMbOHx+kl03RPCAMqRQn1YratEXbcHGapk1x/DVrS6rVmoxsuTMulH/jN8SV3cWS7eZdV9wRj1nSt3GPH/lM+8Xf4KfGnVlen61rkNGiHJVswd3+VqsD0DFLb2myugGtd22dWUYqepHxmbcprnxuat5JVkMFpa7ocHLqp62AIwp6OKQi4W5q2JydXc2pEsPxJuWfLy00VqF6Oss6Qn6mA0zGKbVjZ252D1qKqioin/EbyP7TJddo4r9uZQW1qPbTC2jVNc4ltrwjrKwGnLxvYiI+qeYPlTwFy3KDouxbfWdZaNu5N8oRwFC/oBZNTzlnehOamQyrAsbJE5B5IwZ3UM8HIPfp7bs0794a31yMXG8dPtZ6nh45n6pLfNS0fmZZP3JGP/YAnoMJsfyBN4FOwWisLuhASHNN0mxtOjpgC6zDShp9Axbdx2yuSiJtOwJkyQoR+Stz1kRATt33ko5vEdz5RhE9he3OLGu8F6dK2emLCqSrojzLcek2rWrQfMf5A01xIQHF0OW8jEGMkIGCuSYo+eg7Rs1ICIK6TYRUMq8nS9pGm81UBeLF1XE6W3lkJVkxw7y3NKErAomxZBiY+ND7v5Z67pJwHrBV7D5cijlBl8WOS0PZ1e0HbXmGbK1J3ybTuSI3C2Fiv4dJ0LZLucYLDnWJzd5QGwufUCw+N6qWP+r7g9PIeKjNIuc5nas3peMjSSOlGrt/zxy7A6UTIAJmA1ufg9Pw7nDThVZrZ4eTHmtwMLzVIWR9mgscpkaPUH5HEIfnMetfslGGNZqctz7SlNytuU+B5nPj98Y77MNFHz5gB+5DrrkSEpEkp4Nw9KgwE3zOZPZO7w9otjd3RNDuZz6YrzLClc1+jzYzq0Ha4rsF3lqlR4mBhVQ1zrxh/UNKkdqm2H5MBH0RBkbLNo3Ii+x8m8a82zZwdsGrLHJkYviyAuv8U32yqtQOA8VtsHDDhGhNGtHeyB1vYfxzIbPCYiDtRvz26Tnzn3TVPPvu3ubz5db53+ztMSeogjWJIUvcGnT2jMfRBMwwNMSoaE6s6oCgeXFAMweCSYh8VPXxfcFpUL5a2e8Sqe5yZ09+kuf4Z9u+8h3uv4eJS3pjbG83Vd36Lw+2vMY7PCWFgDv89vWbLCIv/xe5ObEaEpRw/l8H50L1skLq8/KxRmiZFuS+iys2yDMYuQOgyljXAuWKsaDPm8OcyoxSryDkzSprwS9sLg7UQwyLYd2F5JmuABL3GXM8sweoQJ5TSeD+zlI0/AAvVsA4zmxrkfw2Y1RxuqCwqmkzWmIMUVcZXZuuPNwPVy6+XQHXxsD4ltc3gfG1KF/tHZbNNV7EoATWm2hD1+R62Y6TrR5q+x776NmF8jp9u6aeX+HDMOVY9PvT5HIZs7zmf5/QVQP1DjX+dLD7+2//2vz35+u/+3b/LW2+9xT/5J/+Ev/gX/+Ibf08pxTvvvPPHfXh/bONHAqDu2keAx+SbNGRQs3iMCgjRzlLaPFIGN2oARUo5mOL1C7OxqsojXRBGyuQTk5cO8Cuv8JfPsHlymMPTVoQwCHi+mNgau64gn6TKr7FGNnBLWYgcZw4JiONJl8z5AyEMOH8kjeKDdiDUQELILCYTCXQEDY/d6295EyUc8Dw0sWx0TAar53AVhfkc9tQ5OD2zdd98w6uUi92U8mvVM1JMYYedfl3O6RwOU55MLxa4gHN3dUNvlMXmRUHHNT5afNSkBkKYC0J5GvEsDFEYmOfjxN4jiO90YU/jskR7uhGwxe0FnPZHwNMm6JRmrS0XuqnA30moTZYo1vdjIeMq3fICKJaiuxTohcHjCBJwoUL1PZ9iwOQiiFS8zYrVSqwbjvKnT9hdubAoCc3WrgVAtdvcBFrl98djw4D5ElhZHz6fsCvHk0tbG0WrVvPWdcO61VxtPI+3gY8uIh9fBl681Ny9uuL6WxK4psKIcj530IOwj5sGaAi5okg5oKKA0TV46g12EslSK7qKsQSF1tLsAE5A6pMNv7JA4CQwY+GFXe536dZblA5iuRBlLglaJKUqeLyY/9RxzqBeLrLC1ph9MYHKfF6yqAsDKaqEz9dkTCl71s0AtcnX4HnACilfuxlcldOoFonhJZRmGQo7F8NiJ9Og9Coz3zOL6oF7sIxlDVbsPYKaGUPWwtgoKQpNh7Y7jNlg7QZrOrxZZUmcHI9NrysSSOBVFKCfxF10svHXSuyPJovtY2b3RUwTUO2IiYE0jdDm5mUBqbc70jSxeeuWJ27iJ2+2BCsMk+e+p88gdRkzk1rhYmJMsYLUJGFRJxXl+tGNrIVhwvsDxStP3gukaFdyLNQ1aw55KQwQY1parkQRNN3SD59wd/OrXP/Bjnvz8/ze219SR96PJBWJxdpiEnA24WuRsvTgVkkirYjU5oyA9/J+aBRrbdjm+bWPnu+6I/v9h4To2KyeobMnslKavrc8d694Jzg2xrKjoYaCRgCxsnqNq6ey9kXNALXO4HSxq9AlKE+VcNXTkMQS3rrMJ3D+UG0oAJoM1rbNFY2du3VKGWKUSctldk/ZLM4hRF8MZHxofS7+8ecjpJld+qYRElKLkEAZrFlX/2l57XM9BFSmuTVrCetsLrHNFaZ7yvHykmmXweksDy++vYVtWLznS003TYlhUAyd5qAv2QKNH2nDiDFrtO7zezHP0zqRgZ9EVJGUchMCTVIwIE3z4u9ZapsPlaZPDf1hxbvecb0defdRz2VvebZf87u65fd0yxBfcIieMfPREgaVTGa4B1CGRLHUaqsqMEWHm+5qsGQIR9Z+z8r9BKv1zzFctoSc+WqtWLjFWLxtARJTCPRT4uUBvvsZ7L+ruPjsFnN4CW6fKdhdtbqSoM4vZ3PrVg1edTT+EuP3NPZCVICZbBGTR6VAYMJXFnXkEN0MUCN+/2tn6LLHtGki1sB6F3g0TvR7zRQ0PWCiosnKFp0t3M5rXLnuRMb9GpO6NGGWlh6phPvmryng9GzvMaXIkAPFhjiHiTXNpdg+dE+I7QrfWbFlWVg5LK/jEOFwhHQHZhpn9HyZhXEmOT85fh6+pz9vLPH7uLi+z61XgIW9kcBvugREK1trxpKrUpgcD4HT5VmWdkn1b7zhOBWpAto6z8smg9Rlb+KVrvZ3Ta5TlvWzRqw9pqxFK2DnDs1aaR4rzTOl+UA3PNINz8PETRy59VO1JSvs+ICoRGKckGDuCR0s3h0xdo8xN1X90jQXGLNh5Q/YrOixzY622RDbFbFp8F1HsIZkNMEuoc3cLF/sUUMj+RdqhzAxs9VgGLXYA3gwa3LtnGiMBK45D6vuC1wUX2CM0y0xTYRKCDMYcyQWi0u/R4cB67Zod4HtOnzX0esVvdN4LwHglzsB0C+eRO6/9g2evfwlfv/+Q4YUuNRW1qOEhPSFiNORSVt6LH3ShKmhVYlmYV8TQPymk8rNq0RP4jb5Ck7vMzh9CI5jCowKlBKL0DeB09tLuXfv7zT6o8Bw99tM06vXSFXlXSt74CnFfM1pyXV64HxWBfQPAZLVGp6c1ZE0jRILPSJMKZzsGco8UUDp5Z1ZFGPnTXlpwqtaZ1RwuqzlZzY/WrMArQ0xtvXnOq8BoQL6+ZzlhqxSuq7QRaVrzD4/SKwSlVlBtDNQXYa2Av4WwJpVJivZk79jtK+WH6WGKGSr5eOWY8mmPseWzketrUvNDdX+sekn7Kjr94zzmHGQvet4l5XYL7g9frvahBbiQvBDztMoxIQzFZg2rxHlvxr/5o/b21sAHj9+/LmP2+/3/NiP/RgxRv78n//z/PW//tf52Z/92T+JQ/xSxr9SgPpXfuVX+Ft/62/xT/7JP+F73/sev/zLv8y/++/+uz/w86xWzwCfu0nH6kEsQFojXkhZWrscMYdNuCABFJNfJianHJA4lwYzSE0Fp6cQGRxMU6S/vmQTAlbPIWp2/Kx2uQoTSytD215lVpWAe7a5EnDarGSyXUxkAIRBZMd+T/AHkQG7O8bMtErRZ/B6YFR+9h9F2IDFEOCxWhNcM3vqRVjFSBNj2R/JuVnIHJfDKDB5wlt2cStzulh9LMHp5ffPZssCqMozZWv6pMQXMpCL2rLxPgWoYxhPpUF52VVokp7DFaYcLCXXhLBpbSz+wGtUbAhOEzthIyQtcpsCVsufVSdAdQWnI+ATyie0CxL0NfUkvxcmnLutth4h9Kjk6TJ4stPiF/7YdjTKnHS/l+e1nvtFZ3z2E5TAm3OGjGyUcgqzCgx6TmIelcbmbnqMs4SrMICkGCmM32IfUM5fkXXlUIx8/ZaPOQAr+yqXQuKPMH7r40BqJw5j4OlFw8Wm2PMoLjZG7stGc7UOPNsFPr5KfHyd+DQ8Zf1yoN3vMcNBjsd5jLdo3xJtg/YNsCY0JltdLs6/PmNPl7kg1hsAFfL1EqGcNY2wsJXRFd9OJl+bOgc6agMlGTosgOwFOA3UDn1RgYg9xYgOE1FNNTCxvEN1K1NexllxElPCxcikYg5ZjdWDcTmKdFCsZGZGZZM3fY2WUMUmSxYfsvg4lxa3Si3sPYrFR6gsS9FySFFlTSfBJk1D0urE2gPebO9RHmMWj2+yhDpZLWEk7Qoz7jAZpG7sjsns0aElBAGFfUpoYgXnyznWaZ7X7hfev+gG4w1maGjuI1o7TBPRrSP2fRawWGBAmVygth1mt4MQ2E53fPCdkXDs6qr8MgziG7h4bwpIvVJydscM7kcViEmhI0Q0KowEJRZTS3+8MlS+9pbfLwwPrTsBwpLP7Jc1KQlILYGJH6Ff/mMuteVw8+6b34gfZISRpAIhz5vFBklLX0BYu2fLkaj2w4n1CmS2b/ZYbxSsleFPr67ZmoZvj/fcHL5NCCOb9dsY3dDYHWpj0GPL7/ef8H675ZHt2KlmbvwlBRmQkEbF4ly+AZwWWzGdZa96Vm8lT4rmZJOYomcYX+C8KGyc74kZnDYLcLprr2sTO6WAipYQLDEGrJH1ziwsrz5vPAQvL5UWJz7UD0gDq1/vG6yQZlZpQmsrdjrlekunLJ/S/NTZMqppLrD2EtNcQXvFuGtgB+1mBqetnX16GwuNkYYUSC03ODhmP8eDVhy4ZBcjTRhomyupycJITK7OwbKty3vZBJ5IUGVWl5+OpQm0qGu22hIU9NqyHxve84a3dwNXl47/TRd4ctfxWF1yTI6PpyO3YeKYAq7CA9mSJVtriXy6RStLQpOyyYLIdwUkL2SF7SdXNP1T+vECd2lIGZyOUWpZF2BvpEG5P8KrG8XwseLik1uau+cSupc8Sq1Ipqs2WKrkJnwJw681k+7QfosNTyQDII7Z6syRopcGS7b6mJLkJuyDE5BFaVqtWSvLOhi6yqJOmCay2iV2o+d68hxKYCLQRk07NEKyMD4HLOZNvEmoqE7mjjJmpZw6+b+MJbBU7D0K+3HJni6erQorLNr2Maq9xq83xEad2LKUv7tqZd0aJjgeFe3eYcZslaat9LaVPQOB5mYZvBnYPXmN6bTGL6rJ08d8/2eqfup5jivHcm7tUcMQ0+t87LR4tmqZlD8rCpXTx8//AoWlKtZEGtm/NSgabfAqVq/eDlPDmiOnc1xI0KuQQevCqlasgT9rGnrdcpu2fNZ4nseJF2FgH1z1qh6zPUOQNrfYeinJz/G6wbsDo7mtSpgQjrURt6yfjVnRNFu5F21L6Lo32tIlrdFO4TtL6DQ0nNl8KKYg80AJX1y3Uud3LYxfEoN6Gl+JAsisMHYtdUMGqGMcMX6TwyOv0H5ET1vMuCZpjR8tzmtuoyLGyOUOLnaJw9uG7bt/gSe3v86L47fYqh0tmgHFQGRIYl04pShWS8oQYsN64bUOC4ZyBqb7FOkJvAgj95kxXcIQ+xSYMjhtzRbbbNhuvsZ683Wx9XjnPaZ3GnaXcq/s9wr1vcjue9/j4O4q+3aZqYDSRES9OiXxde+TZU3CqFT305D312pWKxlOrSdLfR+Qwqjsr4OSerXJ93/ZH0IO3U4aZyMmKI5RMWXLR1/vRxkpP/esXDhTSaCkmcopgUwvP8915AnhgWKtke+JMMpa73u5P8KAzsHFlXSWR4yuMq1VzuEI4ZCtU3bo5FHRCzkqWQGqYSZfJFEGqQgJX8FqlSzarCScXlt0BHS3AKnLe2nz+ngKWP8gQ/Z0RpSMANGLR/bUYw+y1hJGSjB2cLc4v2eaXuHcPZO75XD4CO8PkseVIg1Ccit7MinDVG7wBlxyuCj7va/GDzZKs+aPe0zTxN3d3cn3uq6j697cOYwx8p/8J/8Jf+Ev/AV+7ud+7o2P+6mf+in+q//qv+LP/Jk/w+3tLX/7b/9tfumXfol/8S/+BV/72te+tNfwxzn+lQLUh8OBn//5n+c/+A/+A/69f+/f+6Gfp1u9C2nA2iPeH9C14C7yknW2H1gkvMZICoopy6D6SdKSJ58YXKS1ivYskMto8aV2NrHtdAapVbb6gNtriwpXrAGjDV2WTHt/VxNk5Xk6bHOJsTvx/rQ7CQ4ynYRKNE3dJMDMZFEhoKeBJow07kCcbmjdLW56WRluAoQecUg3UmdJKsgN91g1BGUIzhJSCX/xtE7RduLVp3Jg4ptAapjlYkbJ6lW8qH+YoRYfpEjEo0IiafEV13FmZJSRsn/k6752AhgIC1vYqJO9PfndJnlM8jlhO2DcitBYXGyJWhGzp+MSrNZNkdqpKrmLHpKTcETjEs3oMOMI7kCYbpmmmwq2+HCA5Fih2JmGC92wNQ0XpuGJWdGiK9D8eWMGpYvVyvz/cvREKbJVpE1SoBh8lXuJL5kiAi4GlCKH3ggzRYI7k7AyzzYTc1dcbBiWxbVqryFvbokerTc/0LXw0PidP1Q4E7ntI/sh8vUnLatW1+aR0YrdymC0Yt0qdqvA420kxsjN447++Yr1zY7u7g499RBGVBgxzqCnDhUjoe0IjUjAhE0NsVHVM1qkk1/OgpW0EZuP8+9XX7Nw8jlA8XCzUbw7g+7RcfZNLsBSGUup60nTaMGKmlL27y1Fb36cQeOIi+vsVCq7ZFEX8KA0SuR5Xr8ejSJf43OBfWLxsez95waIMiuZA9/AYi/jofpLbJqgDakyqFMnG7mmaTA2NwbtRrxu7aayEVxmRmulsIkKTsfsw6cRhuKtnwiL3YXRDcZZ9DErThqPMoHm0UQ02aeuzbK/AlI3LXq3o5kcz54MwtDr27oy3zJyjL7arAAnnoM6Fr/CRIG7SFp2ZErj/L7OnfWail6aHGdrYjoDo0phDtA00nhy/ojzRw7H76Bf/CPa49c//835giPFgZAmQjgwTTeEcKxNMgnkmdk5Mt8nkhK2uzQnqUBTlbUbjUlyrt7WHZed5dp0/O5ww/eGj4lhYrt9L6uYWlbdI+6nW/5g2jPGwBO7Yq2tsJGiF+Ayb4hJiaBi3ttpUKfs6rJBXTbFZU0Sr0IBl01tonp/ZHJ3WRHV582cxtg1XXvNqntM1z3FmC2mNAEz+1qpQ/46oLXIZXX2gM30IUiKN81e38+XrvjUG2a1RUAvAK43z4s+K3RK8CYLhU15jWVzW5jm1oqywdgdur3Gby+Ja02zijXZvmtnYHrVzCFg65zxWgMCmxI4lrhH0/tLduO7dK+u8X4vLKQwkdQpA6koQhrEskGA6gzGoZmUbKTJkuTrHOYXYvZGTYbhbs17fuTqYuLrbx/Z3bR8Fq+40K34UnsBuEYxa0KqquIpn2rDQ66jttY7IQyMYyREj/MHjNnQDT/GxeE9pv1j+ss1h51mWCeOqzlw6XhUjPea9qXn6sUrzOElabrJ88EqM6jNou6MXxqDmjU4YzF+jXYXNN2TmfW1ACV8knXbZyWL2HwYOuVZK8Nt0rRRCzPahsyiTrQb2FwGrseJozP03tCnxB6FKfZLJrLeClysTKoevufjTf7TxS5gGQZ6Yu+R19Qhg9OFXesVGNPRttfY9orUbHBdQ2pAL8Lwyihf9wO4e81udCfsaW1WpJhBFZ3VbHW+UdmmbW5cn7Mw5Zjza4lKzkNRSaqUSSjzuSlXwMPs5gwkvwaUl8ecycwgA1wKFoqUpRKlWoUwP9e8hsX6f2FmL6+jqISMk1LEASbEWqtMKjAmw0ZbYkoS8JwErD49P1KbBBWZkmKN4plSXJrII+DrGIa45aXd8jIFPg5jZVY/930Ne3YEQgoyb8SJqAZUaPCqwRhRvxqzoql1SJ73zBZtVpWw1OS9odRCc+h3yVSJtkHHRL9poagAs0XAOCjGqShhZYZpLayzenhs+VKGiSPeO0LoMWFAK13VESFMNM2FsKnjgLF7tN+h3Y5Oa2y3QruOyTXcRVmz1iu4uI7cfu0ZT1/9O3znt/7PXOuOR6ZhpQ1DkLrHRS8EnOQZVEMwiXUyJ/ujonCYUqw+z0MKvPQD+8yE76MXwFuBVq00DrLvdAGn+2fvMz5r2V7KPnkYFP654uqzF6T7D7PN1hwcb02XG5mBGKQ666PnPjgaDK0pYLIoC+Uj19a5kVJDDdPDaoiS70Tep5S2t17U7q2S5w26EzAzaHolr7k8SwG7lzNiOvtfxufXCst7v1iZaS1rPlrWfZ1WJOMxccToAyGOFagGxB4lLW07qQ33mUkt1jnSkN+idchz4momXpxhyQ/l/CxxIulshYWiS+6RzwOlz3+2tBss6rfyt+VvjUR/qATGGtiYAxydu8O5e7zfM06vmKZ7nLsjpYm3dcuV6bjqNlzolq22rMveK1/nU0q8ihPH6LgPTpovfuLDz33Xvhr/qsbf+Tt/h//yv/wvT773n/1n/xn/+X/+n7/xd/7qX/2r/Pqv/zr/4B/8g8997l/8xV/kF3/xF+vXv/RLv8RP//RP83f+zt/hv/gv/os/0nH/SY1/pQD1X/7Lf5m//Jf/8h/5eczqLUwaCf6AMXuM7gh5sitMg6X9AID2DnKQxDjJZqafEvsx0dpIY4rvtK5e1CCTTwlQXLeJXUj0LtGvobuKjLFBx0sJ5lGW1qyw/iqzfWcpte2eCFO62RK7C3yWPAVriI0R2VYG4MTbtgTwBew4YcYBM1zRTrfiaZcZWIP9jHHKk1zoOSaR9ehcjH9mJoJuCFiCN0xJcRk06+DxPmTZbAa0SsCE1w+zqRfAFVBlc5/XedIZ0M7ObSfgtE4IWylJ11Z0NpGgHlggFgB14VOUoVKWt+QFYMz+jSeBUjFgoxdvtGmDaVfosCE0cl6SVvk9gNTIuVCFeZMB6hQEnNYuYUdfvafjdIN3wmx37iBgS3Ksk2KjLVem5dK0XOiWS9PwWDWsF/YHMDPWlszWsoUtP5+9wMv7Ma/JLUaS2JmZ1lqrKoE3iBTSp5jxlewylkRKnxIENffRT9KXmUHquUsuycSp2ZCsVL0qBrB/dA1h8/sTf6gv2B8jt724te1WmlWjae3pddkYxdXa0BpF/27g5WXixWXi9mZF/3LF+mbBqA4jyt8Js2PBVom2EabtqIiNqdYfJ7Yfy/1W8aAOIr1UUexealhiboSUzf5DrDQJzbKkhdy8eHkvz/nMom5RYUChs83HzOZbWm0UkHo5ig91/sO1Ai1sR8iFvVJYdLX3KKDtShspsAtInSWxZQT1+v0vhfIyIPHUJ72wNcTDV5iUEmabN6h5TgoRmvI64ik4XVjVwkKZrT7WDRxbMF3Cdxq3XmPGC/S4wzZXNM0dzu8x9ijyeZyEJCZ1wgwpnn0uKw0OytXzWYDqoBuYGtiXQtWzOvQYqNL5AlLLwVpU02J2Wy6eHPBuIEZFGBuwmU0TxhqcGLMXoy2TkDboKEzqKSU8jhgS6AgenJaz1Sw28taM0lAK3QmLuoCGcr4tNdocWbOaZidAfhjw/sDh+B3G6f619/qHGSmOpFygj9MrYpJzmyoruZ0ZO/W1JCJD9X01uelmU8AkRZO8NOO04kpbrrDsmh3XpuW3hxu+Nb3kPnm2m3do7I6kDJvNO/TDC77t7zhGz1vNmk4ZsWVRCo3DJGGW9kUIWy5ejbBdq5xdgn51ZtprVXzBl6B1wIfcGMms6TlDo6Nrr9ms36FtH5+orOQ0eGky+MX7lzwxTqgsjU1oZouP19fw5XcKE6tYAZX7rKzZZRSLg1BVWKeA3vy4YvVFbWgKq2l5XRmUypvqzJ6WXIMtphWvXrdeY9bpBJwuAPW6gXWb/2+kQQnCoF43idYkTN5oep84jJZhfET72Vs4LzVSCKO07IIwH1WeNy2KTsk8VywnXJbyg8KpxD4FYpi4KZtRPb/2Phqx/HCGt68Hnjwe+YW+5crtuNQNO3OobOo+BZwKGZzWUtFEJR7zqoRQtbUxH5PHuwMxOu7ufovV9Iru+BHt4X26V2/jLq5x6zW+s4yNVFjd3nF1OGAPdzDdEt2+burRVggStmE5anjpH3HYVSIazRg6dNjR3V1jg7ArQ5gIcSLk/JiUrT5cSgwpcAiOlTYckmGdNGuUBCYuQhC7CwGpL649j8aJw37FhKLP82XJCNj0gSZKCDjwfd1vKhidTu09Tv2nRbE2JAHKxmzvMUbxnlaIvU3TXGKaa/x6S2wMWHXCWl5afDgv7GndR7H3AMiBYySptySYuoRUN1U+LwYY1MZ1GQVEL6+nKCAAlFFVGW9Ir2VTvNlqYyHz5xScnn93SRyZ7SqUzmA0alaZZA/6pZ3cyXMtMmdKfRRryNqsmvQ4aaqlhM9Mdqe0NA1iYK0tXTK5zkmstfiIrc+64WL7AbdJMQXNWiVWOvGkcbylxDqijytehQ2fNZHfdHtuw8hd9qseaqMi4FMgJImWD6EhRo82LZO5rxlE4r2/EYDTbgW0niRDp6hrlVkJUJ1r1tJI0mMjKtBs5aFdIkyK4yAKYZDG/bqZa6nh9Hb/oce1aRmJDNHhk2ccLbZZ5iaNhLAhhjETWg5ifaKt7L/GFcbvGGLHHRqupRlp3gL3tT/L935j5Kk/cqmvWCvNoAxDtq0ogfCDCgTSCWmijCkrDfsYGJOoSW+CNP+HGJhIeKVyNtQCnF49o7n4CcbH73J8tmJ9FbFWmOnjK8XFZ3vM/ad4f8CY1/c65VqVkPqRMUVu/FjJH+j2JD9orTQBQ9CJe22IeW/h8t5sft6sakwUWkKuQTxLWKcEMrZKcakbsfvAcK8mGqXFpiYGJiI6N9PKHuDh1nPi+4HUDw1dz02X68yATjKHLYFqAK/bnNMUX7PYSFkd5n2fa9mNgN56QJsVSi2IF8BJeGIl/fhqqfiDjHNm9+nPIkqFrJjIGI+lgtJaGVQ4tbtMUZTu03SD83u8PzBl7CbEnk1SPDEtT9sN79in/LTdcqUUuzwHtXo+lpDEwmaImo9jy20KvLSOu+B4zh9f+PGP7kivNXb/OMZ/+B/+h/y1v/bXTr73eezp/+g/+o/4e3/v7/Erv/IrPzALumka/tyf+3P87u/+7g91rP8qxo+EBzWrR8JucnuMl4R7E08B4WLcD0AMaOdQDsKkGAaRgt4aaG3MEvElKK1PvhYmtWLVKCav2XXiSb3bJYJXDEGYuK1taLTBuCPGLawOtCWtHhMzIFY2Er7TpE6AUKWzIhyqncTkLHiDHhvsuKY9brD9FjNc0fmDsFlNW4tWN93j/T2HFCpyeR/dghVpCEGYUC4qNkFjTZSQiZwe7fLPS0F+Pk4C0tL8PY2aVzjF4ucJlLA2bVnryvcp3lcBlZJs9kkZcM7novyRFCmhRjpRBbjlMcIg8aRgmCYtPof1Y6SNIzEOWH+FDteYIEmo2jcYJwCldgJQhqhINmPhWkBrYSiItYcdfW0aMN0S3G22X7nF+QMxOdqE2HqYhkvTcm06HumWK215RxnWQJvZK1qlStaV8z5vkuo1qMjBlqe+geVxJikmpTBJn7Bgo04VTCEi4AtLkqqwAlMGqaMq7PSHF+YTv3Rtq4dekQi75vvQX7/A6L79z1iHP8/z/SP2exGhPd4Gdp1m3ci9WO7ZpX/8442iNYldB3eXkVfXCFB9s2J1c0l7OGD6A2p4iXIHmSfGDpQltuv8OnQFrM/DFGEGpwFUiBmgFh+xpfKhANXEQA2m+z6jFDDLc21MiwnCzgi6Fd/kVAIGq6tp/Z3CpC4jZLA5IJJAFtcXFN9Jea+NErZYkRyawp4+A6fbzOhd/o36eblGF82X8n23YE+HlEiKvFmVYLk3JiOejfPg0pCo14MwK4VFrW0idFrm2vWGdrzC+j1Nc0vj9nh7IPgBF/vqg1pY4zMLvZwjOGb7jcISrb60uiFMDdzJ8WweTxKXYsx8n5nTjbdqW7pHlksXRCp7A0xNbS7dqJFj8AKQZVaNZQapVVLowtjDE6MoSpTTtbA2ZaNoJkw4Ys2mFvPngbwPDaM72uaSCWG0OL/H+eELvUff9z0MIykKe3qc7oCUGxVdbsrMAHWKnhAnSAEVNFFFYmYAlcBNl5mMjdG4JMCE+NgqPtAdV+unXNmW3+hfsd9/m83mHZrmEq0bNuu3GMeWF9NLhmnP23YtgIYyaKOw0WOVFn9vEkF5YXTHAEqYfTqD1ErbGpi0DAZabrZCAeX8QEoRrS222bLunrBaPaPrnmGba0muN6vKQlbJk8Kpl2L19I0OX5pPSkOW1ysU54qYN42wsPk4D+6Va0C9ZoXw0EiIBNjo7tQfMo9yXgp72pgOY3cou8Ovt7h1S7tKD4LTuw7WrRJweglQm0SvC5iYmAI10LofVzxavU07vay2aDPTTRriOv+e1QqNsCxFnp3ZkbkJ5xQcU+DGy+Za50ZwX5l7hn5qGF4Y3r3o+fF392yer9n1K3bKsFEN33MHXoWRfXAZKBGWr2x0A0onNE1lpxrVzkzS6DkOn+H8gXF8Tjd+Rnt4hL29Zt1eoexubhL7LCEOAykOIrPOVkqYFcm2OZtBmqjaOcKXZPGx6sC1CR8VY1zRbt7CnmQuhPmDSAoJh6PPyoUumBPVTpsMbQ5BtIfEdprQrWK1izwaJ0Zv6PuWl8A+JQgaMzZc9I5SyX5+psHceIlxZk3Dmb1HVgEVNZBL8TX2tFYNthEbP5odoe3wnUY/4D9dvh4mmAZFc3SoIJZgUi7Le6lBFEBxxPu+1vyiiBFLgZQbLS5Ggj5dk4VBfXoPa52wJtZ6sqx95+MUuCpkEIPWdrY1WNrCoWrQtlLVuGPRjLbZFkLX3KBqJXduy7i4TpahYMUmJhaLtCh1q1dS3cSUhM2MhIR7JDxco5h0xGFYKUtQhrUykJWHy0DnoLKPcVCso2JrIisT2TSOZyrxzaj5YLjks5j4ODmeh9kG5BDdglkvYLVzHuXFEsrpFm1ajOleA6vbbAWizQqtV7Pq1qxQoUP5DtWusOMat1Cc6ZgIo2IYFP2UYJOVJl7q5HUL05fkQX1tWvoUMNkmw7k7WYvsBmMdMU74MBDChA1HrD9g7FZUxm6HcTtW3mHcBcew5Q7N7jKy2SRu39uy232Tb+8/5Jld87bp2GrLkAJHfM0xGTM5qtFzePx83Szuz/w+3AeX/aDlvdVKyB9Ne8Gqe0zbXLFev8/0+D0OzzY0V7IGea8Y9orulaO5vyF52dsXK9HZeue0fnUOJsRWBHJtnB8Sss++gNQCUF/kNG2d5+Cqfjyvr/O9FklVwbNarLMGIwpGpTBK2OWt0tyrCauETV0sH1VWo4WlDU8qto9pvneJmUX2+aOEA7LI1FJQLSC16bLdhwDVANr3UkNHV/2Vy5D7fUKFY50HdBwxukPHUfZwC+LFed7H8vOlneI5GQjE4uMh9nR84Hsgt13Jykr5/l6OqvJY1Gk+jIzjS2LosSlypRue2BXvrt7hPbvifd3yTCWuG8+zywPWRuwiR6E0Gb3XeK/oJ0s7tNxGyy5pXiqD+cqE+l/b0bYtl5eX3/dxKSX+4//4P+aXf/mX+e//+/+eb37zmz/w3woh8Gu/9mv8lb/yV36YQ/1XMv6NAqjHcWQcZ9lE8W7xmx1atehpgx5XNJCZSPPm+SRFNQp4ZMeI6zVDS/UzFFuPhNGh+lBrbWmtrpIPmO0+WpvEViDAbpPwPrKPmomGZCQN3fYrtL+YQSltcNsLsZVYt/i1ANOmS2gbsySzeMIV4EXhfcJ7AdWn0eLWhqbv6PYrWvdjJ53DIrdLRII/ZKZP4mUGFExFNQ1ERUiGKWpWJrCyEWtiLcwLSF2AavktNYeOpBKWFqWQL1YVCwA6LgFrElYJ83MJUssEn7LvVZHwqfw0crzLUBWTSnlcy+T6fgujFBHP+mPefE45OX7C+56muaNtD7VYMjGgMwNYFyZtTKgoQH4ySDheuaZ8wo4R4wNmHFDjfWZPSziidwdhDKREpzQbbXlkOq5Nx1PT8kw1PFaat22g0ZHGiMSyjMJQC2mWl5axfJxefF4fF0TejsrNBaVYk7vzOZ066ISNuoKIMZ//pLIXaT7jhe9+3tFeDvH1MsSmIdqGaDRJt/jpi29w33R/H+/+JRda8aj/0xzu3ub3reWzXWK3iVytBahoraqs2TKmIF8X2XdjYLeJ3F3C/XVLf9/S3l2y+8Sg3BHcAbLXo56sJNFbAayFXb2qjN70ANAC/P/Z+5NYW7I1vw/7rS4idnOa2+XNl1mvqeIrslikzM4WKFq2q2DBBgS4gSUDHpE0QI7oEScGh+SkYBBGjWxCHpj0wJwIMEADsmUYBijIoi2ZltiJJotVrHqvXpP5bt57T7ObiFidB99aEbH3Ofe+zKrkq0a5Lg726e4+sWNHrPWt//dv3g1Kl59N4HT1RvscY5ahWZSKE2NKaznGpHwBSGVUYKl6S5+nh9cQTemywPs8NFx5vbXgr+B0p80MTqNPbGaqcjouvsfy55QNXzmOUNgtcp/rBRNMvBazkSZdve8f85+WjXY++VljmbwXnYWmgdhm8UP1LWa4wvg91t+esKi910TE29mWbs4y8TxTNjwICBzKxkGA0choOqJpGUeHv9NcvQnASMtOJISrFbppHoB1euXorhMXXgJx063CeItRK1zU3KiB++jlfBUGzQRSVwAAMAVcD/TEKH7+OYVpo6hjjzWdANWmepuf7lTPvdDlyQ1t+xylLD7sZNP5BQHqd93jMeyJ8U58mP09CjOzyOwKUzY3KSdSea0x9oCmxu8KEz9P56d+RCXvldh9iJT2Q+3YNk+40A3/8PAZr3e/yWr9NZpiZdK21yhtOQxv+K7f88w0XJgGpyTYVmeFL1LukDOhpDyknCQVvoQXiopnDvg9bQTMTOvKjNVqBqfb9ilN83S2AqvgtNvMb0nsMJUBXyytYhwxaRRAs3Qis/zxd1Mhy1h6UNdb15zND8KwFvbgkoUpPzttRNXmWGVHVjuZ6fgnOW1lgoq8WtvNxJ4OK826EUZdtfWYmNONYtsKOL3tNM4oUpYaDhJjyJOKYuig72C3BbV6STO8Fklt2JcmgbwfKY0CbJU1cG7GZbpspiAtj2zcvYK31S+8nDRjFGTNkcQrYAya/nbNH7u65esfH9h+5tnebtgqCfL8gd/zSh25j55jFn/QpGJpfOS58VE8zpdM1RiEbSZNoz1u+Ew8vEvotgQYL6xVynwgjDMrVkpuXda3pb1H8cX8AuNd93fbiT9wTooQNWFzgUsvseWaTTkuwAJ5H2LMjMWK7S4KmOIo645WNEnTlcBEPygaA7pRrC8TT4eBgzeMwXCbE7sMJmqeHss8khKu/fH2Jcua69zeY4TiVZwmb9lDFFbnzJ62aNPQuAuM3ZBbqfuzOwWk6zCaEvAJ8ahoQ8miKPYONb9CaYOxG1LssXZFjGfWXzlMjV9fGthzSDIlOE5AjTrFG5cxWgLmmoVFQK2vH4eqS1jawof69Dd0aTzPX8/2RzNj2hXWsK72XoumqdZm8oOtDdSUPEk3BaAaSckSU0AVoFre4wBFQRJKEzPlREQRUgmARtFmw5AMvY5stMOrRKcNK5WpCc3NonaJwDErYjT0SdNFAapXTeDbV3u+GTXH0XLjN7xKWz5JgVdp5E3suY3j5Fl9nzw+B0JWqDSgoyXqlmgatDlitMWYTkBdu5ruZ61bUX4aUSMo02FSxA5botUkJ4HfJiSUl2vp6OW6MkpNPv2QGb+gxce77u9ntmOXAzoqdITbHIjxQEoBmwLJemwSCxAXtwRzxBZGqXVXU4hiE0ZUiuy5ZK81m22ivUpcfu2/z6/+6v+e7407LjvHVhlG7dhrzxDlfgOxlKoWhqf+4nlqXI+lgSTzbFVpNRM43TZXk6VWs/qY22cb9CV0ndSZQ69Qd5l2f0D5gzRgTYvTzyawVcd2yr0yumEsqgAf9tyXgLupmW4To2m4olo2wFZZjkbyYQ7Ko5Oajt8z1zf1NoxFNRbVvH4nLfd70tIo3Soz79t1JZxI4++oAkPS6JKtoBZ79XmLXvbeWUhmn2cIKHyq1ANQptjHpYCpe5tkcWWvY0xDKLYfsTSi5lweCU+sz691JOlxAqjFztWczCGnx3Sa75NznCxY5+ZXPPm9Jbi8fI7lc6aT507vVHsIOB3IeUTnxNdsx4v2io/chm+Yjo+V5oPGc7XybLc9rpWsBdcugelyXXuZv0NIRK9ohkTMEg7cRE2DI+sfv859NU6H0OB+9wD7f+kv/SX+9t/+2/ydv/N3uLi44JNPPgHg6uqK1WoFwJ/9s3+Wjz/+mF/6pV8C4K/9tb/Gn/7Tf5pvf/vb3Nzc8Nf/+l/nO9/5Dn/hL/yF37HX8UXH7ymA+pd+6Zf4q3/1rz74vl91aNVhjMFo2U6psEPHWU5SPX/qUGHEDoHoHH6vOei0YFSUTmQqAIdNeJtPrD7qaKxi5TRjSKzbjF+LlPSYFB5DtCsaZ7HDOEn7k3WM65ZoNXGt0CuwzeyvWMHyKveLi8CbEKTgGMeM7xWjM0S7wQwfYLTlvN7IhdGR4pFjTrMUFcAUq4gsJWhMaipcuxLqVsHRMelHWdR1wdNZ2JWyH06ngLSSFO0pEbx2gYvHFjlNrM5UQk6ExbtgTD/gbIAtoFkFp2tpPLEcswSnjIR5Ez0uFo80kNKIC3usu6RRVgo+t0GFkdR0qNShkkVFsV5JsdSsxXLFDh53PKLHHvyO4G+ncMQYj2QCDYqNFv/Tp7bjpWl5odzka3fVelo3J83XURsTKct7c87kgRmcnqWo8ntjVpDk60YJaD0WNqZT8l644neWFuddPAynyKapLVATIdPi3OW8erzDbPSUQB6+wBTzrvt7GN9gd79OGwe2wx137ue4vza0F8KwWHXQNsKSbcxpSB6cApptA9eX0DSJfguHK82t/ZB2P8zWH34PsSfnHgo7QimLPc4+nWI/8ThIDQsbjwrGVFC6fi/NQMHJ/9NWmJELOVp9rAWXAIortDmiwoGMeiDnreOxAERgtgORFtYDton8bMHEXoDTJ8zp6fEUiK52NO9a5JcM6tqUmja7SpizFcCtDj8VhH7wWgoLbGJQJ6YCvDKoV07m1rEBv2BR6/EprrAKa5jt0DdEenzOGGQOmf4Wc0ii+D7LZjedbICEaXk0LWNoePJpyzM/kONIGxMWmaOUMagFk1o7i1kFuutayPZw3wlIbVo59xju01gaD3kCAPXiGDXiHa9yxqderqfiBRlthzFt8b/sMboRtlYJNlqO5aZArouIteIpr5QhhB3pC3rUvusej/HAMLxmHIV5pXWDcxc0zSVm8i2OqLoxSUHAkMky6v3YqzTpJPzKoGiAp0rzx+yWy63j/3t4xXcPv0lz9Yen89A2wqgeh7d8EnfsU+CJaWm1bOo2xmFSnN5zuR4EqFbZFIZguZfVcoVi0U5iYkBp3ZQN8jVNc3UantVcC8t1YaEEoFIjYBWQk8zLNopVjdIWlYprulIsp4Efd77Ox3LDXz095wyLxxunZl49Jpb0ctRGVGVKat2WhsQW7bbEpsOvGnKrTgIRG3Nm61HA6c5pVo1kg0DiOFYlXLlHdKmvOgibS+zxGc0oDZHK1MplPsoZAhGf4uQVui5NklYZXJJwtDFngoJjTidgroAAjrGoVG4VxKR59smGjz448OyDkaZJbF5vWLFipQxrY/mRP/I2iPT8yKwmSzmLL3Xxl61BnDWMTqxihhN2aQWBtL+T81uaUEtFYbWZy7YpuSd6brCG8QsD1O+6v9cdDOUC7FEMd2tUStgccCyA82XjhkwI4g2rUqCNfhHKq2hwrKLBDZZ+p9E64TbSv7lMgQ/Gnv5uzTEqjmWSuB2kW52S1ITW5UktKN9froOzcu1Re49cvW3FiqSyp6utg7CnLdauceUeDm1HaC1oNdlW1VEBax+g7xVqEJswYGK2g5MsmmAw7nq65ytDVZsGVSx+0oJd6oliLVGaqSMw5tIsCIomFmKMSTQ60ShLU+ar8wb3yZg8o/X8SMW20qJJVueAuQFtCjitdSPnpyhlpoyTR9nTFeCpNWgkKmlmLoHqXJq2AgxJHk9S4jGfKlhf6tyQE16n6Vx12rDODq8No8qsSnbGKpd6ilLbZBhRkDRjUaFedlLLb1aB58C3guI4WN70HZ/GNZ9k8ax+E3t+c9yJxUJODMkTlC9WGMKm1sqizVGuwbia7mdr1qRUrDJyQOctCrDDQLTmpObWXvaJhz5P5CIBqOU9Hb4gAvCu+/upaelwouxSGh/64sPd430gpoFkVmjTEOKANS0uSjM4lv2XCXuM3+FyYJsS9+aaPZq2y/D1P8OLm3/Mr//oP+G569jaLVfa0ptWGkJEQgGfH2P+CwmCqUYLOUsYIgalHMZ0WLemcVva5ilN84SmfYm6+Ab5UrFayzwxjopwVKx2o+QNgTDZq59xZbjHbmr8e7+w4RktfRrZZU+IoyhyUmRvW3rTifVTYTlfKUuja86LmRpgUlWkab+8zJiZiBJljzeqRMIRVaYxs91jZWtrraY5da+CqAVL/VgtH2uBNeUSPVI5pJymxnRKhY1cvnGSbbJQRU75PgmUDmg6tO6LNUZb7DIaCYRfANVQQepT2zStY2lmDe+cQ+bjPQWp65zyLlC6fj8tghyr8u2caFD98XOOzHZ0iUzAZCY84Ilb84Fb8WeaJ3xkEi+6kauLHautANK2g9PDn5uJU73v8mTpA9CQWA9lTzlaYhQ7nK/GFxs58+h++ndq/I2/8TcA+IVf+IWT7//Nv/k3+fN//s8D8N3vfhe9AJDevn3LX/yLf5FPPvmEJ0+e8Kf+1J/i7/29v8fP//zP/6QO+7c9fk8B1H/lr/wV/vJf/svT13d3d3z9618nNBblWqwROb5LUYqg2JOLfJMcZj+iLF+745GkFaN2jEZx0LBk6cWUCkAd6VxlTJ8DhMXr1MqmyRcpaUowoIhGMRhHdAZVis1sNH5lhDW9ytgm03XisbgM/6mM0JiqZ5wUr77JDCP0FgarCFYzHC9pKSEYnHYHUxxKam/PociTdZwlu1FZwIjsL+pJvlpHzAqf1YkVAFT/47lbnbKAnVGpCZCuIIonTXYDFaiWbPqEVqZ4q+YJ066+tOdDweSH61QJCuNUjijs3zzJ9HOOBBXEm3UhPTwHV7XpMKlHxx7VXC/ghNm7XBktQYkpY3zE+CB2McMd0d8UgPq+pO2Ok7XHVQGnZ+a0gNPXrefqYsS6PKXLT8e3CKoMvvp9ys/OJdUVxNZJ4dE0KpOUwuT5fToJViysd12aC9NjeT8rOK2y2HxksnjmFYZZzt3EZqlhXTpt52M3Whow79vcnI133d8xHumH16QciWHH5W9u8DfX9JdbbjaG2y2YRu4fa3NRH8g9BA9ZSimVe7YRlcLua4rDfsXx2OGOT2h3R+zxIIGKE1gdyOPNLFNTtpCPz6bQ5Rxz8kfPAOcFWF2baO8ay+u0sgtMdGWDJ17UgUAszNHHZLl1LEEmjZoB5PesxQ/AafUQnF4yjE6fcP4bk/90ZU/XIpvax6qb3RIo+I7xGCYqHrMKH2pjMYvKBVVsYOS6aBpIIRPXijG06HCBi89wYUcXD8R4QJuGHAJByeZRIUnowMk5qwFZIRewugDu1RPR58TRJK7uVwzB8HzouewDq/Eee+kx2w25gNQ5RgGsG4vtEt02FgZYj961mNEJa1Apmii+4EORLNf3U45PPOTlLUgFTPciK8yBlL0oSUyDLhtFHY+ktHkv60SUPAOwFuDUtIyj4YvWcO+6x72/Zxhv8GEPOWPdhra9xtntBHrMrJlIPAN8Hxv1PqgBnjODXxoLDXClFD9vOq42X+M/6z/jVw+fslo9n2w4XJGe67Fh5+8YwpFL7Vhri1WaToPNMp/Wje8SqM4EcgyPeLOWQDCg+rBat8HZNc5ucfYCV3yndXMtIGLxHK3WQ+Jp7ySYCSnmBMARX9+qopKbS6Py3HJ833iMRb0cc8Cp5FM07uENWa+gd4Fb9Toz2iG2Jm5m81tBGWPbEVqNaRehiKbI1A0LWw/NpjWsGj3N9WOolk+JMc5NyjoHjJsN690z3PCMxt9NtijVOiNG2YwPOeFyEs93BJxujaHVMh/expG+gJF9TtzG6jdewADtCsMtc1SJfzk4+h9u+cbzPZfPAj/b3tN9umY1tqyUplNiJfMm9BLgCCRVvc6zNNoLI0pPYF5p5JVjTMkToEiJhwn4MzlOYeFKW1Hc2S3ZtCfKJxu8ZLREsQT5IuNd9/eqkfeukkAOlw7Y0iHX7UNihWzqh3jA54xKkXvlsXEO5m20psmWJlgOeyMMYJcwnaK9gCfeM/iB477jk5w5knkbijKnhoMnIaZUcrKcvxmcnggCVUGIYmTpPZ0n9nRfmdNJGPAKgzYNzq5oSoMpWUfS1cbvIUDtLBx68KPCDuItXC3TpjyGlMjGYP1VCfsWu5Zgxa4mxZGkRiKBUNaJmUUtQJMQURSDN0Rf7GSM1E9OZxrEEsDpUiMqBTnP+TCLMflQwzRvLq/HJXittUOXR2NWxdJDAiQr8/HEjnG6HqReivFATm25tguDugJYk7WCL8zq0uhFFTajghyncFu5v+Nk+RFUmlmtKjFkCboftZW5RGmarKa8jYYZqAbFMWn0YAlR07pI4xLdKrHeDDxj4JuD5n7vJrD6PzctPwpH7uLIfRw5pmoNI4HBSVlUKhkStseYIzGuiHbEpgFXlVEpYgB7PJBsVe7Km6RTxg+aY89s82FmtaH403/+8a77+4lyNFpqShc1fTkusdAIxCiNBRPFNz2agRAHUo44u8XGA85dYmOPywEbBi6Ae64ZPwD/U1c8v/kfc3v/a/xa/4Znm44XuuGJbjgYL9YpsQQYw0k9WwkQVbFXG6yPgdONu5QGcfsBdvWS4eopzTpjbbG8HBV6n2bCmVkQKVJExR5Sh9L9QvVoJqsyrRtyCbft45GxNCjuk2dnPE+tKGw3yrJVwnpulKJThn2SxnidZ4Ycp5DESlSQvW8hexWVQMoZX5rqK2UkCBWpJcGc2HgZpI7R034kFXx6YflIBaofjpk5vLDNWJY+C0LOZLOR+tJok7Wm3vvWbohRzl+MBqUGlqCxvN4IOT7I95jP+8NadqnGqMeRkn/UPigVZVLO6dRCqJC2clGi1vV5ptWJ/71FFFgrbbnQG65ty4d2zcem5WNl+Frj+ebXbui2AkjrhSd8ToIB5Ch4UvTzGV8G/J5jAdYkWhtFfQ0c3xEG/NX4vTPy59ho/d2/+3dPvv7lX/5lfvmXf/lf0RH9ZMbvKYC6bdtHDcRDq6E1RKsxQe5wM3To4FH+gCreexM4FHtUCrg7sMc17X6Nv1sxrhzHreF2k9lsE5u1WALshjT53a6a6nlbNrsVCDGKq9V8TFpn+ibTd4pQLDmWpCkBpmfW9KqDrpFE+lXzkAla2dxjlM3X0cMwZvox0/dwS8uwfcb67Zrmds3KbiVoyKynv+m9Yh+PJ+cukRl1YtSWLYYV4tM5BnPibVxZI7U4r6NRishsA+CUxmVJ0q5Mw5gzbZ5N5yuAHPPMpq7d4JBnP63lWAYx2tL9bbWZPq8euXKs+QQkui+BJUNOjPHImI74cM+oWwZ7g3MbrN2wSYMUSe4KG/vJm1oHj247dNMSC+qpUsIOA/Z4QB3fEvtPGI4/4HD4Acf+Uw7HH9HlxJVpeGo7vuY2fGQ6PtaOFzrztB253oysN4HNk4RuFGZRLKaYywKViV4S5/0gG4klcJ2WnycIUZP8gvlT3z/yAyZt5BGkD6knBLCebT5y8lL4hFOpeh05C2/DHi/k67KZ+iIRS++6v9v2uTCL/D0xHoif/l3s60tWdsu2uUI112S3JjUdse04OitMktbO4YZamO8sgg5VCbZTGrTL4CBcGvyLLdlfLDzGhSnf3t1BGFFxED/PBRMaFqDzY+PM/0x+f/b7PX8OARGi2AUsPoRl1eLcBRLCJuwUHwO+FKvnoWbmDLCu91JlX1T1wnLU/3PuOb0qBfNKmTl5XM2y/tmbcwZw4ZSNPZI5ZvEIHgsDNQGUDaZZWHzomCBJXRvKRwWh9KQukY9xhGMPu6Hau8h8LU2+xNutsGCszfSNYmwNob2ka1s6t2bjrrH2UjYPvbB5R8TjewW4Aom64rEp/sPiSRpQHEmQIjaONF4CUbfG8bq54Fls+fCw5eNPNF9rPc+veq5fHFg909jLDr3qwBhMJ9d/azymi7Qrz3YXeHZv+fjY8GZoeKNbftU47lJgn8IEjkwS0LLJHnPCpFAA01QaGJ4Y9yhfNvPF77N6/1bwQE2bfVM8FWc/aOcusfYS1zylafbvvuYfGe+6x/eH79H3P5JNrOm4uvwDOHcxAR4hyLqVSuDgNMqctrzCK4vLKU2rLJ02bJV9cL3Wa3UF/Lwx/PzmJf+3ccd/dver7FVDt3qBsyusabGrlq57SogDt+M9r8OODYlGaWxp2lilxY98se7JZjhMTZgC50Btq2onwUy2Y7N6Sds+o21f4NpnGHcNbgsVmLaObExhuppJwZGsQzuHcWuc2xarL0M/vGIEsi/Klxo8gCKrPKmUYJ7zl2M5J1Tfyvr9kcw+ai6DwXmxBFuOugF2Sk/ejEA5ZoMy3XQ9ARjTTGuvbq6Jqyv6yzVsoVsLQL1pZ+b0tlVsW83VWnO5Mlyu7aRw68fEcUzEJN7TxxHujwL8jeXyOT5rUOljVimymrJKNMbsibbHhyMx9BzCDSGO+BRJJqON4sI4rlTLc7tinzw3YeB7fo8H7nPkGI7cx5EbO/CBW/HUdFxpi0HsJm694jc+ueTFp5lvXh759rd2/ExSvH7V8C/vLviu3fBJGvlHx9cFABfgJZZ/OWpiGjBJPFOb5mK6Z+V1LO/bhRepaSV0zV1j6rrZXhBW6wmcBjDDgBruyeMNYXzDFxnvur8/ulZ4K+/Ffpv5VMPx2nF7/4Tm7pLu7jnd/cc0++/THr9P03/CMLwh3ydC2HHIIz6OUwDh3gb2puNoW47Z0d2tGPzI1eBZX0baC7h4CaurI08+GfmNTzf8mtd8N0dug+EqGC4Hx0UTaG3E6HyiRoslf6Wyp30JoRqz1MDHnNmR2OXATRLrpZsg/rK7HAlKY8yKprli1X1A132NtLpmXLWkVknNsQBuKjhttIQjhr1iNQSy1pJ/UcLTU6lfTEh0WguwZreT0kIC9iQw0Y+3jEkY+U5pjK2WfJS5UNMNjtV9oF0l2gvY+Eg/eK685SpbLnRDq/rJ6mN5l6tpLmMCnytLugJVde0wky1Zgy33vrWrKQjQtc8kaPvMCgBOa6MKZlVSRG3IVZl+bc6FsCPEI+LxX7JnokjrU/bkJFZZu8JqNDGWWkfhSvOpVdKIapVhb1pW2tDV+gfxDF5lxaqwqxsFPYaUFX3QuDHjjglnE41LNG3ig5c9H9kj/5qBf3Onubtb8+nuKT+Imu+mkR+Ens8KaL1LnmM4CJBZLChMUUC5wspvmmuZN8OO1nQ0KaLSNaGVHCTjM2mnuHmj+fQy8XST+fDKTE18Nb6/yft57++vaUvUhp1uuDUtF6bhPo6iBClhkUOKjGHPyA6vNCjDMLyV68G0NG6Ls5uinHpCs/+AJ28/xr/6JvkPX/HmT/1Bvv70f83dP/zf8n//0d/jz2w/5A/YNVt3yVqLl//3x/209lbbuPqRYAq4VRiMXWNNh7ErGndB2zxltXpJu/oIs/4pxqcfsfupDU/WkZSg7yHcQ3sozZK2Q5U1ebonFtZ+JkVsHMDvSX5HCnuCv6FrnzKOt4z+Dh8ODP7AIfa88nv0eM9Kabba8o32ggvdsNFi/bE1LZGGWOrnfQockudNGKbaLzFbnI3l3qy1UJ8inZamy6oA1pVRvdGWJkuDFGDQsQRIFsuiLBWMnMv0QBVxfr+KqqMwzJNFhVnBLvfuQIr99Hv13p2bW6f7S2lem4nlrNJwwm6Oj1hunD7OlhtLwHkKHY4jULOW5iunkrSWqu1KWDEFi6gAdFtUUBe64VI7/pDpeKoyz5rA9WZgexHothm3GTBOCpEUM+M9+EFxuFP0R8PoNYfRMgTNmPTJ2jOdD+YcKqPAKbEHNSqXDCs1/d7mPVkLX413j99NFh//VR2/owD1brc7SZT89V//df7BP/gHPH36lG984xuf+3lUyqiUJ6/S6ObOs05t8X61qASpMEIyAe2teFFX39i0wqeG4DX3QRNCxhcPwzEktq1ijGoRzCaTwFhYe+JLnXFGwOYQCmOvyNKLEkSK08Loq4zPJTuoMrJFpl5epBHQx4R8Yl8AAs7YlYQ3jOsWM26wwxZjt9i4x9kNg2lR4TBJE+cwqYjPRhhRlEkuUwL2OAGeHrX3mDqxFaQuTL6sSEqC2JwCnxOu/G0UkzdoZWvV71eA+gFgVkDoZShjZTFJ51fPbC1F6SzHKb0ZQOUaUpcl5TsBC0zR+93U9da6Q8VeJLDTdSbhdwA6eNnI+QM57AjjbO0x+h0pjjRKs9FOghG140oZrhRc2MC29XSrSLPOuI1GNxplFKq8uTkm0ihhQcpAGqWLqiOySfEzQxXyBFLHpKZE3xrmU9/bynyrkvTaEKhNgqkLv7y3pr+QS2dZfP5i7GUTHI6znEp32OEeM4EnzXQ9/HaG+N7OPmExDsBdKW569HiLthsp4E0HthVWWNORjRFgp+wGU/GFT1qRy7mOtpzzCmbDxG7KWuFX0vyK9gkmROwwoH1hmaUogHWKqKrUWIDWUEDnM+/Vusk6B6bfFVCXksjXco7lXIts0GiLVq6EHi3tc2Ygehl29uhznzUudLEFWf6fyW9esfCcPv2oY9kUOR+RGbiuBXVGNg5yrT1iBZDEu3Rp4/Hw/MjjzKLOc/PQyoczma5h8TwZHzU9LTpe0aSIiz1d+2JianifiHgp0GszrJwPlfN0byxNhqJKHEiMSbwmDYq99exNx61peNM7Phy3fLQfeHY3cPFsT/tkwD0RBYJ2Yp5tqfLIDASxfFIZNziOuWGlDTtluUueXsUJqHZls6JTJCnx0a7Ni1QaB0nJ61MxUkOtUhzF37ZKrwvokIqEWs7zMEkoteqE7foljGG8F4WGsrjmUhh1BbyM5e89PuZrTCEWRXq6VtWcYo9iRfWgnq/X5bM6nflvuws2F5a/t/uE14cfkrrnNG47bcRc8cP2vmE/fEafxMKpArEnx4KsWyKZXTIPFSg1AYnGdiItbp/RNE9LIOJW/KZNO4HR6uzCX1oMJVsa8yli3DU27LFmhQ8HtLakHMTmA1WY1I/PyxWkjjljFcUK6lQpBXOz2pc1Zwluz+e2rtnzBlGlKK+lrLPGlCAoLexpbVow0miMTqFLjVTBu/mj3tOKrtEn9mvujEAwBlGeSYNLEQJgFX7V0K6usccrrH0zNUGW11qIDo+nL82eVhvabGgVdMrgjGxQ38aBfQqEcm4OOWKqb7KSOqVBY8pmfsyZVyjG2zUxKT54OfDsxYhWmeZuTUPL62ZLG468CT3HJNYRKlMYoLPffkyrwhZrMOU+rZYqlT0tj+vJz1yVa0vWRjOB0zqmYu3Rk8KOGL5YA+pdY9MqspPQYqPhUJqFB60YtSXrC7I2OG1o9cw8PA6vBTSI4Bk5FMZsZfs1SmOM4i42uMHi9oURrRPqImM7xdWLwEfDkf7Nhn8cMrdEoQtHTRwtm6jobEKr2e6j5q34Yt9QrT1G5nqqhiP6nDimwJjFdzoCKCPMTCPNZGO3woQumQrnqq5q5wdynapS31W7tNBaklMTGzE5g4prOWfIPeeK7UUIhxmQzYE+efbRs9WOo4oS+KnE5qNPEqw1HAPddcK4TNdGNofIKgog22pT1rvZtQ8WLMoFQKUri798vbTxMKVmkWboujyKpY9x1zLfVQu1OlLR4KVwEgqbY4827QlYbUwBxuKA1gYTV3I+Yk+MPVG7+bwoV9REEkr6mD91UqXBqKSJ7zGMytIpQ1SI97gyAh4VsNpkIGkanaTGUKIyWbwccvGU3TyJdNvE9WHka7eOr+86flNf8l3b8YPQ86Nw4CYMvI4DIz0hVHA9TPMpzCCcG29EBTpIVkrdS5iQGI+W+wMcvdREVZnbfQkh5iD3hVT8iittOWaHU5ouefpkBahWco8MKdLnxJC91KxxRJuGFAei66cwxZqD0ShLuL/CbOD+oy3Pb/4d7na/zv/v+Jonm4YX2vHStPQ58CN/JBZmcW0KJ2TtFZVeaQwryW9R2koD2nTSMHFXYp3TXjBsV9iV2C6GoEhBTXZzNTydsrdIi025jmkCqVXaoP2FWIr6A9Y/Q5uOZnzDOL4VoNreMfodMch1us+eQxwJ/R1XpuGy5F9caDcRRLbK0GjNpig49xOQXNrheSZ5SSin3JGiCoh4LJ2ysn9e7KkNopqIKeOUJihNUKJujjlLeLAqbOHFlkIXO52UIxo3saezMqTYF3B6mFjTKQ3EsCfEA7EoICqLWZ7PnKgyzsMOlyxq+d7SnuP9YPRsuyEWWmInFScwWq4QqV+skg9TgOgL09BqQ6clVHWjLRtludKWKzRXVRndBD54esdqI3t80ym0kaow+ozfJ/ygGA+K129adoPlPlhuk2JXmp/HnDhmyaSoe/Y6am2ryxq4UrPt4hZzQho6fkEbvq/GV+N3y/gdBaj//t//+/ziL/7i9HWVDv25P/fn+Ft/62997ucxPrNsuk8MI5Ok2NEG4gL8qbYEYyhJyD02Dmh/gR1aBr/GB8vea0JItI0wccaY2cbMGAozT6mZ4bwAeUxhR1grIEjTKEYEZKlzTPWbWxam0+arTPxGMVmKxJShWhMApU4jJbEFMTYTW0VoNbFpMe0lerxB+xZr11jT4pWdpE4nTC9K0EvZyFcZY8MpKP0+kNogUpYxC6usPq9DF7BrBm8qgDZ1uhdfu2ITcj6WDOq6iHbKThN0XWDrSGTGrCewZnoBGkiyOEWC2GdE8cWr4MsSOHxsSPFRNnJhkI1c3OP9Tgrh0JPzyErbIu1puFKWK6XZ6MS2DXRdpF0lmjWYlUj7tavFdwKTMCaRxkgt97UvnxU5pl4A01WWWr/2STquR+BYgOljWeTGLJ6ENdW6Mi4TCMuygpz19WbpmmciKXtU1BMzemZtybGb8UpYpimi0pqoPl8Q4PtG030goGnYTe9PHalY+KTUUxPOGaXwNMP2cc/oBfswa33GSnwIZANlY6nlHrBrdMoYH1ApiVIjxhmwnkBrAayVqteTJacgV6mGHMMDYPo8wEMrQ66BgUkY1NWPWkCHTkBFjFzPpfFT7XTOJfbv9ZOs53Tx3i8VoNO9XuXrC8Dqx42IyArrnONLg6TyFYATNpZSppzLhIqQovhPVx/qc/YZSHMyBLE/mkKBtPhQi/pFLJjaqWmogIRHc4wr4Cltiqz2L+eCOQWIBzwjKidapaGCdUidLgq6YlKiankrrOUDkR/4A7dx5M6O3NuOW9PxKjte7Ts+6hte3gw8ezrw9Gd26JVDaY1yVhgbcdpioUwQBrhJ+H3HKllusxSnuxzZJzMB1T6lyZYk5ITJqXiDL4HqGsQmgWQpjROjV2tb/EwDRttpA2DiiFJ7Ab9yJwntX8KIJTDJmBVd+xTnLgFIX9ADtw5dQOP5WmUCp0W+nh8ohFJWPLeRf1N1rC4+4j/Zf8r3+k9I8Slte4Uu+ktjuuKPGAjhwCEPYp+A3CP1aRfizwmcnmxsEPa6tdX38rqA01douxEA0c5MtQnYLfL+5femOcs6VNNh4hU27MRb3LTEOCBhZac2H/X4Ps+cAEznEmYf6jFpQtQllHDxu8yKKoP4vE4KE21A2xLSJ6/F6DnYCCNKpWwVpjTwqyTdKJGoi7d8tV07BVkqOA2zPZov4PQ4QgrlNThFWK1pmmvscIm1e3KOU1EsPusHYsgMBEyO7IsPsoSoGRwaoxUv7ArC8QSk3qeAjsJedUqLyq5sHuWay9wqxb+8XxGi5sMPjzz7YBRA/u2aT3I3WW7dxAEdxUZEVcVZabLHcJwYrEABBFu0NguQWkI2tWml+eE2pGY12cXUUVWHyQs4XVlwv92xaTSmk1DxxmbGIE0HazMHm+idZu82rLWmKSw/pS19/wqAcRA1mccX8N9PdaBRilvd0ASLG3IBqDPKJNoLhdtonn00EoLin77t2OVYallNLAHgPknQnV5cx49Ze8zBiFIz9zlOkvtaTyWFgLGmKSC1hH4G66QZvvAMnc77glEdAqhQG+RamNNOkR2zAixl8bIuv+O0mSx+hI3oxUIhjYTk2afALnk6beiz4Zg1RxRHNAdv6I+GKwQ4bdrE2kWuvGVbGMSNkt9X01o9i9nrpmbpM68BqqVHAaeNWYnVjFmf+uvbLbRXc412BlADU6aHip2A1aZjmeMhgZHDbDdnWgE804ApYWsCfB5JppybOEpIXpK2gicW8s4cKDnmRNCpWBjOwXM1SFHmQVMadgqTFKta4JWAZWcSMSlCmIk8kDCOKfys245c7jzPbxo+2nX8hrrgu6bl+2ZPGLKwWXMgxprbcQo6KWVowh413mBMK2tEU9QpPqIGw+Gg2A15FhEaRfcFLT7eNX6UPK2a7cZWxUdZ1oCI05o2GQFRdaQtgOpdDkQCORTrsThi3VA8geX9A1i/+hkOeoVeZd7+gZ/hG3f/E37lX/x7/Mp4y1X3jKfKMpo139H3+CiNhuXaewpOa5Q2UuOU63POP9iA2xLbDr8yrLvSKCrkMpLsBVLZrC/JLhO5JWVUTJgQ0TFJs8A5tG1Qbk2jLbZ5Rhv2+PE14/iGcbxh9AJUB78npoHXcc+996xDz8Y4Lk3DlWkmVnUFI6PpWOvIfRolpLU0ASr5SK62YmeT5Nr1OdFrYVRXhWQdTmmikiaNVxqrJHgvLO5/mEPDQZo79RlqyGBcrh2hgsjCng7xMGW+xDQSY0/1da7AtC7ziZoe53lh2Zx5DJCWsOPwDkC6Vj5i36eLosQWSyOxMJzVE2tjJzD6uW6K9YpmC2x15sIG1s6zagPrjezrbZdxawGlk5TYDIfEeNAMR8Nhb7g7Ntx4y6/HzJscuE1H7pOflAdDFoVpJdktMSaNkDGs0ljksR7vlW2m5oNTWvCEr8YXGplTTO9f1d/4arx//I4C1L/wC7/wubxVftywY0DrMDEiz5lGJ6NMkAIADag4oPQO5XfoMKDHDdp73LBm8B1D0Nw2s6/0GGDbCmDdmLwAkAuIzCnTpxae1kp4Ikg4yjmD4nwsN1nn3xdmoDy/M+C1MLXDCMmqsrlryoakm9iWWtsTgLlOessbcZblq+l3l3Lok2OhbFqzolEwZiZwWhfmVSJPHowTYF3gTscCsOYMsH5kTMy4wsyqfri1A1xBswqO145wp81UXKZUksxLl32yT6jBKp9ziJQrCtMoCmslxiM+HMqmLtFpy9rYEnyh2SrY2Cj+dK0sYtopdNegm9l8qnrSJgLKJGFWxyyWFMsQnzOLDx80QzD0UXPMih2ULmxilyPHLCysQ/L0xVrB51T8yfMEUi9lcXVkklR6yU/XQgWpl6CqHa6wyAbGpkijHrtyvthQZoN1K0xzRY49MewfNBBqSEmKErhBLmDw0jO6+kVX/2h4yNipMrTFRqmCQOdekPIzaQhVr8gaMKVDM4HVxGFiVyslGyhhe54GctTP3zXkd5aS7QZbgmeUEjnykg1fA080DxnR7xqPWXI89v/exZ6en2eeS+LZ71QVRz3WZdl1LhdUKaJLQGxOFaR+nEWdk3h3HvvMcZwLDGekobhyMn/HBKmBum2ZQGpWqPSM9v6j2YsuJ4ZhZvCp0oCrAKgUx5BUKuV78R5VQgnPOXNkYEie+9HzNgw8sT3Pbccb0/EqNby4X/HhvuPn0x2bJ0faCy1NKyPKCrkiE8okWUtcJkRNN1q20bDNml023Coj0s8cOKrIkCVQZ8iiEqq2Hw41Maqna6YA1TkmsvKk7NApYEzx+czC6I7xgNYC3Gndkr+kEiInjzENbXvFqnshz50jwrqJ00YEZDN0Ps4tPpafC+tfTfkMqyLnbxZZC3FhrHrtAn9aO1abj/iPD5/y6+MbUg607ROsaYvVjqPrnuJDR/Di/eqzZySiT8lFpYGhJnXA0tZjBqevZ8DGdJx03OtrrCB1LHPF0pO2gtTOocMa3Vxj7QoTVmh9JKmxgNP1bM0gWZrug3LOFlkOVdkEp3PCxKAuIF4N8dUqT3VBgwC5Vil8FisiciDr1UKpVIL7KmBtujmwzymszVMT/+SjkAMaqx6tpabsjoXqIgQBpyf7f6sIbUPTXGGbK2y4K3Yy4MqG2Np1aeAc6XPEpICNIv+vm9ZGWZ67Ts5j6NmnQES84A8pcFNA6kZpnhpX7BUAJaDnLfDrh5b4Q8VHHxy4uA58nQPf+Gw72TK4MueosnYrip8wVc2kpw291HqVUd0WRUQrDdzCzK++0w/Y0ykV9vReGG7h+PDk/hbGtlsC1IkxZBorzcK2ydxbOFjF3q6JTmx5Gm1ZHX84rwkDhLhnwKOTBHrZIA2QN6ajSQY3WowSGyfjQIITNd214YM48uHNhu/mxDHHcgvoojoTpnRTZNLAA3n1iKwplT1dG/4CTks9FaDM/25iZtZ7WprhnHqyckpSAQpTs9ybWhELOK3ahbIrSdO2BuKptMalJ7iFZVhMIykO9HHPMUfu41ik6MICPqrMEdhHw3Ew5OjRjaJdJVZNYNs3YvNhGl6HHqPELmpWgzxepy/X8CVzuoLT1q6nua7aGGW3nlQgS8sEYJrvhBiyqKtyKCxVqa10Baxjjw6dsKrTgLViIeDSQFiA1SHsUV4LgzN7YWMT8ARiFgXmkuCy0lbqZV3A6ZSJExu92J9hpvnQZ0X3YK0S0FobiL44ITvxn924RLMe2N4Frt+2vDi2PNVW7GPiwD5Kc2ZIxxNgro7W36JNi/FbzNBMpAvjA3awHA+a24O8Z7WpF+yP2Yh+zvHPxjs21uGUmUhDdUijXHy8ndK02bDWliFFUujpcyRU+6Iw52QsMwGuPv0uWX+L44sWNorxZ/87/NT+1/mn3/sPeGFX/GG74UPtuDatkK/SvK89WfOqcqk0iuucWVUmSksQcWzaEs579v5pUVVGW0gjxXbnRH2ZMipKY0n7KOHXPogVV3AYQLsNOgyY5oomfEAYbwnhjnF8Sz+8wfs7jsdXjGlgyJ5diNzGkc+0nVnVuuHSOLbasMqidtirwCFLgO/kUz1lMhXVrEoTSD2kODGCT1TIzE3+cxb1SXv7rFki16UpIHWxscgRrYYpE6EC0yEehdCVxAP6sT34ZCEysakXe6/6u/nHBBSWJlrl1Js823U0SuO05so0rMp+fa1csVUxMxhdAOkPGk9nPatGSGZNWwMNM8aphYe0IvaZfoDxoDjsLfuj5XZwvA2GV1lA6c/Sge+M9+yiL02oaud1WjcuA2jl7BcWe55TfEyx++7GZVaQeXR/9tX4avxeGL+nPKjfNZr9AZ2bSWojzMYohU2KUxc+p+J9lCrrck57VXovAXlhi4nX4jscPNqv2a/cLAkP1Qs6s3LQRGH1xDyDH+9qWGk9swUfG/X/Rl3A7gJG/7ghIHhGW4hOE10B0Sap5Ozpugw4mYDdRwCozwNOV+CpblwbVcEnJTIgZsDrMcBafn4KWHvixKZ++DdnKXHt+p6D0zUMa3kMlcHki0+oUUkCAYu9CGeL7HzO7CSDTQsplykMagpbozJ7QzxOhZXNsNay2NVFbqMlvKBpZFEzTmELEMUiLE1OzPuB3RwheEUIksI+eDOB033SEzi9K+D0PgeOSUCrfQqEUpz01aO2MqgXAOd0PuQvzt1nwevmTnXtYKcBazcCVBcP78/LzvuxwxR/QkDH/oQ9864xAdIU4Dd+Pja3WgLYi+cxpjthY09AilmwseuHMQs/ukbY9jlAGNDayiYKZC6Kj7OoHxspRZSKixCQkg6uHSmPEyM5kiFzAlLXUVUI7xv1/wMnINWPGxV8rk2i+vWJNUBOD3wC6x+obImcozClUkKJ/pacqge1mphuS3CqXI6Mo2I/ZI6j2Hw4pwvbUqyTlvOzPM8MUh/YcH3zTTpYSGkT4wgxZnz26GJ/UCXm5ESoIHVW87kq9kMqS0jTmCOfZc/d6Hkdep6Ylleu45np+EQ3xO9d8uIz8afePgm0F2CcQpnZn15rYfld+ZF2iHS9YxMMd1GKaLnfDTsVOWaLVkqaUTrNEtCqokhxAqp9nQtJkHUBqoXxonUjaiTAGI8KwnYO3ghq8iUNa9esug+KpY89uQ9yDosQm3Sy4ainu1pA1c/NIhtBHmWtruC000m+LrL+KulPWXFpI/8NpVmpr/EfH1/xz4db+uRp2ic4uy7vhaNtrrCmlUC70BPTIH79+cx1Ws3gdPXcdHZF48TOpGmeYCpzWltO0+7LaqhNAan1BNoAJ2oQEG9MG65w7hLv7zHaEqfNTWX2PWxC1obu+ZCsAjOdy4lFXYMSo8I90lA3yDrtlJY1JxzFu7+9ACt2Hsa00kicAjotSRsJlXb5xJt3ae8xP6p3NvPlGOf7vbLgsldQ6qroDLHboI9bjFkvFC0yxzZuX661TIxHjjlikqdNhi4V6w5ludYtyRZAxB/ZZzlrY07soxdAWxtG05X5dGbzj8AO+O6xgR/Bh8+PXFwHvnUTIZzGB0q4tZ82smSEJRugBswa3ZBSxJiiJDJrISrU68tt5rVLa/H5h1LvetJ4M9U0XxaDet1qbKvpXGbVyPu1crl8gLOZpsncWcXRtUT3jJVzrI+foisrV2n6XppkPaM0C0r99yYFGq0wUWNGiz1Wqw9p7LuNortWfHs1Mh4bvp9GdiU4PWYJc15FhS/KiurjuQSnxxK0WNVoPks4osyphXmrRPVU2ZnGrKUJo+2UX/KuUZsqOYEp12dyhmwVWIW2uboxlZ8pxKXOolNGpTU2PcWlQFcYiTlHYWcysk9hUgBUWfgOxSppdoMl9NBcgO0y603k4hC4Sk6sBbTFxZHx/KBzZtliPmc7zjWKBMSJD/qCOV3A6dh2E6AKnJAAloQjHYQWsfT6Bab6qgLWynSTZ/XS79Y5AatjPBDjFb1+hQ/Hsi8MhbkbClAdJ6BaR7mXO2VYZQGqvU74avlR2NQGGNGMKFZZGh8xK7oMbtp8JbSujOo8qSF1o0QN6wKuTWxuPJd3K16lK77rd7xWPSZKc6ZnfLBF8P5uAlm1bTHaTAoJ7R3D0XC7n681oxXBfjn1+a8Ot3TBTqDYSttp37XMBzLFDtKgsKUrsy8M/zEnCfuOUdbQFAS8zJHV3T9nrQ1Jf4PhWcPxRcvVz/5Pudh/h//i9p9xuXV823S8dOsprLjuY5Z6hUnfVAC/pVe/UgZtOpJtSEaj3By4vhxJK1gC01bN+TZJKAqqEIeUk8+NM4VVbcv7UTOyWkwQixsXdjTtB3Sd2EVa+x2G8Zbg94Rw4D4PHOLIffSsdM9WO65ty8duQ6eMANXKcMyy77xPkr10KPu9ysTV9dyozKDURFSq80IdkkMkNZUuRLRJBanSvG8ujyl5UZYVj2iYrQl9sR8SZccCmC73ndTZc/jgg1EB6rP6ZJp7yv85DS2UnZDOUossmcbVN7qC0h/a9RRKuUWzVYqtymxMYu0kp6B1ke1FKHt3MC4XW045shwh9pnoFcNRcfummVjSb5LiVY68Sp7Xcceb0E8+83cpEJQ0NpVq0EbsZ2yx25vnVF1eY32tM7GuhjemHNmVgEdyKJZDXzGov/jI78Xqvho/mfH7AqA2+7fYyFR0A5MFQ5Xa59hLsZL62Zy/pAhrZVDaEsMe6wZM7NF+hwvPUCkx3j3hMHmg5pOwwsaKRzXM31umxr9vVGZPZfn4CCZI8VCfeyygayFUTH7X7wTCS4c3OYcpLKx5AdaogscsAavZpkN9oW5b/X1zplg0auFDW4qyxwBreY45PHEJSmsqW+4xoPpM0rsAp0+OIVdZ8lwkVcnseVlWO7VT2rJppXi2Dck5YaU/qFRkEaghXrLoituzRbHSdgq4WAGNTrQuYl1h9zjKAnd21h8Bp3OCHBXRK6KnANMPwel9ZU8XYFqk/9KZ3ae5q14lYEOKJ8D0UpYOM9amMyQ1g9Q5yecSiFFSkJNHa5GUu7DHhn0p2X97I8c95AvQrYDDTgAiVf0Jl6zj9Ai4ew5i199f2GtMQHcOAtyc+UUDk52BUlZY2FoKick7sfjFos3EBoICINkGUpGwx2HGMMP+BIybHhfHfOq/NnutVQaiLaFoGSa7nOmllxDEd40lW/Kxcf587xtx8Th9TI2o+vN8Ck6Xa05AvLM/lAMqRpGoekMKkOw8b06vQWe0FsVH8oqhh0Of2Q1zNoAzkh0wzZ+5/l85Jq3hUEDq8folDdCleOJzN44VlAuQKT5vS5C6MJFRkA1q2gs5VDZkMjlFPIE3OXDnAz8KR56Ylme2Y2wveXFwvDhe8vJ14Nlm4PLK020TthNbH2UUtsustjKPWJNYecNmtNwFwzZqdkpzzIYdIk0W249Ir8X6o97/Q7Fk8sUTUsIUBWinMDRSWs4GEBchu0oZyA8gi9/SUNrRdc9YdS+x7ur9gaOLkckPGMu1AXPSvCyefKbMSE4nnJlDZbQVkHoI87WxdpE/pjQNH9Bqwz89vmXoPyO3T8WL2lSWrfjfJ7su0vHhRF4qlh5aWFpG7ldjuikQyrlLjNlISNiSOZ1i0XLaM5A6nQE4M6O6fqRmhbWXWPtWLEn0EZI+9aFW+WTdXo7HVROna6w0mwTU92lmnsrvyu+vymYwpyA2LlmC31BW7NWUNGa1buW1a1tegwTJnTCo1Sk4/R5cWo6v+DQ/UFykjCryn6wVse3EB9dupcmKsL6UMjTucppvRW105JiEjdoqg1OGzhiutAW66fdSGDhmec/6nLhPnjYajjmyUmpi9Au7H45Z7Li+e2zgMwGpP7o+ws3qAUhtUOjkUQXUGXMoDPHDoo5xpCSAIJS1wnTCnl6ogOq1pFKSXIXxiA97YtwT40AIu/ef5M85OqdZr82UDwACUG+7xK7PrJrMbSts6tsmcXCGaK+53v0MK23KRl3W32HQEpyYRlTy6Kh4m8Zi4eNoohE/apOkn2wiyiTcxvD1jw/47yqOg+WT5LnNgagMEc2oNE1WNHlualWlwLm1x0gSX/BF0G+oK5l2aNMUQLaZznu93qbL8GQNmz+fAGitJhBMOwGnla4gtZIaLAlQHZJF4l7FXq0pNnUxjhzsp9P5ui2+6J02bLLlqDI74D5YhqOsLbZTrDaRq53nqXdclbDft9FgorzOExb1guBxLsU32k1e86b4oGvTyVxnTwNgK4D/oM5eDOXs1FCZfX4TqtRb077PtpPC0aQSqHgGVqc0YEyD9/cTo7paf8Q0lkZjwOfALkdcTHgljeYuW4ZkBKTWhogjKiMKV1VJOnpiU0dgtQTeRmh8eR0ecBlVrNFtp9i4jGs91mb+tR9dyLWtND/iKE3v6DkyEuI8547jjTRHTIceOvFYTpFkHW7wjEfH/gA+ZlbMddGXMXZkDjlgkixZrZoDJy2KpoTyVSVIrTtX2pagOTPbGuTEyEgIaVIXHva/gVKWrbJk81OM15a7j5/w0d2f41f/yf+Kf3R8zdX6Jd+ya/ocioVlEqVsRta6HzOW60+05iTIVBcSbzKQDUSjyHq23VHutN2bo5Jef72XvUElTYjy/Ma6Yg/YYYYeFUZ03KJjj/FXsn+ya8k1Gm8YxrcM4x3B7+hjzzEHdiFwW4Jjr2yzCFQ0NEb8qZeWEWJpMwffjzlOWVEhpzlYuiiOgUm9E3Ii1Foq1+dIZf83M5xhboyp5KfmYkyjWHicAdPnFhwzuHz2fr1P/Tn9bp5IC7qwpDulaYptR6ct6wJKb7Q78Y/+UBlROOtEZwJrV5TOTcK6jGvTpMpRpjQPE2QP0UvI4Tho+t5wHC03g+PXguJV9rxNB17HnrclRHefAkNOeAVgMHZLM1lCtWXOrGqo5iSkXE5FaeItVLfVvzulsWRgDZMyJIYvp0b/anw1ftLj9wVAnQ8/RCU/s49MKyBUKVByCXypxYl0z4fJ9zIyF1YpDZiwFqA6B2wc6DYbhuTomUHqlMA30LmZ2VOBax/mjxDmDVIqMnUQuw+x/RA2oF8shNUAOmaxEamjAiuxWI2MQUBtee5HJvDCwkrTRFYKIpgsMk59Ok+B6vdBi0apaWGQBuKiu0qeC/wJmC6v4RHAWtduVQaUxueEQRfm1ukQwExkctXvevK9XmwspnOW8/Q8k60Ac7ozFMlXYRqJ/HCLbq4nZkdoW6I1k4WMXZCK5hRx6fbn5FHkOd1XGVZoVirT2rrIyYc2c5AJMLGnc4ziGxUlJDGOSbqzZTEMQTMOmtFrBm/og6aPhj4pdllCFm5LUV2TnvsUH/haxZwYcjoBpR8r44TzABXPyKpuSCIxxanQSHEUq4l4xPt7nLtDfQkMy+BvsWMnbQm3ITWbE9byybGedYuX8lB5nBUVk0w0DKhFuGH1iZbP5zDDHE69yattyCRXNwKga9Nh3HYGrOHELkRlA3RyXk1LziUA6Cww8ccNPUkTRUYbMaeBl4XlO4HMmROw+vzzd4HU7xvx7PMpQKqA0GO595qsJ8laVUykqdCdx8wSEAa1Dn5iUSevyc08/z46EsQR9gfYDXAcE5crQ2M1q0Zx9JnmkQZiBap7nThcbwABqdf1acscOgIx7BlzxDLbCJ2A1ARRk2YFykwSPbHpMJClIRHrPRqOvAo9hxR47jqudcuL1PDCb3hxm3nReS5X48TeUEasD4SJlbFDxpmEGy2boNlEwz5qtgibUtjUiT7byfqjVwKqDDkyqAhxPLH9iFMzCnIN+c2JYBa+yMry/lXi8w9rN6xXH+Kap2jdEdMMjL1PUaBO+FELcHphBwULOxoljUJnhEHtzsLRtBb7lLpOrV3kj6hMo57TacM/Orxm178iN0/ougKK1I2EFs/ZlEZyTsSFRFkpjdGueNJ2xfNyVcBpAW1ORgozi7owPR99/Quwun6eC3POtc9w4xu0fiMqi3f4UJ+Px1QvS+ufpQ/1iLBMu6Qm64J6RTQoOmXotCWnAyH2JL+T47QNqpyHylZWVZ1ihJ1W97yn1h6PnoYvPLRf1FXOkttLzLAhhh05RwwWY1pinDd3OSeyz/QI6NXEUfyolWFrWq60JdEKEzAnUswMRS1yTEEYUzmWmkDmy4aM05kmK45JcQS+X0Dqj7924MN0hDsBqZcN/OnzFPA5kakAxGFxPbZoPWDMmsfGck2sWQr4vbCnS33sv6SQxHVn6Bo9hdQ2VnMcE71PbNvEtktsWwGq2yZz02TuG81w9zVaZVktVIB1+HDPIXmII29CL9emUTTZPfCj1jqhdOTipeJbaU//nUuOwfIqjdxm8REeyaxK0FSdL87XtGrt0SfxLK7hVb7IsoUFJ6xhswz+1GbKszgfyxImFSLC6S+ILaApzZqUpF5TWgl7k0xMCrCo1KLSJTYHmqISdfvvyNxN5i55mqjLdSs+tisUt0mzv7O0K09zAc06s90GnhwCL5LjU9PyWvccU2DIs+ZJ5PT5TIFYGe+nIZ3atFOdpGuY9YIAUm0Tap2dz86XShkQJipQWOPl82UwnXNo35Raby02YYWoZGJ/AlZr3dI0TwScDkdC2OHDrihijoTYk5MnpIGAhMoPcbZGGHJknS1jTmy0w6hqMWjKNSNs6up1HmtOjI00Q6IhTTaQWRdGZikXmjVc68C3dwPNoaVxQrTR/ihTbfQc8dM+dvS3cq7H16JO0RaFZMLo4LFD4nBQHMfM5apay3w5E2rbPIeSUROTZ5dHFGBiyWaI836zUXoCrKXJpzHG0WrDPoo6xBV1Qoh78hDZH74PwAbYasOOrzFeW25+5mf51u5/xq/8i3+Py+Et/4PVC0a7nVjBKQowKv1IYftLX+XHM8iWAHX9Gq3IFgGfHaJsmJpH8+9ONVNV7Vgle/+UGYzDeIv2ERNssf4Q9YoK42T/oU2LC3vadsc6HvD+jmF4wzC+ZRzv8X7HbR6Ifs/bOHChq091W6ynNM/K53dpFB/qYke0MOWYvKp9ThIOykPFpVWaphBKUtlTBJUmG4/6YqsdnC5s6jpiITCJcv2UMS0EoJn1XI/rZFSi9PT9U4VvBaQ1TJiGU49bd2y1YassWzQrpdgCz12gtWliSlubsW5eP6AEsA+Qkp7Uy6PXHEbL/Wi5i5pb4E2OvEoDvzHecxMGdmX/PZILU9qW+1PWiKa54DxItmZIVJsuXZQny/3myenJ8941hLuT+WwY74Ffe+d1/tV4ODIzueqr8Ts3fl8A1P3hN8lxfxoCQwF68mzrUUNfQtgXWeRhkgzXjlUIR5y7ECZN6rEp0N49RaUtPS1D1KSUJrsP38wS1IkJ/UhqfAxqWqwAtFXFkxo422SnIkNvLFMYInDCnI6FcV3/1gR+nzCFHob9ySS+kO1Qi4Yly2zeZJ57x5rF5/PPVSnm8wlQLT9Xc0AaubCra2Da2cs/sf4Qv6yJXb0MoUThSYAl5kyzWFSXzK+Y81So1CDAZThkmuSYzZy2bjaY5gqaK+Jqg1+tCK2E22QDKsqG1gyliE6xLLp+6hzrjISCqMKeVkrAEF1lp+Vll912jnEqByo4nX0gjZFwjCQPoZ+7tOMowVSDNxy84ZiKrUdmSgC+TYH75NknL5uKFEvSfN1MCYAY3gFMK85YiYvPcwGqU/mXEfA2KSlWvD3i7K6wr377U0zwdwTbYctxaLcWK4vioXnOvHlsI6hLwahSOkvZTlNhWMMNVQrS2Cp+hpWUnXJlB4RJXjWdr8LwmljNzZVILSt76tzrGoRFqCxad+W5BrmWHgHktDYifcyBlAxaB5Rp0Vl8LpW2oMQTOalTIGPZtKn3ybtY1fU+rf+3gsk1NGh+3nk+mJtPC2uPAk6fqiOWz70skeExmnYuTUbjA8Y3pDaTAgQtNh+VXSnnp77ATPaKw0Fxd8wcvTD2Vo1m5TQrJwFdy3m1gl/yPJmbJ5q9eQhS1yEg9Y5QrD5suVsapVETE1kCK5Uqjagy68pLld2MKV59OQuD+V+O9/zA77kyDU9tx1PT8cQ0hVW95fmtpINvW8/2Yr72rKtgtcd6gwuZVdDso4EkDbKjShyzKY+WXosXvUsy/6cCvgyTN31lU0dpTCVP0hAXoYXCjvlySohV95yu+1DuG2WJC+bmeYr7+8ayyRIX68djowZOynUkv2dDJqXI4A0hyvu1dpGfU9DwBIfhHx0/4834Gus22BPAXhoCRjflWJZqB1MaSqtFU6mqdbpTj/yTFxQfzhuPjOpPDTOTWtst1l3i7Bbv74jakqKn2nzUeT8vVBKPNbBqg6vaZ517UfsSytvq5RotH41SrLXFZKTuCntM9dIuGRkp9tPGa2JQGybgBk7v0aVf7+cd9bkm0DsUHplW8vdsg7ZbtLk9ec+cuyjnYJ6TvU8cCxu1Bia+NC0NmifaEU2e6o0Yfcl3ED/qu+jZKsOIJlbZO9I00Uphyjr+/WPDB0PP9iLwQeqJ9ytibsA8vK7HODKSyFlk/8prjLYlmK4hpQGdTxsgNWxzzkyQcMRcrD1iklyN0X85DGqYwTCjwVnDutP4kOnHxKaPAlSXj85B0yQ+3W+IzrIqwU/yvhSwuhdbg2MOvI3DSS6JKX7UUnNVK6fM5muGq69Fftbf479/yT/IljfJs6OsdwqaXOvgZSMmT3keNWi6hiPGUk9JPanRymKK9ZYpoOyPPzePf796Vlew7ATM1sLmy0lAsxQhtE7qm9UVBmhTz7p7IYDQKGz7u8I6n8FCTYPiZt/Q3UVslzCdYn0ZebIb+TCs+cQ0vDKNeKUWUoMqzFQJz579YyvjT94rs7BRsBN7evJBL/Z5lQCSC2t8eu0nQ+wSsBqdpLmtal0X00mNJwzVOF3fKq3k6zCii9WayQEzSriirdd92E8Bbj7sCGGPDwfG8VaAagKexJgjfQGqex3YaMegIxqF1+JLvUKfsKnHNFt+ALRjXDRQyusrr1lpUVg6Ay+e9WiVYd9h7MWpgrQwqWOE0d/P57soUoRYssFogzu2HPYrdkPieVGW6S8JoH7+7E+S8zAB/MfjZ8Ri6RCz8HZNjpgs6tJad2yNm4BrpzQXpqHJYj3oUpw8t4/HV9Pf2ioBGe/1S/xW0/+hX+Cb/Q/4h9/5P/Fvr17w09oxui0+lUZhkgaKLxZsmTjVypIzEqe6fqm2rHt1U5Q8SoNy5fvF0kM7sdZ8V65UJVJMQHWCpDXZZmg12ltMcBjfYHwoQLXYf2ht0X6HiVfk1Bew+gUx7BnGG0Z/Sz+8YX/8hH0S64+3ceDSDOJRbRyXusEpzTPTkXKebH6OKZywqVOeg9VJp3ZpUEBqxIvaUchupc6NKZfz6NDJSt7FGWI/AdNUe7aqvDhnTS8tg053BqqA0BNhCk5sSk1RGSwDDp/ajk4ZAaaVYaX0BEyvkDySTksorDUJU4gKQixUJ+9hiAJGD6W23iXFbc7ckrhNnrdp5CYO3MWRffS8joMEJis1qW2dbqkB5NLEdDTucgKlazPP2vVJbaiNWPcAc60EM4lhsca0de9aLI7G4Rb4f7zz3v1qPD5+K4Str8aXO35fANSHw/dI6UBNKzdmPd3AFUxKaSjp1qdBGZMcZbLBeAhCtfvnNMjGb8AVr9JUAOhTn6oaxlOB6RAEOE5F7VvZETlltFX4wsgGCQCLTQGgrQDQ4wJfjvnUEiSmJRAua6vyGe3jxCzIlRVagXhm2c7U0aZ+iPS0MkjOx7kftQQkAtQgtAXQvgTAHrnP3wUcVMZzygKYVJD6fLLQSjymjVJ4NCbrRwHqRKYv4OwkH8uLMBvdYGyHtRucu8S1z1DdM2In4LRfNYRWS7ccAajzcfYdVgvwIJeFV/YUdbHUZaO+ZPMIUyLHLGB0+ZD3K5HHQBoTcUyPgtPV0uPgjQDTSQIRl7YeN2ngvhQiFZiu4FMtTBJwTrxfWnpUkFpx6v8NzHYg5RxHAomA94kQjwTfMtodX8w05vHh/T3GSOihzQFjOkxoUWlFcvLGVJB6maj9TsbStJE5TdueWAwLeyAVBnRh3QBFHjqzOmOSELfljaGUwYa7hV1MN/nLqmoJUn/XdKgsYY4qWZSOUIBoea6HU/SSUTqzlFoUhjSL7ybG9NKPejkek/E/tihHErFsiir4XO/vZeNoZpkVGfRCTRFVXgDZj7wpwJKGklIUn+44CAPKR5TXJKvQtrKoVZk75/8OMgeGXnG7y9weEx8WSeuqUay8EgumJZC5tAbS0G8zg1bs2ZC1MPgegNQ5MYbd1FirIPVkEpozUQXImZwNMFs9LA9Y1cecCFnJ/Rt7fhR6NspwZVuemJYr0wpYHRwvjg3fPHjWLj5gABstzOC6so/ZCsMbU+b2KmOXuWmvAi5LKJROQUCQJBZMwgSlBCjKS4ihPzsTXxZA/RLXPJMi/B1BoVqZonb6LSCUP2ZUtkzTJkLQWJsZR42PmpQUqybwbZ1puKRRmn9w/Iw3/WtyCU6c1n9mgMbqyrCuwJrBWgkIFCl2OwEJShtpUulJIFSe7N3nV8U4gYyPsahxW6yTsERdZaOod6y88/xgzjancNYgXtQHwjBVjEmj40JRVX5vlcWPtEHhw5HgbzApktoOPUpw33SOlDTxxIJC/v45KPdFQepTv/mZBVcBrbpGxLYtgdIdSck1rk1H0zyZZMpAyVtIeH/HoQCjrTYcbSobYMMT4xhzV2y0BJiOhaF2n0Z2ueRSLNZGpxMOqROIhmOG129bnj0Z2F4EXuYef78ixoZomBUoOXNUmpQTQSVy9sR4ZBxn38oKWOUcxJ+3qIh0sTlRKaL8AfyeFHaEcCClER/E+/Rf1TBaYRpF12gu1oZDn9i0oYDUkW2X6fvInWsI7Us2VryQl5kqAN7fchuGSckioKtiFTXNaKURZSVktjtGzMrw9BuRn0v3HL9/yT8mcVfeo0iWWlhpzNRMLfN9sfbos6hQJtLDBPSocq7tggUnqqpzBcTnIHCeDLVo/kwEh3I9Zy1gbnIKnRS+dajUCVAbPqTrXs4M55zYxx0mepH065nVejNa1neOdjWweioM3stLzwe958O+4VPTcaMHbpKf5pDKRpU9lj9p7kjz3Uzs6Xmus1PDPhtTGlJzzbYMnDsfWZ+ePxXrPKEWgPWphc0pIaGbGjKkKPd87AUELIHnMeyIcU+KAz7cE8KBvXYEvyfGnpRGokBz+AVQvdKS+bDJlrV2RG0nNrU09JV8JEUM0PplbZxQJhO91Etq8R6vL4WpmrKCQ0u066nBn4Bc7T78Hl2UOvVcOwqpQ1ns0KKOHW/2iY+uBWV9j5vKFxoXT/4ERity6gnjLcfj94o1xQ2jL3NKHPFZmmm2sKQT+QRUdErTIlYpVmlM0pgUOPrbCVAG2FKZ1M8Znjgu/uC/w/PD9/nHww/4182Kb+uWsbmQvaPPxOjJORNUhKxQOYntVAqYNIodQhKFtQ4eEyKDl0azszBosBaiFjY0CdTCdsda+fn5qODmMtxbaUhOsIDoIEVDCLqwqh0mCCnDaoNya2H/+700nEtIvGueEuOetb9j57b0w1vG8ZZj6tn5A7dh4KKEKV7Zho1yPDUdax3ptGEXJUhxXOwl6p5hQKw/zrNqNAqrKjwM5EQsCoqUMypHsjKlrlXnlPIThvTjdh4VnJ6B6cf2oYqZJV332Ut7kpr30CrLE9MUkphhhZrtNil78kK66YPGxPl4Y2ZSPIxZGvDHrHiVJdfpNg/cJS/reTmXy5DDAGTtipe0PFZQWurFyph2hRi3xpQ5Updg4ykLSxuWBIbayJcvzoBqAHt1QjCz7v6xW/ar8dX4XT9+XwDUu8MPCXEn7KRywy8LWCme4gxUJy9FRuynDccyBX0JUAO4/jOMNjTGAJsJpE4hEwIPghSqrUcsifHJF2ZzylM6dzYQo5oYECllrJXHUBZEd/a8dbGrAHX9OyEowqhIg0KHArh5P7FAU/F/qgB1ZVBOxbxSxb+vPj4Ubp8A02ffOwGmJ8b0YihhVC/ZmeejsjSrbNInYaVUxnPdkC1HXZTqQuq0PgHDY1k499EzZLG4qFKbrLQwp+2axm1pm6c03Qfo1YfE1RXD5SXjyhHXCtUWCV6qRUUNoVxuXOMETFULlbqRbwCjMkbnB2S4HDPZz4BMGqOA0z6TxowfxHfaD4q+NxNruo+GfdIcl6zpHNglsfV4G4byekPxnZaNVIRFOnBJCOZhgbA80zXNWQOqgheKyUNYzD7k/RvySMySHi+b298+Q8P7W4wxU7Bpq6yw3eIWPYpM1FhHcsLGSUYYhPI+lS740vuxfq4VWD1JSlV0J2C1SptZdhcHVC/hhjHsi1WQyJ+FKTJOc4wc8+6UKTmFA22lG266BXD1cNNdx7kCYv5+9cWu/o4OpY0U2ovfW3pQpzM29fmYAOv8eAMp5nr9zAGI9f2dAhFhAqeXR3LqR53nxtN7GK6VQa29R6eM9lkK+olFfeYtW4YKmXxQ7HaKN/vMrhebj64wqI9jpDEUf+r5/1UwbL0WNkyvFXu9JpmXrICNnqXLAMd4mILKKkitkUA8nTO+bIhSGsWrvKK86myXDQWkNqDEld+TeUvk1h/4oT+wVoYL03BtW65Nyyd5y9PRcQVsTGKlE24BYtQmQFNDBzIzeL68zjTopOh1lQlQwNFIKvP6DFIrUvZI9V0hmc9nR/PjRtd9KMoVIMfSsJkaN+YEbPutjNkDfbaZOh/KgGszLkZCUNghMw6ZsfhvrZvAT6uMOWxxSvMf3n+PgUxurnB2jVIRrRuJFJwYhHJ/AtNcsFRb1JFTPNnP/VZGZVFPzWm3RpfGqzErlN7JdVZ8qMliD/AurOyxuWK2/zplUUdkQ6dLyJzJM4P6Qjd0SnMfDozjWzp/gJUE9eklA/09YPy7RkyikDiXqhutHoDTuoAJ1bxapYRJLAD9jQBpqSvBjRbrrh/JAEikHAhhxz4FCTxynsYoVoh8eDSZoQToxZzoSx1zTBJSfFSWURmxRylzoDMZZ6J4eQfLq77B3iWeXI9st4GXYWA8dIy4ok4RgOeQpMGUp/nGE2PP6HeTd6VSFtc+m5hnKsvry9pITksYSH63UBkeJqXhT2IYrbhYGy7WhvtDZNsFtm1k14sP6NtGc+eecWEMq+JdDtKsyjmx9zeY4q/slCl1bEMTDG7Mkx+138t8ZbeO59/y/LF4x/GTS/5xYUTHEqDakGgWTdm6nvVptvUIVY1WaiBFDUKtAcZm+vpkTFjxqXLyXaN6np43a8SPet5DoDPRKVTSRFftPp6wWn+dZchs6gO71KPDcEJSeRtbVoeG5k3CdiNurdg8iTw9Dnw8Wl7Zjjex55NwPFHdZdKkJDy3+pg9VIsdWgFbZsszXeq1M3D6x8yFk0WRFlA6msKu1gqdMtGV6yMqojWTHUgFq5MrHsC2OVHPLcHqGPa4Uudp3RLCjtHfnQCukigxA9UAg2nodcSbBq8to8pFMWGmQM4YNavRypxZ1m1l0mT1kYvVhy6ZE+vLCAwCmB0bot1MDaqU8xQ+p/wcUlmzlawS9qYZVrhj5M1esR8STx6ZN3/Lo3uKdmvIAZMizfpj4nhL8DcEf0c/vGb0twzjLX68J8YDxyxNAq8SQZU9njJTkJ3OAlJbpRjjiPd3J3/yQhu2/FF2PGf3Ysvzn/2f8//8f/8veHrxDX7eGL5tOkaXJiu5XQGpo4qkrEgpoIr1RJ3zUthjwyg+52V/rzsmANpbIZdh5gZR/Zm1D5tIy/q0WnGOYybZwqYuxLXkH7Kqs9Yzo9qtUf4ghBm7JYUdJm7F9kFZ1ith+Q/jW4bhlptwz1048jYOXMWGa9Py9WbLRkuo51o5VnrkLkqQYsinxJYlwaU2q2f1paz/FoWtBCUVyFmhcpwB6kdv4srZLudqAU6zmFWWwHRds2qWiEbRFm/zJTBdvfWrfVFXGNOVfFdrlrqixawYo0J2ccUru/y8Wjsdi3JmlyPHHPkkHKbgyUPZW4854Yv6JiMZBAqDNR3GNMKeLmzpCkxXmzdjGprmyaS8rcB0tUNiCUxXYtNjoDScKu2WDVHz5QWZ/1dlZN5Novxq/OTG7wuAejh8n2Eo4tPaqVI1/fR0kswFkK4eSMuhyv/RpiG6Hh/2OH8vPmWpx/o9ZniBO67xuxXjyjG2isEANQ15AqIFKFERXPFQVYsd05IxkJw8eqfoF35WtTs7/Z9U2dcztlHBb31MNEOkOQzY4wF9vCH6G/ER9Pf4cCBlz6pM4lvtWGvHZZG+VNlLBadPwpDKIZxL+ll8PVt5wBK0Wo5J/l8K/soqqrYTPkfuC5gsgUSxyGOlSxvK8xXIZWJMV8C92pfUkcrm+zAlREMuISKt3dC213TtC1arl7TdR/Div8bh8pJh60gbjV1lWpunzrg0AzJ+MKi4xgwX6H47+UktEYZ6LHVDr9XZufCS3p1iRI/iV5kTpDFPgLQf9Alr+nZw7KOefKZ3xIkxfRc9h+w5xMAueV6HfnrNUTEVrUo7bPHFrZs78RGM4gWWK4wtWwBbwOkL42hL8bhsCizf25DTSWL0kDzjY6GFX3Ac+1fEdJwW9nF8M4G+laGsdSfqiboRmqw1zLRY1wDDEyl8ZfAsmfBaTyGH8ig+hqa9QIURVzb0OexIQTb19WMpDx39qTqjMlusXWHNGususe4aYJK/VtVGLI0l+dmcMj55jZXf00Ux0rhLev2GGA4nHtTygqD2kKrnu9Hz+3cu5adcuynn0ljKeNJp2FyWMCBTQO+lP+fIvHGPhSET0VAK23GxiX3M7xYECIphj/E79LjGHV3ZwFpSqf5Hqm+w/J+ZHZmxQ6T/xPAvLWzbwLbTPLtYLndyjddA2mqbZBSwhVWXGdaZfqs4Pu04Pv0m3c3XuPjsD7K9+5cc7v8Fr4BheEMfj5iccIVhYstjA8Xn2ROVl2aQqhyQ5bpUWSWn/nviGTyHdN3Ekd+MA5nM/yt/Squq/607kXR2yhQ2p/jr1edbgrTVqsEpTVSZbnH96wLgqiwJ7ypXX+ogubBKGrgxjhNQ8NsdzfanJTQr9mA6zCONmZwjWnuM9iTt0ckSURLW9UgtubSmkUexlZp8QMsH5ToylGyAFlojZyz6wHjQDEeZi61J/KEm8C1vWKlv8l8cP+M3Dz+g1462eYJzGySgblyAMwJWPTbq/SxfBFnXH7CoDeSAKr2QZVDiOYt6afWRmg6zfkkb9nTjW0LYE0NPVFH80VHTRrFeedWMZprjTxRJTPdwDfkDuTb7pEvdkKc5wQBbNC9ty9eaDTfjHbv9d9gcvodeXRPbDts+h/EGWLCol+9hlVmrGpBYaosEKQtA7UPGNGeM73R6Qegi024aRSrWasaH6XxlrYndBuOfY3IglvBa2z7DNFfY5go7vJZQS/sZo9syjLeMw1s+TUd+bbilb7Z8YDqutOWFdqzclrV2/FDv+ZE/0ufIm9DLRrpunpVhlRVdOXeti6wb2IbAb+w7/sX9iufHhg+2PU+uR1Zt4Ml9x5Vf8X1l+YGy+JywUU3hS4FAjEdmGXUSyzq7xjXPMLFHhU6apDBltITxFj++wft7+uE1ff+2NNZ+sqMC1d94AS+vRj69DXxyF/nNN/DZm2tef/qE7Sff5tln32O4+S85HL7Dj179f/gs7tiPgfs4cuNW3LkNOzo+Hhwvo+ZJHHFtwg2Zph9xG81Hf9LxP7y94Y//l47/6O2aXwkH+hynuRHmeUSAiDgp8ipjLhRwQvYbFYxoHrUmUjXY0Iuv9KMN1kXujIqQ4jzB6Wk/oAqYKTiFcBHlHgjixApIzdOEn+eyfUa7/w7d8fsc21ccDp9wM75lP+64jSO3dmTVPeXoHXevN+yPlg9e9myfwwff9HSrOy4/2bBVz/jEH7iNo6gQMySVSXkgBDWBMY12aG0kGNFuCjOw2Htouc/z2Zy4BKcf2nsszk9knhs/50haodHEBbMaQDftAy92sQRJ2GIJQhzo+s/IxSYyhj3e30m4YthNnsBj2PPDdORVHGiVZl1C2bbaTSzWpdXA6C3bIAHHF01gM3qij7SrRENGN2K5oB20F2BcoF0duHwz8vJuxYfqCf/cdPym3/GZP/Jp2DMUNnBMnhB7unBP297ShJfYHFhrzW9++pSrVWDVaK6bLw+EkffTyKbQrTGbjzBI2PS22KrUmtkPrxmGV7y9/Wf0wy27sEOFnhYJ1q1hdlvt2GpHowy75NmPb7j1b9kfPmG3/y4Xd/+Mizd/lPz857n/2ks+/CP/S/6P/+x/w8+oyL+7+Rr/VtvxK6bjV8Ke7407Xoee++QZkSZetZyoQyvD2m5obMPKWW42DR88ScViqrBtNaRQ1EbFZk7WFiE8nCt+lo3Sag1as6xCUNO+MiV53hQUMVr8yqB9xoSE8RHjryaVpw4eG0as3+PGl6RQsgOKTY0P93h/z+jveO13fDLe8S/uv88T0/CBW/PCrviG22KcYp8DN3HgTRjYJ0/IaarLQz69yZZ1Qp0fY84le6XY/Uz8flVqXfkf77lyHn6nTHmPVZcaTsBpq/R0PFJ36EJ2E2DZkNidkRIqDlH3KfdpFMumGiCe49SMXKqOxUO67O6L54sqYdmuYk51DnTbEzDa2tXpfFjtO+zsLV3nxgl8fhfoXM/T57B/+zwWcV+Nr8bvxvH7AqCWcBoIOeJzIOSBGkz1eCcvkc8mRYVCqdmbyi881GLYE8Zb8ZQduumkqZQIofoTF1AhUrr1eZKRLjv3dczMAU0aFMmZ8qjIGlLxuHowRRfwu7wMdEqoCHYIuMFjxgHT76GwYULYE5MnxoGcpPC2ZfPZlAl9yZxuCuhUR3x0iXg44gIEOf+6AlUjBegoYFb1Pe2LXPLcisMXgLr+/9Mea2UCzWD1+ZHWLphXFOaYLBbWrenap7TNU1arlzTtS+z6Yw6Xl/SXDWyhXSe67qF9yzgq7l15v5ybFp/K8EMpcn5YO6fFApmSIkeo6qqYhC2dEg/B6UUQ4ttgOHLqM73Pgbs0coiyYbovHfFjTmUxNWjliuy0QeulVMicBFckTQGp5/Nb7WBW2tIWGV6nDQ5zEkI2M6hnn+shRfro+eef6wp69/ChF4aqaSc1wOzX1RSWYjttCCd56ZKlXJk709fCKpFQ1R8PZE9DGzLt1N03Cx/pJXtKLISqakO01LGw9mM8EswRl4bylHKcnyccUSlbVBHinWfKa5fOvKWGgC5HZUM8ZunxwHO2gFBxwbyuI073Iowq0WS53uv9XCXQtelUGdMjUvCOZJY4Ur12Sttt6rxNCpYURHIZB7TvMCGSvCHbPIWopbJpSIt9RjaghoQdFPs7zad3mW8cIh9cOVaNpveJlVcFlM4P7ALcyaooz39EcTQNSb9kow1rYHP8ASAgdYgHqjl7bZaZIoeMWXyco6qee2V3PTHW6/u1ZJc8tnGs50sRlMKT2WfPjfc0/ki32Ni1yrA2lmvdzr6sZw2l5Rx8Hggyu2bLPZ7JMq+pmtwuzdMvzabNtHIvZotKoHSHqRmBOWJ0IJmRlBxRzfYFy/Ux5Tz5r1e1TZqaohWgl51PlXCmPIPUMicrlBM2tdKgnSqhthF7SPRHQ0qgdeDfcBuMeo4+Kr437umHN+ScJm/qlEbQ4gEMLUrJPasrCF3nm2LtkXMor+accfnQh7rOSdVq6rGRjSGbdmpindp8yLnLRQmzHOf3/WN+9QJGL6w+MvhHmOnV5mNrHF1WwqAbXtONR2Lbgm3ReUuOPeI/XVrcKU8N+XcFogp7+iEYffo75TgK0y0l8QydVDOpMCqtk3Np20nRIi/eIu6bYNPsVVqt4XIKjGMUq49g6Ap7d1uaRKNuOBiR/8Yg82JlUY+6KR61p/WBNWLbc2kSb6Os++7QYO1A0ySerEeOO82YLUfd8ErbYjeRJ7VZQJQbIRpUkA1zCGKDV9+/ut5MwFssDdbY48OBTMLYzTvP7U9ifO1pw7YzrJqRxkY6l/nEZt7aDcl8gxWylq92v8HhEDmmIyZ5bJjZdCvdsoqGbrREP6I1hF7ULMp47FXLN/7IwH/rnyiONyt+ze8nAKOOE3VfnjNNqtUZ1D3Eu4EYXYkrEQlaK6Pa9bn6PLoCqvJ/YsjvZFsrLT9bWn2Q1OytXvzVVXNNUywN5W+OpBTw4Y776LEoPkujADza4voG9zphrdh9bJ5EXh57fvr1liemZSj+wAkmL+qUvDTAbE8u182kFqnsaW0XddZMDHiXHZucOCXdKDjZ+wBlnzWf3/l7p57U01OdpSOf7snmek++71DWodJKlB5xwPgdKYofcCgEoNY/ZRxvGP0du/33CbEnEBnjOHlUDzlyaSJjbhhLUNuKyqY2E62z+qUrA01dg4wA1cYpXJtZbyJP/MjHqeNIJ02SnHgbR45ZgNfgbfFDXwSmmhbTX3G7e86rXeL2EFl9EZT/fUMbsQ46O5fz5wZMi3IbTLzGtM9pxpcY3XLsP+XY/4i+f0sf7vGVUJQTSYutz9a4ic2rU+AY7tjv52O/ADb8PPuf/hP8gfDn+Be/8r/jP+w/499dPefbJhNZz0rckCEFRjwpQkTjwwGtnQC7/ae03XPscMFxX2w+DLQNDI00s0fm9akqG2oWVf0eFL/9coxV+VyVfzFRrNlkbQpBEbSwq1OAmBRJw2PgbjZFoaHFkbzmb0ljdd6HVBWDNS2HY+bTeORtf8Nn5shLt+ZDt2ajLJ01rLXjTej51B9mtjRqqg/q2X7MbrNafSaE/ZyU1LG5bChOjcXO73V19nmZU9VUUstrZtIgEgrRphJuagBkUpmoc8mpUvSxWDEy24X6lKaA8EqE2y9suFL5G6lsh1CqtNtVIT6qCVuaSI1lX12Z0sZ0tM1TjGmwZv0QlF6qaM8zipb70K/G78gQ25ovaW78avyWx+8LgPpDtwalBNhcTDaxPNYJJ6vHSrw69MR2TBrxyyo/8eFe2Jr+ViZ+5MSplDA+SAr8VNTwIIRNlUnyHKBesjfzILK8NMweulAK1UXhBZykWNfntcMgndWxn7wEY5FoxngU+R1xAhybhbRvlu0WRuRyvcj5BKSOiw8Wj8vxPnBaHmfmdAU0a9dyn/wEcIbCml4uFopTUIJpEXz8nRWmsACzxnRYt6FxF7TNU7ruuYDTq5ekzXP6ywZ1Ce06s15n2ubUZsUHKSj2rUgpk3VQgp4mkLosxbM388J7NylSrN1zYVHr8nWOiujf7zV9y6nP9NIDq0qOjoVFFZWE9WjdYEx3EspQpfI5R0LUpLKpyjFMx19Bf4s0MlbastHirdcVr83mjEUNnDBojyly0L99iXBOIykqfI5o7QpA3aCCKa9nBqarrBZgyWCqcsf6fXks/6eGlJXCQX4oAPdJR/u8YCiAWg1ltVxPzxnCERA3hFg2hjF5dPIkPRKTeN4pZXHu8uRYlbZQwOuUokjTy2uL8eEdN4XilEYdzKC0vPa5iVCLueU4Cd2pNE11asmhSeispACcAL98AkKP+VQRMfkk5iU4qk/+/oO7efKoKz7chXmjg5e51hqUEylwMhC1AvuQiaZTRg+BsGt4ewevdomf0wpn1WT1MYZEEwWsXO5bjUI2BtPqOIPUAw54zgbY7H99OtZxZAFSJ5pi82GUokETckZVWxMVAVVYrIvXPvFOZNNfP1/+RoYSTCU/zSiiUhzIHHLgLgRcuWdbbVjr4yTjtgWkfsiMzbM/fU4zA7+eS6VQxbooT8YfEdL71tMvOEpTCDpQwgHMCwljzgGdhsLEa4RFvWgILo/jPIhT2N+yjkmD9OFIken9zjGjnUIbhTIK04AyCeMSyoAfJMX95WrgXz+2mNVznNL8xnDPcXwr13AzN9TSmS1JVobiSj4BhgorNh/Fa/+ERf2OMu1d4PSSFYw24l1p16WZd6Yoe/QZWFhUPQ5OP/YYMzjFicWHAVZKc6EbNtpyM96Kzcd4i0qXZCfqFAWPMoQmW7N3HGgs3p6P2XzUe3oZpKoLUD3aausUT+uyunGsYaB1TjYd2koGwmybVtnJgd34hjehp1UCijZaSyCTMlyblv3SbiuJh/GRyJgNI+Lh3eZETAprhJF33Xp837BLihtvcfvM04uBro088559bNmVdbkGQAsjLJYmeZRw0yh2djEeiHEZ6llyGwpAHcJB2JfxSIpiS7Tunj9+4n+C42Jt+JmmY9WMrFygsQmtI29MR9bfYq0Nm7tfIaZAf3zFIfWYOOK8zHsrpVnlli4Yng8a4+JUf/l9xAHuyYpv/dEjv/gPNMf7ju+FI+S5eRNLTTMFr1VrBea5uAJJ+jGQOgchqpTshErcXK5b0/VqC0GFGYBd7pXles7iu5yY/YofWH1UZYUBt0an5zTT9StWNYdD4Bh3qDjyo3BE25JBEw1m10lwmPM0F4rrF55vDkd+atyyTx4fEuPi1WfEQtGHI9b2k9XibGG2DEL9nODLe4Drc3B6qVI1QX6wJAYtAVT1rq7X2ZAmX22aNXIe44AOAyZckcIOF/Y0zS3e36GUoR/eimo19sQcGePcmDqawJVp8LlhZUpYKpoYzIn1lDIBrTOuTqJI09S4TLtKXHjPEAwfHht2pqPPgR+Oe/l7DCeNKT26ibDRjLeEveJ2JzXRhfnyQJi8AKmX57r+bHrUawn4dhvWytJ0H7Dqf8Th+AMO/SuG/jW7uJfw1zKnPbMd1pQ6JipU9Bzijv3+B1PNeAFw/W8w/vSf4WfCnv/81/4PXOiG/9Fqy7e1JrrNXNeEnjEHmSeTIgaN145xvMXZN7jjJ7j9Bc3dit4rNq3sBVcdU/5JCA8XJa1PWdTLvfRyH5kS6DQzrFMBq7Uu2VVk8alGlTnidE6ZsAZApQ1oiy57lZmcM++Fco44uyEog489P0gDN/3I69DzcbPhhV3x3MgaXYlO77Pfq/aO0/Ewz4CnIDXM0PIj9/JZVlW1nKwV6HJnn8hCSFOyvw7T/kKICVqJ4m/Zcwl5biYKESNNocVLbEh6DbXBWI9JoVRlgYs1mirMhUmhX0Dp6ittzQpjVli7ommeYMxmah4oZR8FpbNp302IeuQ9P7m3vgSF8lfjq/G7dfy+AKh/ym2ISk1g5y76k4kp1Qlp6o5JUVm7ZdKVSzJJ5UxOMygblCGEA8YcJi8/qwSkNimibYMZBGxeAtE1iOZkMsnhYXdsCgXSmPHUbmAZ9CGPp0D3yd8roW74PcnvCP522nSEOBDTCDlhtSlyGDNJ9mf2dMbpPNl2VFaPUY9vEJcA1pI5HRc//3GWHueymqVfckAWDrFuMZNceunh+mgaMEx8aqWMeJPbDmfFCqFprmjb57SrjzDdh8SLDxguL9HX0BVwet1Jx7xZ1NFj6ZDfdZlhpQltQ2PaYi/RYCp7FiTZvXr2ciorr+zprBUxVrBaAOoKTh8HyxAM+2Dok2KXFbc5Tj7T98lzH0d2SYIQ+yQe2yOZoCh+7K0EQJpWQOpJcl4A6VLYiaVsmM8rC/a0NjTaTPYBGzVLFJeBmku5t/g1ZkaTufkSJMIpB1ISGDXm2pzxom6Y2JQzKA2cBFtNr2n5+hYgtTHN9BznbOwK/GotRUb1BDv1JQ3l+6HYdASsXQnzszCCY5QNYUgelYIAbGmkhlfZ0mF/9PWniDkDoyYAd/EatHbyXi6sOuT8ydfndhpi06LPvq9PQOrzMVsmKEaVZgZ9ZmLi1nu7AoWVjQFyTdV5QatSAGYBPmvBW69LCa0RX0gVxhJeY4VFrYUlFsuB5iSsk6XCxPiA2xtubwyf3CZiyjRWs2oyvU+MQTEGtWBiLs5CVU0UZkxqFiC1boDnrG9/9uR4xyERUn8CUhtKgKKiqD0yqQAf6cz2Z6kIOf84ffNLw7UU2Hl6HgGrA5kjERMju+gn/3hTlDPVfuicGVsBlyrXnObvfK43Ql6jSuLH+GWMcm9hrHxuW/FbrH8u1bDjERMbouonFstyI5MXa1K1qIln57kyp2OWwKrqDVlDN1XZPGJAFZDaGYVxCa0T/Q60VmxS4CXwp44tpnuGRvGd8Z57LyB1bi5wdiX5BMsGiGmIaRAWa91ApkBWgZxLokMCVSnkKZw0x2pzu37+vpG1QZkOYzZY0xUGY/GhzpN2YT62AkrXx+U1smSUmrN5/10Na8lgUGy05co0vA57huEz0niD9h+SrMOEh/NeBeVSUicM6VgCpeWerY8PbT7OiJLT/VwVUWInoKdaTXskcLecL6V3oiaqjckgLLWceozZ4OwwqVhc49n7t9xGT6N6Oj03cBuleKIde9NK8zgdGbOQKI45cayNE8BHhZvCITOrJnAdNePoOGbFzWhx+8TFxrPpPM+94eilaVxrqjHLPJdKgzDlQEwjoWRCaN3M58R0U66DMKgPE8CYUsA1F3Tdh49fWD/h4aziGy9aOqdp7FhA6sRr3QBf5+LmD05qpWF4zT55zMRqt2yVZRUN46ixQ8baKBZ7ozCjYcA9WfGzf/zIf/fvb/i/Hjp+GOeAyKVlVZzADQFpTriBDywFRQmkUixgaZ5sPipAXT+m59BZgtgQMooKWqT/j2CJemEh8D4WtdKiDjDuGheHkzye3GcOcc8rf5T7WimpHaOmue+wNvPEeNoLxfMXA3/w7pL7RsDD2zgS4SGLOvaEcKDrFvXSstF/Np/NL4jZ3mMJTi9Y1Oek3wpOL79ekoSAR4lC5yDqyft2tger5xEcKjUot0aFwgb2O6y7whVboLa5YRjfTED1MR4IKcyknBTpjYTVbTFEjPhTRw2DK+9rRuuIcQlTmqUJCVc3ThSel+PIc2/YBcfOrPiOcfhY9rlxICgzed6KxcAaO95gdom7O8Wr+8xT++VkSDzY6wLLsGMV571vPb8qge6e07itnL/mKW37Qw7NJxyOnzIOb7hJIz4ntsVicKvdrO5Knn3csT/8cHreizc/R399Dd/6RX4m9vxHv/632WjLv921/CE00W4mNu3eB8bi2Y/SKK8ZtcMMrzF2w6q5prtbc7e7oHOwKlToas9RK7N6/5oFOC2WVPOpWFp91P10ZVGnVMlP9X2X+iIFiBGyo8wXYgWqjMZMYciCFyhkDdUUgssIdjrekZS87GOSBd1AgiOB74cjt3HkQzfwNbfhuWn5ZnPBJ+HATRhOQhR/nKuORurxqvVYxp88GGpWAy6/V0MTpa5LUiPn5d+Wrz2JhCKUek8rdaqaq8S4JcYzHYvsO2bQfwlEM31/yZSWr+0ZU7qQ3oyEUFu7xph1IQO0uPbZDEqbTq5/K3Vuts2E+yTnZkLBO8Yp4XGh/oIJpH7ffPbV+OLjfQ2ar8ZPZvy+AKi/bdZkoycz+zvjJ9uIKudIVb5Ri8ucJ2nUxNbNmVDAmZQCqBEVNSH22MI+qamquiai+1JwKTsvyCnKpvIdAWfA7DcEUjwuPdnO2QXnE9Dy79QRe3L5iGFP8LeTXLOma2cSGlMACzXbe1CsPVSV7mbI6tHFaAZcFyxKHmdNTx8FvJrA6SKV7NMMTI8lbOCQ4+ybjC0sYDuxv1Q15waqv+LMupyPuP6u0lYKILvB2S1Nc03bvpDAoM3HhO1T+ost46Vju53B6U0LjZWPOsZy2psGfJsJrSU1q9kLubB5oxBkZuuDEoaUshIZV9AoI8umMu8Hp/dJs8ti6/FmYelxHz376NknzzFF+hzxCOChlStematpATVmdcIwrsGhMY2YnIhKGGOVjV5KcZripXepGy615UpZtmi2SrFSpamhslwzCBBfmxtj1twuNsS/nVHfZwUSagILmf+7/8/p16cL+DJoSSs9vX8VyJev7WQlYicvxdOU5dO/IeFTRrdkKyCyruFE+TTtXqWA1rfT/zVaQuHeZ/VRfajPv1c9rt+3pD7wpl6MZUCixpTCMBZf+VKIM2/QZ4uPmUE92UUIdw9fNoJRKaQNYsW7+oRBvSxRhY0Yk5eNc46k1C9sPjzGOgk90iJ/zMzPl734T0+2SsHTHGB/s+bVLfRj4mJt6BrNJhjGkBmjYox52lw8BmxV1mVKmbbklAzJsX7ybVaL3805wQghHaXIzkKBNUrhUGiEwe7LdVxqbypx6l2J5VotS+fl2ZK7dQmYJHJ5PvEIP5QzpDPoHCdw+qQlsSjuyyUwPXeevmZ6XkHb3yPJ/q0MbUiNnM0JODSlOYQ0g3MOGDNgzIiOR7R2VA5+nl4/E7vxJPOAuVl4PpY+1LVxmCMkXYwwjEYZ0I1BmSBhVveZ4BWblYDUf7yC1ErxneGe23DDxIiX/4zKujSrRoxpBLiOA9pQmJCWnCzV/kMsP94dhPP+DU2cf0fbE5XP535Lynu8VFicgNScsqgjVeo7s6hBghKvlOXSNFi/px9e44fXtOMRf3EtEvoqtKlBpCkTpuZB9YjPp5Q0BLMaQ8bZ05mvAtfTsS5Y1NZmshWLNXkSoSOoWDb7ZV6fWu3KSqWcg9i8mQFjN9g0SBPNrjG645iOk9XHWruJQb1ShmvTsC/ZEAkYitJv1A0jc9NkaTnTdZGUPX3UfBYMd1HTDI7WRazNXHaep9Fwqd1kqdUozVCUTzLfzyzqEHt0OM7WMqXJmeJAiMKeTsmT4oBSmq59ymr98ee+Xn4S44NrR2MVjRkxOqJ14hUN609/nosCtovtylt2JcCyVYaNtqx0y3G0NE0Sv2QjzSgVwe9nkPqP/tf39P/pBX/7cCpnX7KmZzBERp1RH605coAUCrggAIMqdkJ5ur5nFZC14J0oKcV7NuO9JgQJUq8+1NUqQHJqCoiyYFGnKXjQQPByHbvtpAJYpVAC4jzjkHgbB7QvDSqrMLrBeIu+6bAuc/UisL7M/EELt/mCQwz4FNlnmRWENRkloHO8w9rN3ERf2nvU6++86f55A/vOkLJqh6Le0Sw9B6dPyEOP7aX0QjdS92Xn2SUF9J9Z1VdoLwB109zQjNcnQPU43HCfewn7K3ueThu8aYm62KahYQFSw4jWGdNltBGQOifJSbAeulXiavC8iJqdbrg0zeSbOxBEORGOBG2xpsP7O6y/pd0PHHcdr+8zn7kvCdSqardaDy9r1OncVrq7mQHrwh7VytLaLba5omme0rgrYVQff8R9uOez0PPEtOLpbZzsYaNCxZF92E8g9cWbf0bHzzFcXuK++W/xrTTwH3zn32erv8kvtoY/hCWWZI63cYAUGEq2RkQx+l0BG1fYw/dxzRW3N1ds14nGCkiduloniof0+ajgdP2Yvl8+r2SIqOZ7WGsBqadTVpQR9X7OWsgSU8O+5k2Ycm3CBFIrQNsAAYwJOFsD68v/ndZwqRHvc2Qcd9xGAan/cHvFRls+0RLQ3adwggVUK8BK6PtiQ2rHc+tVtbS7U9VRX8seXwlbWiFzjOQdzVaU8ppO69QZiLYnYLhags8wYQlTRXxC0tIzjlBwh7qnrt7S56C0Nh3GbqROcFthSpt2AqSTc2InpotiXotdKPCozdGy+SZrQXgAVusATAHZkQe4U1WDfTW+Gr/Hxu8PgNoltLIck+GI441uhJ1C5Jhnu4HJQ66A1q50tadQt+p9LHC2dCyVFS+/cJiZmmNhT8d+lmzAVIzlHwNOnySzLr0OH2ObTgVUOH3+s98Rpkac5Jo1xGOy90gSClaZc5U5vdxk6gXQWL+OWZ2EJMLj4HQFppm+PmVO9zlOzMqlpYek4MqjJzMqgNmeYumbrLVDF8bsg9P0CPioiudv2zwtkpun0qnvXkL3DH9xTX+5Zbw0mA2s15mLtYDTq8KebgqTJSaxPokJmiZztIroFLFtcXZbfICb8h6q8prDbH2QFD5qYekVBnVAoRMn4HS19TgHp28Xlh730XMXxymkR0BwUKomBK9om8tyXCI30ro9YRWnHFFqwOiGGPvliZzAMVOsPVbaslECTj9VhisFG53oTKSzSWSgOp8EQaas8EFz7X/7BXAtKqbNX/XO5PQ+OG9W1ACUU5Y9nPIA9FSsVHa+4txTTB6d3RZGSvW/bk/Y1g+Ou1hvmML81ErLX66NFZUIYT8fv41Y1mevKZ483xJiqz+rgLguAPVjjaX0iKd0efUnUn5TPKXJ4JSB/PD9q/YhwqSW78WF/+lyjq1/A0CrKAB1ZT0gYYIGhc4FYsxhAvBjHDCxJ6ceYo8ejxitcVoXD1l94j2tYpZg2gWDyowDbt9yc6O5O0Y2ncFZVbyoNccxs3Izi9poGM9esimbgwpSpwbyRnF4+oQ1M0idcuQA5CET6FGFSW3KfWcmj2996qtfzuESnK7vy/Lzx8Jgl6BslS/GYo0UYUoWT2rZGJijDdXyAJjB8nNutypHpiZGSdmgPwr5fvGRrIW2nZgk0mBwmOKzaJD11aaBGA9YsyLGXo4h6glMrCD9xKKpH4iy47GgRExhUMc8AVcSYqvIMZNjQjUWpTXGaJTxKBPxQyp4qoDU8dBC+xSD4jeGO96GO8gJW+aInE2x9VmsX7pFlXussqjFnlwaOqRANeOeAJJHgl3hcQZN3cBqU0N6bGmVvHssA3CrwuLcv/7c3uN9o9p8XJmWC23Z9W8Yhle0/WvSkxcnoNGJd2lUU6jUtKlfbO6XHtRLm49zcHo6jrrJXzCos9bo8rfFVkaYpoyiiJlPrmWpnpGGoLASU/ICxvnIIY28DQMrbcWP2ojS6EpZ9qbFKk3KWUKYcuCY49TA7gqrv4LUTZvoUuTCB7H4Soq7aOiODdebgdZFrl3gKlh6HemNncKdIhmd8wmLWuzeDtTAzlpH1mDfGI/l9wLGdqxXH2JXH32Od/gnO663tgRmjkjjM3H38uusU+QiDYWUERjDLXeF1b42ovy6Hy3tEGnahGsX816EcBSQunm+4U/8yTv+L3+v5U3sT6yslqyq5TqbF3NqyolUmtLAZFWlUhR27yM2H7UJUxmYymWiFYBapYzyubCo8wRowQxw1bFkUSenSGkxV2iDygZlt1jXk1OgS6KuzDmxP34i1hV1j4AC7TCjw3wGWh+4eBb51pMD+8+23DYXHFMghCN9YSpCJmdPCAeG8YYUB7IJD+w96jz/ziZbBWvqj5N8b2mokhHgTiUxnqr3b1X1SPZPaXYuLBjn/1+YveeEoshUY1IsHTHdKZFoeg3lcyusaqssJlxh3fUEVDfuM4bmkr5/w+hvCcnjY2ZVgsxH0zLqTFRW7D6iJg4OrTJaZ7rrONt8aCYWtWsTm1XgWTDsBscT23IoGT6iHB4J8YgKFmP2GLMm+Fva3Y7jruP2TvG6fd9K8AVGmUNhkZdwvh6lcPqoF79rJYPCaEurBeRz7oLGXbI7/IA3x08IOfHEtFyahrWxsyd1HLkPe/b773N/+0+4ALr0s/jNBd1P/ff4Zhz493/z/0xz9dP8N9vAH8qOaDd8Yg7T8QwqENMAHgalsWaFNT/A2A3ps2/wZq1om8y2hc5B7Op9l0sdceojfw5QL4HqpVqvfj7G099JKct7rYt7c+VkGS3XdzxVUU9DG0h2UvsobScCVc6yFuSapbAw7/Rk3hbP9CvT8pHt+Gm3pVWWH/o993EkPFI1VNb05xun4HRlKMtPKkCcC8Jci2K551UW6w+x4pD6dqZZqJPnVuhpr7NUXFfAWb7/nub+5JmkC4bgSsC9o3GXEyhtarbHEpQ2nYDStiW7Nck6YtsRnSVaQzaaaDXJKVGLlMdlMC5I7QPlbU4Z5ZH1wBlUTJhQwOpJZW8k0LWOr2xAflujEn++Gr+z4/cFQP3RkwMdnsEbQtTcDI59shyz5Yj44h5N5pgFsK6g3k0cJqBUJ9kYahTkyIiASkAJUGimjQlQPDE79Fl3KueHQHIFo4HZi62GAS2BrXOQawE8v+u5T/+uyPZC2BPCUcI64kCMwh/Ted581tCseSOa501nAaaXIz74qF3/ypx9yJpeBnEtLT1qQEG1ppiZ1RmUKUCrnbyTq7+TeI9WJvVDy4P5HM+exMY0tO0LYTy5K3T7nLx6gt9cMGxXEzjdLZjTq0Y65SunJl/L2jFfZQGqjM2EdvahNmY9Hxtq4bOdGVVmzHoCqW3IaAOWRIwQgpaPKB8+KfqkOC7A6V2O3KeR2yie07vk6VOcLD20atClo+vsirZ5crKQLtlzwt59pKuahdWtM6WBoQv7yHGlBZx+qjKXNrJ2kVUTaJpE0yaMq9K0spErRduq/+0vjgI3KQGfJ4xt2g4twOcKRufyk8U1wUT2Pfne/5+9f4uxLUvvesHfuMw511xrRcS+Ze6szCpXuVwum6J9wLiBgzgSR6cRPi9ItJAwSN00tuEBYQmJlhBIDQgEQmouQgIkWggsXhohnhAC0er2A60jaE63G7uPgcLYp44rnVWZtXNfImKtNS/j1g/fGHPOtSJ25s7yLpcv8WWuHRErVqzLmHOO8Y3/9//+f3kOiXgEzqmc0JjpZu0ape2RZIpZANZLmZByPU6vtXiehJhSApPO/dH7ekkBZilLMs0DyQNFhqS+NVUsEhtLBvQySkv//GJMO7gbRon5OkcdsylnvfVZ5qOAhIaZoWsWG9ICuhqlJjClGI+Jxqs/lvkIK7SvMeOANRoVDDEaQj5wKjA5nqsY0U5Gt9l1XF+e8eTac39jWa/0rEVdR8agqAOMCx2juNhElJiZ1BDrxHC/AmaQushQkCLjGHGMkBJV1qKePnMSUofKc+TyaJyC0xZpP7RKYzNwUNzLTyVbfIqZXRInk6GuGM2SmKf0AoPDyTQ//V5Nj2OxqVicm8Ukhluf4BNHqFeEtp0YJSomjKuxtsJ2Bh0DJptmityWmBoV4LzsaRIFrF+wHQtYPckpqBvrW4kUpKNFa4hjIugoMh8UJrUWsMOM1NceNcTclpt4KynoakJzT55suOJ52OH8Ydr0mNxRUkz2Yp6HjWmm9X26vqOfZT7K+9O3g9MfGQv9V2GdvzzmYtJt8j8SZVaTbqv5fnPr7JMBajTnpuK+aXjuruj7D1gPTwFkDQW0cwtZswQ+4f2SQZ1fP8uvzD8fy3w4LzI6p7I9MHdEkNmlQGa4hpk5mYHoFMkFgixBsuh4U8pOc67WFbbaEKPH50JyMS1tleGBtrRKc579G3oEQOqj5KNj9vkYk6IKUti1Rs6ruolsvOPgDF20dAleOAFZ28bT1p6LfsVOWfbK0ihPrTQuRWzOQxJFZqqX9xskry3a6MKcHohpznmb+oJ2/RlY3X/ZqfJtjbO14bNTd5bn371do+J30IZi+NgTD44uCLjyoevZqIqrsGU9WlZDoGqEjQqgjKQUvgso09N+ast/U1X8D8CTIH4SrwLElCJ56VATRrcAoFMHUJ7fXibzYW1C2+yzoBXGBcKgCYPG16JTC+mIfRmnRTuzLlEQhEU9Ff3Km9Tim2GTp44DxXi6SKNo38/dE2qNocaMFdXTFVp33HvD8d3uwO5yzb4WQDSFkSFF0fRV2aDTiemmTedz19cE7socFo3OLO88foab4PTR93nd0jBJfgRFsqUTRuaOYPVHmtVr71AhoEdQRRMsQmG7T/mVE/KGyiSO0rKPtijT3ASr2/sov8HW9zCjANVVdU49PqOuzumHp/T9c/b+mqe+n003TWTUkVFbAlbkPno5v8/3HWzSJPWRYkIZMXCvm8jWOe57w0Oz4to4+ujxwdERpSjle5w5YM0O51rW3SWrq3MOu5ont6vKffIIQ66s2CNwn1vIVPPfeIiL9S0z7HW1pcqyetausXbLk/GS57HDeclx7tOw0ZaqklwI37MLHZdXPwuIHnUVP4/fnLF55wd5JwX+8S/+C8zF5/mtdeBLvuYX6vVkTkn0DDhZL9yOTj+VPadp2Dzdc705Y7UKmAvZH5bYAd6noyJTtViaJ4B6uU4aIcrDvEYZnTt083NP17WwEWToDJxwcm6PYjatVyg1TF2gUPKO7EeVShfU/Ob6FPnZ/jnX9YbvqLZ8xrZstOVdt+NZLqicmiR+VAaYTh51TG5QEyFo+aikImoiFqm8FTkmFx0xoQtpIj/XkvU8m0XeDkifdrzIc+qJCFdwB5s70FarRx8NSme2dKwqxs2GUBl8o0lWkSqFqsSk2dp5v1xykmWhsRQiY4TopdMmdIroDCpqojMEawSo1gbtnYyIH1Eu7+1L0e2OQf1NxZ3Ex7c/fk0A1A/fCaxVIjiFGxQXu1GkEkZL7zV9MOyjoUuGXUp0JHZJ2iH30bOPRafT0acgG54U8VmfKvgOdzLBGd2g44BS+yPgb9l+P4FKYQaiJ/D0lEF9SxT9utk1fga9bpMBiEVXLozZEKcTNmKmaijAKn0rk/JVYwaiOdLjOwWmy+9cBk365HExTqzpLrN/CzhdZD20qjIoLZq/0lLTZmfcNVqbSUfxhg7w4j6tzFQ5rpqHmOoeNBfE5gzfrhm2LW6zAKfX6QY4XVu1aMtSUun2icoKUDVYRahEV0qbFca0aFODN4TkcFE+20gSbeaYQWgf8yZDo7W0iosOmab3mi5quqSkuEKcDRGDm8DpLoPTIYPTxqyx1Xqhs30PazcYs57Otwk4jbcUOfKmKhExiLxHqy1rI0ywCzQXCs5tYFt7Nq1nvfFUTcKuEnalJIFeiHankDDjLx3AimGENLNnSBP3lNL2ZZA8bsn+qVR1g3E6PSdzi+5kaLkwPQq5PTpmp/qgIISOySBDVxhdHxVQynlamNOn88FppBRJ0eOyoWKZR6wVTm5cFKZK5ro0SpwY1Fq0so2uSOr2hXWpA72MJTA9/X6iF0FMNxO7IvuxBLrDEhRcMKljSvgk8w5x1ridWNRK2tE14CcgpWimdhjdEENP9DtMLuxNHR91Q4gJ7aQdesks0N5NrEwzaKqrNU+u4fG5Z1XXGD2zqEefGH2iNjAuNg6TQdsNkEtarccGxvMZpF7DxJyL0eP8NR6XmeR6AuSjApvHV2fwfm66nCU9LNLFYAtAnYHpKnc2nJrYlTk3TjrgYsw0poBf3DfLgWRAdwFcq+XBX4AeKTNWpi6E3NYdXxM7Y8wTb2wErFC5cBcqATMqQEePjX1e40S+qrioi643x6D0omAyF1SZjBJLPUIYq4UJpQTgcAJa6SjzGCGSdETXFcoYlNE0Zzu0TgxATeQi73ZD10AGqdV4zdV4BUBdSWux0TUpeUIQPWqZkw1Jh4lFrV6JmzzHqT8FsNBPFebf3O3xcvYQzHPCkjl9m1mi3J9OVTfm+xd/U2Q+7tlmkvkYhw+wMcoaettnCpCyGVWI+bilDEhPALTKm3uR+ShA9ejn7g6YGachzgzVWM0GaESPCgOptEmfyDelwj5VS7JBliPRDdY0BLsiJscY9lxFx1PXs1az1MeFkvZ072VeHLI0l+QHivaGzIeYoq3ayLlz7IOhi4pdVGxGS2UjlYk8UIpLZdhrS28sXbT0KUydKZ5IioEQPSabZpf3v9QijlmrWpuadfsWdfsOQ/16ECx3i6HYLzU2K8Nn35B18eff8jwJLcZ9nrXbydwbBvrOsYsjTRh4GiqepS3nzrAdNSsXSEGhVhPJDoDQBZQZ+e3fvWP82fv8v0g8DT0uHecRBTsqM+TUv5HXgLnYKjJV0ikgBdRg9UJnHbyf9dFFlSfhraxrxIDxkTgofKMmcONlobQU2pJZdArkTgoBBMMMUlcDdRQJAGs2+HTNLgWMH7IMoAYLJtaYrkZ/mPiO7zrw8I2RLznDLm0ZkscPV8TgmCzLk8eHjnF8QVWdY8IWk2tjSZtFF4ieTeFPAOlTViHwSi0bMUiuEUDYh8FIV0r2p9AxoZ2w2e2wEnDHudnHJwYBpGN2wkme6OcuQ+UzkFo0/c1qAquTrUl1O0l/FKC6Gh8KUF3fo6qe0PVPeNZ9jdFHxpilJk0gUiQ/LCEY6Gvuvxg5Mx6lEePewrI3wqKuh8i92vOGr7kyq6x1H7IPiMgEBd/hzA7rt8TDB9T7B/RXNZcfXa989Qg9SaujjmDCS3Lfo73rcg9yTOQy9QWNlly6H56w27/Htb8iuA6fIm/YlrWxPKxWkue7jsv9rEe9TZ4qfhdhteH87R8kxoH/69f+H3DxeX5LFfms3cgDT0HqIB2thXzy8NnXaJvP8aypqWy8If146OX6LTrSN9jT6phJHeLCu0EJWL3MMYOdn2uS+TCgPKKbryU7kOsoQsl1l3HilaOUmTqpCzhdIx2MJc8smvr76PmF4ZpdcHy2PuOxaWjrC76qDe+Ph6nAugydvWVK1njyZijddxM4rcwRmCzvUR93wKYISghK6hRIXoDRevLV0FOX9VKucRlzV0uZo4+ft3Rdm1x4Fu324ue0oaofou3mpaB0qBtCZfGNxW01ShoDqOqEteU2z/NLQ83lfiMu1oVSpB+1IgxK1HS0yhjCcZhcaMcPU7HtRpHoLu7iV0n8mgCo158556xSROeJnWNz5fE9uMExdJq+E+mEbrQL6QRhEO+U5UoZrtU4GS8UBlZKiaACPvRTBlsSemGm1hPgLL+7BZzmGDSdKnpxZmMvHzMzI2d9wLgAp8sEexswMP1NdLlV002sPtGf/mQRU2ab8VEM6jjrTy/A6WIqUzSnT/WmbwOnFQZjVtnQULSeqgyyGlNjzXpREX3JpnYx5sU916zegmpDWG3w7Zpx3eA2BrWFepWo60RTL2Q9jMo6h4sFQKejxMNaYTFErSaGmjG1sJWVJeByG2/IZkhidth7jTUanTdsUjlVmTldbooRJk31LgX2SYDpQ/QT2zwolV9XwOm62madbdFxK5pYS8Z+ipZIDwsGdQHU5NwSYKHShkaLwdBGW7ZKsdFxAqc3556mTdRnYFuLbit0ZdFtC8agjCGFwNDfxhH+ZKHigEZPm8FaaSplJlZprc0E3BUQT9jfVjoFMjB4GgWU3id3JEsx5HPTTzc5n/skgHXAEWJHyOado67QqhLZD9NMDOvl9X0qQQOSeMXoUSnilUbrbjICndqw83xwm1Hi0RgtjCJLnGoLF7PE01gymSGD/CTMgm19CnqHk+cKR6DgDJROZnX591XUhMX70pkhbFKR+Zg3VAJC1ujQoHxmgCIva2IQBpSvjtikYnjmBKD2I4QBEwPNbs37VyveuRe4WEdWtUZrWFWasU50LmGcXONLJsMSqD4NbSE0inFboeM92vidbDMLNkZH6iLe7/D4zPjXMyidQeqIsKlPWdSFOV3aWG3uZqiUptGGM13n60AfAdVlLi7z73UcJ0mlcm4vGdZLM5mi45xgoePH9M2yuXr61S0MlG8mxk2F2Wp0I+BLihCdxllF0iL8XceACT02DFTZAFhrS4xmKmAJTMRcKElJZJaIjGRpFaUmA+B4wqSOUaEz8zA4KUYIizqgp12mzG/1uSVbzOI0kEHqkBShqwnNBQA/NTyHUa7RyuZrNRd+YjQoJfPKJ4GkTzek6mUnKQgzeFo3X/4qS1NEkwsq5f5TiQ+5Pz/9ibTTbVEDW2W4l2U+rvqnDMOHNENPqLZHIHXSUmwCMxkljiExehiNdCO8TOYjRgT08S+X+Sgb/5hN5ORFRbPzCGAp979CaC1rv4AATqQ+wsAmVGy0FakPpbgwtazh+XrsYqDTkVFpYVBHTZPiBFIbk7A20jaBs8GzGytG4MobmtGybRznJnKRzMyi1oY6CotaSHd5Xs16w2HhvZBSzBIP8+/rakvbvkNav0moXw+C9ezace9bQMYuIPVn3vB4H3jut1z438DWXYrEne8Yx2dcBcfGDzxLgQtvOBstax+mPFpnM9SUqxp+57j4wor/enjB+Av3+H+nxNPUS7dlvk50mk1+YdnNFad9QswgdYo92o9oX6EqK4BzZUhBCZE0zqw5yDI0lZp0mYtZ4jGL+ibzrsSkXWshVBbtXTZTKw/IOavdYMM5db2nqs9IyePCnuvo0GGWljJWQawwXcObu56mTTx+o+O/8pqOC/oY8GmX5Q3FyyeGgWF8QVWdSQ4fLtDInJi0aMBLATJD/IU9nUG5Raf9/LmOvp9z6OM47oRKudiTYjGe0xANyiX0UE1dV6WwbYZhAqu1X0HoCe5FlkbwgOTO0e+ztrawKJVZAeeT3uyR9Ed9D203VPUlVSXyezGM7N0lQxgmjx5Zi2uR/NAQguGNFzVaJzYEqqwAp2uFiYkUhEW9dp4HXc2labiOo4DUPs4s6lDhfEfldwR3SbV7Rn21ZVd/0l3h7ZGSFw+kAoiegM2nj52+X4Bn5W+OioB6RdU85Gz7eaxpud59lW58zhPfE1PiES1npuKRXaFRXI/X7JcgNWDSZ4nNGfc+9YN43/FPvvFv4OI7+ZKu5byGW0DqA33/DK0r3PXP01ZrfPM2T2tFZRMPz46Z1MMooPKy2+eU2CB7x5n0BIv1S5Wf5XGFBOV9EpkPnbsEgnRyhcpinD8qQqsTpuxy3zeH0BIMYJWQkOq8bxLBtiQM/JR46mW+29cbPm3XfGe1ZaUs7407rqPDfQw54SgVUAvmtBLN8cJwll8XGY78tyWvfEl+uZT8XILRhSBUOqi1NguiT+5oOZFgktc3k+/QKSitdYOxWwGm63sfCUqHShEbhWqg3Qq2YC00tRzTKoPTpyaaUzdYms+hcj65RSeZ0hDGUqgAv4DwVAzZdNqKfE4pEL1iDnMXcyQSp50Cd/HLH78mAOr6Oz5P02jiOJDGger5M0I/EDuH2wfcPjB0nuHgGEfNvq+4Hi3BWy6TbBxMBgPwpUVYWMdDSmI2sYB3UwqE6NDeHMlN3CYzAUxAdlIGlUIGqsPJZvEYMEzRHzGilwzqjwIFysQblvIe0VHYpiWOmc8FiE7TqrJceiZQ+uhvyIZoN1nTxSztNs3pYoZYjCmLTqpCpD0KC9jaza0mBB/HPp+KAaaZWA6pOSfWqxmcbg2pUdg6SptcXjyMZmJNn1a8l7FMiJPRJFtntva8QHpFBjW9ANQp0qFZBUPlE0YLlKK1GCc6L/rUIUmr7wh0iIZ3n6VR+qwvN6SIV5llYNoJnK6r82yOeJYXVgHoZWCyiaemdEkJ2BpHQvSiTZYiJkniUuQ9VspkBlhiY6WteL3xrLaR5kxjtxVm06LaFr1qMdtzVJVf01jqw0IX65uMx7ZhlY1RGmU4MxVVfm8rbajRtBmUFtNP0VdvmY28lrWGpaa6FAJSZrGl+VglMbEaksjQHKLnOgjYF3KBwKWAT4GQRiIaHyRJcvk8PtVMD3EG61OeX1LhNocRp7qJ4ZhSs3jsTX31099J+36TeeUvj5iSGCBybH52ysYtOGSt9KRJfRohS1fMOr/xSFqhyE1Mr5uSdKqUOSbrYlulMSpiUhL9/+gIYcT5/Q1QzSQvBrV2iwkDepREcXrbxQApDEcsgmrf8vxqxZNd5P7Gi4SQzoUoq2grRTcqaiMAadG9XTqtL6OAXLoS5u2wrVDxPqv4ebZJJErE6NHj/Q6FGCQWUnIBqXWSO0oBoDQ8LmU9lszptbGsVcUj09CqfN6jbjBcizHgLtWMSeStSpGlz+d0MQguTM6y7kXmgsTpYS+NmqWgkVTi3Zefbq8eG6jOInU9gy7jmAiVwhmNig0qnlH7ERN6jLuUNcHUqNDnkkog5nOuFETGFKnUQnJKCVs1pNvB6ZjBaZwcl8JUiyai60gKQRjUdY093wB7Ckidn4V7WSZh7GrG+pxfGK95HnaM4zEYYPSSyVM6pUxmVFtEh/pmnILRN3Qo4YYB2XEH18cwqJkLektw+jYWdTFWnl8oTeNqRGVg+n2L4r6ueWhXPHc7uv4J9/s9ul2LRmNl0SESTdaYj0L+Key0UDEzqSPCNMydTSEmRh/RmU09A9e3f0almWQFAHkhjbTD5tzhhuQa8DKvkGJSG02NjitCCuyi50PXSYFXC4P6TNdca8dVkvN0SJ6OwJjMRAZwQU2yRTrTdFdtYN0FWmfpkmKXFKvR0tjAxgQuQsWlMlwpQ6MMtTIMBMS4MomFbfT4bIC4jJg1iEMmNKyah9TtO4R2QzCvpwD1jSvP4148AF53bFaG73ykpTAxJq6He9zrvo/t+BSX5T56v+N5GHgWHQ+M4eAMm07TbgIpgFopdK2z5rzclNY8/G7Db+uuGb9xxv+XxLPUE0lSUC0gNXlezEW+FIuPQhSQOstUmTCgwgrjvBj9Ok2oBIMpTLmJQZ1Z/qFSaKfQUQqo0Sf8qHIXj3z+ZXfA8tBOWtQLmY/SCSDnu8hVGLsVdm+1FUJM9Iz07IKb1h+jFMYoTKz49NOa+w9H6nXiUw86/ldPtnTNBS5Fvub2mewAQQXG8YrOPMkkintoP0Bzlt+fMKdD1mE9BadPAWq1aIefbzObfJLvOYkl8O8XOt7eQxgVo7PgDcrVaJewg8f4gB0GzDCI9wUQsx9GDMMstxgB9mgtGtUmeVS1mQCspDWpXqHKHsHdk6KAPSeEjkP/hGF4xodhT++yF4+NBJP3U6rig66BZwBDBqmPWdTWRuoq8kDBTlcTi7qPAR8dI0Uqrcb5Hd5dYvunrK4fcGheTwEqxUEKDZME5YJ09RFdwkvwLGVA7fTxSlma5o1M3tDsDjV9/4QnYci6yGsBqasVT33Pi9iz3783mZJvY8Cef57UnPHo7f+eGAf+yYc/yV9++AW+QAVWOpuOQeoR73f0veWw/wpb07C1NZfVG3yYjUrvbwSkNhr2Gq4PM7C4NN0uS3GRizyW+1CZQZ1JXjY/x3RuCxCpKpEEipUAvUDuyDCzOV7Z451E6ZQprGSdhABRiDytthP5AcDpSgocSfY9vzBccwiez9RbPm1bKqX5xXHHJQP7V2DnFik4pdQEThfWs4DL8rp6MXnFl2AcZT9VCEBLicUiw2rMYu+0wFGWngBCEJjP/SUJTpsGYzaTjIe224ktHZuzyehQQOlKNKUbRWoUpkk0dWK1SpxtBVdYVcK4F3yBGx1n0350UdgYvfytW6wJMSbGUUY0atHdl8Jm7uQK1Y3ccCkLexd38astfk0A1Ovv/+9Yr2vSOJCCJ14/I+wvSf2euL8k7K6I+x3+6hp/OTBcj/Q7zcUHKy6Hiue+5okSc8Vn2vEkdLTech1G9tFzlXq8dwL6+oNoDecK3jLZX06wZSNYKnvL6lyRqVDK3jCuWzKlRaqjGNeMMzPjlslbKz3dX5jTMXpicixVTgsoMRYgTiXqrBNL1NRKQONYgNLSDg0TiDdmVlrIgN5SyiOkhEPAjhmIjrOkRxSA1ZFwhTWta5SusHZNu3qDym6pqu0kUaHNagZby0Zb337qFiMWlJ0qnX5zhm8aXFuLHlSrsG2irsXwsIDTkCvaSjF6BETOe//RJ8YgZhZS2ZxXmZRZFGKatMGYFSH0XIaRSmlWymZDygqCJowWFxQrG9F5Q++Cpg9atKdhBkmT5xBF2mMfBez2SqGVsHSr+oymvqCuLqgq2WgYI3rbSzPOWdajtJ0Ok1558B0xjCQ8dZb22OiKM1Nz31Q8UJaHtefeZuDsnmd9HmnuW6r7W8zFBeb8PnpzgVptsPfeRK02KGNRdYM7jMD/5VUu45fGHzv7DPesYaUjlY5sG09TBaxN1M0oruY2YSppida1JPCm1qicDZSvhSGVQiKMkRTB7SE4cIM6MqvsxvbIrPK96LlMnqvoOMR8PHI7ZTm3XegY057Ov5iKLsuWtumcma7z/H5OCk/WxGluKde9nN/HRonlnFfGTtIgt0VunJt+XjKgdQY4BYyanpUAEwAd1SznA8cyH5NkxFL3N3/vC+CZwWjvo8h9TO9Lnq9CEbOEhGck+UjXPcH5A87vqawwsaxZT6yG0iGhMsN2+QmXiZlSFp08T959zJfrQG2kULDNYEllRO5jG4osQGYhL9rrYPlVHQPWGpJV9OcNwT6m2Zxxf/1p1i/+A5eXP8OHz36aITlCilR5nKvCHFcadSKHUBh6BRxotGGbr8d7puZCWd7RFS3QqkSlE7WKGHVsVAoi0SJGt5WAX1FlvVvZj435XOjy3H56jEuU91dPgLi0iIYY+D/yldPT7RPHw8eRi/tpYpgMI/SjgNSHg2JsDL7ZECrLShtWeV6rD+8Rgxi7xSLnkc87lyI2Fwn3yWcwVQpXY1KMUVOFJHq/SioyMSq8E0blrAMoRokxjFRBWKnKGPR2S9W2mM2O6qpjvAqYQ8qyDIHz/cindw1deotfGK/5mtvz7HCFtefS5VJtsQsAMN6mFZi7BoDs3B6OzXBOY+qUicTqGHxY5hspzaUsgzophJjJg2ACql8iC6ZVotZxOu9iHlfpzc1zBMUoUfGWrtg3F1yHkW9c/hyPnv//qPX30z94hF+AJROrMijcCMOY2E/TxlIQJ8vnaDA+EWJkP0R2Q6Jz8+YPjovOM4M6G58lT3K9eJGUZz9iUZsjwFppezQNS8ecxubNsULjwp4PwsDYi9705+oz3jbzXNVFz3VwPNeOrbXUGEzUIrHls5EeKfs7JO7fG2V8Dw2XwAdBEw4Nj9cDj6Nm9JaR+ijvitETUhCwOuvophSm4qkcMwEuBHiL3H/wW4lv/ga6e+d0urv1uH/S+Ol3A952fPGthjfvvS5dgTl+4PMb3jgbeONs5D+fw9fPP83Z5vfy5rsPseZ/5Or6f+GZe8bPj1eYWlHTUO0bVm2kXnuUUehVjconSXSesB/QteEzv83yv/3Gc77vZ9b8D/s1X856rESIKmGRjiCftZeDMiKV4neiT27W0j0xXGLyOVQV5qOxBK0zIAXl3LYWTA2+Fb1RPXjs4FHR4IJhiAq9PdGC1WliC8PMovaNzRrMYTYkzQw7ZVaYGqrkWbdvUUzF3HjJIXaEMNCnwD44rquRZ6alvlzzeLfiU2cdFw8cv/GzV7z9tOZ7Lh/zP/oDPzu84Buuo0uBYXiW9zE9IRzYxJ5aW5J+gGrkWklWwJ0lMC23m4B0YSQWNqLRovk7gT+La7zEkXY9c+FqDDKvFFDRTzfLOFr6cUV0CjUkVi8+RdV1mGGgGq7B7YluR/R7gt/hwwuZA4anU/emsRtMfQ+qDalaE1Yb0uYcFd6k9o431+/g+g/ou6/TdV9n373Pe8Nz3h2ec47hkV3xZtUSOOPBruGdQ8PbzwYePhjY3A/YlaKa5kLPO4eBuq+p2bDSucPQHbL5XUcaEylFDof3AFgBF/3j13D1ydoVCLdKT54Sij6KUX1blPGsV29iq3PW7dv0w1N2h1/kw8MHPO1fcKEtb1VrvtQ+4EUYeN8deL77Bb5++Dqry//MvfMvsD37HqrNZ3nz83+YR4//N/yf/sP/mf/+/DP8gFnxhfo+X7Fn/M9+z9fdnqe+Zx9H+uEbPH3+P9H3T9ge3uXe5W/AP/kevvLpC559KvL4EVy0AlRXBlzeHy6NfWtb2NZpQYBaSLPlPadZXP8hMZGnIBEyUB2tIjSK6BS+0dhB5lIz6Nw1CNPCpIsOdenOFuqBZvYYKmt+o8VrqJB+QAhW+0zM2UXHTx0+pNWWx9WaL63u06fATx8+ZB/9ZIieTm6yRmtUJm4V7MSYJpO5jn1+Sixxkfkxs69UXd+f9wAn2IC8Eek+9+5FLs4YYgpHkh8FzNa6uSndUW2EIW0r3AKQHrbVNF+ZJmHrxLqGuo60K1jVAki3NVy0SjqyF1KhZT8lx13uK9jCsqg+5kLFaOT7wqYuBbkxp4ARhUdj83mkYsxs+jwM0XOb0f1dfHy8ntL8XfxS4tcEQA3IZLwSx2XdbtDdA+L+krg+R2+uiPtLdPscs7pE1ztMFTjbzYzG4A1gQef2aJMm8KQPAZftrEIIpOgWE+aJM+wk0G8w2qJU6dmrUUlnU6Rm1h1aTB5LcDrmdrICTotsx8sZ1EdT0NRmKCxNFq0KRbbAIUzmMUVGpRhRiORb+XrMND3Sm11KeizAafkaJ3A6LoCCsQB4iAOvV5mHpyoBp43IepyC08ZuJxBqqal1qwFHuX8JUi8cw+OCobGMwpIcfalu5o37gpkytRj7OZlNQeVWZAml7ULGRQsYH8XcUGQyDB2GNirRNPdQGdmIuigFgcKimgoBJ+34kTxu2uSKb4M1K5EX0c20aC/BaTknivRA0XAVjd8QfW7x9cfmiFoYyoWdXBlHXUcxFlopdFuh2ha1WqNWG/T6HL25QJ8/QFXzJnymJXzz8b2PrrnXGqyV12/OQFcCQOtao2qLriyqrlHGTC34askiPHEWTyGQQoAQiF03yQPFMeL7wHhwuEExHDR9Ly7p277mMlkudc1l8lxGLwlcbqk8RE+fJVi6KHNGIJCC0OBkvlCZvifGjtK/ICYYkZEYLCG345tb9NNK21oIc3vydP4pS0Gds0LbpDVcooDHAIFIdcSiPmZJGgUkzajixPw9pdSeGkcVVple6FYcgdYoPGnSBV9Kh2ilUJOOXcBnrVRhoo340FPZLTYcMmuiye13m9tOm+NxURazi1zv4Nkh8aCLE4MaMuNFKYw61tSdDazU9PPyax7U+dvK4NoW7R7QhO/iLA68uPw5vL8mIoaFJOl4tAlhUZ8wUyfd9NzVUynNSptpDtkqwxZodaJSiZUJGAWVEaBQ69KhcXKsssZyTNKpIR0bM6gYUJPmeDj5c6MyGKkSlZ5fb0i/9Osb4GIDZ+2s7WiUABCHxaZtCBrnauzmjMrdw1YXk+6/CgYVNFGuuGndaQq7P6VsRpeLrEpNOtQxiq6jJjEXHjODOqTJNFEZiGNE1R5lRnTbyhzTtpgQqUIvc0qOVRu5H0e+MKxxVW7hdgeu/G6aFZeMZq2HfJ+dtKhT7DMEC7CC6F9anC0as3Mr/wLwfQmTpnxanbvIjmV+jqU9btOavvm7JCbLcMOIUkBqzX1d8ci2fGO4pO++Tn14B7s5wzfVBExPBob52lpu+McgYLS0yaq8sZOvLqRJU/6UPX0bmzotKZfFpDLOha1XjWVeJnO0RaeamALX0fHU95yZmjeqinNdcW2qyUi2zzJeI5oRxYrC5pd5Rgoiojfb1p62r7mMii4l9tlta2UirRdTxjZLXk3M1yKflKW8lNLS6H3SiZNSFE+F9Tt0bYtv9Ecf9E8Qzy7hvReJbeNoa83Z+vUzqd+8qNj1kd3g2R8iV7sLHlx9kU33NYbxOd7vuAojz+PIpa7Ye8M4aIIrRWwtEmWAqgNpvCKOIu3TPFrxuS/s6b98xpg2kud6yXmLye/Eok6BGEa8HqiiI8QBHQdi6NFhQPtadI8rK0BCTFOngNaiMQ1ZwiIzjO1A1q8Wbf7oNDF+tBY1IMXTExb1FJlxKQBg6QAUqRqvK1Qc8XmfsI8O60UG4IlpMMFgdiu0TmzPPPfujXyX13T79eR1EH3PiCeEA8PwQuT7zFrMyqs1xq2mopQuZpUvAaeL7nZplW+KHJ+dWYkCUN9kqc4MxRkYKp0YYyM5fYhLcDExjCKvMI4KNyo6UzMMFdXBU3drbHdAD9fo4RJtGjHm9Lu8vyus+R7t95jqAl1tMfXFBHqFZoWJb1NnILuYAR7s1zh03+DSX+PcgSEFznRNMAliRTiscodKz+Z+wFQKUyWqBtrac+Y1D2LFTtfsbTsRKEKRpsuFAueusMNTtDrOMb/ZkK6f5R7Wz/NnHCbwcQKpb1nDbgO3S4hprfxem4a6vscWIWYdDu/zInSkcc8j23IvFwk18DSMdN370/NskqfefBa9fkx98d38q8v/Qjj/ND9gWr5DW1jkktoPEB3j8Dy/d43WDa2ynOkvcqnP0DrAAwGptys5lzq9kGnI6cBcMCmG2Wk+V7PpKXGhX61miQ9rS+KtUFrmipSNRT0a4+ZjqGOQDgngZRrg5dIoxJFZjk9ktaQrT4OC+7piZ2pehJEXYWAfHB+4A4HIPd3wqXrDB+7AdXCMt+ASs922mmQ95s5SnYl6ZmLH3zhP8n6n+PpoZeR6qS7EpLBI65yA0yn00ono7TRHqhRg8pgw017Z2A2meSSgdO58CE0zgdKhMsKSrhRsBVqwdZwIbktgeruaPay2jb5RjCijIkWJ3IWqRa6HfB4UmZeSrxjhDt4o1sVb5v6j+b2Q0u4Y1HfxqzR+7QDUy9BWwLJ2Q2w3xP2WUDUiPaALgHXF5nLeTIakCEETMIymOgJe9tGjM1AoAGwACjCtJ9BpKfyvtZ2YKlDabOYq4bI1/7aYgeoZnI7RHYPPi7jZtulPoClZ4iJZeiIGnJq1Ocfcrm8Sgp6UcVn8fVj8XCQ9Jt3ZvMAtwenJobqArBOILYIjZSMnZnPCCLa2PQKnp0VoCTqXMLe0NE0A9mLzVcDp8nMobLnZnCZmgBpy4urTEQtjDDn5GKV66T3g08RMkWEz0wKslMElaZPqo8hFXE4SFBqCZgMzWJjNkcZEBlKYGemFnU4iqkVFeWLxZ5a+aY7Op2XCN+mZh35uO41DbkUNsDBHXEoKCGMSYSxXwuayrcWsGvSqRa82cmu36HZzAk6/nnjjc4F7W42uDXpVY7YbMAZd16KvaoycCx8TRRcbOIIEzbkXwNqNpFFuq34g7EZ8LxJBF52jeRLYDZZ9MDwPNc+U5VIHdqkWE8s4sguiEw4jNsvYePK8QWkt0/M1lhJJkaHaJIy36DFZ77qEXhgl3vrZTroxXjUKlHX6dfq9StRJE5Rc1+XXpWBVdOs+LlIqpnzCUlYLXfAliK4BnSCoJFIf+TEpBWw28nJ+dtXW2lDZs6MNz6m2fykmNvuB/W7Fs33kchtpa2F33KZVC8fgdPl++btS/7vxd1rh2zXav8EqfJ62fcT+ILqGKoOkKgP+9mS+PTWwnXXVBXRqlaFFCVCcwenKJCod0ToJSD1t7gWsXsoQlprGDLjPwPuyK2QZy+ezlWjilm6FQ/Lw7279s08UZ61s8soGrbYy385t24kYI85rtFtjuzNMfyEyUKbBq4rIQFSlIHJcGBlTpEqRUWUtaqQoGPVCjzpK6+4SpI56Nk00lXRd6NGTqnmdKaBWipEqDEDMpJXIGvjcdWJkPRUanTvQZZC6rNtVMaxLARWPmdQaiMlD6G/d2E9rYxTtQUVzpMteIh3NKXI1qlQ669XUSVGA6RuyP9wyP8BUFJnfq0ggxCL/kRuRhHUvWtSPbMvZuKPvP2DVvUfVfQrTtvjGCphWXG9hMpJzXthE9QJgmttiEy7I952LjCHdKs1z2vlwPD4iB6SS51Z5D3j5/eX5M0CplEariqQcIyOXYeRD3xGqLVslGvJ7XbpvpDOqyM+4XLBeRgHp6jqyMYE6WnZAB/ggZsutSmyTnlhwZe7QKqJTmjr0YhQ/h6QWXTo5V6jsmnD2Jq6tia3GVq+HR3R9rXlyCdsm0NYj37N+ebfPNxurWvP4wrIbIpdd5HBIdC/eod19J23/AcNwyc5fcx1HLtOKfawYnZa5PKRJuqfkCWYcif1IGj2qtmw+1fCFfkf/8xeMbKbctop6Anm8EomqqCqKF0wx+02xl2vYN2hXYWyFqQzRGWFGWvB5ri3nqTJpNkaLAlLbIeKsmnLXjwsBs/SxXm2R+YBJtkZkwippm1eWqAyB2Sumi559NDyLXkAVbzDXK6Bne+a5f2/ku72hS5tpD9D5Do/D+z1d/6EQUapz2voepl5hmhoXzREwDTfBGDn/Z4C6zW3z8lVlgHrBVLyFQS3AULkvTcSTUvQqJJXRg1tJB4/ziXFM7LQijIqhrXGdpTo0Gag+Qw/XqP4p2jSM/TfyNSb5tQoCXFt/DxN6VH0PHdckW+M3Z+h6hek2tHYrnY95/3M4fJ1ueMY3fM+52zGmNcEmQqyga+ApQM/6vKzFwuJcu8D9YNgFw87UHOxKZEPCwB7ZT47uiqo6w7tLzGsCqGMYJBMsAHWctbpnBrX4LQAyx35E3JC1W3gzARjTUFVb2vQmAIfD+1yGjg99xyPb8sCsprXq2QlIDVC37/D48X/H+ynyf7v6OdzZO/wWu+E7tMVU25k04OHD2DEOsF+wfFttOePzPNdngIDUb2zn/GX0ck5B2U8uXtuSC6/pBni59DkyulzfRW4sd3RlblY0ELXGO5s7I6q5Q2Kxcy/+EyXLLuzmIvfnl/v0/BiDos1rQzH4PdMVz7R0Bj/3A9EkHuaOIE3HZRjpU+BGFjnhI3oib0k3uRTEThnSBZCWPzUY3UxG8EUP2jYPWZoUTi8VA4RBSC7Ro81KCkXLutzCn0rbLcpuSe19oq2IVYVvGoI1xMoQKiWM6UqhqkS9njuvm1rmo00jjOkCTLe1+Fe1tTrSHF/OPRPbp3RJabhFqe1WidGPiun4x0xISGKMeRefPO40qL/98WsToC6hLfrsoWzetIBYFiZmZfv8GRAyg1WkFwiaESsmFfkE3QeHSQGzBKlVJCZhs6YkKnTLdhXRelqwa8vvUmFbzxrVWpkjMKpEAaLLpofcsplShnTK8ys9Pe/0t0e/V5AEAnMxMKiA0zEzdww1MUtQSOu2ybqRp8aIy5h0p0sFlmNTtCU4PZlxFeAgs6d1ToqVtpkJ3EoL/yk4Xdpu4Ah4xg/cqrt1solXMYpzd8zgQ8zalloYK+OYZQbsvOE1J5vXknAMI4yjJKvKyXOzWACW0i6lEDDEIDIdmd1kimph0FQ6TWMtDOqZsX4qnTA3NpvFa900jFQnY3IKThf2tA+9SHtERzHRNBmYXmmz0HQWEMJUCVOJmZCqa1TdyC0Xf9Tqo5ms32y03/GIZtPMgHTdHD8geNIo7uspBAGZMzt6AqQzs3r5fWFZq2r+LKwErNZuxJ6PVF1H04+sdg6tBy46x2FvuDdU3B8tz0MlrGpludQVz9XIdRwzKCbH3pMEqM5aoFHFRVODQiVRKCYGovKTWdU8lxyfX8uvBVhQxQjtFjYu+fyhmBMu2UWkiWd5G0hdUxjUatKjLvIg4SMW8KWRlFYzi8mXszilI+bwkkmtEJA65Q2VPHyeC40WoLqwzL0/3Ehuy3UxdzRYqq7jsG+53MGzbaStFKwLC/PklFqA07fJfMjY52JXFPaLCqDKPGM0vl1T+cdsN5/B+QND76QcmOdOYZCDyt8XcLqwy8utFIuK3nStFJUWSQ+QoVKzfQABAABJREFUIkJhTYs26QxMV4284WWCrk/Y1Utgevm7gvPr3HWiNZiVmqRzdG3Q8fVscM9XuSVyYrQnOjWDjM7DSgjEuMHiNmfUwyOq6ozRXaHzxiclNa1BkyyNyvNo6UpRSaRNUFn+RDR/tUmL4yvvw7t5DII7ZlGnEMSESAuwZTZryFIgNiboIYXI4/WA260Yq42swSnyvu9wfs/InA9Yu85MNPGrKO+lsNFOTY+WGp8qle6iVWZSH1clxKht7sBK+T9NLhYtbpMx2kuKV+WZC0vRKCZ5mZiUrBWZRW0SLLesBtiiuW9qHtkV3xieZhb1k8yitiQzM8QKiFyuwVJIru2iJXYBAAh7egaayvmjbwWs5pDxCSgl7CtlPqLQqmZA76ggfNLdJhvyihQ8XQq88AO75NkqKyxqbQUciJKLjaQ5D8gdDtNzGZFLqZvIugrUzmaJNei9ZmUjKy3FxFaJQXCjDfvoKOJSoRz1nEdqbReSSAJWr5qHjNstvtWYNrFuXs8mLVzC8xeKpk60deB73nktT3sjHp5XXHWBt/aR5/cST95Y0X74XawP79L13+AwPmcXHDsb6FLF4MzEoGaZC0DOHXbEfoQQUZXl7J3Ad3fX7H/xgi5tCClxGUZMLgKoPL5yHXtCybmyDrVyOwFHMovaOEuwokUdvYBP3i+OuyZrSWvwAR3E0C8MmuhFi/RjWdTI9STa7mbqtDgy0oLMYiwAkqVcfAkm2aQhBq6iy91WFcZZ9E46Qldt4NFFz2+ILSNbHIFnYaArHVBux6F/kvP7DXW1wTYr7GCJ6CPWNNxkTxdZjyU43VbFRyJ3QE0A9e3F1plFLb+fAGqfJmJKIaOsqjnn11r0X/s+ERrF0FS4taXZ1VRdg63WmO45NgwTkzqGgZAGtBKw2vgd1u8w1T1UcyFatlVFMg8w1Zom64EX/529bem7b/D1cZ8Njj2jXQP1BFI/jAPr84CpEnUTab3nLGre6Cs6VbEzK/Y2yyuGkQHH6HZU4yXGrEmfyJr3I86v0vWbNX+PWJtxONrrLgHrV3/+5X5mJndZu2bVPCSmOI1VSInH1ZqLBXBZQOryPrfR05x/D48f/7d8APzE1c8xbj/Fb6nOeEsZqDbTOng9OobYMfQfTq+rlGEFAlIjIPVFK6z+tsoA86LrpxQ/IBv9ajBJmLMFhDyVozrtIFhKy3mdiAJXSKcLNTpEASj9mAtQ9rjreBGFMT3m4rxOCh0FUB1TTZ1zyxaRodui2RrDVhs+1BXPfM91cKx1NYHUAISRbgFSJxKnV6Je4CSFlV5y9yJ9ClKEmPL4BdtZmRWsHk7dCMVvQ0zTnbxeBqdT7I9eu3SLKLNC2a0A3NUatzkTtvRLgGlbJ4xNrDNAvcrgdJvlPLaNynMRtJUwp9sbBqQ3u7o+LpaFeDjeh0zwTkyoPK+pGGTvn0q+d6dBfRe/euPXNkCdQ28u5JsoCVkKAeNG6vNLgvOsnZ+ZckkxRkMoiY5S7IzDZg1lk93XJ7CVSCzd7EnnRD8JEyDKJiVlwFoW1rnttjAelbboOHeKn1aPJ3Amm9kVM5aZvle40XDkkpJDZR2oqAQsK8BZrz19NNRamLIms6gL5PAqdbdZrzTLfMTZoKqAqz63sgYKi3IG7MXcoBLmhmlFX/YWc4LbDYsKHbAMQ56ICzMks2pn7b08kTthOSpdGCtSxeytmFO4cLyhXbrqDiMMvSIOimoQ52+VTVOmt6VEziEgbHUxLLH0OrBLQYoBSQOKNipMFnoourBLw8mQP1w+4hTgpDD1T1uioLTZFQAzs6byRsn7AyEcMsNj1jbXqbA1MyA2tXopajVvEpQBVdsZ4K0aVL3KQPXrZ08DmLNzTFvJ8Qye1B+I40jqOuLoiP1I6AK+TwQnLflym59DmZLszVrVZqWwrcGet9KuX9eyQTUGZVpSVaPbljiOmE2HMteMV56mjax2gXVnOe8rXjjLs2jZJs1WGZ5FS0yJXXRYJZIfRd7GJSlsTSwGlfKRlTtTMrKxjW5qgXvVOE34dQGkT+KjGM9LUzSQt1UjDGoBT5iK/7eB1MVs1qAWRlIJk2VNJv5mZo6z+Hn6HPkWEWmRGMcJWEnRE3RhelmC6jE5QT5tFSwMa2PWKLWn7vbo7h6Hg+KyS1y0cTJGlUQwm+mlJXt6vi31PSf29AkwrfImQQfRggurDev1ZxnHS4Lvce6SkEehAP16waJezt4FsC6yOzWz/nNMCtTcfSGbi4VcSjZPKud8Of+LvNHU9ig6LhMYXZYPbXIharoJpcesmvnar2usez0My/sbzXmrF5INTGMUIoRVbrmuYWg1w7bFdveoqnOseZZlPipUkJUopEhMGp8iVdJ5MxZZLbTUC0A9sciTyHxA2Qgs2eW3sKhDQJmAqmrkKoE0jtgxEF3Ij4dN63krjIyHhs62YlKZAs+CGDEJ21ZTFbMmyrGY2WalkDsD0VLAUVnOI0WkMSNllOt0758KcJBB1KxBrUCkICgFan2rMeIMRr+EZZ+LJJqECZqoPoJFrRQXyvJm1fLucEnff0B7eI9q/wZj2xAqe4PdDLO2Z2UySG0WAICapbg6lzUdPw5bPc0bWLCoX2JQeetnP2GrLzvcygZ7ZOQ6Oq6ip9Wytp7pmj6KJE0XA53O3WxK5L5OOxqUSSJxVQXaPL4dCRc1VRIt8DbkeSKzp63SSF+gwqUo+YBWgJ1B6vx+jW1pmke4tiY1itU6cvaaiM6ry5Hu/IxndWBVJb7+bORTD15Pces07m8sb5wFnlxEru4nhvtv0Fy+zar5Ks+vv8JVGLmKjp1ucEFPeYLMaQ16tZlILJIL7Aj9QIoR3Vbce6fne7sduw+3jCnyxHV4NRsEixa1J4QRHwZ86NG+I/idaKV+DIv6tIA4FWy0IFkqRoyPOG8IurThfHyIKaFeSAAx59WnknBI4YqkpLMr33yK7JOjippa57nCVZhreMBA3UTeOOv54uWakXO+oq+ImVkZ4sA4XNKZ94UpXF1QVWKQ2sfMxFyAcvJzmtjTWs9SHqfgdG1mtuKStXgzjq+pIgUkAHVi9CqD1GkipXT58u6t6F+PI4w1+F7R2xrfWKqmobYVVejRLkt+qD34vZi0+UM2oBywYRCjX9MQ65WwNts12r6NrTZZbqUR2Q/T8PzqZ/HuMDHZR7tmpCEcGkJSPAo9m/NA1SRqF1kHz7nXPHCWna7pbSss6iz14d2B0V5h7ZabC8U3F8EfSMZQzOhO5ecKcSACKh6Ts76ZiBNILXleU98jpcjl/l1wB4xSPLLtDZC6759MP9frd6jbd3jzjf+GD1Lg/3n9Fdwm8v3VOW8pg7FrDIqnvoc4g9TLbuUJpI5nfHgexDixykUUMzPzlzroYwATpQhfgOppHBfplMlFGZhzkBI2F7K8TgyDxqPRThjU2taZRT13Ys37QzXtPTwJVTCERbdtn/eoQcrX1Mi6v0WxVQ0XyrJShmeh5zqOnOl6klUBYdP3SUg4QhBe5PYLvelicFhwgCVb+hSYLjKfutpCtSGsNpNZYQmd2QSanAclL95QJ3OcKhrT1XqS2xm27STjkSrAKnQloLTJ1721ic16Nj6cWNO1gNPzfCTzjz7a33Ajpj3HMt9dfC23l+1FZP+RZP8RomARhTAX5fMLMe0Wb5O7+MgQRO1by6C+42d/fPy6AKgBdLshuQEdPMkNJNdjNg3NGEkh4X1kG5wAFM4SMASVQMOFramCpooeixIWdRKjvyUz2KsMv2a8OGlFSvYG4AzMG061SIRTIARQKkzVxSnKpmcBTheDNbEhz200KR6D1ErLAqEE4AkpMcRApzxNNPQqUCVNnaRNziSRH/i4rYM8Vt3a4r/UtSoXeVrcBDJXpacPoy3WtBmsbuYq6QKcTvbkHRWtrdP2lWV7bpI+qAIYGSebM68V+EQ0ELRiJE3t3TYbEgBHrZaziYoijKCG7PY99MJQy61tcmzl2BWAesxuyKvoBGgSTQdI0mpeMzOnxYBSTChn3d50A2g8lXRZar8JIL24P5siBr+fQGofenwozsaZPZ3lPWyW9jCZrVmr0tZfTGx03rjlAoCxN1jrrzOSHwn7gTSOhP2B/oOe8QD9TtN3hm6wdOOKPmjGtNTzljDkjU2WRah1pLGRxgbaJnDxYEdztqPaaMy2xqwaVNtOjG1d1yRjqELAtCPVxlGvPc1OgOpmX7EaqqwBKgy2PgWqqGmCYRcdIwqVZqAgZFhaSR2LqOTqSJlFXUCD2Xn65hyib2FTTr97CZBU4qPal462DBlsLvpytcpySEvJj8yS1NkAxCCGhxODGmFRR0Rjurzy8j2kk6/lp5RB6hQTqJg1Yi1Je2JuGQzRLVgZepEAu0liSSuDCgN2iPS9Zj/AbkjUNk2JojAu0wSEeS/s6eDVVAtcSnokN7OnjUtoFzA+F62K1rkx1Ot32PorRneVTW+7iUVNylM3M6N8yaYuMgtLRitkVkWSIkCMEF8GHJ6A0/JVkb2wbgeiAYzO17k+7jgoOu/l3FtWgX4Jcb4yXKzNpCc8hkCIsgEom7qmBr9K+DHhBoNv11h7jjEt1jS4/KFiyl0LudA3teKTNf2zzMdY5t0kxWlzJO8BkNvtgyyxUUvRS9fCok7jmBmJIQNaUtAyIWLHjhRE6qNuImfR8amg6Yaa0W5FYisGLpOfQOqmFs11lTuqdORIJ1guBc/SdCoFj1IBbeTcVMqDYTr/VBBjxRAWkk5TmTh3K0CWgljIexTAejEcp/Iep1EKJI0N4E0uBECpRJVPIjIfmgdmJSZhw1O6w7ucH96h7s6IlcFbBVpNBZViGLhkFI0hb/L93FbdjWliUS9lecrXMG3wTt58YRqVMSyhTmTFyt2lY0OZm4X8pQxbirlzztCnwNPQs1GWC23ZaMu1NmIyRZhMq9siPxOZ/I0KYGeqRF0JW9pEyb36qFnlD1gjOt+l60J0qCUvlOMepONP6dz9Fyf2dF1tadef4brVVJvIep24eG0A9SWc3eO60nzDRt595jBafUsME8/Whgcbw1sXkWfXiW88XPPgw8+y2n8FrxSHmI2nifRBE6OazJN13aA356h6BcYe+VjEUea6+sGKNz7d8RuHjt1Vy1dMJV2CKmWt3yQ5WHLCog0d0awmVu3Hsaj9JG2z6DBaoB3GeZLWjM4SteRkH8eiLn9fpH9uyHwwd2NNP5/kCPnskc7AFNglyROfJYMZLXqfuMdIXUfe3va4q5afqjfEMZGCo0sic9X3z9C6xtoNG7ulthWHoZVG1yN5KnldPS9JkxHiUgqqNgUUmgHqMlzHOr83pT9WlejWh5h16ysBqzuXGI0A1aUQVlnoM1BlrcgNjVbhGoNvVgRr2PhPYboVanwx52R+T4gDIXnCOLOpV2aFCReoeCaat4VNbRqR/LAbtK7p+2fsxmd41wnZJ3eojmZF6GpiVDyKPWf3PHUThSHsPfejpsPSUXOwDUMKON9zCAfG8QprN7w2gDoOsu2NYbEPmfdDMc456rLTLZ0A1Cob1r5KFBnMAnY29QV994Sr2KPcAeB2kLr7BgCbzXdQt+9Qr9/hzTd+J98A/s31V+jXnh+o7/Mgg9Rfq9Zo33EdHF3spr8v76GNnjO+yIdvbIgxcW8D20bOtXbBjl6CjqKFVcZuvs4m3eFFoaZ09pYoa5nO5CrfSrHdO4vxAe0rYVEvpXtU6aPJHRFkmTkER4gLc+199JIH6Lz/yyB1raAFthha0/K+NvzceM0hOhplOdP1xL97nkHqOJFvjhfcIwmPBThdZCqVMkcGiFMndQaWfSuFrTKvla7FslLr2KBiODI9RlswK1K1PtKZdk2Fa80RMK1PgGn5emyCWJsZnBYtfLWYmxZz98lWq0iSLY+3nB/p5rmy+H7Z0Zmi7D+USxifO8S9QzsHoRdC2qJr+i4+edxJfHz749cNQI22R1IEeuzR7QrrPJUbaV3AO4XzWljUzhKUuNnvdSMJf5CEf0iBMQYqRDKjtPCn3E7MxBc2Jy2fZlqcl+0ryzZ+YxpS8mhtiPFm8jCD02H6WaFIKVuOLUFqlSGPaTGMeAKabMwTvWgVJk2bTDaPEtDklClljm4fvVEtUYBrKfRlnqiaGd1L04TJMKEsqmYF2oq+1MLoUOXVWdp4FkyrmIHpJYtaG2FP59afaDTaBbQWAC1p2eClqHJ1Wk1M4WUsFwY3KjhA1QXsMErVNi8GywRfKU3MDNMxRYYkOtRFS7Z8iJA07WTYlSZzxGJAOUkqcHvFbQlgpuhJOhBDP7Psih5eGPDhgPedaCOGftKfnuU9bupPTxqjhYGcQayZYfStn0K6n3uP5BSHK83+yvK1F+c894ZLYJeibOwJjEkMfY6M9xaAiyRb8rna0dKqmu01PL70bGvP2cbRbgfW5x31+bWA1Zv1BMrp7RZlOjAaXTtMFagaj60SzT5QHWpab2mjYWcaVsrwQg3ooOiUR0cBenUU9kJIaSF5AVGVLWCUY6MtKd3ceb6sNfLjTL1E9uD459NL+QZzMr+jWunpfFxKfhSQ2iAGexFxJNcIOF0puU9nSY9ijLhkd0+A9eK4FRZ1yiC1ygUv0TD0xGSkzKWsyDvoYlhbzGkNMY4TA10pA26PHRz9uOLQJ3YD1DbR5qS6c4nOLYtRMzg9MaZzpCDJofLpBjitvcvAYJ6rVg9Z+c+wHZ8zuh2xd6JHnj9zSKBJ2Fum1QJWLw3spJilcAmIGq0COsnapVXWKQwpJ+8ZiDwBpyepnnKr7QRIy+NnUPpIGgdmGZ1RCkevIzaNZlXpyeiuNsImDBFqI8fI1XJs6lWiazRj29DWF1TVFjOuMLomhpGonGyWS5E0s6adCriUZWryOC51qIM4VqIXm7WlVreKeWzHRKrSJCGk8vlTAHxdj5h2JLiEcWB8oo6Rcz/ydtB0qaartsJqc3t2acT7PT50WaaklnkbsrEPWeZDNuMCStsjsDoGqRlMJn+mQRVRwwy+hjBOUmGFPT0xqDNLfynvccM0NbP3y9fbojCpKxNlDQuGOmsrF0azQUDUB7rCRMc4XosW9f4XqNbCoqa5Oe8tGUTh5Cbt02m6hou8x8ueI8XSGhunIvcMjDSTrMptcaR3vyAZnMakrF8kvwg8dT1nuqZV0m2z1pV02KSYjRItI7yEQS1mnXUTxRg1VIQEXVRs8mNrlajz3FzndbxIt0iFQ2bUGbCeP0dTP6BavwNrBJzewvlrwo/V/intiwfsqnMurearzyJGjxgtshyvM4xWbBrDRRt4cBb58B6EzQOa5g20qhiTmBt3KdJHi3d5nswdYZOnRtWId42xeIDdjjg6lNasHlV8auj5jT9v+feunditkq9FvAqkGCYWtck54quwqMvpNa05WpGMzOcGKT4Z51FDPXUCviqLGoRJ/bIMXoDFpcfN3KJfSAww57W75POcYKhGi1GJs7Vj1QTeXg98IZxlksWeGEYGxiM9amPWAtTuHhIqRaznbr3lrQB2wGSOarSsiTNrUYDp6Xd6/l6fgEYlnJ/B6QJWi/9MFADaKzqd2GZG9fK9FBB9tAlvFKOuqIYLKm0WOUlmg4YD3u9JKeDcFSEMmP4DTOjRfkDF+4RmJZIFmzOMrakzQDcMT9kdavr+CR/4fpovxhQJtiUMFeEFtNu9aFFHkfq4FzWurxhVTWdFbnCMgV0ccH7PML74iJn8k0UIHSkVBnXkWLIyM1sXpKsYjzWH5xiP5tPbiBklYpz3PmVvXdfnjGPkKo7wMSD1bvcVNinQtG9Tt+/wxqP/mifAT15/BRcjv2X1gAs0n2/OqZTm6+zhVpDa0ybP86/9NskZM9B40c4FlanLR3MEUofAURF4KedgNJAJU7cVoMo5ONZZHqhReF9JDmprVBgE9zgaX0XKvApPIiXyz3ECzK/DOO2bamaikiFR6cQKaKNimxqeG/HeGZKnUZaNrohWSFUpSHeuV2HugHyJXOFSZ7qQ947A6YUch2/XuKYiVuYIoNYuoEP2/Jq0uMlYgIVsgFhY076pCZXBN5rUiJSHtnIrgHQBp4sx6yk4XZtcKDPHhTCYgekCRpdujRmIXurfZ4JMuilPViTulnuS6EG5hHYJ4zIW4Rx67EihJ8We4HeEsCf4w0uvobu4i1/J8esHoEbANGUsumpI9QrdttKSu/LU60DrwyTzcT8p8AaSZmcqqqgxaCqtOQTPoHQ2FcigE5GQQm5riTc0oaf3oCxa11NrS5mMRS9IFnijm7zo2htMWRBmgwDVGeBRoLIDr7yInqql8jMZpJb3GNKsRd3HwErJ5qhWivGEqUd51mygOLFRc9t0Af8KOPVqfDol7YMcL1IyNgtX3gxOlzaeZAzJmHnjrQ3q1Kl4uamMQdqeY26LzMwT4yU7iFrS75hB6pGE9+olADVErwiDyuC0wwxSqY9ulxkzy8VX2qMmxkn0NMqwV04A6vwaITNSITOoM3t6zC3pk773Kbd0wbAtbIVisKXz+bM0LPHhQAijMKhDR4hO9KdTRMHE0pyAaaWOihLT5zIv29p86+LLP9Xi4ooPg+ZJCrwbevbRs4/uSOP8NmC6tK/rDMCUAkHZvLdK82SsuHArtocV9597zleOs41je7+nOeupzy1ms5pkQAzCIm/MiK48Wocsp5CouoQeLW+lSlpglaLCcK0k6dPRC1CYIjYXm+ZCzqL4lERveWrBy1EYJjfY04sWPpWfz6C4jYtStOI/LhavIEC1EomPIvkxJo50qQOKKl/PMaWpEDO/Vswg1TFIPcOox3i5zs0o6UgGJQJK9GJRTGB1lDNYa0tcSIAA+CD6vkSPcZ44KMaRCaCeE0gxQR3GmT0dC1shqPIRcltdQg/CXjBuBqa1cwujksKibjDNI9r2HdbDM+lg8Ffz5zsao+X4H19rRU+5yAGV0TKxVCA1OqT5exPxXmHJRlskzEfsR9UtfdFFy718v5TUcfvIs+evh2WwacwktQIL2RULdUjUYdYgtRZMm3Bry7YqMh+tAALaiJJXBqbLnOBSxEzM/9t1qItMSjFNLEZG0kmj0CEJk7oUAEaHqWs5zgXEr2rpvhgddozEMaAHhbWR1Qruh5F34oodDftqQxc9wfd0scf5g+QGYZzWwxS9rGHKTABq+X75e0BknYrJX3lsjOCHvFk5EKKn6E/Lei7zfmFQy2ZUH4HTH1WQLjroWqcJnDYpEWOiMomYIiHqyXw55ByiRcyXzrXlhbuiL1rUu6/TtGt8c054CW55A5xeaHlMJmdhBrJhBglgBqh1mJnmpdMInUH+8oQFLdRGOl4Ke13PAEu5LeO02y2vSFxHx4swcK4rLrIWdZ/8xEoVkFpkPlxm9y5L0yablK5spBZ5fnbAedTUOubjJjIqhRFvj3K6QqDI825mTxvT0LaPSes3sCtpZb6/gfvVx1BzXzHS+Iz6+gVrW7G3a95/DkZHjJKM8XWD1JuVZttoLtaR7Xmku3fB+uljtFkxuCu6DFAvCwFSYFoJOL05J602qHpFyEX4AlKnENCrms0bkc/sDny6F9meIQZCiDjILGpHTIaQWdQ+HNCm+UgWddQQT4filv5wFSPaCeM3Vcds65fFkoV9pEOdiRUhyzOIRIP0n0xFLGZT4+n5MpliJLEjUgeNGSq0Smxaz6b1fM9+y1ifZWkzMT52ccC7HfvuA4rpWXv1OfbVmtGqCRi6FZw+Aqk5BqEX4HRtFdXEqpbvb4vKStGx8hHnE8YntIoYrYVJrYpGcKJbvPb8voTF2pMIWtENLdFk+RPTYM1K5ooxn0MZpA7hwDh8Axt6quTRyWPiA2g3JK0JTUPSb2Jtw3b4IMuVVfTdN3gausnYLpIY7YpxbHj4wrLeBLQWM9Ui9dE5S6drXLXGpciTQWRnxuES/ZpMEgtAHeI4nUOnEY/mSodWBq2rI3Z1iVcFqcuaWB5TVRtSiozjC66jR7sOjeKBXXFhminPehZGrnZfmf6+Xr1J077No4f/az4Efmr3FVyK/Fer+7yla6i3aKWw7sAzP3BYgNTlOc7f+26u4n2exFL4gIv1bOQJMxAJswRVSHJOnUpSVWUIFkOzNNwzWiQpx1rkP5zTuRPDYgZ9tBcuBA6UElAaJtNyKSDNOc8h+okUIfKfihpDnRQViVZHWg2rqPmutOa9aHgRRhyBCsOZmc+pF2GkK9JSarlnleN1vI8R1vTE+l4ypzM4XYo4vrHESs25jwcwOITEXcghekSA6ewVMv+9SPOEShEbhW6SYNi3sKarxa2A06J5fywndNydccyKn0DpE3NW+fl2cNoFFt2cJ3uSAUzp4i57j7GHMBD9Dj9eEsI+d0vfAdSfNIqs1V18e+PXFUCNMWCstO5VDSprzJp+xIyRxiWCC3M7aJKSZ0c1Vev3UQCvKgqT2qDQSRhsY8iyDOX1jnQINUZXuZ1l1laajY6Oxex1Cig15r8/3SQsQau82ihFSolCfBY24fx3MXqihpBGfEq4Exb1Kpkp2RSDhOO23PL9kkVdK0U3yXwsjJZQQkh5CUBWory/24z+0DazpjNrz5jJhXz6+ynJLh/y9lcTFrW0rBvniVqhtZrI1ilCyglEFOL5dP/0+9JSkxcFOwyyILg9KUpLzbKtrRQJImEyyOuip1KagyrOW2Q2nzD1hUEtjOCSfE4swKNPNP8kmwlHjAGljtmMxbBEjBFHQhBpj2LCF6MHRH9awNwix7Bo8S6HI7dvp5MsKgUvNzfMlerXHP9yHzmw4zqO7ILjOox4bsqenJrM1VrA6AJWO6UxBKqsnVgpw15pRp14pjStMlyMhq2z3D80PLxyXGxHNueB9YMdqzcjus6SEfmr/OtRJqKMzzqJiX1oKFePWYD6RikOUaFjwKuEz4LUiSSApRJAI0aPzslcMV0tIdfKeGOclkn9Ui7iZVGA5agKYJ0lOtR83M0JfFwrMkAa8/cCWhe2xZgiWikqrY+mqQKERQ0+yTkXEXmLwnY1E7R+zKYuCXUiZbAaSCH3jihSLGxqM0mAYGTsLKB1ndmjWXojJsZRMYyJrpqBq9Ej7MtRbrGwp4uJVtF7y6zpqhuPGNPaO4hhNiopDA7TgFlRrx6zbp8wjC+k7Tu5iUWtkozBx0mzFBmgTqkJ7CfqXOQqKr8yglrLZj9qBS6Prwhei7nW4nlViMTlbO3m79PoRQarC+w/VHQ7zfW+4XlX8+7wepK4yipWtTCojU70Lk6JvOiLSqt1ZcVBfaxhaBQ0F9jqQvwLTCOGmUjxNKXF/JllpyYdzyQyH0sd6qjUZJ41AdWlOBkSWLIcAEQHKUZhk5+yqI1B1xW6HtF1zgEM2CrRNoEH3vFOV7OzK66j6LP6MOLGa9FlXGzkpexsp3kAWMwJL2f5Tsc1Bgh9Bqdl3hdX95lBXeUiXoWZvi+3ZczSHyUHmMHpZSyBaq3EhiuqeSMOYJLIfLxhW567a8bxmq77OqvuPar9m9RtS1/Vsi5nEKkAznHZ+pq/jsiGb8meXjKol9qOMRecdC5cE2en+2KWmKKfuoOSPgafp1Z1bVFxwZJUBhbX0LEUm3S1HaLnhR+4Zxq2RiShVsri0pjPzUSnIi0mm2IV8FRlnXg161Dn1+lSoo8L3XAl0j9VziskJysZXZrBaRFiAqCya5rV24xnF6zXie1aTEvP7esBqMf+G1TdPWpbEyrL8xeVnCN6Bp9eJ0hdW01bK7aN4t554qvbiu3qEdasGN2VyNylwJjmLglV1ajVRjosNxeSg/b7Sc4oZTJE3O0AMNuai0/1fOHdms5u6GPAp4iPUphxSkx+Y9Gi9l0GGqWVHbdDmWMWdTKa6PQkbSOF0ePrayJc+DixrlWW+rghXZN/LibhL42cu4bopIiVvW5E5VAIJXrRYVc6LYBMqFDsUppBai1z3adrRzeuGOucz7rEdfT40OFGy0F/DWtbLi6/j1BZuqqmz3rTdT2D0wWM/qg4Badrq18KTB//DVTW4Hyi8hEzSteLSBZFGAtD8mXjJ2vqqBPDVjMgbN0aAeAMxwDskkldjMxsGLDRY+PDWV+3qoALVpvPC5Bvaqxp2O+/xvOwI7hDBqoDwcJnrlrejD3rTcBWiVWW+ghJMXrDqBs6G3hv3HGVAj7s6YfXc8350KPizJKNJyeiVhpw0164rG06haxD7Y72qzcLfreD1CUvLv4KAnLWGLvG+x3X0WF9h1aKe6Y50kr+YKFHvUmeunlM077Nwwffj1KGn7n+OYYU+N3rt3hD15hKircaxbMwsD9hUq8++J+4576XK/cGT73G+4gLZF3qJEx/o6aCx6nucAGpTwHP5ba3rJ+VkcdqDUMt0mShSUSnCIMhVhV6LEXUBVCNElKWkpxzvjrSNHl00U8de3Pnae7KifLzykQa6/nOWFGz4j00z6OsYRrF2lgesJLcK4x0uVinoyUuQOoYgxB2FnIkN8BpsyIZkeOIthJpj6IVXaSLsk6/fok5atJiEHsbOK0aMPXtrOnpZoqc0LIolr8vnY2Z0FBGdSnjccqaPjZmnbXKy/cFmF4yp8cRwij+V3qI2MFTDQ4zDphuj3IH0vjiCJwO4UAI/a1jchd38Ss9fn0B1OF4kVN1g3IjelVPxkaNi3ljIAs7o+UySK+NIVfkUWjlBA/I5LWYgR2/BM1UMbLL8hVKXGqNWQj/T4tHcyRmr9UwaTMdxYSaFu5daZOfW/FmA70ZbTVKQ4CIJSCMnSWLuleBFYaAntqfSx100o4saJK8CGQNukiaWNS1ShN7Ulr7ZQuklejPHn2UG9l0fuqTTfcpOD19751o6eV2qSk+BijVMZGitF9nlbQiJCA/HW0OkL2lS2gfMzDVYYZBFoSi9TSxT5afSdqpZmBECgJLECooQ8isp5AENBxTpIsBl8KkV3waiTi9XgGhRRbm2LAxxnFiTgtAIZulyeE3y3sIyb4kJfoYiFAnxy1E4jiiQwbhgofgSeOAWr3+KeX/c/gGUc3azUtgWis1vXcB2oUl8LK9zNHYZ33jffSMStOpyE4ptlguveZ5aLg/VDzcOS6uRt7UB6qtRa9mhoCqLbYVDqzsBjObYqggaIyykwnKUqbBoBhSwCuZQFISoNIvj2sxSnwNYxhJWV6DI03zj6oS32RQplyMAhaSH6hIQE8Gc3LuRIyWwp3OWsk6iZSORgCroq8uGnjqSK/eZLB8+R4TS7B6AVhnhqKwAYMY1IZ8TSmDOdncqMyu7EfY2xnMcgEOPfS9wo/SLVGufSLSTpcZ03YYsd1BtP7CwNKY5GWFMl3fY7X6FOvhKeNwiUsvJhZ1aQ3Xytx6vEMSaZXpmCQIeT4WTXAZ+bIxLKCL1gkbxRgUZCNjqswENjLXKQ16jCgza7HGkIgOgkuMB83QaQ77mq9crnk/wvvJ8WHoeOJeDzujqQVMMFEg+ypLfNReNv6FtVJNmwgYG4jNWTbb2mYdapHmiilKEYtizpsm5/pyXyAd6VBXedy0Fh1scwK8xmxoOx+UOMl8iGHiwk+irlH1gKmE0Vaet24iW+947DU7V3Np1+yCEz1qf2B0s2lwjAZjhCV9JCtxunkvzN9ob3okxyCMGr8XltuCGXkk65S7PeQ2//mxxEdZD27fBM66sYkKyaOMkvUjkM/ZReG7Bh5Xa77m9uzdFcP4nO7wLtXqMdXmDN9YXGOmlOcGSB1nMLps5rtxZh7NWp3Hfx9jvq5jkm6s9BFu9yfg9HwMZmBa55vcv6hwwwROF+X9PkWuo+OZ7znXFVtl2GhLnzyBLPOR5dZc1DcsNpSRW11FaiUs+I5IlwyrhdZ3MbosskqAFMFUYnn0EhGja5r6AbZ9zGG74sFK2tMfrDX3qtezno/jC+r+A2qzorEVL56/wXMtHL6ShYXIa9OkrqyiMqIPetYm1Dmk5gxjW6JSjFNuNZ8nyhh0JRrUJX9Uqw22FlArZYP1FAJ0HSpE6nPLd7Yjl4eGvV0zRJEZ87kglhBzQB1qKUrGdvIDUXqFdnu0nVnUSSuiTzMjejLBOv58KgSMC8KYbNQRMD0RKnL+qj4KmAaWEkBinD1Lv5XrvXiTFAPtuctOTTmBMKkVJhiqQcbvonV8LmrG1OIq6XRL7jABpMOg2emvcn79VVptCNWbjNYy2ojNsiVLPd6PiwIevQo4fRry+IntAkDIz9G5GXQK+ZIoZsp5EAGFaxKBGaSuOgGoNZM8L1BAp27qfCwdjzZ5THqIimcTSG3PvoNGHxfC9vuvc+kvCb6b8uKf1Q8Yr1seh4GzjctFAk9MikdJMWLpbMOFbfC+Z5cc3l1+ojF6WXh/QGnNzJDNJ+HURQezP4iePENSChOzGpZrmzsyUIy3ANRL0PpUOsKaFSkFhrDnKjg0HQbFRQapY0o8HS6PTBMBqvohzeptHtyXn//L9c/zxdDzjml4oCuwayFgjJoPfc91EJA6pUhz9WU2yXPhv8jOf4pnoxGQ2pN1qdMkCxGUbPqK9jDkdYxZ/qNe5KZwE7gOUQDrQwZVTQ2u0sQqS2LaGuWku3L2tNIZpM7odDqiO6FJ2TNp7qgthqg1ihY1rzMq8cbKUY2WNjR8VSmeR0cXC5N6zvG7KHNLUAYVLEZXt+7/paPc5Pdsp07qZGtiJeB0qGa96LJXB3KXIPhbYK1iDlv+PmqVi9/qpZIe5bYskM2gNJOcR5jdIAG1OJ63mH1nsLrIehSJj4k5nV4GTqsZnO4i1eF2cDqMl3h/JZJxviOEA+5O4uObijsG9bc/fkUA1H/37/5d/tpf+2u8//77/Kbf9Jv423/7b/Pbfttvez1PHgU4S8GT+r0wPTMTQteNAGtBmHbK9CjjMZW07NddpOkCbr9iFzWXqMkErYqSqF1HYTK608lWqamaa01DZTfUdW5Hri6wzcNZygIgeXT0RL8j5PtiCgJoa0co7FilEeecCaKRDUfWk1UotLZoU+c29zktCtkgKYQOFx2HFFDRiQGk0qyUyS09+pgtnfO8kGBUwpbucpt0wGQmddZRLDqemX1WAHyTneSlTb1U2f3E5k2LTWIMvbDLc5u8CrIinzKoo61Q0WRwyKBKFp8XOPkbc5MBFSMqSDJqhPQoFdhlDhQFtlZR2JLyNQNT++vjBcFd5rb9bmpxk1NA9Mx9ZqsTZUhcigw6sNeZva7stImMJFzWUu6itI2O2VBLlr98MFIkRU+IDhXEXGvWYsvnT9aDC3HeePgwEMOY7/MTUGGZNyECVM9DEZISffZBYfuE3g/ibG9M3rB5tBvQ/R778G1U3bxWJvX7cUQvjv0MqIPKzFt5v5J6FRZ4k+U8qgzAlM3VtLFamIKVGFPiMnl2Cp4kRR01ra/YHhq++4Xj4Xbg4kFHe5GoNnqSPDG1nOhaR6rG4X3HpqvZeMM2GLZa80wZLrXlSoluWxf9QodZNm+l7Xoyt1R6MpJRCyAkLnTrYWYgyPjM3QzLNTbmbosiGeOigMhj0rMJn4oYBCCpgfoIoJq/r1FZbgICmhYBUKXAMpvTFa1KRyCmJOZwuTtgkq/Jjz8FzZcmqzH/XH6f0mT5lXXHy3/CBkbHxbgYrG1R9b1JLqgwEq6RW0kC+x7cpUIPiXoQKZ+q6yQJHK6I4wuCuyT4HQd3dWPjpJWZXrPo6dn6YnIgbzaf5SI/9vLqf2Z0z6jyMXKINqzO1+CyMBVJuSU9icQSGpMW7JakaJOmDpraw0pH6iFxNnqsiRidsCYutDOPk69x1PigOYyWgzNcBcOzBE+i50kceRZ6LsOBr4/v02fwV8Cd24uM30ws2WwA+z4uNmNxaoV0xSzRQ3/vHuvxs6yGp4zjC5zvCHHAJyca7ylN7dAaRR8DFYGVMnQq0QFtlMKqCVCZSAxq1qHW0j5bpBYmkNQl4hhQlUNn6SmYDSRVLWarafSYysvfAZbI9ixhbaK6bmhZ0yrDz2rDrn/BMDxl6TEhOcR6lgO7rdtoGQVkVVbWueGKvvsaff+EYbzChw5SwCaR52mUYa0tK2Vl/UdPupM3fSiOGdS3RQGp5bRYXBtBT7kA5JwiKT5vN/St52cOz9jv35sKLGfRs3Ff5BDvM54b/ApAHZmnTUaJi/xkGGVjt9zUL0Ht0h0hnVDSFhvdbjITmky6FuNYPDAUSG5hVqjclp+SR8dhKioI4JLJAQmk+FiAWPBK2stBiqXfUW3ZKkPQDdfRsY+eVklOdT1atr2hdfL3BfeumsSqDdyrPO1geT+NtGjqqDGkLPFxrEFtlEancLzpShGta1arh1zc+z6Gx18gvKF552HkOx8aPvdGTfUSEsEnjevdzxPjgbW7ZDW+4Lz6TXRXZ7z3UPP8ReIX7wU+dT/wzr2Rt+9ZHt+rPzHAeBq11bSVYruC+48i3b37tM1DusMHdNGxT46RDEC0Br25wNx/E1Wtjp9IW+yb34G5/ybm/CH+G1/FP38CV5coo/nil3bc+4WKt55u+SlT8bPDFV93AoyNKefbwDA+BzhqcbfJS/4VQ5aha4CVAChFsS8wGWFJ7iqPrbouP84S0ahqPkdSUGXRFIC76K2fRvSk0OPHS0Z3yeh2eH8gRodOiSozJ1d5nlgby7mpaJWe/DxmXXrFmASkDmNFHwyPtz1vbnvORstb3Zafsy3/xe346njNU9+zcyJ59eT9/zvnh+/hbPdF/Ivv5PrxPcYHmu15ZLMW/delrMepHAIspD403/S5U1mF1lqea4z5OSNbP0t8nDKp9eJ+vwZnIVSKrlrhm4q6brD1CtNf0Ngt1r3ADU9J6f1cFLjGuWusfUY1PsX20hVk27dIzRmh3aDqz1Nv3qY5fJZ19x5n26+zP/wih8PXeXd4xgeHp/Qx8E614XO+5Tt3K95qRzYrx2blsCayGSwXY8Nu9YCvuT0fuAMfutfDrhyGFyitmGSNFjHtWXJXaSFPKaWnXKmA1nCzAPuyWOa/Zd1Y6hwbLUWCLvSMYaCLngd2xcNqxSPbEkl8w3W8OHyND/sP2R2+xnb9Nuv1O1T1Ax4//m+5f/El/uUv/kseKsX3tPf4rN3w3faMN03L0zDwgTvwPAy82L/LkzCw2/8C68v/QPvk05ydfw/jo+/gq29s+dqjxPl54v554u170FaS69S69DFJLI3yRjMD1yVOTT5HC31uyJVmoIR3Gj/UWfahWZgqa5QqflUzwUPwg/ycKTHEMOXbkYQzWfPc1IxYQhAS2zlwbzNw3oq3xue7iq+PG95LgSd5Laus4cxUxOGKyzAypCwteULiKF3lShvJlTNzGjuD09FWBGsIVoNVmCZlq628h6ohNhCcJg4VzluqQzV1jshcKTIosVGkajZE/Cjm9NKcdRr7RNaqL0B1KaYtmfHzsSw/FxB6WVzv3QxIhziD0t6rqZMzDApzFWm7cSLI6bGD8ZI4vsA5wSGcu2IYnuJDTwg9Pgy413SN38VdfFT8hb/wF/iRH/kRPvvZz7625/y2A9T/5J/8E/7Un/pT/L2/9/f47b/9t/O3/tbf4gd/8Af5z//5P/Pmm2++2pPEY9ZaCj4zm3xOwAJp7CHK1+iGqV2vhLTmakyliFXEVArrE9UYWenImMwEBBSdxl4db+JmKQaFwqBV1kI1rbRo6QZjNhi7mVpXJoZOtECPMit0BmmNaY6qyNPnW7Cmy7/Tu1gs8iZvmubqtMbrmhQdQfnJDXrIbJJi8lKigNOFNVZ0KccEZJBvzKCXsCohqMK7YNIAjUrY5dIuKKDSpM1YWsIyu3faHIZeQE4t+rLTZ38ZjUKbk3e+uD+395wC1TeiMGnygqYCeVOQjnRmVRgg9MKejv0RuH7cipar1SoRkwDTOuaENs5M1nACFhVd5SEGMeTMgNBt9byiRR1j2fQKi7Qwq2VsBZyW1s04sxuIqNuedBGFTe+9JriI70FXAV2PKLNbPNCTxl503qtGuhOqFanvPvoFXiFyzwIlCRAzQTlcKgOuISUsamLBZ17y9Bylhb1s2uvSyq6Ogdebn1+AwUDiF8eK/tIwuIH7w8j6PFJtwFTz3xcjq9Uq4IIXlk1SjFERMMLc1DMwa5XGZjBX5c9TNJfLsVom7EWvfvkzLLsOjmaDW6OMV1AzkFwAKZNlOkRb+lg04giwSjObOjC3/4ckEkHCThWt6hUJlwwhJSoVhMW6MAC9DaBeaoqf/t6nmOcWJlf7cHR95OtXiQGrNSusWYuGXWVJlSSU3qsJfBxHhDXdKeorT30YqPY7dPeC2H+IG5/ixmc4d4Vz1zkBnM/twmwyujBgG6xtsXYjY2ez5p5ZUTUPWa0e0w9Pcf6amFzuoMifM7PLUYs5Isv/mFx0GJHxr5nXoy6pieXSBU2NmK3VKmFUlls4OTVCAhc1z71hBzxLgcvkeR46noaeqzByHUa6GOhTYFBI8TWXidLHSJJ8s1FbTaxh9HE2wXLpiE0nLGpLrFtsfYG168kgkwzwH8kkqTRtuoq+f8h8YtGhnlluRd7jlEW9jBQSKc4sanVK/sw5xWloLTrC25XjkTe8lSo+NCvWynCZHN6LVm3JG7RuJl5f8ayY3sMpWz+zjlI2CJbNyxXO7/LGcGGKi8g6leJdYU/fBk7fFi+zIyjFj2UxxMSESWqS+gAx9LtQhodmxT1T8/U4MGZWW9O9x2r/iLpd45uW4FVmosvmbRlL34slOA3z9zHOm75YuiGcR4WBGPupA+pG99aRQXPIgHXxBzm9Lf00ClMNlmQCcmHvED1XYeTKOFrT0CpDr8QfpEuBLmn6aLMOdR7XPOCpziC1jdSjYowiC9IlQ3ty3Ipc18tCKU1lN1Srx1xtV1SrxION4sHWsFkZxl/68g3AMFxi7ey70l5/lqQNB73hsOjQCTEyeocLiUdnFWfr12Pi1tRw1crcrLQRYHDRiaWMRrci7/GyUNUK+/Bt0thnSbNA2O2ozw0XDxzvHAYuDw27ajPlbSF66YrK5AATOrSvMGaN9nvxXPE7lLaYfJ5pV6GMnljUwvSPk7fB8qvxAR8sS53qZU2hcDZUvhDUKSU/CUAdgnRYiNm3Q6gnYCfvDilmrZQVkk4mppT157SzIgB9VAzO0FSBpgq8GRzjUDHa9ZwD+J4DPYf+ybRXWWnLVmuu9QV7rdE6ZtB5fttGccRIXOY8t5khfpIwWqTIBJxOC23rxJJFWd6HY16TdAbMlBb5gOBEE1jFleiGh63oTYcBa9YyVtm81vvji80COnqUlX1wsjWs32SpGl32h8P4nPfdQca0SgTbMh4aPhU025WjMpF1FbgfNe+kJhNhZI/xOiLGIfsuHQPU8xyYwVGlUUmB0rI/BlLJ5zOrGvwtspbHsWTfzkbxcTr5p9wZIYp5AocUMGEUXxqruG8byTN94iqO9N3Mpm6jp6ofUK/e5Pz88zy9/go/c3hGvwp8Z3XGVhmMWU0EFw18MHwoUpqLrtWV33ExfJ798IDno2YcxYxzu0psG0VNmvSpQc6zU8mPl0Vh6s7eHKKjHCotLOPFXnla13KHKUkVAvXR8SoSpT6JjfcQA1ZpehXYpUCrTC7qKzGYjoq6jlgbpvzSDCKJ+gTFPnmIcD+z1lN0jAz4YFDOTjl6StJZkmI47gK7pRifzNzlrLSAyvk3+NzAFA3EQeGDnfbwaSEHAhx3XXN7l0bxzChdWnNukUArMbm8pUOlMOOnOSot56uZLR2jdG2eAtNLM8Q4iLRosx9msswRQe4F3l3hwwHnrhnGF0JEyz5TIbweI/NfT5HS0ZJ6F68Q/+yf/TP+yl/5K/yu3/W7+NEf/VF+/+///TRN8/F/+BHxbQeo/+bf/Jv8sT/2x/jhH/5hAP7e3/t7/It/8S/4h//wH/Jn/syfeaXn8E/fx/cL1kPREywgdNHJzXIEyQ0CVI+DtOstQrT+1LSxslY29yYDAqfajCHNYEoBFxRmYjHbbJRhbYuxG2EG6xVUm2kjCUzsXxX90Sb0xkI9Lcyl0Z3FV6a/KRO/MLCrCejSpkbFERUdET8xHH1mORbQqHxEgyw6hVEm68LMzKxRc0trEoB6GhudcCFO2nVGSeujyp+jmLHEzPINYRQmkxZmuTYrAYMB7MvNPMpm/LQd9zb96mj0S0HuZSvky8FpYXVP0h6hnxgxJVE61l+TBK2wPX1mSUJm5qkMEC6S+2IoM21yMpgS1YKNwMwWkJsWgP/EXKSA/yH6rD+aQWpm9v1tOsUhIQaOgIuK0WnsoDFVRJmINgILlJbXNA7odi+M96qRm7H4/qNUyF8tlpt/GdFFEqpEFoN83po0p1uFNVktriGTN1z1iUP10WefxiDN+mLAZUqMQdPvVgze8Mj1bFygXkd0vQSpE7YSnVAfNC5GtskwotliGFXCqYjLGtljClgUfmq+S/n6mAs4R+OhLSrODOri0l3mjJel9imfQ6DwKVIlPXU0BPQEVKNixrl1BqfVBKBO+tSTVIn8fkzphFWdsgGoAKtBaUJCZITKfLkAqSED03njCggzOn8fSEdmmKWIowGnYm4gKUd+7l6p7JqqOqOqHxDaDb6xWQ5BMUqlbZLzUEOi3ns2T56i9x/iD+/RDx8wDB8yjpeM7grnDwTfExfFKJXnQKNrARpMQ2XXWN9ibUdTZ53J6QBamuYNVs1D+v45Lr3AlEJLAeKzgeQMoiaqfE6X8TLFA0Ap6qQnZrWc1zI3t+G4G6acy0XLeiTRkXg/HCYDt31wXEdHF30ujslcMLXoTv0L87r1uqO0W49e40Kic2Sg+hik9o0YSlXVPYxZy6ZRiaVXJEwa68BUlHEpELFyXmKm8YjZLFHGtrCXFPajMLIgOtTTunD6e1P0ZNVRh07RCL3nHG+Fhie2YaMtXQi40BN8R7AdyW6nwqfOjLDJtyL5GwWrZSh3yKyaa9mwJOG96zSD0MVEti6MyHxcb/vIL2NOF61kuc2gtNZKGOlREXXunpJ3lo8HtErxSNc8sCueDyN92HPon9A071N3j6mvz3BNhfMVXpM1Jhcb6jhvKpdM6RKFzX108wrjs2a8HwSUO5X3UHYqkJd8oRgtqYD8Th233d+mQ11iMnnN/w4pch1GruPIua5E11MZ9tkwUbwoFIM3BKdIIQKSm6qQMNWsQz0m8a3olMkyKvmzLwoNL9O216amaR6S1m/itpqLVeSi1Zy3hsqqW5wOvrlw7mrSuzWmptm/NwFtB2aQOmbTqBA9o098z7p9yTN+dCxNqoqpnW+0HC/UEThtbZR8ZbW5yZ4+CbXaYB+9TXIDcRxQ44huK1b3AvevBh4PFc9Sw7VtOUSf9weBgJihupyTa3edTeJEj1qFHuUbzGCois7qAmjVMaEzSC0DJXOODsKsjkFNetWzNF2a/hZALys3MIHTMQzZTGvIwL1HZSZ+6axrtMndfoYWk0FqyZ1O54Ty85gUByc/NVWgrT2PoyI4AalLJ1XyA+PwnE7bqeuoUZatNuz0lp1WWa8civD6RwF3rytmY8bbr53T2uMSpI6ipkCsFMEbVLRoX6H8GhX6vBds0FOOzkQmce5qek6rLHo8J9la5iFbo1YPqWGS6YspgNI8796fCrCBRLBrwlDxqQTbxqN1Yl0F3vA1o24Yq8j4krXjk0aMbtL/lX1F+b6MXZR7k0LE9FPWIo5HcpQJvyBZ3Z7JHklDLADp8lX2N3HB5pb+QIcU2a/DSKU0j2zLAytgfXIdV7Fn6D/MzxNYA1X9gHvn34tShqurr/Cfuud00fOd9TkX2vLINNM6uhuu2Llnk4xijHJrQ8/Z+Hm64U2uH9Z8sEr0W2Hgbhtoo+Q2p8WPaZ28DQCNQCmaqBMZHC1yF7d2D+f/5uOSFv+eHNNFEaPXnj4aOhXo0HQoVlFPhtK2StgqYO1AZSJ1V2OoeJKf+MLWAn77WYPeoyaMolz3R91LHxPqRPpnygm1GJZGDQFFdOpob59Kd0o+jdJJd1wBonVhQuehKuaWJoGJMmq36eLPsh7HoHTp+Cp5SpEhE1N2yaMKSF1Y02pImKw33VxdHbGm/YI17dwO53eE0DE6ISPE3M0dg7v5Ju/iLl5z/NRP/RT//t//e378x3+cP/kn/yR/4k/8Cf7gH/yD/MiP/Ai/9bf+1m/qOb+tAPU4jvzkT/4kf/bP/tnpPq01v/t3/27+7b/9tzcePwwDwzBXg66uZCH3H/4i/vBypP4YqA6ZVZ2lP9xIGkfi6EghCisqzBX50664AhYs2X8+gyWlkVOY06I1XVhQ1m6ERZ1B6mSaY0C1VLJfojV5tFinwsa5GQqdwZJqwaKWsdHJY00j0gFhlKQ5JdGizq33LsXcqj9HMTqSF0h5YyEgdZudWcJJMiFjpGctaphAuAIaHMt8jNOCHmMvAJzfsWyAUtqIMdUtAPNt7Oh5Y6knFhTMrT7pFZgWapHUF3MaMVWaNSvl+3DUXgbkdir5BGmqTBe4epYtsLkNF+a2qpjSBE47ioldHvcFBJkyS0deLx4BRuX9hPz+OEneTmNiG5Ky8U1iRDYagzMiEdDNjw5upNoEtPOYVUfc74jdAVU3Ip+jLX58dQDrZde3rbZYc0xPnJjjGbxJ0QkghRi0CJNXtFmrpKlOYNtSaKqVokUfbbIKwIpSR9fBOIGqmtDXuKB4ww+cRU/VCGhQDLhMJcUtayKVjqySYhs0IyIRNGrDmCyNNnTl+B19vuwjvGCFFABk2f7/svgo1lwplrgUJ31ok89JXc6vDFIbpefrXd5Y7p44jnYaq6IdndnVSsaL/P24YG6Xc7por5+C1YXlWuRBxjw/+cW5u2RdC4QjIIQxK+pqS1M/YLV6i2r1mKFt8U2eA3ISGLPxadUFml1Ptd8Rn/w0Xf81+v5DhvEZo7vGuz0+dNKpkPU5C7k25npdwEw+A97ssdWGKnSiDV9augFtNxi7pWkeUjdP8H5HRFq9Q9FJXrLRcqfL0c8ETNLTMVvK1iyN7uoFg3IeYzG26mNgnxyH4Hnqew7R05eiGAWUNsJ2wqCybNW0gUR/YoD6Zdf4bVGME0efaKtENwaRADFlQ5ZIlcI3DVW1parO82bHymY3SxqU810XNjrHwH9ATeD0pEGdSifG8Tq7XHokV1gwuUJ46VWndX6duCh+V4m29twfLW+4io2pRA8fP7VnhtBhraAytzF8T0PpGVil3+OdtO4H35HE2fFIe1p0Zc0k67RkTxuOZWZKTIWOxDROL/vMt7GoUWJAaRS0CS6U4ZFted8d6JJjHC/p+ic03ddom0c0+zXDcA+VN59M3C8Bgk41pufXPwamCzMpeqhdQDsHoZ+LzNEfFXghM6iLtniMMq7ZnFlp0cuU9mSTzS1v+n/kZzp63oh4H1z6kXu6oTbV1JVXZJJGYPAa79RCJ1mhM4HCmkjNsfzPeLJmwSk4rVi23FvTUNcP8JszdAurFVy0wp7+ZuJl13dKA85dy8sqQ9t+QK0tlTasEZB6HzQxS/mITqdn0wzc39pP/H6cT4xeBq0Yj6WSQiwL1uRD2q7QH8GeXoY+e4jZXxH3l+K7oa+oNobzh4HH+4Hn1y1PTMMLM9BHzxginpiZlQPe7zG6wocaHRqUs7Iu5JupKlSMhBP97wJOFxZ0yUdVTDmZXACC5TqIQry4YZAYA/hB2NN+h3PXhDAQk4MUMEnMUxttaLWl1QIab7Rlm2UOW0RH/lgObv7eKBijRnvp3qlsZFt7HifF6BuCJcswRd4Pe7pe5/Uzg9rARn+OPWt2eR4ZN2JU9ishTvH+5dyjtBAVUiWSA8Zpoq3QtkZVG1ToZT9oQt5HjHmeEjVv7w9TZ0Y1XKHiJoPUWW6ouaAKj6fiZUqBF8NTXkR31FISTAtjxeOk2NaeSkce6MSIZaShyyzuV42XXt8UQ6aSKd4i9JE0Ke+FZqAaEhqV9LTHnfa6twDUx8zpE3B6sa+5YVCL5GlFOnEXHY9oaZTlvm2kWOIHrkPH0H84vYcCUl+cfXcGqX+enxvEZPVzzTmPTM0jU2NQvPADKgzs/Y7uMMtXhjDQ+j1r913Y4W2ebbaMY8SdC+gpbGqyz4aajPdqOxfJl1HYvEVios4yHxOD3yTZ42p9jDFM46mRVs00UWJuC5lSZjnAXoVcCI2MGFwSU+kif6a1SE9pnbv1ugYTaoxWdDEQjORfKSWuUxAwdZTjLp2H5qgb+WWZhQqZnney1s/5hiJakYAbo2hNJ88NHX8hqshNurLmvKKy2Sd8oTdvCrN9cVqeAtRL48sle3pZPC9dXiUvGcdjYDp6SAPZCDFOMoN6/yHJ7ybW9Dg+F/KB34nprD/I+uJ2xOw1Qt4j38UnjzsN6k8e3//938/3f//38zf+xt/gn//zf86P//iP8zt/5+/ke7/3e/nRH/1R/sgf+SNcXFy88vN9WwHqDz/8kBACjx8/Prr/8ePHfPnLX77x+L/6V/8qf/Ev/sUb9z9//+uEzQxQF/f1ZRSQetpQBk8cOtLoSONIcp44eFwXCGNidIrRJfqYOATPISS6pOizJMaYPH3wuBDwMeBiJEQBFpSOpKQETI0iteD9gNIe5XuUamC4nlnBWWuZMIDbi6nRKC6sozvg/YD3TkzuQk5ION4MJwJKKVAOFWtC8BgtelMTzzopwGZihRir+BQZFOzDSIuhSZrGwC6DHyuVqFK6AeC5qHBJ0QEuJRyRIcltTCGb0ARCjPj8NUQBXCMCUmmlQQVC8ATt8WpgHK6JEWzMDGbvhG2uD7AA9V8q9bEckwJMp3ECqKPRJK+mBTxpdcRUKVGMFPFBvjoPY0/ynjBek9wO73YEf8C5Du87nO/lswRP8I4YQ16QcyVf/ieiCCpiEW1Ie8JuKsD1BE5Prf8KRQGhFeBQMRF1JOo4abjBzOIWfe+SrPkM6jpp9U4BnaK0uCvwKuBUoA+OEc0hKhoVQSmeDpEhJWofWblE4xK2j9guYFcOXfXo1oo+dV1lyRzD9ViSyI+f7F92fStVU0xGlZqNWGKKEOWzRKVJaSDFxIgnJuhQkMRISiewWmNSwirwKmFVNsYs3QEnrxsANbH+Mqgro05QiiFIhb4nsT4L2Gb+jC5onI64LGnho8VHAwnRGU6SnQShzkyJW0oxXxvZGSk5VFLEGPB+RGUteu/HDFgNeN8T6eRrlOPpc2teTDIHhZysC8gIY/Ki3ZZ7maKKWGUIKjBOMigKj6GazJCYvupbQOrTsSOfxyr/HPP2ufA3bP790X/pVAJI7kv5WJDHKSaZV3wM+Pz5vAKVNMYaUBVGt2i9BtUQVE3PgB88oAgycaF8ouo8thvRu0vC4Qn7q59jGJ8xjM8Z8zUuBleehEcnpoJbicL+9sqhgidETwgOb0eMbjF2lM8WArZ2GdTaYM0GpSp8GGU8kI29ReEVeBQOzZh07hSQ1/IpTOChmPYqNKJdXavb9dVns9Yk61cMdMmzj47L4CbTsKAKZ14gE5Wd2QQalPsnG9I857zK9Q0vv8YPu90tjxagyfee8eBxXcR3kfEgS2UcIDjDEPPY5QpxTJCiyAVIF0jEZ8EPpRM6QWc0TVLstbCHdUxEEwlECLkoqxI2yTVc64QPEePAavndOKbcAj6iokZHhcq7mDiOpFFyis4HRqcy0KgmCYwYI6MOJKVoY41NCotCh4hPA9p1WNOjTYdSDcZIH1fKDN2lsZ9KkHAk78BKhw/dE7ruQ8bxGu8HQs4ddIokpfLWM+KDlPZ8goH00ms7yupDUIoWSCrhMsBUx0gTI3UM1AU8zqDw6GXs+qgZgpnY6iAbyJgSazQrpTE+4tOBQ/chdfU+pnqAsg1hZwgB4ioRbW7htek2DONGpLIRdIqxV8RekfYHQvcCPzzHuT0+m30aLMr3oNcENRJDR0rCI1YxoL0HP0IYxaR5utYDITgZ4wyyxhiIsaz/8ShfC3msn9NxoSuaDNjrKNfoLiYusZwR2fQR1UdWTUInyUucjngLipExeJKKPE+AkvHtUyDEQAyRmPPQlPPTpIKAlqYmJYXSGzoTSPEaExLaNYydZ1xcl7/U67sKCcceeRpD3z8hYaXIlhxajYyxZh8Al8AlQg/3jKHbGe5tLOtPAFIPY8xzhif1gdCLhICcDwkfI33wdMFzCJ5rl4hjwu5ezVAqBI2LFj9G3OCJPjDogGp6mmvDWVKs0LJGJEEogvLgB7SqUOqA0g0kS0qWhBEQOUaSikRbkWw15aw6yPHT3k3yIik5vEn4IeC1yBodESNjAgdqCCQfSE66BrR3aDeAOxDdjmF4hnM7mSO8MKilDqSIec4UBmIkKTH1C5nEMqi5y3LSWkVN7dFeJw5B9lGNF8grkFhFy72kOMOyURYVelza0/Eco1tSsqAb6URVb3BINTpEdlWCFaQaVKNRlYJRQa2JlSZVGpwWg+NfQjifcD7Su4jziW4f6H2kHxODSwzZw2L04Fw2Zh3B90qw/3EGmtKQwHuS96TQof0IMeU5wxOCdJBKTi6M4hBCzhc8mHOZb6r1DDj6EVQNaiVrg16j1QqXnACleZ7QVUKZFT5qHsTE2sq+sQ6WdYJ1gZN/idc3IR7V4KY9p1reHSnSYJS9jE5TBxqUovdiUj8iZt0CTs802PxzWrCqU74nTWxqlxK9AutHdnqgzv4/LYYDij4munSA7pm8eSxr1YBqaOo3WK127Pe/yLvDTogw1Rn3jMzfG2XpcYwx0KcDfRezhJzk7usg0i5u+zle9ArfZZB6Bb4VXepVpUTvWKkTSYk8zKWjsBRdXSL0iTQihQknZno+ggkD2h3Au7z+L/ajOY+eIWim/WlQ+fgoITKQJGcyCZqkWGmodaKKiXPvCUbyI2sjykDQCtV4mjGydTVXCYgRk6TDr1E6e9E4kjugqHJeaanHvbCYk4GUz5XkCUq6ULyyeCxxr9FNTvYsWJOOW0cjE/U5pTwfLU/GCHhQVUI8ppNsAG0iaAhZNiVqssSPnIohX363MafLcSlffZi/j+mYNR0nYFwxurmzKw4ykaohoYcIo0d1Hak/MB6+TvTSFTeOL/D+Gu/3OL8XMoPvcxG0z9eHHNviE/Oq1/hdFJzmbry+2Ugp4ZxjHEdSSty/f5+/83f+Dn/uz/05/v7f//v80A/90Cs9j0rfxrP2a1/7Gu+88w7/5t/8G37H7/gd0/1/+k//af71v/7X/Lt/9++OHn9avX3vvff40pe+9Mv2fu/iLu7im4t3332XT3/60x/5mLvr+y7u4ldnvMr1DTev8a985Sv85t/8m7+F7+wu7uIufqlxd33fxV382o1v9vq+y9Hv4i5+dcSrXuO/3uOf/tN/yv/hf/e/5wufevtb+jo/89X/hS9/+ct88Ytf/Ja+zi9n/ORP/iQ//uM/zj/+x/+Ypmn4w3/4D/NH/+gf5Qtf+AIAf/tv/23+8l/+y3zwwQev9HzfVgb1o0ePMMbceLMffPABb7311o3HN01zJLq93W75j//xP/KlL32Jd999l/Pz82/5e/7VGFdXV3zmM5+5G6OPibtxerX4JOOUUuL6+pq33/74yf7u+v7m4+7c/fi4G6NXi2/V9Q03r/Hi+PzVr371E7V+/XqLu3P31eJunD4+7q7vX3lxd96+WtyN08fHL+f1fZejv1rcnbevFnfj9GrxrbzG70LijnD+yeL7vu/7+PKXv8zv+T2/h3/wD/4Bv/f3/l6MOe56+0N/6A/xJ//kn3zl5/y2AtR1XfMDP/AD/MRP/AS/7/f9PkDaXn/iJ36CH/uxH/vYv9da88477wBwfn5+N6F9TNyN0avF3Ti9WrzqOH2zG9O76/uTx904fXzcjdGrxbf6+ga5xstz3B2Tj4+7c/fV4m6cPj7uru9feXF33r5a3I3Tx8cv1/V9l6O/etyN0avF3Ti9WvxyXON3cRevEn/gD/wBfuRHfmRaD26LR48eTZIzrxKvoOD3rY0/9af+FH//7/99/tE/+kf8p//0n/jjf/yPs9/v+eEf/uFv91u7i7u4i7u4i7u4i7u4i7u4i7u4i7u4i7u4i7u4i1/DESeXlm/N7ddaFK3p0+i6jr/0l/7SN/Wc33aA+od+6If463/9r/Pn//yf5zf/5t/MT/3UT/Gv/tW/umGceBd3cRd3cRd3cRd3cRd3cRd3cRd3cRd3cRd3cRd3cRffvviLf/EvsrvF7P5wONxurPsK8W2V+CjxYz/2Y68k6XFbNE3DX/gLf+FIF+sujuNujF4t7sbp1eKXc5zujsmrxd04fXzcjdGrxd31/Ssv7sbp1eJunD4+7q7vX3lxN06vFnfj9PHxyz1Gd8fk4+NujF4t7sbp1eJunL718WuP4/ytjZQSSqkb9//0T/80Dx48+KaeU6V0JwV+F/9/9v48XrKrLvfH32utPVSdqjP0lHQ3GSHEAEISQQJRLhAiBK8MykUFBBQUUTGYqFfjFYMi4CUyOHBlDtErUwQvqMjvQgiIXAyKzD8TCCQEMnR6POfUtPdew/ePtdauXWfodDeJgWY//aquc+pU7drTmp7P83k+LVq0aNGiRYsWLVq0aNGiRYsWLVp87+Dqq6/muT/zbE7buese/Z7rv/kNrr/+es4888x79HvuaWzZsgUhBMvLyywsLMyQ1MYYBoMBL3zhC3n9619/1Nv+jlBQt2jRokWLFi1atGjRokWLFi1atGjRosV/Jtxx6hN9T+B1r3sdzjme97zn8fu///szBTmzLOO0007jkY985DFtuyWoW7Ro0aJFixYtWrRo0aJFixYtWrRo8T2Jlp4+Mjz3uc8F4PTTT+f8888nTdO7bdstQd2iRYsWLVq0aNGiRYsWLVq0aNGiRYsWLTbEysoKCwsLAJx77rmMx2PG4/GG743vOxq0BHWLFi1atGjRokWLFi1atGjRokWLFi2+J9EqqO8aW7Zs4fbbb+eEE05gaWlpwyKJsXiiMeaot98S1C1atGjRokWLFi1atGjRokWLFi1atGjRYkN89KMfZevWrfXPGxHU3w5agrpFixYtWrRo0aJFixYtWrRo0aJFixbfc3DQFkk8Ajz60Y+uf37MYx5zt29f3u1bbNGiRYsWLVq0aNGiRYsWLVq0aNGiRYsWxx2uvPJKrr766nWvX3311Vx11VXHtM2WoG7RokWLFi1atGjRokWLFi1atGjRosX3JNw9/Dje8MpXvpLt27eve/2EE07gFa94xTFtsyWoW7Ro0aJFixYtWrRo0aJFixYtWrRo0aLFXeKWW27h9NNPX/f6qaeeyi233HJM22wJ6hYtWrRo0aJFixYtWrRo0aJFixYtWnxPolVQHx1OOOEEvvCFL6x7/fOf/zzbtm07pm22BHWLFi1atGjRokWLFi1atGjRokWLFi2+J/GdSFC//vWv57TTTqPT6XDeeefx6U9/+rDvv/rqqznrrLPodDo8+MEP5oMf/OAxfvNd4xnPeAYXX3wx1157LcYYjDF89KMf5cUvfjE//dM/fUzbbAnqFi1atGjRokWLFi1atGjRokWLFi1atPgOwLvf/W4uvfRSLr/8cv793/+ds88+myc84QnceeedG77///2//8cznvEMnv/85/PZz36Wpz71qTz1qU/lS1/60j2yfy972cs477zzeNzjHke326Xb7fL4xz+eCy644Jg9qIVz7nhUm7do0aJFixYtWrRo0aJFixYtWrRo0aLFhrj66qv5mZ/5GXbt3HmPfs8t3/wm119/PWeeeeYRvf+8887jB3/wB/nzP/9zAKy1nHzyyfzqr/4qv/3bv73u/T/1Uz/FcDjk7//+7+vXHvGIR3DOOefwhje84e45iA3wla98hc9//vN0u10e/OAHc+qppx7ztpK7cb9atGjRokWLFi1atGjRokWLFi1atGjRokUDZVmysrIy81qe5+R5vu59n/nMZ7jsssvq16SUXHjhhXzqU5/acNuf+tSnuPTSS2dee8ITnsD/+T//5+7Z+U1w5plnHjHpfldoCeoWLVq0aNGiRYsWLVq0aNGiRYsWLVq0uIfwxje+sVZER1x++eW89KUvnXlt3759GGM48cQTZ14/8cQTuf766zfc9h133LHh+++4445vf8cDLr30Ul72spfR6/XWkeFr8ZrXvOaot98S1C1atGjRokWLFi1atGjRokWLFi1atGhxD+EXf/EXefnLXz7z2lr19HcyPvvZz1JVVf3z3Y2WoP4exMc+9jEe+9jHcvDgQZaWlu7t3WnRosXdiLZ9t2hx/KJt3y1aHN9o23iLFscv2vbdosV3OsQ9/g1ZlrGwsHCX79u+fTtKKfbs2TPz+p49e9i5iVf2zp07j+r9x4Jrr712w5/vLsi7fYstvqPwmMc8hl/7tV+bee3888/n9ttvZ3Fx8d7ZqbsBzjme+MQnIoS4S08d5xy/93u/x65du+h2u1x44YV89atfnXnPv//7v/MjP/IjLC0tsW3bNl7wghcwGAxm3nPxxRfz0Ic+lDzPOeecc+7mI2rR4ujRtm8/6P7sz/4su3fvZm5ujosuumhd+55MJvzKr/wK27Zto9/v87SnPW3d4H3NNddw/vnnMz8/z86dO/mt3/ottNZ396G1aHHEON7a92Me8xiEEDOPF77whYf9zNr3x8cVV1wBwM0338zzn/98Tj/9dLrdLve73/24/PLLKcuy3sZLX/rSDbfR6/Xu0eNt0eKucLy1cfD+lxdccAG9Xo+FhQX+y3/5L4zH403fv1H7POusszZ87+HmBhu18Xe9611356G1aHFUOJ7a980337zpeHz11Vdv+rmXvvSlnHXWWfR6PbZs2cKFF17Iddddt+59//AP/8B5551Ht9tly5YtPPWpT63/tn//fi666CJ2795NnuecfPLJvOhFL1rn4duixfGGLMt46EMfyjXXXFO/Zq3lmmuu4ZGPfOSGn3nkIx85836AD3/4w5u+/9vF8573PFZXV9e9PhwOed7znndM22wJ6u9BZFnGzp07EeKejxDdU3jd6153xPv/qle9ij/90z/lDW94A9dddx29Xo8nPOEJTCYTAG677TYuvPBCzjjjDK677jo+9KEP8eUvf5mf/dmfXbet5z3vefzUT/3U3XkoLVrcrfheat/OOZ761Kfy9a9/nfe///189rOf5dRTT+XCCy9kOBzW77vkkkv4u7/7O66++mo+/vGPc9ttt/ETP/ET9d8///nP86M/+qNcdNFFfPazn+Xd7343H/jABzasjtyixb2J7/b2/Qu/8Avcfvvt9eNVr3rVYd/ffO/tt9/O2972NoQQPO1pTwPg+uuvx1rLG9/4Rr785S/z2te+lje84Q38zu/8Tr2N3/iN31i3nQc+8IE8/elPv0ePtUWLY8F3cxv/1Kc+xUUXXcTjH/94Pv3pT/Ov//qvvOhFL0LKwy83H/SgB820z3/+53/e8H13NTe48sorZ7bTJLlatPhOwHdr+z755JPXjaO///u/T7/f54lPfOKmnzvzzDP58z//c774xS/yz//8z5x22mk8/vGPZ+/evfV73vve9/LsZz+bn/u5n+Pzn/88n/zkJ3nmM59Z/11KyVOe8hQ+8IEP8JWvfIW3v/3tfOQjH7nLAHeLFkcP8Z/wODpceumlvPnNb+aqq67iP/7jP/ilX/olhsMhP/dzPwfAc57znJkiii9+8Yv50Ic+xKtf/Wquv/56XvrSl/Jv//ZvvOhFLzrq7z4SXHXVVRsGocfjMX/5l395bBt1LY5bPPe5z3XAzOOmm25y1157rQPcwYMHnXPOXXnllW5xcdH93d/9nTvzzDNdt9t1T3va09xwOHRvf/vb3amnnuqWlpbcr/7qrzqtdb39yWTifv3Xf93t3r3bzc3NuYc//OHu2muvvceP67Of/ay7z33u426//XYHuL/927/d9L3WWrdz5053xRVX1K8dOnTI5Xnu3vnOdzrnnHvjG9/oTjjhBGeMqd/zhS98wQHuq1/96rptXn755e7ss8++246nRYtjQdu+nbvhhhsc4L70pS/Vrxlj3I4dO9yb3/xm55xv72mauquvvrp+z3/8x384wH3qU59yzjl32WWXuYc97GEz2/7ABz7gOp2OW1lZuRuPrkWLI8Px2L4f/ehHuxe/+MXf1jae8pSnuAsuuOCw73nVq17lTj/99E3//rnPfc4B7p/+6Z++rX1p0eLbwfHYxs877zz3u7/7u0f1mSOdU9/V3OCu5gstWvxn4nhs32txzjnnuOc973lH9Znl5WUHuI985CPOOeeqqnL3uc993Fve8paj2s6f/MmfuJNOOumoPtOixeHwnve8x2VZ7k495fR79CGEcDfccMNR7duf/dmfuVNOOcVlWeYe/vCHu3/5l3+p//boRz/aPfe5z113LGeeeabLssw96EEPcv/wD/9wd5yiGSwvL7tDhw45IYS78cYb3fLycv04cOCAu+qqq9yuXbuOadutgvo4xp/8yZ/wyEc+ckaxdPLJJ2/43tFoxJ/+6Z/yrne9iw996EN87GMf48d//Mf54Ac/yAc/+EH+6q/+ije+8Y38zd/8Tf2ZF73oRXzqU5/iXe96F1/4whd4+tOfvmF6fRNPfOIT6ff7mz4e9KAHHfaYRqMRz3zmM3n9619/RF46N910E3fccQcXXnhh/dri4iLnnXcen/rUpwAoioIsy2YUHt1uF2BTFUeLFvc22vbt2y5Ap9OpX5NSkud53XY/85nPUFXVTB9w1llnccopp8z0Ac1tgO8DJpMJn/nMZ+5yP1q0uLtxPLZvgL/+679m+/btfP/3fz+XXXYZo9HoiM/Jnj17+Id/+Aee//znH/Z9y8vLbN26ddO/v+Utb+HMM8/kUY961BF/d4sWdzeOtzZ+5513ct1113HCCSdw/vnnc+KJJ/LoRz/6iObRX/3qV9m9ezf3ve99edaznsUtt9yy7viPZG7wK7/yK2zfvp2HP/zhvO1tb8M5d5ff3aLFPYHjrX2vxWc+8xk+97nP3eV43ERZlrzpTW9icXGRs88+G/AWm7feeitSSs4991x27drFE5/4RL70pS9tup3bbruN973vfTz60Y8+4u9u0eK7GS960Yv4xje+QVEUXHfddZx33nn13z72sY/x9re/feb9T3/607nhhhsoioIvfelL/OiP/ujdvk9LS0ts3boVIQRnnnkmW7ZsqR/bt2/nec97Hr/yK79yTNtuiyQex1hcXCTLMubm5u6S7Kmqir/4i7/gfve7HwD/7b/9N/7qr/6KPXv20O/3eeADH8hjH/tYrr32Wn7qp36KW265hSuvvJJbbrmF3bt3Az6N9kMf+hBXXnklr3jFKzb8nre85S2H9aJL0/Sw+3nJJZdw/vnn85SnPOWw74u44447ADjxxBNnXj/xxBPrv11wwQVceumlXHHFFbz4xS9mOBzWqf233377EX1Pixb/2Wjb95Rovuyyy3jjG99Ir9fjta99Ld/61rfqtnvHHXeQZdm6YjTNPuAJT3gCr3vd63jnO9/JT/7kT3LHHXfwB3/wB0DbB7S4d3A8tu9nPvOZnHrqqezevZsvfOEL/NZv/RY33HAD73vf+w77uYirrrqK+fn5GXuetbjxxhv5sz/7M/74j/94w79PJhP++q//urXvaXGv43hr41//+tcB7zn7x3/8x5xzzjn85V/+JY973OP40pe+xP3vf/8NP3feeefx9re/ne/7vu+rbQMe9ahH8aUvfYn5+XngyOYGf/AHf8AFF1zA3Nwc//f//l9++Zd/mcFgwMUXX7zpZ1q0uKdwvLXvtXjrW9/KAx7wAM4///y7fO/f//3f89M//dOMRiN27drFhz/8YbZv3w7M9huvec1rOO2003j1q1/NYx7zGL7yla/MBJuf8Yxn8P73v5/xeMyTnvQk3vKWtxzx/rZoccT47nLfuddw7bXX4pzjggsu4L3vfe9MW82yrJ7vHwtagroFAHNzc/XACJ68Oe200+j3+zOv3XnnnQB88YtfxBjDmWeeObOdoijYtm3bpt9zn/vc55j38QMf+AAf/ehH+exnP3vM29gID3rQg7jqqqu49NJLueyyy1BKcfHFF3PiiSfepW9eixbfDThe23eaprzvfe/j+c9/Plu3bkUpxYUXXsgTn/jEo1JOPf7xj+eKK67ghS98Ic9+9rPJ85yXvOQlfOITn2j7gBbf8fhuaN8AL3jBC+qfH/zgB7Nr1y4e97jH8bWvfW1m/zfD2972Np71rGety3aIuPXWW7nooot4+tOfzi/8wi9s+J6//du/ZXV1lec+97nHdhAtWtwL+G5o49ZaAH7xF3+x9sY899xzueaaa3jb297GK1/5yg0/1/SvfchDHsJ5553Hqaeeynve8x6e//znH/Hc4CUveUn987nnnstwOOSKK65oCeoW3/H4bmjfTYzHY97xjnfMtLnD4bGPfSyf+9zn2LdvH29+85v5yZ/8yTrbIvYb/+N//I+6tsSVV17JSSedxNVXX80v/uIv1tt57Wtfy+WXX85XvvIVLrvsMi699FL+1//6X3fLMbVo0eLo8OhHPxqtNc997nN52MMetmmGyLGgJahbAOujpkKIDV+LA8lgMEApxWc+8xmUUjPvaw6oa/HEJz6RT3ziE5v+/dRTT+XLX/7yhn/76Ec/yte+9rV1SsinPe1pPOpRj+JjH/vYus/EqPWePXvYtWtX/fqePXs455xz6t+f+cxn8sxnPpM9e/bQ6/UQQvCa17yG+973vpvua4sW3y04Xts3wEMf+lA+97nPsby8TFmW7Nixg/POO4+HPexhgO8DyrLk0KFDM9ves2fPjKrl0ksv5ZJLLuH2229ny5Yt3HzzzVx22WVtH9DiOx7fDe17I8QUxRtvvPEuCepPfOIT3HDDDbz73e/e8O+33XYbj33sYzn//PN505vetOl23vKWt/BjP/Zj67KqWrT4TsZ3QxuPc+wHPvCBM68/4AEPWGfZcTgsLS1x5plncuONNwLHPjc477zzeNnLXkZRFOR5fsTf36LFfza+G9p3E3/zN3/DaDTiOc95zl2+F6DX63HGGWdwxhln8IhHPIL73//+vPWtb+Wyyy7bsN/I85z73ve+6/qNnTt3snPnTs466yy2bt3Kox71KF7ykpfMrO9btPj20QqTjhRJkvA3f/M3XH755Xfvdu/WrbX4jkOWZRhj7vbtnnvuuRhjuPPOO4/Kx/HbSS/67d/+bX7+539+5rUHP/jBvPa1r+VJT3rShp85/fTT2blzJ9dcc01NSK+srHDdddfxS7/0S+veHxetb3vb2+h0OvzIj/zIXR1Sixb3Gr7X23cTi4uLgPey/Ld/+zde9rKXAZ7ATtOUa665plZn3HDDDdxyyy088pGPnNmGEKJOR3rnO9/JySefzA/8wA/c5Xe3aHFP4Hhq3xvhc5/7HMARLS7f+ta38tCHPrT2rWzi1ltv5bGPfSwPfehDufLKKzfNerjpppu49tpr+cAHPnBU+9mixT2F46mNn3baaezevZsbbrhh5vWvfOUrMyrpu8JgMOBrX/saz372s4Fjnxt87nOfY8uWLS053eJew/HUvpt461vfypOf/GR27NhxxN/dhLW2riHz0Ic+lDzPueGGG/jhH/5hwFue3HzzzZx66qmH3QZMa9G0aNHi3sEFF1zAxz/+cU477bS7bZstQX2c47TTTuO6667j5ptvpt/vH7Zw0NHgzDPP5FnPehbPec5zePWrX825557L3r17ueaaa3jIQx7Cf/2v/3XDz3076UUxcroWp5xyCqeffnr9+1lnncUrX/lKfvzHfxwhBL/2a7/GH/7hH3L/+9+f008/nZe85CXs3r2bpz71qfVn/vzP/5zzzz+ffr/Phz/8YX7zN3+TP/qjP5pRbNx4440MBgPuuOMOxuNxvbh+4AMfSJZlx3xcLVocK77X2zfA1VdfzY4dOzjllFP44he/yItf/GKe+tSn8vjHPx7wxPXzn/98Lr30UrZu3crCwgK/+qu/yiMf+Uge8YhH1Nu94ooruOiii5BS8r73vY8/+qM/4j3vec86dUqLFv9ZOJ7a99e+9jXe8Y538KM/+qNs27aNL3zhC1xyySX8l//yX3jIQx5Sv29t+wYfVL766qt59atfvW67t956K495zGM49dRT+eM//mP27t1b/21tf/K2t72tLsDUosV3Ao6nNi6E4Dd/8ze5/PLLOfvssznnnHO46qqruP7662eKuz3ucY/jx3/8x3nRi14EeO/cJz3pSZx66qncdtttXH755SileMYzngEc2dzg7/7u79izZw+PeMQj6HQ6fPjDH+YVr3gFv/Ebv3HMx9OixbeL46l9R9x444380z/9Ex/84Ac3/HtzDB8Oh7z85S/nyU9+Mrt27WLfvn28/vWv59Zbb+XpT386AAsLC7zwhS/k8ssv5+STT+bUU0/liiuuAKjf88EPfpA9e/bwgz/4g/T7fb785S/zm7/5m/zQD/3Q3UqKtWghANGaUB8VnvjEJ/Lbv/3bfPGLX+ShD30ovV5v5u9PfvKTj3qbLUF9nOM3fuM3eO5zn8sDH/hAxuMxN91009227SuvvJI//MM/5Nd//de59dZb2b59O494xCP4sR/7sbvtO44FN9xwA8vLy/Xv//2//3eGwyEveMELOHToED/8wz/Mhz70oRkfy09/+tNcfvnlDAYDzjrrLN74xjfW6o2In//5n+fjH/94/fu5554LeFVWO0C2uDfQtm9fxPDSSy+tbXye85znrPPFe+1rX4uUkqc97WkURcETnvCEdb51//iP/8jLX/5yiqLg7LPP5v3vf39LZLW4V3E8te8sy/jIRz7C6173OobDISeffDJPe9rT+N3f/d2Z961t3wDvete7cM7VhFUTH/7wh7nxxhu58cYbOemkk2b+1vSht9by9re/nZ/92Z9tg04tvmNwPLVxgF/7tV9jMplwySWXcODAAc4++2w+/OEPz1j4fO1rX2Pfvn3179/61rd4xjOewf79+9mxYwc//MM/zL/8y78clTozTVNe//rXc8kll+Cc44wzzuA1r3nNpl70LVr8Z+B4a9/gA70nnXRSLQJZi+YYrpTi+uuv56qrrmLfvn1s27aNH/zBH+QTn/gED3rQg+rPXHHFFSRJwrOf/WzG4zHnnXceH/3oR9myZQsA3W6XN7/5zVxyySUURcHJJ5/MT/zET7TFjlu0+A7AL//yLwPwmte8Zt3fhBDHlEUi3NFUkmrRokWLFi1atGjRokWLFi1atGjRokWL73JcffXVPPvZz2HXrruv2N9G+MY3buT6669fV+S0xRStgrpFixYtWrRo0aJFixYtWrRo0aJFixbfk2gtPu59tGUqW7Ro0aJFixYtWrRo0aJFixYtWrRo0aLFEeHjH/84T3rSkzjjjDM444wzePKTn8wnPvGJY95eS1C3aNGiRYsWLVq0aNGiRYsWLVq0aNHiexTyHn4cX/jf//t/c+GFFzI3N8fFF1/MxRdfTLfb5XGPexzveMc7jmmbrcVHixYtWrRo0aJFixYtWrRo0aJFixYtWrS4S7z85S/nVa96FZdcckn92sUXX8xrXvMaXvayl/HMZz7zqLd5/NH4LVq0aNGiRYsWLVq0aNGiRYsWLVq0aHGXEAhxzz6ON3z961/nSU960rrXn/zkJ3PTTTcd0zZbgrpFixYtWrRo0aJFixYtWrRo0aJFixYtWtwlTj75ZK655pp1r3/kIx/h5JNPPqZtfldbfFhrue2225ifnz8uIxItWny3wznH6uoqu3fvRsqji4e17btFi+9sfDvtG9o23qLFdzLa9t2ixfGLtn23aHF849tt49+zEO25Ohr8+q//OhdffDGf+9znOP/88wH45Cc/ydvf/nb+5E/+5Ji2+V1NUN92223HzMy3aNHiPw/f/OY3Oemkk47qM237btHiuwPH0r6hbeMtWnw3oG3fLVocv2jbd4sWxzeOtY23aHEk+KVf+iV27tzJq1/9at7znvcA8IAHPIB3v/vdPOUpTzmmbX5XE9Tz8/MAnHSf0xHC4TBI58gR5EKSSkUqBImQ5EKRCIlEkAqJEv7Z/xMoAQofAVYhEizZPCJscTO/G+c2eecsTPiccX4bFot1DoPDOEflLAZL5fxjaDSFM2jn1n2nAyxghSTNttDJt9DtnEC3u5t87iTE3G50f5Gi16XspdARzG2xZKkjzSBNoJNCokBJyBL/vDbIZi2Y8Cg1aAOVgdEEDu6X2GXoLhd0Du6H4e2U49uZTO6gKPYxLg5QlStUepnUQSYkmZAkQlJZw8gZKiFRSY9OvpVKTyiLveTOsTXJ2JX22K46bJcZPSHpCcmCgAVl2N6bkGWWLHOo1CElCDk9R84KTAUrKwmTMmGsFStaMXSCoXOMcUycZYzBOH9t4nmfOMuyKVg2BWNrGFlNhUMLSFQPqToo1SFROVKm/iEUQkiEUAAIkYRnf0Kds+FZ45zBOYsQkiTto+QcSdJFqR4q6SFVDkLV2/AbCj/LBITyz1L516UCqXBShof/uT4XUq27F4U14dmu+11YC9b4h9NQjcBMcLbAmgJrJxg9wtoCrUcYM8aYMWW1ijYF1lY4a9B6zDduub5uq0eD+Jmfvt+5LKU5WWiX+03JQV2wz4w5qEvGwiFFTpLMkaR90mSORHXI8+0omSNVVp/HeO6NKXFOY11JVa5gbIm1FdoU/m+2xNgCZ8O1wpA6EPh+QglBEnyqJAIpBBL/dxn6HFW/Pu1XBIIUSUcqEqHoSUUa7o/KWcbWUjrNqq2YWM3IasbWsIJBigyluiRpnzxbIM+2kCTzpOk8KplDyg4qXQj3Q7hHmnDGX0OnMdWKPxfhmgMI6e83qXKk6kHSw/W2YbIcnefoLMEkEpsKSAEpqLtIB1gHFcjKkU0q0vGEZDSA0V6K4U2srn6FQys3YvQIMCRuei5TBB2pmFcZW1TOosqYlwmlcxTOYEIfmQlJKiQdIemJhC6CBSHJgObRluExcY4BlqHT3KlLVkzBIVtwSJcMnEGoDkkyT54v0sm30+nsoNu/HyLfBvk8JssxWU6VJ9hEoXPpjbFSAYmrg+xCQmje/lkLqByycMwtj0gmI0Q5gWoIpgCncU77awJYUzAZfYuiPEClB1TVKpWeYMP18v2Fa5xsf+Jr1ZKQCER4lr7PCT8j5Dp1k3MOnB+BcBZry/o7/GsO8D8LHMr5w54TilQqciHJpSJxgmtuPrb2DdM2ft/7PpRdJz6S7o7zmWw7gaqT+sOyDmEtSltUpVHlBKlDf6QLbHEnRg8xekRVrWLsCF0NqPSISo8weoKxE7ReRTlIEWRC0pWKXCrmZEJHJMzJlJ5UbJMZHSHJEOEZsnC5FQ4lQAqHAjJpNz0u40T9bADrBMZBFX43+PvTAFW4t8c4rHOU2DAfmI5JFkfpLJVzLJuCidOMraawlsIZSmf9dgUIVOM+WDOHCTdsvFekSBAy8/2YTFFhLBNComRWj2dSZkiZhXsu9BNxnJOqfr0JF+5tZw3WGX+/bwLnDNaWfhyxFTY8jK1wztbbmvmM9ds0Now3TtNx0An3Zhr6CoOjtIaJNQydQYuEhYX70cm30emcQN7dhezuxnUXqeb6FL0c3ZXQhU7fkaUOlUCS+DmTCm1eCt/lAUxK0BqMBm0EZQlWC2whYOJICks6qejsvxMmBzDlAcriTopyP0VxkElxEF0NMGaCcxVg6bjZeSwQ5opQWH/NNQ4txLSdI5jpG8JrQiSopEuazJGl82TZFvJ8O3l3F6JzAqRzfg6hS8zKjRST2xmPb2d59Zt8/euf+bbb92m7dkM2z0n3eSLFuT/BT/y45P67uqSJYDAy3H6o5FsHNTfvg29+TbH0b5/ka197O49I59iV5GRISiwrVrNqNQNTMnQVY6upnKOyhmZrlIASEikEqRB0Qzs/Ke2xS+WcLBQn5hU7liYsnaDp7uqQbNtKsrQNObfgzwXgqhJXFbhqgp2M/e9lhStLXFXhKo0zFmf8cCuUBCURUiLSFJFliCxFpBkizf3OGY3TJbYsceMJtiiwY001MlQjWD2gGI8VgyJluUo4aAUHnWWfrThkS5ZNybIp2K8LJs402n3i26tM6ms+015CX+9wYdx34fXZdYX/rJy2c5khVUaadEmTHnPd+5BmW0iyBWS2DbIFXNbBZHk9z0wmI8RwP3u++V6Gw1up9KBu/0IkJGqunsdk6SLd7s7p3DeZQyR9SOdweR/dmaPsZlTdBBYFKnNkGfU6ppNBqiBP/RomTSCT03ZqrF9vVQbGJRQVrI5hPBJMbnL09+5HLN/CZHgzk2IPRXGwHn/9HEnXY7B1Zjpu4pBu6pPpABvaWSffSrezg05+Aknq20BZHmI0vpXVwTeQ1SoPnzuRM9I5dgvFCalmW3/Ctp2a/u4UtbSIyFLseMLo5oOMDglWlxXLo7y+J/Y5wz5bsWp9O7itGjK2hokzFM6iBQiRolQHpebIs3mydJ65OU9SFcV+Di5/7W5p36eechZzcyewdctDKH/gJ9nyfY7yXwYMbvjfHDx4PQ5LlvbJsyWsM4zGeynLA3SspiMVWViTJ6HP9m1Y+DVyYw5oAe1s+Nmvmf06ON7L8R6eojlfV0LWnMCiyulIRVekdKVkTiR0w9yyi39fBvQaYz/48b8JG8b60gmsY8PxfYwNz4b9pmRgK1ZMyYopGVq9ZvxOkDIhSRdRKpsZk+MYG9ePzhkqPcbGe9RqrPNrr9jefQt34bwIf2aF9OO9miPPF5mb28Vc9xTSfCtf/cob2SbggZ0tnJ3O8+C5CSedPqZ/Wp90531IlrYj5xaQcwsk23b6tcbMCdGY1YOYQ3vRB+6gvPUbfPOTK9x8oMeNGm4xY/ZUY+7UI5ZNxVg40mSRbncHW5a+nyw/AZVthc5WbGcOk3XQeYqVol7TdlaHJKv7Mas3++/ceS48bIEfOENwwrxCSd/uD44MKxPHvgEcWIblgxJ5p2V+z17cys0Uo29RlgcxZjydx4SVhMNgTeXXuGaCMQXjyd4wRmsS50gD15SvmU92pGJRZnSEotu4pyfOcKcpuK0acsiUWOc4LZ/n/uk8D1QJ998+4MT7WbpnnkLnvt+P2roLIRP0gdtZ/ecPsfKNgltv6XLbJGfFwUFnOGg1h2zJ2Pp14wE9obCGibNUYf4YsxxaHDlE64B8VPj5n/95fuZnfoZ//ud/vtu2+V1NUMfFVxdNRybkMg+Lz4Q0kKBNMloFMjqbeU2EAaxBUG9CTNfkcoNkbr4WSeq1RPK67bj1n6kwfnHqPGFdOb/w1DiEE2Fx6rcc6QmHnxwZwJohZSmQUiKlQilFR6WkUpGJjFJ2KWROpT2xggMhHBP84jtVYIVfdCmmkzvC9o3wf9cOKgeF9ottORH0xhM6o1WEmVDZEc4Oca7EugJcBWhSIcmEX/SnYSDQOHAOKRI/+U27VNUqSkBPJiwmHbamXbaqjDmRsICkLwRblGUhcWydk3S6DpWKKUGtGgS1EVgLcwomY8dwDHOlYGgUy1YwCORV4hQlltI5EhyZc2TOopRAacmKKVFWTid+aJwrPQEuHAiHcA4nUoTIEIIwmZguEpqLd7dmsZ4mXRLVJUkXUEkflfQQqoNQnVlSOpDRriajw0AqJU55QloAyPV38Doy2hiEEwhd+r857cloMwGrPTFmJ56MNhOq8gDajNB63BiwJzWZ4KzGWo0x43B8ntTFhO87hvS/+JlTsx65ShhjWLGab1QD9ukJI+FQ6Rxz6TxZtkCS9EiTPknSJU0XSJIFhExmFxgWjDFI6TDGH7d1Bc5VaDPGmhJrC5ytwGmEsKRAgqKnEpIwuY19iwyT343QDHDJNe8x4PdBiLov6oqUBaB0lq3OMnQVI6MZ2IpMT5hYQ2lWKewqVbmfkbqdNO2TpX2ydIEsW6LjdiJVByk7IciRIOIEUgiQXZzVSKwn6MNka3rOQWAQrkRagdQLOJFihcM60KQYFBaFlcKT1fGzOBQOiSEVikRYlFS4JMUkOUqlyPq+9Ys7gScSFIJEKhKpSEPflUuFdZbCOqyzNammhJ8Mpig6QtKPBHVYSPjzKyidXyR0nKNHgpWSzChSE75HF6y4EmNWKUsX+k5BR+8gUSlSSlKRYJQgNSlGJmibYqT0tK2I5zQcv8JHDIULywCHUpZMapSyiMSCq3DC4qwAJ3BhcSMwJEmGNinGSpRKsE6BU540djQIakv80s0I6vg3//c4ahAWNX6B7eJiu26vFoRDhq0rIEHWRF8mJPMqI5eKjlTMiZQOgms4tvbd3P/tW7+fhV2PYbzjPpCnJDKcF+tQlUE5jTIFUgmEK0PLcugqBZngJCglsRYQfmyrH9jQXvELBqnoyIS+TJlTCfMyoyf94nSHSOmG+6kLZMIvTFPhyKT15LQQSOk2bfeRnLbWP1dWeKJ6DVldht/jQnbsHCWerC5j0Lrxc5wDCAkTm5BZT1KnztSEZYXDCB9Y8ATyXZHUDoFBigQ/I/FhNiFSHLoxnjl/q0sViKvpYnlKVK+dTvq+F6kCQT074W+S3JHA1jrDmFEYV0qUTaZjjItjSQj4SglOIYzASuUJbltR4BCE/RWQCN/eO87RcYaBqRiNb8O60o/jrqBjCzJ3HzInyUko6VCSojvC31vC4ZRvg9L5IH4zkK9ycApEig9OJaBLgU3AJSBSh5AaNTHIJCOZpEgJSiUhsO0opKCqBNYITzI4hxXTfiYJx62dxQkQTvjgkhB+FiuSEGRUSOFJDiGTOvCQZ0ukgZxOs60k2TZktgSJHycwBU6vUpR3Upb7mJT7MWZ1pp0eLeLnjJJsWTiN+Z0/jD1lnpN2pixt8QGPoakwaUKVWMYG5gaGyehmrB2yJd3CnPTBqokDi/AiAuEDOFYIrLO42F/E750h6QVOCIQUiBDARyZkAjJr6DjoWUcmHUo5pNCIVOHKAucm2GqEq0psOcaVJbbSuFLjjMNZL4QQiUCo8MgSZJoEcjpDZpmfk2X+ODACVzmsdD7AgsFaR6VBW4fIFZmVJC7e3xKc8/M7J7HSz8WHzs/hCmcRgA3jjgBPkONmxgNHGHP85D+MJ3ZKUMfxRYi6f0VYHBXOOrTx/WmlDyKkQwiNFAKFQbKEEykuSbBpisgVUnXYvu0HSJMOg+G3KMsVnCsBh3UTjBFok6BUCpi6PSiVIlXqCWrVQSQdSLpImVAphcocMjxEAmGCBplfp6gEbEIdsIjimrGFQsDIQmEEk0KwuLIPOdpLUd6JMStYM/b7KEAphbMOJwTOKZzTSGewTgeS2tQEdewKNBZnx5TlQRD4OYVSpOkCnc4SSkmEcKwObmGPGdFNEjpqjsx2SIYZ6e0FaVEwf+JB8u0dZJqQLyR0raOLoCMcnTHklSJzCdIqEqdQpqLnqjB/9WtTPwx5kYSSfm3oz7XG2pKyOoCuDt0t7TvN+vR792Fh94XwkB4H7pQs7vs3JpM9COFQKifL+iRJTqWHYcyBVCkkvl3KMAeMgg/CebXOt3XCfe5j576Px8W7d22YJeyfv4uJ4U0XyWUBY4wPMAo/czUI35/4ZkJXCBQy9K9RnOK3pxqnK3Q9NTkdoRrrfOkEAotfLgZhnJMo53kJ5cIsTUwDRNNrFvpyoRrryHRmnWWtwFm//8IJnKjC3wXTNh5J6giHo8K6yt/3dogU28jzJYryACMMpRQ42yEtNT2tyeyExE2Q5EgKVDVAZHlNUruqwJUTzOQgtlymGh0gGY9wRRdHhpManPQnTUpwAikiZ5HUjyRJEUmGExk66aBEikkSbDjZmaj8XF95QY3ubyWf7zC/IOjPK7JE+HafGmTHYVOHlmCEYGgErpBkugA7QqApSn/l4vymPkMqwxi/btFSonUXgcVaT2D7rtQHJKWQ4br5R6IUufBrxk6cKzkvsFt2FUPnAxMIgVCSXKV0SJkTFX3lyKUhURaUxaRAnmClppck5DLxwgknSIRDoZDCovD74rB+fiAE0q4Rs7Q4AhyfhQzvSezdu5eLLrqIHTt28IxnPINnPetZnH322d/WNr+rCeqIk7IeXZV6wkh4JV6KQglPRtekNIJMiPDsVVKKEGGFwyw440ATSOX4LKiVfYbp4vKuyOr6e5z/2eDAKaxwSOEn4HF2VdQRU69lMzNDjYcEtKvQesB4bDG2wpgxWo/o6iGpmdDRO5BmkWE6R1FJdO4oM8gySBJHkvjxIiqE4uIr8JkY63+uNJQlTCaCciToHpqQr6wgRnvR4z1U5X6K8hBltUylx2gzwTpNGo5bCVlP5uKw6VWbGUIojBmRAj2Vspj4CKRC+GslBF0BXWnpZpost15ILKfktH8O5zfFLyKMDe8Jj8KBTsAKjJP1dWyeVSUEHRKsmirXbZBLVa7CmqBAdEGVoiwqThikPxYlpyrqJpoDYJx0CJn4BaZIPKkYnuPi0UmFS/yCrklI+98Pr44WpqmMNghdekJaFzg9wJpJQxU9DKroIVqPMWaENhPKahVjipqInqo6QyQfr8jJHCR1BkOGFI5b1u3d0eOAq9irx9xejbjFjFGqSydbDAqcBdJ0njSZJ0kXaoLWOV0/bFB+e7VdidajoNArKasB1pQYM8HaEusqpHOkUEfHO1KxpHLyoPZIharJ6WY4IAasYiYE+Al282/AusBU/FsmJF2h6ApFj4SJNIytIReKga2ColpT2BJtS8Z6lWKSIlWHJJmjP3eAJOmTpvMkyRwqqP0jebHuPpEJzniCOl5P0VANMdmHNH2U6SHLHFlV2DTFJikmTbCFwDWiWaoyqEojdVWr8J2ZbKyA3ORay0Dae8VpzCYxXo3uBDaQE80oTCSna4WrC4E2F66Rk/SFmpVZA8KUrNiSqlrGOo2xFVm2hHOa1GmU1Sjnj0fmHaSxmDTBaIW2kppzk9R9trAOYUBpS1JUyKrybU4XYP25jQrqqAK1ZuIV+7VSK6pf1i69pjrBJjk9e14tAlmT0fG1WTK6oaBuKKSTqGgXIgQ3p9lHeWgDPZnQEwl9oeqA17eLhe2PpNi6C52nU7IpktPxfjLG918xs8NO27fvl3xwKRKVfrHuMyNSqJXTPZnSUyk96ZXTC9KT0n2hWIzktHCk0pEJRyotqXIo4ZDCjyEqZOpspqYCMFZgrSAN5LS14Z62EuMEKY7K+rHNhIVyhqB0/nvL0KuqoKiOSjBDWi/gVViASEBaEEFl7a+w9lETF1VTcd5hQUgcDuEsFg3WL7Qsvh+QzqJkWo9n9b3lkqCoVghhEELVd+RmgnIb2r4QCc7pekyUYdwDUCQ4qxoz0tHsNmzV2IfZL5IyqWM2xumQHeBJPysUmXBkUvm5IYpECfbqIaNhga6GIWNhQFevkJfLJOWJqGIHSW+eoeqhc4HJBbr06/AkPOK8w+9ffBb1z3WzlJ7ktqnC5LkPCid9knSCs5o0LcJ96wO9lTMI46+LcY4K60kbXJ2RkwmJc84H4mbIB+HJaZWhVB4yvDIS1aHTOdEHbtNFVLqIVJ2QHaW96q06hC6XGU/2MJ7cSTHZjzXlxhf1KCFlhy1L389g1yls225ZmPMd8aS0DAvDYOIYTGAwEMzv28dtg6/TxwfFAMbOMnGGka0orAlZA4bKehFHHE9ju7BBxiFCb6jrzDjD2FnGzjG2Em0kVSHQY0MyHiO7I38rWY0dDz0xPR77x6TElgZbWmwgp+N1jpdaNJgroRRCqfrnu0K8X+J9JUNQLAt9RBev7OyJlEpZMi2n1FNURgfSxB+EQoS2Dl4R5gMbFieCPtVFnWqjH3NBcSkcWD+3c9LUc10pD4YMhxJrClIzIbETlJkg0j5Cz9UK9E7/fv67hWR1+C2qahVrCnDGZ9wVFmsrsnRxeh7C3FdqP2+RVYpKvIISLbEatAQpPf3YDBSlSRAO2Vob4ftcDUXpH6ORYDIQpHsN6tAtFKNbKYq9lOUhKj0IWRuhz5KJn2Y4i3MJxpZICxaNcA4rPOkI03WkdpbKDHCTxvzY6SCa6DHX3Ym1FXtWv15n2pmkizGKatih0Iqt44KF1Qn5PLUAJ80dndxQaYl1grJKWBSKMYZKKnKhKISiFBblBNo5nHAz19Y5S1UNKMoDDEd3gC3u8r48EuTZIvPz9+fAOafysF2W6lPLrBz6AmW5Eu7ptM7AsbbCOh3mHrNrbut84DfOmWF23nxXcGueRePZhX7CINBhLaeFRTtL4RS5MBROMydTxmEO3hUSg6rXn54v8F+wtkWb5sNNx+/1QWc7c3zrM7V9A7ZWI6QP0PpzGI5lzfpRhQBelC04Y0F4YQMiRioa90CY8+H8NEpXQwqZkCR9knSBPF9iWOxjYCqWneagzhkPFNVAk4zHmHRlZm+FSnxUCHDlBDsZYocrQUF9kOKgZlB2GeCDAnFOb0NwoQ6HOTsVE1mN0AUov+ZwUqEq7TNUAKmrev4nRA+TJuQZKCnIEkGqBEpCN/VEdTd1zHVg3HFMeoKi3yUdbiEpFtHV8rr7qHmOlcrq4JRUGcKWYf5uai7IOudFPA0OCOK9KzDhvo7cUxQ3xfcYF7LqrcCWzgdCJ0PsZOiv7WSIK3WYQwZhg3M1/2RxVNZnFuggZIw5MmLdndqixd2P97///Rw8eJCrr76ad7zjHbz61a/mrLPO4lnPehbPfOYzOe200456m8cFQb0jmaOjkloZ3RGKTAiyMMHNIsEJ4XU/uHTFbMou+EVoRFRCVTOKp1nVU9kgpsdhIVk6r2KKi8qN7D8sbhOiGoL8DizkUoHFqyYs0xS9NdsTBDWGGVEWvrM3tsSYEV09IKsG5NWJmPRkyirF5oIi90R1c9GVJG6dOsja6aMsBeVEYMaCdMXQOXQQMdqLKfZRlfspy4NoPUDrIUaPgxLVoPBp/FGBWneiAhKVkSif/mhdyZzwJMKcSOkKRYb01wvoSEueWFJlG8T0+nsiviaUIMOhUhBqliQzVeKvpxMYJGNmF74KQS4SunKaUobVJNaihfZkhJOzYfMAPxlLZxfkMwRhYwCU+br0aK+YTtYopg9PTK8lpSMhjTUIU9QKaRceRg+pyv3BomOE1p6M1nrobTqi3YXTwQLAEo1ponIkAa+wxBNYPZnW6uJUyKkq59vAN/SYvXbMndWYFQyd/ATyfKlWDUe1tEr6XjUMfp/1lHA3pvDKPBPTyMtaAV4FgtqnVhsy54nprkyYC4+uTNimOiElUNZ9S7wCKgSPIKohDWVM1w/3TtlMTRR+gmadVynFBm1xXq2KzzjIhCcDMyFnFNVD49M6C2cpXYl2JUYP0XpEksyRpX2SpEeWLtaKcinzmqyO58jZKTldv+Y0QhhsWLw4O0FUA2TaR1UdZDqHSzJUmuKkxCZp4x7091xNytYWFbpe4K6lpv05mBJuKiz3p7ZHXh2qECAgc9IrnMKEzy8apkpXvx3nbRmcJ6lBsEjit9FoNgqvJBs4Q6VXcbZikMzVZGdqChLnJ8uJ7iGrLjLPUVWKMClOyZpQnZ4DT6wKa0mKIpyHpq3HLDk9fZigFI2L2kggR/X0bP/knFsf5a/Jx/i5pkp62n4BZFhkSfz9HlXSWVCo58LbJHSkV4JkQnKiyukLRTcs2A7au4fAqrafhpnLZ8hpYezUbmgTxOCTsb6vimpbY4pg21Pi0HV77oS23JNT5fSiSOgLSVdIFgMx3ZWWVDo/zghHmtianIaooN1gXLei8XNYcDhRk9XWCVLnqIz/ORMipAYLsIISP0cpEaiw+FBC1kS1AkwYK5SSyLB4VXjiUgRyuXSWsrZqkWGhGq04xIYktXAS4SxSJphw/ymZEFOJE2YD1+uswMKz3GhADmiS0/73xntlaJoNkto5UxPh/nqvuReEX+YJIWsVscXbPsy81zLNehGCRZcysppRuQ9jJlR6TFkt0y0P0in3k5e7yYqdOHkSVZ5SzSWYXGASiUkdVViTy5pUbF5z/4jcoAvHZqXAJik266CsQZoJyhQkZoi18z4ryVY+AGwNJpBgwoHBooUgcYGEdZBKhbWgnMEIQ8jZCOdVBmWaJ6eVmiNJ5pAy99cgBMXQvu/xNjlDyvIAk2I/48l+n/a8Jvh1rOj1TmJu28M5uDtlx6Kl15kS1IOJZVw5VsdQrUrcoa8yGN7KCTIlC/PiEsvQaibWMLaasmFxEtP8wY8lUgiiNlg6/6yZBjrHzjDGMTSSUZnQLzRmoj0BPR77qbfRmOEANx5jJgV2XGFLi544nHF1EEJKkJkfU7yCOth7NAnpDQLDmyH2K1L6PifVoT8ygjGCLoqxtHSc78esdXWgwoV1B4EmiST12nEDIe+CpJ4qql3IssBarPBjh6gGdXDfpN4KLTVDUlOg9ABplkB1fFpB2ifvncoCvq0PRrdRlssYMwZnfVC2cowne3zmWsjmSgnksEyQpc8ItUoiqrRWUZa40N+62oaw0v4cFg17jyismUwEk4m/x/L9Jb19+yiG32iQ08M6U8MH4fy8RgqJCVZvQkgM0q/JCKcmkNQCVwuhpLOUdkwxmR0jfJbfPN3Oidy5ejN3VKM6yxfVobSKcpJRaMlwXLG4UDG/TeOMz9pJUkeeGior6VnLwEi6TjHA1HPuREj8SpU6EO0vp7co0eUBxuO9aL3C3N3Uvue6u5CnXcD9zrBe4HTbZxiObsWY0ttVqDwEPC3ahAxFXK1g9gRfvHPDHK4xpz4a1HexaBDVjaV1JKqlNWhhKYXPVs6FonCKiTX1nKcnE4x0fh3qZgVtMCtqM64hXgvPdfZT4AYiMRtJzQgZgmn1NcPVhK3F34NrM5AiYl/vhMKJMH5b6wUp1uK8JpvQmsM5mgazjC2oqiFFeYA0naeTb2NV3MSqKTloKpZlzuowZWlVkw1HPjNkk/7NVQVuMsQMVjDLy+iVCcUqDI3yGWJhPh9y+NZdXetMLeDA6SBIsEhdYZPU53dZi9ClH78ARIJJlbf2STxJrWTgexJBZhzdTNDPHcUcTCaO4YKiGsyTjZZQxX6kVFhrsNagGsdWZ4nJHOUMicr9WtFWWGexRPtBi3WyXtOZ+BBTwjoKDJQTweJR+kB6QwBZGZ8F6MoSNxlih8ugEn9OxwZT+TllfX+Fcc2E+yva33hbuEBO301t/HsO7Xk7amzZsoUXvOAFvOAFL+Bb3/oW73znO3nb297G7/3e76H15hZ/m+G4IKjPTudZSNI6LXdBWTrK0EkseVqRpZYksSQhCi2lJyyTzsbkpjPUk1BTCapCUBUSXQm0FmgjKSpFZSQTI5lYSekky05ROsc4qp8iQSWmAxX4gWyj9H8VCW2kV1cpE5JuvXIwqqQIE/MZzz0HYLGUVLryRHW5zHiyj3x0a03m9ZbPoJtvQ3S2YbqL6O4cVZ5S5gmTXOCUgETUVhnOCNAOUUFSeEVgbzwmGY8Q1Qgz+AZV4YnpothHUR6krAaB9JtgXUXiHJ1AesQ01eiRpFSXPN+CUh0qPWIeyfa0y4npHAsqDSSdoC8ki9KxkBj6eUWWBXWqBSoBqas9y+L4IiRIJbwCwTiSjiPvarpjQ2+g6Y8TFiYpfZ1wwElKaxk7O50ghSDHvMz8wGI8ue7tVywVFdZYnPAxTOUsTmVIZ0mgVlJDMzW6Ofj59F6pcr9wlA2Vq9Uhn0wTGbWmPYdHNesfHdWFTkM1xJkJVg880awH6GoFbUbBX2+I1kMmk4NevRX8cCP5PENcIUJqf0YermMWFvoxUyEOvlHxrgRkSKy1vP9IGvFh8MnxPrJskU7/FLZlW5ifvx9ptm2qApNJbUti9bBWgpflgRlLEtvwmfaKcR2IrSGp896lPZkxrzIWVMaSytkiM7ZKr1TZKR09ZXyARBrSpKpJqyYRpY1kVCnGVlJZwdiJ2hN57KwPaoW+YdlqqkAoRWVBVGZnQtbBtt2qgxJdTOI/FxVlQ6tZNSUjqxnaiv3VKlW1wmQC3ssu9ZOrpOOtZJJe8Ofe5gMja9LyI2ENRWhfRSA1FLKcWocI1SFRnXohGtX9/kMhIFINsaVX5Wk9Cmn8s9GcmUyQhgdhhmTsDENXMbFedRFTVWPXGQOOXeHoSB9cjCrXiA5e1dqzEmUkAyHpO8WiSNiiMlZsxVKSc0gXHNAThmbMysrXGA5vJ83mybNF8mwrnc52nxafLpJmS5D2SPP5dUEjmAaIvMrDICYH6qCQNQWzqt+iDqBEBVelx0HtH3yhbRUWmuG4hE8XBa+iFJGMrk/qVCXtXOVTU1207WicYym9NZZQIVsloRNI6SwQthmyJm/74ZwvA7fYgpvKAbdMZtU0x4qi10FJUZMPSWWQQeVUB+SUxVmf5hvVMzH7Q+sxVQiMluWKD7rZAmEr5hAsJr5Ne2/zjAWZsigTFoNtVF84OtKylFckygdAfbA2PBQNcnrzRXMkqOtnE1W1U2WttSIsREKf4QSVEXSsrMnq0nmS2itkvVqmFMKruaRkHGypejLxNRJCO/HZFd6HdGAqb/kRli9+CSTCjELM3E9h2Y5wAus0AokVJVYmILxfpbVVrYSL9RbqvmEDRfVGaNqB+M/lM3930iBdHrxv/XipjaqJDWj2UVMIIZEkOJnhrMBhKDGY0LdG1VIMwCyqjL5Kgzf1hPHwWxwcfZMV1QuL9C108h0sDh5Cnm+DzjZMp1fPl3SeUKYCF7z4vYVH4zjCSXBG1EbVToFJE6ROEbaLdIv1BHwtcQ9QVSVahCBDzKqTqiapE+d/N9YF6zE/H6kzu5gNAFTVSmgrKw3C36D1EGtLqmqVslphdfVmHJokWWDHtvO45ZtfP8wVPTLsvu9z2f+Q7+OM+xrOOdkf63Bi2LNcsXdg2bsKe/cJtnx1D3fc/v8jq1Y5aW4rAMtWc8gWrBrv2xqziGJdlqmmY30GpMYFIkGA1ayaChnG1kzmZJOU9JANbbqgYw6iemOEUphJgRmUVEOLnoCpQOuY7O+JUJU68oypvUeaILMU0e16BXUayJygMMRonDE4Y6B+nm0xQkGSOhJtyRNDz1HPLeroqoJhkpMYyVBUqFpVbtHE7C2DM77tTv3JG9+DmCGpPYvX7NuCMj+Qe84ZsBXOVlQyRclVJuqAr/kR7NXStD9V6Sc9VL4dkfTpLHwfWedE+uPbGI1uZTS+jbJcCaRwyWDwLUbqTtK0TyffSpYukmVL5PkOkmyRZLKdZLiIqrZRdnN0nqBTQZULJqkLeo6pmloGQY/RAlMCI8hWKnqHllGrd2Imd1AU+xkMbvKqaTOuieks7cz0cc5ZbPDIr+uUaK+mtkHAoYWuB+BYZ2fOOSpXMhrdRjHZR5ZvZa57It3ODrJsiS1bHsRweCtfLvdxpx5zR9pjd9pjh8xYtIp+ldAfdNlypw5zzpiRJyiCinoz+CBWaBnhGLQp0GYvk/Eeus6yW+VUG6lrjgWPeAFn/EiPbgqf+pxkdPv/ZTS6EwAV5p0A2owxehzGGA+Nt+vQYQ0bEUZ6og+1P/aNx95ZjfAsOe3Pgah/1+GnEoO008yxRHif6lQqEgRZqGOwoDI6UtXzI399gxp2A9K4zqJmWkcizu/L8IiBtERIlLC1kM05fJDJmdrrWMrM2/KpPFhIzPpRA3UwRQiJDVYT1mosos54jedWhLmgw+GExhpLGQOjzrC0+AD6/TvZs3oT8+UqCzKlP+yQ32oQakzPWFxZIidjxGAFoZTvx6wJvvpjzHBMcbBkdEBwcF/GXis44Ko6yFhY0wgs+jwXL9AI82E99FkUIgmktEEYg1PKr3+rIVYP/XlJ+1RdxVxu6aaSTirJkqBOts6T1cKG43cY67mdgemzoE8mt5rJ5HasHft7p874UnVWc5zj6EiKA1Xla4hVzgf5lbMk4ZE6WQtsSvy6JKqou8JnweTSZ8VWQUxgCORzJfzYs3IQF8YLs3KI0QHHynLGoSph2TmWnWEQ1oAjoxmaiqGtmDhDKQCSujZRixb/maiqin/7t3/juuuu4+abb+bEE088pu0cFwT1KYljW6qZSw15auj3NWluSXNPSKuOQGUSmcl1/nDr0Jg82tIXQSmXS2xl6klqVQjKQlKWnqgutKLQEnRCGdTaY+cohSecvc+QDUpdB7WlxCxkUAjGGbd1flEVU0e0kLWSeprSNzswC+f/s67CBRsKXwTLFxxK1BxGD0jKZdRkkXy1T572sFkXk+de4aNkTQoIa5HGRzBlVflUa13W5FMxvo2yPEhZHqKsViirAboa1RM3vxz2qq1QtsmnZuILDmaqS6Jyny6jx8wHb9BOrZwWQQHv1ZGpakxgrE97xQcisYBSPrgAYmbBKJU/sUE7SpQ9WysoraQ03lrBTyz87CZae0S7j0pYKmFJAnFgnUNH5ZIzPiUrRrLDpFYyVZfW12imwFSyoQ2I37lYVCYmCk1V0v7vUTHd8JC2GswEXezH6AHGDKmqFapqEFKZV6j0GKMnQXk4IRZB84SfJJUyeLUmtZJyXmUz/u1Ne4umdU63kbGQCREI9m8PeWcHvbkT6HZ2kOfb6c6f6YvogFejNhTh/phHGFNQVYNaLR0XF8bqWhnuvdcKcueLv82rjKUkZ6vqsF3l7JApW4Vkq3TMJxXb+gWdrq37lqnvufCZ9CGwZSrBaEUyGSvGhe8fRpViYiVjKxkDYxxjfG5w6RxjZ0IkfBp9L8OE0tRqbREyQHz6oXEJY5mwpDJPVNsSiWBkdfBL11RWh3TcAmtKtClCe/PBIRWsdeJkbB2MqSfHPt1fh3Q3jbAaGe434Xqz96XVNSHrCdhRUOGv7bEI93i4p+JDUHvxxyJxTQIi1gxQQBrI6VTaGW/AKXyqdDeaC850DHF7QblrCg640lsDlXHS7DNRsmqFNF0grbb6xbfeOWPBM3M81njVtNXYalD7uTeJ6WnBzqLhuxsfwefSRjuOxjmrFedTkrpx8meU0ombLsDSYNMR6zR4RbFfeC2pjIxASoc23EXQD7ZKHenVu/+h4St6yNeKZe6sxgw2sG45FrgGOR2Jaf+6t51Q1s5kjgioC5gaGy0SylCgdWpDFG16ejKlr9J15PSiEPQbgadupoPlla1J6UhIH0YYXEOuu7enS2dPmvjfUyxWetLJewSGlCkra8pA4bO2YJot4O0/ZP338KVgvXLI/+oD2pU1yKDaMg6MCMYHzvlRWXhtVVRQArig6gn602CPlWCdxQg5tYhpBF+FUDiXhFRY00hFnu1PNvOq3qjfUSoPi3ODtFVYkPvvjxVJ16mpCenCQnm1WEjBNw70mgyEWH8kkyoE/wXKGUZ66O2T9IiyGqBURl7uIKtOQJXbUZNFkk4Pk3fQeYZJlS8cmwusYmpIGhHsfrD4Z5gWMA7FbIX0RH2i5tBqTKJyjCqgkkSDMYcnVlRQGtaFeZ2fYyZBQauFz8JASIz2i+m44JbVAKvKur+P1zJmFVV6QFEcwqERJGxZPJP57Y8A3rruPB8tJiecTG+b5cQF2NKbqqfHpWNcOkYFFKuS3vLNDIe3sVX5DLrSOSbOzCinKzstmtskpwVTsce6pHnn0PhiayOjGQrNQKYMnGJQJvTGmnxkUQMNTBBZgh1X6Iknp6tCBII6pJhL50URje5PKBmKJG5g6xFttAKRE0lqF8hp17AMiYhq6toDvx7/vd1HRyoq5y0KtLDY0Pv4TCXf3gUxiyaMGQ2iuqlfFEIEPjMye40+uKaR/G/WaYRxvq1bHbI1qxmLJWsKknTBkzvRYkx1yDon1GTPSN6BKJOpmMWUVG4FZ7XPbjPeYi7TW0j1kKTaRioVqujUgSJbKEwqsInApA2vFQsiFCnujCvylRXUeBk72kNVLVOV+8NcuElO+4wDJbNQlC6p24loWGEoZ7Ay8fMfmWCtBScxwqsXE3zWi5Sy9iEe25KyOFBnJEQS3nZLjC3ZX60EcjRkj8mUEkWJxFQJSk+zxGI27xgYOF/k3c/3TK3MbWYVELJpbSig13HWj/dSMdB3TwbUtgc4dvQF19/u6H91mYPlshftyKxWTwMzc5vmXeZqBXXD3qPRiKd5X0eGzWlsGoGaqcJV40JfComxpMLXHMqEV8V6cVVVz5fSIB6JIqY4H11bnyrO56MyfK3lpwyCARP6cS8q8Kp8MHVQuw44howmJROEiEFIOVX9Q62k9mNmgpA+A8K5WRW1hECIW0+I24Ki9HYXebaFgfwWy6bgoC05IDNWxhmLg4p8UIEagTGeQ1Gq5k1cWWKGE6qBphrCeCAZl0mor2FDMcjpeZiZubopSR0zDTETYv0lqcHVnqON2jkiwaXemnT6EEgJWSKxzpIlgm4qaquPYccxmROUvR7JYBElc6wsN1RR13ePUCiZYWUZajt4e0QjdFiz+b7YNq+7iOro2ese6w5FUV1U31sn/Dqy1NhxIMyNwSyvMInn0gp/LhtZQUVYP2oXzTYFSqahRtHShq2hxebw9XtaBfXR4tprr+Ud73gH733ve7HW8hM/8RP8/d//PRdccMExbe9eJ6hvvfVWfuu3fot//Md/ZDQaccYZZ3DllVfysIc97Ii3cd/tQ7b2BGnuyOYc+ZYE2c1RnRzR7SKzzCsZshyRdmpFg1Br1ING1woHrMaWBa4sUAvL2PEEOykxY4OeOMqRoSosncJSFoZxoWACYyvJrF/gjxGMnfVFwJygFJayzjnyT2uJ6lmS2pMFkaC2QgVS1C9WravdpPz+x00HktpbfriaPDVWo2RKZkakZkSiB94WIekhJx2vRt2AcFlbRM9WA6weoqtDFMU+ynKZslqh0iNPfLrKky9YlJtVt1gcOhBPQqYkac+rrmxFpYfMq4w5ldRVb2sCFOoiVRFRpSZ8nhhKOa9YCoSCFx05VBYWFeEsJeBTI41Ba8G8lZgyoauFnxACpZj6hKlASKdSkjtFKhXa+gmNCF/krI/uxnToqWWCoVkoMZLTcZHeJAebC3XnNMLpek0tnALbuF/j4BxJ6TVEbTG+jUqv1mppHzgY1h7MMXgw54RXRStfOGyuQVylTKtrN5XRNYkYlb4NQnoR6EpHKhy9RKP59j3uFvqn0ZvbSdY5gSTz6v+196LRgzryroOVR6UHDWI6EH/GLwhc+B008zJlS5KzJcnZpjpslxk7RMJWIdiSGOYzTa9TsWV7RdJxpHM+4KW63rBdpuFaBiWBM5a5YYEeV1Sj0k8sBopJoRiVCatlwsQKBk6iSBgLR+bElKiOE7nwuxGOLCxcppZFgPAL1VI4FkXCQKYoBKumqv2qR1bPENXGFljVRQhF4gzWBoW1yhBiY7LRCV/kLJJG8SGl7xeE6vh2EO/fxr1obQiEmDK0iekyY+0iQgpPukTyKJ6DKkzOJbPpnwp8v9DwCQbW2TRJfFCv4/O9NyWpTeI/N6kME1f5vjmmWYZ7SOsxWg+9fYopvKpFdjYMNFkzgZA+Py1IGW09PDEd7XO8zc44qPtjQEXj0zDXhSHDQiOS1PF8hv3FInAkDrIGMd20q+mFIGC0rFkUiSc+xLRAYE9ZutIghaOykj1a8cnJnXyzWOUQBiE7ZDIHvrXhfXM0sHK2ZrZTEhutSJCYNEFVTAvBxs9FQmSG3Pf9m3Ku9pBfS05vFYrFcIy9OtvKkGU+0yoS05GUXmtnseExeOtHnKHOqvDkdkxDn/29No0ET1hb5VOkbO1oS4aD4DnoXxJk8f4Nm1KImqT2Nhk+jbSUBuU8SaWdJ2wNcfHrEE76u0hQpw9vRFRb6xfBmAIXiAbnbCMF3iIlGBPHMxOInVm/6SbWjnk1aW2nf4+LxrhQqNOYNyCn69+FDMcmgi7Pb9IXm/Z9iA6kfUyJVwik9KS+sJqJraicxpqSVZVTlofoVN6fOs23ocolVLZIEoL6Os+pbIaVAqfchpY/wvjAS9OuxslY2LCDkEOE9CS/DxwWwbPb1Ater7KzJE3lXBiDkzAf9ISD96oUCISRxBCxn2elM8o7H+DxNUuKcqX2jO3O7WLbjh+i2HYydwfG23O2Lzh2zEsW5hSVdgwLy6CwjCsYjCA9ZBivfoWqOsR8OkcmJKWzTJzPCoiZARVTcro+x/jxY6P4ZNOPOhYfH7qKZZvSl5K+VvTHCdnQolIDaJKuQ48NtnR1FqWuRD3nTFKQxoFPMPDe02rjTsKZxrgaVIZEBbW1OGODqALsGhZOhX5ICe9Ln7kw5uOJskp6UsTgQlDOQThvkaT2XjMOnAp0CLPjX30OxZqzuuY4IlEdaxhE2w8dvWNt434qSa2/h2vrtXCvp/k2vx2hvFJZpkwm+3DWr1O8qlpT6VEQVaySVStk1TIdQGVLqEmPtCGqMem0gBpAWlSoskCNh4hixWdyhTWLMaMg2lj1ViN4BWqiunXGWbNYWhyzpbC4YP0hpcZJ7a0UYp8Uzq3G1RmIScg0FFYzsiXF5ID/PqHI863k2Vas9crHfWZMUkpUFtSf0lF67xj81MYHD2I27hjLstOsWF17s5fWZ41MidAYUIi1YjTbkg5dmTC2mpW7KcB81m4YFI5v3iJZvOPLdXBMhOwbfx5t8PeeilZsmMlYfMA1Wn2EXW+8L/wNVwfk12r94/OssFww2ys0fhYS4RrnSXirhioEspTzgX3tnF/TS58VmYrK259JWZPVWWMsARpEtZsSkE1Lj1BPxWfCCG/fFPvweDzO4ESYV8hQS8kGYtQZYrFiuaYtx2Au0quPnfUCOd9uTfChn54N5cAIL8TQlW8bWbZImsyzUh7kkCnYqzrsLxO2riR0+iUyC77YoW9zxme32XGFHhuqkWMykEwmiomWddbojBq+eQXDmG6tF8RMC9t7IYwwBY7cn11rZou7ywSkqIlpJQVpUFD7YonelzpLoJt5krrbgdGco+indA7N+3m8GRGFa/H8Ts9ptOn0GWQqWH34mkXTOUbz+CJqH+owhqswJ499Q9PiwzifpW9Lix2Pa9Jfr0yYjL3QaUDIxHWOsTV1hmkZRU7C769SXbqdHcx1T6JFi3sa97nPfThw4AAXXXQRb3rTm3jSk55Enud3/cHD4F4lqA8ePMgP/dAP8djHPpZ//Md/ZMeOHXz1q19ly5YtR7WdHadbtmztIDsZsttFbdmGzHJEmiOyDiLNfbXX8FwT003Vm40drcaVE5w1yHKCqwpEluMmI+x4jBqPSSYlyaBCTxx6YijGlqzwM8u0TMiMQxkZCnRJxi54Wzu8khooQ4Q1KvdmBq8GSS2FJ0aN9dHeREiSOuI2jYiujS7XJDW69qmzzit8tZmQVquk6QqJmvNqwKRXp+8jEk9WB7hIOAWyxZpJPcmbFAfWESveX8wvjOtobSxeEyKNFaCCehoInx/TTxbpiXTG28vbfLh15LQNSmlppipq1sy75UzRmmk98zR3OAMd7dXllRH0TTotdBn8xglqdyUEKcHjLSiWNCL4TFk/xWosnO0G6i5/HmJBxKg+CylEGymprZ4SD/4umf2b07W1RVRo6moZo4cMR9+qFe1GT0K6mF/aReIqF4rtWbf2ZE2FqlUBcbLVtOuInssZUS0dAgd4UrojDYt5RTfXZJkln7NMpIZ/3fBUHDH6/fvR7e1G5tsh7XllajXA6sE61XT0ma6LpZmJV03PFE3TRL/pjhNsST05vUN12SEzdsiEHcKxlFYsdivmuppu39LdCmk/Df1MB5FldfCLtcGu0F/Y8Zi54YRyRVOsaiaDioWhYjhJGVUKVSVeCYNgHIr7jV0gmAJBWzrL0GkMii4OogdwIKq7CEywYVBJjxVZsWrLmqgeGE9Wl2i08ZYRQsiQUZGjVLcmqmfTBqcLNCH8Ik3JvKGinFVTR5IpeshN+4pGEbDwr7lkiIW/YgGR2Pab6mmYzWioC6fCuiJ2G0L6ABfBP3IzkhpgaCuk1YyDp38zwBdVYlqPa2V59HVd24Y3Uks7q4PVSdyWqdXTVdimje/FsN6ze5piU5MJgcDeqOBhX6XMhayUOZUwJ3xxwFgAKGY8LApJl9iOLZ1gcwFwqEj5mhZ8vlrhPyaH0CJBJQtk2SKJmgO+uPE5Pwq4NYIVJ4Un8KxPo5RrO/bo5W21P4czhRE1Dl33cZ1AyK8lpxeUpZcY8sTU5HSW25qYnqaLb07aRHjyOfwcXpM4mp7UkbTeDFI6vDx2PUldukZAJraemqQOy/sGSY2Frkx8YZ+gpq5oqqmDB2UgPaZqar/ns0S1xiERVtYqp0g6+PfEscwgQ//gf5+S1NaZmcBsE83XRCh4KIRByLgI31y6vpGKOpxNf0xBRS3DfEvikEHpFL2cZRjbfT8EiTWMnKFkwmh0h7cs00NPVJcHSLOtpPk2ZLaELHok6RyqmsekCU5KTBr6zQZhFj3VpbGzWVDhmKdpxBlKpiGNW/gggjBeVeccVoiarEmEBMFUAR7oRwsQ+iyY1OdIyvHMtfHnz6eSe1u2VaybkKg+J2z/QcS276fsrs8AOxYkC46t87BjXtHrKFZHpvaeHoei23MHDnFgcBOJs/RlWqsYa/W0axTYoo7P+GML5PRam48mCeKco7S+HsrIaFZERV8o+i6hV6TkQ0OSWIQKggPjLf60FsHeT84QyFJ62x4XMz6MpZkw54yZ2ZsZa4+yxJYVBHLaGhcysNb3D9G6KpWOzExV1B2hqIT3yK3Vet5AO8y+XSCpTbiPoC6Yejg9aq2iho1oQH/eLc6FsbxRMNzaijSJdRT8fMHaYmZ9IURCki7RIZDUQmFMgdajULPGe1PbygeJKj2u219UZqukjwq2IrFWC82+Jaqyw7w4Chi0HgVielSn60efdilzkqQ7k00WSTDfPqf9kZJJraJ2kRB0EoNlGgbwBGSGQAYbuqGdUEwOeIFA0vcZGtkS2hSMx3ewT09qcY4lpxSOTIq6z/e+s57sGwQ/9do2wZnaviIWVTVM1ySJ85mCCyrDOMeqqVDpIndHgLmXS/5jH8zdNGI8+GptExXXOkKoWiSyNu/XOocIuqKool577zVJv5gfNv39rsdnmqvROstC1D/7b3N+Rhkzb/B2fNpWXt1uGzZRUpFaSS60D3RKyVxYt0bhTkTM9gAwjXYX15RWOB+IDiid9zSvgrd5DAYhQkDI2Vq9j5C4YPlRH0djTPS1GaSPnAdC3tV3Z+OsODD4uWpZHiLLluh0trJSHWC/nnAgmeOATDk0zOgNNEnH+K6uzgCx2NJiSks1cpQjSVn4DHPvPx1tDM2GJK7fb7+usNHqwxQ+eOs0WN/+ap6mUT8H8IH5mA0ZSGopfaFqY72FWjeVjEtDN4M8g07HUXQVVa+PUj2EWKn3w8Y5SGM+H9fqKozRJt7bzospYjC86S9unK+FE4u6R54nktQyvN9nz/p5pDOgJxY1KaHS2HFFuWIYF1nt5R2zJip8uy9CTYbKWRASJXPyfJGF+fuRLZ4N/MW6893i8BBr1xwtDouXvvSlPP3pT2dpaelu2+a9SlD/z//5Pzn55JO58sor69dOP/30o95O98xTyBf6yE4PkeXI3uKGZHT9s9rksI1GpDkuzX0aXpp7VTXgOj1EZ+irfI/HiHSImpTIgUallnLk0JVASUdaKVTlBzBlPOEydviOA8HY+SSMwxWBiCR16pTv2ESoEisV1jp08K1qdvSbWZLFYgjWWKpy1fuo6SGVHjYK6HRRMp8hXOrPR8LEeXsEXRebG4XtjGplqo1KCvyicO0u+TRLr0RI0z5KdXDOoKshylnmVDIzuNeVk5vpXk6gtV8gSOUX/cLOVvOGWf6pWV1dAi6DxDpya7EG+kbTL1OvoBYxPSsu3gEHKYpUWjKpQtE2r6I2uIZyepPU4w0W2XFRepc2H5I6RbT5eiSmY4GjqArResBgdJv3/TUlzpUIZ8nAW3cob2fRlQlbVWfGn3MjlXQWlLr+eZaQ7ijvkxhJ6f4WQzYHSUeQ9FMG4tuLoAFk/dORvZ2esDIFrjyEKZexjWM3NSE9WwTRF2TRjWKPuibqMwc9mdTK6R0yY6dM2CEdS6lmoVsy1zN0e4Z8HrKtHVRvDtntIjtdZLdXB8Fm+hfwxUJiRevxiHQ4IF9ZZW65YO5QRX+gGawmsNphRXs7mzGefBpgQsFOXRdZHFuvpDZSBZughC40VOyQoVBS0BeKZZkwL713Zy4UnVBYceQMlfN+o9ZqbFKR2AqrOkhZBWLEL9CMaZIZBil9uqt0uVc4qKkPsErM1D8dvBoqBLIiAatNsYEa2GOqnp5a+xhCylwj5TMWg6uPW/i+IZWeWFQNMtH41U6NVMYppCepzSYk9YryVinCVkycpbKTMHEOSmozIUn84tYvaJN1gSdgmkXRIKXrSbiNqYxm6o9ugle6KWtyem1ia53A3lD+RHI6qmEU1Cmo25NOrR7uycQXOAwBjm4gpTNgSzJty7Eg4LhMuHWc8zlT8MXJQW4uVrGqS5b0yPMlup0TSdMl4MMbNdtjhleihuM1Xt1KZWq/b9FYpNSLGVuGQEhUT/tsg05Qjs/LlEURbD2YktPdTNfktFTUtj0wS0zflb2Hz96p312rqSNJLVW9tjoieM9CEQIugZx21EUU6ybUIKlNsAzC+sBs5awnL6233RANNbWs1dShTQTFMcHfvElUR1rK2LL2hLT4hbBqkNVKZlhbBKI17N6R+KIcBptaDzFdiG883kayPWZuhVNTk7y+oFA8fzFI5lVnAhHO29h4j1yjPYlbVsvk2SHyQFQn2SIqXSK1hiTJsGmKTULxWBUtaWSjVoRtPExjfxtq8qCME4FU8MEqwgI4Ftb1x+VTxIVPjQ8Bc+UI3tW6JlSFkWhZBLsUVRMaNgTGdOWDvImDpcUz6W1/JOOFBdzdkAEF0O85dszDQtffD+PSMq4spYZJBeOBYMuh2xmMbqMvVD0PnAS/6bgI12uyBuMVFviA3PTa1w2EqbZVTG0+rPYqapfQdZKuVnTGGUniEEqTG4dQXj1tgnJaa9Hw/bVIKVBpJJZDKzG+/oArS1AKN2Pzsd4+0JYGW1rvxBdYjKaoVYagayzkngnfD/hsF0UlLEZOA7nW+nVCCnVw08bxwUFd9DAQ1WtxVypqj2guKALh5bA2WA5GS0Fnsbb0pK8tSGyBUnMo16/vc5X0yfH3vjZjSpli9NiLKXB18MQGW7ZSDUJQvRMKfmabrllgum7xxPSwzlSK461zJohkpttrjuWxQN1GmLZRPxuJwT7LlJCMscgkpPL7DkgzcBOKyT50ZwdJ0kfKnE6+FWsKxsU+9ulJra5E4lXzQjVI6ql9RLNAGuGKqpAFpZiqdhMh6KmEeZWRCMmKmbCMYfvSA7iJL9/F9b5rrIwtt98mWbr9epaHtxArxMown4xWadNC2fFOotG3gXRT+wcLtcK0HoUa6umoNp7ZTjO2QlRPz5LTU0W1pFlkekqLu/C7v6dLNCUO6QzKGdJNyOqJNPVrUvhi32sDZgrvOW0bc0+7gajCOBfGqjAHdNHGw4tFEBLrNFIk9bnezJLAv56E3i/MF4XPtolnRvqTi7Ulk2I/Ss2RpQso1WNZTzhkC/a6nBPLhKWVhDT3Ap+k7vccpnJBtOczTiYTb284sTLUwZi1PJkNfcU1tJ592AnONNbHYSIV7fJ8DSJV18xSMlojeaI6S3xQsdQuqKgFmXJ0UsgyUF1HOZfTTfp1xpZpZLzEALsMWaS1al2mQXU9AVsFKzFXr1emY07jmgbOx98HXowjA4dTF4S3IRBaavSgQihBNbRMBpJBkbBsw/rQ2Q3V0xqHEDlJ2meuu5ve9kdy52m7N7wvWrS4O/ELv/ALd/s271WC+gMf+ABPeMITePrTn87HP/5x7nOf+/DLv/zLmx5oURQUxXTCvLLiI17piaeQznuyCPCEUUAkmDEaV81OttdafKyD8lNe2enhVIJQCquU7ySVQmZjhBpjMo1QFq2Nr7Ss/AJfVn5yqqykVir5LyZW+K2/SogNfamVEFjnB7VUSCyOKqSH+I7eTyg3EF74ryIO3j5V3BhfoKLpR6vUEFl5FYFPDcmQcurP3SRV6glfmOQ1yWlfzGvjNH6/qPUdeIlDqS5pMocQyqfe6RE94VOmZrxmaXhtwrRYjJyqqO8q/VqsUVEDCON88cTUkeWWvDT0lGVsZChQtYHVR1NFHarxTqc+LihKphMwT1Cl9c9Nz86anK6LMHgvynU2H8IrL5qv+RSojYnpqJouiwNYV6Gco4NgLniwNpWUmZD0ZDJDSns/tak61S+EBIsiKit9Onw384R0p2tqa520J8m29z2B2+0iOnNURgCfPPwFCtisfTO33ZPT1QiqAbrYH8jPYSgmV9SLj7q6vJlMFamxoFpMGwsq8q7wqf9LMve2HjJhq9iYnE57EtWbQ/X7yN68D4Z1eoisg9yApHahv4kktZsMUSsHSBaWSRZXyQ5MyOYqrBXkRUqnTBhaGchZ6omMxDDBTz4mzoRMCuWDKFEF66hJ6sVoASI8UR0981ZN6dMSg/XHoEG6egLVkihT36eyQZJEFZFzU09GJ7Ng++FVk+ipErCpHDbR7zsuTg6z+I0p99kaBXUskBihRFSRBXsP5cnpqPitlarSp0hHolrKsHDHk3nekxoMXoEOPq12IfitA0FJbSgpfSqzM3XfCWBMp2GRsl7t2bT7if1nbfFR+3ZWoYDRxPehoaDNBhUGmlsO//tzGgubJgg6wntMz6uMXWmvJqb7QtFH0g2BpqZaeqFb1kUBrRUcWM25vki5rlzm/z8+wAFb4WRKni3S7WynN3cfunMnI9TCptdzI2zaxpmqqJ0UNXfiJFCBUJ7wq8+u1SElvKitPeq2HtTTXel99PsqeE4LxaIQLCjLfKaZy/RMAeVITm/kOd0cY+JiaC2iYlbYqTetTzu3QTkdR2OmP8d4yQbKahWIJK+P9gHTOB7OPkTdd8fVpnKCiTS1ujYS1YmQM2pqG5Rafo/kDFENZkZxGUkEZyzS2fUFVp0JJE8B5LPnbLMA7CaYTa89CgV1Uz2GYHYR3CB5maaMx0sR7YWQU1WythWaEq3DvKcaUlarlNUyWXmIPFsizbaSOY1M+sgkx4WisZsVUJVVqOPRSHWPwb1mUSYhEgQlLszxIsnaXPzWqeKNwJ0L/YETgRJwAmNLhEmC2s4ihVfDR+WqMWOSQP5u3fZwyq270XmKq47Oo3az9r04Dzv6Xj0NMCyM95+uYDQBtwLV8BuUxUG2qZQ0tPRYUKt0trb2iFc4tqjowa1mFAn+PEk3e860s0hgHAomdkQSAu8Z3SohHcWCiYY0D3PM+HCCSk+/Q2pIKp96b0qLUKYO3ghlvDfrBgS1M7Ymp5vqaWvjQ6wLZikRlNSB5IhjfCcUyaxkIEaEmyW8AmESMyZm23i0iYKNyOp4ln3z2KjPm2ZDOee8kjwQalFNLeUBrO1hbYlSkaju1RmaUnXIsi3k2VakzNDK29FZU4bC3Z600sYirWYCKJmgVGdG+Sylqtcs9Ryk4bHu661UNVHq36dIkz5J0g1jeF6/Hk+JtGCcrsf2aPMxVVP7AJcPioha3RsDSbF/SSPhjA9YD+yYcbHfiwwCSZ7nSxhTsqIPkeqJF+okvvcthavrQ8Q+PxPCCxasw0rHWCahT/fXKvrhJkKSC0VPpXSkYlmX7NcF3bndLC49BPibTa79emzWvr95ALJbSiaDr1GUh/zpkwlKprW9k/dCtzMkc+yPRRQCIcDZmjiOx+LctN1HhWr8bJPknmINOd1UTYd7XYg1AoX4yXooVghn8aEhf1U1lsqHAlHW+DVSIKtj1kcsQh2veVRVx+vvLblk9O6YjjdrxmgXMiijLdeUqPYEtUDhRIV1KVIkNUG9lqieelSHY3eOqaY7nq24RjdU1ZCyWiZRHbJskZXRkH3VhL2qwx7TZWmY0emaYIcUFdQEglrUNbqKSjExktIx9Z9264nbGg17zJht6ILlhzATfMlziAWypzsfAl5rFNTgT3MaiGmvog6PzBe3zTqOSVfRS3oNm4+wO2tsPvz2FNbGTCdfxNEKiXUEodrU0uVwUIK6SGZ8f4kXJehgKSWUH1uqQlCMJas6YRBsH33GxNT6qgz+0xpQqkMn38LC4gM48IAz2XnyymH3pcXGaD2o733cqwT117/+df7iL/6CSy+9lN/5nd/hX//1X7n44ovJsoznPve5697/yle+kt///d9f97rIOqCSmoC2o5V1ftIwJasjiRStP+rXIsG0EXEtg2912mnW4fDTaFUAJZ3KK5XkGAjOf0qA0oSU3SlJ7ScYU6uPw0HiF05GOKQTtc2EFlPVjHBwmOxhf/z4SaMIA4AIVaiFHKNUjpZpHfFWcraApG0OHM4wLTgXyOlIxLiorlgPi09f0kLQaaqnTYF1E3oy857bOHCh2EGDlLFOeFVZONB6Mm+nfoARQnkVWU1Ih2dnnLf6UAJnPSmhUkGWWbrS0reSEjlj9eEnMbZWUcfCFkpYlFtj8wGHUVGvLw61mXraBcuE5kA8LTo32ZSY9nYeI6Qt6QlJT6XMq6wmpv2CLBCBNKpRi9nihtGHNiqlt3RLurnxZH7Xks1Zko4g7SlUL0d2O8hul2TL9hlVsSqOXDa4WftGlwhd4HS09RjUKWAm2C1EokqbcU34bUZOq6BA6smEBZWxXUXPaVhKNf1ORadjyLuWpONIOt5vuklOy95iyNjohOP1/vbrFqTVBFcW2MnQf6Z3ANk7gOotk/ZXMFVFtmLJx4ZOkZDpBGWjkl1470HLVCkTJ3kyVgr3HoU4pgr3WEiRWPDOq2lTKUm0TysrTElFWRdSjfeskpVvl40Fmb9XZT1hcy4q/aYKYRJ8Kl5AvD51Ve6gDJ65/xuPJLSpqOIHqOz6AomyWZgTXzwqCXYU3jfYb9sTrVOiGvAFxvCq1Ew4kBZjPGFrnCf3DIpew75ACoE0IJyhwlc8d4FYFkJh1GTqS9dQnzcxJfj9osPWfeiUnLam6Yt+VyWB4gLPL8uaBU6jWnhBZcyrjBNVXhPTfSHoHybQBDBYTbhleY5/rwyfHt/OzeUqpZBI5TNs5nsn0eudQrd3OrK7k+owe7kRNm3jTIlp1yw2Z8M122Bw8zUWymDvocM45NXTHSHpBL/tORHU04Gc7iWmJqez3Ia0fmpyeq3vdCSkp7/HMWXN/sQieMZXiXdG1PURhHX4kzUlqdfaf8T7czPEAln+Z9G47ngmX9jw7N/TkykTp2tPakVQVQc1dfw9Lv7tGqIaRMjK8kR1Y8/92trZelEpna0LYTmZYu16ktriCZ+NbD7WIgZ1mj9He5FmfwVs2FZmC4eKWjFWe566WJTLzzWasQOFH/M7kjowqDEYO8E67cecakiVrdREdc/p2nZAJn1Es55HkoXzEtT/1iBMQayjEBfia0l5v0CSRFXrehLGQ0b/UrwtmXDR9s0GL27jiY2gCBXCFx51VqPNBKNHCBfIVZmRbD+HcZ7NFC49UmzWvpd6sDgn6YR6IJ6cdl5BPYHOSsloeBPGjuml82RBgFEE64JYGLFp7RHJaSU8OR0tWiDQJmFO3CSpm8WHh6aqFY9dqchsQlqkDZsob/NhA3ls7FRBXTWKJVaF7z9sDJACzkqEsdDoIZ3fSO05bUuLNQ5beXInqrU3gpQOZX2RvCyM9ZmTZEGw0glWHzX50xA1GGfqWJhv44G8c9LfVTEYtQ7NgNrm8FfF33c2eN3HNlrK1Xq9kCTT4Ky0hVc9S28n2Mm3oVRGFdYglfaWbT4DcEp6Gz3GyiTU00kwZkztZd3IDJha7c2uWyC2LUWiOj6LM+zHRtYe/v2b91fRQsEJCSJ43rtmIKwRSEJMiwWaiqI4iBSSPAMpU9KkT6dTMRpXLOshmfZkZ0d44nksJH2p6OJt+LrOPyvp+3aTTImxqMqEkE0lFSq0jpvNKoVM2b3lwail77vL69vEZu379j2CrXu+ycHxrVR6ND03QtYE6ey6KMp6GkR1sPoAEdrsFJH4byqn69/XbGcjcnojYnrGm3ozMkp4ktrva7yvPcHr59+WAouylok1db2PBF+Atyaqwxo+EtYAqZR1kdv491RIr4hFgNVopv7VoSKEX+e7oKN3wbZDVHXGjWATNbXw5LQ3UZE44QPUanqmSBzBBmcFFQQJxWQfB03BIVOyV2bsKFL6qxVp7pDSn5vYd2ntyemylLV6uiQUjdyUtJ1dg9RWeLZAug5EL2ozAZfUBHVzjgC128gMlBRY6YslzqioE0cngyxzjLsSGXzthVhpKP6hafMhhcIKX9BY2iqoqDOEUUFI4OtbNBX/M/vHtJaEQnguQQi0tVSYYP3qz2FVhLCg8eT0aKgYBPX0wJna+qpwhtIFghqfHdbJ5un3TkHteiS7zrSctrjJaW9xGIhvO/uvxbePe5WgttbysIc9jFe84hUAnHvuuXzpS1/iDW94w4YE9WWXXcall15a/76yssLJJ5+MObQXPbDY8QhXlZjlZWylcaWemQgCtSexzCSymyLTBJFlM36yIssDYZ3UBRWB2mZBqMRbidAgqYFkMiFGFCNZIovQUa0hqcdISmz92Y1I6qiIQbBORR29qF3wotZRyXAX5zwqqZ31flueqFaeaJZJPVFTm6Sr24bXXKwOXRcJXLOEsl6kUUMHHyqlumRpHyUztBlj9ITMwbzyCzkTc48a8AOcCIpcGYpKeXLaBnLaWp9sB9SFa0SDpPbXTtQk9VoV9VxqGFtJ1zRIauFCEMFfh2aBg0hSi9oD1tUKrmmRxI2JprWdX9MeoT7ncZERBujazkIPqfQqZblMpQehAOLIk4CuIHWOE5MOC8HGoxci+xtVne6H1MGolI6kdE8Z8sQyl2k6uWF+Sdcq6ST6MPf7yE7Xt4VgryPSfJ2K+EixWfumXMFisHpILLq3lpyOiv7ac9oU08CJNbUqVQQ9REd6m5MlldfkVU9aOon1qsp0GryQmUSkCSLNauV0/dzt+cKrWT7rgQiQguj0wGpkWWADqS27PWTXW4X0BreiUk2y4lADh5qA1Cp42EsQCUbAEB2qPDuK4Ctvouekv7HBUfuCK6AUAuWkVxyJqXezEoKxNUEZXGHsVCHlQhusUzOjKjh4yMY0Q18kMa/V1MJO09PjBDNeHx2sVqzTbNRDxYBPs2hZiS9mZV1MaZ/6izb9p5VwdSGpqACO8GnZeDuPSHAHo0MrHMoJuuF3I3zwqysUvY18cq1gEpUKlDhjKctljMyQyhd6UsELcFr4dLb/bBZOrQN8M97oMQNl1qN7Y+2apzJliMt1wn7Pq4ytSc68zNiiUnaKlL4QLIZA01w6S86muSVJHFUh2H8g58urXT5ZrvCl8X72uwpq8t172i0ufj9571TobMNmXShWN9i7zbFZG6/J6dQ/y9T5tPdKgHTe9qPBdk7TQKdEf/TtTqAuCumDUClbhWRROhYSQ79THZacbhLTsh5Hwmty48An0EjzD6pIS/AT9IS1F025YBngP2Mt/h6VoE3j/mxcdBnsPmCqmjaNnyHUCVhDUqchtVc1lNRJsP1IwlgsrR+jvCqtSWJtQFQ734qavtTY2lWkhrFVHdjaiKRWjWmnaxYCDmn1G8HNLGA3IaadnR2Dj4Bci31LzXo2IPEqfGmhcJbKOTQV1hiqYPVTVUOqNGTypfOk6UJd00NIX3haqI6fS0KdolwXNo5pzA0btSaiMtOJwC0QyHcxu5/xIerfXSz35M+XNVihPXkazqe1JcYWgCYFSgHz/VMo5xfReTJjtXOk2Kx9b5kTtb0HMGPvMZkI5g4dYnl8B5mDOentPSwuLMC9elqvueIC6gKRSSAAp0WnAvG6RgASAxIax9hqEiPrVOtMCDKjUIUnEZN0DUlm/RhRFzvVvm1WRSx+6pDGoOL8Us3eUM64+hH7B1v6vsFUoqGiFtO57RrfPil8PZRIUneRGFSw/wrqWRmOOZwsE9qEgCBkmYY7BJG0mqpM6xttXfuZrjDWj09NNbWuLT+kTmrSqWnH5G0F55AuelIv1GsPr4jO6to2JogN6rYfMr6srRCimKbdR1scpqrRes9rdamqlddJMldbhMSshbVwbNwfNbfpz4egmbFho1BHTPuYVEgMjp5MscBePWAy8fucpQsIIUnTBTJTMLElB01JErIcU6G856yzlNJ58UF4KCHIlGh4V88qOJt1jlZtyX5TsrD0AOaXzmHSPzr2arP2be8AvfJ1JsWBqRChcT1gGqCfPb9TMl8i6p99YlFDnHQk5LSIVyKssxvEdFMtLWj+3LiGG5C6LtpAEe5+EULIjbHGOYcVhpHTCAzKzCqrs8Z6MQ1q9ii0iNZ2uVB1XYHU2ZrM1kEZW4UxOpLVnrD3ntR+HyQI7RkD0SDX1tyjBBW1c7PK8zhugKM0Y8pylSTpIWVGmi5wqNjHAT3hgMrZKzosjTM6A4NK45yHQKxKtPbq6cqKkI1MHRSs5/P1Ps2eaxsyHqQskC7Hmkmw2EggTm9iFrHbvG02kYZCiVFZnSWQKUhVsPnIHaQ+q0PJHM14zT3gA7uyMaeP8/y4ToojrnGu9oE/HKIoLBWSCRobFNSV9eeuU/grbCrBZKwYl0ldHHFijS8cHGyvimDzoYUPps11djC/dA7LD9zOubstS6olWlt8d+JeJah37drFAx/4wJnXHvCAB/De9753w/fneb5hVcjxl7+ILaAaQjEWrB5KKCqFNlmD1PRQwi8C88TQ62o63YI0H9Tkm+qq9UXQOnOeqN4AQvleThpD0glGFnVF7jULqAZJnQUFA8JSxv5MzEYZm1G4SFabkNKZCulTuIRE4RrViMOGZuBmfvZ+dGECZUMaqDSh2rOPvtpQgGEdagI2TBajqqmxdJhO1PwgGEuyGOcoBeRJDxVS/Lwf9oh5oegHdYEJi4iIGFlMQ/E4a/E+kk5gbTzXDXJ6DSEtGtXVXSPMKpXAVlMiMlFeRe2jvsHmwzk/KuIro0d/sVjgQDWnOOGcTr0xZyO8zun1sruNUCsu/bM1BdZMKIq9oTjlqi8aUw3QlbdHsa4gc46eUMwnGTuzOToi8cpZIdcR01E9vVUoT0oLT0pHAquTGzpdQzbnyOagc2IH1clnSOlIzMbsAwBXFdjhSrC1GFEcPHICa7P27apl72FmpuR00wfdV40PhTqbhdIiaeWmiZeJmypN+yoN9geSvnS+YFrqCyXV6f6pv4dklnoyOuvMktMdT1AfFjJBdBJUJ3hWd6af65y4jMpGqFT7oJZwyCKFMgEjwUmMUKwIGSLzQbnhtFdUW4eJpGz0FsarKpWLpLTyxLQU9aT/kCx8UoAzVFSeKANUuHejIlJKauW0ifYf4bC8h7IfQrSGplebc7oOHpioEnQxiBV2l0imeIVRR6p6wYXz6kXtphNbiB5+UTnqvPe0mFozzMZ5HEni9y0GtICpilpajJXB19N7MuMsHaE2zHj2VgmGwlm00Bgz9gUngzdvM8AXFzvNCusxuDdViISCiLbyz+iaRGgGG5scxdQfkToToCN94aOFEHBZUhlbRcqiUNxHQU9p5lJDr1PVxUvT3BeKFUpgKsdXbprnXwr49OQObipWmQiBEBlCpiSqS7e7g/n+fcmXHoTL570aVJdHTVBv1sZJweUCmTofXPSXwi9ELRsSZVFlE9u8sxUCR0f4woi5UMzLjL5QLArHfKK9YrxBTqt01tLDE9KzxHQkpWUmZ8YTkW6U+RJZoalSUqYmqCQtznilm9beW1tX4VkH6yoTU37DZiIx3VBPQyCmY4ZFCLoRbKeiotoIVauzpDDB09egnFdOJw2lVhUWv5ppNlakA2tbACH9SjR4IHuVrq4tP+pifLYEmTWmBFOSWohAQte/TwspRnJ66j85JW2nGVprlHibBIDXXJW6Ta3RzdWwa+YcEUlIwRZOoAKpr7EYSpwxtbUUQJoukCZ90rRPkvS8527S9wSY7MxkS9VFnkJdD2tmSeq1c4d6Pxv+0xDV3lOSOnG+rklUxHnSMFA6TmPsdG7ix8eKPBy6Un22bT2XKk+n5PSRcQA1NmvfC11Rq6cr7RiXjtLApIRyJOivfIvReA/dYEslEUxq32k7VU8H0UOce/mAq5z6/OLHkqnHuFeWRxW1twjxhA94q49lE4rZCelTw7XvbHzRxOn8Mj4bB8YIrPXvK0ZB22h9n2orS0zCaRbpjqQ0TIlpZ0RNUMdnXU1tRdbCB6WmNh9GSDLsjNUDlmnw2oIJJFtNnoTrbRuFUr2iOt41sHFYdGM0P1Fr3IMIRhuFCmNeEjKPpnaBesZDWsqcNF0gFms2MkXKCUam0wJ7DaLak+HWk4ZChmKtuiargXosbhYgjcUQ5WFq7tTHJhMwG7fF8IZAhgPIGdLP1g83Q1Ir4e/D1JRUekBReHuGNOkjhSJL+1hTMi73s2xKttlO3V9WQT3Zk35u3w0Zcl0UWehko1ITgrAHX2h77IwvjJhtZeuWcxCLp1N2s3WHdDhs1r7n9x6gmNwWvL51fV4irDMbFI6fzQyJVh/RCmMmsNTwm96InI5NxRcEbITqmmppEWebkWA8PDkNzBDq/p4LCv0gEJghrF2Cc6FWjDMUWKS1tfVaJCTnZNJYQzaU1XV/pmoyO1rc6fqxnqzWNVEdztoasnr9Ol7SLCAcx0b/FwEYqmpAWa2SZ0vk+RKr5SH26TFbkw57ZcrWMqE7TMnnbO1WEvsurQWVlZQ22HvUpHqT21h7npt1nKbjfdOLGjo+YOQ2Jqfj0l5tkPXjiWn/UGKqok4TSDKHzbohqJwgpcKYadbFXdl8COG5EkujmPFdWHxAsAwN2UxlmFuUTqGNRFf+/tWVYFwoRpVi4Oysetp69XSUtYAvjjg/fz+KU3+A+97XsnNBMRne5a60WAOB+E+w+NhoJtqiiXuVoP6hH/ohbrjhhpnXvvKVr3Dqqace1Xa+/C85le2wYiTLzrHXaV81FjtNeQoR2kzEYm8pO1a7dcGk+UzTzyv685pOf0Q2N/KEdT8jWZgPntMZMwxINIpTCpFlqG4JYcEGriaooyrCTxbwaeUhHGicCAWR7vo44yCWCln7UGscifPDpnVTMqO5DNto0yHRNahxpkS1kMqnhTp72AZap91tuPUYuXZ+AA+d9iR4VGbZPInq1IXTvL1HzpxK6kq0SiiMg1J4r+5SCDIrQpqaJ4y913ecyM/uh9xAwVLv3YzdB1CFoEVqyLWiY70XdRbuF+NcUGt64iwVkgIRFkW+Krx0/lidNf55ZmKj8aXImufPzCxW44hd657ctABdrD4+meyhCkUpPTE9xNjJDDHdV6n3nw12KVGRGj3rMmSY1Ar6QnBio1hYNzfM9XRNSvv7P0f15ki2bK2V0nXx0aAGc0bjxkPsZIjedydmZUC5XFKuwp37j3yhsxmMHiIFtV3ETJFOM6mLIXpLCT1dBEUPwzCVbVoh9GQoHCcS+kBHBpuIDQqWCCV9G0+9Qlx2+97a40jI6TWQvcWa1BdSYYfLCLUXoQZAIKlXwz4EktqgOBAWoCb0af5hpn6Toan2hfco9CR1SCdzBH9Or0Kw5BxQhV84Wa8CiSS1QCDMbLuftfcwM/Yf0ebDv8//bWoD5JXtfnGpNySTvAouqKfxCy6Fn9RGe4+Z89cIrijh6oBjJKebCupI0Ug52z80VaqZ8GlxWeyb8US1CURnrUoL3431Wy2cpaTyiy6ncSLxhIWQtR+gEHJd4rRXLnot4JQk8n1vLCrbFHRu3HocqYNcBK9pmbKU5CypnO0qY1EkbBWKrcJxYregm2vmek3LGoFKvc9pNXLsvy3jfaMJXxjvY68psQ1P/DTpMTe3i8WFM+nOn4ntLiGsQZZjHxEulzfcw6OGEqjcIRMfVICgLEZgjMBVTO0GGgoa56xXoodFTeIgV149Pae8gnpRJPSUz5CJNkVpbjf0m47ktMwEQoIKpLTMFCiJkBKZpb4/iEHr+ByIDBcJjVAMTWbTYmimcqjSoSowiQ+MmkBSR0LK25lIKgOZtJTWLyiVo0FKh6/2e00GlDgyEQOp+KKJRDsQgcKipKAM5HTqQqFlHCIseuPzVE0dSSexpsha1HH7m9Zar841+KBMzKyYIg8L2QJkjvRD+IZEbN1/NC3F1iioY62HdfMPFz1OrSfSN2lBTU/7iJpIWvtepgWNJCKQBi4UfvK+wuPJfqpqSJr2SKoeadIjTedJ1BxS5SgVF7+dOlsqZvY0A6/eL7daH9ze8Cg8/DUMusGgJBbB9s0Jfw7i4p+g+vPtpSJz/vMj4di6cD/mtvwAK2lD9XiUFh+bYaGjaoK61JbSQKmhKIEBlONbqapVFqQiD/OiidMzxZ8aOg6ieloFYjkRsbCuq09YVARKREiLj7IJapJ64gyYKAAJ457MIBRN7GaaVNkZJXO0mqvwBGA+CdfTWJwBlYKofD+yNjMyktIwS0x79XTD7zqop6OtSJOsVmIanDRAhh9nKiExQWlYK6ilV4tjjY9rBMLSQiMQFdXPUV9/dIg1F6fj1VQEY005E1SKNj3KVlhbeBWzMyRJCHAHcloKLzCSeoyR2UzRa4h9xOZrlCYxHS0LpUxniiv69hjU0yFrylm9hqwO1I9UrNUbyQ3G94iNfKgjkkBS9oRi1WmqaqUObCeq6zNMs3mMmTDQAwrnM2AgrKPwCso5kVLKxBc9DkpdmIqcDD7LbhzmUqu2ZJ8es2XbD9JdfCBVdw6d3T0kjFzdS1ke9NZ6Tk9Vx+tqckwtPgRT66V413kf340lVmv9piMx7ertRXJabUhMNy1Hpvt3+OOPQRCgtvpoHsdMNo+QCKdoKqsRgVjGMg6+1RMXCi0GK5BIRjdJ66iqzoWvVxWDdNr5zMJIVhtnmTQCeFNVNf6MuamSfH2GQOiHhK9ZYEPgK3FQUVAWyyQq9/Yz6QIHywMc0BP2qoytoktvnLFYVPUcqianjaQygsoJYkFPf23tTH84G0T1Lcav3Tq1iMPJQFLbBPBq6o0CuM4IjCU8HOmaOyhNBGkikIJQKBGyBE9QJ2Dy3AeIQv8zs+3GWt3fM6oW4/jAV4IwCm/UETyo8Ws1JWZrPM3sk5gWSawCX1UCEy3plhKtHdpIxmXC0CgGTntyOnpPx+yioJ6WIvHFEbf8AIMzc8480RPzy+MjCeK3aPGdh3uVoL7kkks4//zzecUrXsFP/uRP8ulPf5o3velNvOlNbzqq7fz6Hd/ESRGXSzNezPHHKCgQEAqqCOZiFFomzMmERZWzZX/ODpmyUyhOTLz37s5de8nn8Qv7rkJkibcGaRZBMQaRJmHBqJGpRaWWqnC+CFPiyEtDp0zoVoqySnz6vRCMnUAJG4jYjQsJxGKJFoeJkTepPMEkITEx5YhAWk3VELMTz7UT0DCYBj2UsyYMZmY6iMezeNjBPOhXRJgc4NXRMqQrjaymFIpu90Q6+TavkDArFJN9zCPZnnZZkBmHTDH1TnMyLMoTjJMYBKURdJ2g4ywyKF0IGWVSeg9wlTqsARFSLevqCcYilKyVbfWeS09QJIljLtNUJngN2mCRIGAc7FhKHB2pplFtadHW+ci214ljXYW0iU/jD4Odafjv+uJyuVeO2Vnlhi/qEn17pySs1kNGoztmCOmeSumlfX8fh4VdFhQa0WO6K/wjetAuSq8k7OeaXleztEOTzUPaT1C9DrK7VBc4lMGyo2lxYydD7HiEWVnGrAwoDpaMDgiWDyTsH+R8tlDcYRV3GjioC/aV06ITxwpdraCUCkUQC8aTvRgzptLj6aLeVcFmxsyQ0gKvRpRAii8gt0XlbE87bFEZW2XCgrK1Etfft4KZ+Y+SwQaooZ7uLRw1OR0h0g5q227UlhP85recgNp3O8nCXvJ9QzqHKjqHLHODhN44JatSBmRkSFasYNWVtbKiwEfTR1IxlGmwbZEshuudCUcmoOugi6RLSlcpxqkhl4pDumDVlIyi3YcJnrJWI2WCS7rr1MBx8WejlcX/x96/PEmWZOmd2E9V771m5uaPiMiMzKzK7iqg0eieBgdCjgixo1DADVe944ILYAuZvwGCXWOLBZbAX4E/gCIQwZAUkkMh5gUCDQzQjypUdWZlZmT4w9zM7lXVM4ujR69ec/PIzKpoNLomNcXSzS3Mze5T9ZzvfOf78oTIuvybBpCmB27FlJRN4mMeHmoL5HUYeBmGAg7DTmIx+Wne76zA6Kv+9BKQXgLUvkhDQCZGX4DpmZVq57uvbDMN5i/LLD54TxDViuu9Z5UDqxw4liTjIU2qTSuJ5CYs6Ur4mhQsqdg2R1u6Nct02DvbWVpgwZ52aCIx4PigW+kx61Z8ENa89gOvCyj9wRC53hy4vIrc/CDTbwN+M+D7jjxFxjcH3vzE8Yc/v+a/GUf+f49f8JN00MTODwQ/sFp/wM3Vb3F59bv0V3+NvHmBAH7/Fhnfqklp3DFND9/iiv/msb7JXFxnus6kMBSgPhy0riFHkOBnmQ9R9vQUH1SXNB1wkrjyHS/Dipfdio/Chk/9wKfe89HljvVawelT1rReKwpO9xeOMHhlS9s6XyTAXAgqAVZkv/xQmGSnkjCN54WkhBwe9ec4IuNIHqdqkhb3iTwJaRJWD1lbZEuiF5Nnip4pl4TPeS1ol9bZRDFXRgsroeiODiWp1Y4rX9hW1IL9VNg6Ewr+bVJX20VNhstYWlO5BzXuKBqu4kuBRVkmVtiWnHFl372PBD+R/VgAoam0w3aEkHTuyIHg41OzxSIPlPOoHgvpoGarsbCMWwDg7LAC8Sw74MvDJCH091YSYm4tP9WQtPdV0ABtx06Si9lkYox3xHjP8fhGk9eg91HoNvTdphqh9f1VTXDr/kos8lRjWdceCtDzrn0s2+bmrhjbfjPPNla4SrZI7TYzk+C18zgH9wivP/jf89GP/688/uCvkHq3MCp9H+ODq47gHSkLXz9EHo7C7ggPD46b//glX775l0jc8XJQ/elDYXvus3WszEU7jxaZ14VtbQBP2bkaP/pCKOgcxPLHxsRM5V5JWXQNlcRdGnkTBn7RDXwQ1ozHDTdjz9ZrEb9dW5IoAHPInunBs96rnv+qTwxDrsXS0/WpZWJDUXtpQekCSKfGmDGJe0JgCY7ShQmUTolQGLqH7FUSwkftmMBxLB2XZlTWMjBtrUnunHLqu4fVx+vP8rqYjIiMpKTXt0uB6HtikcVSg/Y1XdgwDDdL4DisGIIyqtt4OMaHKt12dnsqIN03ciFhfu5ClfRQBvV6eS+6uCCMGFieoLzvm10X2mNoR9SOdyUZ+Y6P+gs2aeRtGnk8fEacHlitP2Dor+i6LRcXgcPhDT8bb3nZrWqH6SSZY0rAnpULpROw56Owrp4yoPP9XjJvkwLTPxkfOHSX/O6P/y9M1x8ybTbkq+/qInF+HO/+kP3hC+K0K4DeLO8xM2Nzeb2YdIqbQeYmBrJs9PSYVsb0CSg9sx09vnT+VpKA75gLFbMMTLt9z2nNtpJsbVdslhmcrv92WkBtmNW6/VY4yzxaJ2FOJQbU4nOPShVZTLz2XZW965xn4/1CrsV0xndpKmt6WjCsJ0llPSjHTAwBqagIKk2RiVYAR8FdL8IxvuVhN3Gx+YjN5kN2Evmfj7eae6wye9lw9fWKzRAxc+0pFe3pFBjFsUdz5qdEE9sCOzqlcJonYjoUoLgxLCxxgnNdLejq4VRGNVE4TDBGndPPjaHzbAbPYSpa1EGNEtdr4f76kv7+A7rDjRaM3NzpoV2k5t/QVbKOc54Q1oRuo12iKZBKTGWdn9B0+rDsDBjwXIWen096Du9y5NYN3MSOsNf1Y0qO+9jxRXa8yRNv05GHNLHLE7s0cZDM0YF3a1brV7y8+V0e/0+/x//5v3K8vgr8+19M/Nufffei4//qh/vm4tX3489//IUC1H/rb/0t/tk/+2f8/b//9/mDP/gD/upf/av843/8j/k7f+fvfKfPOfqeEPpSKVUAug7n50WiaJpGEkhin0Y6KCYpHV/FA9dh4LPQ87Ow5hNZ8UncAHCzm7i4TgwXkW6d8MOEH0Jt821lJPzgVWtuQI1NeseQtcW8S5mVODZRk8okVP3TUHRRjYrQTupWFV9oV1X3dn3dzHHAqpLNYuQarblvEYaKaFXz3aA0pQrua9dp1feSDIw1MRyRqj3t/aqwKzXw3BStUI+2IAP0QdktyvxKhTXisTZmsqdPmeA8oSyOMXpCr62WPlP1/lwj69GC0/kk6jeJhT4IfZLZMFA00ddkICtg5VJtK7VzUAOSwpJMeZrbCyWWltBRmTUlvjaHa5NFsERVwZclW9qnPZcusA0d28KUNn26ypQuCeulC2ycmqPdVGB64mYzcbGJbC4z68vM5uMVYbt5Kt1h2uspIuOR9PYL0sMD8es7jl9HHr50vH078OXump/GwM/yxM/TgX+zf8N91oUzOp6wTn6ZoXIRx1neZLpTbcJ4KPqz8VlgGubANzhlLWy8mUXOWsZ6Dma2kj5O7hMzSg2h6mz/SsN3hOsPkJwI47Gw0TM5PbKZkro5R88hBTbZsXdmpBIYC0vCdDotKNuHgQHHXuz6VSC24LRlzvFch56Jpk0sK+ASXS7Mc69s4eYatlN5bkbI5X0WsKeiC5wLe1pyqgw2sIKh3jeDV6DBmP0PJZFetMqV+UUlS2bd/6fb4Z6AAt/qVBRtT2OmDXiSS/SoOW2m059F/iNnYeU8voB4rpwLLQ5m5nbpNtVqtT/nwsnTd5Wfbn7uoCYxGx+ULd1t+DBYQdXzYSmoXm0nLl8mVlew+cElbija/rtHDp8f+OyPe/7lm0v+7+Mt/3r/hq+zGew4vB/YbF5zc/07XN38l/jLH6vWNODHPfnwJZLVrFWZLd/eBPVdY70S1mtltAQPU6lldB2kDqKBZnZsqgxSYaRLrlrcyk4zY0TPdVDQ6BSctmHgdOgd3SbUdd0P/QxOV28KvfetcPfcPCBJ5VpIkRyCAtT9ERlGXErIfo/rZ3Z13CckCV2XmI66lsWpSP4k0XUuwZRLAaTcywrIFYsz13RpATiv7bWFSRcK0zI4Ry+eSdQHgwB90cs85oQvjL1Y2uhNGkAs0TVGNa6EFFLZmjiqGd+5YR0XChgVgKDo28PTdTCZLIB1HSDNNXf+W+weq2tBBT9KRNToFVM/Sd8dCyicTz4vM/+NxVveBYJoIQAp0ksu6j7ESHbFwDPuKyAX0+GJmWotTJd9tXlz3oo5rvPOVQKAbX+oMhauxlttPGgsNTseXZnjehyPklitPuTFy/8d04uPSS17OrCskP0Koy9da1MUDmaOOMJ4cFzs3nAcv67a8SZFc8ypsn3rPCizvIfpTpuMzbvgVStEeGaWtQHVODjmuRvJmK+fuZ7RBUbxTOJY+1y6HedjkgQO2VcQOSZPTEm7+/zTuQZakHr+3Rjap8C0dV7a7+2wrr4gwuBcIXEUeY+643pNkyuFhIjgJeNcYT8zy+q1hdHnjuZzV8ScexTAus4VWpQVNC5PwCmjWo2GExISXlaEoMU/5wIhFGDZ62uhdGeZZm3d1UYftjKx3wFOG+C18H/JCkJlDuV5wvnn5Ha+XXBbmdQn3XkrH8j0aoSXRsa0Zxrv8QX48r6n67c8jG9Y5VjBSvu8KJkRLSpOIXPleyAQyveMIuxy5D6N/GLas8Pz4c3vEC9fIT6QvcOv3g94Fad7BenK/KnM42diA+eLeavOTqbVTVlGzmWoJu8zA9NlZnMGUBeDQNcpo7WC0wVIPOMP0l4vz432GrNunlCfm7Z6uZZT47cjdu2fG0bmcqgwpbJtYykrhpzpcVVScij5XefUgLFKNpbtNikQKzAbszYau1aUQBVrAcp0uhebWx9W2OtFiOnAON6zWr2g7y85xAe+igduuoFr3/G26PWv+kTKpaieStG8nER9/vQ68ycziSBqflrv74EsCS8RkaBhNbP8VztcUvb0GOXZnNN7ig4188NZjOmRbijdTiuVjnxG2sfmFZN4cuW602u5FFNO9vccQK0FRf2MSbL6AoXMPgfWyROyMGbPQ9Z8bintoV1F6j0WCGHNarjh4uLH/OanwqttYIzCF/dwd/d+1vDvx/fjP/X4CwWoAX7/93+f3//93/+VPqPvbwhd/2ShOWfyVyuhOarJTY6MMrJLIyscD3niInXchpG33YovwprhfsMPjh0vdyPXNxPrS6FbJ7p1xg9p1qVsQOrWhK9f6aSpILUGpGufSclXcDq5WUrinGHi6ahgZAGqHdbqaWaJNlUqK7AcENu6BVjUHLBv/N4nC5srrU+ljcoXNlRKB0BqsSA6WPeX9N1W/z1PpHTEiWq+WlunaQMecqoaeotyq/gy0avOVUgGwGkrf9dRWqaLlmmShe50a1Sjvz8FUVU6QJR9Kq62UiarhLr50ZVgwYtWnZNrdbRK4JJHBbYAka5UZUMF/VKyau2x6ilPcb/Ql+5F+CAMbL0C0xehq7II7fCo0durAs68aoDpy8vIZqvAlcp3bOg//OApMA2F+TezpXd/9Ibd146vvxr4/GHLz5PnJ3nkP8YH/mza8VU88JAjk+twbsCHjs515Wr8yTdeV+8a03QPJGJ8YIoPTNOuYU2bOZomQq1MQnO1NzInGuQNzkxm5nA4iQLC3kllUUtmYQ9t5qlPWJO/5PDbG8J01ELAdCDs9/SHkXSYWB8TMTq2MbBJPRsC+2KU2jIpdKh5xkNOyvwt4PsgjrUrGrVe2GTHiMpYrJ12jhh7cmI2VJKckBAK6K/DmAMZQHJhoxQNOtGin71PDbiKNnAxqGzTDjs/walpzNppqyplGw4Sa5usDQvw2la5BfssWQGOyuj4NsNAB9P2rPe4zM+96LWTXWnddYHRZ6XAOXVjb6URKoOsGS1b2oomZ4Hp5rljBmUGXNVO/7i/4OOw4rXr+cQ7PhomXmyPXL2IbF8Kq5faERFubpBxJH59y91PRv7ojy75/xw8/+/DL/jj4x0PZMS5wgbZsL34hBfX/wUX17+Hu/oRuRtwOeGmRzjeVqNSvQS+vVHNN431Gi4KQG0jZe1qGRVxe/I3BuopqzYV8F67SdY+aCeBEy76p8xpYKE5HXqH78EP6kFx1ji5Kdy1IPW54VJEUoR+hQ8dMh5hWJHHIzIekRBwhVFtQDWMpIMQepiOyibvemE8CjFmuuTpk4eJAjbLkk2NGqO2yaHpnVqSmJzFGDNQTYYpJHwuIKyZKOakkhaNnEaWVhYALWKLR1yqa7XJfeRyjnwpHsAck+nPVQWsUy04pNJFpGzinMdSyC66lNYlo2+2Dz29MLC7qF0LZkM9/0Tiw5jTBk634iGZUuy0paKA1F2JrTrn9BhaG3YBqpGsWpZFpz6nkSx5AZacXs+5yJ6Z/raB8K1OKMzJffvTgAV3Ak57sflE5k4iHxARjs7x0fVfY3jxN3jcbBCvhSDpgc7hw5k48ZcYfadB3BSFMSpAPUVIO8j7z5imXZUkA9XabbWn5/1uYl8rGBTNaWuVbqVarPBgx8hgeu/cLIVQGPMmeZVRtuvP/YExDOzpuMmeyxzYhlzvH9CYcMx6303imHJmSp4+ZLqQ1cC3ASZbILq+ZoC1/VsDTNvryR7NsbBCbZX6KN0SVr7V5x2Ty+ApMapjzInoHE4yHbPuvMmoCCxkF56rUZxRQ9PX7UkFqU3yAzIRn43VD8Y8VePCAgCGWZ/aYn/nOwJze7/IoGZqJ+3+7fxyDpxuJT1MbmfRvh/0OzxrMgfcmfVtYfYnSzm/bxrW/u/LPQiz10bKkSneF4BVDdi6sGLvOu7TpIBkE3eqzroQs0oL7IJq+w9lbTjkxNt05PPpka9k4mL7Y25u/ktyp6CiBE83vCeAunjB1LutIYW1P+dhOsizDrXNr6dbtCyWNJ1pBeCtpoBO809jTXvf48vPU2C6LWLULToxqs+5BaYjLYbQyk/5cj1Ee28pmOcci7lwe60UAsPpKKA96BodycQcVQrEpZqzHCWxKoC1vbb1PYnM1qtEpsk/GPnEOqKOkkmw0J5f7K+b72nvVOojiepR146H7pK76Y6vpgNXfuBrvyKMXSNV6irR5xSYPiefVfM0KXlHPa655MmxAv8WK4hoEdgKDOSEi8JxhDE9z6C2YRrVLVCde0fuevWKeIIbhScyH3X7a7eGXo8GTi/yFjevWfqh5XVmY1MtLKg07d4FNtnTO+GQlYW+J8/GiJKYsrLltbOjp+svuNh8wurF/4a/+qFjM3g+u43c7mC//x6g/u7jnCTO9+M/9fgLB6jfx/Bh0HZ0m9gaOYVzwYPpUIWwJgRbcCLHNLKXI/cxsksTD2niNoxs1p7b48CnseP1OPLyeGRzmRkm1fQMvcMPggstkOXwwSFZcEF1NSVlus6xyonNmGsr31gBUGXtBZlZHs+B1ZaMGJu6K8wQDwst6ro9p9XK7zpnuaXBxPxB5d+a4EBEaRJCLtq3pQVluK4sCJFEigd6YOO7Wg02gJpcJnpfWhF9MYNzHRS5j7U4NZWisJ+jMB49rrBXSi1zoUV96qKuv59IOmAgddH6c46xslSKmU6T6CpInStIVSvr6UhEb7IIykwzeYRsgPXMnErpwBT3pKi6ylmOdCJcOM9F6Pmw29SgRJn0s8aoJXdqCNbxI+940T8HTA+E7QV+syFcv5hB1xzJ04G8fyTvHoh394xvDuzfwL/74yt+OnX8JE/8abznz6YdX057HiQxOYd3Pb67ZNVd1JZt5wJPjEJ/iRHjjixHojHK42MBLBT4FPKCjdqWUCyBbwsKC23uIsyYxTElk9KZjYrEChzvMsr5FYbJhch4wG9v8PtHBan3ieEoDMfMZooMx54NrrZw2n2vrJM5IT9IYi+haNGKsiwp1zOAz4xJTXWsRbrPnt4HQsq1yKL69KUtk2XS0ALVnrnAYwu6sQBTCyydAWtDAXdWPrD1XSkWzE7VCnCdsF3P8LfMLHXWojeG2vn3vmuExWNm5y0AEdHrqMNhOuzGRjODMjmTaLmTx+m+LAACqymKbsvKqW6l6U3/Ztjwie/4OGRer4+8fDFy+SKx+cDTv9zWjoi8e2D8/A1f/nvhX//sBf+P6ch/t/+cz6c9B2d9No4QNlxuP+XFze+xvfmbyMVHiIHTx3uV9YgPVEM708jPR97H2G5gu5prvLnoCcaiERiDyrVIq9+bY6PXKyq/UKSOdB70avw6xGJ6eiZBasDpMPglOF0Kd63UkeuLKWzRkH+WQV26Lebv6fQe9x0Sgj76QRnV40je7+lTxoeEnzSWSJMjTBnvhTg5uiiMkyaBPumcFVAZrCRqJGzg2VjmBmNTK7PSpEAcyWmHxYiusUEcwZe5MWsirN4Kyqb2WeOkVMCsjCW6hd0rTq/ZDOK1YOQBvEpdmQGrL23q3s3rQgsMqHmaFWt1Tcx5aoqRbaHLELD5nrfXq5mozAVKK4iZvEerEWuSHSrSNc+n3rn520QqGN4ysD2OlUePawFJoxTzKpQl6mTWmz9npqqfb7r0USXBrF2cvOi0qGtaA06bpIt1dNnrM2dOHx0qc9U5z32eWK0+4ObF3yReviL1yqosFGw1LP0WZIlvM/quzO1jLm3YKuETHoXx8DkxPpb1TYkarczM7KvSrhtzkcFa3Y1V2oLS9u8wdyTacbHVwl6XwnqUNBEl80VUwGcfBvau48YF9slz6aiG3GAMQb3/RtHW9iF5ep/pg1RGa31/q2fdrFEtIH36PgOn84nch7Goh7L2DHhwmdREQWsfKoPa4wpYnWdVK8l4K0yzBPUNrLbn58ZzK6qzPzoDUpupu+VnMao0RBeyAsQNm9q7UGPK4Fe1y8I8MfQ4LuOzEIbapRCCsakLe7rIelRw+gR4clDw08KwruSSJVj9HDD93PEwo8S6jQWguvR9Zbs+yMQ03eN8R99daJ7aXbCPd+zSVLXWgVpISznzIMKbdGCipyeQEe7TyBdxzxfpSNe/4Obqt1htf8xkwGsh9LyPodrBuYCxswSG7vfy3Lgns4reiYu4h9PrrWFNl8LgE3C6Fh76Yl4XFuB027mizHztLJuLGsuDodhAC0ynuj75WihRsDpn7cZOeUJcUHnLcgz0em+IHvZsEdu2z5XhPDllyY6SOKSk5BoXGF1iKDKTKx+4CipDh4OVg7VXmQlj2x4lccgRciy61dIA1cthAKsv+VIvwlEOClIXDfdj3PEmHtiGni+6LaFIba5D1g4umTu52tEWhWc0gcYroRyvPJVjeiTncr6aa+hJsSNHwiRMETXfjc+vWRWctu4jryQFPOS+p7e54Qw4abFvPUtVh7pom2u5nrYE0cb4Yf7DCtybt0UuBaW9ZPYi7LMjOdiLYg+WE83ybFpYzM7RhYHVcMNm8ymPP/grvL7Sb7rdZ3aPkL4HqL8ff0nHrwVAneIjKWmANQNXmupLsyzomBc65/oSpGho33UXiKzJ+cjbfOQh7pVRHToewoYHVjw8rjhEzwfjkcspMkyihkuT0K39woAPUKOl3lWmrkl99F7osxTDRlcMAY21Z0DZu5ODFjBpzXFMy3R2cHf1L2y4Z9uPyr87xzmTCf23+XnVFSuBgXe+6CcmQsnnMtB1F/TdJSEMBWDU5HPdtC2ZXAFo4GUJyugs6RBNsr1qUm+Sh5AJ2c161FD0/9oQO511U7dzYqz2+vfGyDaTOZYsFXVeDgRSMToohQIKW6mwqHNpQ9LkPFUZhDng1QBnio/kZMm4MoNbYPqiaKRfhG4GJpsxOM/Wddx4M0eD37jcc7Wd2F6fB6aNFQgUVt8d+bAnPzwwff3I/qvM3VeBL2+3/Gw/8N9MD/x82vHZ9Mhdnhidw7sVobtiHYZnE+6cf3WNu3G6RWQsmtNjvccVflXttKoxeub4wJzYm0RGZcliCab+zZSUQd2FTJogTca4T5ghJPn9sEbrtpmu9XpLuLwmH/aE3YF+NTGsMqsxsQH2ODYEHlyq1x/MCfhUquwjmliPTotfW6hJ8gAMTosum9K5sHKh6vK3RRZX5lPvZ9Gk0xnJQGoR3ySLEym3RnazvIcmJ1JBosEt5T1GhBFN1vIpe+7kvBowkHJh0dU3CzktQYDTOknbNn3aOn1u6DxQClGlSNA5r3ryJmnkClgkT+1j5xn4tFRo+zKD09ACa3p/X/qOq6I5/Tps+JHv+LhLfHR54ObVxOWHwurDNd31FX57iRtWyHhk90df8LN/N/Dfv93y/xzv+MPDG96kkWnBSvJcXf6Ily/+Jpubv4FcvEZ8wMURd7wjj2/Jcccsq6HGbia58z7G5Qou18o20XOqj6loUjuPSg40IzdttkGgD2oqtPFapLt0cDVE1quE98u/Nfa0+Q+EwRM23bPgtBvWM0htwPRzMj8pVuB6IYES7D4q2vVN0cujBWwXIm4fcT4TJoiHYgDq3cIE1LSpfRJC9gpOF5AslaIGDZu6BaoprOpRDDzr6F0ubaZaWG/Z1GRl5sVsVZcZsTLJD4feA/p7QDXCZ5BaZX90LTg1UBQ51WOeFqZoOY0NOL28s1z9vzQ/9WHFSpN3Uva03reL64gZlGvB6eV3zMPXn0uQOuKKlqcaKYbaWp0KSF0AG0u6LbF9smY282YDMFc5MTd/r3XRBRxRZuKCLzOtZ77POxyrEm9FEfZOlD19/bs8brfKnA56n7leCIN2kb2vkbIUg0RhSjCOjmE/MY5fk/NI74Mym5HKKj0n71Fl7cqZMRMxMw57l9SHK2ucsajbc22a3TggJ76Kh8JYixzCir3vuKFjL8Xfwfar+ZkExuR1jc1epeL80nz5HAB9+vspuDP/zfn9shhVbwFfZD4K6eOEQU2mFjNyuUYiMyGmWjK0BVPm++C7XhGz3McMUovTuNt5nZyqSaEkQtgQWkDKhQruVCZ1Do30QqQ1awYqa9pVoPI8OO1ONagl2lLOLEfUsJYb5qy+v4CxC1jqfCEdlFFaFPzBUVjRsBUFqWOa2GcFBNU0cUXXXZDTgV0eWeXIumFRV78iydylkSgZM3K9TyNfp5Hoe64vPuLi4sfIxUf4aUJCIPWOdf9+7u9aXLNijxU8Fuz2Nod0WtSs8ZBbREBPi/szOG1606fgtH8GnA5+WDCmT5n1LaHm/L6VYrgoo3c2AdefLh/V1LPso+U8GS3+kLUoowtm2/3T7u/58yBo97HOLQpO9s4zSGLtAlE0J1x7qVKPAz3JCWuXmXxilyOrsm/VVK+sTVpoZnGfG8PfCrudCCk+EounQui23E93apgoEwMDIYUFi9rGOVrPKVBtHHoRKce5mCX6npwTzh3L353IgFGKRhJxWYjRMSZdY6YotSjajpZdHRrzdAmFVFDz2FALYDknQjh/bYBeN3oN6bX9xD+s5przemWvmzlmFMU+9pLYI+zRvGQE9k1OVLstjD1NoOsuWA2vWG1/zNc/HLjeBHbHzMNR11jG97eG/69pfK9B/Rc/fi0A6ik+4GuipIDVKVPNnQBXWTKTHDQRdpRqbMD5Hud7gu/JeeJNPvCT4z2PXeTQJ/ZhzTj2HG4DH6cDl1HZqV0WnM/44BaMXRvK1NKgrJsyfcgMWdsCB2m0jhcs6m9X+TKjHNvXzNLBnYb5Y/qFapjQjrnm99w4dUAGajta8B0hqPsuBaDuyvZMkumHK0LYlO9Ohfk2ant/YQXfZWWu5KKX5VEdzK5obE2SlEmNkFzHxnWQ/Fl9PoCcM31WAEKahUnVCFR2xdjTpyA1GDtFWdSm9WfFg1mPcmZQG/M9oui3sQpEMrm0ndVtKGyDnGNpZdaaaC88AaZXLtRr17QCzfF56ztuXMcr1/HaOV52iZvVxEcfH1lfZvqtp7vsCduNAi+bDfigreopEu/eIvs98W7H8evYyHis+Wny/HE68pP4Ff/q8Q2PTvBuwPfXrMO66Pn5ap4HkIzVmGPZt1+dYTlOD0Aq4PRYwWmQypw2gHVO5GfgwX43A5KZgVaukxIIhEIB9NmzKprmaRLymNXgLEWV4kipgDbvZ/p0/boCYK5f4YcBvx4I60i/Erp9kZthlik51VC168KCmOSkAlKW3FqSbJ81NMx7YwTbnIkFjCxbWM8lqTUQp9zbxoJ4hj1tn2Oaiheu59J1Vd7oULT0rB1Wz8ryM2y/puyJya4/0/2cdagX5lN51vV8bnwbnnzAaUeEc3T1SlOALpedMzyiTezhKchupl3LdMWKLZrAGmvajP8+8QM/Xk18eHPg+oPI9rVn+PCacHODW1/gQiDvH5k+/5x/+z9t+W8fO/7b45f88fGO+xxJzfdogHv5BJz24x7GW/L4lhR3+l7XkfOBnA7E6Y4p3jNNt9/iiH3zuF7DxarMcVklAMZkLuuC864wqNs5NNZ2WtOfXvvA1nVcOtWeXvWJ7h3saT+40gHlqxmqH7R459fbIu1RAOoTYLqC0KkUrFJjjmjAdIpzYaudO+o2BMjKqPZDT8bmJe0O6cp26nsz3uv1e6pNHbJjzFpcU53qRo/6RPbD5gWT/4C5Y8B7x0HcHAaUS9vnRHQ6o5ocAGi3FqcgdU5aJSYv5D6870l5quuFtUf7BhgwNppJXVjhtpVxasd8f83gtM03tjZYJ0Tvw4JhnIscxywlcX6eetJBwczgrQVRR9H1zsTy71NOTKjer8l+5KzAl5lQV/ZeOeBSOlcW7GlpY9kGpHVLtnQFp53Dl5ilxVxXTr1WvHM85JGhf8X19e8Rr19X9rR4B50jDKoJv36PXa5TFKYklUE9jrDe7Xgc3yIS6Vyv0jWFCR1ZFijbtR0aQBmVhDMG/LnzOB+n+feMMgVFZjC2mgficCUenSSzy5FdWPHge258xyWBGxcYYC5yM68fo2g8MeAYshkYGghctv9Ey/qbRpsPnLKotRHd1Zh1EGVSg5pJ6vUxy/CEAlabLrcvR9pLJhfJFGmKrbBcn77zeAakJkP2kNNYugyfSkPMTFcFp0GBauOgZJ6yXw14NFDSZD1OmdPOLeXaHB3OaQHWmYFrPj7DqCzbyNP46LlRiTblYeDVyge20qu2bI7E+EgqwGoIK0K4UCnKHKv3TXtoJ0RZsmXEcs0enNB3V2wvPlX29PaKcFSJKfHu2Rrrdx0maajbI8oYro93RVXfVPZYMqefA6ctL62eP8+A0+eY9XbtPMekFomIV9Y0QE7HClbnPJZO0WOR+kgnf5twknFSVkHnSi7arlWnBdczR0GY2bllTpqcAtbeaY59EbTYTOkS1W4UJaEcvUrm7XNUkNrMZ5k7omw6ErTw0VUWNSQiMe5wvqMLa47xUc0308gQPEF6UvJsvM1xJ3JETcc3UL0UjIihs83ymlEPpyPehwpI2/lYjBwJU2Icex6O5nGQ6bt3L14LKRDvSP08J5yT83jXMPNPimTNUw3qOd8ccIyOIunqaoFwklw6YDN7HDjNS0eUQW1FWJMRyw6C7xn6Szabj8kvf4tXH2WGzvH1TtiPMI0O9w5G+ffjufG9xMd/DuPXAqDu88RQWLi983R+aYJzti0cqYwLc2M/5pEoIxAquzqEC34RdypgnyOHITJ2F4ysSA9rXkfVFtzkTOhFJT2SLBi7LoBPIIWx1fWipgKiSeXgHBspk7ozs5NcdVDHBiBqJz5jT7fPZ+uJ5aituLZNDVCibfSnFLOn7OnTIAAgGHPaq2t9MkMjiVV/ekK4Gl4QwlCqzpmYjkBm7QfWTqvAk8wsGFuzjfF0LJqEo2QO0jP6zMZ51e7OJXWbZiAKIjlR9Kelao3WfU6uANQQoyNNszlNmzjMurRzAlD/zTWJKzMD1Qtkl0rwksgy4XLzlzKbPYlEnER6SgIZugpML9zpKQuaU/b21ndc+47XrueV83wYMi9WI1cXE9vryPZDob/s8esBv1lX4EUvokQ67JFx5Pjzrzm8lcqW/uww8Mc58dO056fjA59Nj9zmidxtWYVNkdPpqxu2Xj+pAtNxelgwnE9bL3+ZkZKK4OQFq2zWmzaGXKtNCcrJqEaJzXlqR8CSvdJTUFiJU/LESdvs0yTkSc0i83TEF31Z954AamAGwYY1bn2B36wJw4HQZ7pe6L0QkqsgdW1Rc8qcgzm5HkvnQaPWWt6rTOo+6zU94Gcd+xIwBtFqvlSzv9OG6VJZliUMUNnTBk4X7emlRIeGor4Eqp1TzeDroPIloMY+xvIQkdpuqJ/dJnfKFu1Lccpnx4SnR3X+Dcds9T3b+7otatXWaebfT6/ab/IFUB1Uvf81uCnHpdnzdggzON1CbzZ3B+DCBbah50VY8apb84NuzSdu4FMPP/zokasPEpuPV3QvbwjXN7UjIt29Zfz553zxbzP/t92G//HwBT8dH3iUtNgvA6evrn5cwWkAf7yH4y1petvo/+m1buD0cXxLjA+M74lBvV15titXmdMGYk1RJT58pxIf9fg1JomgXgcm77FxnktQ7ek+069Ort+WPe3BDx4XPL7vFJxeX7wTnF4A02UukJzq83OAtFTwOjVAtnVlPJ0j/dAixAV8VelvuqmK67R/gXeJKfsCQM2yALPEx6xVfWqmGMRpkbXMLSGr5Edwem8BjDX5ztCA1CLGwlKQWpiBMBxPQGqdZydckflYyDEUyZYKTlcTXD3P7X3Ucs9mmGNeGwyctkS71Z+uUhBVd3ouo9l8Y0U0iyW7BhQ25lMLXmcndOIrqNl5R5BcY5tJhMmpAa11ngkJ59yTuRgW2BEAAQAASURBVFShi1KEZV7jWoNH+2neI3oVzEQE3xwYj861gw+MOfFA5vX1b7G6/l32pj0d9IvCSugHYb0Wtu8xQ6j600nv6zg6wn7HFB8QcgXerHsuFka+Xf8VpjpZD6pRsBiPtYmRC7yVsHXkDHmkvK8tpUa0UCpOwYBjaZffhZ6dH7gOPQ9FTu2mjdFOflrhexDtWjodbdHoXSN8w3tCaRuvutTOlwUlM9r2lTA/iGPK8zXbMqtjYZUb2K+4kqtrVXufLK7ZZ7bLykaO+ck5kDo5lWU0kDM0P03yI4RhNrYrMjlABarb4YvJIvAsOO3DGsJ6STQo3SJOOjiR+GiHGSRWWQuZj0xLjKrFMGbtaf37+YgpAzZUDfVJMg8NINh3G0K3JqU1h3xglRNrbwJ/VLmAUXItfh5z4lESzg9sNh9W9nTuerr9I9Br4fHPiSQoIphRvMk6ATPBSRLlQNeLx66Vdsz9Zq6QrHzt7j3NTY0sszRDnJ8bc9qkGdriBVCvkfP7MxvzOddViY+UugJUh8KsXl4rKZdiCkqCUkNIB7I0zAYWPgPvKnSUyFw1pUXwSb1JMiqDqdrmKpu59oFePIN4UiesUmCfI3t0bdK8ugCe0n6+yb9RpT6mrMb0oVsTugt2UVnUa6cEM1wgZTVmP1dwsyv2tKjqZAbrq8RH7vB+wPwo9LifSMU05ypMkePYsx9VRmo6A8qqbJxqVD8xbayVy26R1z31iTgxZ2yuL8NMCq2n3uPV16bgByNS8YTB8I2yvhwksiexR+fvkTkfquxpzKba43xP121ZrX/I7vUrfvulbpets5LB/eop+Pfj+/EXMn4tAOpP+g2b0FfzgHVpFQwsK81ggYKydE3Tx2581WpKxS31QBRXgpo1t3JknB5VoF4yqYMkA3m/KsDHkX6VVOtyeOoo7oLDZQVKQw9dyPQ+sw4KGqTkK4t6xBXm7gxCqdzFeVmOWYuQs+7ts8xH4We1rQuSF2D1udGC074YAhgLSt2mB7qgbcuWUIKaqCWEyUHfXZbJPpGL/nQnFIM0M3VRALptkXdi7FjPmBNHr48pJDYuMPpOWedZ9f9M/yqLI6ZEjBmIuMATvTVjVxo4HaNqgn+rlv8C5lmy2jkzsSmtagKZqWhnWXCFZvMlrXIokHBVtFPXDTBt59SkDgAuQseVH7j2Pa99z2sXeOWFV6uR683IxTaxvswMFzDcDLOeamlPyvs9khJ5fyDtjox3ic/+uOeL+3WjL33Ln007fjHtuZeE+J7QX7NevTwDShed4TSS8lEB+TzRMbcT4zz/8RuP5jcMA0nl6fVviYAFUl2RXAHILO/DtjW6HcY2DAjewZQ9xxjox8xwzMRDpt9PyHRAxgMyqdGZ69e/6p7N+2FgWL/CBWW4+8ET+kTX5dLC27D6G5AaqEBuNo25FrVB2dN9yKqh7jOBUIEVA/eXrJyZ2SEFkHqyzeUdzoXqZD63Qy5NvtrPDVBZ2xdB9YKr/jTaUm3yHgbktgldBdwENaZKehWENulr33/Cnm6D5wpSSwvaGYuuaJvW33N9vR1zq7QjOypIDTNY0urBvguc9swmZtdh4GUBpz8OKz71A78ZMh9fHnjxaWb14Zbu1Uv89gpfDPjS11/x+Cdf8Nm/7/kfv7zh/7v/OZ9NjxxKQcGhYKKC01dcXf2Yly/+ZgWn3fSIHL4ijbdVc88VjeCcjozj10zTfTUsVTPcX31sesemLwC1wH4ShsKgNjBZAuTGiFjZ+gpe9s5XeY9LF7j0wqpTc8RzSbixp63jyfVF3qMfVNbjHcxpA5/zYafgdDU5Perv43EBPisoXdh2LRjdPJeUyFOElJGUF0a+8zYrGNP1lqKegNTJ6xuyp9WcPpX4mNnTcyJZC3zkolXffHQ5fsdFsXEGqTOUomwBqRs96nMgtXMefF+T9uX5nAtcWuyeMCknS+Bt3hH0O222Kp9S76NW2mMo882y2GUrcTm+dXeV1eRc83fPgNJVasOKW0Xiw5889DWdI5Oz9UwPjlThVcey9XuWr7L5uWVu13nbtsXICmUfcNQCbSjsaUBZmN0119f/BenqI1I3s6claDFovRYuL+D6PZKIFBzQn1NRynLHO2Lc4YVq/juVGFvkqUxSPX+AcVenrEZgNo+2RUHTmnbQNhI2RWzqujkXOWZWapJEn7WjbywGVXsfeZSeC9fzEHqSH9jga3ddNV8snxdQ+b5BZhbd0mixOUbN83OHPpy87+n7VXpkRCpIPTiZTX+l3OM+nTConQKWpXBjQHVGCzjRUeNxi2BbQPEcuGjH8tuA1BpPjk+AeOvEtFEBxgL8Ac8SBVpw2bXMSAOnzez6xBxPia7dEoBvGN2VKdzEoyICIguQ8dwwvXRcAZbdDGCtfGAjHaOkKvXhYk/fbVS6IqyZ5MhBEl1zr8NcUEmFpX8o3jCr/prN+hOGi09Jm23ZiLIvYWlK/F6GZAVfXYmczsTsQANSn7z85OjNc6PD0UpPPiVOzdIMUFj0dr2cgNOzJGG3AKbbeGc5VjOhyHeVhOVcqEV871fkfCQ08lVQrh0Dzhe5ZSloNOtaW0L75ixUP2Gfo5K3cmIKmUk6speyxrrKpobStZh0TdvniBfHMSvLey4DzzGqdaV2OJJkUnrE+47gB7Ib+Coeage0LpqBzTuKbqekwcU+l45NJFeZj1TOYUrUIoOep1YmM+LjRBov2B2Fh6OwHzPrMbMe5uBvXn+ovvepjT+81+7iWsAI35pgZRrUdk5sVCKRPZz5Beg7A46VC+yYVGu8GN1vvOI0CZX3SGIeCyUXcXoMurBm6G/oNh+TXns+udEdGq1DPIP/BtPI78fToYXw7xnUf9Hj1wKgft1tWIeOlZurhsoOPKletS3xIjwUzZ+DaOVqksxjUqfUXZrY5chjnogevOs5kPg8HkqLTCYNV8AKDrogrS729Bl6RJPeM9d3TTI7oU+ZPnuGLExOVOqjVNWMRW1DGR7PD0uoXAk43yXzsdwgY1ecCSTOVKid8wsX+i5sVDOusqPvSPlY9aejiEqmhFZzMpHykaEkXMYSNnCtmuOU9ysLJXN0yibfZz1HvQvspa/agDd4UvILN/VV1KPWdZmp0fC0kbMjJ4jRF7O1mUl9erzrIkOTGJZH5zzRCX05lg4pTFTTHJsDEZOkMIO4mzCw8mGhjWmMINBFbeUCr8OG137gte947aSaIF5sopp2XmT6C0e3CQpOhwAFIMnjRD6MTA+R8R4e7zxfv13z391v+ON05Gfxjp+NO96kIzsyzq3p+htCt6YLK7zvKwAZk1bSDZQWmegE1ji2vq9J/cqHaobzqw5lm3mWPNOZsVL1OaECClEy2c04yVP29AxOli+BrMYZU3JMyTMePatDJu4Tef+I3x5nkHo6vDeQ2hkzs/4MuODrPGIa0u1cdgoqnxsBBaeDo+qqT4VRiLAAOeq22JPC8nCFyebwNeFYytU0yVuRdqECDEaPmcEXA442Xgsuly4wOMeD5MqgNmDYgF9rgUtljhiRqtk/ZU8WZZmbDl5ugjJjThs43WpPJ5glEdDAcSzAdN0WmRkR9rCAEc63lNtoGVQwB/42v7WiBcZ8WzudEz7o13wQ1vwwrPnUBX7YRz6+OfDi9cTmhzeEl6/wmwsA0sMd8csvuP/je37yHy74lw8r/od4z2fTI8c2kS5bFbotl5e/wYubv8H6+neRnHDTI/nwJanIdpyC03G6ZRzfktKeWGSJ8nMJ6Hcc694xFM3AMcIQHEMQhjCD1DyR+CgUEaR2T61d4NJ5tiGqvEeXn8z5LXta7y+PH/qiP90UilpwGhZsaRkP5Ps3Rb//iEyjygCNI3mckOLyKCmTxwJonKEVnRr46rGePRJOpahOh/dCEL3e+5BV8srN60Zd95uvbkEgmweMWR0Km7ouVA1IvSpma5kCyNgtbYyeFoWyte8MSI3zpaU4VBa1nk8zFy6s6TyVQlekk2WPl9078yqgX+6gsqd75+lRaY8W2FUZrpk9rbs3g9KeWat65UKR8FoylmFOttu40stsVtg7lfzwOTGW77AkM0MBqrGDpsB+A7G24PTcrTUzz05lnmybvDiqvKZr9sUHHnPkQRLXlz9iffnXOG4uyH2o7Gm8U+b0BbzcwvZbwSTfPFIu82lU+Z6cQY6Qx7dM8bGSK2AuSJ7Ke7RbYv+eJHOUzIQVK07+ZlHUKPrK7imBpJX6qN9hj0JiGZ1Xb4fCdnvwE/e5gx4uXWDjQo3h2zGW+2Fk9pdpU4MKNr8jVmqvsdO04lxeEMoeD84zoIVp26xqpum0EHCqTZ2czEB1WYNdAaqz0/unIb6eXf9OgesFmN2A1DpXmCwQC5DapJvMaBwg54D3ZVppQOp2tEZ4BkACdS1zBky7Ak63rFmbZKSRALGXTkFqK8o3K3ktcjm3mK9gBvxMmqYyLJt5pJX6mIr8X8pR864wkNKKQz4wSGaosgLLgooAkwPvVqxWL9hsPsatPyANq+UGeUf/HjGYhWarSJVyNO8dXzpercumSiIsqhunJSn9aeJ99pvlre7Zn+/esXP/vmDYA0/MM10EVoVNncj5MBc+ckfOyvTNRRLGlfXNuYC4PAPpuMX90T7aPCW4bzf3CswdhyVOroWQApYPTuUge/H0BHqvQHWftdP5IKkydW3eXWhRO9WiPspITHu6sMGHNbdxxyqG6uuDhxt83XYjc7TdBG3XJjY/G1YhKgvm8oT4vl5DFvallApQ3ex/jricyZPjOMLDMbM7ZjbDDFBPUZiizAzqvASn55P8lEXvzxYszv1tCXRg0Tkamv02b5BQ5gJE81XntHN1n6PKfJDqrdB2laZSSACnuuthxWp4Qb78hKsXmdeX4QkI//34fvxlHb8WAPWl77kMA73zbJxnU9iBZhxSje7aapaDRKci9JJ5kMytRA4hFb25iYc0cZ9GfpGORKds6gh8VcwoElJA6jUcBm4eRixcDL3UicmG90qaEa+amMai7r22qg+p0aJ2nrHIfLwrcF18PqZFvZT5MHmPU5mPxSht+/XX03cW9rSB096rlldXjA9Vh6uAFnmsBjITQgibRcUzF2aUaQJbddcYi6YwbAmHaV76MlEPJVHwuNpy2TqtX2bHJgc22bMtH9J3alSjhlPLXTONWjOeMidi3aamqFEf8/nonSc6z+R8NRTSpFKBgwUw0DCftKqtzGljNllrsAUXxgq8CB0v/IrfDpuFzvTVdmK9SQwXwnAB3drjB48fggIjU0TGSNonpl3m8ODZ3XW8uV/xxaHnJ1n4fx2/5PPpkTfxWDSm1/TdRQWmrU1OQek9MakGbZaRUEBpS34H59mGvrJje+fJp+50v8RwPmjCnRsGnuTSnjofYisUGAO9tnIbCHES8LXnMUFN6CeB0LCop6Oje8zk3QN5c0teb3HDGulX75VFvdjnM6YcbYHkdLT7pmBGo0kJ9GEG6s5I5D9vyCoZcf4sSA3LxLPqrT/DnrZhjMZVkaq5LInHiCjzp5yzyuQwcBi9/0cyI14TfoFD9kXfMxcmZwGQGh1qKEB0A0zn6jbuGIWi91YCQvR77DunEsC3wPm8XXO7uZw5ji04XcFunrL9NoUBfBNWfFjA6U/9ik+d59PNyEevDlx9ELn4qK/gtKRE3t0z/vxz3v5J4t//6TX/cnT8/6e3/OnxvspD2XlS1+8LLref8uLm99hc/Q6yfqVmiMcvScUM0XvVmFdDRAWnp+mugtOWrLf687/KGLoZoAbYDGp4M3SmQ80MHpyABl6g864weRyXwKrLDEMmlO7inFWX3AVwQQvIPqj2tLGn/TDMevBhBucXEh7TkbzfkQ870tdfkfd78hTJ+4k8ZnIS8rQElk1K6vyYr5fTnFn/ZtZMr5JUU/vaublAmp9LkHoBTpfnwwmbWi+W8ASkXrlIdkWT1qMM8ToBlHtNILtccGq/BKnJRYNZu1xq0m77W/TEjTltvgxetKtgjmd07p4T2/lYmsFbVwt5vkp7VHBacr1fYS7ud817a4dH0WxuTY7OdeHY6B0V9JtsnvTgxTHmRHJe4RmRataXkbIP8z455rm+c7M8iW2bsbnPDe8cXVnLgLo+AzzmiPg1N9e/g1z+QHU37egF8CtlT19t4GYDF+8JoM5Z574xaXdPjOCPouarpXBhAEY7x57jESpQSiUzTChw6vAso96MuPmY2meX2sqT42eF7rN+BygYrkC1aoWuc+DRa8v31vdc+Z6NC7XgeioJN9bCw1xsPh0WkzxhRssyn3gXZBLqbF9AaoppoihwZHmFsalT8U/RbTOpkOeBak5qXu8Cq1twur1/K3Oap7JABlJr7yMVpPaSKnjUgtQwA9XPAZMt6FifF5BaGgBK62XPU4FOQWpjfLZyDe+6Y1qZD/MNSdWMXfOhlQ9ciBpdP8hUALpeDSKNRZ0TXfAVQAQ105vnQzVPG/pruv4G6S/IweNTxhkr1CsZ432M+fgaiQQt5BYfklPDsRakPfmkp7+X+7RKe9Tv9M138uQ73jWW5o0n8i+g10m9proi7VD+LccCVoO4WfLBFzBYJOJdLgXYVIldBVZc7p3NRczzj81N4cm7v3mYzIvJxaQgXPkBfMelDwxFjmPIvrKpvVMZL581220JDVZUsYJrlkxMB5ILeNfxIIlVUi+pel27wCW23i5H7dqkKbaWqyGXvmnLI1IpbMznKTX3d5jlNiTipwl3lAJQw8Mhs10pixqoBr2zB8IMUluK2krIGcP+3FxwTlPdu1riruWqxX43uZh+qitSH1qU8ihDvcp8SFdvhXY9NJa7EgcDfbehH15xvL7m9TXcXPi6v/Uc+nfNSN+Ps8O595bbfD9++fFrAVD/IKy58L1qOePZOG1zG1AwZnBC70Q1FguLMLglm1bZdYEp99ylwIPAG8l8kSf+eLrnq3jgNh65l0R0jq8l8/bwlp8e7/mj4ZK/vrqh/2rLq93IzdXI5lI1qUO/BERdKPqvVRfzRPA/+Rksdh37wjAayWTxZEzr9YQBUsLAU5kPBWzKlCkeMyOoGtMYk4HF4l+31/kSGK0Ipc0s+KGypofhJeZ2O45vOR7f4vJEX0Dk7Aeut5/W94hExumBLCMbP3AVejbOMzbs6cmVPbIWvXI81BxAgaJ7mbgfpwp0XfiOy9BzGXqu/MBLP3CZA5fJ83pasynnXK8DqddBOxScVuPKJKpx24JW2m7TVkYVlM4u4L1jcmHWiGpAUQNLWz1LCyCOkridHss5hLXvuA4DL8KKD8KK177nlQu89sIPtge2m8iwyqw2mW4tavDVUzXP4z6R7xK7ryf2D4HdvuPr/QWfx8BnkvhpOvDZdMsXcc+beOTge0K4IGxesC3nGKhM6Tg9ktIBnw8MOK6cJzjP4FeLRL4a3oWOnlDN99J70KBeDTfFHEyNsyYgpxFkIrmEL+fGZC5sW2CWSJkkz7IppEUiOJbvSczareBnTXNxxBjZfP6mbpOkSEjap+y3N/yqholi+rWtPu3JOKeNDFQmAsDaq2TOhsAGx6UTrobCJg2ZnB17qEzkVrPagqD2rhAp5iUGUpe5o32Tg6I7Xty3G7MYS9FNDXsQuPAdN2HFD/stP/IrLp3jQYRbiexKu+Isq0EJmhMPaeIyTNzmjuA1+N2jsjwBx5C9FoZcYY2fHLsWkDbZAysp7o2VjfBGJg6lbfwoaipzLHJQtYhUgOtYmCswB6Vtkv5NoHSHsls2vuM3h0s+6jZ87Fd86jt+s4+8vnrk5pVqyg+v1nTXr/CbDfmwZ/yzP2P/8z1/9icr/u3bK/77dOQ/jF/z+fTIfZ5moAHh6CD4DVcXn/Dqxd/k4vr38BcfayJ2eMO4+1O9lvya0GkrcIq7CkxP0z0pPRZzIE3EQtjg/XTmivzu42oTWK0CKQt9mJOHMWZWAwyDEFZC6kMFFLRjR1vAVR6p57XreRky15uR1cXz7Gnfo+D00OE3a/xmo1Ip2+vayaBdEg0gffeW/PBA2h1I+8ThrZCq74F9w8z6atd9+3c15J3B5Zzs7+fPeJeJJ5TruP0MOW/+qWwdlS0K0soCNEXXCtxRNKpnY54NngcSg/dqABiSgp/Z43NUFnqZO6zrqeCsZFcYhYUVLDlpWlrMAXMel/GGsaclFmQ+08ncadQ7XxhiOqe3e1qPuEAPtei9LuxnA3Pt/rWijQK+c4F1VQrGunaF+jnv6lKxe32WdRB6hOxETZ0R7eaSzORCLZqa90kuf2PxQjs3tBJMXdkWA6kNMGgJDME5+gIM4Khr4copY+7n444vcuKHP/g/sv3o/8D+xUviqiP1jrxyuBWsLoQffgCfXDteXwX69H5ShClmDjmzH9W8aRwdq4eJ8fg5MT7SM3c4Tnk2g7JDb0BOFpWMy1mZZBordnTdRf0u7eQpq2XpsMjGVpdG9kNmsHC+a2eQOjDP1wY6JKex+GPOOCIhwW080pfrZlNMrS9Cx4Xr2fpOC4+FPKPXCPVa+aZxjpyybBufnz95X9mjjVPJnwEzGNd4e+1kvndFOLi0uGatmGOmlXadjpKWRVmaQgtucS1XqT6esqp9C1JLyUNyBqdMQZc7xKu3ieYfutbk3OP9Srs2i5awsakVDG0A5yfyDQ071s9rCT5U6Qt8eBJo5aySdjlPpBxrp1iNdUpsVDserDhmnQ4suy+AEue4grTrfTs4Twh9/ZuQRu6Pb+n7S3wYCN0aIfMY7yFNqjHsPFESiYA4V9jWF6zXr1ivX9MNH5A7jetdzlCAPReEixNS9S87um5LF1ZMBaIXIgjEtMfFrkqJKLmpI+USDdX4Es7eDrWI1CbRBgYuhwGb+jyVrp5yzyVKl+8RyvUivuTS6aCSL6VA0jJozUTTNVCJCyhIHdZaXAsrcjoiouaWADFqrORcwDs/E2tOd4+TLhmDOZ1brD3vKoraaDEBNcmcNG52E5eh55PugssigXYTOkYGHgoh7z6PPCQl5d2mURnZzPErhfCydl6ljuIdwW+g2/KLtGM/Rh7yxH235kVYKfHEWNUYaaZIXTVdx9X3wuaSPJE9uDQfq1Big9n0MhVSXJFck0gY9/S7xN2d58tLYdMvb+CU1aD34ZBVAmQS9hMcJvVDoJHCaCVevi172ohccP4yhtIhOf+Bdsk7eBFWvPVHbtPIfZ7YxJGA5+CUaLnPiV2eSr6h8h7eKRazGl6y2v6Yr36w4ccfJj686tmPmeAdwQu+g6n/HqD+fvzlHL8WALUxp40lvQGGBpgefKb32gLbhaw3bmHT2qiJXnZcJc8hel7FjtduRULY+p4vfUcfD9ymkaMTxDnuJOGmHd45/kb4iHDslaUbJlbkUul/ytp1QeMg75Xde07qYzT2QzPl+XcwqvXfyvMTJsisRc3Ja++evGzS9ZVBPYPTIVwQgiYGcborAOK+BssRCEGr+PU7SwuvL8mntQYFd7pPRVPM9xqq+VKFtrY6iYzpkZHMMSvQ+5gjd2lk60feFqD6OvSMfuBSisY3rhYuDMyy0YJXBlyNUCUF9gj7RnrDgs6+0Dm8c/TiF8e9DTAsoN+nWN2Uk2SC87PmbLfig7Dmlet57TteObgOiashcrWdGFaZfiWEvjDyk3JQ0kEN/aaj47j3/OLNmrdjx+fJ81mOfJ53fDY98kXc8zaNPEpGXMdqeIEPK0KpGJuudIqHAkiNDAKXvnuix2mtzwYCKCjQVXB6QGVPftXRdxeFSBGK5tuoBYsCUNVkyc2SEG0b9NTUsy2IM/DzFPC1VncrUITsOE6Bbp8Z7yb85r5o1c5MS3ynIPWvMqpmrQHVqdGinVm/uo1nTD4oTDmnCfHgHBvnWHvt0uhCmYsyzJq0sylPBQQW49vPF5U5TcsiPg3IpbKnL3zHy9BzWeZtc6qeyv01J7+6FbEkxoecOPjEXkrw6zwPUligUgJ9aZN4A47Oa/GODTA9irBHA3Z11I4VXDLvAWNfRoSpJLSWnJ8etXM60zY8ygpdFVDjKgz8qL/kEz/wI+/5ZD3y6urI9QeRi1eO7mZN2F5ACORxZPz5F9z+NPPzn2/5148r/qf4yJ+O97yJB3ZZmwBDaRucAO/WrDcfcXP9O1xc/XX8+kPdkPGWdPxSt6mwpoEFa3qa7jWxA7qwbhL+QHTvR4MajM2l500Z1eij+Ac4D3LCBpHCQjF5j43zrMNE15kx7lP2sslquODwjfZ02w1hMj55d0ve3ZNub4l3O6aHSDoI01HnWhsKfEs1YHTBvn+W+rLtkJSr94GZ9EqC8eiLF4K+z2ISoALST15v5Gv09+Z4FjpdgiLvo+B2QBrtab03bM6rh6oUvRTcEhI6tyRftBCdn4sukmq7KpXhAybw46w47lJBpIyCaWzEYggo6hCisYEWbvoC9FRZBslnY6CZdTxrbrbgtMlGxApOzxIeBk6vi8mmrV+zLvfymlt23lgsILV1PziVIutdwJNPWOihrE+56vx6yeDcE9aVSiH52aCxAl8n2tflvEZKvOGoa7R6WwQCnts0slp9yPbyt0mbG1JXiofegXeEQRgG4WYDNxvP5drjpvfDIsq5GJ+KFp5ihH6KTOmIdfYtGdTtmAHPtuAXyxGwuBTKOmQHL2th1ToDDWR2zaPtKjxXiHjyioGqbv68B0n4lBic55D150MOXPipgtVr1/FhGBjQa3Nm0s3jubj+FMiuBQlcjV9PO6taWKUyqsv1rIBTLl0TrrKq7RhkhOANqHZVVz2VGItMI5/mKrPai3W4lWMjs9yggdR2HuqWVpDaZESWZz7b7WN5SB4X/34KOp5KfkiOs0TT6chpPlAtkaJ5LhIXBXd7fo49DXNhqcoYMOvGG2ni9DpLaDeFgYCnetS3+UhKXZWIUP3fnlFGepEKcE4ooOp9p0Z2YU3wKwXuYcmeRtfT4T0hAMGrDGBbdBSyAo5pJPm+5hjPDlfWhtOXvyFHVTLXcp6az9f8fVUeplwvLh/x3uKdE5C6fKw+P5H8kKigtXUGSYdzqRRNik61G/EulPtB8xZZkNFkMQ/ZYzHnN4QmON9xcXKgzha9MiodsctxBopxbCz39vM651G5D5+1+/m0cGrrSiqdTqHb4lzPPk/cpbFuYxI1bNyYv9QpYat51P0XtOOl5BIue7JTaRgzPs+SCO01VuRWkEh3nNgf1jwehIcj3O4zl+tM8EZ20A4ek5kyqamsCeTyUNo5K8C4yQWdmiTae/Wnr5Pfc7J/1r1PyVmCwLrEICT1UzgWyVnQzquJVGOXVGZP51VH3fsV9Jd0G+Fy5eg7xxg1lvYeQleq9t+P7zjcN8oEfT/+/MevBUBtwZ6BjxuneqSDEzUi7BSgUU3KIq/RnwGoG0bTNjoup8iLsWM8rvnMdWwLO6LD8TaNHNBq1n2O/Hzc8ZPVxBB7wqEneEEh2ky/ejphea+6yLkkqM9JfdRWfZl1UmEGqlXTzPScBNOhhtNAvO4pIho24jxybiKVDG5uMFo6IfcNOL3ClyoywBQfyHmkQ4PT5GA1XC3YLSlPtYXPFuC2yurr1hagq0oFdHVbvO/AaQCW8khMB0aZeMwTQ47s3MR96njrj2xDz67bcO37ohPo9ToRq+gug/kKXlUAcwavRlQjd3ntFUDa+xpkVhAUeQJKm4SBfUqP46N+w8tuxQu/4rUfeOUCN85xHTLXXWJTGLDDqm1Zh3x0lZE3HT2HfWB/DNwdev7D1PFZnvg8KSj9RdxzW4Dp7AK+29KHDaHbaAAgWSU84iMp7RGZWJXFs/dNqzMzG9zapntfGNQoezc4VzXg3yEq861H11/i0MAypgM+DLNeqWSSU1CzlVewbbQjvdCWbNq72/Ou59OuAb02xuzxUfDHjv1txPcHfH+rgNaw0mp7qbL/KiD1qQGjatlq0SFG1VW363Fmf8+FEpzpOofaSXLpYNulOu/pvhcZG+x6zouWd4GmZb4cuWa+OLvtxlyxh21VCayVYaT3dF8A2Zuw4sZ1bMrx3lNMfk6AXgMCjOmt91BUgNoZuyPUopJJO833dcMWbR5tR4Td23vR1u3HwlaYCnPaWNNRctWunbXglsDzOfZYC0IoiDazphWoVyPE3w5rfhgyH1/submeuHyRWL9wdJc9vlCQZL8n7fb84t/BT39xyb8ZA/8mPvAfpwfexiP7HAv7r7ARyYjvWa9fcbX9MdvLv45fFXD6eEua3hLHW0J3qeC068hxR5zeFkmPxxKkd5W1ZsE6gHPviYJVRvAQvOMwmQ61Y+iE4MF50XbFthVXZnBrcJ4N6Hp/sr4DVd4DzBzRFzPSci8XWZ1T1nS6vWP6es+0ywWY9hVs1kKhLLpZwqDa8X4IEHw9dzYk5apRnceEJCGNmfE+kSaNB9LkqpSHGfi2WureiYLNTnXXvRdyduWemGU+wAputsZKAaybY17eavMedu84LYyZRMDgPBM6108FuNbCoK4fFXs2sMqdgtRFfMzJjEOUeUHLrEIn8/1xymCOZd+s8FPPq8zJvf3NUBjQ1TiWGZy2TiUDp7XrpNO1zhmAOMde7Ujl3noiJ25hS5mTTIaMEh+kwm6emjnUI0SyAhmy7PgAqo7taVG4ZU8v3m/rAHPR2PZtkswDmQ+2v0F/8Snjao0EX+4ncL3QD8J6reD0zYVnu/LE/H4A6iSzQWLKkKJjFSdSPjZrxnKcS/ErYx2VK1ImmcYx5oEgSQsd+iEZM6RuDeyk+Tm/NsfNp2PxmsxrpDBLK6jRelaD6Ox59FE7/JLKuE2SWRdZq00p4C+0pd0M7ug+Pj0Cp8WRKs1xAlaf7sUs+wE4xyCl8FTmg1D+yoorzwHVUXKVrLGYIZKfBapTA1KfHMK6lXMxy+Q+pEwkZRWVrIxlKHrGARFt8TdmrEicJT9OWLBm9gtPAWuX00Li47lhQPVsBl3A6RLbSNnvFnw7lQua85t5tLrrp9fCygfW0tEVE3KfB3wYqsRiFGW6rpq5wDmH90Mxsw+zTEXO9UFOiPc4z3vToPZh0O91Hcm5yoi3rrqcB1qd6Crron/dlDG+xTgLSM/M6XZkSZUmkfMRka4WNVoA2XsFqZ3v8KwrSA0d5LjskKwSMeAyiOtUyjzOuuf2HQpyPd9lZrGLmfm2rPtWqvC76FK3ha62w+dRpsrAuakgtZ9B6lJUecgTB4CctFuldghKzdd7HKmcP+8Hkiixo3Men1x9/+TyIg87HdUzwa4IaXxvqtRHJHgQ8aU4dOaijUfCFJEjPD46Hi6FTS/c7hNDMPNt0Q6ewp4ek7KnYwSXqN0F0hZxviVIuZAq+xYpr7GpB+YuJ+uG2ufIpnSJWudXaxrs7D/n8T4g/QX9IGwGBaiVPT0TO85qOn4/vh9/CcavCUDdGodRwel1yKwKQDMMuQB8Qtcp0yn0DRhSJlVr2U0TrGNmc0z8lsDNpGw/A+y68ZE36cheMtHBXZ7499M9w3DDEDv6gxTWoibKAVeS45ldlYPDBzVMzPKMYSK+tN+ajEFJeN6xmLc2DG1l0sLAd05XZ5IFa1/R9poO7wdtuQsXWlUkkvKRKe613QZtK/duKPIMS4NEkaTnyZLB0vrTbq+2CKca6ep2B5z4ClL7oAGbdBdIjqQ8ckwH9jJxl46qjRU9uzQVlmLPhe8L0y4URrWv1007ZpB6fhiodXr8q8SCm/8mi3CXRm2HyoljrX5SGX9b3/GiW/FXh2te+4GbAkzfeFGTr255/YJVfB1yVGPH8egZJ8/j2HE/dnydPG9E+FfxXtnS8ViAaXX19n5NF9aEbl2ND6eiLX0KTK9CqACBJfvtczt/fWGF1XP5HkDpdgR/gfdCSnqWurCqjF0niVxY1LGAEBYMDa5oL2aqZISe2zloU0f189urIISD8r37B0/oE2F4xIU3C51oFzokdLj19jvvnxx2CogVcDof9uRxIo1ZAavJMRaAeqSw0E7ufwty1kUD89I5tj6zGSLDkCuAlXLzWSIcizlspOUB1b365m2v7DTTjyvzjnOc6toLwsp3bHzHy6DXewD2wN40nqscxnJ7dHsVoH5MkZ4S0KH301iBadN6s8R9/vuELH5WPesCfptZrsmMtAB1C0zP7czLtkoDpYGzch6mjWsyLFdh4FW34nW34VO/4q8PEy8vRi6vIhfXmX6rMhQAeYpwGIkPE49vhH/32Q3/Jgr/IT7wZ9OOt/HIoSRnHep2r27fgdXwkqvtb3J1/Tt0m4812ZoeKjgNPAGnx/Fr7aDIpbUyDHi/ousuWJrI7L7xGvllRh9c1aUeOqk61MfACaAgzVykBeouZLouV+byqfSFAtUOgscNgwLeBbSwAlHe3RK/fkO6e+D49ci0g+Pekwpo7L2w2mjBsFur/n/YBNzQEdarYrioRrWuH1DzU9O0LglQikhK1WBxuLuvngHxkEmT1K4Y+944uSrVYx1fvjwPoYDVdZ9nGatwkjWl5ve56G1gddttMJs26zo9z/2xsJktac21WFCIaAuQek6tsHm1glJzQalDuwpMMsGMg6NkkFNm7TxD2b21Kjqbputoa3W7Lpi2tLGmL4qxr3X9tMB0ZYQ1a3dCaiHAfgdmFnmJA+z3vlyII3lmUZbE07Zx1lyeR8uga0Hnlt3dssnbc9F7X0H34BwHifiw5erqryEXr0l9h3iHBJAAoVMZnYsCUG9XgfXgeTzyXsbCnEp0WfDTVOLBbwdMSfNIjgIEratfRsoTqQDSkmeWq0PUtJvl+nb6rQZWv2tr7HqrustuLqSCXvfW7RNSqjGStdu3jOqt72rXxyIOtXikFo7aYpPjFKS2n7r2lTXRzWvf6bUMUtZON8e4ToCAaSRnJ88C1QbAqoyNvuc5RrUdHzte54CqWTe5nN1S7DI2ay4H1kP1sLGhjFjtwWp1qaUQahbntwDVIhHXaAq3rGJEZdvIUcGq+ijeORWYNnETwVZ7Zb+aJM8sHdSSOVqphlOZxlZKwXKEC98x4HgULebMZvUdzvWMMmknKE5nOpGSq3X4VuokJ3yccI10nCsg1vsYIWzpwhrvuzrHOyC7VAxvI+KXVM6zOtQti/odYKyy1+1tMziYJS/69nIekSINYSOlmSHrJBHCqoDJqaxdhwpSkw647rJ8aeTUOBFQhnqKKieT9bgnnoKbNh/ZdeOlZU5rzGbXjeVZJgsJM/v4G0d5i80Ndp1NOXP0kV1WEPMS7ZBS345Qccz70ADqORHd0zmxc45epOhEB5wbOHLgIU2YtnQWYSpdSQa+tsagCk7rYbbjUGeJIvflskecJ4s/I+pix1XvVR8n/FE4HODhETY9PBzUx8TWnjEJY1L29BQpGtRO55dnXAWXhIzurAb1c8PuaWM+w9y5nQzjcSqN2UXP2EgK9k6lFE2icu7C1NzKrmF8YBiEIfgCThuxQ9d0v/qWhZ/vRx2Ob1+c+H78+Y1fC4B6GcBRmdN9YU2v14nVhUoj9CvBD47QG4PKIYUOI0mKyZGU5FDoj9qOuz5k1seeTVozlATNj46v4oG9aLvcz8YdF75n020Zpo7+kGvrL5yC1BpIGYDtbZtPWNThhEX9LsXPdgJvdahtzOD0N7MibbSuyOYkre1cyp62iTvGPSnulUWMq/Iefbet79FKuhogWbC2dCd3dbs1UBVwuq1I0ufOq66lZLzkojHn8Z2q7opcKlidRo75yD6P7KZdbfu9KADZxneVXTQDrf4sY8pAM5iZnNZ2Y0zLFtAyUHpXgFOhAaecGgm2ch6qw+u5cbD2mW1IC9a/ycPMLeCOmBSUfpwCu+R5I443kniTj3yZjvzR8Zb7NLKTxOjA+Z7OrwhhXVqD1CF5mh6q6eEgatS2CqGyyexasip/DZyKZp6B0wv2j5vP57fRWfym0XUbvJsXjBB2ymTJEckTTgKJIg3BHJD1Lmh3k4/FNCLXbZyLD0/HglHfgNSP+67I8iRceIBQMvsyJEV8it+NSZ0j+bBDyiMfdmq8dhjJhU05jl5N/BpWv+0DUGVW1kVf7hLPTdGe3qwSXSnE5QzHGDhkz16UzX9otJWTzKDwN7ZVno6GPe2cKy2NZV5toIW1C9x0A698Twn72YvKe2TkSdKmR9+TnLK9H7Nq3fXeE7Ij2TVBU6h8hm1iWtupgPwjxfSqyHnYsdjn+K2AadvSXPdz+bDhy8NY01de7//X3YaPw4pPfM8nXvjg8sjFNhXgU3Be16a0j6QxMz0Ku68DX71Z8z9MmT+KO9WbTmPV1bX2UNPa7YeXXFz8gMvL36Jfq+Z0C06LREJ3Ca5D8oE4vS1yTYpMGTAdgs75oZnPRWKjvfyrDdOcNgZ1DbQ7il9EkTTqXGF/2V1aQFHnVHe9SHmdymqcDpP3IATcsKoMKTnsSA93pLtb4td3HL+OHO9hOmonQ07QFW+J4UIIa0e3CfhNr8D0ZqOM7PUFvnyu32wXIHg7JMUq7dPtbsn7R/Jhrx0U+wP5MD4BrMfHeVti9LVo2cqBPJUBsTlAX+vrejaD162M0IhjEEilk2tsEubBeSaXG/YTFbQSxyLuMBNba+M/ZckFmddG05peu8BQgB0DyJ50edh5ZC7+mPmwgdNAlfYwuQHvHCunjNZtKVbPrGt3Bsyj/v5d1rIWrEaa1mZjUsvMLLOiN8xzSQtMnxaG29cDnolci+TejoHr2JRjmER4TJGLzUesL35EWq2X8h6doxsy6zVcb+By7dkMmuy+r1E15WdiMy7n75Tsz/Ot3vXBqyZv313UeCYZgFhmemPlV9Dk5Po5navb6+q5YXdTxVSbN8/XunaNt6xqM/ge0myOvfbhWa3qtgDbFtfba/MUrK7/XgpMugaeGiyeB6pN9iN8A1BNkbOLBk6X68/a0FugmrKG2r8/lR5sWdSWo7ga+ytSrRZqxqY8P1aqb0/FtRsfjAJKExRkNFasi9r91ko3ZJOGKMB01Zk2RudS3qNlTztmA2grkq3K/GLxst2zQNX7Pift4gt5Zipx3ZQjMR3Jri9rcofPHdGp14SBfcXlUfe7XEeSDvg44roeH+cMMnTC8J7YlaHbEsIFvhir63Evc75EUmEnm0yJyjW+l69GJM/XT4nTTrPalMeiB51rPpXzWK8Z74LKkGdK8QKcaLwvEoucR7cEqV23YFGbZ9JssPfsBmNxi6Mtavi6jhrhpJ3rYY5pT9enU43qNo5urzGT9TtIqrGyzjll7fNwF040IXKq3YKthGKHY8qj4gA+4HLPQSZCjovicPLCmo5EPruGurK+Wd5vHRQti5pybue/MVmN2bjSTxPdMRPHwP4g3A1wuRLCpB14Y6SC06Y9HY1BnaV2F8zfsYzXtNPp+fVKOwNcXVNOO13bvwyFDDA4xXlMGvMRlfmIPleTZYt75h4DNQS2znbx2gFg67X3KpG36ZXU0Q3fA9TffXwv8fGfw/g1AaiXgVtwarTUgtPry0x/4eg2HX4IuL7DD/NELKb5mjMyRm2vHzPDJEBkeMys9olht2KIK4bO10Djq3jgIJmv05GfjPeFFXFBf+wbNldW5vTpwlLkRnIR8e+DLFnUhb2UQNtl8CRyYSy5U4tFTRIL8GaLxBwA6sQvromp23apZ1otbSL0fqVtXEGBCu91YdIA5LHqTwtUeY++v6qV/IS26EnDvFLGTwNO08b7ltBaVuNASujsNK1zOWrVvgl8fFjhwwqRC0QyMT7ymEZ2EnmTDoTYaFw6vwgoWyD2dBgLV5OOJUA9G0WVBKoc4wCsS9J9WYDpF2HFizBw4zpuXOC182ycsPbCOiT6UIw8C+sVhMMhMCXPMQaO0bNLgdvsuBXhjUTe5Im3+chtHHmbjnwRD4wOKOwBa8+3c53iXuVR4h29wNZ5NmFuc/Ynx8ACKGNnnbJBZvZHARmdgqpPWqF/iaHXXbkEgpq0BT+RfIfzPUgkk4iyNPOZgfOuMISW8iunha32ZzsMpH449GV7BBciLtwtWNSSVUeaHPFXH3yrfVON21tS+Zl39+S9mrCNjzAdPccpVOOysQCPk7XXlfNkTMBLk4fpIpcr1Sw39nSMjmP07IWqtXyUxJgTM3P5uw9jE8EMTit7umXHKVBwGXpe+BWvXGDjhL049kVqxBK2p0MDsljet0uq7RnQtuPsBW+SPe01u2CJSg3U2/t1Kszt1gRxn+MTYLplo7TA9Dmw4xQ8W5U55rIA06+6NR+FNa99z2vn+TBkXqwmhqEA0yVR4iCkQyJNjuPesbvr+eJuxZ+OPf9z/JovpwP3aawAQFfLjwrGH5xwvfmQq+2PWW1+iAtrSIcFOO2DmiJKPhDHW+J0R0zFtNUPdDXxXC80qlWLb/XeAOopZlKWGmQrOK3ndOig7wpAHUBCC7EIHl8Z1L2Tqj9tw/QLbbiqDV3kPRpmcwtOH76cODx4jntfpb9MOqTrFJzuLzv8epiNFtcb3LDCr7eqUd/rc2VQd1UOaDFMe/7qlcqLHHalk2KHHB61YLXfk6dI3k+Md4k0RdLkSFNujBpnWRDQ4hawMFXU4zG/3kM1WPRSJAOKrENquhGsy2kGWRqdf3HKvq7AWI02MM1fkSUQaPeGmeP1OPrSWbBqwGmYjW5rcaj5pPo55R4zQMj+rgV/f1lw+jTR1GPDk9feNUwKzDSje2Zw2vOUPW3b28YjbddSC3TZZ9r8Z+D01nUEB3ei3hxXL/8KfvMJ01B0V4u8h++FYaCwp2G78vRduUbe0/2ds1SZj5wNoE7kBhCwY3COJSiOKhOanYIHKu9Riu4ukNKhgohmjhiE0jqvn9kyee36bOdvzjyH5wHrClI3v1f5DwOqMYmTWHxXEn327NxEV4qWK6/SHxe+58MwsME6/MqHOSuQuNrd965Rr0uhMFGfHtu2yyi5AkyLMD4DVJtcB56F7IfpUxtQXX0aClDdSaEGOM6C1Msxr6BV6qPEOuqfOGk+IsayTLjS+p/SqDEuDTjtgkoQepCsc3CV+ZAIuXuKZhaAUln4UT1ZqvlzJudIlfeo5ZJZP/jUdHXtQzUOb4vmo2jxaHKpyhCdXvtWsBtdZiIWpm8Bp3yPyxMTsbCoIYoylvUYFBKHREhHfBxqfGqglt3nv+oI/TVdt6ELK8YinRHQ05cKizqnER+GZz/Dldz1OS3qc2MBWjKf93Mgtb1OpgLTJsUhBnh61ZI2TeqcClAZ1udBavvuMybpBljTbJfNS7a975KEsTysjWtnPepWKuoMIaN5atrxU9mGRGafE97P5LdNeeA6Xpgud3sOcqoEDRv6fdpZYPIu2WX2kvDlGqzayV4qi7oFzNsc06IG15Cc2o6F+bgacarJvSTi4kiYEuM+cDg4Hgfhdq8667MO9SztYQB1zhSJj3JvnOhM61rzPFj5TUVWkxI0eUEbg5u7XtYlLrkt8fy+yKX0zs8SH5Qrx7lF1wAUvenyksXOQweroch8fD++H38Jx6/FpTuDTlSJj95nhl5lPdaXmdWVp7vsCdsNbhjwm01tvbVWW3Iij9puK+OomkZjRNJEvyq61U7oHwfC2EOjrfxlPDBK5ut45Kf+gRvfccnA+tipKWOIeJ+hn5Nn70VlPrImvX3IxOSVSW0sapS9FEpSk0RqspMqg2l+tIuf/XRw0kbnqCxq584C0wvzmKadxNjTznXVvTjnI1PckdNR9acRnOuLvMesUapO2KrLXZPeBYPa05omgCy2bd4ihd1dEgXIU8ScnU/Bauc8w3BTg0tKgJkk8phLi2lOCBMhPjWuqEwsZmBK9Q/bvKS0LjtNNR1aHb1ygW3o2fqem25Q08YCIl66oEGBc1z62cwzOKph5BS9ggsFQHg7dTwUUPqBzJscuWuA6fs0qgSCJEbnca4wLbz+FMnkNBbm40iWiQtxXBQtXAMGYJkAnYLT7dCqeEnAC6vXApHeaTHlVx0+rKpmqpdEF9bkPGprXhoR15EkLgoIGZkDu8JCyUlqkqRMeGttXQbppwaaqQDtuxjg0Oq7TmzSG/qUIMX6kPHQMCefn2LlsCPdvSnA9B3p4Y788EDaHYvereew9zxOQVnGSGX9GivQzsmF67n2Pa+c52XIXK8n1utE1+nxj5Njf+zYJQW7H7LKWSjj34Cc7z4WbKLCIFgWvIxllBlw3IRB5WzK3+9Rk6nDO4M8/cyMcJBMyJEuaZtvCpb9Ps8usWRdAat8tvOhNUA8FGDdgOlvw5Y+TaeMNd3huPY9L7oVN2HgVVjz2g+89h03wHXIbLtEFwq7f3InP+GwD9zver44DPw0On6Sj3w5HdjlqTBaZsZlFuGYI3vJ+LDhcvsj1hc/wneXSDqQ48MTcBrXkaZbYrwrbcTa0th1F3T9jbKm/bowg4pRTGmBducA119iTMkkAFxhUavkxGCaegV4xnvEe7zrFg7roYA5oZgfm/70qbyHDRe8dkDYZ5SE6hw4PR5LQmRyXT10a6HbdLihq+C06dK34LTrV/V5K/Nxbl6Q6ajzx3RExoNK/hx2+vywq+xqv3lbi+jxkMmjFAkQ6k8xdnWawWs9HtTjYgzrKXrV8xVX/j2Tskl6WHfCDFQjzImzGEgttThu66Zdm3AenPZoR5HJeRigY2sNzMSDjMoHtfeifU6HAtxrt5T2sDkSluD0RXiqN92OJ6Z0BlA/A0q3klH1tWdYka0cmB3H5yTbbD5rwWlrjbZYqQV1lZ0dKjhtBpe7HPk6HXm5+RRZXZGDR4LXYk+v7OlhELarIu+xDgTvGGNmfKbt+buOlNWYSp+jknqtGd07/9qAKzt0ev8be7oLa1JWZmhluZKLJnAxxCzn2NrVnVDA1xlErtti4AhzZPAEsD55oX3fc77QEWMwJnxhMPbO85hVq/qugJqP3YoLr+u5shtDkftrCq4FsE52n5zKRXByLbpihNqAoMuZWy9IjZlCkYfSeMOA6pGs12SRTDtnpDiJxvYTGV+2wZjUykrjrC61hWG6lpZIX6QYqwZMj1rj9/N9pN6vKlikIHR4wqIWKWrcxooNLK5Dk/eQdKjSHvYzmVQFdo212tNzkazt0Lxw/YII0841vculYO41rjvp5zMW9cZ3HCTR50zME873eLNNdR2RSBQ1oJ4ooHqOZEmkfCSnIyEdcHHpF9F1788kkW5L318Twlo1iZ2eMrvmLOdQ/yBfc7Ry0J9+XpMXnspSVo1ip3NBO1ogswWpRTLOqVyZyb9oUYtCvioAdVPYANRjSSKkw1OQ+h3DLcBTY+XPlAYraNg6atIeLTh9SgSyOR+WsW6bQ58Dq21uOJSCiN132j2o195Q5pgNcGOxSQctA26UWVal9FXTCUxEJAdlUbueiILUNk/YXNTm0nV9fjKzWjSdn5z354+v3pc+J7rjiD/2jAfHYwe7tUp6mCRXzgpMH0YYx+L3ER0hJvw0PTmvpyxq++53gdLtHs29PKUD1tb0MuENAkMhWJi/2VFmb6DgnsYyi+86sx1951QiLzjWgzD0zyxI34/nh3PvLbd5x5f8OX/+X/7xawFQn7bqey/0nTKXhwtR5vTNirC9IFxe4rdXuH5dW29rW1cxKcvjUZlL44js96zSA36X8D4T+kkT5TuggNQJnUx+EQ8cJPEmHvjTsOOyD2ymjj4I3X7Wo86LbQXxc1LdhQJOn2FRjyWA9DInOjXhsc9zapqILMHWeQgti1o1y5pgoEyC9aWmWunNOTasq2YpaAA0Tg8I2tozIYSwYehvauXR+a7ouE2aPFDYys3Dl3DDAPXs5gXKWv/mFkB9TXIqkLaC7VmmCpJZG4y3BbcERT4MeEolv2kjytK2882Q1PLotUG1LaRaFVfDXNXQ3ISOD/sNV6FnW1o4zaRxgy9GdmqU4J1UUDoJpAaYHsUxZceDOD6TxIMkbnPkPk+8TUd2aWKXJ/ZZQb6IJi8hbPCuL610mZgOBYyfyDIRRNjgeNWtlMHTLPjn2C1PGNMsWxOncpzsPPYlqXmOlf9dhjIRlPUQwmrWQS8s6pz1CsrEhVwFUGRbhCSB3ueK0FjgMD6TGgfXAtGqyXrIDmKA/VDBHY3gbqFoyYbpiGxvIHTIYavma/1awbAyZDxWECrdfaXg9N0bBcfudky7xPjo2D+ECirvMfZ0E/CV4PbC9VyHnhvX8coLL1YT201kWKnUgYFVj1PgITseJLMrWs7H0hZd5T2c7u/zJ8Pu0iYZaMDpVv5BxDoglMm29qEAtB0bL4ziqrxHavbLArF2K/Se7ohMPErCF4A6o1mQsTfPjQpQZwXi7fowcLpKCEB9TZjZ0qegtD23K9suhdaszVp9Nz7wg2HLi7DiwzDwyvXcOK/6f36+72PyHA6BLgr+WF6LWlR4GDu+nDp+Jpmf5QNfxL2aITayBRb8j2QeJZF9z3r1ks3mN/DdVhPEAk7n4l5vwDNAnG5Jqch6lH/r+htCf6Pu9r7T+b62u5bTfiaA/2XGGLWDKHgpUh9Ls5ehMKjxqAZ1/d6i/Ylp76Yn5ojt8B686U+392SKyHgsmtORw4Nn/+AZRz//XQWoiyHiEPC9gs7zo9Oitw9L1rSB0768Vr67lf2QYaXzSFKQxDfzRC7yPzIe8cNQY5NunFQOqHR85UlUFmZypClVPw2YgeoWtDbA2rSsJ3wFXEID0S2Zlx5ICwa1DVeKggbUPQH2oHZKdTg2vmNo2IatvnJCM8qjiHbHsASnbbv6wljc+G7BurZ7GzgBp7uzgNE5kPgUlD7/ngaIa19/B+iMmISDtUw//YxTmQ87Li1QYe8BFuD0ZdGefpDIfRq5y5GPN5+SVmvEe9Wf9g7XC10HmzVcruFypUZLmsgLh/H9ANRZZh3QXOqWp2Oppf10LI6MV/Z0FzYFmJzbwOuaA1WWxrTMXZn7jVQszED1OTb1czNJK+nuTt74TWmnfY+uO6l0uzj6HAnOz1rV5Xq99kM9p9Xku3xTlfxyrrlGz7PQjcBjILX9DnMBqr7HaSdEEPcEqMZTZT8mkhYzCjDtDZx2rhbStZFDy1c2pZyC1C13Zlast/c3Uh8No1Jj9dk4TUHQYngnaQE2GmtaclqyqE8lQxa608pYVmnCiZbkogbueiZt/enLfFa17V3PpnSFVL+b5ryMOEbUULWXrEB1M2fpxmdlYeeZRS15QgpRRAk62l22cp5ORLc32XaP5HRA0gGX1vNuek//HiU+WF0T9kWHOgxIWXM6ivRLYVG3LHc9N+5bS32ICKeylK0WNdS6Xx0ZQDLePZ1R1HAzFbBzBcySH6ZLrduoUh9PQOoz4zQeWoDTdu0wS8LYPdMVtvTCZ4ClhGIrXdfKKg7NbHn2dJbXhnJ9mXQEFF8Xy8HL3HLpAviS2YY5Jq+ZU2U/a76r/zbhxBWpj46RSROPZp5vc0hbmzPwbT0I9Pg+1ZavIx3xUWU+xn3HOAiPB+2+M3Zxyq20h1MGdYR+SkXiY2ZQm6SHL7It+gHvINKcXGNVSlJsjhZGVFKpR8mOQ1nXTYe694FDmkkzFlvVVe3k/IokXBwXnU7KoPZsBse6V+Pj78f34y/j+LUAqEdyMQ9bVqi6XjWn+8tewenrG8LlNX57g1tvCdubhkGVKmvJF9MyPx3I69LuPOwJ/UToM96XoKaA1KnbMknmTTySRNiliV9Me679wI3bsh47ep9L67Fukxo1oe2dwVWZj5xPWNTiqwbk4BwJNX7LokaQ5v5cQYqmdUbcHPQvgWpLPBVp+KYFwvSnfZGKcKa35TtyPjDFe+K0KwZLylK5GG7o+8vF51il06GBSQt4GpvaOde4rc8qtsvf5vTBiSt11sKqFjPeKOxw59VUxRKUs6kP9d+c84jLOEt4CsiqYJs5dus+GLvMGBLrkiRbIvxBWFcTnJYFY2ZegTmgGMWBFOMr0d/VPE7Z0g+S+Hk8cJ9HHgoofchJJRokF2BamSK+tJYJyjZRhrgyK7wIKygtRYEXYbVoiTYWcntevIEFsmz7OpuAlyBkcpk1HfE99Qg73+EkYoZtOfck5yur0zlfW2lN6sO237TVchaSm0o7ZS7M4dPtV2DGO5kZRqXaPYrjkCHFQNrrPykAlLgY7+jHiTyOhL0ax+WWQXmiVW3FsPT2F+TdPenhgXT3wHinmrf7XeBwDDyMHbukmtF7Ue04CzBNa/Q69LxyPa9c4NVq4upiYr1JhF7BgBg9+2PgPnY8AA+SeZSpXjtTAetbAPZJmm3s6JNhYauB01YQmRuo9T0DytQ39rR3wj47Hsp5qBqsJ3ORzQP6PICDiYkHSeQ01vPcPQM2tQ7kljDX4LiAXlU+oPxuYH3bNSEnD1gGi2b2Ylq6rdb0p/2WGwMYMCZbueezV7OUrAWpMFqhSuVY7mLgjTg+y5HP85Gv0oHbOJKRmtQYmDfmxGOOHJ1j1d+wWb+mG250/xtw2rlA6C4rOK3saV3nTNKjX32A7y7VIMg30hQR3dH0bgbRdx1TEsaoALUB060WdfAKpPleigb1qT5g8WxwqhHd5jCWJ9lLLjicVwa1C0G7p1IkH/aMtyPHezVEHEdPTB5vrGxbs59bQuweTxH61TNvmkedE8q+ON9BDy5HNV3q18h0QMoc4tdb8kHnFotN/DSS9/tFx5eB1emgMYUkY1dTfl+C1Yx6/CY8QYTpGyG2p0OBUrRoXoCn4GYTLPtEM/DsnHIAt6Gv4LQZ7kLpzJHZ4DBZ0agBtHy517SNXjuAvHNVruc5cNqMA/V7Clh3spQ90Y88EyM9AaTPrI0tYw1mOQ6gdsC0B2ghq2UgdANOG2DRDgOsW3DadIz3otJzyff4i4+JXU/2bpb36GC9LuaIa8fNRTn+We/Hw/TtwYN3jWqQWB5kqeZ0zlhizB1Y7WrTmqnpOlMY1L7He9XkTWmvvhSFZWvzcV8KhQZQeyhzfK5Aqc2fBlLPQOl8Yp7zZDAWrTSn0Yoz8/Yvfy7/nrrmTEAo123n1FhxlQJf+2NZTwauw9yBd+PCEqiWpQlwPfbPwuzzWMh9NAD2OaCaQi7JJu+B4F2qgIqXWZ86O42fs4NoaccZkLoeG6Hp9GzifRFwokzYKu9xXupDJZ2U1YlvQUKTvmhY1MaYdCb5UVjSOSmwmyM5p0LuiLOETCkztCz93hfd6eJtcwpODwUAtONsAPXYdpSKW5hFB3yVgVmwqEuXk/2MjKzt/BW5kyk+EuMjKe3I8YHgulpozsHTdWpG/D5GWl/QDzf0/RUhrKCc1945QpnHRaISiHLpbq1luWdGYf7rWIp2GIva8jorUDnnCwi8HOckP7Kk+lrOR0S6KvkBM0jtZY2YFEyRi3HfkNYY835+oRXQm4saHr12qrdPw57uS5ePXRstUK2v6WeYwSo8lShs54GRTHJeTcGZSTzWHTGWz93g9f5sCv0ZgQQHIDYgdXCOToQRJZ9536vUhwiTUxN72+2WTFFJITL7Br3rWrBu6Pn3bhkDlnvXTxNhSrhjYDo4DgchdsuYrQWnU3TkyeFyxsXxibzHApz+VkO/6DRPtuOr8zQqr+YUwzFMwGKTB+2DYJREL+eDTSt4pDTi0pEpOsY4f6dqUDs2A6z6sx/x/fiG8S5Zl+/Hf5rx6wFQl5bt5PwTJrUfXNGI3OA3F/irV4TtDb48KrOxMJf8Yacs6v0D+fFO2Y854YYB1+9w4YALGet9ybeOcRoYu0v+yN/xmCMTwn0a+Wx65KXvVepjCvTHXJLnTB+k2c6nLOqQfJm8qBPYORa1MZgCrmIHpzrU1iqzYCVXFvVzal3zMA1qZa6uGvY0SI5M0z0p7UuALzg6VsMNwS+T9Jwnco44oQIroQA2sNTjmlOSp5CZyZUsTZdcA1bPgDXyfHJho36GnH6n1KDCAlGPasr2zjP4pRmK6c2Z4cG17xaB6Sk4DUU6Iul1O5bHXjJ7Mg8SeciqFXyfR76Y9hyKAeMkaj4TUbkRRyiLqa5GORXVK1GusBfoy7ZviqSHyXrA8+B0PXcniba99zQUtCCqc1pIcd+hOv5dhlXSve9L4KLc+1ySz6lhUQ8l4DLW3MisaapFrbmNXfe7FB58kV0Qx4iyDBOq55rFwV5fi4WteDE9MhxG5FrRa2NPu2H1BKBWQGxH/PqrIutxqOD0413g4aHjdt9zFwMPWBGuZYZr8Lr1XQWnX3vHi+3IxTbSF+fmNDkOe8/doee2sKcfJPGYIvscmXJjLlmT7OX9UjssGvb0vDOWGHS1UyFLnJnzInhRc8TroNIW25DJtQCTqvTGk3OM3nepUHaVeTkHv4+S1PwystDsawEcA6IN6LLzHhtQ2rT1BOp7TwHplr3Qgm6uACFWqLJ767LI+mydAgoGguzR9arOB+bknR1r0/4FDtnzIHArmS9k5Os08VVSl/SjpArId0X6ZMpavHiUTNddsl6/4mLzCc6vq760JV61AwbIcUeKD3rdhxVdd63g9PACepX/EB8UTCpu6ZV19g1trt9ljAWgHjophqYl4fLLh/OQ+tmQqB0B6EMjCZXgtD6m2tNmkKzgtANkGskPD4wFnD7sVftdDxic41JKyuWRFOQej4ixpLOC3vXYpWi4zPKnsfhOkiAXuvK+Qn8pTGwfOi1wTTq35MMO1w/INOKLNFkeJ8IUiWEqps8gSZnfaXL1uKRJFKzMQowQRIhNAJWYTRNbDffTe7X6SVQpgWLY1e6PM6bYbAa18jonWKFtoaEpaEeQye8wt7guwGmnINCF7/RekLl9GJj1YAs72xjatk/tz7rfslznTl87N55IKrR/e44uXI5bu7/n/r1t5T4t6Nt3+QLCWjH8ssQbD2Tu0sTX8chq9QHSXyh7utDJpHf4LjMMcFnkPa43JR6IwmHKi6T3fYxWMUR1cNWvQKAWXm1ea8e8Jil72oehrP0G0s2yUkKujGCVj2nMxnB4MtE5nKgMhRXfT0HqpSQeZ362BdQGTGXuUGzlPr4tYH3IieAyE46DS3TZMbjAnR95kzq2Baz+zW7DJWpwtoEK5iVKvFIB6+b4n/nO07EEq3kCVOMSgcCIsagLwIrKVASnXX8TmVjOi5WX3gVSt8epHMWaqxiLOkuEzHyezgxfNXQTwQwSn2NRuzhLNmQzRjyQ86HIeqiEYargdOkMK9dZx9zFYTJFax8aCaElOD2bORdwsbAq9801a8fU5tu1D0TJrHPgQCpa1BFf7mPnQu3o653nSNJtTkdiOhDjI13c4fwaz1q7+7yn7xTIeh9j2mxY9y/ouyv67qLcZbq2Ds6TJTO50sHpAv4EengWnlyA1GdY1I3Uh4F2pyC1SjI8NU+UYmLfvpYST0HqdADAs8a5qKGtn9nSRryy56cjN52GIq1euaua5U/B6VkW5hwwbWz8Km1Gc125k/u3rEej04JIchp3jzb3UUBU0Y6+S+dBPGYCudCNzkuQ2oB1Pb+xyIaGIgUnKlsjSaXAOInNxTxezpNjrBhZyWWu5LjPde1JxBWZj+7YMe09h7VTo8Bu/vQYXSHulFA2CmGKxRNhPpctMP3LGOZZLmHHVotRwmjzNUrUGUqRwXSog3PEgmkNkiuBDAr2UXAJLcYdYdop2N5MiH3nqlHi9wD19+Mv6/i1AKjfpokuhDJBB6akAJILaCvuZo1fbwjXH+jjxUcKTrejL9OivZ4jeb8j726Jmy15vyPsbule7elvbxmu92xuJrZfR15+NfD6fsPP1jf8bNxxn0Z2OfJn004np+GGcVzxw+xJ2bHdRPxJK7ILyvxahF1jx2UqohfilxGtR4NFTwFs/MwaJJNR/cga7dV/W7bPzSD16TDWdF+Z0113URx713XyPh6/YLf/nJT3DDgOTlhvPmJ78anKeuRYtapj2pNlwrS3fGG8gYLwrSlEFGUniJvZKG1gL9LCyCBOToKcSoGpqQPtZ4hBmvoITRCgwYOvle0W/OoLCBXK855QW3QsUQwViJ7Nl4yZolrCFvjrwvVGJpVcyPpzXx6HAkQ/BaO9XjBOta/1XBaGQpoAoZeZzblyPesQFtp4tug9pvikHVovL/dEr6xN/o0PcApctyDEyoUG9P/lhwaAzZmtxZIi8xEGfB6RFElEjpJZSWIikaRj8I4NHUO179YK9T4n9j7RToMm7TH4zKrL9D7POuDHnn12ajIojoexZ5h6to+Z7W1i83lku4lsLu+4+uiWbhOqIasLc5DRmrEev47EAxz3jv1Dx27f8XDsuI8db7LjtgDKtznW43zlezYucOM7ZU07+GiYeHV15MXrosWZlIX98NDx+cOanyfPZznyRhTofBMPeo0Z+MOTO0SvL2upc7Nkjp6TcgWU10O3RnJUM6E8NV0ZkRe+44f9lr++uuE3g7LWv8iOz/LEbY6qbcfMNjQ9bJUKMBA5ajLhB0JYIwgpT+wkckjHOblzVfDnyXXUgtCU/W2DY3uc6ss3VyIws6U3BfyyzgkzaLM5bJLMWzlyn1WOxNiPQ+m2GPDasu20SyZknRe0QDXxkBP3eeI+jRwb5rwVwwCOObHPkds0co+wXn/E5fY3uLz8K6zWPySOX5HiTrsn/Iquf4HvtiCROH5FnG7J6chq9Zp+/TF+eIGsrsld4eaZ8adEiEfV5jR9zpxIcffkOP8y424vSJ+VYbk27enSrhhKoD2oI3nqA4R1ASIsGfNVLqldV40t3HK1zCARgJxIh72C01/uuPsq8LjvOE5BGe1F+zRGh/f6mApg7R8iXRJkisg44gYFil0/kA+7okW9QqajdlIU+Y/6HHinLrUlvaZxb9tfOjKk/K0MRZasP8Im4QpQTXiElMljIo+ZnIQwKTCdJi2Mxwgc9RhN0TMlzyEFDmWeG6HIC6k2u7UIt/O+akS7ChB3LsyM4IYd1ibiugYFrny/kPSYRA2cdnmqnUKPOdauhllrWbsUtqHn0vdVf32XtYDjy7+rIWK3YKNp2+0M1Z1jSbdr2nMA82m3xzcxVd8FcrdgtI1z+qNP3uNUe/vSh2q6vEHP25sU+aPjLfcu8MMP/ivi5oLUd4h35JUjbITLS+H1DXz6wvPDlz0vLjt2h8TtY+T2MXF3eD8dUGMUxtRIfAD4oAasrtcCfU5kpJg8diVGUZqFDoeZI3rf04UNXbepgOTMbpVKJLDuNgO8a0FPVApMH1p0mWoBRmrIvCRCOGqBtsReZUfqfuorc/fd/J/GV60MlL2/Xbf00+YysMpvwZHEQ14Wef5jGFi5wFUYeFHlo9Qk+ZWDoXzIPnsFrJkB6vrzmWtyvs7mQkgqvw44BazFDBWlkoQync4RTg2IzTSx9XmIlVGtBQKLKS378WLrsB31XOJ9wYt2yn0TSB1jqFISxoTznqX5ndeYoh4Mk/VIR1LcMU13xLhnirtqKp4NxCbSiV5j6wJKb33PRejYul7BRQMRK4BIzQ0CKu9nRcDkgq77TniQqNrAkslOu2AIc3wkaWLPARJV09m7njGPCpILHPMBJs/eee00KMcgdFtC+IS46ri8gIvV+2EJ7m9WbA+/wfr4FcfxLff+T0hZfZm2vqPDsZPEyIgkQfzw7UG/EzKVgdRiwGUBqfWtM0hdCx0GWjMzqRcmmkZ2capTbbGSsaBPt9P5CKwR4gLErJrl2aQiU5WHyfW1WI1brZhhsaN1Ea0KwWntQ3O9zA/73YDpTXM9mX9O721tnsckrlxXsHeBUdTXZi95BlLLHKhFr8AGz2XXsc0dF67nNh15yBP7ErfH0q2C026GiRGRruZnIolRtKDSlRnT1rRWQs9UnyzHmHO8TrtkKg6hHTO+0RGvxz4dcNMj3T6w8h5Yc+wCUy847xbWOJIhT9rWER6Fbv8I0w7Jh/k8mzxpA4h7F9TvKJs2/fkZSKDGM4ecitcRpaAQ2DQM6kvn2VPIRt2K23TkNqlsJ8BFkS7rnGMqa5XkScmBccf0+DP2t/9b3jxmpij0nWO7DrzcdtzuM4/bs5v4/XjH0OLI9wzqv+jxawFQ72VilxWA2jjPVIDgNDlyyqUsqgykRXL4ruE7lQIJHXLY6d+GAOGu/WYFxaaJ11Pg02nLLkdGUXfyUbLKfaQDr3zHTfIq9xEym5wAN+tS5/I8uOLIqqaJvRc1S3TKtkvOM5BV6kO0Baz3Xt1gRRPFlkWtk/48dNFu6pWVKbIci78psgom7WFDciSlR6bxHvUq0xRyNdzQdfOs6P2KGB8xQ0Lju7bsoNlIYf5+I7C49veTbZs3hhaTpn1mf+Ob5KAFpS3xM5DZWuf7pnptjEXvXAkcGkC6+QxY6oBpVXpOBGq7T0n4dznyJh54yBOHsuhXEAAqs1V3L7Bgt4qWImBmyFsgfOHCwnzKnOLNUVyTtHQWnAaqdIKZxJnxYMs8NU3QNlH3pU0xuEx0+f0A1DlpovguIz3nwWkIazIf7X5ZYLd2gcnlaqo4lsTrdCkyXXBfDFdTdqynwqHPrhYZRoExeSZxHJLnGAMXxwiM9KtEv4q4MOKbKrZkBc7SJGrE9qj6w/ux475IetyKgdOZfcmgPHrtbZwvYITnlRNerydebEe211GTsAzTUZnTXz8OfJk8b4p++V2auE/TQtojQ9OiPN9p1fDwBJxeHHZ8TQRngEAZkzkn1uK4DD0fdhs+8QPBCbsUdL9k1sMzE5AkS2MzJ2ZkJVA01F1JbswEKaU9kaxGbXJee79laMjp7yeAtFveZXW+NGDa2NJb31V2XhZRGRaeAlXGCGzBuYMoy2r0gUF8bde09stdjhyk1QmXxVxk7t5HSRxyYU7316zXH7Bev6brrgFIcddoTl9W5nSKO/23dMT5TsHp9YdqotbNF6vLaQFSSzqQ03Gh0/k+hgJYM5O6ZYO0DGrvYexUm8CSbntrQLumTuNKW1tPhyTznhjJh5FplxlHBaen5LUV0+Z0LxWkrtvVZyQnBalTxk0RUum2mkZIETetFFxugOkWrAZmnWp7XrevHNuc6nMZD8rGLo92uBCQxvDLeY+UA+nMJejkuKg+vWNKGjcdyly2L10jxvzZk4oMQVroxdtYeGIwd0jZOmrXrMl4GMNw40I1MFKgK3Ms5q0mQdTKlBk4vfJqQLzxXTXurbqNBRA3AKDtqjgFo8+xnJ+TsToF875J7up0tBJEC/Y0y26lhbQHJk2xZFPbd4YSg2wIXKLa9gE1n73LE7dpZFi/Zr3+AbmR95AAvpOqPa3miOU4Fj34MQnTe2JQV3kPmZle4kPxNumITqUuJklc+H5mutevt4JpWZvcvB75ClKkylD8Jl5osLUNqLCVZPW6KNeixjY0caVG1OqB4hA3C5G0XUYQ9LOwtcM+P6nkBaLEUCze1d9DLa5SOw5OrxPb2ihZu2mc3if3aeRtGLjyPa98z2vXcePUgPu6FIWnrDJllRWtG/4EtD57vAoIlkTY4CsTMxBUf9rptWisamMCJ68miqfDJEAMgj6V+iiHvSkNFNRacvmt0fSVc3rUqQKCGXCFbeh9w3LNKIPavrOA07kUYJWF/EjO44m0RzFCRyVkrJPDCCs2Ut2L+XgvNb+XLHUK8xfX1ZgvYWbjWgwfcmBwSXNMIiJ2HWsXphXxHKJs5TQyxR0xPdKlA851+p29Y9ML4WlI98uNtSNuZpkP71fkPJLKfvQ+sMpClkxC47i5rlMKUTafOnc2b1BG/RKk1u6LWe6jBaOl3IMLzWpjUpf3tqNlU5tUjALWjcSLi/N147rKtm27yXLJ/6Vem/YocSQ8MUacGfjdbKrJHBeajIcC0XPRo+3IHZzmmn3JXYIrUoWOijFM2TFmzyY79gXkHnCV3QvzPGDgN+JJriOFhkAiJpGnc5WB7lK6GzWONqlJaRjX1K7aNh6fOzgLemFdMc7Xuf5d7Oka98Qjrr8oWtQd8ejVINqDa7rWJSk47SYIUeU9SAfNNSViZuBtp94sFfRt+lAoxzKrlF8ZKtfqGXFVkqftkl+5jrXvuEtTWQ+1CDC4UGxRjb1umu4H4nSL2wv7UT0j+k63t8p89N+0Gn4/vh//eY5fC4B6lyfWWSf2jXgOueMYA3Fypb11yUBqDcu+abj1trKt8wmwLSnTj5mLKXNzHPnR7pKvuw37HIlyLGwgNan5Iky8cmu2ybOaAmmK0M8BjPdU/X3vdWExHdzBzBLLQjIwS330aELZ6jup/IeGUb4E208BGzmBYZ7Z/7owlIdvNJkkMo63pHSgQxcaH9ashleY061pBM/Vxnz2W601yUL+Fox+F0AtzWvS/KR5vQWmW6a0fZ8xpYfCLPbNv1mibUlwa1J0ymayMZsiJH1eEnpjhx1F2dGPhSl9m8aihyw1yNTF2tWj4eqezVpmBphVwL8k5sE5LkuSZ/Ijax9qG7W1ac9AuJxNtltgutXFMzbbU91iKqBomoXv8Cv71kMTimWQ0A4LSE0YRjDm0SxZEgojYHTCwSUmcSTmY346jEndh1xkd+AiJpggiZ9lP1AwIGXHKIGxaAen7Niskhq1FrNCA4+BAgwFHneB4xR4nAK7FNglX3Wi95hWnAKiQ9kHY0m9DJkPVhM3lyPb60S/kgpOP+463u5WfDl1vJHMrUTu8sR9HtmlqUqgGHN6hoDKT6d3jF5558FpXxgO1imR84gZJmrAmNj6ng+6NR93K147T5LMg+j+jeU6fqoYWLeisqgRSsEjFo1JK5j5ggeo+Wo6aRg8N1csv6GFpNv0eDZ4bIFpTUK1NTOjMgQ5W6viUrfajuDKa3BpZnCadGaSz6Ss3S9eXL23DKSzDgq7fqtOodfi5DEnDjmyy5Hsey5WL1kNr+j7a2WJ5cMs69FIM0k+kOKD6lH7jq67XoDTEgIumWlMgnTU4P0UnC5ane9jjFlB6r2DIajMR2jBYK8gc9fBMQBhpWvLO9awfAKMSGIJXhdpjrw/EB8mpqOr4PRUNMEVUGqu/ZHiFVEMEyfIY8IPmdAnZIy44YjvO/J+jxsGwvYIocMPK5X/MMkfH5ZM6mdcw+sxNmB6OpbnSTu9xvL7NJZYRx+STYJEjRO1MGYGimqeOB5VyuQYdQ46ZK9dIlC6fbK2AxtD8gQ48Li66Np62LKmDaC2wqgl3wZMD/hatDWA2bqIDjnW9cc+t4LTvq/dQFrYyRwLA7eV9bD1GpagtAHS1obb/ru9Dsu10P72yXufmb8MFLfjEstrvqzB4eTabeOJbwKn7XlwrmgSey6dY+OEhOMhZ75KB+4l8WLzMf36Yya7nlQ0l2EQVoMaI15vPOtCuR3jXCQ61eb+VcaCPQ2I9/hyHwsKWo6SuWKWTFDimUZ2Mxjsq+nZt2U5RclnwV5rO+8MHJFcr+fqeWLYqDthU4sg+IKneVqz8Zl9Z7G2rlH6wYK4jNELdH2RqkneLe6j+Zo5HRnR4mUWJqfFyns3ch8Gbguj+jUdvxmEjc9sgzBlX423E67EqufZ1edGcFpE3TDHP8H5Kg+g2srzRTPhK9X5aVdTUxhgJtXATE55okctohWEAlA/p0fti2GimuCZKWKoQKNN6SLz9SOVFVlY1Gkk5UkZsEW2zDrH1H9mlmgwoPF0GDP19F6vx5MZpNYdt2swlIJdiesJ9C7pvCaBQ0ocSYWtqiChsdpVy1pIJFI6KIgV96T0qACf75DOMXTC8J4Q6rARxs2KYf0Bw/Cy6MIHEhrDGFEmlTVFJEFe3jPziTgz6SykPhooWZZyHwZSA4uYdX6tFLUlE9zTnGJmWMf6bwpMB8yIs4KXgGmX13io+btcgG29bmL59HKPM4PTnZs1p219DO6pxvQs47GU8oCZFOUbcLovJLe2q2xV5AkP0bNOgSGr9MweV5jUds3OrP+NK95XdCSva2eVzctSik26PSLWVauogzLTO7IkotP75hxxxEgizqnR4hKY9iXen+f8BXO93M+SVVPexRE/9YSuxx97cgbpQdp4MCs43R2zalY3ca2NczJy3zRcU1Q1ED87qV2iowhjkfXJpT18cLDBM4iaql+U7qEoqfgpCZ0TnWtKx4/6S42kHElxR79PPBwd+zFzVXwk1oNnM3jW3wPUv8T4y8ug/pM/+RP+4T/8h/zzf/7P+eyzz/jhD3/I3/27f5d/8A/+AcMwPPt3f/tv/23+xb/4F4vX/uv/+r/mn/yTf/LnvcnPjl8LgPohTQy+U3arCzzknm1UVmI8JPKkyRvGBPuO44kcSBmhJIFDOrA9Jj75Aj4LK96GI/scSUkD7scc+TqNvPE9Nymwjpk4FVZXEx+4AD4L3itI3XeZwWcmCQzCsyzq3gW8i1WLWnWplXGnBiautsi5GvRBnUlP44GGpeLrQvGUPS0SGac7REYCjiPC0G3p+0uc68jpSOi2+LBWpmOeagB6rgW/bnsFjmbQ+RRgP/1rgbpvFWYTA7mMVVAq1zWwXDoor4p5UgtMv0sH0kYqdBhdtPXfM8KYFQQ8ijKj9znWlvy2XXriOUC63bsC7kthCjIDeBbQDE2wbAC1tVJbezPA1IABrUYvzJIdrVZvkmX7qzG7T5mntq0ONECWVChIv9po2TDPjVYb2Y7W1LSu2TWwcZ6d8xzKeWwdrU9H1YQv+mUXQ/P9yYPMTGrVFoZ98uySZ8ye9THRB2Vge68GcPXPsyMmz+MU2GevwJDo5yh4K+wl1fNixkiXznMDvOwSLzcjV9uJ7XWiW+u8cbzz7B8C9489X40db0R4I5G7omP+kLQ9z46NBYd6DMtd5pyGwW42PmxZKVDmBt8pwOA84/Son1bfN7ERx0038Lrb8IkbeBkyu+x5EGVk2jbUY4JJx8xzhDjoRNl1nUBymSwTktWYyfke7xRUNYd0BfTmNuuyQSWh+IZgTazvZAlMt23YxvQbc17cCzbaNu4OBxmy83P2kynAp/6civSHAWeTZKY8s8ttPqqahM5xKG2W+5zYO2HV37AaXjAMLwhhW5Lsop1Y2NPOr0FiZVUDhHBBN9wgqyvSaq0GhAVFclkDd3JcSHvY575PBnXOMCZlKu8nZXDaMKDamEDSedV2rgzq5+cYMwLM5uBXxgLInSLxIApQx8AhaQEqUWS0yolL4tS8OGW6qMeo6zKhd4ReCH0mHATfR8Lg8cMBN3RIAapTCPhhUGB6WOFCA1D7IvXxXHeXMahTQqZy/MdjAakVaJdxbH5m8n5SQHrM5AniAdLklDF99MTJMY6e/dixiybrsTTn3UuazVmV+1YTLz0nughUKYqm26hqaaKGvB6nZsFNy3IrD2DSHiZxFU8KjB2qKbwu0h7bEvNNBZw2aY+VC/Na7ub1GFgk1xWwPln/7P2pWQtP18d6fZ0BU9oYwWIZe613Xo8XcxHc3peLr8gM+J+Pk2yYzJjpTl86Ye2FXXY8SOKreAC/5mLzCX54QQ6qPy3e4XthGITtCm42jst1qPeZGRq+z9Eep1qkDYEQttVUzWISQCWQXJjj1QVD+Z3f9OR7J3ItCpz+20KezBWpmhJ0alg3F3GfsqlBmZ/MwacIzp2wq+0c+r4A1WV9Ev3k5FIFqjOCR4rheK7zfWsC3LbI23VpsjvJlbZyidy5ntswMLDmlTi2IbEOmQsvTMm9E6yG54HqobCuh+b9wSl5Rq9bqcWTlIVABh+f0ePQuTWU+83mhKZUXsvFehyzXRC8m0WdOMeiNnCRTNWjtmEgo2pOq/a0gUD2WQv2dMkhOuuidLaGC7MmnQeXC2GjHC+BdAIuBmjYNgpSJwK4xOi0iLf2gWMOhaygXipCwpXgQ5i7KpRpqds8xT0p7UnpSAhlHelVNutZw9/vOPpBmC468uqKrn9B6Da4uCOniVjuu8F5UgHeRmcOSe1615b2z4+WWCXlXmtf1w6HJTCtcd/5HV0yrsu1UMhVADmHYsD5lEWNP5OHylzkUJDaihqzbnlwnt6Hp9rTFZh2VR7mKTh9fqSyXmSLWxrxe1+AastjcoZV8qynzDAFhhQI2dVCk+lWp8LOBqrpbvJlTSxs6lG1cohkujIFBimCRlLOcXGXdiV+d7DAIawkpf9ppu6LCaIvRrhzwe+ZIn7rjyIRHyd8nAhxBXgtzhuTK4PLgkvgJ9WsrvJ1C4B6lviw1/O3ZE9bHqNzgf1Nx4h2jibna/HXCIgbK94XgNryv0kynWjhUjsnNRZTFvVETI9cPOzZHS84TPMk23eO9fcM6l9uOJ7XOv/PfPzhH/4hOWf+6T/9p/z2b/82/+pf/Sv+3t/7e+x2O/7RP/pH7/zbv/f3/h5/8Ad/UH+/uLj4897cd46/nGfgZOxypEtjYdgEbv2KyxS4GDuO+4mL/UQeR2Q8FIOypI5x33K49Zazy1tS7cl+jKwPEx8MkU8OPV+GNQ+ljT4WYPJRJt7kyGsXuE6eGD06bz+N2nxhW/qsLOreqbD+ICxY1KpdpsmdAZUZUQY1yqLWoPcpE9lYIGeH6GI/a0GZAV9X2QgAOR0Zxzttr8KRnWO1ekHfX9cJfTZMSCWYbICHshydPgcqYPPk2DTvOQtMNC+d7vMpOG1mTQb+nILT9TQXVgKURKuYtrWANLJMgifJ1YjO2vCnwhCK/wt7f/cjWZbe9aOf9bL3jsiIyqyq7pru6bE9YM4P8yJ8pMMRFggQlm8Mkq8QF0ZCsoSAa14kQALZvkAWEhdIICG4ASFAiAv+AXyDzg03R0I+SGCY+WHG7vHMdHdVZWVkRsTe6+VcPOtZe+3IyOrqnpoZM/RqZWdWZGRE7Je11vN8n+/z/SJBQCqJVwUDmYMtsoblM1imhiwtA7wFpTXI8cYudDdVuiQhusuHws48NgzNh4Dp2WF+NtKTO0dbsfRza7OqtOoFo+Dqdw9QQ8NoaLTczg+VtslV+zCWW13YAKIZuMfN7eolGDsNfZwV0Nd3MwPBtq5HBaRWc0tph5f7LEZLnyxuypWNLayHco+UQPI22qLzOrfTj8wVdwXVnxrH1hiubOaRDzy5GNk+Cqy2aWGIeLyz3Nx2fHLs+CgbnufAdQq8SiM3cdaOq9IezAGifsncV/3pJXt6ZjEI+81ZXxK4UO/flAI2Ry5dzzvdig/cimfGsLaRj6Nlh0jctOMU+NJYUirZ8iFjSYCjyeQ8kXLC5Ii1fWFceCDNmr75FKSe19pZIzvdm2+2dAFoEQioJm06BwyWpW7L/Pe56RzQNUEDVmmLTFWjWo9dE3OVOKmSR2Wua6FpnseBuyRGkc6tWa2eshqEPW2sJ8VDYUy5UiQcKjgtmtSxalK71fuEYUXynch5QHU1Fwb1oRYkW1B6Ttq/+xETjEGSrL3N98zZnJklPrKD7PtGg7oFs1+/3iw+rjKox0icMtNR/CsUtAG51jFZxiSmqZMxdMniTCbEiC+Jn7UZ34kRofcCVhsXcV2g24wYZ7C9A2exnYLRbvHdOFelPh4cCkYruN58zzGJHnZMpDERDok05sqWno6GECzj0RKCqczpl5M/YU3nooMeqwzPvuwVWqRUSQ+4L+uhshoKTGu7svoyuGatvc6xStrc5akW0GTfmdnTFZw2jq3t6v4WkWLOsRgqLnTgy+xVUFp+LvvZyb7X+i3o/Es5l1b6JXCtxqoPjSpT1sQTtoDSyeT62QRKMbOURXsrG7AFBalM7CYm0Vilx7LFcmVgU2LJfYaP08iLcKRfPWMYnkG3EYNEa8idaLn3vch7bAfLZtVIE7yFovLpOJX3wJrCoF7h3YDBEbPEJCB6/YN1BZIsZssVMFhG4y2brh3a0RJyem0Y0vpp6JDrQvUqUdA05ZbxN+8hsjWZBVAt1Na5u6sC1tajsgQK4pCTFF/L48qyzDmTrHw27fDTLj+9HfT+1Z+nLPIfwqoO9MbwLHe8nzxPfOTCRi46Ac9i6fgak3RiCkg9g9VwHqh2CMhaAVd9vIBcYmpomeq18hWkPo3bEwmbpRid8rLb09SigO6vZa8uLOqUgmJO8nzjaq6Rz7Co8xnQqX6OKB1HKR6rdnCMB1Ka5uJ3KR5o/O2b65GyFK7lnLW5lcWV8+GMeeB8ZvpmTY0l7iPD3iR6LFMunSFJ7gOfkoDQJf422LrWqcxHyoEUR/H/KaC7SF1m1p1ZdCl9N6PvMrdDI/PhLxhNR8IxIcXGi9LVEmrHmVJHTscDQHWZU6+V+qhPvc+ipvmdMVLIaOUbZna1yFDO91IgJ3ePRS1/p3lJvBcXzffhXIxSUpFnlr7qSxH3VNrjFJxuR2zOx4gWOJocJlmsiYIFJEl+vE81vEgx0XcJf0x0Y6YLDhcte2PYNeugytL0AMZypSzqskfu4lTOlyEZTqQ+ImSDyQI4ZwzkWGPk9hqbEm0b6xakGFswCODe9/m6LXXAVZLOThNuKrIcyZCaW8GmjJ0iLkRsmCTGPQGn29dVDOPceF0MvJRDCxySZXSOfRYW9SqbxiixmCUWKc7bEgdNWQpcq1J099mUfEQKatN0g9/fcXe4YNd4Rjhr6L1lM7wtHZ8vxv8O42d/9mf52Z/92frvH//xH+fXf/3X+Sf/5J98KkB9cXHB+++//73+iG88figA6n2KuDRhowT+192GbXKsRs/VzrF5Feie7EmHW9LhljwdMKvPphxvVhtMDDX5yDFgYxQW9TjS7SOX65H3R8+3XM9L3xdgWpKcuxh4ZSeubcdVtIyTxftEnIR9pWOhR22hc5kpiZj+mJda1CMSyCrLQuU9ZqBaKsy2iZkXLLJmQz852vknZU+fJgGFSTeFW9QA0JoVq+FZ0R+T9nExVWxbqR56z5kxVBO85ruGYG8aTi2AaQ0mCzjdsrRPwWhQEFqPc35cNxqHuGzD3OqrDBbVjDrmyG2cODaAdGwAaTTJYG5zqyB+SZkMsuErWKYb1DlQum3/dxgubLdwgD6VDjgmSegfAqZTOV7Vwp6EhoDBzUGDFjAW7GUJxtRMJpnvnmGpEh+ngcCsCXYfLshocDDLeAgjgcqinkqF+nUQm7KoXZdZNcamzmQYPa60xDvEJVvZBztj5kQmPxBgMgPTsQDT+vc6r3sMawzPrOHSRR71gUcXE5vLwLCWz2WcKQCb4ea24/mh59tFd/p5norR3iQ650V3vILTSkxTcLopSr2WPe0GvBtqFV9+IYl2ykeujOOpX/G+v+B967ks4InoaoeFtmwkLQAiHc5I069dgDe5FIMgmZIApFyLPJjXrxICTC9B6Zr4MifHGaopqd73sg6KXIceqzK2s4lni2NtItsW10RTej7mUwYnUIG2Vh5B5qSsLYccCcayGp7Qd5d0/hHGuJpo5xRw3QXOb8B4Urglhh2zYeIVfninmCI2utOx6E4XRoqyU3KKjVv92wGm6/lI8rWfCot6TLiG3qUa1N4D3pC6riQQkrDKPJfOhHakZIrUR7PvFc1ogDQFwj4SDoYwGQ7RVa1WebLqr2am7KTQFGX+H4Klc7PWY+elnbYFrL1PdDepGDaLRrxxBtuBdaYYNuqXHKT5FFpbTnKyFvIdMZNiLpJmAkpPR1MY0zNbeio6+VMsx5oNz5MpCZOC0yLpsc9zUVWLeQp+KEi90Esuhd5Vo6O5NrNZWH+y144FCD8Fp7WwLxBEAWdLYXHrOh65jsH4CsYdG2BzKCCeAEEzcHfKlg55XnN03z7dB/X1dS9p5XtO8c7TGGXWz5/1eK0RKYcWjD7XkfVpo4LTRkD/rTFsbGLlEocoHSqfxAO7HLlcvUs3vEMupqfJGrAG7zMXK5X3cHR++Tmq7vv3gHxVGdTW4dyAc2uM8YRc9PbJVUNcwWEdD63tM2hh0VVdr+OnFcnbfedc8UHXcdVIzsjWMXeRKQUkF9mPCqsXdquVuK8BVsTfocRQOZWdX/aUycTZkwFDKh04KWWScWDFKPfC+aYIMxdedA+ZskhI/XY4sHeJve3ZBcezZHncBQYfGbrI4OdurjHZUpxZgtXyHueHyn70FPDVUMDYzLig9ghI3RZAUs54DMEIwNt2e9aX0mtTCxXCos7lCa3URyyxSLI9ZsGmnlnUcp3diVJEiVcLezqEO0LcS/G9kCIUZLSwILjoiGQOKTKaUoDG0mVHsiLXsTUzC3bMVLPEeh4bkDrWopW0/uuc6I1qUVt8zUM0pxKQUONHISclAanTRIyjHIfxWC8atd6/nQne9WDXEIaefvUOnd/g/ErkRQi1INgbR7IQ4sRBGeCLOd0Cl2dWWS38AGelPnIqXbRvDsqdY1HLvTI/pqD1/DeFhW9dIw0TGwJNqvde0t8hhoLOmhP2tJtzNWZpj3bMJIb5HEmHF9DcR04nBUCUzNwZ8ZhYEWs+g2eOT1yiGz1u9LjoGE/eW6U+ANYYtsYTLYw5MVgnJp4kQpm3rdRHNFE6g2w/v2quq2h5YI7bZ2LcnIcAVX/avqaAX2VX4gFjHTY43BQwKRG9WxjVm5hwIeKPR+w0oabfsGTOKu5RtcZPxnlGtRxf66eje9ihdKSNRYorUhjURvSpxSdJTIKdGZlyriQxDCXvT7OETymk2eMNt3fvsjsud68vJD4+3xAW//dW4sMA4zjy6tWrxePDMDAMw1t9r+vra54+ffqpz/vX//pf86/+1b/i/fff5+d+7uf4u3/37/5AWdQ/FAD10WRMWUAchudpYm0N6+i4ue14dBMYXt3irm7Ih1vS/lZkOx5gXjw07HpDSgETN9gYhM00HbDbLf4gjMZ39oFnh45v255rO1YGzjFHbvPEdY7scscUlEWdsGeE/mxBZURLKlVwesz3WdSTkVbAlPN9FnVN4GUYOJH5eM1YgFVNRbFqtInJlkc2y67b0veP5SmlIq1/k14jrdIuA5qwvQk4rWzC9uyd/p0miw+NCkZnkb5QQHdmTM1ARf0bZsaVJgSqn6hyGFNOjIYSLCkgfQKiaVDUatyRMOQFMK26t2vr77FoFMTSIkWHgNgbu0xeErkyp9VJXRN1ZRBp0q7JjoK30YAYXlhMabdS/WGaYEKvu4CGgZhG6St/y0MMSJaGFW1aOfOacgVYoDABjGWL49pYXLbNcZ6/RzSgsxaszxiXSodDAaonAexdsrhcmNRGdb5lnNMqV8BkZAmQ62dUM5S1MWwNfKmf2K4mttvAeiOSHq6TOzxOmfHOst9ZPr4b+Ha0fJQjz9NUTBFFd/qQAlOaAeolG96UwN9yDpyGwkYxFms7vJrtJWHo6DyP6UCfM1e+50v+gq/YgWc209vEPlmRL2kZGnnJnAbquuWNzL9EhpxKYUl+1nUsFTZ1JpSEQo/jPpixBKXnO6VdQTIICGAkXfBWHcl9PX4dKY6iu10C8gJZlIIEpSAmyUirOdjKBgE1MT8Fp9VQTn/W86XeBnc54bpLhv6Kvn9cDRCVBQaItEfRnU7pUBknzm/wwzuweoe43lRpD/2qclhvScLjTUYFqe1slrjUoaYAvLmyLzFGgJt8fw9t9W5PgepcfpnHIPIXoQC4WcBp1VeVJ5WEMc8AA5R5GpbdERWsboDroYvzGlKAa11XjMtNEUxeV818HsKpU0JMfurP8/HFSb63gHSItupqj8lySPMxqqTQPqdq3qvAtBYotSMIGrZ0BY4bM8RSRBHzUFNY07aYOjXXGaqE0as4VXD6Tg2mc246HEpx1go4vS3gtHQgxOrlEHJaAEanetK1Q6PsbcfyPsqwDc3vTvc/LeQ9BHNqIbmUmRegVXsJz13OxMP6tOfGfXDacWUzGx/pXOI2OK5JfDIdSLZjvXqG6x4Ti0FidmCKvMeqE4B6u1omYs4Ks9IZ89YkAIClbIiF2Hk6v6XzW6z1xASHYg57aXsunG+6WJZnv7bO57lotmDWoUXqUojSv/sUsLr9ra4p5+LLcggFTJz3kKpPXdaLJVida/y3GKbcMcoQzZlgEikrY19jNPm7lCQ4HLLEejofgMV8nZLM4ds0EUkcUmTveva5Y5863k2GLYGhi1Wr9hgcMSNG89k8CFbrUP1klf2ovzeFBXxy10csWFCin0pd2ZwEqOaEQQ0PsqhNKQycl/qIle2qLGqAnATgrwXWpAQIiinizJ6ev0J511Rlv7xExHU9nBqWftuJ2ZnIhGNlvNzzZKgAmKkM1fl8CkgdC/AYs55byesm4wrrVswSjwX4lJhn9mDRcyfnJhLisRats3XSQeHfHoN66MH1mXHdse4u6LpHdH5NmHbkaDnkyCYn1iXnDjYRU2Aikc+wnOcq3pnHci55VZlbqv+eE/cckk9foWFKf9rvBLhesnV1vVFprlOJGDVITIW4kZPmdXJlpLhhl+xpZU6XNb3qTJ/kDQpynuYL5LmjodfTtACpYQUVb3CdxCIOIbhYhxTVTYYj7INjXLyvGvnJe2yzJRrH6DqeR9/kyqVgUIoETkknVTql5BOp7Ky6R7dduPqcJvf4NC3g2ROlaM2bUONXGya0XT43hTGTEm4K2GnCjnvSGQD6oc4cec/Xdw9qgbSNO1LO9MY2ILUlZYOzqYDU4jGkeu29sRyVIFb2MWXeSye2zu09HK85HAzX+8QUci04d95Ub4kvxu+88U//6T/lH//jf7x47Bd/8Rf5pV/6pbf2Hl/72tf4R//oH30qe/rP//k/z1e/+lU++OADfu3Xfo2/+Tf/Jr/+67/Ov//3//6tfZbPOn4oAGrwHE2CFLAYPolH1sayzj2bQ8+jlxOrxwF/fY27vCY/ekoej5jVZzx862e5jxTJKWJjwI1H8n7PsL7mcj3y7NjxxPa8dF3VGxZDq8guR3bZi/7bZAvQJWxqYGHsZC3VhVeqmLO2m7jBSrW1o7CCGxa1tuCqrp7J55jL54Q+yr8a4NG5/l4bTc6BaXpFRs750WQ2K2kxnz//UDRqG4mPk9GyYzRRU6OBtoZ+Dmg+1RQ8N/QvTrUcZeOUJ8gGMrOqXZ6B3fr8poVSGV65VDeDJsAos5PKPLcNuH/KRtXKekpTTYVtnjWmFZjurGxWqk2lAY4y1tS0sW8e60tioMn2vtx/yjZTxphKF7RyHqEciyReYpJn3YA1XdEd7rG2w9nuXqW7sgbSRIhHluH3dz/ainUNEM7cV5WB1AAPlHm0Rky6bmWLX7hXtwmYynmYAki7jgIopQo4SYucxwVEx6202e3NrHl57j69F2RSWvqYnbnXhsKMi7x7dWC1jqy2Gb8SFmaOLMDpm9uugtMi6yGmiLs0MxOnEjTNiUxJBwsgqy125wBZAFeY08Y4MeAJe1IOYoSSRnIeubQdz7o1H/gV7xvLxgViNkXOJNSCCcxBXMt2lHOviJAyZmy5zvJZFUAyDUBQof4sAe98fA+NFsg2ZW5anFtV80fnhtoxIG2hytQKxHCQ9y3sqtk8aQ4kNfFQDdGqV9kkt6ffdQ63bZ8qCaLSQYecyLaj76/ou0u8u8AYP7co5yifvYDWOcWFJrXvrjCrdwibS2I/kJzFNYiueU1B8Xs1FMAaA+zHTO8yvZ8lB5TVaT0k383SAKLI9yDDbwFMF7YxUe7ANKbCOBYQV4Fblex53dDuiFKCnFlM+mVkz+7sfQBb9bT136pRr2tOlRQ6k1voZUrF8EjOnQDTUxLX+pipDOmxAExLKaJUpIQyuyKzoRIeY9kbWr3mesx6j6JSWLb6G+i9fmV8TbT7k/mnEka7HNilyE0aq1zNmGIFiqFI7JQCz8YKOP3I9jjEFPFQ/BzUAE+/YN6v2wSx7XIac7wnY3W6h+d6Zdu4pC1uqQSXjNPi+DmvCy1QVWkPqGtB63khIMXcAaVxn/5bk9k1lo2LrPtASoZDMnyUjjwPB/r+CcPwLnRbsnOz/rSnyntcNeaI9RpbQ+/nr7cxKoO92aqztRi/xfs1zq04xl29rpeWysQPORUgsxSVqjzLfZBAY8eM3APBzD/DDBy8yfi0Z+mZcXkGxJdGivKsGawuSrnKqtbP23z2nC2i12qkQwiE1Z3z/LMFUhA9c+uxJuLwtTgEAmiMNlVSwpQTt0zEmBltZm894+R5N1ke54l1H1gPgc4npmCZkuhUpyxFLWvkOEVz+j5Q3RwEffmdAFt2sQXH7AS8Vqmz8t2XPKXt9lTGuikXoxomFha1nKtyRfPSMFFZry2LGop8Q6JKfcxEh1CkPYQ9HZMYJFbju8KeVu1p7cRUjXMdYhhXwKGy7x9TZHKF/GF9Wdg8I7Bm1g+G8r2w0eX8yDyPSAetklIG6+iSxZe1u2UcaXecFnZyijPYniNYh/ew7iwP8+I/21h1sqbcFZmPvn+C9x9h7bUw0gtRZI10uYScmExiJBYj1PnzL4wyHwKpy/PO6VErQNpOYP3nOckP+fsli/o0n5EiRomlznhvVM3pIqOy0J8u8aHOemXBK3t6IdvYfOmoUjtn4pF63yCa8GM9B/O5c8lCgHUwWGukC80ivhmA97HiDyCyg/sSBy3eC7lfRVZE5D4euU7W1jSvt6nERbPURyKnKLkFRiRmshqizlrtIhc5Swie+16vSTFGvKcTXK6NSQETj9hpJX+fHLkJpmyYBJwOE8Rj/TuYgelTGZf2/U/HOWyjmiSW2MNiJGYxkdEm9jnXdbSV+ViV7pg+WCzSyRlKrt4SXaac5rkddox3ht0xc3uIPN7KZ++8eWtGqP9nDfOgaflbfAv+yl/5K/y9v/f3Fg8/xJ7+W3/rb/H3//7ff+1L/tf/+l/5fb/v99V/f/jhh/zsz/4sf+7P/Tn+0l/6S6/927/8l/9y/fkP/aE/xJe//GV+5md+hq9//ev8nt/zez7taL4n4wcKUP/SL/0Sv/zLv7x47Cd+4if4b//tv32m13F+DXniyAhp4uOwr07x6+h4vOt59DLQX97iXr3APnqKvb3GfUaZDwDTrSBGzErAaWIgrzeY9Y7+4iWrVeSJj1xlz8Z2vLIjY4xVD/c2BXa24xhEjsE7AbvSp1SyJbmV4E80p8qmludkxpkkFbnyuJolgiRBsQn4TvbvZigDpIDTtl8wqLUVJoYd07TDl0DSmn4h7wFwaqz4JqNtGY55Vler5//Bz/36kWr1PVUw2pZgsC7fWZ9bvmtbb9bEdQngZkoia5SFKgC0K+fLuVXR7W4kEor8RW37KuC0ShmcA7eUNa0A9SlbWu8FBQq0TSxmacM65MhdnqpJYwWnlUldknNl1qo+tt4D1ni8W2Ndj3dDMa7ocbYvBhb+JKCTlkIX91jzsGvsdzPmJFX7hc8XP1IBXEbEdEYB4K1xvCrV7NYY6HSoHry06BegqctYK9I8/m5ukVPDw77cFGqEc/b1y7xUtrR+9cDaZlalZXvwkc068OhxoL/I2L4E5GfA6Y/vBp7nxPMUeJHGhSmiGnJGvZcN6DxvwWktQrQsBg3elTltbU+MB6YgzAOr7Ol4YIPlHb/iS37NV6wYIwIckuWaImdy0vbWtsJBA06b0iVRAl8FqRPMuq3k0hKsx1ROb5O8zEOLb60JqS2g/NwV0PeX5VjXtQCjBbaYRmI8UFSpS3tn4bflmQGvhSWPdD603Q6nZlcLN3bMgjW9KglMJHPIwobbpYm9yXRuw9Bf0XWPRNdUO1vSsRQZhrpmz+xph/Nb7PAuaXhE7Adi56sxYj1/1mGyg3R+/dZz8rZHzAWgnjK9v7/S21IziZ2nsysBdaCwBZcFXqB6IqfYSAuoxEdMVQ4jFOaxArn7toOkKWDNnzMvNqLlNSzfC2jQpxnUnQHe5RdAX5PNAsh/CjY4t97f14xVIFp+nmWOVH++ygqV/aEW8s6A0jr6ev+eL4gqa3pb96HmszJLeuxy5DaLLv4uThxzFHC6KVwp2KAsMwWnV8YVY+FYzRRTzjVpk/dasqVPO50Cue6DCkq3e57u44ZZfgsEBMGoPJA+qom2jKo53YDTfZnPvgATLRDdjoUHRwNG3wOnkfO9NpYrY9j2gc4l9tGzy4ZP4oGbHIUw0L8DbqjJee6kE2joYTvAZrD35D16b4ipANTfC40PpNAbOwd+oOsuxVRtFGaYyrWsitnlobCCFeIFKvCjnXlKAJCCqqnPjFlhkLkoe3pnf5548tzOUsLJ+pr3wepcgJn5LzINe7C+VjFZzJBJxXMBqoxBimCp5wn0z2WfWRvH1iqo2fGCkWOWeXIg8CIV4oKFMTqmQ8/jaHn36oD3kb5LVaN+SpYuZTFSzPJ1SLI2tUC1MqkjVL+cEWEMomuTHmYS5vSi47MAL0Jppgb6rQyhPJTr1RW8+s1Z1NYWIBqq1IcOBbRjnLWnhU0d6p2j7GkDc8eTmYGoUGJquRymyoD4AiZNVtatRA8Wrijm5si5dM2d6EpBQJir2o2SmRrWbW+kM2usd7XeU6el+ZJ3lNg8W0dfGNRvawwd9H3mdrCEYcD7y0bmY080U5XvGYxjbT2BzG0cSWY2NmypEzMUfQakFrSZVo9a//7NhSDvD42RRAplCVCphvmc64QmJ56lYGRdUhZ+IOeZfa8khXvsaZbsaR1trDzHISU+QPJ8jJ3ldXK+pw0/ZgPJcpwc1mZCsBiXai5Dp4casDZzOXoITnIYmnimzMke2BqRnbm0PZPTgnaGFEsPcK7Ski6LHJ/JRopvphR9T1q5z3nezNdFCXwR51zzeJDrVcwrRbonYHKA5AuDGrJLdQ80KWGisKvNdMep/rR8lhP9aUJ9v9cOI93ROgc111YGtMuGYw7scmRvPGORkelNnue6EZmPlfW4OFW8QbrERPaqK/FVQGSNwnQNd3C9h90hsuql8OysYfiCQf07dvR9z+Xl5ac/Efjrf/2v8wu/8Auvfc6P//iP15+/+c1v8tM//dP8sT/2x/hn/+yffebP9lM/9VOAMLD/jwSoAf7gH/yD/Oqv/mr9t/ef/SN13SU5HQlhx5GR5+GAL8l971ZcHXoePZ8YHk34y2vc5XPS5Tufm9tZWdQxkEfRs7arNW5lGC4Sj/rA1dSzsZ7BOPZG5DeOKYpbfU6MSYK/IWlLLmf9kWr7b1LmlaksPZH6mDUOHQKK2QpOzwyd2djofjjeJljVyMVYnFXW7/KaqFbbOF3jEEDXe5H3MNaT460APm4FZwDqUxaLboIVuGm+VzaVmcOOzwJSK3tGHbYTYHPZ5E9eRJOYdJLUVL1e2iTW1M1IWdLW9pV5KeB+kTepQXNaMKdzmiQgYpYFOGVND2Z2e15p1Z1Zi3qRxJbNTc5prqy4Qw7cxVAZmCrrEQqb7DxrembSWtvjuw2+6EU62+HcBdbKMStTXI511mNzYY81uze8Ug+P+/ffLO9RTUiYg9s2PG3btWFmAahj8iHHAtpYVBoi5fsBrmrHGoe4P9uMm8DahO8y/TExHB0Xk+MQLC74UiCYTXEWKZGZWZd9YVR2JrNykc5lBh9ZD5HVOtINmeER2KIlliZRTjnuLfudO9GdPs7M6QJOK4OqZfpDmevnwOk67yVQt4Upr9c/pVFaRuNYgGvPFG7xOfDYr3ivu+BH3YpnRqQ9xmS5ToZdAYTqtckzIHbvfFcAuhTAKLqAxtT5W9lVtHGuJvzlqwGjq246pgIa0hEgZo/OrfBuTd9f3esKkMT1uNScy8q3LAkspbh0Mn/XRW6nBaXOtfW3Mgkr66pZDgjYeMixsk2t6emHKzq/KWaBVOY0CNN98XhhTzu/Fd3p9RPC+oLYeZI1qFevGKkJaE/yYIvBlPEYG4RdkubE4NPaL990OFtAwiRndD/Busv3ADJnwXkBt6xbyT2KJnDnR0ozcN2C1HJucv39lGzDMC6a8BWoVpb/nCCqdBC8npXZymHAfO3r9wpM309Qz8kDnY57BR8UfG7+fUbC4hwgfcrSaj+zSgnovqMtyadSHi1rWoFplfTY5Sia02nithgIV3B6IethqnTV2noeWYmnlOF9UyRBlLGogK4CRA8B01N5r2MumuUNKG2Lxvy8LirokQo4WBLqBqgWzeGlwJTJspXUojhUI2Y1d2z37cW1bEGq5r6pBQHEPG1tpBCwNZn1INrm097yPCe+M+2JxrEanuG6q6o/nYv+dN9nVj2su/vyHiCsq5jkq/seANSzBrUhdxd4f0nfbTkYz1g6fsachElmfTWLkkrkKQAZ65pndW3HkkysBIfTGO6cvN1nBanbl1C/L3Pye31cXzuZJbNa/tagMiDyQFs8lWPJCIM85ALUFJB6Mq6YoJWVr+AQrhSR1ji2VmLCXZLzOCGxwKtUuk5MR8Qzjh3b48RqEDal99L2r0B1l02VCQKRQiLne0A1CIDVgtQ1Li1ayr2xJByxOLgnpMCkZms6n5pdXGZSppir5XkOPsCirgWMhkWdEgupj0yobMlY2NMpHYv29MyezkmiJs1RfLk+Vav+pBMDZL67bHAqv2h0vZ1P1JXzuEKaOMuiNnJetejdI7IAXckJaidljqXDQDvH8oJ9npUUk0SDOnUdfdGgfltj3YM/ghsyYei4KIXzzl8wTTtMGutaf2FFYzeS8XFkKp/4PrDcdviem7S5xuyz1MdbOyTpQnuIcZ1CJQXIR5nlPdpcT6+6xociyTOzp/sCVKvudLvmvy72UNJCf3K8rQExlMJHAaqnZLGTm6XGvIDT1oIdcv2L7a10PFI6yhbdnobaITFi2RjPaPtqNq/3+Sz1YUvOWyJ2U6Ih/d5e1wfOdT3nCkaXeW0TGOdQ2TqV+RCJjwBF6sMGyOkEoE5RTMDDEdID+tMPMKj1sXOs6XZEis9MngtXdylI0TVF9iaxL8fsTC4gtWGdXd37RM5DrnrMmWBy7SyzpWiZcyLFA36fuDvAq31i3Ue6IuHzNmW6/o8ZxnxmcuX3ejx79oxnz5690XM//PBDfvqnf5o//If/MP/8n/9z7Oe4Cf7zf/7PAHz5y1/+zH/7tsYP/Ap4779r18jV8ISU9gCEsONVnPDmIEm+sawZeHwzsHkR6C93uKsX2Eef0H3l//rc72n6ATMN2PWWdLjFri/wa0c3RDariau7gY3xDNbhky0tpWJSt8+JKXtJiqPFhixtN4geVIr3mWCqcwnaPmxwWSU/5iSGTAWnZ5BaFrUHPGg5t/m30g1qUKDGECrvcRyvq7zH5eopff+kVpGVvWesf9Bg4LR1WFnfi+P+rurhVPBimXcv05FTIFrbe8uZaADpwry2PRhJaFXuQgD9WfICCitDTVtKwJvSEpzORPwbgNODFR27tp36FJhuA5zr0tp5yGLQqdIemqgrczqcgNOVNW17rOlwrse6gb57hHcrnLuQx+yAK1IPLYNajzvnUGQHvjcM6tORT64pLFusYtZ2UlNAalNlPmam5MPDuFwBYmMhK1jtEq4TNnU/JMZjZD1auqO0yM5ajjPwrW38DuhtoitFqKHoiPZ9oh8S3ZDpBpH0sEWfdganzT1w+qMceREnXqYjuyi6rmqK2LIFF0zBM+C0tY1hXim0KHibcmQKd8Swl3u9Jni3PLEdz/yaL/sV7xvHxskZvU1i3LVvAOoWQIIZ4GuBaQxnwev5mlPv29N5qqaJMyhtRaqoHJ+zXWVJW9vh/UW5twecE1MIbdmMRc9ZCyP3GR4zu8oZYU624LQWlpR5quMU1GxZ062h3JjFfOk2zVq9vnssc9JfYAuDJJXPa+1Q5JVWhVU9S3u47gqGK8L6gjD0xM5hiraGBvCpXH4LwkSxHpM95NIRo0S3t6hP3fnCwGtlPgqLWjsU9bu1MHoLbiWyJlBaiEUv9SFid46QoyHFjFGAeqLqNqdkZhYgc+eFso1V/7v+TDwL7p4a4zw0ThmzcB/EXvyOTw8yYwOVPgQ8v25OtZ+jlfGwmKItPRsetqyvh3Sm9TzusuxFt0VjWPekU3C6FqcbcHprOy5dR4/lllC7gcaSVKp8DsxmxdVfoQDase57st9NRnYCa9zCV+GUwVWLnwo4mAKCkTGlm6OVY6ApfltKW25hi2KgM5J86lw/LVK0IEQLRgCLYsAWyxVw6SN9nwjBchscH+WJF+GI949YDe9guy3JOrJ1JGswnQAToj99X94DoPeW4sPJ+hQBeYsjWSNSPb0W2npCGrkr98imAFl9SdKTSZWNOIPUYVksKyzqXDqjFPqdw+kWAJ7H64+y/e1y7mRyAU2XzzS5+bl8r1IgRv/yNG4xBbBeXpMKOhp53amA1CGn2WsmazelSKRgZQ5vcbxvevYucW0dr1JgnwS8vy1t8iSIxvHkrucJo4DUXaZ3AlRbmwnRihRRkQtwRToo1YLNImhuQGpTUFILphAB0CKaJZqMx1YmdSLdk/o4NXN/MxZ1JFd5D7cAt2CWirOJum8qe1oY1C17OlWwt5UQSrDwnNFyteyb8tk6RI4sWYqZ3Dx2tiv5my0M9Bn0b6U+lB2rLOrZXM9WwlJsAN56SZhB/UVRx1o6z1stPq286FBbnwmDxXWPq8yHsz3JHGrXy6PcM1gB4IYCYE7mXASvV/scSF0eza0eNRUUNXmW+XhI1gNmxrT8nM4+N6WIMbNRYgVEm7x2XovEuK41TKR2AlNzt5Y9fa4oreD0SKp7QiuDp/tz9bk5+eqZJcY030hJzFDHqfXAEHDaOEM3iGzh5jbIvB59BanrZyOXe1PMedfGMpbCcdVaTvM8VqkPkaGJkCzGNgVgY9HyruE+e/pcoQlkPtPM55yldCTXoMz3LDIfQrRws2RDKibgRdpD42Md5wh589fctTNf9zOSH1D3/JkUJo/dmcBtntjTsc9z1NTZzDoWBrWV7qHBOu6iRHVTTrjcENNK6U7Wqzv8MbA/eK4LQL3qLZuVe2s681+M/z3Ghx9+yJ/6U3+Kr371q/yDf/AP+Oijj+rvFGv98MMP+Zmf+Rn+5b/8l/yRP/JH+PrXv86/+Tf/hj/zZ/4M77zzDr/2a7/GX/2rf5U/+Sf/JD/5kz/5gzqUHzxA/T/+x//ggw8+YLVa8Uf/6B/lV37lV/ixH/uxz/Qaj7a/m5yPTKsbjuMLbm5+g2+GA7dx4kV35EW35ZoN/8//dcnvvtvx7v4bXIwj3Zd+DPfOB5/vg1uP3VyRY8RtrsjTEX+5ZrXfsb0LfHk38a1jxws3VJ3ESAEacmCXBrrgqtYkRKw12DRvJulMga7qUENNFGOWDW/KEsCknBeAry0Mh5aRsOyuOQmSjRU5B78RAMTNmjgpHZjG5+xuv8H+7rfxZPruKU+u/gC+e0yYXhaAc8D6DcatgOUGUIEl1WCqzIF5ITXzw5U9rcnrObZafuC7nFl5RI8363Hqu1RWZZHmUPC5AewUfFZpixnAP9XmjrViHMItKacFOJ3ytACnbZZ2HW/mwKUvG5M62QvA5Qr7ylZmpQADdlE1V33RF3HkLk/cxSCMpAIEKDA9KaPMzIxpZzuM7XC2x/k13g1yD7gVw/BuZWVaO5Tzsqqb/ul5AESj3b+8d60+65jlZRq9wJYlU4xIVOajTSTk+gvQtC9A9NbIHNrbjttSMGpdlWOWrwooqx6sM9iThF41beOk3yM5Gq7208K87LTopK/ZDwlTTEpcV+RDeoOx8n4ggNp0lwkHw3Fv2d14dseO58eOj5LheY48T0duc+Cb0y27JIaIxxQXydNSuqWw/Y1fALf2JEB0bkXnRQppCrccx2tyCrUwk9LEOF7zI27Fjw9X/F/dlv+HdTzxgTFZPg6Oj3LiOosxiN57IjkS67/recFUYLplPqpEUshZdLQNhXHhaqHE2b5+LpUi8W5Viik9nX8kbGm3KexbYU+b8rOOFA9UI9iww5hbQgDnIil1pCTM8Vz/S5XlNBTmw9p6LqznwnkubX8vEWlbNnWsa6tnSeJzZk/kVZr4KOz5KOx5GUd2ZJ5sPhADNHdRE2wpDPZ03SW+u8L5DWG6JueAdSu61Xuw+YDj1VPGi4Hoy7X2ltSVeZwyJia6o+jzOVuAu0nOj82BFME4SQbs+azyM4+1ELOZIhxGeHFbrwbrzlTguvPgPRwGQx4ucX7FFISZsiMxRbvQnNb5F4KYBMUpEg+6A4lMju61Vd6DVEFVlcCYyv2qUjkpi9Ge/qwmONql03oW5Prz5xvtjFTJiYURX32M+rvqR9EA3q1sRKt73FlbCyinBdAWhF6bpXSHsrhAzV6XmtZaIG3NeU8lptKZY/AFmF5bz2M38Nj1bI3j4zjyUdjzSThwKHuByo5EMlOJs07Xi1DWffGGkDVv6LZ1rVCN+dNxWmwGKTTHJBJWKY6QjmU/1/L28nigFArMbDjpjGdrHVvj2WJZN/t3LZDkzJ60KJoqWLU1hqc283QYebwZ6YfEzW3HbwTD/+/wgo9z4N3LH2d18WPQX5G6jmwtaTC4HjYX8HQD7z5yZwHqzhs6L0y7u+F7o8NoLKTOMG63rG9/hO32d3McX3Kz+1+8jCMfjrdcrnq+3G1kTk133OZEZhIAIgVCPOLiAZ/G0s0lsUuKI5CIhS2rRXeDE2Nn/QDnxhlW3D3orHnObObZdHFlAa1neY8SP5QYXL/Pr9++TwHgl3hvfV5U0DaLUW6SSgguG6ZkcFaOOSa550aT+YrteWYcXxE0iuuc+SiHSmL4tknsjMdNA1fXnic+8mQ9slkHVutIP6S6jo5Hy/7oqvFqa6g4NWaKYyFdYKwQaUyu+9++rEEuGZy1HLLMW10MRHc1y3muS/nMqtY9t+Yw2ZWEJpCS/H18gBSTs8Q7KkOYoHZITWHHNL1iCntiOCxidQXaTPlsU1n7Q7kmcyHcERUoJ3FEJCh8jHQYVjZwYT3HFHFYrm3HU9txZRxXWLZmCVIrmULw2CLbYhwb23G0se5BMadahNHdTb1sRPJoKkaJkTAMbC9g3dv7N9nnHO8+stwCt9vMi1tHvvgSw/SSi+kVMYoUXAiJmxzo4pHOiGzTO37FqzjWLolZ+3/OUXUWLWE2vTFakLqwqCkgdb3mJS/4FIbuuXHKkm3Zuu1jol2+L8cqHYYxiYl2JuAzVSP+keu4sJ0U4DSfY+6uU3Ba4w/1PdLhSjbcl7/dlvtmjXRjdjaXrszZ7wIk54jZMIVCREhGGN8xVflA28PV04l+SAy7yOrQcRtcndsg9+XaZPoMz4pPgOahq+S4iVPNOccyqfscCdKvJXmh7cEgefaCtWwXa/NpoWmWD3UiZZfFa0Uft25VZd1MChITFaJcHSlADuR4KNIsh/KaRXu6aWVPDTnl9OvhYcoczBWcHkvuc2TGLzocvbf8aHKsi1Hi1mSucOyN59avqn/QXRbPEJV30jhOZAaFMHj58iXXL7/Et14lxiDv8eUvwOnPPd5Wd+j3e/yH//Af+NrXvsbXvvY1fuRHfmTxO41Xpmni13/917m7uwNEauRXf/VX+Yf/8B9ye3vLj/7oj/Jn/+yf5e/8nb/zff/87fiBAtQ/9VM/xb/4F/+Cn/iJn+C3f/u3+eVf/mX+xJ/4E/yX//JfePTo0b3nH49Hjsdj/ferV68A8P4SY0IFso7Hl4zjS27SiAvH6oh6xYZH1yvWH9/RXz0nvvpE5Dk2V5/vAKzHdAOmX5XvPa63uC6z8ont2FWDrOoujzKzSttNNHRWKpu+hmBzW/Ipk/rBj4JZJK1vMuY0/vRRWxI3YdLqUDaesqczgWDg0eopXf+0PKcwE4r+8vl3nccpSFOT6jwneS04fTrm8L9lp8z/bt+3mqExG6K1Lb2+fOaWYSmAdLdgCtszWixtVVXevK2yavJS2B3Np67MDMyiba+aKllbNWlbcLoNapbJrTBVjyX5UKZZm7THJmnnlDHtVzg30PkLvFvj3Brv11KoKKzMCuwZv9j8NXAzUN2UnX9znfeH5ve5Vps5UFCG2/J8Lq5NaT+LuQCbSCC3zmJIobqsy79Zvsos8VHuyULnzEXH1vYCVvsCVrsukVJhbCbOsjpV19paGlDa1vfIMYsEwUTVmr7be3aHjk9Gz/NszhoijkVKSFtOz2msPgROtywjYxyd32CMI8QD47SrrY3eDaScCNMdMd7ybHjCl/2KrxjHxiYxRUyWHbAvTBAdwuSeHa4fGmriqQHeWBLCVBnSFmM7uu7RvXvWuX7BiLZuhfMbjC268Co/dGaNshSQmqM8N4mETUSLJc38r8xPLRhKt8NgpbC0Mn7BiG4B6va7AICuFh6FPSNz+TZLwH8bJw45Ye2qXhf5CKEygVxlT6s5ougkOr/B9I8J6w3T0BG9Rckb2ZrCEROA2k0G9T6v7ZCVkXLAOs62RL7JeGiO984wGbg9yt43BdiPsO6gd7PeMkiilTtL9qV7BVvv+emB/bItEqWUsU3emU+KR3pd6n2a8wKc1iLfMcWzwHTrWwBzQvJZsQD9RMLKKwBuFjMo1W2t56R+n4HoU0O+U1BaQWs1o2s1jtuW40XyTNttIudGNa7HwlYW6Y5Z917PU2US5Vlr+vSzq05zC04/NR3XOczrW45Fd7plM8p1UD1tLcDOMh6lS8RJgbnvHzFrXmqRdf7e7vlQYp80EdOIiQcCZW4xM15NnteBlimnDO/7mtMUs0NJ+LtS7ZmSSLftcFVHXLvmeuDKZB75wHaYuNiIOeLu6PlWnvg4HHDugmF4iuuvyE2skp3I43Re5D3Wn6JN2Xv7mWUAHprfZ4dFJIW6C3wnZq/ODoTSKfIqjTy2A1vbsbaeYxwZiWIMZUqRII3EOBYjbyfrtXXkGGgoDtROoSaefVPA6j5I1Qq6tDEdmAKqSjxSihblZ9HandnV832/HInyZ/U9uCdLkhGg1OU5rvMnx5PKvrsj4bIUmtYmszawzR3fypbnhFKkj1zniDMOFx3uMHdRrdZR4pQorMuUqIauUxLvmykZKGaKJLmvFaRW2Z/ILPcRs8wPZVLr2uSxRZJP5lHKS9+ce8SaIvVB0bc9f/1mBiZQ9ah1xDiKTnLcE6uWcFjE6qo9rcxIMS0rsUgB2ZTcsZTxE2btZESLmCZPuE0TnbHssl2stesWpCbPcX7OtYCt+YA3okNteVhm6lS3PVtL7xBm5We0kXhofq+8FZkPLzIfqV9h/Zauu6TzW5x/RYwHAuIbcMyRCzyXrq/3r7DfqZ0CUL6fKdbMMPYMXZ8y7dUsUaWaqoZ7M9pY7vMA2FDir8KWTqVr9iH2tOR3rnbP3NtfG1kP3T8VpIYZmJQvAb0VnN44ATlXTnxx1HxZRxvjxGQIQQpOyqTunUwhv8oMKRGmKFJPGYizWbAOZ2BbCHJjw6QebSniG42LDD5rz0OG0kFsrACsi66l8vMpOFhlPfR8t/l1crKXFNa6qIs0Uh8EyEuAWq8ZTaHh1BRPY1xlyp92gqfXgtRNXFLiwVYabp9KPJN7puRZW5H56GymjyqfJoV69WEIhirL2TX3as6JGEfsuCfsDbsD9C5zfZe4XEfcg462X4yHx/dD4uN7Uzz4hV/4hU/Vqv5dv+t3NcV1+NEf/VH+43/8j9+Tz/PdjB8oQP2n//Sfrj//5E/+JD/1Uz/FV7/6Vf7dv/t3/MW/+BfvPf9XfuVX7pkqApJ8Eyo7ZrV6B4Dj+ILrNOHDHmukRfVqv+Lio0B/ceDi5XewmyvsenMWqHiTYVxpH3Ee0/fY3uK6gHeJHqrJVdsaJkmdJCLJigyAMKfluwSBy5v3nC7uZx3nlilz5nfGmArQtkaHwgI+Mo4vmcZXdBmC7Viv3sP5bdNu6ee/qz+7uglpkJeazZiGmQWzbvZnOr6GQdAe3WwEV6DgYopmKlAnUgV9ty2ayu6NQGkdp+D0IoFpWoRPRwWnjcKGM8DQtvFVZnXbUm1sBbNg1hndF8bfbWHQHvPD4HQsFWwJrAes6+n8urKmnbso4PSmsk6tG2aQTwG+tgIOkAWczjlg4vRmF4+H57dcr4crmjMUdHrl56GAqF6pzmbWWbQ8RYdawOuFEVoBteprtuB0AaiNKzCRyiTEhO0zeZUrwKyXPi9eS767zi5eux5TAbrTmJmOhttXjtu959Wh40XwPM8U5rRoud6kkZso4LQyPlv5FjVFlIKEr3rpqr+8DNRd7RawdiDGPdP0ipQmrBvwBfyM0y0h3LDF8n53wVdMz5UV5sYhWXYZdpU9wALwi8zmnKfXSdcFARwjR22jNTMbzhYTQOdXrFfv0pVuD7ln52KKtauZJX0KSp/O6RQhSREup0OTeIQajJ5jT+g8dqYAbKXrYSjgdGXJnBSTYJZeEPCp6YSAykK9i4HbOHHMiWCMsD/tUIoJoi2p1826uYikLB/rVrjuMXl4xLRekzpH6owE8g6whjmHM2QvJqDAbCiTBmmLNEWBs7SGf9Yg7qE5bq0kPAocTAEOk2hRi8yHWTwXC6nris6/JRQwPxbprPo85r1TGNRJikajtLXm+Pp9VaVo5HVy3b8XjzUrkA5TrnXOSyD5dcOcAJgPsaRbZnQLOuvzNIlVYFS1z08lO1qTw6X+5cm+UtCyWS5kLrQru0slT6acuIuhAtIp58qYblnl8zEuQfVz4PTaWH4zTlzHkds4EU7kSjQJDHlO6nV/A+2G6qXY7FdSgC765bru6X6v3RZa7JH3mCUATLyb3ztN0rJcCurtOnBqcKxgkp77Ks2FgNOXPlapJxDiQj95RmbZmR4prF76yHYIXGzEn+D2leXl5Pl23HEdR/qLd+n7Jxi3Ilsn7GlnwRp8MUhc9+Yse7odnf/sGtQPxujG4CwLYDA7iJ0j9St8/w7D8BTfbTnEW+5S4EU48iOrC67cwKs4Vs3xjLZbpwJSH2eAunbD2QIMZzAGlXuy1j/Mnm7GQ2DVvTguL/1FBExbysBUAblcdkBTtLHzDE63RAW1UVyQLzKcRsO6j4Zs7um3S3Qr127MiX3ZX3oMG5tYkVknxxrLR9mIaVdO7KSUgwuuNj5aK/JlrpMC5mqdGI8IABZF/kM3hJhN3RtUQxljGItcBQZiLiA10uXZ4WaJj5yrubuSbk6lPgSWzM1PClQX3qJ21mWRephNjl39ueqg69xWU7tG2kMBRl3dMzOAOBngpOilJuIpJ2I8SuxgUzHMGwlM5Jwr8LVPoa7LvSv7fxYoXEFqeZfZo6evcULpfElWOj5zrEC0fla9r+b7tLDrOzfPxc8IUD80v9e9YT3OMh+p68TvorvC+23pvvTkaDkWgO4yi6/A0XaMWZigxwJSLxjTmdKRAA8KPqrMzNlfnZfueB1DspX+uP+7cO+56r2T0li6ZktXJ7M5oko1zjndfQ8C0L216TRsLpItEaJ2z/bM4PTGRVY+MXQR71LVmoYi7xEUg5jfUx63uCkRDiIn6DqR+1itIyEIeS5lQ0z2nkxhX+7VLcLuFyNQV/d8SmOEM6kaJgYja2FKAetmE/YWnDbG3utsUuNKldmwVq5hyhHXyHuQqIaJKR6EQBXDIiZWcFr/3YLTi+c18h6zxvisP936IS3uCahxCcwd4wATqfrJvEoT+7xilSy9TVWeZY2Qp1aF6HKTJll/EJDaakEUyj54hPEac8zcHaH3cL1PPD0mhnOt+F+ML8b/BuMHLvHRjsePH/N7f+/v5Wtf+9rZ3//tv/23+Wt/7a/Vf7969Yof/dEfxfoLLAmT5HCGyuZNjONLXsRRTBOt48p4LncrLr4TePLJtypAbR+987k/t3EenMc4h3FWkm1bXFlNYSvFGXCtII0xjMUlW4I86U9LTdKc8puzqN9kLAKX8o/WYAyjjNqO1vwOZLEO4Y7j+JIY96wwGP+I9fo9rBsIk7bKFL0nW8Cgdu02hpxnwPB0nLKMXnfk6UxApst2a5QmIPOsR6vyHRhb2NKFNe3WJ8c7g1HxlCB9BnAGSqBy0gb0QNtoe2ymYbgp+603xRCx/vs+OC3adar5mdifgtOFtXYOnJaW1zlx7/xFlXRoNXkFCNxivYDUFZQ+V9RJQX7nvDAu/ZsXGR6a368d9dyWNr7c8KZO7qXYzLsVuTDXHB/ncdZ3K4lTPAni6p1VwGlzajqgBhwd5CLgmaMEHPkzVLBzzMQxFW3cWdbjetdzM3peBMfznHmeI9dZAhw1HNun0LA8Z0PEWaPZUY0vS3u73vvtUEa9dytSOjKFHTEFrO3o/BpjHOO0Yxxf4XPksV/xgVvxzBpWNjJmwy6Zqju9YE+3cggPsKdVP1ZNZUdyvV9NSQi9W+H8mr57VKUuToFpKWw0BRRlU0Tk3p3aNs2ZURHDLSkeqmlSjEdivCOEOzFPUuZ+aes3+Qx72njW1rE2rjKj+3PJSJVgUJYZ1ZyvZU/vU2AkY80K322w1tU1RoJ1vbYtezpirLCnZ93pjjBYckcFpm2XsZ6qkpOsIQEBj01ZGNQpYeKxtFAeKkh9yjr5tPHQHO+94ZhmLd4Q5PKM5asv64gtibXtMskr0GiZSjvpmKWopEuvJmixyHikZIiTMIZIKu8xX5e26Hc6KviLqUCKxy72oXsstpOXWj735HctyNSsXS3DuP0c+vOpfIc+ty2MtyMWTvYhR2w2jOa0ffh+Z9M5U0XVndROCAWlW9mT9rjOMfy0u8waU+VxHrmex67nme1ZlznxMoquvoLiyhZVYFo1pscGnDaUzpBSyHJuWGjPtzJd3q+xdlisIcBcoEpHQrgr80zueRuPWONJzfmziImaN4a+6EjWQrNtdGNRwBBWNjP4xEUvxAaQ+9Tt4RBnDwP1LNj2gc06sN5E/Cpz+I7jo2z49nTH0cDj/grfXUEBqNsbyftM74RB3ftPB2o/q37l6/bwudV8xoizNaSuo+u29P0Thv6S8fiSMR94GY70WC5dx6XruUkTxzgyEStbru2iakkVCL+Ved8rkO1JMfbcOAdmnUpfpRMSwgxUqAaygFStZrlMeFuYuamCbupfoKMzts4ZBTr0Z/2uV0V1j3UO1o6cpig1d+MUTeNsBMxykT54+tTzrTSxz6m5Lw0uOuwx46zwtYcCenmfynU02JArm9omyxQNJFtkR8QkevbMmQ3/YmEDRyOfWdfSySQ8OrfTPRY1sJB+MBQgV1nUzFrUs+6yrUCWsqjnaxeIaRJ2r4LTC/b0LBunhcig4LTtpVvLr4qBtPh0xDQSbVdeb5rvpwSRiTHLnrqLU431Re7EzIXqTIn3cwNQL7sz5sLXrEfbbjhtdpSz6lAHsjX0Xub2Z8SnH5zfq86y7gydFz+lMAx03QbnN7NZor0hpiMhJ+5KjvLI92xdqrlKa9h+f+U5Banvs6h5QObjTYYCpa8Fp1Moxnwz4DnvERPqO1TvvdKbpubC2s19jj0Njda0EjSIsz+DxopNHrjGVHD6ooush4D3Gd9lvE+VCJOjFOhD9dsoZytBmIzMZZsxLuNXBuMy3QD9MRFilD1oMozNuVCD93U2RGOJOEaTGU1isiUGKCzqCVMNE12myC9ZcppIFkw+z5x++FqpFnWjB26Z/12k6JzxM0GIprBwxj/lrPZ03WNmjfH7n2XeC8xipSrnmBmszsj6NaXIXTGL3gHbbIpuuBhf9lkk1S5MV30YjoiMT8hS+NT7IVMKtdMOv0/SfTjB7pi5vous3qJXzP8pw2AWWNAX4wczfkcB1Lvdjq9//ev8hb/wF87+fhgGhmG497hIDnSYJMlG3z8GFGBMjNNLnocjvkz4rdmyeb7mg29/B3f5REDqzdXnY1G70hZqHcY5cCLx4Z1Ww2xttdWIQTRxM2M2rBAmtehPnyxsSYAy0cRVJs1nSxheBwSdDqP/FcaRtv/rppHSkWm6YRxfifaTsfTrd2d5j3SfPU0Bqm1lLQs/JDdstNnoYWaJyeeh/PvhY1aWSavZd09burz3KTCtVVoF6FIaiW2igVbH073HFuettgafJDE1UJnNW86f9yUTrrZmlySjZbgpON2CXRrMKHtaNf1q2/sD4LQxAvCc6k2fMlGd3+L6q9fKIsgBL1umSNpi9WbjdfNb9uKlHlhNEvW6NKD/6T2j1WvVmAZYF1MKPYenRomfVhhSmY9zj2ebMJ1+vPI54/3rrxIhrZa1sqano+V4ZzkcHC+PHS+i5XnOXOfI8yygtILTt1FATL3WejzKnF6A07avYM25oLDVbj6OzwnxiDG26jqHcMs4XpPzgatijPi+cayKtMehSns0pohN4B2bx2cTyxng0vv2kOOs8diATb67oO+2dH6L99uqLd12esS0e+21q+e/MiUaffN4JBZN5xjHyrIK8VDYUApSz/rTp+zpVTFDE/b0zI5eJCPNunza4rknckiRmzhxE8fS4mfo/QWdb00cYwnKyzX12zlxKkmU9VtSYU9XcNpLEiI1RDXpLQmLlX0mASF5TBoEoA5Fe54ZpP6sDOqH5riz0JfGBGtnmY/DBOvSld9OH2MhDH3teJmKpNH0gCxW1aKejJiaau2wmfCq+Qkskkc1HBawRPaVKqllzgOvrVFiK2vxaTIgdTywZdvTPbIBpOH1TOv6Gs09+BAYfzpawLqNJ04/9+t+dzpU0sMxM6cf2Z4nrhdd1nKUH+XAqzgW+Y5UjzlBBTWiguMGga2Mx9mh7m9q9Kpa9c5Joc25Hu8ucH5Tv7RDCCDHAzHcYmKjUZ8izk4460nWk3IoMUcuYMQs1aWsOdXKnjuhpODcG1i5yOBjNafzXjR/rc0cJ9H71YLp4CObdWBzGekvpAvg1b7nwzTycdhjzYqhfypFqVbew1psJ/O899B7Q/cG8h32MwLUr5vf7Xd5cVONEumv6Pp3GPon7P3HjNOBmzQRyVwZz6uWRV0S8li0Xn0am5csQId1jQxRmbMnxdhT0LkdD8V09W+bn0/jwlTiPVtBdAGrBYhJZWeegepohDKqcMMpaJUxC8D6dLRm0NAw+ItUD8i+MprMHkOfDCtrGHziqZvoRo+j42vxyJ7IDkOPwyWDjQ6nTGoX6JRJ7VIBtQwVtQp6ZhIky4iArHNgLuZvmhdFE2cmaAHlFZxPzDbOHtMY/zXMwRr9lzPXsKiVMawsagUdT4klYjC2FzA5jiLNUdZmYU+LAbK+UwWnCxjtu81CWswYhy2xg2vuB4lhIyYnoglifJwjNk3YKKx1vWY9pgL6ygqeQf5G5gNXZQHlfpk59/cY1PVejSRrcDZ/LoD6ofndeSNdGV2m7zMH78i+x1jJJzq/wfkVIdyRzMQhRXZp4gOz4ZHtmZzEfdHkuVut+fwzReQ14zUs6u/FaAHLmUWdKmCdcyq5XSvvod1Lc3xRSUa18EsFpzWedzqPDPXvxejdsLYzON0arMs8nc9aOGRCEKA5NMbQMIPUIjtYOto68cgJITGFRGel+NSSdzorhbeYDSOWrXFV6iPaEtunjDOWlBNeZ26mZAMGsiWlgCtrbcuePifBpSOliCvFAtFcX7Ko1SfloTuiZcLf85KqTOlGDqT+/jxrevHahjnWy/NKJaW+jCNzSEH0unNinywrawpAneW64lirWaJx3GRZ4cX8V9joQjRM0gESbun2I8exp/OwOwqLOprzuMMX44vxO338QAHqv/E3/gY/93M/x1e/+lW++c1v8ou/+Is45/j5n//5z/Q6stB0GLvCGU/fP6mPKzh4F675JBzojBgVbMcLft9v3eA2v1kBavf4S5/vQJyfpT4aZuWs42hrMqvJoYJhKQsIPUXZylwWNoK20qRk6nNSNSGZ9Yb1u1boWrffRVJ55mPX2nNWFvXcBjlLXMw6pykeOY7PGcdXdMjiu129j++u6kIOSHLXApkLiQ87L97NZz4d9oHP/OnjBJw20oZnSoKi4HQ7UhIZipj2C3ZkCy4vtAZzotXvgTkJMvW9banGz/rTbeB773hbBrUC07jaht2bh8DpYqiUUwUs76JovH0aOG2tfy047dymMqcfBKd149bNPs2tUYvHv4thjMdYqhZwO+bzOycuDxU0ZoBUAgGAbQmKROJDIkAtCMEMUqcFOGZF2sM9XGE1zpEL7d44S44JrL0HVldg+gxrejxabvee/ej5OFquc+Z5MTd6FSfu8lR1xhfsaQXCFKw5AaelJVXZZstjUPDGub5oMx6wxuLcCmt7UhoZxxti2LHF8sQPvN9dcGUk8Twkwy4jzOk8u5ADVRt2Lkzl+vgpOH3MkYlG49H2i4Sw85vC8O+l9S7cnQGb1djsgTa8E6MbvZeqC3tTrNKCSGXGJGXoiT6lGpoqe3plCzhdWC6aiCzO9kkyJb4Euc7nmzSWwkNcsKe9W9fj0sRbwLaLBqSXANt3VzBcEYeBMHiyN+BNZU07n+l7YVYChCDA2GQhYAjJYlKHjSL14SYxvbWs5Px9Bgmf143K+KstqUsWdQtsKQMzWSO+AUZaSm/zxD7PrawL/cVsmKKlT4kc5WO3t7662uv6KkBiIhaWnyaHktTL/dtluyi0APU+htm9XXWRK+uYZcKiX0tc3ZT/34MYmFu58yJrN+Uh1e88lQ/Qn2197fI8M7/LOV1rmIHwdjy0zp6ytk8hvqo3qwCucVy4Ak7bnqfWc1W6DnY58TxJkWZKsSSiy8JWqzfdtt3LHiaFuBmcLkUuv67AtO+ucN0VttuCW83AboowvsRqbFNZ+U3iXPb69tj12HQ9EM3YZWu3tmavbGLlE+shslrHBlhI4mVyTIxHW/efvk8MF4nVNuFWhjTBJ6PKe0z0q2f0/WOMlf06W1tZ1KYUfxSgfpNx2ij0eYdtJD7uy3x4Ur/GdVcMw7sMw3eYwg2HNHGdAu+7gSeu57plURvRMc0pEOOBlGLt/LPWi5Gt3Cknn+P1LL0WkL7nN8B9kASW+0rOUYBp3TNsJ0BVmjDRknIABU2JJfAWEEGXK+3OcO2dZUyNmc+BjzoXdMxyEPPxVJ14I0XkVUoMPvJ0NeKOHd9Kjj0i9bEvcnJ9MtwGhx0z9jZzAaw38eS+SNgwS36g5z1ZJgXcWXYJOSPGjj22Mqg7a5liqrGwdKckEgaTW3mP5tyTUXXbT7ujVSKgvWYh7otMzHRitl30w8vrzp1oAk53fkPXbarGsnZg5ByYpnlPNqbRPS7FE7IjGInbNHaoa4MtHRa5xP1Zz1XDoDYijaJMWtWhfj2IOxNkslvKab2N0TtbdO1Fhzp1Tjqcui3ONSxqtyOHiRFhkAKsreMRHcfilROTrOlt+cFmjWc/RerjdGQ5/w/JfJwb5+b94iVrsUPiwLZrNjbsaUi1u84ZU31JlgzqeVTmNKl2ImmXEiCd2G2Rs+whQ5H1aMFpv8q4zmA7U8zWxe/GT4k4GabjEqgGyXWmI3RD6Rpw8hoCUkfBJAILkNohF2edpPN0xLLFLaQ+lHDlEK8TlesJCKOfhHTSJFu7/85dkzcdLYs6J38/ALn32uc8jpbs6fkayz2b8qeD1KkpmKRCRtD7WeXIdmniOgeuTM8mi0dAZ3IltaxKbLSKrsTaRljpTbEuk0VCaHpJt98TQr9gUafPiaT8Hz2MecBD7Yvx/Rw/0CvwW7/1W/z8z/88n3zyCc+ePeOP//E/zn/6T/+JZ8+efbYXynEBhDm/pW9/nSP5kLgJr7DTnsE4ttbxyTd7hkcvcJe/ib24xK42mNWbm7qdDpX4OB3aetuyixRcHrOhyxJwTFEAmVY3alIWNSzB6YZ5DA1DtGUw5Rm41n+327oulnNibFCjGVvMtuprpSNTuOE4XpOyAP1jTqzX74nWYRDGYtVtbsBpOBagWPQaU54Dam3JBXWdPk1uZ0bYQ8vszBuY2dMKTs9V2FnjqmVThBJQkBMhHmTDqa2BbUpQAuS8TPgrezu3n8HWcwm2Jvezcc5ynLZuK4taja2qISIz461t3VRpj0MW1uUbgdNFN6/zxQjRrei6R2fZZFbB6XoznGmVSieV5qr1NRuqfN4hMgKvqVY3gM0MtJxnB87av4beJtbRlseXDGotHsESnD47ToHqCkzPIPXy97NedRrTPdb0dLQc9pb90bMbPa+C43lOPM+BXY4VnNZCRAtOt7Iep+C0c6uqk3gKTsv8dBWcTikS474cnrCFUo6Mkzjd9zlx5Ve861e8Zwc6m5myYZ8N+5wXxogLw7nCnm5ZX+fA6TFLi6bqx3p/gfPrylYyxlUJjpxfkguL4BywDDOr7XS0wHTbmt2O1sRFv6c0M2RaeQ9lT6+NFXmPypaZ23Tv3Q76PZdWbESm5yZO3KZJAM7KnhZpAgWnhSVdzBHdqkpu1GKhW5G7C8IwEDtD7mZwuuuF7dT3oh0pyjSZcZyT15AEpHaTx4YO5waZ/xbM59Cgfmh0rrSAFxa1aCNmDiOMg4BqSwZ1JnWudHn0ROCQIiMUuSwZijXGLB1KIYjmonEJz32vh/Y6CXhCaVeXPbrex0bmm23uYwWk6/qbIhOZY05zwcjInBRg09XuHmdEdme+z+4zOO/rHr6+kCqFGS2qzlD4qUmvbeICw3J/U+cG8szy1/0qkmvutwCwFSC/B1TfN3Dc2o4L57m0PZfW89R0XBlLD+yB5znwPB4qeOH1vQsorVJGoZxfV3TzRbJqzWx03M9yH66n75+IPmp3hR3ehW5D6tdklWpKCRNGGF+KKV88FH3aY+mqmNeWek/q+YQGjLYMxYRSDSh7pGjVA2sr4MJqLYzo/gL8Sl7J2sR0zHTHVJn+3ZDpLzLdRj7ndJf4VoLfnm7Zm8xlf0nXXWJP5D2SFRPezosZ1ptqS39WiY+HX6d8nbxcVhZ11+H7x0Xm4wmHwwum/JLn8cAz23NlPE/9asmizkGKqKWjRf1CqLGeqVwAJQy0Xiin474PQ5FyeQ2bujUVBpmTp34FKU1k6wnGYlMQNnUBqkmlZJ4RqZhcuhUKtmExdW5p/Nd2Xljuz7NZ31w8NqDRj6dhUUfL4CNDF3nXJ94PF3wrUY0Vexx9lnX5GKysUTYzrBPW5lrUlJFYRukCUnfKRimxVCygayQvWNQdjkReaFGfY1FXoLqSagBd31qZj8XauJT5aK9iSlNlTysjNuflGimfW862tT2d39D3lwz94wK8SgeXtQNheoU07TfjbOekYcwJmyLehLpWCJgJvenmrqvmjNa9qQCVCx3qFIkny/AiV9HzYedC8Nsa1sK6t6y7iPcQO5nT0sGyLWSCFc72RLMnMsetl7ZjYzoOTh4LZpaRms/W6TU/PcqWb/32xsNa9O2cD6QUSWms8aPIe0jB20CV9xCDRDUibohGDXu6ak+nudNQ99y5k1a/MoOPeJ+xhf0sXwbbgV+7Yu5usX2s+YbrEuEgrOkQbDWQtjETJ1OZ1zLPE95bfEy4aEnm5N7J8jn6bNg2Uh/R5Cr1oR0SOo9Tvq9HDZCS7NNv4hNw75oU+RW9JhQtal2SzsnRnZf1uM+eXrLlT+OwpptXXpScZwJeS0hIRoot2vF1SIEXaeKp8VwlS29ylflYF5kPkQv02DB3xCppQtZE6SgK0yuG/S378TF9nzmOAlLn9Hbn+hfji/H9Gj9QgPrf/tt/+1ZeJ8UjqVnsjfEVpNbgMpVA5VW85ZvTLRfO85svnrD6xg1++yFue4ldb/Hv/+7P9yHc+VOpzLDaElzGDDTDlA0UkXzIxNhuXIYxC1A9VpmPmUE9FlBKW+dP2/3qOTpTW28r7nMA7yt4ZQvYnHMkxSPjeM04XtOV4Hk00A/vATTtlI3Eh3Vk66qhXk0eyvtWLe6ca2yx0Nd8g4DjhMcsX0bTxNMnN3IbKMik7suBnKeqB+ihangKA15ad601ywAXaTPWpEFAQgHdQ2nGMfn08ywDL5rfOjO/Z2VLmKblnBNwOi+lPY45SjJf7osHmdO2l9bnM+C0766qGWLVnK4H3ADQaWbNt6YTei+AzM3vdhjja8GhHQvAMd8/p7BM3mKmaB7q7zJrI+1zOodgCWJ/Zv33BpBWcDrHtGBOq6xHGsWYJByorIbD3nE4Ou5Gz93keBUd1xmeZ2GT3aZwD5w+pFjBab3WnwZOW9svPrZrwBugSFrsCzgteqxhesV4fIFJI49sx2M38L6/4H3rSTmzT6ZIezTrUsOerpq1eQaslSlyCk5PMDOnCzjtSueDtHbP3Q6q9VgZQs0cbzsY5guzZN0vOyJajpoWvIqxKrOzc+GoYzOiN2tEomBjugJMF3C6AFE1uTy5ner5gaITmtilKA7fRb5lAqxRHV1las1sDuf6kiAvzREBjN8ShhVh6EiDwRRwelgJOL1eCTjdlSk+BflZi6Q5iX5zmETqw+97TA7CpLEsC1ff5Wi8R6tedAiZwyQAtT4OkhBPnUHNPicDxxTZ51z0pudCr/ydIRkx/AnTbAKZ49wlUfX/EJ1W0VXMAiQVsGgqBRab5eeUc11zjycFwipPYzuska4kX4xm23nYGvTJsd1PpNougNNk6dT3QEGZEI8LoEbMv2YAOxcAOy24mTNwbQpLR0GOmDOtiZstrE6LVGgtM1B9TmpEgWltSffGcuUGLl0nAKTxbI2wwiLCnv44jjwPR4IW2eWgUe1p3d9SAf5PNWH1/OraJv8e6If38MM7sHqHuNoQh9UCnHbHgwA+YUcMO8L0ihDvCGE/m6rpuS3nrqwUs7yHtQWQmLWn++ZrXbSnV0NkWCeGR9BtHHYt65ztJ9w+0h1Sve9dZ/Ari+0taUyMd5YP88jH4VDkPR4XeY/789LYLK3b9u0Bz286nC0au+UzlGY6ALKzIvPRbegGMUvs+o8I8ZbvTPuyx/S863puuhW3aWKMIyOBlCcxpFM5Iy1EGC86pzkvwI7X6ZyetpLbey3m/t5z26Fz0jadPDknUuk8Aki2K2zqUeajFT1YARoEpJY9Qeaadgy0cj2YmXyi/P1Wfx4oIKfIAIB258iIhUUteYVlINJ3iQ9cYsyO57kYKyIASZ9hTBYbMvbouThGukHBq9eD1H2SgDqmoqtcPkePIRrosy2M6qaDMM/rhfzMPRa1fs1miZ8+arG6+fdZaQ8S5JmVrfQUa3p8A073paCiBuIgMdLyPZv44wSojki+cJdCs244dqkwqZGcY2ZPM7OnmddT1aGez8mZY9f1s5yD78UasOqKzEefyb5I9zjxxJhlPtbYcEvMocR7gZg9G+sZc8/RldzFZMgzQPum11yu2axDjXHMpY7XjzdlWNf3OmFPq2lrC0lK3ijxoV6rVtqjHcqeVnkPJXIsJLl0/0D2yc4WDfjGYFeHdUbA6d5jO49dQZoCbgy4LmKtaFSbo7CqVfIjThmTjKzTTr68T3TBEFyZ42dqLmtzKvWRuMgd0WZ8sngj3RAuy3xW+ZxkImSJ7XIKZGNJ2eKa9XjGI+z878/of3I6XgtOn2FPKylEnvtZxXF0HRGQ2eSZRf0qjTy3HVe5Z6VgfyPzsbGeoXSUJSgRWG7WsUxMgSncYA7PmcYfIYQsLOoRwhcA9ecY5t798cX4/o8fiisQwy2GUFm7emNZt8ID6/K8nBOHfeQ6HfjG8Yav90/ZfOeC1XYnLOrNFXZz+ZkME00xRzwdmvSK5pqpGtRq+iFmbTNIbY0Ege6kOqngdGQGp8dGY1bb9rTVtcp9NJqX9+Qo9Hw0X6LV3BVNxqHqT8t5C4R4x3F8QQy3YlyUM9auRJv4FBRRg0Sd4FY2F2s7NIyq7f4NMNgyXo0xC9Dx3vnNLYz0+pFywGQ7J+cFkKa0WdosE6GjLSYUQNrIz6dmTl0JZqpxBYapAGzHJGzm61jM94xuJ2reKGf/tBCtQad+Bm3hOwWnYSntoeD0Ic3gdDWrQsFpNb9cgpUtOO27S5H0eAicPseWbkBpkYE5zE/PgXiOQfxZh1mCg+14SNvbmEZ/9YRhpPPIGTGosuV+HMuchCV7OkfI0VSzw5xSke2IMvfPHGOOUWQ9yvNbYLqV9BjvqMzp8WjZHx37wpq+jZZr4DpHrlPgJk0ccqjgtJoI6ryfcroPTp84zCto00qlGGOrXAZACPvaTdD5jUgohFuOx5eEeMsjY7lyPe/6Ne/bni2yTu0p0h4LsH8GoxW01iKargHnwOlsbJEbmfVgY5qIpR1Xtf5SUySBJegs98cygZ5/P7Pum6tW/p+aR2TO5qgFvNJ9waw/3RnL2vrquC3saVsdzntU7unMimVm2aY9s1TPLk5iJFSY5N6JialeNwUptdPFuc3Mnk7KrPbk4ZLYD4TBgje4Plfm9HoFFytYdTMAPDoYvQLF8nn3SYBdkzqS77BpkFUoAA+0ZH7WIexKST9VgxrOy3yoTED2Bu83WDeQMSJ1Q+YYHCmplmK5DzMQLdbk4nA/rwlNPQ3H3F4p60ShimfLWBIslelo5XXukibcSXRKS7HX2U4AN7+m89vaoSDa2SJZdM64rSZCyiyqiVGYwa6SMNkHAGtb5AW07VilB1Cw2hRwNU1lnhRAr0QFav5X2WvIDDLMcYyA1HkpDWLMg8C0Jukr6xiM5z0/cGVE0mMLrI1IMF1n+ChNfBIP3MRR4o3yXhkWnUGtDNApOK1a+nLOB5wb8P4Sf/EV8voJ0+YRYeiJncPEhE2Zbr/HhgmmW6bjJ8KKDDeEcFfXRZGVmJr9ZwYj/MmxtuxIbc3uga6w35Q93W08/nKNXRcJn26P7UfSWphvpgAOtnfkKMXN21ee3wp3XMeRbniXrnuEtSrH5chNbNqC099/gFqY287OxTD5UJCtIVtbZD4eMwzPWA0fMY7XfBxu+U7ciya58bzjVly7sRTukngCRPEFsFZAZWc9scqtLY/zde3754BpjTnq7+wSxD4dMg/7RUHJ5kAq75vSSDKWaBwmHkmpEDaygNEmU0Qt5B43hXGnx6HzimbeqayMdt/NTH0Fs2DEFMmtuVNsSoZjsAze0veB97YH4m5FDI7rHGU/Qgy7OjJTshwDjEeLtRE681qQOiVDZw0xOvpGPq0ve56A1TMBo8ORTGYyiY7CuDS2sJ5nko8Cx0uzxMJ6LuesHSmLUeUsVziDiqkYI9LEkbM5YokHDFjT4f0Fff+IoX/MMLxD3z+l698RWQLjSeG2vP5Sm7glUrRZS0b0aKcSw+9TqOvFLhed+pxFx7uMmUWtkn+2gtsWSCfY7eI8NZ/jbc//lKAfrHRneKp0T/Y9pqzB1kphdrQdJo2E0in22EmOfOk6jnmWq0sUlig8cM1bfvhnG6/Tn7/33BMgdKlHrEBmuebaWZOFvGAAX/Y/lfeQjtiZaFTlOgt7uspW1c4+OUy91mpkKkz6EyJaut/xaazF9D2m77ExkscR0x8xbsTcpirpFqdcSAFGustgNpt2IgPno/jM2DznSIpZdBbWychacyL10RlLMq7gERHXsIxLtAE5EM/4CbzRNSpx1LlRY+EUa4z8OnD61CB9vsbajbnsmHlo5Jxrd3oiV/a/ri6as93EiWsbuDaebbI4m7BF5mPNLPPRYZjIlMiqic8KgzrcEY8fE0cYR4P3Qu54Gyn4F+OL8YMYPxQAdQivMOYCorLuhrpYtSC1LjLHw8d8HEf+e7xjfdyw/q0V/cVz3PY3sBeXdN3qc0t95ChsF9WL1nHOrVf14Fxpg0vmvpBBy5we69fMnlUAaCJWhmIFqhv9qpkpfQLJlJaRKoehAKYdakAn7OmXHI/X2CzmiIec6IfH0kJeQEmV9lCDxGyd7GzJFxOzIv+BJRHLZ42oNqeep9ZQ8vMP4Z5IsBALoB0rKG0QXTeVgjDMLI75FUp0ZAwhpwpSzyxn+b6yjg4nTNws1+KQIv10x22cxOBMgbpTVPpk6OsCc8Jx5t6p1XYS+xQFtGzZe7llTttybbqqQdx5abl7CJy+t9k3jOkcD3VDT+mwaIE61QEO4S0xqE1h6D+oCzUzLdpRJVHMDOy38h0rF+mNFRkFtHAkc/ccezrHVDWlFyA1LOQ80lSC2DPAdE6QRmmlO+wEmB5Hy76wpm+j4zoZdjlzTWKXBZy+TZOwRIsZ4iFHphRncJrz4LTqjCtjs21ZVuamc2I2F8KeGPekNBY22kCMe47jNeN0zZAzj1zPYz/wnh94aqQtbVekPRbr0il7msyU5uLJqZGnsk4FcJrBgZwCobTVz4WlzH0t+JNEcAFCt9q98/3SDk2AtC1Tn5cKWJezlcSosKyksFUCyMqeFnBaDWx6KG178mrWKJNp3h90bd/nyG0Owp4uAHVAO4JWqLErzPNLtKeHed1tj8dIgjgV9rTtctGcnsHpzSAmhL1KYXTSFjgzvTMhwJhKK2jXifxBihI9xJG3MZwtBdwmHwkBrDVModxL5fJqApYdUlixHoNjn0QCZ4pmTqxs6+kgIEsXLTZQX7A1C1K9z94IoCNgStGsz7OO+m2aqtzAvhQSRkOZTzJv1MxzvXof79dFhmU282zlAdTjIZU1VMw44yL5VfA5VSmbWRtdXiPRAtWnHUNVAgRO5lBs5styrsxM6kKYp+0sMpU1LSCJmcGSRh+1ArW2gNPGsyoya++bnitjWBvRY07ZsE/wPEc+jkdehiP7FhBgBqeDFuMUnC4AyDlw2rsLYfJ1V/j+HeKjLzFut0zrnmS1yAzueMQdj5j9C+LhW4zjC8bxJTHuhTVd2rhDPDYFMily3zteVO7HVRCummMBfZH36IaMWxncZsBut9jVWuTi+h7T77HjWLtw1OMkjUfGO3h+M/Ct8RVHA4/6WW6gLSxna8nOVg1oZ5bz7PsxOiddCb3POCts7hbjTU7WFttt6fp3WA1PORyfcze94lvjHV92F7xvO961Pa+6FTdx5BiPjARiYbSrFJPGsSZ5ztEYHgKXT/dF7fo7BaXPMarbkXOQAlpl3i2BbvmaiMZCMSCOacQmSi+DSH0YhMQgGvF5BmkbqR39d2usrSxN2YegL2saTVyt8oJjsoRoScmw3QbeS0cOuzVjskWLOsnrlBxkSobD0WFtpidVkNpaoNNzLSB1yokuyXfRrZ01qPsSK4vOssyXWI5RjRJPWdQK+H3aECZ0aswRl3um/hwKON1Ke7TsaXktAIN3F3T9I1bDOwzDOwzDM7rhHVz3GKwnxwPGurPdLFXyIS/XWH39kDNTiuwbqY/eWPZZdMC3LNm2rQ71zKC2Fa49veMNApbV/eF7MPfHmLiwVKNEvCF20kFrnZBdvF/XjrwUD0SieGy4yMZ51sbyyPYcnOQxKQkJQKUpLRWr/e7Tw5NxDgg99bs5HafM2qj7QYqVvOAwdFa8CNSHwDU5no7aBV3yxymlmhPfZ1Db2llbP0sxgLY2F48NWV9tP58p2wsBJfc9OFe8dI4YJ5kDGJjk7wMG22CvytDuXCqxkmU6ASt6IJnMOheQ2ojUx2gSg5HiU8iJZKzEHUb28pwp/j8lnklB1sTm/Fvbw+LfrllL3wzGOifxAefB6VNpj7ngOMt7fBqLumU418+A5BCqIx1z5jZOvHRHnlsvLGpUxgfWhY1+YToGY2VeGAWp54KX5EgHpuMnsINwIfHzYYTwhQT1Zx6Gh+OEL8b3b/xQANT7/W8zTcI6Mcbh/VqS+qILZozDd5c88htWq/c4HL7Nze1v8f/Z/TYfDpd8mJ7w//rPV/yBj3+TZx99zPr3fYf+x34/7p0PPvW9cwwCTMVAnkbSYSQcDFOwtTIK1NY1HSMS/LlsC4uuuDY3G5cCFzNrem4DF91hAXWq9nABKBX8Ccws6nufm1kKQEyFVnTdlqG/KgZkwoybplfs97/Nze4bTNNztsYScib7Lc/e+cMCRBfAUrSrV2KoZ4XBk3wnILATEz7n+uJKP2sm7wvz0yFGEC1T4rRpcNmAf+6oStKNBqTyKjZrq+QyyM3lGmVgykuQ0+UZuPYYgsl4kyS4sEABrEE0xlbWLZLQr3QbXsWJ5/HAqzjyKo4cipamHo++lyYamvz3NVBdmmlocWKXQ5ECEAOpXZoKGC6A30gu4LSftTf9CueGajLXdY8Yhmc4v8HaVWWCtGBXjgJAp3BbN/BT1sDc6rZk9wHEtwFguRWGiHVHTLx98Gn1XJ5I6rgSkVdHeyQ5A1j5xJXxwmDJSbTTkI6FqTBHQyiavwVkNrHcXwUwOJXwAEjj/Pw4zUFjnEyR8xBg+ua2425yHKLjNlmus7S273IUvemiQfw8HAoQJgz5FtRN5ZiSESmIU2Batf9O25VbJmdKR6ZpJ+B0jvTdJd5fCEhw99scjx+zAZ76Ne/3F/xEd8nvth1rI+fyOmd2pT1RjRHlu7jVC6AeFnIIqtN7yImpAE4GVxIDWxgMB5Y6uudGC6qd14o//RkafV3mJMAYTfwFeMsFDBPwXFtOhV21Lqyfd7s1z/yad51opW4LMLA2Ak53J0Up7ZoZs2EEduXcfTseeR4OfBT2vIwjtySwnTC2+svGHPFITNPc/eAvpa0fZfSUdne/4Xh5ybjtsGsYLjKrVWZzAY/WcHUB28GIuVEnJmYxwRgz+zGzO2au1/BylbnZZXbecry7oLcOZy12PIB7OwA1zBq1rjCoUzCMZA4HYWWt+qUONd7Qr95j6J+wdx/xKt7xcRp5OV3w5aOlv4iSpNksracKluCZgjCHVItzCkt3ek09qgFtDrxKo+iCx4mbNPEijkwGrOlx/oKL/hF9t61rq4KF2mEkhd4XtQg0hR0hCksnxZGYjiW51UKq3Gen97O2/BtO2MrMYLEte9YCzGr2F9nC5C+dWZoG67jnB9F0Cy3+3byuw7IqibjuX+qh0HYVyPzIXPpYCwj7ZHmeDN9IE1+bbvjNccd1HDnmmVE6r3WmMNT7AvyLn0LXXVZgWosC6qfg+3ewF+8Rtk959eUn5HLYZoJ+N7G62eFffUS8+y32h+9wPH7E3f5bxHionRtABaZTAaxTntgay9Z6HrmeS9fz2A1ixm1c1RtVkziR+JD27L5P+FWmvxpwV5f4J++IF0q/Io8H0uGWPB4lthxH8n5PeHXL3XciH35jzf/3zvON6Za+f8rF+gP61Zewfguf0v4cv89J66q3rI1hO8BugL6X2lZyoldrJ4fzHWn9GJ8C21Lo/tb+2/yvSfb8//fFu7xvevrukg6HPb7ko3DgGO84HJ+zGp6WGHOFKwaKOWkBZi7UnAOeWu33FphuQZAKYNslq1p+nrsNdbRdEFJYWhPjWACQSIgHkhsI8YiJnhRHTBqJMZFMJGSAjKW0wpPBLEFpoAKUq2LQuzZW7kfgiUtsfGRKhtvo2CXpdALJLQ7JcAiWYbI8ehz40vrIZh3YfLLhN4JjR+J5AZivihb/7tAxBct6DKzWCe9T6VbhBKSGWOJANU90GSqtsABVlLVCoiov4I1pvHNMJhVijEW0ayujFuq+/7oxGyZPpCLFoGvuXOjWe2SOzg0O6wa22x9hvXrGavU+w/oD7Pp98vBIYL3pDlOAyXF8yRRuZV3XTjTt+ioUApURbHORCQGqWgm0mDOjzaxtz9o0RpNGij1rY9kb6doaUmGp5nTvVMh7FLA3jZDEa+Jtjpt95NGl4WrtuFon/DoTBktYX9AfZf3tukv6bkeMBzkvIfE8HBisY20d75qe99xQCUCfhAO7ODFVWSo5DgqgmcsVao/ydJwzz1waodqT381zXv/djiV7VsHLY90fpIAZMOTaXXdhPVeuZ2N93QNbV50xi6H4oeTE2iEZcqpdQ9ASliiycXPsAktZtC4kuimTY6SLB5GsvLzCri8wzpMvA3k8Em93+N2O/vbAtAtMd5nDzkq+coK/ardEykm657ALeTTbAOouWhyuxnSHHLCxdHqkIPlXimBs8fJAJErjkWwkl7QpkFyPcwlXiitSiJb80r3GpP7caKUnWwevU2BaiQK6TsdGn/4hgkDbySvlRFM72ef3pMlKM6FIUL2IRxilK5xuS6TnmRWZj6tsGI1n7wau/EAIB25zIhsjncU5l+sQOI4v2e8/5NG3r3nVXdV3NV8wqL8Y/5uOHwqAOsTDYsFJ6Yi1Q/2+AKr9BcPwDjknPjl8xG8eb0pb9mM2v72hG3bY9dcwqw2mH95M7iMGcgykcRRd2SDablXzjVw3XR0qJ6AgNMxmGPVly+/UPEvYiapTlStINcs5NOZjebk4ajIb8xzOyYLpRNrDquTDGu8vAAnqpumG4/iiGKPJa4wkLtbPWK2/PL9+lVUpDLGiP52dK0CeMNvVHCozVba3Aqrbwvw4lWR4k1xKq+oqpdEyav0JWNUef61yNm+pYECmmECV4rIhl+bL5XDMhhetQc1TY+ndacV8LAHJfVXwFlBd6gnOf6+643NAc0buIedGc9pX6RZru3qNRdLhoswLf6+63Ep4pHgkht0CmG7ZfjNTaN7U5TUSMU6feu0+dRhHa8L1usrm6dVpARodonkuDNbBZNal0KC63gogxmxEz1ZI+KSYMTELe1rPE9Rsv0p6FH3pFpjO0VSd6RAKa3qy7EZfE8cdS3D6NgVu81SlBGZ2vDKQ8wKclmTqPDhti36zztMWnM7FbCoVQ0vvVnh/gTGO4/iScXyFz4kL17N1He+4FU+Nr0a0I7AvYLQypysbpLYsxvpvLaBNKYokQi2mtClbIiVtsz3HCdKR66zUxM80Xy2Qp/+W+4HFPbW4Z5o1SNbUVPkKMxgurJCV9TxyXUk+XDU/0wTCngGnU1bHczGC25PZ5chdYeXexqlIexi8HUS3sdEMj2mq/gCzRISyzWcvAOtWRO/InVgkeC/A0KoX1vS6o4LT25WtAHVMmd7lwnZUljGEkNlfeFyImCRMaqbvHcsgF5BaZD4ynV9qUBuXsUU2w9qeMex4lUZ2eUMIFohVDkSNhsdkJbny4HImlE06Zml316LBmHNpcY8VnL4OUmTcpYl9igRjcW5dTbO839D5LV23xRdpHIDj8SNCKIB0uGUKd8RwKACnStQIMNJ29TjT+B9YW0HnvhRCK3Oy+Vn3isrWKq9Tf2ZuqQeax04YXSV2aI2q2p9bBljbpVJB2Pr5qQl1Xws2id4musLKSslwiJbbaHmetVBzrLIpp/u16k1b40txvS8xXvdG4PTh0ZY8lILUlOn2cQFOH/ffrMzpEG4LM26qN2ULTucccDmzsp6VFTOjje2qUWrPXGSez3dZG0pxxMoFxva9SMb1K0xX9Mhp4p9xJMfItAu8+sTxzbuB/xn3TMaw6R/RdVuR93igy8jasw9/X0bvrDConbCorZWPKez1THZWmN7Wgh9w3RXD8C7OXTDlie+EPb8V7njadVxhec8PXMc1dykwpUAMB6I/lEKsw9mOaD0m6dya2W9wnjF5ysY7BadPgelzmtStjERdk43DNB0vKTliHPHUpWgxUhohS9eOsuxMjT8bRiSNHBxmLgqhhaDMykXWfaCLUoCL2RadWO0mM7IfKdDUZTaXkfeOB15dX9TuzT1i2rVCYqMpWezkmnsqVYKjtRnrDDZJAbCziZQcvU3EVLTYc5FZK9mAfn6V8qla1LS61FRZvDaeryOfp1jnUsRvTRMFnB4bcPr+MFis7ej8hqF/yjC8KwWg9fuk9WNh/E+TRAY5kNJBOi2K/E+MYwNOBykuNjHKKYs2IZIfxwJSdsbSZcu+nJ/WNUTZubK2z2u9sozbI1JATM+F+R5o0o4hS9zgDb2XDgmV7hHSSyu1JPlmMgeOSTrFblPgiRX/jkvrubUdexsYUywkK8ldK5M6a51DOdV6rOdjunPj0+QjlkC2q4V/aMHphi2fAioPox01uvfqNVJ5Dx1V3gPN55tOzgLGt4ek+3U75vk77xbWioZ0OGSMS9h+JE8juR8w3QrbDeR7vlkHIIgvjt41DbhpHdgkEmkABJhaOn4ySBuIZapMasuIFM7UMFEKTplUCiqpKTMFRI86ZyPSnMkK4/pkWCvAscoS8kBO2BYMH/qdFJzPg9MptTnufWPk141S8lo+aIpkYBacQn249sUU/WM7cmU862TZWum8XGOERW09O+MKoUd01Wt3SJH5mKYb/O0N3e4R09oSer4AqD/X+EKD+nfC+KG4AiHckfN8KNqe7mKHcxekdKwtnsZ4uu4SgGH1jBeHb/MbxxsuTMeaR6x+64L+4hPc9uvY1ebT5T5iFBb1dCSPI3FMxEkqiy2DGlr94HlDGrXtzpwzTaDRjTsBp5kZlFOOLKQ9mkD2NPiqiV4BhExJ8pxf4/2mJvtyXm8Zp2uOx2tyHlkZcdpOtuNi/QHd6r36unUyG1/1pzXhyNaKXnUJTowRm6XYgOt6nro3bKs4F2LNsPR5FmWb5GYzQ9itvUgmk00xR6lvIq2H+YEAGJrqtlm28vZNK5bKruzSdM+lur7OQm9uGYxUDXKUOT/rTo85EvMMEraa07awogWwLMaIfv2gNEALTGt1OcbbBVt6uYHPm7jonc5BW4wPBwhvPKzHkKjmmycj52VIrmfsFHRpR8wS2FlbCiOm1YNTlutsHJKSqW7IudUbaEBp/Z5jJhyUPS3AdAjyfTxaQjAcp1lrep/fDJwOBdiN+dQgTIsR3T1w2rvV2cRbW+LnNkUBp60VrUVbjJ2m8YaUD2yMMCO3Ttqst+XcjlmSV70vW+1p1ZdXw5eFtIeyplFeUcP0aTof5lEApWae6jXXpE+BvXPyA0CVIID7uuRazDvV0w3zolLvsFyAxME5Ll3Ppe3ZKjh9IutxmoykYno7ZpX1SPXrJhYZlyw6xsJyX1UTPbndZH5h3MIcEeOhCcaNdeBWpM6J9rRPeC8gb+eW4LS05S51add9ZndQFlxijAIS3w6WMHTYmLDTRPbn2bff7UiNtHwI8lWk3OvvjQVK67B1PRNwFwO7nBknYQG15kGp6LxSQOqu0aeekoDT+wz7nNkXaZ1X6T44fZsCo5GuoK6/pO+29N0lzl3QdY9q91EId6R05PbuQ6ZwR5huRSYijuQsjDqXJQjzGFbW463FM0tFqKFgy4BeWdeY9zZeBQpWFdby3H2zlJao301bTJl10p3hXmHlswx5LblQzkiRxhm5FvpvHVOywu5Mluc58600Vt3pQ4p1bYA2bil+FqXw6qrpZF9BEJVTqaa/q3crOD1uO1ksQsbvE6tX58FpZUK27KiUQmG6T6Q84XJmwHBhPVvb1WLV1opRqhpaLc7N605e6TzDeYgBnMc4T4p3El/eHtg/h4+vV3wjZb4V7nB2Rd89kqKIFppP9/Rixgele+P73Pfb+WIY6wWg9j4Xo0RDLutOclYIDW6oUh/9cEWMB27TgQ/HW37EX/BjduAZHa+6C17EI/sUGdORKdyJZ0HVkJYvCQ8SmJlJe67I3cpwzOzp++D0Q2aJr0to5wLi8n0VpHYNC0/AMCnOLi04ZSQyHfO6oPI5jtmErTeGziY6lxm6iNMukmzoo5nJM7mNc0RH1g6Zy8uJL+0ndmPHddacQ/6+Q5iax7A8FpvaokspQpjZwE27GHsjn6XVU3ZlnxXpCoszaeHbIz/PpJN6XvOSXPLQmI3RhVkfKwtSV5dTk1gr8ZRbz6aIw3u4ix8hbp4SBzFFNDFCiuR4IMUDIe6loBWls0LB6dnocJZCsvWdy/lD4pAxRY7GckiRg4mVmNTmiFVrPM+SQq4A+fepLwX+U8mT+PY7KA5TJiaR8ll3Bu9h6hod6pJnyBotMoMmOAIjhxS4TRP7PFSD6Ue249ZOHG0kJAHxcrkF5tlwgt6+Jt5/k9Gyp2e5n3P5RmuCqjIuIv0kHVC5kiK8sdWzSDuJTodiAdU8PC8LUSrdeW5I0clAVHBavrceG8YljA34/R7T9dAP0A8YJwbqy3FgupvgUKTPOAGprRhM61x3WsguuRTJkEyms3mhR70yjsl4JpOYSlyjhYeEqddVM/SUAzbdlzyV9TxW8qGC1DEdMTnW2EuvT4W2G4z7nIZ4SsfX5LazvNqpEXVlT7/hqDSZAjAkI7nRIUd2aeJlOvJR6ti6gT5L8U6KjZat66qs3CQovgDe5b4X6bED5u47DLun7LYXHHrwb7JAfjGWw5jXyIl+Mb5f44fiCkzhjpSXQaOznmg7XJpwsSO6sSaPxji67pLthUh4fOfwLfrjS9bWsb7bMPzPiFt9A9MJo6X7sd9//o1TIE8HAacLQJ0mCJMaGz48xEk7sc8GCnOglXLQv92TClCdFiD1QRmzxGooccqavvdxc2v/YSqA6fyKzq+rBIcxnqi60+NLpnBT2NMCqAzDu1xcfIDpH0NZ7Kv5QAWnC3vaOrJLmBLwO+vBWJJRzphq1spQoNeapYY3zCHk6THWQjpzuHIWmF6A0iWBqc+yZGJpmSngWNGJMuU9UxMAtYY0LXOt/VojTEmMJ1qYXJpBxuJSfe5qtfIUQHNPLNnTlYla2LSqcx2hsI5nLeIWsKx6qHa4F4DldFjocQkz5Cgs6rJxnwLT0japj4+LzfutANRl6D304O+bk2lPrhWwmF9AbenfAj2WfWH5RgrDmgJqleQtxxmIbkcLTqeYyWkp5xEnKmtawWmV9dhlUyUeFJw+pFjB6WOKC1C3NUM9BadlLgs47f0GV6RdTs+ZtQ5nJZBT9rQwvqTDxLkLcg5iChZ2dBnWzrN1HY/twJVxxeCIyjZtdacrA0S1p7NoT59qTlfd7HKp5tWpXE/uF6LaJFIZ02puqvNRDYNak7aWbdqO2kbcJAeL3+UZaK/nr4CKGwWkzNy6qUzRU5DvFJwWQ8lc2dOvCnt6nyJTSXHU3FLZ722AbIytgFw1R8yzYaQxHvwg7fNdxhcGdeeL5rSngEWGdW9Z93ZhnhZTpnOmatXGnJgCfLKGcLS4yWNDR57eDi0zptJRdHLBc4IYDCmJK3lroAhAt5His+2IBnZpYkfiODlSMrhuBk3k3lRTSltZwiByK4dk61y8PgNO38SRuxw5GjCmox+eVHBa5401TiQ70pFpumEKt+z3HxGKrnvOEy5Dh8hCDcU4yRsx2tSiWsvih6WsxsysUq3XLGi95usZRpOqtBHIcUO+x3aW154LKp0RELmzSf7tUgWZVA7luwGvdSjr6zhaXgUnpog58Ek8lnkQFlJYUlCe9fW168u6oaxzfY1frILTTtjTdniXtH7MuNkwbjthT4dMt0usX97Qvfz2WXB6Cnc1mVUt75iOlTntc2ZVCneP/cAj13Fpey6tX4DTuu+08eBSP/T05IhknFy4QCoSH/H2juOLwPXzjg/3Pd9Iez6a9oW5v8G5C9T/43SY4p6WSofE94BE+drhvWFlLOsuse6o61HsMvlIZVtmawtAv8L5DevhHcJ0yzhOfGfa843plqd9x9ZY3rMDn3RrdnHikMbKotbuBWs7khlRKYn8GjDhdeD0/JyllvTp3557veVjDuz9AkX7zKnsw8aIzI9qlaaii3xqi6FsY2UgKzitRdLBR/o+YYPIbayD5ZBskROUEbOwqBWIcl1mtU08uRl5Onn2WbvLJK/BlXW6SKCNUy7XOAlzunRFgABaRClUJSNa/lM2VetfAOlcY+bYxL66n4fyWT91pzkDUC4MCnNagNP3zLXrfiC5kXMrOjVFXH+Av/gKcfOUsL4gdh43BekiigdiuCXGO2FPx2NhUY8VnPZQdOkNzthFsVzFnNoi+ZSTmK3bwD7Hcr7s4hjnouIc58xUm+a0yMHJ/ZPFCPZtA9S7YyKmjLMSU3gvCWOyZqFD7ayu11JgjHFffVUOOQKd6G5bxyPbs7dCzpiItTf2LHt+MRrm8wPPPI2Jzxes7st8nHrs5Kzyhq08TK4seY+pe7yQlfQ+15hEYmYtRLUeLakQos6BNNr9EMlMRR/TpjlGkA4ykTELB7kj+tu74msw4LoB06+gB8vV4rW7iwBk4gRMpsDe5d6Ms+a8y5mURJ5LjRKxEtvEwpRWPeq1cQJOWyf5TAGoQ854DNnI/S8Yd8JkIxlOtgvjRO04yba/dy1AZEmkoBhLt0q5lidM6vb6CZFqaYbYdgO34PRD4/R3BlPX7NMh0oG2VNfmnPNQzNFf2JGrEkNsjRAI1hguTMfGdtyaSQhpRYsaZZiXQkk4fkJ/c023XRHX9o060L8YX4zfieOHAqBO8bhkjxlpCzHWY+NRwLnCPPN+XdnUq9Uz+YOc+ObhO/jDC1Zrx/r6gv5rCb/+n9j1Bv+lH7vPok6i4SRfB9ELnAJxyoSiZ6lLlgZfKnagINNYmAJkCsNpORSQroZ45WcFqCZi3cjaZDvl+7rTc22yZSH1EoT5dWFOz2BWjHccxxccjy8gT4U9DZOxPF5/iX54j9xdYA7PpYUL5LsyqBvJCGVQ6+vX91BWZQHZI9KieMpufJNhHvgZVGu7sCIUmDYOFgC1tBXJlhJl7yhhxAyJUc1bgIUhTcuerq3OKvuRLdF6RnqmIscRyMUEZA6nnFm2Wret2AAzg74EMSkt2NNqjFhBS1tAywU4fVET+Hv6ag1jWoFpZU2HeLcApuV36R4wLYyzWNlA8W1YCNuiuvo5Wm6q9MppC3vz87rIfOxzLCxgVwHFKdoKToPIfLSJkoLTCkyrpEc4zKzpMBnG0XKcHMfgOAbLPkmieF3ZmufB6Va+RQOZ+8zpUmhyq9eC0wtNTesLkCbSHi04bY0jpCNTuCXlsbKn19bzxAk4oOdQTVtb5vQpe7oFpAO5Mv1VwEOHmkLpmJPxttTEQsPRIcCHM/Pa4RupoFMJhHa0oHQyuQbV+nhIM2Nduy4MkhiujLCnH9uh6Myauoa75qj0PpOC5RKc3hWWrhojqn58ZU8X07e2bXwGqLX4tDo/L9So1psqc2GtANS9R1rtnSSTnTP03tL5JYta/+1sJKbMGDLfXGWOa0s8OtzUkb5HDOqcDDlKFTP7LHPpDKqWfS8sWTdgmI0SD8FWRqDv9N40M0idxBHdmRm43udZbmWXpIvhJk6VOd2C086tq1+DdhwAxHQkhD0h7BinV4zTjnG6JueJLsNgLL2V+aQsaQUX2jXqVL8wUAptmYWWtCueCBEBpG02Rc+10as0UuB2yA3soDATi1kZAtD3ZZeMICxzmyBaOpcgFbBamZENM/0hueNG8rECVqKRKec/RCuGsNmIKWIaeRmPYoDXFK9Oi8rW+lq8cdbXlnFbiq4q6eb8Fje8S14/YdpsGded6E5b6F7N4HTY/S/G47c5Hj9mmm4Yp1fFQK1oTrfgdDySCXQZVsayKbrTT91qwZxutUbrdc15URjQ85GjIY8iEWenA7kvxUPtzDvcEa+vGZ8fePUdy7evV3wjR74V7riOI/36fbru0YPgdDti6ULQlvx2vn8vh7MFOPXCsBz6zNhnptEQOkM6zmBW8h1ucli/ZRieluuxZx9v+c1xx1f8his38NQ4vuI3XPuRj6cdsbCobek4sSUHMGl2Y4mlmG7p7q2bDxW/hf15H5x+KB4x1i9YelX+To0Tz7zPrLHaoabQLYu6xu4FtFJDwdo50XTsaaFUGNSJfkhYByEY0T03uUp3wNwtVj+vM/QXsH0UeHwXuB47rnMuxej5eTFTmJvzEGblybFZiXVh7qjglEFNI4NjDC7P+VLr36NSbDo+lRyoJBCV5qm+KW0E2DrbGFljGnC67x/TXXyFtHmXcbslDB0mJnxKmDCSph0x7JimV0xhX+TSAuRYWeOt+aEvXxqPaPdrINUOLn1MPXp6LKPJ9ArqN+etq69rqlH7Q6cl54SdIjG/XWmuw5SZoqwnwqBOmC6TOidSKCU3VKlH74bCqBX9bZX5GG1iaxxb49nZyNp6jilyZwI2U1nUiYePEeCsfFvjwbJ87n0g+tPkP4AThq12kaYSI85yXL1pOhuaT12NEVE5vDh3QCuLOlNM8Vj8HcxdoPJZDMmIBZ+QanLZa60wqCeIuxFjX2Gcw/ZDlZIyrdRHjPj1vsyP8r4NSG1Lq4O1Bk8SaRHtalOg2kKXEzHP65HopYvUyWDlPo9JPJ0SBpcRGZdKQYkzYGGlc0lHgBpvGTN3xKjcRyrH0QLVp1Ifp/4An2ZM3f7dQ0XON2NS23IfUirTllg6T0OWefAyHnluO7bW1vulN4aN9VxYz2AddzESiMyrKIXJPxGml/j9C7r9E6b9akGs+2K86fhC4uN3wvihuAIxHckn8K4pN5gxluiOOKdgzIbcRVyOeL9htZLN6FVO/ObxYwbzgn79lPUnG/r/fsP761+n/7Hfj330FLsuRlQxQIykw62Y2BQGddpPxKmwVB6InJT9NOZEV5PGVFrelklqzEtgWpnSCvi0hhoKCLXyHu133fBUm1iSOtE31TZyYU/LeTwcn3M8viSGW1ZZgIrbFPDdYzYXX8Gv3yP5fp7EJfhQcDpbNzNikKDdFlaLAsUiVVCkStCW4CV7WMd5rrFe6/Oj4VqicibKwrXl3lhcmzQKwpgKGFV0ANWgZqH/V6vhtgSI2lZtF6ypmqBmy2hEW23jimRDMYjQ12vHfUB1lnkRsK81xMxM9foL08zaotHp+sowU8BS9WsXemoxVHC6BabjwijiYca0SA8Uk4uGrZTSWwCojZcr+YDEx+Kpzc+VifPABq2trRuXWCcFXTVoLGBWZpb4iInsSgtlQ/VUYFolPVKataZbcHpKlmMQUGavmtMk9o2sRyvbMoPTs35zlSEx2obqFm2TOpfrtbZt0O0qgAOF/ZFEK1Na5S9wbpCCRNgzTjf4DENxIX9kxQTwHnu6BtlL9nSrj6+MoJBnaQ8lfLa6krAsCM2PyO8VnPZlrewwrK1fSCIo6KedDZIcLNnTsl7Omu1TThLck5mQ4k9gXl9z+ZwWARkH67hyA1vrFqDAAnwqe0BriCiyHlKU2Bcg9FUa2cVJ2PKlZKVzV9nTbSIk19KXbqAZlGqTbmOltTY7sL44sPtS9DIze7ovIHTnzRmA2tF71abOjDFycZGZDmKA5Cb/MDr5GUdMEE2uAFq5SJAyKcwyHzQ61ABxEKaltPZ33BWA+jYOxMnAOldpCZj9HgSgFfRTJX32OXOdA9cpcJMmXsYjL8Oxynq04HRXzBBbcDoVcHqcrhmnG6bxhhj3uDTRYxiMpWsY0y3zTe6T+3tca5CkialD2mLPgdVilJUF0LH6dzOzMhYAOyKtozEDhXEZc7mHs+g8x5Jwxjwzfq3NBahWnctmlz25FaxbgtQhlLUx2lqoe54Mz3Pio3K+b5t5sOx4KrINZS8zVs1/dW/r6t5Wwen+Cvorps0jjtsVaTDSBhbyApw+HpQ5fb0wrqTuYUHa9eMBkyM9cGEcj4om/5XreeJ61say1mJVU7CqYxHbzftKnCDuI36/J63uxMTKevJ0IN3eEK+vmV7ccfux4ZPnA785eT6Md3wyHbjNkUe+dBG41b37xzQFYjHRgjEKQH0YE5vV905D/nT03rLui6RQn9l7cD4TrCF1hhyKJFyR+TBuRd8/YTXcME47jmnko3Dgf043PLMdT43lfdvzSXfB18cbYmFRJ3+BcyXWNEes9cQ061CfY8Jp3NsWcVtpj9PnPTSqFEjzdwpWt7HL6VzJOWBzxLtIsOILsWRRN3H9Gak59S2ZJX0ynRMTTteBcYl+MnRjogu5FLXmMUuZZQp3g4vLxNWrie3UCYs6Z5EkhLmwdwJSe5fqulDv72TqXjh/Xt39T47DmMXmfy4XOD9ew54uc1iMMhWcVjmEk1cpnUneX5TumCuG4Rn54hnHy0umdU+yBh8TNkyY6a6yp6fppgBek8TUpCrf1CGF895ILNUV6QeggFMnzFlmJvUhx0U3Bs0+0epQeyPyUGLRNz+nMo7L+XAhMgb3Vo0S90HWlFVHYVDPGvOqK2+sxp99JVVkKEC8xL77nGrBf2sdm6JF7VORdmiOxxTwdsmSbq5pye9arV4Ae6It3Y5TeY9z8/00FqtSDyVytWV6mhJ7DsZXeQ/NCVt/qvar7YJWMlQ6yfFbGUJ5nu7TBptM7XSqnzci/je3CThg3LVIfVgvmIZ14reVNuQYcZtb4FjeYQlSexIBK9+DXb5XE5dpt0RfWNR92RtF4iMylThdmNRyDkWiJpOzkspKIp4mkl2+fowH1DSxvY6yfhf2NFJjz9zv4k312i1Z0+fA6fY6t/dAqnnu+RxX8XXQdSzPnzUnKFJOmYLlkCqL+hN7FNlA05UOX9hax4XzbGLHbQqEnFAF73peUiBMr0jjS/rdjuNGuii/GF+M/x3HDwVAnStDot2UDRAwRsT2czG6SWkipom+E70i7wV0vgSuc+Lr43OcMaxX79J9a4v3r7j4A/83HYichfXCno6RfLitTutpf7sAqF43lFl4UACjNdI5iRmUNdsCVApQKlAdSlBzurlllX3I88amzGlJ4lbVNK9lW6Z05HB8zji+wuXIyjhyzhyN4XL9LqvVl8mrp1IZpwnKjQcneqgCTjuSk3Z741aVtSvBgiGVhXlKqZpGqp7aufp11uOCk6t9/3mZmX1lS0uwLTIIwoiZXdvbDSalUDdDfScNZfX9ZjflU81Pu0hOF4CVMWxxXNqOOztxaxyjEYOW02r/ObavowWphVmh175lpKq2uB5rK+2h7c+L5KnMjVMtrlbOo3UxFjB6LM+dZmA6TYUxPZbAQq5QemDz/kyjkY95E12opTzK8ue2CKQs6ZVLrCdpr2/NS9VASGU+4mTueXEoMJ2SBIE5ChAjch5ihDgFAWQOUVjTu2TYo5rTEpQ/BE4HLUCcAacxrgI2ItNzUU3CqnlIGS04bYwr+riztIdzF9UcNaRbprAjhj0dElwOxokRIA17WsHpPIPT0Mr2pCrt0epnKxBXE6f2fJave63MDWvaY+o60RvLxnULcLo3sylNbX1u5pSC0mOWdtuphPqaAMznXc1n9b4SOZGVEcOSS9dJK3+Z7zpik0Qqa1rB6fGEMX+TJm7iVA3hogFOrhW0SVHCGLuQMpAnaLtjwFphVSfroIAF3oOzKu0hPzsreJ2z3AOndXTecHnhiQn2Y2ZzEbm7yxwHQzw6oWS/hZH0HiogWi7gtImQozKCWHwBwrb0m8Kg9Yxx5FWcuI1rwlTAlELyjnmZ2IGyB2Ve7UkLcLo1RBwVnLZDBS/aPVMNhadwy3G8LuD0HSmPXJR7UNf5lHNhy80GZ3C/SKnPhWWBVlMS/dsA2FxMxkyurGqS7CXKylOgWsBpSzRUQDpWkLp4KOjPJ0B15zIh2oXsx6wzK5+van6nWfc4RFtZ04dgOUTHIRmuc+J5nngRR27ixL7oK2p3hRqnVnC67GtSYC9rXynIqSa78xtcd4VZvUPYXDKuB8JgyQ4xRbyNdM8/ZLr9X4zH73A4fEwIO6awYwr7updVcDqJZIvLiZWxXFjPI9uxcV2V9ZBk0t4Dp08l2xb3Xpa9YjoawiHjb/eYfgcpYrqedNiTdjumFztuP0q8+Ljnm3cDH6bAR3HPi3gkGkvnN2eBUR0mqf6usqdhP6XvO0C96i2rTmQ+Vh0MPYw9hCGTisxHcharMh/W47sr+v4xQ/+CEO445sCH444Puw1Xbs2VsfyIX7M2lps83WdR246cAoVbWHKAEdicBZ/OjVPdaXns/Lq3YE6fXJOcAg+B1NYKaSalUZ6fdLczi4LtKUli9lswTVwqAHJnE77LInMUpZPEu4RTf4TX4JPWGbpNZrsNXN5GrrNjX1jUCoidA6ljMrWABdwDpr/b0R7/EoJdjpbNmHJA9ZdFc/ohmRdZY2Zw+pLV6l2G9QeMj644bgZSZ7BTFqb4NMGCPS0eAwqAK1Bpi06sbwqS3tjqJSCfMdeY/pjjIo9TWb89qeQaZV+DRR7iyx4zm7w3x5YhZ/H3cFNgDP19aaHvYhxG2I+Jy7WjL11bxkJykK1DjRJr8acUGU1hkI45cRcDexeJSJy5RmLOGyNiVc6IqZ6Sh+QsKLtBvYTefCwZ058u+XFu6H2mHaPVsNuYRTzam9kHQkc1SGzl8BqiGdwnZrXSIBgl0QiwaymdTWbuctKREoSDvKJxe4x7jnFOvlab2ZQ3BtxWu8WPGBuxB3m9OEFAmNNibpvKPSR7uxalNB5oWdTrbBiNZbSOMXtGIzIfUymoq2GioeTalTmeJJROcQFSxxPihrN9yUld6aRywEi2yzxovm5L0Pk0xwXOgtMPAdLn2NOvJdXVbpxIEs4iAdH0FsPEUVjURggNDljjuLQ9N25inSbGOHIkLsHuHJnCDWH8hH5/Tb+/ZPo++038cAzzqd1ob+U9vhivHT8cADW5tsPNjwAYcjaQAzlNmDQW8K2R+/CbolnnyTnx6gb++/E5FkNv3mX9zS3v/d+/Ds7j3/kAW6Q+RHNawOmsGoFjkqTsVN7DmHvJpzBnJZgVQGfWp2qHsqZjnhnUtRWoANIti7rqmTVJngJbwVBbYRWcdm4lyV4BtDTRHo8vSPnARWmfv0kT3m9Zr96jv/gKcb0peoEe41YC3ruVsKd9T3ZODDJs0UDSFq9SOdfAW3WTVcO2Z255NkaAntct9Mv7YP5eTSCxRftsZl05u6yM64YjLEoglfwgJciWbGSTrA7Eyhgznw5O90oPzYatscWNt2Ntp8KifrPNQwFBlURRtoWazSl7GoDSBi0Gal1xtvcNe3qWWUmlEq0OxqfAtJyfmTWdFuB0qMl8SqFskAUoIxdq8VvYHBWgfgMGdf2T5ue2ffR0xGwYfGRrugrejAoEl+BvKkzoVLSl9bVU3qN2TRS96ZSENR2iMKdbQGafZ3B6T34QnF7qTqd6fVtwWo0OFZx2DTj9EDNEk+2ZPe1mw8z6+EiMe0IUc0RfGMPKFp7NOvN9eY/FOrVkUAeWwffpFVEFvxacVqaMyHnItWyZqINxbG1HZ4tZEI61bUxpzHz9tcDjMLVjY8ypGrO2hUAt/lX2NCrtIYnlpetL8KjMpvaeKiB1OU97ZjBfrrmA06+KKeI+BQ5qfFLY0650PsASnFb9adNcS2O9dPUsJoAv6/Ms72ELKA0KUJvF10Oj84YnW88YEo83kdu7zHhniN6Cf1sa1HJv39PGLDeF6lCfJtXZWoxdVXPfMey4yxM7YBwtECuDWo24WlBa98Z9TuzRgsHIbZyKtm3kSIYTSazOb+s8yzkSwp4p3DJON2KGWGSSbJ734Fo0LizBWSNdRqs7fY45qL/TAo9D9Fl1v0wIc1pBK2VQT8VIa8rCsB4ROY8e0YfEOFyWrhE1ToyZel+3QPWUZqPDU+NDTYidzdL6C3M8lA1TNNWM8jZa9lC1vu+yzIPaHabrHEZaYgs47Zzs4/elPYrHhepO949JwyOm9ZowFImFY6a7C6xfXjPd/i+O+29yHF8yTteEYojYgtMgTK2Uj/Q5szGOjRMdyK3reGT7KuvRyvxU08lPuedVQioEy3gX8bsJ3A1uHME54u0d4frI3fPM8293/PbNmg8TfDMe+GQ6sEsBW8gF9/wkckDKD81DhSE7Bik23R4TlyHT+Yfn/hTeLPZ6k9E1evfbVeQwwXHMHDzEwRKDwR9t6b5zGOtwfkPXXTL0T6R4EMVE8zfGG95f9bxvHM+MsNgP4UCIR8J0N8e2xhKNmiWmEqtM90AGe0ppfgujBavbsTBZtLGYe/WFETgJi9d4so11XT+Vw2pH7eYzpsk3VI5HAOqIqQUlZ/JZBnNLrDFO5v56E3nUB9bBMTLLgXTIa8eo7OgM0dauNH2vqCzqPINpMO+Pp+O0i2Qhd6DntT3H7XmlMQxjNp3M5Aoai7uDwmB6Zsvf2g7v1nTdhr67ZBjeZVh9gN18Ze7AKMMfR+y4J04vCeFVkXUqRuIlylEd4tOh16ktokeTGYznmANdshxL1xxQ45HRiOGcxkH6Wn0hEbgCUjvNV04gfD0n7njgMF28VaPUuyPsp1k2qCvdEdGbkge6apQoXkRd6Q4TZu6UE/sq89GzNrA2lo3xXDiPD5aEdrNqT2zmPlTIeXmP+ju7+C4/zxIfthKoZDy0LiT16VlIfAjjuJp1QzVInGVsZNQYJM/duZrLV7IZEjzEKjs3EzxaEs25YW2WGl8DUseimWNcxLhbcPJpHAhI7Tx2tcGu1+TaedMyqcu+FjaOAAEAAElEQVRdZA1MGd9JV5tNeZFwpWQWmvO9yfUe7bPkyquiRS0s6lSLa7bIbCohTAH/TGzycopm9P+fvT/ZsSzL0vTAbzenuY2KaGeNm6VbMiKrIjKyCgEWUWRxQoADzvgIfAQOEuAshwQIkJMCOOCE4AvwHQgUCkmgCmCARLEqK/sIT2/M3VpVFZHbnGY3HKy999nnylU1NXfziEynbYVAREWuXLn3nN2s9a9//X8QTysobGqtQgGqlbKlg7e+j3VXbz4HsmQl1Ozq6+xpecy72dN55V+arstP0nmUOmCDykQEhY+BKYph4is/JMkwMaXfKJGGy1If5+CYUleIiqZsNs5JVwfjHe3xOVPHj+PH8W/k+IMAqBVK2iejbGmPFJijIsQgQHX0iRUzY01PjJ4mmRxtNj8B4P4B/tn4KiV6L/mTf3THc/NPwTvM0w/FXMA7QjZHnAdhVFdatbAkKHmD0kkfLLOGvRLAc86HWFxLfAAFfJ4TIzFX1LNG2ZzAoMKihsJUXEChDGwlcyHTiimi3RXGJZAS7RPD+C3en+gi5SAZlWLXv2C3+wy1+QjfdmiXTzwrrvOVQWKwDVFrfGMwMwJk5/aplDBk85dF5iOK+/gV/a/vYk9fsqZrEM8m9nZOamuAtvx+atkJ6W/HEECFpQUnP/9FAJ21p2twesPaeEoriao2UbHPB4xJB4xaWvreNfI8WOn5xsock5o9baskvi0FiKw9nN9vDUzX7sU1MP021nRIzOlYgOm05nIAmKq6P4T8VbxwRntvkPqSmf6WYK5rvJhRKMW5Kvh4JaZ2mUEdvbC8VhqIfg1OZ1mPcTaP2ILnKLIe5wROHxIoXYPTpfCQdMp9KkAEcpiYzU0FnL40wLwEp2uzJ12B0BLQmQRQi8EWSKDm/SRgjZ+KREaftFXzM08Z4CvdGYusR9bTqw1f6i6PS6mNzGl6GzgtCuSLyZCYzogmdqel1b5JwZu0EupUNFoXJqa0frK5XB5DDlLTXrQYkMbSUqqh6HDvdMNT08nfSIBA7nJY7Fzy3yQxzxJAXcm5ZFDuHJywtlW6X7pZdXnU4HSZ27qTlv5qLRSDxFrWxSzM1gWc/v6LMoPUt5uJN1s49BHXKTj/MMDO5FOxI8DsEinEgwqx1Lmcq1vH5Xu+sXTNHms3aNMyAQc/cxezUeKMaaDJRonkubsUoqYYZE1GzzHMSdJDCogTKdEqxaBNWi+bAk57LwUd7wfRdY+ODHwEBWOMhfGlYCF9sf6cpToU0iWglFqB2Bl8zqNmUgOY9HOd44iQwavAHAUQmWKgVZpZhQR2yO+2Ssv5G1UBqj3JyAzRiESnbp6YwZGICbGYJpor0yrrZPpkEDpfFOnuooASJy/rIHcsyBmewGkWnX0pvi7SHnWxxmRpj+YpsbvBbba4Too8eo6055n+zRv0/a84nn7JdAFO57MMSO29Tor0UbHVDVstRrF70yTDokVzugan686pzDIt14MFWPAxmcyNmmYMjA+B4AfsRuKq+egZ3sDdq4avH3q+9Jov4sjXTtjTk4LWbK4WJGWCiOkYgPKBGAzOJYkPL4zH4+B5un/7efpDs68aq+gbxaahsKjbFvwUiValeDFLfXSp+LQTFrU74uYj8zzzq+nA582e53bLrVJ81Gw5+pnXCON9dudHLGoiKZYRkooxjwGod5owV63/v+uo9ayN6RBJjwW4i1oKxSiFion9naQ9auDxmnxZkZZL4LRpBOIxTSok5fXK4zUrHWECUIsWtWPXz+yHlkNQpfMoi8mYtKFJp5l0OgmLcZFVyqB13gdCBqupWKTVe6pjinrUM7FmlS/WgPUDQiFJCGj8rhhbSzFEd9hGCiJ9/wH95ifY7ae4/XPcRhMbhZojxgnIy3SHm2T/yNJAclg9BtOlMBmxBWCMiQQl0mN9yg3bqGmUp0kxIVCkyKaomQjit7G616qYQ1uyWWLM7yxdo5hyYJEmmZ2E1D9MeRmGWYpePkS0ksYqrSEaid+jbau8pCtzHaUJeFyM0jUYXSIPmKJdvFMNVmlcDIVFrYjX7vo7R901u3zvMThdCv/Vz/KoQcvlezlPXIgXGoRBrXUpHmS5x1x4qOPmrEO87pSS58lgdZHpLB9L0aeBst5yYSoXp2o2tTCphRoG9/KHjBWQuu3BWFS/LedXDCGBRF6kf0wyT0RA6tI5FVJnRQbEA4VFPcUMTsv9nLRh8oFepy7FzKJO8zikWEkMEwXRUYk5n0FqHWwCiT06BoxuJD+tCFj1/bzWLVCzoi91pq9/fjd7emFRazLXfV1AW4bWVt6LCiX/8TFilZK1EDwPfuYbPbG3lhbDBlUIblttOSjDEAIu0WgWWc2Zeb6nnd9gzkfa8PvxifmDHkq9V7f2j+P3O/4g7oAALxBTVXNJ3VJrkxLjO6In+EAMnhAd4/SmbCo2tbhvNj9BKc3dPfyT4RUA/94vn6LMK57xL+kAffMCgDgN4JPcxzQ9AqcFpMzacLJpgQSYY/RYZGP2WpyttVKYeF0rNetQZRAoA9SZqZilADKg5ZO8h1MZ1LJoZQXEKrrTbQGnQ/DJGPEN5/M32BjYKkMgcooea/fsNh/TbT9jfvKUYDQqGMgt5qmNK9qW0Ag4LfpjKrUDLaMALyCvNzNFIbEeUyL+HbhtzZheg9PZCE5asptmVxJaUyW18PjwCUoXxSqPtJIRI0H5ck3zvahHNpzKCWqrIo2OKSiJScdVsUdY1L0ScE1AkHcngauAJhU3clFiYc/noUtSdsmeVlfALOdOvM0gIl+XhTkdFnD6AphWSpeP5W8klOl3HFFriImt/z2TwwzoFMYJC3iQgWdrIzsd2HjDIYo7ck6eSlIVhBmgwgKwZvPErCO60px2htmrAk4fEihTg9PnCgwtOs0xyUuk+5slepYCRNIWV03SnO5Wa/my+FKD01p3K7aHUka0S3UFXJeWduHlZ0OfXtkiY3GZWC6coeVzYUJW7+OSOb3qeOCxrEdmTmdGSgan+2wWopImm7YCHiedu00qFmUzoQyky5PqxKKVdtk5fTsXAcfgmVOhIK9xjezjGy0Mylvb8kQ3y/WIYn42cakvKD87k1t0fWHMP4SJk3ecQipOxFCYc0Zfak+HUkDLr0dfrOdHQ1miWebBJUj924xdb3i+07w6Bu56eOhEO/aHGJOLeE3RoI6pYqE8KCG1ruQ9YmboagWlc6AjKMXBzxyi5zxZ/KwwW2ET1qxBKVYsHg/nVDSoCwZjFMNKkZVYikG5EASpsBlG0b9N7FuFMH4Jides3gGPxGUV5N6nnJxlWZsCQCCSNPaCZV32I5Y2/wJeV4xqr6V7YEbRRJGYykxrE0PloyAmZbVURQsQ8pqSwqvELJfuH8uoNTKnuEjdiAa7dI/kAt0YfemwWHYJVViR2TMiS3vUHSE6aZtq06HtDrpb/GaHT/IzxgXa00h79wqOv2Y4/pxx/IZpvmd2p5XetNySkLpIBjmvjRSlNqmwfAlOy75Td03J+y5mqSmWuZT38OlscU4xnlJM5CPzSc7m853m8GD59tDx5Wz5Inq+dCOv/cgxuCLtlGM4ENauig54TJvKa2hODOrDGNgNXqQ32scbw+zE+OyHHH1mUHdaZEYSi3qaYG403mqCER1qEuvS2D1Nc0PbHJjaB3wYeeOO/Gy652PT8ZkyfNrseONGjvOROcx4N+BMNplNsQl62UtTwR0ekxWuSXp8n3FpyCXP+RZDxfR9ozuiye3qDV6NpTgTkY4CCUXjI1TOUBt1qxJz5lZ/ZUCnySfAMaWb5F1Dt4ZmF9juPLsHTxssZ8Twdw6KTi8saljmc1Ciwzsn8kYuUk1Bp4Lg0oWVO1mAVRdoiXlzfJuK228jqCzXPpJcQogx533LOlyzp6EGp43taZsn9N1zuu4D2s2n+CcfMjzZEzN7OoAdZ/Q0EKY3eH9kng94f04x8QJL5a98jCglpA2HwsVAE5fXkCUgUOCjoYk6aQmrQkaaEM+iKe3R9V6SZcyy94YUF1WNk5N55TEG1HziNEiBavcDNQ6cB2FQhwiNEQa1tUAqOkWt0zndV0zqPL9nHCJxcgwSF/vEut0kcsSiVywsaq2UFH1Tfl/eZy7YKL0UOC/ykuWxjwHoemQCx7WxNkf0+ZvpzE6SLqryJ7rSHZ1Hnt95XPpI5fVQOhRZjNwvsyuTTYwNBTzWWnTlcwwYvXoMUnuH3t2KFnXbEbxDbzbpWU9YIJicZS6lIT2KYSLERyC1iVLcFwY1bBCZj8yinllk+XJnskoF8ZgLEAW/CelrhEGtJsmDSN0liU2tVCBrUMeSC81FV7xc40dFhus608vXtWRQWP1fHpBihys7U6A29FyIXNq0sh6ReZ3zIEVkip5zMkz8Wlta3bFXmg1izLw3jXT4Rc+M6OpHI9rWPkx4f8JNd3TjPTZuHr2mH8eP49+E8QcBUO93fwulYjG3mae7BLA4UMICysdTxBOix8WB43FmMK+ww9d07S1d+5yufcp+/0fsdp9xOn3OP3/4Gf/3b1/zH5w+4N/7VyN//Mf/E7d/ekvzyd9C92IqQGrDU0b0Lq0J9Maz8bpUvWZtBWj2Itk/Bi/6QQB+AdJW+rmZcZ0PqwqUDhmAjllPNYNAqeqoFqA2GyJq09K1N9IOnaqL0sp/ZpoPTNMd3h3R0fNMN4yJ7WeaG54//TNefPgf4j/+PzHc7OW1+kBoN6iQTKJsQ2gagm2Yth3eJt3HsDABF3BYI0dkAoai4xAdz5W0zlp1LtehZk/nBLb+EKxCJfbw0opt7AZrOvruxUr64DJZWBiljTDrw1RYVV4NeC+6lLMSat85uKIh55M2J4p0CMNGR3od6E1Y6XG2IWCcwauGsxEd8TkGnJ9EI/QKk7qWTxAgy1XmeVmGoAIvdVPa0KXtfW1+GYPDxzG9JjH1utTeyqM2Qqy1OWWy66IFak1XwP/MLMz32/sZ+F8fva/vM4Jt5CBPJpfXRm4LkzS01glPBSK1tFZmkFqne2dt4Hk/8dx1vFKKcwxMKjKhOAfF6JLJ4ZgZLel1JYA6A9POCXN6dIaHyb5F0sMXYPqYtMby/ZRCjU+yHusOiJDAy3pu53tsTY+12xU4nYHp7Jou4LRojXs/SmeB3WHtTTHX8u6AD6MUIbwYhmplF3YyqjBQa4DPx6UNVUx93CMd7RyAG6VK0ubLe8sh75I1q3SPLAqrlIDRKTDLLOYMTH+s2xS8LcWhzOwqBoVZr68C1IfgOcaZk3dJa1jA4lP0BcrssoyIadjrhue252mS98hzIV+LPGrpiCmK3vSUgOkxMUYzEHr0M0MMjER0kqowdpMYIQswHYKwKjMr0NidFGZLR4S7CozUQ1/kaD7E1cf7MKv/zoctkxsZ5sg0BU7DD8PBOo6RQUur8DRBHMEkthpo/KhxrSRDLjGs46yIRhM2TwVQaJ4w6J7XfuSX7sxvxhs+PGjabWDfzTxMFuOTjE9VMBCQ1PPgJwG5guMcRXdaKzEPbdonNHZD29zQtk8LezoX9QBhhFkpmC9mlqZIShVDv3T21hrWQCkM+QSOzu6EdwNjGBOg5jDBs8mMrMSwJlbdIlWsk4tLxYwxqAXEwBUw4xhnGkzVer6wvmrQel8DYXFh78FazmJVoKFmrfOoWPMmjByy9nTwpRiXu+IWzVK76oLKnUHWbuX+NDc07QvUk89wmx2+7TCzoz0cMA9f4U6fcx6/FGB6uuN4/oLgJ7Kmu1x/l4oNA02M7JXm42ZLp0wqjElheaetgNIZnEa6plole49W63PcRJgyC726JkNQmFmu3Ow1wxCwdmG6fXvoeDNbvgjweRz5xXzkl9OBr93ApKzIELS3j5JveQIPBlQIqODRIRJmxTAoDqfIqwaMFpm52UduNoa+1bRW40NkdpHzFHg4/+4F5tW10Iqne8sHT9KaUVmvOHLQgRHNHFq0DyjvMXaPDo4mvmBLXk8N5/M3/OPpDWPw/Afbj/i3zYbN9iX2rPnFdGBwD/IHu1vZS00onWC4gVk3NHZXCk3XgKi3MaiE7fw4hlz//zEAcsnAvtSj1tFjjJfzvZAAROYjx76ra8nbQS+jahaldH9lmaflMVJEMaylAMqlMBq7b9g9G3l2P3F/byQmitAETRPEMBUDs6d0SRAfmyJm2asp5jNz6Sw6pw6WIXrOqWBVmyrXBe68P2RCSnWFU/yaNGtLdgB1sUsIHMsvZrnDrr2h7z5gs/mIze6P0Pu/zfjsA07PNoSdRpkIJ+jvJ/pX3xDv/4rh9AvO5y8Zp1dM84GQJV2ULgbrOXfxKX+pOzBnfOpKW2QCjQKPZdJN6bQ6xtRREQPnqDB4sm9Rngctmq2xheDgM9s+LkX2iMeHiXD6ksP9H3N/9uz2V6fP9x4PD4pXRzgMgZdPLPsO2jZiuoi3WsyMB4lZxO9kg3EbtLZEL+9oiJ57P/GtH7lVlg+0ZR81z5XEXkX6Qmlc9IUpvgCAulz/RyPlnboA1kusfI05XZulvm3U8ZnI+YTEnBZweqstN7p91GFzIMvjLTHzFMMqTg6ke6ekoDFGL3GK8pyj4UwQIoZam53q1bondVDkQlUqUyTPHDdE3DBjXr+ivbnD3mwwt7eYm6dgLLrfFJ3q0JwJw4RuPe686FLPo8CqziVRjppEXNGmNt4kxrfGK4NPWi1BJ3A+Ic0jHhTVGk5PW4PURGJQeCVEQx2k2BGULh1WIKQpU339fcZlLlykQFaF7JQzP2JQl5dNSOQVyIzwZf2bVDz1fsAzMkdhims0DtGi9i513DeBPzNbNsh68GbDbJP8qxs5M6KC+Ix4PzDPD4zj15jTHjVsv9d7/3Gk0+L3rkH94/iu8QdxB7abTwBhAM/uCDGIDk8YhR2awCtVfegIcxjSAbM4ucbo6bsXGLtjt/sMrTv+8Zf/UFiBfED4l3v+ONxxO820n3yCajuRtzAG0yhME7E20tvAxkU2Qae2LdFH1cqjU2Q1pw0ta01dG7VJUj60lkBtqaw6FqBHZRZtMgc0ui3sr+x6myUbZnfCzUecPxP8uRgBzSloVLplu/mQ/f6PUU8+Y9xt8VajQ8Q3FtM0qGSQksHpuWuIWhHrsz28HUCpjUCk2pyNEhc5hcycyCMD0xnOKu/5GoCXktjMJIUlOSjgbAouvZ9Q/rT8nZi1piQAzoYeLoYi0yIVbRlGQaMijQ5iFpMOpKAkOO51ZBOFRd0pYYEe36NRbcVWTVIEccWeViUIU7rWm14kPQB8ugeZMV1rby33Y6kmy+PmBZxOAd4iK5Gv8YZLYzcA58bvfG/vNZJp0m9zaJQW+Op7l62tm85xe+yLPnExJASmIHrSwpSOJYG7BKedl8fNXq3A6SUR86tEbI6L3vS6C6JmJacCjFoMEeu1nA3Cak3iPGpwOo/MkDfp+9r073VNL/Xx6xbc2uglS3tc046EJWgL1Xtb86rTa8/s0cQcFQazrJdei0zOTln2ynCrNHukMNSodWsxqSBBAqenKB9DlIRoCJ5TYswOCVSXubIGxrfa8sQIKJ4d2dMqWTMjWbcoTzGKrmIqwh0zOzf9vZkoEi4KbALiammPDE7Xa3SlP52Y76trHDxEh/JrkCSbpAkgrcSQMC4/ex929a7XPN9pdp2nbeHc/DAMyynIx+xEykN5Yb4qH9Ba4UMsGrphyQnk/WrxGchyVZM/8xAm7sg61GBt1l5dhrBYk+lsAkXqop/CFEmsRS6pe7zOlMGkc3VJjrLsREPbPsWarZj3pQ9t9+LdkHwbAHAjREeYDwR3ZJ6+ZZpeMY7filbydM88P3D2Z1pkXWQpkHqZBQSwzglvlv1olCbrVMu60gIk6UUr0aDlGqTOL5EBCVKcUpY2Lprrha2Z/u5KX7P6upZUyeD0FJMpWJIBKjJV1wKhlHjm6wpLB4EU2tK1bW+JVu6DmUbM+Yg6fcV0/pxp+KroTc/zPV4co2T+pDNe9KYH2oh0YiTmXjZZzUxVea81WzVfh1gY5as9SMUilVLmHhmwUxiXAXLFmFTT5qD5dm54FeHrOPOlG3nlRo5+Zk7zTD+S7XIQHeIHAioskKYKQQCBILqhwwznGQ5DpE3MOB9g0NXXc+A8/bASHyAg9a7TnKfAeVZsmsiml8LU3EVcp9Fzg3biF6JNT3BHtO6wqUg0uxMhjPx6PvFX7sjf6274VLV80+557UdGL0Ue71p0k0ApbSF1goUw4/xA0zy5wqD+3dKiNfNuvTdLYWsBuFcgtTJE3a6BtFSoIWmzXrsbuszF9Rl6WZB8n5EvhTIKpYVEYntF33l6HWm9dAplFnVjKHqzQUVMVMxJwgOylI18nTWss1lwlr3KQF2d02T5uhV7+ko8ARS2Zb0JLn0YKeNTl8xpQOnEmt7Ttc/ouxeiOb35mPnJU843G8JGC8g6KswYaM5n1HjPPN9JjulPq/NZlXulU7l93cKv1OK7k4FrVAaZ8z4iBXWDsKh9WBjlck0XiYdaSigXF7MOdc3KLbIfMeDnO+ZBcRgC/EAAtRsUx1E6oUCMmK0oMuEbJTIf2qBSvLnOTxRRUaTthug44/FRiqYbhAx0Cos/kY7yfh5lTvmcSD/Jer/lx2oNPF9qTmdwevWUFzFW1p+GusMtlHlYk2TqtXkJdWf96dX3qv9nXEAn2QuX8s8sETOlOQC8lxnpam17KnP3yHTvif5E9AGVuleAokWtjAGjUSagjSIIMfnRqI0S0RCCgOWtEvmwpdNY2NSiw+6lE1xdl3DJHzHtgNIJ48sdDjhUFMKUAkKYyz31mdhxRd7lfcd1WY81oeuaSSKsy2Tpgel1aLTSaNMxaYPyBq9cKcAZKN2np8SkPpieTSpMbZRIGx7CTK9Ejk6kjKRoIp3OI94dpLj24/ieQ4lk7Y/jb3T8QdyBJ7d/T/Sd3QHn7jmYf8U4vWaaHhLwOuCixyKMPFiAEs8kZmcxLIyF6Oi6lzTNDdvtp/S7n/KPT79MrNUPGf7FDX86P/Bs/gXtJx+jmhbdtuhWYxpH2wW60dNPgX0wnJXmjGbWhhlDiJHMD74G5NRbXf5ZrBK4zEBcDBEp5mlKJd5oAvOyqVBm3mWpBtGYHXF+IPiBECeaKCZgjdIcgsMrTdc+5cn+32Lz5E8Yb58zby1RK5ilvTrYRgJZbZLmtCU0RoISq1AuonyAYsa31nGK1TWYYsBAAacvR82apnxewOkawFuMrDY09kmROCiJQeWsDksiUVfP13874L0n68EVYBGPj5YpvZrc1muUaBvXIzN290EXLeoHbbDvqO5mUzfSPV/u+5pJovK/3Dp3EXjJe1yA58W1eK2/VT82g9POj+Waad3Q2C2N3dE0TxIbYosxO5S22OYWktacUpbZX4livueI2hDj9/Pozg73Czi9gNTXQhRrI3sdaYPoUGdQxSeGgo+K4GXOaxZWfEgSH85rZqeZvS5GYBmcPhMesYRmFgZ8AaeJxRAxg2Q+YU+mkvWwyfxSpAa2VzsDlvZ3YdmWvS3N93o96KKBeVkAuGBBESsW8uX/L/Tx6tbci2tdfv9t4HT6yCz4RhtaLSzGrbHsVEOvxJhsrzS3Cnod2OiqIFSKgGntQDIp9FIoCL4YFJ6DSG1kYyJdgdO9Ft3pvWnY6iaBVRUo/+h9xXJdsumigOGLzvg5OIZUnJhiSHt3un8X4HSR0UnFoXKNlOj9f9cQjfTH5oILUB1FXiNEmvdYYbvesO81txsvDKn2hwl+hwkGlQFqyrmhwzJ/YgLY8tcZXY8mMcp1h9YWB5yD4y56zqPFzzNtF2h0wCTGWh51C63op6filMpJRFMKftIh0pbuBB9dxcDMZ2x6rGkLKN3v/xjVPiU2W/xmh2s75q4hNEZksHLi6MVwyI4OO0505xOb8YFw+pJ5+JJx/Jrz+Te8vvtnnP0JGwU4btAST9fvK6076b6VAr2LAZsZ1FGMuYwSACQbOQViSYh1VEUGZFJiuFkbApsYi5QOXADUuUUfipFqLamSTZGXPeL951E+26Rw0GHMDtvcouxe9spxQI0PhPMXjOm6id70PdN8wLvzmjkdXYmBuiha81nn/locUs+fRVs0g0RJ0qtmUUclRcaLt+ijAH0GDQ7mitk5eMOrCK+i55swcedHHvzEEANBKWwl4RUTIH31WgWPCkEYyXMkOOlAGKfIeZIC0yGx4HyANhkm5n1hmH+Y9X05xChRc54j5ylyrqQ+xlETRvExwXTgBzmvQp+6fs60zR7vBoYw8q/Ge6b2lg80/NRs+NJuhJUfBYTOzPtQ7Z8iZTXh/ZS0zN9jL61Y0Ovvu9VjLr93+bhLkDoPpS0q+nJ258JMVhS+JGnkGOfayGaECygln69psdbatZdDaY1pFLaJ9MbTJnPTKUl2dDEsbO2LX19JeVQfK3A6EVOW4qAvPha1WVyOd+EalydyXfRjAacLYFlJQGjVJHD6qRgibj4RzembDxhu9vitwmyi3IZRNOzt8YEwfoOb75jnB3zyZFmbgWsWPYL0KebcrQYbLxnxLNJkEUyar2dlmNO7L+a+KoPbS3zbKMklMjCqE/Cbf0/FFPu7A+Eskhw/2JhgnBajxE0jOtRK9DhEbkmnonrKDaQTJrFfE0drSh1NuYtxn4D7TlkaNRct6rySLwsTq3GR/1zmQzU4fa3oXH/vGhFgbaYn2Vgug2jqTqR13lHHx1l/uhQrroyc9+cYRfyaFpmPGpx+F1Cd3742iqAjMQHVfo74OcIxEP0ZZV6h2lZAaQSkjv5xjri6llqocSFU+0j62sRcuFWVfJgUURolOt2zD6W7S8fUaRmX4lO1nCjrPUZIEH1U0gFV5FyUJqpQcuGyOmMoYPX3HVeNEWuQ+iLTubyb6uJxOY7RqiEq6ezPMZFJUHyIIgf7kGTrcrEjGyZmHx7rhfC05A3ZG+UoBesfx4/j38DxBwFQxxd/ilEtdj7RjXfCoppeMQxfM06vGcc7ZvfAHGeIkValtCOCi5GZGe9l08vsirwJNc0Nz5/+Pazp+KuHv2I8/oZD/JDhr275e+M9L6fPaT96jt5s0JuGZuvphkA/eraTZx8056A5Y0U2QFlmHdBBAogVm7ACo2E5mDKYXsBccrBK0W1VJF0vnQ0CrBz+ejF7yC71wU8JfBSQUsXcLqSLrMikFI29Yb/7W+yf/F3808+EUZC02AKKEAzeCeyfNadrcDoPHSLBHZKBlC/tUHlkTeccfG/UoqdGZJXAXoLURWcsyZgY2ycAdY+1Yp5VwItcvb+okMeqIq6DAPePpEByO5dfWrIySD0UoEnamExyULcmFBZLTgz6qNj5wD5q9qltuE4yiktzCkQXMGy5Vhl8qOVOlvZFXYoR5foGX72OLNsxvhc47ZPWdJbysHZH29zStU+xzY2YUiVGIM0ev3ueNMilYOGm46Pn/74jag3vqYWpqJKQNEwVxC9fr9mUtonsjGfjHutQz0Exe4VzGp3YZhmcdk7jnBJwOmjmoAo4nROxDE5POQkjsWcvwOlHmtPke1sxOQs4vUmA3GPmdK05XbcpZ9dxSQ5kPWjTCdAZnRQgEutTfk8lo8BLBs/1kdkdtanLo8c8em8VaHCZsCUJgja1S+YW+14LOL1Rmlul2WmRVGoqpkBuOQaK9u0heg5hbVBYdNxSUhxhBU7vkiHJNoHiJjPCUueEvO/MlqxA6irprsFpAaVF59qlNR5RSZpoYU+vguELpkbpktDJmNZXAElwqV3SFdZkufah/lhY1N9X5mPXGfadY9NH2vY7H/5eY3IwKwGnnRN5Dx1ikiiIwvip9KejV6i0J0StUUkXWpsWr7JRouOQdKitDfQ20M6Uw6NOEOt1mDtScqF3MeWrJDq0GAuFC9DKJC1k29xim1t095L5+afMmw2us7hOEzuFamIhBucrHhx4r3GjRo8NdtPRnrfY7gnd+SXN8A1d9wE+TJyHb5jGN5ziQBM9XWL3XqZeWZc6g9Uh+qJL7RHGI5rCtM5yICYB0zWrOrOss2ZqAavjwvxba7AvhawanM4FuMycLp0i6fnXbduU+b/4HCTNad0mRvpezh9t0eMDjHfMw5eJgf6acXxVwOngJ0J05Uq9DZy26TrkolttM3QJLEHFnr4Ap42KZR8ySuQ+1oCd6OD7oMt5NEeRlnoVPa/CzBs/cu8nkUEholSTTDuXV7V4R8iHCm7xB1kmAyGtrzmxqA9jlvrQ+BBorcJoYUJOPv6wIFY1dr1hcgmcnuTvjD1MU8RNETdq7CiG27kYl88tm8gHc3MmhIkv3IFXMfKphk+15ct2zys3MCSjX4nnMnkjGQ4GJ8aYb+nquyqbUo1rAPP1xy2nZQam66/rovDa2GvRzQbSqrh+L64ZJcIiQXY5roVSq4JKfr2ppUYZRdMFGhPL+vbIPJ29wqTulKCUzHeqs7d6vI+VMW0GpwmL1EEq2mdZD09mUrNiT+daj4pc1rbLiGRQ+kLaIwH+mbzTNjd03Qv6zU9o+o8Iu5cMT/bMO4PeLKCePQfa4xE1vCrs6VCkl6pDVunrF70a14pxGXjKmv8klinAIc3F/Hv1vloXy0pBX4lPgTB0c5yVwoIY8f5EcwjcnfPV/N2HPkXOA6XY3RrRIrYW5kYVMpNJOtQmGXZLvJP2YijSLkPwTFnLGEpXbT6TsoGwuhJjXqOyLED0Iu9xCU5fSnu83/peg5L5L2ulkkHiWhs+j7r78JqnUR6ZRZ3ZtHMITEpk9SZ1IS2X1pyYSAsxQXuEUKbFbNokzxCdqqkhAcvRC0gdfUSZE2YzoZoqd0jtd2ESmVJhXz++zpf5rtER53PhVs6/Ns3TFs3AEnPoKLudSiD121nUyH1XgRilGFRMFKvLWP+3Li6uSknvCVaHi/v8Nsb0o9+r1mhGTurf14n0IP4/Hs/MHHPsJZ2VWeLlLjhanUzglWhR75Lc4TE4JkSLWjqepyTheUL9AD5Q/7sbiqWq++P4Gxt/EAD1+faGoDfYcYsZn7ABmvFbmuYGe/4Sa3ecz18xTfdMDBADXTrEVZTNblaO4CNz8Am4ywCBo+9/kpg6Pb++++f8j4ffcNx+wOGXt/z5+cBHx6/Z/GSP6TuavcMPMxvn2U8zs1dMc8MUNV5ZvJak+KSS1EJi7GWWQM2UzlXWGpSNPJa2ACWtxVUQDrIJRj8tX8cgQVV0KYgKNDEd/unQF3ZwEFPE3U+4uflT7O2fcHh6i98qVCesPHzENwqVHGKzGWJoFLEBdHK8niNmdrj5Du9PSc85gZ7VPSwMaqWKJMrl0VEzp4PK4JZOBkoCJmQQNctOWCvsKp0CoszuhXVVPAZX/u/dYQXsy+uT6+diYPZnAZuUBFK9ygCkMBpyoKC16BvnoVMu1DvN3mv2ytInjd/5PQ68mqFam8aQ54KWa3D1dy8MEN8XnM7tUll/tete0LbPsc0tprlFt0+J3Q3z7gnzZsO4F3mXPNz4u7cIB6OlyyEZcV67MnIF1iMDnJdajZfHTgiKtvNsG89+avgaKpkPAZxDNkr0EHwdCIp+aEjJ2hQ0Q9DSxkrVwsrCll5LelQJWSXvkYtPCkGxRKanw+imaItfC6QzeJYT32J+WBlfAitwWtZDj1JjAbbl+TU+gbehJEUyLo07HzGeriQOWZJm0UzPwkuU+7e2SFt0dBejRp1MyTR7pdkr2Flf5HSKqWUxZlNJ7zIUTcdTnMVIL4HTY/AlQTAXzOltMkZrLwLZGoyur0PetzOgNycZkQxOD0XuIxUj6s4XVZu3hsJ4L+3D1d9/V/JUQCo3QYg4RzEXXIHUUZLJPLdnFzHt46Tjcux6zaZV9G2k/YEkPsYZRmCaFH5S2BAW5qcPEIzoTgdFqW9mNnVqHTZmK6ZoWIZcjPAtfoami3SNpx3io0Qxz9vlHqZ7ohNTt6y1XAROprPGoKIHugU0Nb2cN+1TYv+cefeE4/MbQqeInUI3EWOjMMvqe5aTPRdRTrS3jfOokFac6dDNniY6dttPsabnZDrG8bW0mkdHAyWJh5zcxtJynMHqzKrOoDQhJdToBdCOCq+y4WJiVSeD2KGS4TJRrcDqWpe6AClxObdW7DEC18Ca5aJIOqoKm12TZVPy2S7F0Z0UaoIjnL9gHr9lnl4xTm+SPuwD3p1xfljAbm2FQRtGiDNdXAyt80rPrDadX7MKeHRpsc6f88rM86rWoA5xAe0yBWzNNF/0qWey7AfcRTHSvQ9z0azPpp2mzMGlfT0b3K6vnwNalPel0BO8xjlhKg8TItGQ9EJ9ULReJUNnAZuOP8D5fW00VlUs6pCY1DAkkPrcaVwnptvKd2jfE8OA9h1Gd1i7p7EHgh8Z/cAvwsRz1XGrIj81PV80W7l2ccL5oeoi1FUsnGQ+ctH2eyakbwOp6/Z/YLkvlwoTV6VFxupczyBausc8ZuWZ9LOa6f994IhLqbNrQxkp8HXW0yYqo8h0KOagaWIsLOomBrw3pft/rUFfAdQZnI5rs/dcKPZVDHEZS2SwNQKXYUaE0lGYCRtvA6ebZkfXPafvBZyO+58w3tww7RvYLh3ewcH2MGCP94TpTWFPF+m7/LoegV0plolLR1h9ufP7hIVhaxAfm3ztULr4XVwzU89xmEmFw0ZrbNALiBsXYFviK49zR/rDwN25f/R8v+1oh5lpUsUosbWKxgpAjYbQmGR8upCocpeA0ga8FGA8whgdkhyeVyLz0ScyT5b5IC4xYj3KFV4B0mmNVPcnr/XvAqfz467lSnmIvEdY7nECz/NZfNm1uXiUxNUcqMfjQnNV2MWX7ryUipec01egcUwdnypEVEgFCh/RRhU9amOUPLtRMEmn3XwM+GnCtK48Tp4v4qdAmK8Xv9YdGKVtYCncJrC2lsVqisxHwKmwMP9TzBHT/H3Mos7s6gBREZX+TpD6cqgkJwJvB6prYPpt7OnS5bj8Vnp9+TmWVyDM7+WxKpOJUoersKhDYVFDYlEHz5swphhFMJdWKba6YaNnNtpy9hMetzrfQhh5S/3yx/Hj+Nd+/EEA1PNGtAij1gTb0LoPRY/S7jBmRzM+weiWo/6Cabpj8ieIgb22WCQBUWnjj0ScC8KsSYZFbfuctv+QZ3aHNT2v3/xT/l/HL3jYPOfV18/4d88jnz4cePone3Tf0t4EQvD42UnyHxU4iwg3yaFwijM6HSY6KkG+lMYRVlHXCphGNugFnF5a2Ip7dQxEpdMv5Q10cbOOuGJwJEmmHKgxJhM+xITidv9Tnt7+GZunf8755UdMN01hFEQtx3E04NAFkMzAdDY8UC61K59PjIl14HwCyKvqKCyAPPl16XfIfJRvqwLqGN2KuVjSIi0JbGqzztpn6NQan0Hq/EzBidZhbid1/UoSpPz9GJjCmSmKNlQXJHA6RseZhikqdumxWkdsE8vBnYnbW+e58Ya9kypoZj7Ami0Oa7aWvxKgltAztzGmRH55vWsJkxDmVWtanSQ9Zk77wsjuuw/ouxc07XOa7gW6e0ncPGN8csu473GbxAysWKxR+uQfvebvO6J+e5ixBAbLz3OQU486UFxasuMqQdu0jv2pS10EwlCodahDSCzqyvgya1NnaY+sv7iwp/3jFtaQCh2JQehirMDbC3A6FWB00sE1pi+607X5ZR5FfzyBZct1qsDpR2CbBb3IfphK49r5U5Kl8Hizpixd6uW9jQWSfx7StVyD0/n5rgXp8qhGLU7uvTJiToboTvdaEue6rXD2Gh9FI/McRWblEEMBp09eJD2GxGTO6y0zSDM4vUms7Wwgl9/zak1WoHQNUs+pXW8OYqqa9RUziz6bX5LWbK2zW8DpUiRdGKTlPq+Yd1dMX4NDB4+aBfx0LlbAdPpIIJTRkckFtNbMLtLYd6/ZvtXsO03fBJofiEE9zonpPkGYFWb2mPlKm3xSOyFEVJb40BpMX7oLlLKMYeYhzNyFLcPZsLmdaZtAo2IxAMy3MXfvlC4lBXK2mAIEZnmPrLGfk1qgrCNjd5jmKXS3hO4J824vZsGpsCvANCtwOgYlzHAH6j7SnhzteaQ5PqDmE4x3BD/gw0DwI8EPGN3RNE/YRGlXHUfL7B6Yomih5g6xyNKdBAtAYqOc+aHaJ3UUDdn3AqqjTl1WwvQZlHoEVtcgNWS5m+Va54JW/lyPFE1U31iYbsI42qZ9aovWssdFPxD9wHD6BfN8zzh+W0l6DMJ0JBaAKiQjSnC0CZzO8m85vcystXx9TFSix6108stYF+1gYaIu50r6f1QlQb/UrCcKMJ2f6xAjZyL3wfEQpmSk6nHEVTErjxB9ATRikKKWig7oJK5M/G/lAbeW+TB60Z73IdL61LUVE0A98Xsb214zOc150oVFPcwwDJFpIyzqqHWJ1/I6E6O1lsbucX7E+C0/mx/4VLf8WybyaTR80e752p05u0FY1HparluUuxv8hPfnNejwHeNxzPTu9ukMTofo0TlUeQRUr30j8t6yMDwVsW7jT5/rzrDL4eP6e/ktXmM9XhsLe9qIZq0RNmSjI/gseyYgdeNVQeCWuKryfqgK05fg9GII7VfdV/I+H0v/ZDIPXDAkL74u2t3XwOmkO902N/T9x7TbT2H3CdOTW8ZdR9wobCtFxOAU4QzN8QDDt1L8mu+Tmeq0zB2lV8BTKa6RJR8WkLrIzhV27dLdV5s8+yj7xl5p2UfjRbdW3muq58t6+VZpdJT+W+meSWzjGAhhwp5P3J97TsMPw66048w4KA5jYlBbKX5pHdFNLAzqIvOhLFqLcbBKRKuIzIGsQ51B2HymCJCpH8X3JYe7yDXqfqJ10ee7wekCYCd5PJ1kIt61V9SFCF15FtS5x2rvj+uz8G3F2gx/55yhyHzkgikS7y7MaXCzQidwOrOoyx5A8uTKIHWbCEAAU2ZSQ5jDIxJpmLJutVrtJdfkgWAt+ZEZ1EXChsXoOX/Osow+VveVZW0vJJaYFnqFfVwBqVVel6kwKQVK2cPXMl9roPqSMV2Pt2pPvxer+rEcUWM3KS93qOhxTEnuVOGIWCX37OQd92oWDWoMLZIPbY2l92LEeULOf1/MtqdH6+LH8T5DvdUk+cfx1zf+IO5AZu/6xqBCILR9OvwsrbYiQ5CS17PpOA/fMrsDPor2YjFbKK1l80qXetN/Qd9/jG1uub39P9M0T3j15p/wP52+4JUb+Tq+4N//57f8X5/c0d5YdKvpnkSiD2QnAX2OMDeYaDFRcdQdRzVjUIzRl88aihatVIpDYVEDSZcJosobXUiIrb/CJljCNgXoCB1LECMHwSI9MClQqqGxT3h6+2fsnv1fmF5+xvlpj9pT9EZjElSMBkLu6UmflInSfj1GbDIVMcdXTNNrZnfE+5EY5lJxrkc+rFsUvbIr6Yt48ZGBnZy0Zm1em0wRrdkmcDq1/5peQGnTETNSXEt9BC9MnbCH+YDS0oqW2y7L64iBeb5nwmGj6MluguWsPAftmZSAlCGolZuyXBs5wJzz7GbPrW/Yp6DrcmTA7zLRr1mq+VpctrQ90s++YE2/3fRBHpPBaaAw0jebj2i7D2n6j6B/ISYyT58w7zV6Iz6hKmVgGXSJOhLeU5rjXSO8h+xAHvWcWYJDVf0/P64CV4MkYH3v2afHZeNLYSmo1M6q0Vrs00DM3HxIIE5iMWTGbjYEy0lY3cKaWUJzXHSnH0t7ZG11m7TVF83RdUC9ZnrAApjVRqBACbTLzzLIqS0qIHM+M1HtDmN6nDsyRc8YXQFl6rFoTy9yF5daetngqGj75nStnvflVxS5eKURBnU2KivSAkqxUYqNimx0oEldCvW9yOzpM3CHsKdPQcDpc3AMwZX24fxXLaJ3XZsxNmoBp+t2S6gS77hcg5qJm1nyNThdWGJkoD7N0MKczsUjQWIfszMu2s+VBdz6XgeIYQA/oovurGJ2kdmLnMZkIpOB1qiiN2u0nCc+KBqr3ir3YbRi0ypJQn+gCGIYwClhT6tRum5U8ERtktSHsD+jjkXeQ3mEXQ0p8U1ngbZMbuQYZu5iZBhN8YbIOqo10xeWZDHvq0pV3gYVu32V1BbDJ4u2O3Szh/YW3+9wmy3TtsN1Gqx6BErLZwGm46zQ58CTL99gD68Ipy+Zhi9x7h7njjh3XnW/5BGiF7mfZifdPf7IjOih1ox/uauZDazKuZILo1kzk4vPWdv6Ijsk4BegOj2HjwJKTXGRB7kcmQGWuwtKYYA1SL1ELAvokPe/pfi8LQW44I6EMODdkfP5S6b5jnF6U1jTMbMcqyKQ92dU9DTVPAiAjhFHSEBYJeFTWpZFfkNrMTLLjOorb1ceryhGpDlBX1+T5XM2kDuTZKEq49a8Z5DPhAuQNMt26dhTjBKDT2aJARW8SK15VWQ+pkm6vLReuipaHyuAGs6/R4DaaMWuN2KWOEXOs+c8wSmzqDca3/VoN6N8jzI92o8odUwFig2N3eL9yM/Hb/ms2fNx6Lkxgc9ix+fNljs/cYgTPkzo2JJlMyILy8z7CWO2AI+S0mVffj9Jjzxqv4dMCMifdaDou+bnzn+r/shGieVx6jGbeAV2XszBSzA6t92/j6FaPZTR0g1oQjn/81xtg0qGqqECosSs2MdLY9C6kFvHDlVX4MVeACSpnaxNm5iU+T2tspyluLgA0m8Hp7vuOe3mU9TmI6YnTxn3PX4vpohKiymvHxXmFNDHb3Djt2lPPq9kIFcj5l4zieJ0pJw1OY6xCUC+jEsFnIZGx8Qulf1iE3TZJ3Khr77XdQHSoIvPgK2uW5YamAg4d8Kc7zicnv9gHRJ2OHE+K85TKnortTJKDNko0XSyjpNEk5yri1Fi7qStdahbJOYrGsX5Iy4yH5Ea0ayBaX3xf1O+/y5wut4HMkj9znERo+X7XWtQ57H2bJHfuwZO18WYvDayzMdZeXZKZENlLcmeHeICUoeg0F6KA8wR06RssQq7a4a0yZduSJ4lIT4yQhRPkwxQp9d5tfEkzUkN+McSQnVuZpIudTHABN4m83F5lQqL+lFfLCV2/i6QGhbyx9uA6UeSHhf/fx+TxKVmnWP7JCNr99KJkfKF6D0OOfNNWsMhRk7B0YRJpAZ11qIW2cNMphmCKx3qOSbgR4mPH8e/oeMPAqBWIWJCwMwe7auNwnSo9ik26Q6Lft0WrRtOp684zW/YA402pSqbTTt81qWOnsPxl3g/sd1+QtO+YP/kT2nsE97c/1P++f1f8tqP/Lp/zvP//4aPfzKwfR6xvaZ9kgBkZmlzOUM7W9pgmEzHXTT0ynEKM4PynBJoMkaPi7LtEkTfsGZDRSgFxAQZr6pydeVRs1QqrVLFeMPHwEACzhSgDMb0tO0t++0n7J7/u0wvP+PwwR79FGwr7Vpy8MVEGFBEm0Frymc1Rpqzp78/0Nx/gzv8POlAPiTttrkcPOvWREnC2nS455+tWBIqvzdVgJ0s7WHMJn1sizalsTto9qAN0XRE26ZASTSS66HnXpK5ZoueT/L/rIGYX0P0TKbH+xNjYlFvguOkZ+5iwzlaMYfJFdzEIlBGjlCtA8HDdvbsZ8utEpODENatz993FC3uFXt6Xel9Gzid31dIhi+X4HTXPqff/hTTfywafU+fMty0sAfbCjPQ5nbIND+8Uwvb8QcY0VyC7sv7qGUh8shAdU7cap3GHJPltlQQhpFtIjcmsAmau+BKC91ECv4SY9rmoDIFg4/Y01CkPWq91aK7mgLN/BFYwM61tIfItmS90RzQC7PfVO+1BqfNivmf2bQ100uYoRcBnbZoeozd0TQ3YjBqN4xj5BySSYf1bN7SCgc8AqZhYUFlAD6zmgrjP7VbXLbmZZBQDAs1Daa0TLYI06jXkc4uxogelZjTogV+Bg4xrFrlx2ROmFnrQGFw2JRQdEmHtt6DVpIm6YUKaBRKQl0D06ECqGtw2sXr93ilxZ0WTgk0yc7lF4spJ1FXKv0xePADdnSMY4vrY9GenRxMFiYPk48YB7OPMAk4bbRidgqtBUS6BlY3RokR0g8k0zbNCo8ijAozBgGlLh29CnuaIoOhM/qX9GlNMjybiUmH2nOaLMqMRUe15TrrsJZMEkBj2U8vmVc6aWkqbdB2j7J7aHYFnJ67RvSm7UVXSag+ZpXMtxz9/QH95f+P0+kXnM9fMoxfM7uT+Db4qcwDQN5jkiwA2QuzjqH3IleWZcx08pQAWVM+nbs+ZjavXAebkrg837PslMmFpIssKwP6sAAjOi7JZuk4qPaEsj5S8jWH8KjgurAjEwNSSQdJXXw2aX8TptAhacGOzPM95+ELpvmAm0+EOMs6IKzuXwgjKoppdr2+o5JEX2VZlAhBpaJc6gpLb1jY4lHLPq9iYrJdAGtadDpzi7Ov5t0lizoDfosUQmCMjjH4Iv8UFKs5Kfe+kgJSpnSAZR1qJZpUReKDNO98AanjwqCO0FY4zOThNPJ7HX2r2feGYY4cxsCmjWwTQD0NEd9YjG0wcyoMpTheq2xEuqGxA6/PM3853fOZ7vg7Gj5Wms+aPV/PZ07uvLCoU0dEBi+cHxOLeo+61Ox+y3ibWeK1EaK/OHut6NZfaFPXQ+usRW0qgE1dgbBkXGpQ5/mU45Nr4xpvoH5s9Ou9V5ko50E+a1PhfooKE7SA0vn1Fy12tWJMPoaXKPJgq/ef9qyFKStfZ4QqKTyUczfnQaXzpfSK6AJOi169+NNkcLrvP0bvPmV+8pRxvxGyRbfkNn4CfQxs7s+E8RvmaWFPX4ula8+ISCidqjluyeB0m5nAqpaBWNjTrYo0iexhgmYfxNvGp314UteD6kw6ykD4xCKXILJVcrWcH2C843BQPJx/GPBKTQNqlA6IyUVaKwC11qBtTAQykezRtVGiWvTWs1Gij491qLOE1KJD/bYXcv0na6mPqgj0FnD6srNUaQvel98pZs31OoYVgF7LWcAFSB1ZyeJdjqUHahnXZD6mGJkUbGImZyxEGjcv8TWNSHQZkwrjRIxRSXNaLR8+EuYgJbwggHT5+1dkPeDt7GmIaK0S8YFilLh0si4gde1/kQsPnrXMB1DJfKwDkmss6lrq9LH8zvuPHHcvZpjvevB3J7zx4n6LHOmEDw6T9hAfBuYYMSkmCwrG6Dl5x4Oai9ShUbDLUoTacgwOn7r/SxHtexYkfxwgRc4/CHj03+jxB3EHuuNMq0bMNKK8R08Dyo/CIAlOwBe7p+3XLIW7uwcO0bMP0KWgUAdQCaR2yhFC5Hz+Bp/0fHY7T9d/wmb/R9jmhq59xqs3/4T/9/ELXpq/zb99fMofPznz8oORfi/s2e1NQOsZayPd2dOPDd417KPhoCyHJHI/RM8xzMUowsWATVVUFyNBLRrVsGzaUheVsapA5g2/PB7OwSVjyIhTEjBr09HYHX3/gt32U3b7/wPnn/wx5+c95il0fcTaNeM0A5HOLYyw4IATtPcz/cMBe/817vBzTsefMU6vmacHSbbxpcVHs2a9ejKD2qxee1x9lnqqJCttkiZoKm3KDFAn874ETAfbrAz8gtErkFp1HdoLOGLGpPlrepTuVxX1wX4rQHU4MwTP0c80SnOvZu50y200zEkSAgSkNs1SUQ4hsHOOm8lyO0vlcwy+3MTc+uwrg6XLkU1jYmaMvGXkA/VaQF2zNuVQXDT1tG4KOL3ZfITZ/23mm5cMN3umpxa7iwWYrueGS+3DMUirPj8AA0vuUQ22LxqPl87JOUiE9bxayXsgDBV9WdVvIjvraWeZEwIwC0sw6y0KIJaKPBfs6QxOF0Og3MKaig45IF0ZhL1N2iMBM1o1BYwyun2rMWIe2RgxJ/PRr/WnV/rU2WQvP48WFrWxO9r2Ke30ipNSDNFz7yeO0fEcu2I9GNSKZFGDtWV/igv4JEWlShcy350Yicqj4toMqgT6ajFWyQB1q0MpMuS1FoIE6eeoOMfFoHKIsp/mfRVkjzTySgqrqUvJY5301zqBi1FRKLrxRa6A5f5mTU2X2fOFOS1AlezZmcOqSgB9yZyOCZXN28ByH3MXSDJJVGvGfIyO6AeacWYaG9wkMh+zS8B0YlGfFcUUTea0GCVmQNpoaK2mb/VK+qO1ujCkfogxpX1CjQI8qxBQ3j8qIkYvlNQVexqEaW16lNIY0zI6OesO0fMwNSiddKiTjmobl9bq1fOXr5LhrFp0wWtd93xuKtMXcDq0G3zX4xsrmptZ+spLslaKuHPyZxgD3XGku79H3/+Kb7/9C87DF4zjG2Z3JISpgB2wmAY6KMVZdWGIK5rzAUegRfZDkxCd2s9Ckf4fYSbIeVLJXIAAK0TQiZ0mHVdxJXcDJNB5baqoV5IEuaCzyN54YmUauujv5z2QugBt2iTtsVmBzCGMCaQemecD03zHMLzC+0GKO5lzXDGOBeyfaNI1qJlrLq4LnfJelg4XpxbNbK0EoJb2c9GNbhNAoKvCp9YR70WH2qQ5V+MOKwZ1Bqers8Olola+d9egGTm7R2H6RSemgLoXmY/oIBjRofYBPWt8A36CSYPWinES+Z/GwlwVmn34/QPUQGFR7zu9sKhbaPuI6xrs2KCndK7pHm3EK0H5k5yLpifqll9NB/5ls+djvV1Y1O2W134sLOrGtFzKfLhK5uN9gefvO9ZmibaY2V6e4YtsU25JXCsX1xHLqkX+Yh8LMXV3Xdb4vgOsuASgok9rSIufSmb35oKKQYo1OkiMln0g4C2A1MX8z+d6/p6uTkUUWLTkQQpcpICt+VrU4HTih5KpObVhfM2cbtunIu2xEXB6uBFTRNWx0p3mBP39SHv3iilJe3g/FeBn8SqSAlGIuaDs1zKKSGeWRdGmwnenRDqsXXWGQZPA6cYIyN/EyD5oMTSOmnSULHsvS5dliZNUBsN1IgbIdY1KOkRCmHDjtwwHxf0PJPHBfMSeA6dBit63raY1sqdoDTEZJWY5rmyUKJ0xSag63UvHYx3qzKBu0/sqeS7XmbWKuri8yB7W0jnvAqcfy6Z5tDL4a5I+V0DJTHqAJe/IY9nz18SGa50DVOBsgLfIfCw61IvMR/bMiUWHOnpF1LGwpjM4DWsmte0VfhbirSeuQGpYF7Kug9Ppcf7dew1kSSB5nyuQOheI0+Pedp8ppJfrYwVOv4VF/duOBbh+NygdcoGN/B48IbiydxjT0sRdMlz1RY96ZkIngForI1rUCSNqVJKdUxKnbY1lEyy9MhyKd43k9Oq3ILz9OH4c/zqMPwyA+uGBNp4ElHYj0R0IVwxjlLLY5ik9clCdz18zTW84RoeKCRTVBpU1oWPEKY/zR+Lg8H7Eh5mdH9lsf0q7+ZRnzVO67iVv7v4x/4/DL/lZd8PfC7f86cOGTzcTT3cT251DGdjunAR5NuAPPbdBc4iaQxSQ+hw959jJwRw8M1IxKyZlVQvcu/ReYd0SlAGSKQZGlQ/pBmtarN3Sd8/Ybj5mu/3bdE/+Du7ZTzn9ZEP3JND3AkLW7rwhxNJC5HI36agwB2EbtHevUKevGI8/53z+FeP4inEUDeoYJ3SMpbKcGd35Nfv0/c0V6Yua3bYwI2zS5t0kk6wtxlTgdLMntBtC0xBsI1V8rfEJQMjyEdHIgaxDRM8NpuuwY4c9S8t4U0kmDN3XEpzOjjEKM7MNhocwcRc6DsawTwB19HLtTCMyEjGJTvrZsz87bp0YJZ6UWxklfpee73eNGNc87HeB01l3enEWbmjstoDT/fYzpqcfcXq6w99oml2gbQWYrgGqEEjzQeHP0rauDj/w4fgOzccFWMjVeV2SnQXkXOtP161n1kb2/cx+6PkaCpgoeqtigthUTNIMhoaokrZi/vx29vSKRU2lQUduCs3ApSrdAbpiT9dMwEfvfwU+vz3wuvr72iLpINjoaNyRrn2OVh1zHHjwE9/6gZe6fSeLuh5ZX9uRQduKiZoThsTwKWYn7yi21AlYqyJaRaxZ5pfcD5izMSKRM8LEGeKyj5a3XBXwMqtJCpWVJjzrjoZ6781AW95r6/25ZsoXU8w0n1bs6cQSLeMaOE1yKa+KTcubMBDs6t4LSCWavGYasWPPPBqGQWFtpLHQGjhr0RU9T9CawOQUrV3SgMysbEzAB8OTrVkB10Y/biv/bYcbFDaAHQN2nNGzlD1WLOqQIIg57dMhJmZoKNqWuUATUUzRc4yOey/MyKaLbDpPc4qYsOwJj4fikZ5lTmAriRxlRHYAKwVQ33UCTlfnirzuBC+ntlk1i/xVf3+ivfsW//CXHA4/4/7wM6bxddFGbqLIzhil0sqUMSOarSF60RlMciQLmKUJSkBfqxbIJt/ZGqSWuSX/UcTSThoSKP1d45IhTQSTGH7X2vvrAl0Gp+v1kaF4nfY+KcpJca48VxghjJKA+QnnDkVv2rljMoEO6T7W4PRAiDMmPjaeLgVwJSwtmQURE9M1CcKmzqM+X1qtmZQRPd6oaKBIfEHu2FmMoigFAwEu6hpuNtCqTXV9XHatPC9rya4QPEqlpFQnKZgwEH11HgQx3YxGE2aJfbyGKRX32jYZZKXjNZuqjsN3z4HfdTRWse8NxzGsWNTDEHnoNK7rMOMo680PZZ3Lx4TWLdbueTO94mfTPX9kev7MRD7Vis/sni/MqbCoaRKb8orMhzVuJb3xrvHbgBsreR5E6iNWXRl51DIE7ztqKbN6TUbPI5m1mvSQf3SNCBF9KFrUIEdNDUjluEgQYnncpQTY4vmhMDnuZynY5A4Og2jdL2C7RiOFrwxSa7W83lIQBrxa4qZcWMzgdPamaZs9jd3RdS/oug9oN5+itx9x2m2ZN+aRKWI8QP9moru/R52+Yp5e4f1pxZ7OXYfBS/FDyDfi8WOhMH4zqNopUyTLOm3YaCOGzyg26dr1xtOnrjCtIzooeh0EnCYZsCtdiA+XI//NEtvERFZKuZUGMQed36DuI6+PP1B87o7Y0TEMlvMU+eDJIgFmLYwaQmMITYOx3buNEuNah3qKSeYDXSTX9KNze7kWa+3pa/Iei0xX/rr2lqgfu/4LWebnMesm640XysVF4SjnHWW9sZBTrsr2pGJCaRdIQ2LqC5kPWM6eSDJsFxZ1Bqq1l/29flc1c7r+nm6l2BS0rKqo5Xd1gjqNiSmPVXBliwopmdEGqaa/ZRRgOp2lRoWKQZ3Ouvg4IyhxS/pJvvY/9Fh3ID82R1w99goIXMdZKwY4cfXcShms3a5y8EggusCMsKp1AKvl2pyDK4WtXSIMZZmPjTbcR5H58EFkSL+T9f3jeDyUIv7eNah/H7P2D2v8QQDU8+f/owDJiXXk3Kn8LB9ExrRJt04C2677gA8/+L8xDF/ycPwVr4dvaMPIrWnZ64attmKkFTxnZpyf8f7ENL7i4eHn9P0ztptP2O0+Y3/zd7l5+e9zevP/5a/u/gn/n4efodyR5/ctHzdbPrZbnpmG56phr8Tca6+llesW2CuFj0aSHBLAZcQo52BdYdMMSYtwiPK6XBSJiSl4HsJcmNESsKmUVEsinbUbn+3+Nn3/UvSEt58Stx8wPH3GcNNxvFHM20jfRz7Z+qIv6lOyMpe2UMU0KPwR9l+caO9ewfHXTKfPGcevuR+/YZxel1Zb7wdCHErgZlna0HJLfa4wTmkjv9WWvW54rcYE0lCxheVIM6bHJDPExu7p2qeLiV/7VFhtyaxq7hpCY/CNIlpFbBSqyaZVqcofhBXrgibOLWrsseMT7PiC5nzGHh9ohk8BODW/5jR8zTB8w50/Ms9npuAJMWK6GwwdH50tbSeGmZBA6l5h+4jtA6YZ4Ev4xPf4GLnzY2JQBZqUnBr1mB1zzTyyHjl4vvyeupIMeT8U5rRSJgHTT9lupEvAPPk7TLcvOPzRnnYb2fcea6Fr10WLcZJ5Mb5WtPee3f2B5uEN8+nr91jB7x6ZiUi6jvkgz2xTYqh5MxXwKM7mYtq1aPzlFlStF4BTdKgjNzczn95v+TxoYd8SMEpzRjF4g1GSpJnEbp+9YkqSEhNiyCfmiLJe5UPWa2EMBjG8mpP0g4dlzZKBNlvmd2M3GN2IdE0yRrzGni7SA6YrQGWMrjAN68fUjNsytAG9Q5ue3giT+jx8yfH0G177I//i/AaD4o+aPRslJh1TYgfUAWZmRAloGxJILe/R6jYBaetWdQGVdELpIyGzOq+0Py5FBgFYpSshP8+iA36OgUPwHONcwLE8P1q1zJHMNsptt7AkEEPRD61Y1DEbIS6a07V+Zu54yczLKYHza3DaFGZnaUUs2nFB7h0xSRTIvVl+5pfvKwsWVHRoMxDCUFjzbr6jvf+aLXAON4zO4J3CucAwwbYXjdlNK/qvNeCcEymjoLWK203gpYt8+DQ3cuefPbo9v9WwrwI9k3gWjCPKTfKetYDLwpgG5uxtMD0yUczmadZ0aNVxCBNfuTOfmw1+iDQ7zZOnjqdHx71vOWA4KP+IMZ/HZXKbu2gKe9ruBZxutviuJ9gmyUdJp0VMwLQaE5t2FtPg7niiefMl88Nf8ubwLzkcf8Hp9BWdu+cT0/G02/PENOxUI4adqjZbUpzxHJKr+2s3cu+nFKu4AvIGhIlGBFtayWVO58fkEyKDAuLJIUxqAB2VnM3p9/srRS9zhQU2VsajGSyrC+s5yXZEzsE92gO1ahJjui/eEiF68Ge8Pwsw78/M7ox358SYnlJHjafW7icGvB+IuKIHG4E5g/rk7oVcMAvEBLJFwEfHTGSKvpzJU+rEGKNnMNL5tlcGjy5AXW8W40ItWiGgA00UuQMBolXS6V2z6vK1dKnIlQuXOaGp9wExezwtgFnWKg+OzEtU6bMdFwkLP2vCrBhnzdxExqSTviIiOMV8+u1bo7/PeLKt55bDJxLEw1PFQIf2e1o3iZl1cJjosIlFb0NP190SY+Cfjm8AMHzEn7Wef48Wv/2AcPqKX7tBzsHU7i8Av2Oa7rF2h7Wbcnbm8S4TxO9iXZd7UcBMuevC3PSguyL1cQlQZxmvIvFxwaas2+Lb1Opdx4lTXAycY4hEv2ZClrmnKualT92RUyBMAdUGYggJqJaCS6OlMyPLmOWusTOK1ms2pHO57AsLSN0iBfw2SwapgE/A4/zoGi7SWUUmLAbGqgup7jgrBV9EvqxpntCk3KBtbmnbpwJMb0Vz2u1uOD3ZM75oi6xH3QG6ffUaffiC+fQ55/ErhvFbvD/jvOw383zE+aEUvXSMWGCnDI0x9KngXccVBkWjdTJ7trzULc+V5blS3JjAjfVsWkfX+PU6jAozG3AGgxYTVaWSz0nq4mLxFWgQibI5htT1AS5JjjQopvnA+fw5N7/+lr/86odxOXbTK/o3b7i//5BXp8Df+VCx7zTbLtC2kXETcWcpNtlmi2meYqY7rNlgzEmMbDEEHB6Ju+7cxGs9s7eWWzR7ZThqy0MC+o2SIoYuBVVdYqki6VGROqRg0SRAui1SQXnNF+D6wr9F4rI0P/1IuASyL7ocUpmkEGLa1ZpQlZyfdBPl+V0XHCRGNSuJvLwWxihyoI3W3AfNQTeyBwRdAOhsjx5CEEKZh6bzhCBxlBCm8ocGo1E6x6EBvQG8rP0wBaIXP6GYZD7EVDEuUidpbwkBmAXUdkmn2ufuxitFsLxnLX4Ya5mPzPxXcSkAVOU3FpAvEKNeyNTx+8l8LKzqK0DzhS9M+ZrlLJZXE1O3aF3yrorf5TuBEOckwyHFjsY+KV1iZr7Dmo557pmme05xwEWPSflR7rydYuCp6dhpYU4/NR0uBr6c7vF+QDuLS8SjH8f3Hept4uo/jr/G8Qcxc4/HnwMO58+Vju6y0ZiKhWiLCZgEL33/UXncOHzNg5/RBvqk6aNRTGFOwVAgxpnoDpzPDudHZnfgiTvSbz9j+/TP6befcXvzM97c/RNeHX7J1+Mbfjbe88x0PLWymXTKcmOaFesB1slJToQewsQY/MI4Cr4A1Zmd6BRAcjjXljYldllvrW1vadtnNO1z2md/Lppruy0P+0Z0hPvIroe2DdjK+Gp2Ak5PGXwcFO4oTOnuONDd3xO+/l85Db9mGL5hmu+Y5/sqeJvkeuFXbLAGYU6Xdq1KtysbDrUpmLuslGdtSqVUad0yui3Jhc6sNtMTmy2haQo47TpNbEB1opus7cIOXzPEwbmI7xTzaPDn3J5maLShO32Skg9h34yDZ4wDx+C49xPf+InnqmF0hmnUdHPihZXqtNztfh94cph5fuh4pS1jAjLr8V1M+XeNdVvpY3D6UtbDaCuyHt0Lus0nmO3fYn7ylNPTHW0qXLStgNMmXbNljsj82HwrrBPz8BV++ILp9NVv/fqvv6dF3iOzS0Eq0zk8zcDj4pJeO2kv8h6Xxh0gLMsb42m94hCCyKyQ269hDsKQQ6dkLrGmPflzStzI8h6LtMcawAwFeFgq7VmPT5VA2eiF6fGusWJP5+A6LEZN9WPe/URWWo/tHts6Nv1HzO7EOHjuwsBv5hPPTU+bFsxlYmxQK9KEgGWVtq+yJXlYBYwhtfOpxGpTqa2+sAjf3jWiK2Dl2jBowJd5kdmoOWm0CaCsmdN1y+XbWNLXgOnchhnjorudAcNi4MQ6ocmjZk5HIkVwGYRdrrL8x1rXlGR4uZb58AQ/wHzAnLd0tsHbHc5qTnoJ80MQyQ8fKFqBIP8HWeebJE+0aT0kpVH/OI7/nUYzzDQxFnA6GyQCCxs5IK70yWtCu7lIgER9wYrShtmFIvMxj4r2RtF0gW3raIe2SNRkJuxjVtbjsVo/SR4nS0Y9emzqlsmdOXZ0tMcj9vCqSF8djr/gePw1wR34tH3CrW3Zqmalt5mlbYxSbFA8x+ANHEzHnXG8DhNfuzNv3MghzItkBgvQCnL+IqSkwjqKLJ0bEFPCHwhKmNR5msq5bR4B+TnR1tRzVT69TwFnDU5DkS5J+wQsXT4+nbnOjwQ/PooxYCn+KGVk/0s/01EK3CE9psh+XHQvZLmh5SZC7qTzRFz0hBBJW0pJrO+io6URpl+UjxAWxmmW+mhVTPy7dCOKPu8apK7NsZaXkhljsg+EGNDpmkgh0qDUSPBy/bw7LueBtpix1utoAJ2AaAhWOrxUKtSLlA7E46Np/XsbT7aGw+DZd5p95zmMYNrI3Il+bWh7zHxa9GsTi1qpczIL3eL8kd9MR/5le+ZTt+HGej4LHf/KbnjlRmY/YaxIAcnBK1r/vpL5AImTpKh/2er//cwS5XcEnM7PL/Mig18GZfLfWp/x78PQXmKbhal52fL/riFxiwDNzukEaAkAFSeHMjqBUfmcXbofScV4kflIfzfrTqd4q0iesdZdf9vImry1Pm/uAl3k0NbgNDknIHectbTNvoDTXfuUtheDb7X5qOQ/89ai0tnmR4U6R/r7ic2rb1GH3zAPXzKNXyVpjzOzOzC7M/P0IEWvOAOeNgro3ivDM9sVD4tLconEF/K4XhtuleFWKfY6FnB603msDQUbCR7GOdB4Ta8jk5fi+lSx0ReZj1g6zPKHVYl9jip7fghOjBKPr7i//8l73JX3uG9+RE9nfDJKNFoY1ItRYiQ2Cm8NwTaSkydJrlqHOiLboo+LzMcUA0ab4k3UaI3xqkhgAEu8pB53Hizxpll91OB0LY0nv7N8DgwSeyiP0h4Vlt9/17jM7+shczmUr+t9vvjnpHvrCNhIiS/zmhiCZ1Ih+d1QZKZM0BgvOU7QKnU8q9LRSyNdFeUqJXA6d0vkz1EHMAFjBKjWPhe6BPCOCeyOPoKO+Pn6e82dpvB4D3jf/LY2jFx0qK+MmHSoL677+3SjfCc4/c5frn5ed7DwFp5sDCU3K55Pdpf+v8T2slYDMxNzDGnOCxbUBM1JzVL4yp0ZytBEmJUvLOq3uxf8OH4c/3qPPwiAehi/WSpSfhI2TUnwKVVUo9vCyLF2x3bzcWJTv0Apw4PSDOcvUX5Go9hoi9aKYxAWDRGiikQkoA2Dk/Yuf2bnHnja3qI3H7PrXrLZ/RHD6Rc8PPwlh+Ov+NX0hl8Nb+hRRdD+MiGuk7gMzuTA7HF7uARjSjd0pqfrntLYPW17S2OfLEzi7iVx84x594Rxv+HhucVuIk0buUmAdA3QgrBhTyfFNEnrNQdoDzPb44nm4Q0M3zIPX3Iev+Lu/p8zzQ94d64SRpeYTIuLdZuT7RQ02QQMNVUiDgsTywC9soUBBMtmXyQ+SuGhWVo+ky4ophPNaVuB051CdxFtoWkX/eT8/jMTM0tVuBamVoDqyTbEdHC3h48KOzW39k2T4xwdd17Agpem5ega9rPGz5QgP1errdEEP7G78Tz/SnGrLcdgiwFKBjabaooYFjBfpeBMpTl5Od6V8IieVW5TXGQ9jOnpu+f0/U9otp/ibj5guNnj95p97ws43VgBrjKzfprgfFL4N3Dz6lt4+CXT8CXT8BXn8dv3X8hvGSpElBc9+RiEJRZqBjVLi1dugV7A6Qv9abXIe2gVEwN3uX6miTxpHZvJcJ/YHJmXN4fEvI0CNgCLxEdhxS1sxMuW9qxJLCThte50ntnSorpIe6w08r6jolvMD0sCfV1AtOhPv/WJpEqlge32E0neg2OaAl/NZ17YE5vGsFfmIjm+0KOmCqoz00lp0Ry8AKh1+oWgAkp5YlRl38umMOXaVq2S5fc1NDbQOOlMyUZtudWyVZXcS6VRngsZdVfCNbb0+wDTl4+9NL6EpcCWBL/L31y19uXiSyyWuBAXmY9H3RHaoGyH9j0xCKurgCHugB57rG3pGstIx4zmGCLORVwvutSzW9Z0PYyGqQOjA+dpeb0+JPf4Hwiobs5njGrR05lFxqctIDXIPmDmiHFeTBSTPmrUWgDtAlDLGgrAGETHch7lBtge2ibQ60Cb13Nm7bwlmbwcKhcE4Co4LdrYWtqpURgnBs7ShXNPOH7OcPoFh+MvOBw/R7sjH5qWrbb4GDkxc0ogT5OYeDttxZRPaT5Qlo1SbDDcas1zbXlpWr40I9+4M2/8KJ1VCSDODFqlFDYdotkQMpLWZsKi58QkUjFglV5J4hTQvIpbluKRxiDrNChZs3VSeRnX1GDTqkW/krzJ+7svZohz0pyeqjjDyfvLSauSHSkXcUSggwtda1v2oFzkjCG9mliXDOV3SK8tEpiVtOdmDWEdZrRSHKJPnTqGNqikeRoEBq6kPkLam7KuSulUeK+ZJ+eGomZRi8xH3WGslEEFi/IGn+apBjF/1roE/cobQjCEWREEr17edYjycf7rbQ/e94b7s2fTKDaNFMRdB66zNE2TWvFtMa82qWtCKZOMNHfcz2/4+fTAF2bDUxX5VMNP2z2/mY98HWdMTHJZV2Q+YvTo3LWRQOrLkQGE7wtUL78vvOLMeFcXQPj66wtz6OrrXFiTry/JLjB7lYzSro9UPxMzxVRQ8bMieoWfI7qV8lUGpUAMz2pNaZGjiWX+ZjkGkBgsF/bzWs+s3yzdkOOk+VLuJ2az+EWiMD/Xo5hJpYKTboSAZDeFmNN1L2m7j7Cbj4j9c8mDEjgdNgLbhlHk6Lavz0s36PAl8/QqEW4exEPHnXHzoUgwtRG2yrAxliemZW8aPrSbck9CJinEWK5HBrL3yvBcaZ4l5vS+n+k7T9uFYqoevRRnu0akGuag5MyKqrDRs6a3J5av81ywKhsKqiKPopViCpPkasM3nI6fvHuyvufw/gjzEX0OHMfkXWHWMh+zVeLNYIzoUJss07PoUOed16dzYoiOc1wko0TmI+tQL1Hz5bhKgkijaE9Xha53yeOpmEgb0ZVYvP4b3zUyMSZ/vbpu1Yq+LGbkHUri6pC8U5buPVkjLq0nXUxLmyhzRQddJDa0DiW3jT5Co1Ya1OW9VhJHyhii9wWoVolRHX1EZaBaywkrzyWdQln+s3wkb4ZF3iR9vtIdeTl09fjHDOrrI+MDf12jyHvUhJLVzy8/J6Z1Pr/D0kVj7W515vikbe9dYIoeHWT+Zj3qJmga5Uu+22tDpzRzin+EfPajxMf3HorfP4P6/dKN/12PPwiAepoPKAI+tXkGPyLbwMINAoVP4M+sW4x5IEZP29xIO1jzhCe7nwJwPn+JDrPohiWtMIJnJmYZzJLMTPMdPkzM7kxjn9BvP8NuPkLvPmW7+ZjNkz/h6elzhuE3nM5fMIyvuJse+NbdEwmiEVa9l4gkWguj0qJMg1YNrRHjvgywN3ZP0+xp2+f0+z9GtU8Jm6e4zZZp03HaWkKnhDHcCmv4SRtWgNw0iY500Q4epSV59/WJ3fmEOd8Rh29x47dM41ccptdM0x3TfM/sTkzTHTGbhiRFuQxK1+zV7GCtU+CU24ZLG5zWiekoIxsl2kcHTU4Ys0ZvJd2SDA0xvZgiNqI5XYPTppWkp00AdVMxxjNAvUiayGOmFFxNjcXbHc3xJ7QgxihBCiI+TEzunlNwvHIDX5qeo+k4TZbt6OjnuDBRGguNtH6FeeKl9Xw9W15rwxh1ARbEJDGuAIFVEHPluP6uSu8anPYFyDa6Se7mL2m3nxL2HzM82TPdGOxOrtm2X0xPgAJsnU4K9wDbVwPxzb9gPP+aaXrFNL1hnB7e+Xred6gQIJu/VQf40lK1cFOL0U7FLsrtdrW8h9ZxZWgVvXQTbFrHXjV8iSRcXiVd0KhpooLkWg+UwKtmCWUGXG7bu8aedun/72JPXzI/3nl9CutQfnepzq+v19XniS6JYiZd8vRZNTu6zScEP6a9NXCeXvPL6cBT09GaLrUYvx3cWze7ZX3IJLuUQPIQQ9HilFY7j4oBj0smYWtTGLknEoT7SutVq0hjEkiNJHEbpRmUJrBo2hejswqszuN3AaYzazqygNw1S/5t6ZSE+AKWZMmaMq9zEK8SkJbAlOCH1JNM0aHG9CgnzKR83707QgLkMut9pBMZo1SIG6zsh5dDjLFkP9y0ayPF5ePqbf/ew0wjmsrYuNmtwGkQto6ePWZ26HlGu/lq6J1lUzzifH6MjvGkiT5ge0W/8WzuAhtll0JGOVfePVbM9SsBrAoBjUbKUBoTInacseOIPT4Qz19K4fr4cw6HX6LckVvd0GvLvZ9KYg6LRnpm5D0xDb0Sv4U94uK+UYoWwx7NvrE8My1f+TPfzANfu/OyN+Y1qlRh1ExRVkJIbzwnkC4Kkzqvuy7NwSzJ1dadBkqnNn957DkofOVulNdQ/jrEbPQs31+vjXyRpalZdC9TkhayXJFbFcBNXJLWkK6ZxGaLge6KmZ1NJWMghrnoVdexS10Uz+u3JqJ6BWMMZf01SosPhc6miaa0W2vlodqjIPkexLV1kb/8HOMqgZfrlLX6K6mfxC5Ht6ioF7a5v2KgO+8xwaPCRjSpbYN3Fm8N0WXWnEoF4SAyNce/BpfEajzZGnYnzaYVLeq2jYytwiUtantuRYs67XPKH1esSGN7nLP8ej7ys27kp77laeP4LHT8ld3w5XwihE7IHUqnboLEys9SWEZA4pgAqWsgNbwfm3ph4C1dL0pZQvCYCgy6lBJZSX7wbrAlY0yXjN0QK9YkUB/9dYE3s62d17g54GewHsIU0K2uyBVyxuYCcD2yNF/9tWhM571mMYPOHh25S3RObNDcJVqbC9cdVEW+qBSbdFnTRnepazR3xn5A2z6n7T/E9B8Xks606QSc7pQUZEZoDl78AN58STh9yZzBaffAPD8wu2Py0DkQ40QfFTvdcGtbntqOp6bjWfLmaJWW9nvEnFmjina9Rrx19krY089M4Gnr2HczfS/gtGmWglY2t7M20vhAFwJ90IVF7RMwTe48Zcm5asM5q7QUQpRCxShxgT/jpm8Jd++cWu89gp+I7oAdA6dB5kZrVTFKtBZ0kxi9tgHTiSF3Ki5lHWrlJQ4KScJgCJ5z9IW01FadPOuYM59zVwDpFEPrlfa0XWR0tEXrvhS9uFjTGglL5Hd98kcweJ/jbiEbfBdwemkQem0Ug/eUM19KfyyyT0uX9URmUSvaKB4sJskPgsiNOafws3iQhIDo31+yPMoLrfee9Nnoq0B1OPtSTIlepc/gZoVzooXtL7pM4Xo3xe/SLby84EqW7S375mKe+e6c6m37/vox1wPgukNt+R5JdkSV362luTSgdYc128evIwZmd0DFIB5piATbGD1NdOigEoHAsNGWo58kVgquxEE/jh/Hv2njXxuA+r/6r/4r/sE/+Af8/b//9/mv/+v/+nv9rgDSvji3S51dkpe8RSX7BTmc45QMLxxTe6Brb2mbW6zdst9KRfl4/gLlR16onr2WtuZQQJ+82QiQ4N2JMcy8vvvHbMZv2U2f0W0+QXcvUf0Luv4FnftTnkxv8PMd8/Qtp9Ovi6ZZdoXOQ4DXJrWq3RY5EmO2GLvHNLfo9imxuyG0PW6z5e5mQ2gUsVtrK9t0AWIANynGBwUuoubFkMqOE904YIYjTHeE6Q3n4884J/ZABqO9H0UrLM6pfVYYTBmQ1iwBkiJLeggw3SqzCpryAZyB6lzph0W3rtemgNmrttvEPszyB7kirnUv+roVe9pbQ2xYgdN9HwsTuLHQGKi8YPABZi/ga5NY1pOFQUdmrRmOz+iBNun7ej/h/EgMM4M/8+BnvnFn7tobbmbDNGnmMdDMcWEvtS0aaG88zzYTz92Gr7XlGCrWbowEFVf6cqRrfFUk4OKwzODzNYAzG7zIfNPSDtk+pe2kDXK4uWHaN5gddOl6da2Yq4HIAmRwerzTbL4d2XzzJafTL5im10zTG2Z3xLnz25bte49ilBYWgLrW/soM6loqprBjqVzkE5s6g9SX7GkQUG678+zfCDtpYe2KrnEbVJkrl4GXr5Kw3MJXNOYqQDMmYMYTr7KnMzBdB9aXo06OC/tDPw6ur17Pqu17NYIHk6s1hqgNpv+YPvhS1AD4ZvyGX0wP9J3hVtuigznntX21/04VcFrrBq00Ou2rGspclLsZUNEnw0ORaRiC56w8vTKcVeAcDTcpqQawjUBUIXp6p9kHxRnNORrOWvRDLgHqcs8vVtIlOJ2lCt4FTGe2eAbdau3YFXtaSmuPrk4GpzO7QvrrF/iuNkoMqaU/RleeKdpWdKj9nuDHBLCIzIdSFjXZ1CYL2gcm1zGPhrHTTE1ksGpFOsl6tG1LMVKcfGR2AkzPPjK5x0z233qMD1JFrYCaqHVhJ+vE6Mzsae1m0am2TWFSAyUB1doyK0nozsEzDAY/e5qdoekCnQ20M7QIqJD3jHw3gHKt33eoEFYHSQb57DhizyfU8Irx9DnH4y94ePg5wR24VYZW6ZWPRJbEyQW3rCG91WKE45vIM9PyXDcJqFYLUK1Fq/NGt7gYOKbnhMzKInGK09yMIUVLJGY1FZAUsAkggswAFOZ2WxV2vBKw+0ygMZrgI0avWb0g66U2Oiu7XhRmsczxBDCTKAZe9oUQphWQbKvYLqTXIMzpUOI/+Rup2yxrUkNZFxFfYkSbVmUxt6rfX9rX57jIkXjkPZvgOTJzCrOA94ndaNCYoABDb/wa4f6O8a41FfO/tBf44JIZ1mPjLkgASgKr9XyA4NDRocI2FXkarNaPOgFUEAkdP5yuPu/vc+x7w74LbBoxYzY2JoC6KfIAWc4od87Je9XCqLZbHuZ7/tX0wJ+aD/g/Ws+nWvNJs+MfTXeEMBWAurDogxNWaVzvJd8FUr/PyAy5a74gtczH5ViD1O9u1M5xTh4Sj6iiEXttLGCRMC9np3FO41zADIkRSViZLIr/BknGo/5b1yW4lnho+boGpjNzeoy+SBkunaNZ5utxt1nphDBtMUKsiTt9/xOa/iN0/5Kwecq82zNtO1ynEzitIED3embz5m6RpBtE0kPi10P6+oFpfsUmKm5Ny3Pb88x2vDA9t8pyq8QnoEU8SM7ihIZXEdAlft8oXcDpW+BFN7HrZ/pNoOkC1kbMYvEgclZeYhvrguh/586f5LOxlvio58OSW80qrDV9wyzylNMrNnc/TAHKh5HgDrSnkfMgCsitFQa1FLojSitCI3I90bYpFmzTRyocpnkekbN7TJKWsDCoV9KQVTQV49tB6vz9uos0+7HUHRnK9OmxiwY10aJNirmjKwSLa7KJlyP/5JqZ9DVZj7qjL8erPheEQopdI6UzM3eInQlsUExKwGldiDQB5zUmmeE6l0ymdcIIpiThAStD1OUNJPEY//b9L/q687hiTj9iUXMlT8qx8u8eSF4aWz9+wA/Lql6ZKPJYfzo3StUM6hzXwXJ+y3MtHkEmSX3kEcJEDI7BH1FRJNg0qhTvhuBpzIKh9MrQAFPCxN6/P+vHkUdEPSLI/Dj++se/FgD1X/zFX/Df/rf/LX/+53/+W/2+BOexMGcUMWnSLrrHl7VWHyNnd4f3A24+4rojffcCYwSkjjHwMHyJdSM/abM2UOQU/VL9i0CS/AghcDp/Jazi+Y7N8AV9/7FU8LuX0OzQzadoPqWJju14RzFgCGur9FzF1aaH7pZoOqJt8Z0Ar3Nj8U1yYm/UYiIH6HNAHSSh17PHuMQ4czNmHFDn10R3ILgD3h3x7sgw3+P9CedOOD/g3JFpuickhvDCtl2a9nNiaamq9iwSHhrS54UFlh9Ta2zp1Pam1TopNGpp51qPpD9Nlm1pCotam+4Rezo0BtUJFleD010LfUPRSbsEqH2AyQkQ21gYkhTIoAPDsQMEpO78kEDqM96PjKPjFASgfhU9t97wZGjYjj6ZTcihpoxBbTZY4PbmzMtTx9ex4V47Zu8LCzfLfOTgvwZg5WrIHSlXLoEqKj42hajZ06LV7kprbNvc0nUfYLefJo2+DvbQ9qI9ve1h06SW/8ScPg9wPii6byc233xFOPyccfymFDWcH5nm3z3BFXBqMX+6nI/5Ogigs7Q4FlmZAlLHlbyHsKd55E7fdIFbJXNwilmHOreqKua4JHfhgkFd5hAL67Z26w5xATevsadJEhjXCgvXAmFdBcm1wUukAvODkwp9kliVX3w3mJ0BC715hgU2CRAF8GHiV9MDe91g2j37JEPQRMOslnbM8lxkcFbepxjVaLRuV0G+UjMOMIlF7OJUzGGPfmanLUM0AjorwxA0fQKotY7YBtoQ2DrPHDSTy8azQsXstYGw3JvLUZsyZZOyd7GmfQwFmM6s6Ufg9HL35OMiiM7AM2TAIlbPWPHPY4amcjv6iRgkYYp6I49J8kba7gqALazTAeUMZrQYFvDJzBt8kj8KVhHL3JAEXjeREKSoNzlhUPsgIPXkIpMXBvYPMubjcrV00nWuQBs9+wL2mnFApX1FhXBV/zkPFyNjdJynjjCNqBtFuw101rNRFPZ/Zh9eJrvXdQkv2I4hpNdh0D5zp7VcZx9EV3t8wJ2/5HT6OfeHnzO7N+zTmj8HxxgDJxWptZeXvy/dIw/OpfbNwCvT8tr0vDQdz7UtQPVeKVrVsFGaY7vnlRu499PCyi6JMKmwogrrvxRTUmHIpCSoZkG3ibndogpILQU8zTl3N+jIEOVMn2NAB4UOXiQxYkBrUDGgifgM2kX521KoubzuEtstnVmLJuUCTgvveQ1OG5RqipyH7IUzIc7YuJguZWD6stMrsw+Bovt5Do4hBummA4a0rx6DK3IsIvWR2KwBwNDqgL4ixVWP+qyodajr6yDsiHChRy/X6m0gtcwjh547lO/RcY8KXkAZ15ViZF5HMp89BE8c7t/5mn8fY9cb9r3IfDRW9p+5i3ir8V2PGaRbLgYpvunqnNRKY03P6A78Zj7yi+6Wn3rDM+v4adiIlmti5K9Mekus66i1py9B6vz/PPLPvs9YtKgNSl2X+cjjbWDbu302ZPjCoL4+7xa2vsQxc9DCehw11nrUsPxeBrq1hkbF5W8mZusi4xHLc4J0VlxKXtXAdAbaTmHplqoNhlfgNFXBSbdo1WBsjzEdjd3S2B1N86R0Aar+BX5zy7Tf47pGOiltipvniD0Hdl99eVXSY5rvGac7pukO7098rFte2g3Pbc8L0/FcNzxXhj2wUdk0GyYUPsUNQAGmWzR7pblVmuc68sQ6bvcT/cbTdAJMK7P20lBB4k2tFxZ14yKNjrQXLOp8L4ukR52TVaQgnfbWEGbm+Z7tww+zvkOcCH7ETCPDsMEHaIyiNbKGtQZtI77WoTY9RndiAK4tWlm80gR80SGX/dYxIV1xpuq8XSwRF9CvXLtUfLoGIi/fS0WuxOYuGtRVbKzyWvcDWvcSc6lsYnpeCCXoKzHf43ENqM6jzp9zt1I+Q+egEpMDxnR9avnASQXOyLlsIphEpJlDYlErMS3UWqG1SBmqGbSJhMmjWwg4Kapf+Ga+DZyOxTQxJlkg9Yg9PScD+csuU1jvF7+vcSnD8j6SLN97pHzl6o/qr8u9z5nqZYfNIvVRg9T5jJ+mN8xMqBSb6ShxVaM0Q/AYLWui02LSOpac7fd7jX8cP47f1/gbB6gPhwP/yX/yn/Df/Xf/Hf/Ff/Ff/FbPkdspMss2g9Ml+bgATkEOERMcQxiY56m4wm/6l7TNbWFSvx6+4MMY2afSdvAT5+iXQyiVxCIB705SnZ5PjNMd3fA1Xfucvn9J230ozOdmLyDq9kN5rbDSvMqJQjSioRlsUxKHkFBUMzvM7EoioedZ2M9+BD8Q/VAA6OAHZp/Yz14kOXySpZC2xjlJVbii3Z3NhRKHCeAqSzoHC7ZcW1Wq9jULqWZLw7oVMRuH5EAqj9LOpa6LB6zlD+zSmpXAjWAbfGPwjSqa020r4PS2F3B6kxjBAlBXjKnUuj5ZAWaMksBcjAEjb240AwmkDn9MHx3ej+Lw7QbmeMedn/k6zNLKNxuGs6EfA+0UMDukMm1E1GT/9MDL+5EPHjZ8rSxH5SB6PAGPLjIftaauTtdOZSCFReriu0Yt72FNR2P3yUjmI+LmGeNui98qmn65ZpsE5sv1gdMAh4NCfRvZffMN8f6vGE6/YJruiplM8OMjMOe3GSpElJvSHB0Le2zhGi5sw1pCppb2KE7atbxH9VGPYpToNMeiQ00xIjHlL/IInF7pULMAngu4ubzq5ZWngCUFupS5vTCq8327lgxfBtzXRowOaibYNQZ13oeqPcgbg9YvaYAtS0B1f/8zfj490GtDa3fCoFaaORWVRnXZYJeNTU1hyxjdlvdmdIPzQ3mfMQaUNzgkkT2GmQdvaZQEX4doOCSA2jmNbcRcSEYC0qPCe41HWN5H3aCVYgj+UeskLAB1Tqjz92r93LfJeZDuew0r55a+9O6v3JSQWkMzGFqB05fsaZYOoBhkv4lhENY7wjbGtqiwQ/uBGAYBp/0g+7sfgTeyhwePcsKg9F2PHS2ua4g6mcGaKF87UFqJYWy6VAJOBwGonXSa/BBDtLOVJInYMgeDkRZVADtOxUQRJ8wv1aR2yAtzWZlXqhjxDU4znRQ9YHvFpvO0xyQFkzt4Stvwel6UJCK1/8t/XOo4qP5meg0aiji3djN6fCAM3yTd6V8yjt/SRqlVSAEm4JWmbZ6hTVut97CczVHMnw9xxs9n7v3EvZl4sD33puelaXmOZa80G6BVhrPd0id5kIOfGaNPLOb0PpOk1Rg9SVJ/AaoRkLqJuiTBuejXkoBw5O17JR0kGwxnIl43UkSKhiF6GuUEVAi6tPDr4Eubf47fVGFSVyzW9H3xok9lLqVKMUjg6NyVsJT8BLhMrOkYCF46v3SULqY6nTTImlcqd1eoIu/Wpc6vPMbg0140lzhwjIGjnwtw0mqdwLsUhQYQjW4SkJU7bniUuNcdOHCNXSZ7j4pi7qeVxocZU7r8roPUxni069HaQ3Qik5EZg9rK7lQ7s2X5oB+gwPx9R2MVfaPZtAJuWRvRVuG7NfsyF2S1EZBL3vuczLI3vHZHfjYf+FP9nM82E5/OIsNwiCLtYlRLrUPt/VCuX/ZoqE2G3zbedi6vH+NKIaE+zy8fkwH37/KbqMeqSyzHJWQdal1MGYFHRZIc15ioGJ3GKIu1sTpLBVyMaYMQBnWkVdAmQDaJcy3PeYUtvXQjCfliDrL2az3dS3DaX4DTQYFWbWFN135CbXMrHYDtM5ruBew+wW12zJsN86YVIo+VtWjGSHuexeT97p8zj98yTa8TMH3HOL1hHF/j3YEmBl6Ylj/pn/HCdHyQgOlbBbvEaAaYgmaKmnMMRc4kg9ObBEzfKrgxnttuZtM5djce00RMI9e41gNejClZydE1JtB6zaziikUtrPZFUsVkJm0mtMRUwlMqdZBMzPMD6vjte8+zd43gZ7w70J2PTMMzfIgYrdi0itZkv59Fhzo0DabZPdKhVoiTgeztkSl6Tt4xNTExqEUmJfshqPTeVIxEFa8CkFdjZr2QOQqxw/RX4mJbIjcp6grop9Uo8iTOFJPH1fXI+zgVJ+Qt7n5iOMojcHqb9vSGyGw8OnXh+CDGiVku8Byks3CjRD4n33tpgBBUW6fikwDUUbyliEn2J5OmpAPsGtQac4XKB8LkF7PEKeJnxTwq/AzTmLowvHxkg8QpzdVajz6P3G1ay+kt1/F9x3cAzxf35/sWFa+NnIMuI3c9pp9DThPL7pgL6TXb+7G8U8rj0jSMjeRDxmyJLuAQ3XGd9vUxSEfBHD2Nkphlow0HnxjU31EY/3FcGz8yqP91GH/jAPV/+p/+p/zH//F/zH/0H/1HvzVALSAOaX9wYrQVWYX1GlWM+TJ41StJoE7BcfJnxiGZLG4m2uZGQOoYeJjveG57bkwrB4+PokGYRwGpxeE9REcYZ9x8ZJzuGMavaZvPk9b1Ddbe0HQvJEm4OBQvDRpK4h2cgM/RCQDtR0IY8H5gDiPT9BrvJ0IYEzt2SvrIwpTNwIbzQ8W8yazzNWtPQWl9rcHoDI7WgHSnzapaX8t4XALRwEpnukhWVGAiZLawBCKdMiUxXW74oiG11p+2Iu/RNASjiVqCUmMFaG0r5vQmga6bRirNRlfSDUHhgzAEJxPF8MPCUcuBMOwjA4qBDu2f0/m/zSZpGHo/EE4jQzjzlT8L08JZ9mfLbnS4IQij3XtU26I2GzYvNM/uJ16eOp5Hy30wzCl58TFSv/marZ6hzXqm18yzSxbuJXsaQOsGa/c07XP05mPGJ7fMW4veZMa5APqbVgDe8wzDnHSnXyluvnkND79MutOvF3A61HZ5v9swsxNAqNagzlXruOi4Z9A+m9EUg0S16E+v5T2W4L+OV5ousm087aS4DwuQOcVYWujazBSqbs5ikLiwcBfW9BV5DxJwWdjwqrQeZ3mP9x3F3CUH15mYGF1pWw7Roysm9CMNXWVXh3LUukjlWASk3iHzKoSZVw9/yS+nA52yfGQ7JqUxcWm9fCRDU61ba/qquCTAeVPmq2YCnDvhCYyplf7eTwUE2ijNhoaN10yzTvqNksCt9F7HBpyYOZ51y31QGK1XDK587y7HpR41sJL0uGRNPwKnlzd+9Z6J4dk6wK3B6aXgJIVCFZWAbcHh/QnvjpjgUMETmoZojDAjmz063eOYtXt97tJ5k1r8HcaPaDdjtcF2HVEbAYC0xnUWhyY4CJlWiyRHk4uc51g6KX6QUYM11TzMjGQzO8w4iInifAQ/rBLJ3GEBKflQMvsy0Hr0hnkUNqHtZb70WpJ9KYSaR906Vw0pL/6fmabKX0mMU/GY8Y55+JLj6VecTl+ggjivTzEwKVC6p232bDYfoCv6Uu5eCqklWwyZBwZ/YgqOc/Ac/My9FaD6YDd8oFtu0eyV4mPdiCmXNnyrBwFV074fiOVMPnlf5jNQTBMzwOSqdWIgGTTCJoEmIAzMqZh3CYBgooAmJrO/5A+nvyFrSorZi5xOlk8r1zB9ZJNTDaUw5PNrFeggAd3Jt0M3KKSdPYQRCJj03E4Ju1o8QKJIbSVAOgP6GZjutUkSZOkNGBii485NfOuGIsl1DDPW6+XsiWCUhQRSC+Mx0uil62ZKQLUUPpOsypVE/aJcUi5iNpGUVuE5ySZdB6kz01frAR16tB8TgzrJZVwxzY3BEX8AiS6Qwtb3Gbtes+80fSNG3sZGXFPJfKS4uQBMq06cgNEdozry+XTk8/aWn3jFSxN4ohsOYazYaosOtQ8uGSUum5rStuQV7zPkLHv3Yxeg2n6nzMd3jRxfrzrF0rpeNKil26Bm5152fE0RzkGjXcSOJp2hYs5nmli0ZQGRmghJzkaphUBRAaQ5Fsrg9JxYnzVrOu8tWXf/GnM6S+ooxAjRmL6wpqXzTzyE2vYZTfsc275A9y+ZnjzFdS2us/jkNK7HiB0dXTJ7j+cvOZ1+mSTp7hin14zjHfN8j42OF7rhRbPjZdPzd5s9HyjDrYrcWEdnA0ZFZq8ZvOYYNHcRDun95E6TvdLsgWcm8KTSm+62ITGnF6O6HO5FL2C1JorOsZFQzdqIniONDqJxH1lrUec5UYHTi0miKjIfEJNv0pEwfvW959y1IXnniJpP+LPkT5tW0xrFpl3rUPtGdKhjAqeNEZkPAY1FhzoQUteKmMFNMbJRC3GpU7bkoDn2z0W9t0t8ZDnIRYc6m4oXgpPtqA2Qc9G5gNQpllp8VBpcilmjosT772UAeNExnIlcvTY0yFmUjUbnqDFay9pRi+ScRzrEpLNw8YcwsOjEB432Eec12slcUiagZsinS/Ae02qUEf+BS7mPrDldgGkfCTMJmBZw2iWJoGnWzE4nBrUq55zIYsXFKDXvDyx5UplPF6feKr5eMZGvkD8S0edyHrxNe1rOgHdD4fVjVvKSsZblqx6fKCVx9Z2li3QhIa3lo3KXjtJiUp8RuhA8ttkSo8P7M1P0RY/aRo8NiWRh8hyytH5m+AEIYj+OH8ff1PgbBaj/+//+v+d/+V/+F/7iL/7ivR4/jiPjuGhm3d9Le5LRPUpFgnLEoAgh4JW0ikolewEYstxEk5hGeyKn4Dj4mYcwM86v8GGk70c23Qu225/w1auvsErzwvY8NZ0kbH5Odd40IsTE/lExCns0eHwYcfORwbymsRuM6bFmQ9c9l8pxMmmo3YFhCYiDHwnRJ+aoLwF0BqHrBDaD0LXDu+hExwqUllS0NpDMxkCZdW5QdEoX/egcCGQW9KVOVg1G10D0JQD9tpED6kuAoEXR6CR9UEqQ6VBKm3txZE5soMxA91bY07FRxRCxr8DpfSfgtBh5LCC1T2y9yUMbYDKiwTqZzKCG81aMJkavOfsN2r2kcSMbP+CcMPHH0fHVfOaF6XmuNjybLE8Ohn4/005O2qa0JCXNsy1P7h94+UZY1K90w5AY1CCHc05ACvhX2H7VqO7720bNngYKe7rpPyJsnjJtO8JG0/WBvo/LNWsW6ZPTAMd7xe7rE/b1LxlPnxdTROfHcn9QGv098tK3rW8VPLhR1oIfkwZvBo9imbOqAkZzcC5meVRgdS3vEVOwxip5061i383sTz3fUDGClCigSqAlrJW3MuCqe/cueY8cuGR5j/cxRawZWzWTrATZF0HJotvtCd4IWJnaGB9ViVP3QTTS9j13SbdVa6zWhUkNYk77m/MXbPSBj2xXHOpn5Sun9XX4uKxbMagxZgHkcnCWZUvcfAIfmJGuFRNmGi+Gqm1iKrbR8sFksWcBppsuoruI1g5rA40NNOeGzWyZaGiV4i44kSCIriTNuch4Tfojj8ufXYLTq2sOxez24mYko5Qc7C7I3Zo5HatnKs8o9zA6Ae9dAmorFrXvepHxIO3n7lhAQQFCLMEdUMGhfY9yI8p2AvBqg3YCAAH4piFe7DGTiwxz4DxFhvn7S3y8bY3XBmLSBbPIDZgQEjg9wHwkugMxODRJLzLUAX5tCqoK+DEEzTSK4ZduNd3G05vAxhlJ5rks+j3eR0P0mPI3nBSNtYFgUOEi6QkB5T16GnDjt5zPv+J4/gLvT1gEZJ0VGLOj657Ttbd07fNH6yEEX4rOzp+Z3YlxEM3Pc5yZw8wwiwTOMTiOdsNHpuMDGm6V4gNlaHVHi6ZXE2/8yBg8QSVtdWVoUNIRUN3qoJZ9L+vFFukkBJzeGU+TCnwhiGlpHzTea0yMKdF3oKWwsQKpNeiocFHiMxFKe7yOcmdM0eMsgFespD0qo1zVorUlEvFhJMa5ANNBCXhtlCGEERMjW6W5NS1PTccT0/BEt+y0LYn+pX6uvAZ5XKcNX8wnYacHz1Gl/UlNEiNpJW8givzKFBWb1O4MCZhmSdoz+zJLIBT26MW+s3RL1edgWuZhfgRSxyg61UpZjJH5pNRR9uCKRViuuTbEtKaCW8vPfdd42/p+c3Q8ffb+z9O3WgAuu4BbUyMyH6FpMKYroHpd6AQpjGvTol3Paz/yr9yZPzU7njaOl82Gb4aROUwE1ZQ4hSR7EFbgtV3vS6wLVO/HnF5irVrf2iid4nizij1qcHuR73o3O3ABqZdYGmT9zkEY1Bn7vuwWy69oAoaQ/k4lS9wGMU1UJhcqJYZqVBRD0EiJiVC6sJ7z2oEFbKplz3JnwNvAaZfA6aBEb1rrBqUbbLOlsdvCmi7gdPdCpBTbW3y/Y9p0wtTVCjOL3GF7Hmke3qBOXyUjxG85nT5nnF4zDK+Y5jtMmHmmLS+aPR82Gz40Gz7WLX9iYWdmto2nsQEfFKMzHJ3htdfcxcghHbQbpdmjuVWKGxO4sZ59P7PdONouFEmPGpyGdY02D5H9UIVI0diAcaZc/9zRVwoUFTMr61BnwFrmlMIEUi45MI+v3jm3Lsfb1rcPM86dYD6gz4HZa/ZaXRglpk4Iu3RCaNOLt1LSodaqITAmfrDs96fgOOPZpC6UrENd5JiUKiSr5cItXYiwgJJrs8TKu8X0BZyOtl3i4rBQUBRI3GRGdBgrApD8nTpqq2Wx5LrHIjNYD4Mie0Jk5nSDMGD3WogVKDkjpACUOg+UAPcS23gmnQDfFYs6v2owQTPOJuU9wqReRsQ0ihgCSoNp9fpaQgGlRdJD/r8wp1WS9UgSQW6R9pjyZ9bs6VrGqr5Ol2SQ/L23jloyTz12Zir7+9VfXUt/XMZ73+U9UNjTj/LtDJyb9ffSXqa0QSfpsVoX/dHrSyB1NA5rN7TNvkhc+nBmjhGTOlRs9KXbrdGaLhh6pTnz/fwvfhxpKB4TuH4cf+3jbwyg/uUvf8nf//t/n//hf/gf6Pv+vX7nv/wv/0v+8//8P3/0/bZ9AiriE8sopnK/V16YQDFiicVNOUtT9GkC7k3DXjds/cRrP3JyR86nmRBmNv0HqOYpX8xv6LThJplkBODBz1eTquy2HrOZYPCoMOLcSdratWWcXleH23VAqtbaFWCidm9f2DO15EGu6MnPliSmAByE63IdLDIoFkWbmEMrELpiRpN+t8nafxUYTfW8+WeXpkP1//Mouo3l/9CnSvkK5EKtrltdCS96iolBrRppEc2miDVzWtrPJIhaGNQKH6DNMh8mJoB6CT9OPYQg13ZEcw5P0POHdH7A+yOzOxD8xDfzHV/bnudKWNQ3Z8vu5OnOHnuTmHebLfb5c/rjwIvXIx+dOr5OLOpjXPQ/NTnoqBmqFTfzgml9bVyyp4GFPd2/ZNztmTcGs1nY5tsO9r2A95OLHEe4v1eYrwPd66+ZT58zjl8XU0RdqsNiXGT0+zdpvW19azdD0tL1CayJaX7n9vCsF5oZtg2m0gJd9KevyXtkJnVegkono8TXEsBMSWpFKv8x6aMvOovZ+ONy1EyKa/IekjOo8kdreQ9YgunvGqW4lTsxAo8YcRnsUspgwijgmln0R8vjsryQXTTcg05tmUaMgDJIfTsf+Nad+MV0z5/1z9gojdeGIRqaBFIbpVKHWR2sy7q1drMCpMNFwm+bQ7nAExPHt7RbfzTl9zqx1y6B1GCaQNtNtE1ge/b4U89dbHmlDHfRcQhJgiBWmpi5mBkpyYFGkGadiMRv0817zJx+y0ggNQhQXU6QCpyOV55J9ndp0XV+EAknd0CHF+neLffSBC8saXtYSe0IsApKCRNIA2TDTdsKE9g2hJTAKJ3bupcCXmZQjxPM0/cLft+2xuVvpflbzcfMQtbTgBrvi39CAY+CFPpW3RUXQ5h8ME0aP82YjaXpHJ31tGPzyCgxtwtHFpB60Qqs5mB0QFdeZ9Qa5b18hIByE2o+MY1fcjx9zjS+JqddToE1wpruuxe07VO67oNHhWoBzKQgEcLIPD+glWaej8zuiPcjBxyzH0UKx8+cmg1nu+VPTU8LPFeaVrcCKCnNfZg4eSdniJZitI+eECkmZLmEXbffC/Akckm9FqPJznoaI9do9pqt14ShFSMvTNp7vZyvqXvBKIUOiqZiZwcVaVgS1HziZ2NHED3xmQWczq+zzJWU/IXgiFG0GhUCTGuzweqOLOWwiZGXdsPH7ZaP7ZYPdCut+8CNCfTG01sBWu4vQChhfVl22tIozefTgUMycj0kkNqglxhHUbHLc5fYmlF2joEpPXf+yLrXpTZfzekYvJiOZS3ldJEySK3UMm9NYuV7L8B8JkYEPVYGg8u8q8+OEL4fQP229f3tg+Pf+h7PY7TIfCwAtYBbIbMv9QIyAaXdPg+lNNq0HOeBX80Hvmj2PNeRj+2WX6oH3kSBR2ohqtxhmGU9yjrUvJfUx7vG406MUM46ie2zDvW7zvulkwXWYHTdKVYPYVAjh3b5vQwY5/Z6+d1zBO81IR1OISg2zsm1T8B2CKrIfBhEIslXLN4WDSoIcFoRS3IslAFpH9fSHoVRTcSROyMWIEcnSY++e06TDL2b5oamfSHSif1LYvcE3/X4tiMajZ49NkSa81lMak9f484CTGdCxf3Dz5imN+gwCTDdroHpj5XmmQl8tB+waZ8bZ8NhtLyZLa+i4i4GphSnP1eGvVLc6sgTO7PvHLsVML1IejyaIxda4SGwklapZT6M1xLT5vytij9Ll2Vcd7YKi1o6RnwiNU3Tm3fMt8fjbevbJy+e4A40J8eU1mI2SsxFptwJ4bPMh92JsanZJD8hWdMBJz4gRKbgOQTP3lg26b31Wjpdcm4oK+N6rrHE07WpuJwVpYs5EzYSOJ3jYGhkTWnJTHXyjNK+w+gsT9KmPVMtcX7MproRf5GYXct9a2+hTPTYK7voySsS4AyzWdZLlsgZouMcTelqMKv1pyDJ4el52SHaTJLwmbUv8zLMYdVRWmwifCxzMgSVAGpdNKed1ws47RM4HVVF6ollndRSVoscSi2LSOpUXOZ1HRE/BqIfA9PXtKeXQsU1KZhFWm353rJHZxC7JoFdoj9SqIgsjGkQ1nQmIIlhs07SVNZ0q3hveZ7l7NFxMX8VWVYnJBVmAaeDZ0IxKpFRa7TkwJ02GO9x7wDZfxxvG+qd3jY/jr+e8TcGUP/P//P/zFdffcW/8+/8O+V73nv+4T/8h/w3/81/wziOmIuWt3/wD/4B/9l/9p+V/9/f3/PTn/6U/e4zlJJkbnZHzsM3eCfyFx7HGScJWBCwoVMGrRVPTZfaNxVYktap45Uf+GY+8+b0G16df8PT279LjB/yV4dfcjPf8cf9LX+nu+Gr+cw3bihahMsGmrcolhaQ4FEogp9QSuHmBL5kYCqN72JLrJ1jqzaTq5Idi5lhZki3SjYwqxY35Mwoz0C0VKfNClguLI3qIKhh43Ww/PhrYbAuCdvbRm32slGaJ7qhV9f517oA1AalpQIebIPrWrzVxE7kPbJMxbMd3G4U+06x70TjUJKgDFBXIHoCYiYXmH3kPEX2vTAHIXLo4dBHjr3nuNHcbV6y2e/Zfn2LbW5p7J6vv/kL/tH5VTp0b+GwweiIaUbM5ojabFC9x774GNW0vGx/hTL38PMbPBt+6cSEaYqh0p5W5fAZosF6YZ9EJYBtSOx6THcxbzwhTPgghRelNNZ07Haf0d38KdPzTzi+2KKfwnYfub2JvHgCz3ew7zSTi7w6wudfKMK/dNz88l8w3v8zTqefF11zpQzbzSdLy56yODcB/8+33/BqvG196+FEmN7g5jvm+ZB0WaWTQCXQpEEtbdpaGAii/6fYKOh1pDfihN41nrYN2OZ6wqCNYv/U8+lv4J95XUxITFSVQ7vM0QI0kIKvzAyomEJiNJaSwfT9vFdkXWZhFdfyHtf3gczaWrQqRd7G2J2Yquq1HnUOdBb5n5EQJtrhQ4z+W5AMRaPWS/dBY5MWsRZjoQa81sz7nnHX0e33dPcvedl/RNs+5dWbf8T/dPwNf7d/zkc2Se4kBtWY5q8jEIMvWqnGtFi7SwH+MldDGGmaEe9HlNI4PzDND2Jk6468CgMP85Fv3MAT0/C57Tlzy8eu5eOh5dmD46afub2Z6TaBfh/Z3E68YOLj08A8Kk5Hw3FoeJg6XjvDHdKaexcd5xh47SfG6ApzdJVAx4BLzE/ITJnE0LxMkdIhsPA748LRvdK+X3e1QGLsVA/IHTrBjwzjK0noTMfG9BjblqKCbyy+7TDTDnvoMPORmIGX6KAGohJ7KLQbfNfhuq4YSuVOit1WilStheMY+PrB8/UDPBwU5/P3A6jfusbNThLF1LqvXQKl/QjzUdZ/8lQAMHYvbf4gILUbxfQ3FagzoJRBvgNwHBrm00R7C/1Txe2TiZuhZR+lWN0nxpJCkqMsIXQJTouxcdLpdaOcTcGKEWC+d36Uro/xG169/l85HH6JDyKXEHTPbvsR++3fYrv9hLb7CNPeoux+uVAXcl7GHNLauMHa7crQeHYn3HziW3/k1XzkN/OJvzT3vO6f84nt+UAJm/q5ajnolrvY87WZuQ/SAupioEm6ymPMhXxFUBEXYUjs4MyMbJVIIN1sJvpNwNolofWzYnecOY+Ww2S5d6IXfxcjB91wSGtsCJ4hejpllg6TCzYVUJL9V27gFD0Oil62rBEFKkcMEPwx/cTSdM9p2yeEGJjGO+b5DTvgI7vhP7z5Yz5ThpfW/2/s/Vmsbdma14n9RjO7tdZuzt6ni3NuxI3IzJt5E5KmElSVYMuSARmpXIVkXizjJywhLAtRSnggeQLBQ4IfkEpCWDxg5BeEjB9sqbBkLNtYVZBgSASVZHPz9hH3xOl3u9aazej8MMaYc6619zkRcSOSTG7FF1qxm7P32mvNZozv+3//7//nTjOwbLYcHFvqYygPNfpwiVwdIZcHCKXw7Rb76iWb71/z/MOSJ5cLXrmSD2TNh8WK/3b9NGp8u3i9bZO510IULKVOuqmCMshxbDvvFUMItCEejy5Yts6mddONIMc0R5FMVUVsVIXYMYvMvmQG6VMhrNJe4f2AlOVs72jH6ZW5f8H+NN8Po9P5pvv7155a3n9sOD0s3vLbu3G4UKwqWFewLUGXgb6SDIu0tpkV0q6jZIks0aoec5zYAF1gvOHb/RX/XFeciDv8bFHysmr5te6cwbUItSTrUHtvsXaDdVsKbxFaTUTCRCqcm1rlj2/1fdj5eloffPrfvswHcpdpLT8Fe3rfIHEEtYhTDdYKlGM028tsTpcBI0CFwDr/vhOUvmA1FKzaQC1j3gQxj++cTGP74sZryftXBp/yNEDn47XcB0fv47WdGzEmeHqR2Y5RO17LAiVLlG4odEOhV5TlEU3zGF0cx/WyPCYUC3xZY4pikoWyhoMfPIX+Etu/jg3C4ZxhuEj60hcjW/onq0PuNzFveSxKHko4LS2HzcBiuR61uF+fVbzaNDy3irPgk5SHHXWm7wnFkYTHTU9TWsrSUzduZErn/FKoDPQn8HlHCe/mXupnCUWW+dDOUysfteyjsywu5b8uhEQ+Sh5ByRPEEzAiSkRUIuqwm+GabfvkrdfXfrzp/ja2ZRguGLrnNBeXnG3u8uAIlpXkqJFctp6+hmEIOBswRqHMkkV1l9LFfC9PL3gfJ0wNBpFq8peupRSSE1lQIjgSmk7V9D5eW5l1H4JPa9jtzNQdvxaZwOliGa8jXaRcePK/AHBlFU2l+zLp3U95tQ8uTkWpCoHCJWA9gsaOYaehFMYmUvw4m0gmA9Ox8bkSihOhKIkNYQcMQnEmNHWq189tz9oZ1t5E2xWd2t8SnFC4JPlRBiiDAKOpnaS2iso4qsGNevPx2vI3pknn12AGpr0XMeVKch7OJ3DazVjTWXc6xOmMdfC0xGmsNnjatLflPa/zcV2YtOhnNdMsM85TiXHfl4mspmaf53OfHrMpm/jx5np6Y40VEj/HWW6T9iBOb0VpF092N5uAcLlzHc7N4WOtV6aGTEVRrFBpolSkPXi6XpORp6woy6Px9QohMWZNT5fumYlxfkdWVFJxoMooA/cFym1+GV/Gf8j4bQOo/+gf/aP8yq/8ys73/vSf/tN8/etf5y/9pb90A5wGqKqKqqpufL+uH8TOn+spXDR1Gcw1ZpCRcekCFjcadmTWjkQk9lRi7oo4VrOUcZMozZbXtmO7fU7T3GW5fMzF+vs8GdZ8UB1yWtSxgHA9fUi61yMGm/u6txfwIYMVwe/6JoS3g9Q3RlEyAJ6LlcykJtxgSmdgs0ygdO5Az3UWM2CfAVHgBki9H7d9f+5WPGdG3/azc8fr+VmPIHV8nfPkNx6IvAnNxrSETl1vCOmNSx0oNBQqGSKqiT0djXgkRQKoCz29Nu+hsJ7GS9rBo6SPMiAisKrc+DPORzb1xgo6W6H7u5TmqyzMJUVxyPXwimfDllNVc09q7ncFh2tDvbbowxaWK0RZow5PKO62HNx/woPXHfcuF5xJzeBmLOqZvvK+UaIn6dneIu8xyjsk5vF4fFWNLo4J1SFDUxEqgS6jtMeijjIoq0qyqgRPWs/lBtrXgjtn57juGX3/MjL7EktLqYa6Oo2u2GlTVaq/8XreFG+6vzGbZPiZk9iZXnqIyfi+vIfcKdgm9nShfWRMq8xKIRnUxGsrj1zqGg60pTQy6owGcCIWdIp4KY6a6YmFNIIOYQKp83jaXE90amRN11tOdj6T7vRcGmjuPi6Jxld7I0o5wbJ2i+lfI/UKoSqEzgD1BE5n5nS6yMaPbgHGlyizoBxOaRbvshoueLn+PgdmHZPrtIb2QdNKzcYZZAAvZgBeBtcTwJ4TfhnqyOyVWdPwmqz1J6RGGIV1HdfBYmxcz2upWKuGNRX3jObEKtpBc9gMrA4sVePRdWBxEvXzDpzD9IZhK+haxabVrHvNtS249IIPhWYd3A5oNBbYKYnOybUNPmpFpmsRws459uOeMAekM1A9Ozc7/JAJnBa7P0QQEQr3LjZjh+GccrhEm1OkrSM4rRVOR8a7cEfxfnQ9wvbsyL+oGlRF0CVmucJUBb5QsSlRiXGSotBx3QRoB09rorzHMIC73ZPtjfHGezxfw/lLs41GiK7DmYsIPtsIPs6LzEBkL+O6aAg5mzqaH88hRL1QZxIjrYw61I30lLNpi/lUypwdMzHQ3SjxEYJFBAs+3nNi9BWz42u35pK+v5jM10RBWR2zbB6yWDyiah7F0fRiySjP4x0EDW5fCzfLJ8V7XsmCkEB6IRTSaqzdsPUd1g18NFzHRote4mTBiYh6qEoolIxMqysvuVYmAkkism12VNFFZC7bWXNNCUEh/VjcFtU0faJ1SCxLG9fXPqCsBh+nf5TQlPi43waJS1qjI5sqTABXZqH1wdEFPzIr0xGZgdMi3oHpHCm1jMbUxQHWbuj7c6y94g6Kx+WKr5YH/IRU3C9NAqIci0NHfQTlSY1aLlCrFerwDur0EbJeIpQmDB311z5m+c1f4+hXr/j444ZnbYmi4t/rilemHXV3dYj64KiYHxjhk3a+Gi/LLJ/iCbTeYYhgSwbxbLjN9nhGgQhpUi/J2U1s6tSUjJ5X8Tz6AScUUvgRgHBuGCXSICmveEYtZHGLXNQnxZvu71dX8OrafiaAuhjl16Z9Gkn0FpESVBUZkHYza8ju7nlSVvS+5YVpeVYc856Ce7phIa4Y9ljUAY8P/oYO9Tw+jcZ0Bp3nsT+JEX9Q3Srz8Ulx28i72nvkcCEyqDPIlKdhxn9nPnY/TYIpBGsEjRM0XtGgEskkyZwl4Knl5hRAm8G5EM2N+9k13QWH8Q5D1p/NGtMJiEkGiHNgWuvV6N9TNo+j0XwCFUdQ2hiE70ePgmH9bcxwRte9Go0Ph/4Sa68pguOBKrlfH/Oz1QmPpeaB8txddBwsDdUirm0QNXbX15pvXje8DJ7LYBiIckcroW5IeSxrQ1n65IlxU1IlM6L9zTR9DDnes7f/u0ps6sxin1jUU5NgX9ZDhtkELII4WRsncz5LvOn+9mn6wLktdbdh3Z/gfBglFG9jUdtKQ7FE6SVFcYgx1yi1Qaky+vkEO7Jr185wJQ2NkCihRm+FTEjpgkMmgk6c80vH8lam7CSPl/OOICOje5wcnJGV9pmUMliE65I8SYVSC6S8QgiJT5MENmSZpuSVEASIybNhn8SV2dOjjJaIEqSNmGRBYkNIMYhAJ0u2wtKLdG+FaCY5alcjEq1cgogM5jJEJvXOeQt+NFHNw2gwXbdZ1me0wsoAtQfromyICwLjBMbL+PkeON3OdaeJD0+WDnMYP2lqZ93xzJ6e59K7ddOk6TxKe8yB6Zm0xz44/UlNv/wz/pZaep+ZHb+5a2if/YOi8We5I9U0b/7mBrHWy7EemqSkbu4x+TmVqpPMTEmwFouNEmxB0Pt4PKWY8J5hz0D8y/gUIfjSJPF3QPy2AdQHBwf8zM/8zM73lsslp6enN77/SVEt3kWpAm83OLsexxqlkAzDdRwpS5o9ueAxafEpRXIFJo9eysS+VKNx0jdN1OlqmrssFo94tvmQ2mx5rzzgXtEwBIdzJoGE3CwqxFwgP41Oj2zimwzqtwHUcTTwdpB6Dk5nk8NoDBkNIgupOJDFaAIUgWk1al/lrvsOoJxe5j6wPP86M6vmX+//3D4De2J53Nys1fh5ZFFnZrdIRdl+zDuOQcrI/pRiHFnKJoelJsp6aEGhBE0pqWcA9c77k1BohfPxOUotkCImh6ve45IESAaorYXWSFpzgOofUg8XVNUx1ka25zOz5a4suTdojjeK5dZRdj3KDHF8rF6i79ylfnDJnRcbHqxrnnnNRtikRx1HoHMykzV+0xa9KzvwBpDaz9iAefNU5RGuWWIrjawmaY8ITke2eakF6x4urwTN6wG5fkbbvcCYa7w3KFmg1CIWEeUJSq8iKKbqKM/xecP1eBflPSIDPDIYA35kI9yQ9xByR3+6kNHURs5kPoTK0h43Ry5lAYvC0XSSK3ZH0lxK+PK1mJnTwGiQOI8RpJ6BlDuNrE+RMEE0ypgDClOyM2vQSIWYA1uzgn00yQyOvn+JVDWl0EipksHenu6cmho9GcAPCGwlGZoK3Tao4oi6OiXImqdmy6Eq+aA4oBGKhSxopI2NMBcL1l3mmUKqemxoZIBOqmqUpYjAW5umJSRSFlizwbmW1vcMbkD211yqgTNdcS8ZxZ30BSdDwenWcGcRQaiDU4uuRTTJOxQsXMA7izcW20HfCvqt5KvnDVe24NxV41j/pbdsQjSm2wYTWaXOjDqA0dQpjijPWfIZm570qG/M2OSjna6HdN5m4PT8p/Ioq3MDxm6jtM7wGt2fIqsDZFlFcLqIMkfSLZBFgTTpXvRu1JvOeuO+KBgWFaZRhAJEFdmKVR2o6yiPVOo0Bm4CrYF+ADuIWIF8UZHkR7IhsHcd3m6w5iIy/12PkBqlFnuGoGl9cNsEHGfJq8kI0BEwaSw1OI8sFUXlqLSnNDrpqiomv4O0n+4wad6Q6Ofxf0ms5BJT3ds1ZjjD2A3xzlEU+oBF84DF4jH14j1kdZdQHU6TDzY/z5tTs/nrGIuW4EA36XhIjOt4ZbsRBB2KJU5WnKTCVwmJokBJwZUqRqZ575JJX2JRz6U+zOxYSBnSBAqogmk82EPl/Q1gBqujxAdqzC9a4TChiNr+6W9m7WUZZhqbIQJaXky51Q44HXyC2AJlccJi8QCtGgZzRdu+xNs1d2XBu+WKd8sV78mK+6XheNlTN56q8ZQL0I1CFjqaF9cLRL1EHZwgl0fIZWQvFV/5GsU7P4a++y+pf/k7VN91FOuax8WK1luuncF4x1wYw8mAk54iKIyYjuHIMk3kCeMnhqkJftTbvhWkDoEgXFqkXV4YpuvxFpA65OaD3wXB5ntfkgffaQJ9EXF1LXh57fgxG3aIAG8LJbP8Whj9P4SamazNZD7m03RSSFzKk6XUCDSvbccTP/C7K8kjW3OgSi5cO45uxwPkUxN/0qDOzGmIByY4OwMRPl3hP29uzSPKesjx36LG/duP981rYe+YpUf+Sy5EbdjCzVjZGaQeGyUxsmGZI+a2EHOnMiTPhzA1/WGaGhuBpxDogqP1Lhq3JWPj1k/TSFnGIwPT8U5WKL1Ap1zgNmBa6SW6OEKWx6ArgqrGvUymaZVg15j+NWZ4zXr9XQZzRT9cYcw1zm1YBME7uuZhueCxXvJYlvyBheXk4JrloaNc+KjF60IEps8Vry5rnnUl3/ADQ8rjGiE5EoqVkBwJWErPUruROa2LcEMi4dML3X0SeJ0Azmz2LaL0Q4ZkI1g9ndsoNRSfcDJKjL8TQeVPTyB5W8RGy4C1GxguWffvMtholNiUgqaIJKGqhE6DqUKazlsg9SqB1AdYu0bpJk78JRkDHSJAfa0GDmWU5FJCpAnbkis5cO1MvFVDMlD/hDp69GyRepL0kLGp7wpFkGIEqZX1Ucs8LaTCO4TtUa5D2QVKRXKOEAon0tRWvi+Cx+01zd7mxzT9THyUIlCkc+2S4bCTmhbHRpX0wdFaO00nBMvGyzgRjAARmfYlghaBC7lijLVKnVj4SgaszVrnN1+P9zOwOkSdaR8EXfo4eImD0RRx318hfpw8FnJDNq8587UhoxhuH6TeqZkmPGViU++C03PQGG4C05/k8zMHqaemRpG+3gWi896jxs/13oTS7n46gtZ7/mNZgm96HTaRy+beCCnnkyVBGpx3Mz3qmD8RiORDoTA/xCTUl/Fl/E6I31aTxC8sDr4SdX3MBmXXyQRmpqsa/I5mz7BXbEUgKzKKIBYOUR5AjqM0rxNIXdcnNM07fLT9mJUsuKsb7uomPqe3Oyxq4CY4Pe/23TYWMl9E55/vgY43jPBm+qVZ0iOD0xmALoViqYo4zjwbFSpH1nR8qtFw4w2gcv6ZecwB0nkaPjIy9p5jbuwyf459BnVmeyvEjWM7P8dC5EQjAjOpsYqUiQGoiZ38BExn5vRt4PQ8lBQsa4WxIW76naMpo061CyEB1GBtwFqPsZKuP2bRP6auTjF2y7b9mJe25blueCgL7rUlB2tL0xr8kJh1ZY1cHqHv3uPonQ0PXkbDxMsQWdQuaUzv61DrGRczmyftXxuTjvkEuEghKfQKUR5jmgZfCXQZKMsZe7oWrGqJ83C+gc255M7FBbZ9zjCcJT3LAq0XFDqC0+Xi8Th6iVQE99k0LG+L4DajNIVzLVm1DMI4HRCv9ZmBnkhabJASPNDK39CeziNt+07qqpQsG0uzjqDPOI6d2DOw22SZG3/AlFztGwXNQeocWVP9bUD1NJ6dGEMZnM7O55lBDSMT9TbT1Sz1MgwXY3FfANqf4uolALYqCT4g3BvuC0nSeJeoJC9SVsesu2c8HTYcyJIHumIpNVupWcqCjbf0uBusBKkqhKyTPIkewT4h43UjZYXWW6xtUKZBqTVWVaOsgXMdr1zH2lvOXc8r2/FElZyqmruq5MRrToYld64977VbFkuXAClPsZQRlDpSoCK7FOe5e7nGdYFuLWnXkm2ruWwLLsyCsyA4C47LYHlqOzbe0Ho7ssRsLkpmrFAIhMBOon3zKphY0+Pne/8GUa4pFkEGN7Kozyj61+j+CFlVUEUN6VAIgqyRpkBZhzJ2AqdhHGO1VcFwrFFNSGtAGiXWURqpKRjXyMEG1h20HbheIPpPgkw+ZSQ5ixxuuMTZNc5tsHY7Xr96buomdGRPexub065PGvsm/fzEVI/swOg2H1xAlBJdBwrp0xhtnkrJv/H29xVH8i1C2AnEykB1ei/WXNK2zxN7WiBVTV2fsFx8hXrxLrJ5SKgORlNSaUxsVrpJAze/ik/SwI1rQxxvViEy3K7cBme7cWLMFQGnKu4JtQNSX8oKr0JiKjustzt9hwxQRyBqt7GSG3yqSGuiiiPtAN77ncKWxKRGyFSACwaZWMQiey0I+jAV3Pn+mvPhxShYlva2PDEmSg4P3kfKgq5/zXb7DG/XnMiCR+WSR8WSx7LioZA0ZT8ywFUClIQSCKWQZYksK2S9RB2eItK6GN+wRj/8gNXxfWTz/0KWv4r8zcCP2yXXfmAI6yRh4JHejXuFCZ5CuNH3BBiZ48bvSgiZVGjmYn08x2OjK09LSYJwiCBmu4tEktZREfOgDFLPzRRFmPaaaKK3u69AKp4/C7L2ltieS55dBc7XlvvHn55FnckF46RTYlB7lcegpj1OypueDbmpuXYtT+yGQq24JwuOdcVT2+K8i1N3Qo4NqX2jxAxMfxGx31za/97n0boeGdR74LN3k3a0VEzMWyHGJshcbmbAj/lLfp79acoxv0kTA5n9n6eM8l64SWbyWU/Yw2huOumxVpTVUTQ/VM0ITGu9QKllJDxkCTPiGxL2amxiWnOJNZejrvRgrthsnmLdBuUNR1LzsDzknWLJ+3rBY6F4VFjuHWx5+IFB1wJZSoITDFeOzbnk5auaj7cVH/rAy9Cz9o5GKFZCcSQUR0k6bimjXn3W4p+T7iLQnNY+v8umvk1KYR6TrMLNfxtNvhN4Oeyzp3P9lgDp+DsJnBYCJSQyOCwO/1lHoN4QUXbPYG2LN2vWHRgXZkaJgjJNs5ZlYCjBFALbLCjMEdquKewGY64pXDtKfrhgsQS23o4s6lIJVmhKZJRPkjpKHjoX7+fgeXNFt38wY6M+moJLnI7gtCsiyQkJvlBIk09WhfAebZdI16H0Bq0WIzAJkzGzSY2b+SmcphzESAh7kwmgIp7rWjkKFSeTSi9wVtOKgrV0XIt4/my67zbCRtJZkGkdUOMl2JKINV7ggqQOAh9ENPZVfiTvqH0j1QxM+/jzLiQN6hBNWIf0PJk1HSUPZ+A0gRY3NrDyerErm+fHidN9GcQ3saezPGLGUrJE4q6Pzy44vYsZvElG0ZMNEidPpbQ/zljREZiegOi59OKnjeBj/vimZmfwNhGL7CRfl17XCMCjsMJi01psg0el1xBJW5/6bvgyUgTEKPHzZfz2xe8ogPqf/tN/+kP93rA6BFkizRI5HFK5blwwfGKO+mBx1mHwGO/opRuT/wiEili0EfVlG+Kj1Atelkuk2fIigdRVdYQrT/h2f85Cae7qhj441sN6KiiZj3HfBKflCCLNFtK9RXXHRTaxpgUTizrmj372F+O/KyZwukrjUGViTR+oYgSnM5A3B6RHjawZCLfz+S1gNeyOB87HBuN40W2M6psxfw3jeSEaYmSztf2t/JM2g1zYlCobdkT2dKkje/pt4PQ8Ci2QKaOMEh8+yj74wOCgqcHaWBd2pqRo77JYPMbYDWa44sxueGlbnqmKh33ByVqxvLIUd6IuqZAKsThE37lH9eCMu/eueLipeeYVGyHHUWBg1KGOJnQymutAbFLMQOg5W3V0kw8RxIjAckOoDrBVQagEZRl22NNHjaIuJJvec3EF5ZlFbl7R9c+xNr7uDE6X9X10eQoH72KapOemJH3SXf08kaU9oo5yYjiFMIJ4NxjUQqaR/chAULPEK8t7ZPZ0Bqfnl1H8WlA3jlUCQkzw0QQwMSNIDG2YmHA74PQs6dwHpXev4U+/Ccq5vvRcK1QmcPeGpMeuadxc/sC6DmmuUf0LgMTOn0eZjr0iyLhhpzeDsAFlHNIaprH6CiUbXruWF3Y7Sn0cyJJraaiEovWRoZZfS34vMmsPy6TF4x2yWMURSrvE2Q1KrdF6iTYN1q7Qdo3Vm8QivmTjejZ+4NIN1ELxVG44UCVHuuRYVhy6gudnK07OA8eFHc2LmpWjXlmKhYhgdVPQvHuCUIoDIAwDfjD4rmO4svTXsD5XXG8KfuP6iJfBcxYM585w7SOTp/V21N423tGHSUc2mr/MroV5w+0W1vSbQGrvB5ztMGpL37+mLE/Q/SmqP0BVVZTqKCS2EohCYJ1G+hLh0zWqJb4QI2P64DhK+xQJDMqMxbqIxrJZ4mPdR3mProvgtO6/GATLuw1eRENh7xPokIwBXSqilYrXpFQ1Uq9AV5F17boEZm9xflojUlt4YlEnNmFwASElqhBRjx6mgl4kDWrimOl+BG8JMrsGJZmPTDsd38zEnu6Hs7hWCUVRHLBoHtEs3kXVD/HN8ThWPJosSrXb4b3l70O+t/3O2p7zgsjuKfCiYB0MzvY7mvhO1TxMIPWJEJzIYhy5zeCqDX40TIxa1IE+2LTPx9cyTaHEr0Ui82aAuvA+gWMOH0TS1lVR7iMBgk1qjufmX2ZU9cHR+jixMIyvJYPTCYFLLHmBQMqaurmP1iu6/iXb9gXWrbkjFPeLZmaEKFkqP47J53V/XCaVQhQlcnl0E5yehaiXLP+z/zz97q/ywS8veVksuXIDr0NHSEAf3uIIVEJhRSzI8/sFRhmTbHY1aXDu6nFnzHG8NuOZgRDlTQghkSHAYxEhFuykAth5EMKM5yqE2xnSkcU7u94+o8THm0JfOl5cwvNL85kBajWuRwEhIxifGY/ZIDvvh5BBCDvmQUIWDD76xcCKeyJwompqIVkHCzNJgMl4fPd9Z1PW2+Q7ftiI96yafW7hM4Abt0WW4WAGSlgr8T5Jm8mAVn4PxN4Fp3MzagSpgSz8sy/HMzdrGzVkmYwQuyRz4GFmfKgQsogmc6qk0FEaTqkFWjdovUSpxTSJN2MXhv4V3vU4u8baK4yJDOnBXDGYdfKqWLMIlse65nFzzFf1kvdkyaNkdnjndGB1N1DdKVHLI1zXYy97Ni8DL5/X/OC64bsu8MwPXKV85VAWIzi9SibZObcs1MxE0sX1MF8iu7tjAot3gOpb9hgnxmkUoaYnib+XWa6JPT2X+YAdY8rxmpjXdgmk1ogo5+S/GIDaB5MM3HqcueS6jc3smEMkFnUZTdZ1kvpwDdiqQlUHSHOMthuqchP3cdfhEyBnGTDBc+UGGplqVxn3jSbVtFdOJ6a+jVJHe9rDt0b6mbnmdFAygtNapOnBBM5KMEoTeol0HmkapFuh7DoZPS6i745r8ThcCGkvjfdV3jPj+ZIjGWw0Ud/LNcbtiGkCVOpA4aKMRhsUl7LgWpW8tC02rXXaSzbCxNowCBDggsSl/dYRTU2bxJw2QVD4QOlF1KYXecIiJLZ1Or8+51CMIPVcziNL/gzsmv+OExYzcLpLDehuJpeX9z4XJknL3HrOa0cEpuP+n4HpN4HTE5FHzvaF+aT6m6+L6d8mZnQGpLVejP5K2bNhHhlQ9r7H2jZNFphxevW2vWO+b8lbXut4TXiDT/mtH6cEkqloamjnBqGU6T5P2M+X8WX8xxi/owDqHzb6ZYUvlujeoPuCwj2m3BvDc67HuwFLRx88g3c7BUA2IyjF/HvRif7dYhWBVQMvzBlCSIrygM73fKu75GeaU94pljwZNjOZj70sYY85vcOW3ltUb3OfnXf1GIvUefqTwMvEnlYz5nTuMFdCsRxNe+RM70rcAKRzsjOX25g/YJL/yJHdel36fCDr8u6C1PDmMaf9v1EiqIQe5SzG8myfQQ4jQBdkTC5yMabEvNBJIPUnMKdvfW1SsKglh038O877ZKQIpgRTJ6mPRtIdrmjqRzTDOYO5ZrPZjCzql7Lg3rrkcGupNy3B9FAvI4v68BT94B2O3rninZcdT65qLqVlcNP7VWICU7JumQgh6dPuXhcZuPAz4DrqXzVotcBVNbaSqGqXPX3USJZVBPCdD1xdSFYX59jtE4y5il1cWVHoA6rmEUX9AOpTtien2EqPDARrPn+B62w0yHOuxXmbzr1PGutiB7Af5T1EVKIrZGRJFtKjVTT00kmHOhvYCCVukJeFElSNYzXXmc4FXWL7DbMkc+5CfRtQncGufeZ0/OSTQer9hGrs1qtqR0sv/pHYKckyGdFQcq7Nm5nUPdZukPJyNH/JfyVL5eBVFFLORVIfKLaW6uoK0Z7HkVpzld5GQe87XpiWO7qiEQuWUnOkS9besPEW7wZcKorGZE3qaWx3lkwJVSHdKjJVzJrgO/RwObJqjbnG2jVSFjjXR7ao77nyA5e+p3A9tYnr30JqnhQLDmTJoS046UuOrhtOXsKhchyUloOFYbHsOXyno1hp1LJGNg3F0RGiKKlV1AW+awZ82/L+d16yPROcvyp4sW742K54Fhwv/cBr13HtDBtnuHTD5Oi+zw65hTzzNpA6fx1Hwg3OtnGUuX9JUZ6i2xU6GR0ChEqMzYXInkl/UAtkESiTjMfJcQSjy6yakc53mfSnlYzGbq2BbQdmEOjWo9ovpsC1w9U0KeF6jL0ejT2BpM+nEnCxjA0NiEaEiWkdf36IIHJwcS8UjIadjmjuE9KNLAuiXqgI4x74pjvxE0GpGfPRuw6X9MH74RKEQKkFTR2blkX9gNDcwVXR1Bfi/SZNkkMSGuhnUw+7H/0tmoJ+vK9nMhxC40OgFXEtsISRSY1ueCgUKwH3Ekt0ULG42aaR/Dlb2hPNEtvg2IUwMwN3AmWkhJAaHLoIlN5HM6mxsI1FdiMkTRIkaGcySFsX2XL5dcw4p+PryY15gUSphsXiIYvmEYO5ZLt9jrXXrJCc6Jo7uuKOKjjKzPHxdYsdhqJQElEmcPr4Pur0nbeecqRm8Z/8UXy75b1ff87LTc3romHjDG3ST7UE8A4vAoWQuFl+mTU3s962TcV5BKdv0b+MbxxEzoICgiT3tjNeFjtdPhsnzlhaITGnfXBI5tfW1DAcrzPX4d0XA8Y2l2vOLw54ufZcbx0Hi09XNGeygpxS5chqzDrUM8Oy+PpvjvZLMcl89DY2KB7oikZqrnMza2Qz+8mkMJNIIK4eQhP44pjU09+cQHL/SevMWyLmzVm+IwNfIhnyMUkWyGyUOO0sOW/J4HQ2NxzCpBEfn29qqOTP969bM9vnhhFYSmzppDEtVYlWVWw6q5qqOk2A9eRLAZGckNfC4C1d9xRrW6xdM5ir2STVFh8GFkFwX1f83OJdPlAV7yrPOwctd+5uOXgA5d0l6uguoijBO4aPn7F52vPyByXfu1jyLRd44juukmSjRIyG2+WsHppH1uVFxc+tAakikDwHl0elmLGhN02ezBtlIQHYIhkpuvzvfgKp83MqP8l8xLptYlBnhu7oyxKyP0u8r6Lm+hdjoBZ8NCa2qVncdrDukoxmZlCrmGN0JQxlrJVMk/1MjlBmjbZrSrfFeYNLZujORbbt1luu3MBSFpRCshLxvBzKkmtlogxIsPhgUGFqOs3vsxsgodgFqUOShwxFZE/LPA2UakqLRLgC4RcUdkCaKE+idZNA0kiKy03W3KCZG4qWqVEwTiOkc+ZDiLVFvn9EzNmyd45WnkLFY+qCYB00l6pECzk2NvvgKLxkK0y8v2f9XCXk2GB2yTyxCQInwAQ1SokofzMpzXt3fL0ZpIY2TDV/rvcnYDrsSP98Ejg9hEkiL8t83A5OT6zmN4HTcwmOOeFv/nH/+oA8QTRpRStVjoC0SmvTtD/G+imvR9a1GLvF2RbnBqzbMJddnU9IjvfN2E9K708ky0yZgfFktJhIZfE6ThPRedpUCESQOKJvhQkeHXycPE840JfxGUNwQ3v+y/gPHz8SALVdRVpkkAKnFdIcJfZtvJmdG9JCsiVYM2ofZbYOTHpPdeoeQtRnarzgPVWPgKDvr3k1vAagqk443z7le/0VX6uPOVQF524ghKyvdhtIve8uu7ugxu/dTIOyhjBAELsjTCHkYoXJEBExMaelip1nqTiURUq25MhQ3tF9HhnUe4/0B3MCnJ3A1WzFdWmzMj46fA9pI4xGCbvvZ/4OlRDcFiOzPRk7fqrR631DixkDJ46Z3TRE/CyhpGBVR23qwQZWlUifR5Da1lHqY7CKg8Vj6uE1xlzT9+ecmevEoq551BecXikWazOaYQmlkfUSfec+1aMX3H16zsN1zbOg6ERsqMw1wgsh0TkJzcBXyKqhs2OSgckRoI6OwkovcWWFrwRVGu1fJnD6aKFY1YrBeta9x1+AXp/RDq/xfhgZgWV9n2LxmLC4x3BwRHdcEioxmQ5+AfiVc5uYqM7YkQE/JtqlkDflPRCUsWYYGS5z9nQEpidwWu51W4SKEgArwQ7jLU8GDERTivxvMamcTxHMgYj0Mexb4cXkIp+T/PGTuvsqm1Amc0Gh6sgmhSh5kEC7CDD0+Dz2KCYzJpWSrhzBux2Qbfx7PiB6EC5q8VXrluL6ArF9wdA+oWuf0nXPcbaN7HwUV97wbNhyWJccSs2hLLmUA1dy4MoPkR3jJ1Oz0ahGl7FISOOWwtcIF5na0h6B61HF8ahNnFlUSjU412Jdi3NdZPK4+Hc2fmDtLfiBF6alEtE4ZCkLlqrgQBUcypLDQXO0aTh6pfjxjy2r0nKw7FgebmiOAtUdjT5coo6OkMsD9OlDyq9+jeOh5+Hmkq+dn9F/fM7lU3jxvOaj7R0+9J4nvudb/SVrZxgyq3o2Vr07vpgOx95H9v5NEhltsXgrMLal788oy+dIvURvFpS6wOkGvxqJJmMfRCQGVlnGcdvVAu4eZCkPRm19F+K6H9fM+L12iPIethU0vUUOX4yGZd+/QimZ3tOASV4Sc10/rfO492piP9k11lxizBXOtVHiIzGv4v4kxzUTEpjgAkJJVCnRRaCQAeWnRH7aZ3ZB3/1R/JAaQTdQ7WCx5pKuP8OaLVJoyuqI5eIxVfOIsLiPbRbYqhr3K+F9lBr4jJr9+02n/HpHAFdICIpeOC7csMvU0g0PUZwIAWicqpI+ZJwAcMGP4/hORICgDZ4hRIOkDPDGon623s1AmczalCI3CgVFEJQJeMmRwbGNN6x9BKc770ZZgFjA7YPTUbt2uXjIcvEYKUsur7+FsdeUIbBS8R4/lCUNKgIDuak4mj3NqKRKIusGdXiCOr6PKOpPPP6iXtL8zB/m4cN/wPvfL3jiF5zrnsFENpglMp2YsaTlbKw7A31jQZ5Avl1Jk/2TPn0zT81FJnXUDBdBRXRLqMjCFDKuGeOYcpzAQJajHrVzjOZk1k6Tae4LMljS60uurx7x7NLz6tp8aoAaptxzZH9nME/dBBpu2zuzmfbGd1xZxWlpuScKDmTBKzfEvGgOUKeG7s5zSPWZZT7i/jolQDeNE11qFBR47xDC7TQIduMzTFqJ2QXCdK8qwngvlmKS08u5yyhNFcIITvfejddtBqqH9D0PI1N6xxyaWP8EQIoSIQukKCLYkxvhqkarBqWaqOErq7EmCsFhzSWQQCC3xdoW51q23UucjXt9BK8tTRA80BWPylPe0ys+UBV/+O6a43tbVg8V5YMT1J1T1PIQlCYMPe7qDHt2xoe/HPjO2R2+4TxPXMuF78cphyJNmc4BHjd/BEbQzieZg1Gnd6btLhNwLX1AFVGqQSVwWhYx98wSc8GF2ET1MedyZG1/MWNQxybD6KkisininC2dSEC3lEsyA9jh8zVE5hEJDzbmYeaK7Tb6VXgPpZaj90+pA3UJfRknTreNZDAV0h6iXU/hu9m0ZMr3CRi7QQbPpRuokjSlkrHJuRSaY1WxUYYzk1mmFfI2ElN+vbNcNxuE+6w7nZpgsgijgpDUAW/BS4lBI31A2iXaJXmS4hKlG4Td4MIQgVof9dgHFUaAt5R+dypZCExgnMwsMi4hAgPsXFNaB6SMMoUuCO75kktKKqEYiHvl4B0tE3kpmwpMjOzIoB5CnBCPQHUEqwchdup70t/P4UIioY2TF9EkNTOmXQKm49eTLv0Q/I4JcAak+9nnEZieyw3dAk4nkt/EatZTQzJPjsliB5je9evZBaLj95MEyEiAKJGySjXWZGiYJ1y67tk4sdEPV3HKz3WpKRLQRFnShZAspEaiRw8tmKSSRsnHWcPPpn3fBotzZtTktsT1NK+lO75F+RoXEp8A6iE4iiApwiRb92V8Gf8xxo8EQE0JQQksEimjrhWA8o4ybXix475OLOqokWZwcbHN4KuAUnqKVMBnzafHRqNkNXa7XXfJxXBGJe5SVSd81L/g0JRR6sM71sGlAiMgQtipMOYus5+205eZLyJ4nDdkk8T4MT9z2GVPS0UpIms6g9NLEcfUMoC3z5TeZS5PxyS7CM83rgxOR/O53dNhfDRNKPPoTxCQjOXmrPU3yYXssLSBOr0PmY7pnD39tgRLjGBcBJaVjIy6H4Y9PY9FLXFeYVzUoB6cZ+UCxoGxUJZxfM0d3KfqHzEMZzT1Kdf2KrKoiwWv3JIHa83RpiOYPgKEUiGLCg5OKB68w9E75zx8NnCyKbgUdtekKo3vaCFH3dRYrPo0pjodl7k5Iul6U2qBLo7oqwK0QKfEMct7LKuo0d0OsO4C9ZXBb59jzBXeO7RuqKp7lE0Ep7vjO7THNfIQpJ69zn2zrB8ivBuwNo79RWDIj0DdqD29J+8RAeoQE0IRosbaTHt61LRUuwUCMH6ua8FSegohGdKodkwkocxAR7o3Mlsgj6fBlITEzz85PmkEbZ4wZcdnoeqJOQ1gNgS7xtlNZJUmPc3YlCjHv1OWx2i1QBeHFNUpqjiG6ghfNriqHvW3qrVBGYtut6j2Er99Tt8+oe9fMgwX9MM5xrZJjmEgDpjDme14YVuWxQFLEVnUV27gIgPI6XWNDD5djnIHedwyh3QeaQ3Ce6Q5RtgBbbZo11GYNUV5Et+v3WDddjTvzIC1S2zy3m7ovInXkB9QhjGhzKOjK1XwTrHksCs4WS84eaG4J6IsyJ1Fy+HRFcs7nvpuQfP1n0IdnqLu3Kf6iSVLZznaXPLo9VN+10cfcv3dLU8+rPknl3f5yLWc2W40jeqCG4HqkK6j2wCpN61SKoDDxmLO6mQI9xxdHFF2K3RZo6uC3pVIHbWlpYyjtVJGfekqGaIeNnCyEDTponY+jucOLuruZ3kP52HTJ3mPNqD7AfEFAdTD8BohSOORsTCNBUeJEHXSJD1EFUdJDiZKwYxGhCYzWNp4beEmg+A9BkleRmUp0drFdSIZL00J/adct4Kd1Qia4C3ObtLo+VUsXFRDU51S1+8gm4eY5QGmaXBF2uedR74BgNpnT+9HXCdmoHZ+McHPJEpigTcIz5U3eLOZ1ibd8FNScoLAUdAqz0YbNt4wuCGtb1FWIV+3LRGYydq2wgcwu1fqjvY00z6gxKzhnV5CNk7aBDMyp7s0surI0gA3wWmtVywW91kt30OrBf1wgRmuIBgqIWMTKo+EpxwnFtkRtLPWj68xL7eirHZMET9N6Pvvceerkq+ctXxwseSFbrhyAxsXz0EGqWXS2J5fWnNg2qcGs0/fj3ucGM9VPmQhHojxcy8mNjlBRCJ1mObNBCoJT2f2tEfJIq6/sowgqVCjhIUQwygnZcznl+gCoH2BuPo6Z9fw8trxwYPP93RBzdA/MZf30LfunVJqjIezIDgFToTkWFdos8EGF0F9mGRzZjIBwSfuvnBRSiRJ+/xQr3tGEpi+N7E63zYl8VlCioAPcWzfeYE1YpTeySP886M0yv/MPu7romcgyfhY3+yD0pOMR0T4pIhA9ByYlrKIoLQsRlAIwLotUanG4b1Lck0Gl9b0yErssG6DDoGVUNzRFY/LO3xVL/lAlvxYZbh/p+XOww1Hf+DH0HffifdyvQRncZtL3MULzMc/YPP9S559t+D//rrhI7vhtevG/LpIZIcM7MRpuURIENGAXqUaKpvvShmN43JzYA4mY0FrH792sUiTMk7w6EZFksRsdCk4H4HqwY+ySRCwiCiZ7OfA9Jw5L1CJxDL23CJ3HSX8DRa1BNwXBVBj8UnOwLotYSu4bKOZfKGT70/how61inmHtYHtQjD4AumXCOdQ3lL6uWxVROs7t0EEj/CWC9dTJdKSEppSCA6Srrw2myTzMRBCne6rSVLobZNQQcnRGFyoCE6LlCt5P9WTHsngCpSpUNnkUS3RqorSWkhckqvaBhOburP7fZpSzs2NqV5wSWKnDT7pOItI+MogdRGQKkrlnTrBeihYyChvYtOe2Xo7TtaSmPd5ckeJ+JwlcgKnE8mpTA2OMsB+5pmbMvPP3wRM3yYX1Ac7NrzetKZEMPYNzOnMLE6603NmccZS1Ch7OOEoMtU8cu/7Ux2lEtnqcFyPMnEn5tYbjL1mGC7ph3M2m6f40KNDoE5AdC0UjVpEM/hcgwpJIdQ4xXDbxHiuHeN05URcmUsnZVb8kJozxg84IdKxyHdxDjFOsmQWdZ62/jI+a4gvGdS/A+JHAqDO92koYjLpCh3Zd/44bniupzJXDCZ2vKztsSHQecegphHS0XhCxXEagMrHzqdyiZNdrPAhRFZcf0ZVnaD0Id/pr/hPlw9ovcXYlhA8VowlBBlyvQ2cnrvAzk3QIBbsuYPn/ZAKC0+4xb1GEDcYnR5VYk9ncDpLe2RDyBuSHfPPZ8B0/jq+HjGC1Pn7ctbNB6iI5gnGCTqnIpjik+SHmJhTOyzqWz6PDuLRNVsnSZKceeVC4o0h48/uFMZSjI/PE9k40fkMUEc2dVtEFvVQBmwN/eEhi81Dqu45TX1B277kwm15kVjUX2kL7lwNHLcbVGbnKB3NEk8fUT16yr0PL3i4rXgpFa/cZLpUoFCkRERENgQwwlw+RKOEfYPE3GVWqkTpJbbSo7xH1J8WHC0Uy1pRaMFgPWfbQH1xgemeJ2PEuKEX9QPC4v4ETh9DvZhcoL0H+wVI1Fq3Hc3PvLfM5T0KqW6X9xACKWKzKZsj6iIyWPbZ02IPoE4nGVUIltpRDpLr2b2QQeoMtLgwFWtZKzwbfuTP47nZDzFOVXxS5ERKzUZgR31GOUl7BLseDeZ8cmiPLuPlCGwrVVFW91HFEbJYQbEkFFHuJW/Kuu8p1wZ19TGuf8XQvZiB0hdplK2LAHgypcvgkQS64HltO05VzZ3MUlYl3l0lBlSXZJf6HVkRV+hoVKPiuOV4pHyFcB5lXQKsDxJgbSjbu+A6guui3IPdRJkFt43SH26LcwODuYxO88lMz7sB7y3bEAG54HuCa/luf02dQOulKjhUJcdDxd2u5N55w73vSx4Ulp/43q9x8ACqB4cUj76CPn2EPn1E+d5Ps/h9lsPNFfeffof7/9d/xXc+XPKr/YpvuZZndjsB1Slhz4DAW6+BGftCEGHDyBjuGMwapc4o2qdRE7FdUhUF/ek06qqTQZHWUCdwuikmQ9SmiOd+sCE29fKSNDNI3HYwdALde3S7xfXXn3jtfpro+jOkFKMUkRAyjoCrmrI8pizvUFSnyPI4Tgt4B64bJWaMXWPsNp7TYJGBEZyeTwjNQVOhJKpwsclK/Dk5S+ZvyHTtRfAOoTQEGycAvIVgcXZN37/GmDjiWZQHNM07lIvHuOUJtqpwhcJpifSBqFkw28s+I/j1JrOf6T1M78MCa295ZrZABFreE0tWMnDPC5ws6XTD2pnIegqOkECnrbdsvKUNAeMyAxmkiwzcHHMW4fx4wwQQ549tiLIhG2+5dobrdF/Ee4IdjfZ8PvbB6bK8g7VbBnOJcx06MOY+hVDjnpmLah8Exkm0k1jjCS5PGMhokvgG3em3Rf3+Y+4++5B3rxs+1DWvbDtq0GeQOo7a7/7eHJzY1zzPTGuFGM/g3M9gxk1Io8IJ/AxhxqYWIPwIYke0dSI4SG922Gb7TDNrP7/JMYAdzlict1xeNTy7+mxJgXvDbRikjOD0ng7oHKSYvinxQvAyOH4swJEMHKuKSsgb6+6OzMdniDezn2957bOph7kO9ZsY4J82MmAZfzFdW17sNYtmE5DjvRFG9rRjAkrm2uiRYb0r4bEPTMcJ0agLLkWB0nXypyjGhmN+/1m+yTmwrruxN7v0vRAsIngqBD9ZHfCVYsX7uuEDqXh30XH/wZbjr7RUj04pHvw46vQRxcMP4t/pNrir19iXHzF89D2uvnXB0+/X/MblHb7hB/777tUuMD02cQJGuFkTTUZKc0hTOWlCVPkIAEuX1nGTmnEuspxxmdQj0Xi8jCxVoQK60cimQBYaUc500J3DDwZZWkRr8YMD4lqrtcc7OSNbRBKGCepWo8SdayNPWzIZJX466sQnhwppWtlbrG2Ra1j3MWdY1opCCZpC0BREg0QX94ftIjAg6H0BHFJ7j04NoDylFIKP5pfEaYdrZ9Cio0zn6lBqGqE4VhWNUKO2tncDqGrW/Ekf59NPexGNEQVChhGc1ml58R6sDFgZ69ne10hrosmjOaLQK5S6wDqFTwDj1lnawjGgx7o3SonuSi/k+6zzjkKqtC96WiS1lyzSFISUgaJKwKaz3HWKE11HOSznRn+c1tuJOaugRo8a5CRAOZPUSiEnoDq9tv0YwekQZkB1oJ2tBUPyZRpmYOvcQLUPN40R92WBbja6co2UZC8QcXpUzn145Li+7DOm1Yit7ALSuQ6SMj5GcoHbYMxL+v41Xf+avr/E2jU+DJQB7quSWjUjiz83s+b1Z5bVmMuozhnz+5FB/RHYDxOwP5pJes9Carbepga+xTI1AyFC+V7syi69SUr1y3h7BBGnJX5r48tz80nxowNQpwhpTCeC1BXCHqLtKeXwGq1folUdx5CC2Rm1zqEEo9bTnP2phhBd6Clx5QoTPN/pr+iGK4piRZeMhu4XDa2Pjqs+hFQYRPbzRNORO92+yBJTO/pHOSTFThIb5RX2dfYmRunInk6a07VU0RQx6ag1t4DTc0AYdoHpHJPJQxr7SZqHiRCw4wAsRaAIHmOjGYTxAhcUKojRRGEfpN4HqOffL4njMnFxv9286m0xN2P9IgBqiCzsZa2SBnWgHQJNGQ0TyzS+tlkVlIf3KNsHVMM5VX3KZrPmte14Vgy8Ng0P1grfJR1q7xBKQVGhDk8pH73L8eMz3nlheNIVvGIYZT4IxI3Rz1nUAZLcSwbwR/b0jLkjZYlWsfPvi8ieLssJqDpsFHUpcT7QmcD5BuTmFdZG7elCH1BWD5CLB/RHJ7THNeoEqjqwWOSiKB4DbjGB+ayR5T1c0lTO8h5Z4kQLGa/vrBXIZGJTJEOsOB73Zvb0DYCayLBsSkvZRkYEzCYAMoN6Bk5n9rQJkwHrzij3WyCv24rQm8lW7PCP4HQ2FoQIcHk7gdO+R0iNlhohIjtA6aiXJ/UK6tPIWpZZTsOj2g3CbAnDBbZ/TT+85vr627ssaTekc+CYT23kozc/ildu4KVtWUo9sqh1HxKzuU16w90IyI1mNYUajWp2LwSF8BrhQPo6yo84T9GvogyIMfGjdwjXg+0Jdh2Ba9djhtdpfLQfTUy870emVmT/9BizZvCGiwRa62Eyaz1UEWg/GWp+9ptHPP4OPGh67t39NY6/8mvU796l/OrXKB5+gL7/LvrhB7z/+Gu88+1/y+/517/Kt3+l4d9t7vKNBFSf256NM7GwYJKBeVvIBD4RwIpYjFm7pR8u0eo5Wi9o9CoyetpDfCHweVRVQqHjI4PTTSlG+aM3hfPQmkDXgWsFVTsghxZnNp/waj9dDMM1Mq3LkeF/SKFXlOVxnNSoH0RwWuoRnPbDxdg0sXaTWHbRmKYgrg95D8z6nDuhJKqIJlf7LJc3HQkfHDJYYhuWkXU6/rvrsbkZ7iK4t6jvUTfvIJoH2GaBaUpcnsZSAmUmfdgxUoGe/8Y8pFSjjMb4PSEJQrGrkeuJI1ZhXHlCaqhtZiD1+6rhsZc0MnDPS1pVsyksG2/orKMnSvd0wXHhetaFp3MKa8WobZtfT3BzgDqyrIdBRpmBPAaf8oAhBNbBce0jMJ2bNll3egJhxQyclii9GMHpqrpHCDbp0W9G5nwpdsdb8/SWE4LWC2onkVZRWRffx1x3U332tLh4531WD5/wztPIon6uF6ydwYrIog4hMFcTmc7Q7Xd7Zk7ngjb/VNYqzd8bAetbGNVxz5cJqI4zGj5YBBIvBqTUuFkuOfdAyQCqtV/QhET/ksPrSy7WC842gU3nWNZvl/lwftco8tPEPsA7MpYTcPrM9XSuppaeuyqOx18HSzbbDOwSH0TSZ4+4j/2i8LwbkXWo3wRSz2Pe9L4tlJhMzlwQGD/J8UDStFVhJ8+GiUW931zPWur5o0mj6Hm6IbMc5w2ODCLNdVMBnJsaHjk/9d5gzRYfzNjsBk8R4EAojnTN/aLhsV7yPy1L3r2z5fTRJcuvNJTvvEPxzvvo00c7pqb++jX21ceYZ9+l+863Of/Nno+eLPhGe8I3XMcT+5pLO2BDYhbPgHpCYpwG8GKSXiAxkVsiU7nNWsIBSKCkl4KJFBPGuihrLUgVZ2ulBFkqVF0hmgZZloz+G94hhoHQtqB61NABYWz4SZWlCydiUCEi4DgwMXTja4isaYUY52zm3jUT3Pj5QkFqLPQ411JtHFetoDPxhmlKSakjSD3YMHpcbOp4rAYEnSyBYyopKcSutnzfX2DMFQMDIjgubT8CvJJolngoC45USWdb+mAS476klBODOhr2fkIzOMmh5Toh1g5ZtiXVoF5gnaQ3i2hM3R+j9QqlG6S5xgkzymVFWawwymWUAsqwy6x1adLaJLaxCoKWQAs0XtJZSWPjz0oZaJYO76C3igem4kL1495pvIss/TkAr1IzZXatDxmgxqePSR4x3J79xLo9TJ/PNKb3NexdCDvg6tbbG6zpLA+UCRpzaaAMvI54SPoo87qiqhvA9NzQMH9P68UbAemRKe06rq9+k344o+1eYYZLnO8oEkv6UChKWVFKlWQ74v1TiD35OOJaUSIhH9MRUxHj1MXEoE+AdZbTGnXHJw3vltioiI0LGf05fJw023gbmwLCjySnkM5RXqe/lPf4Mv5jjh8JgNrblAz0AWVCYiVFwMM1SxSPqL3FmKuoRe06TDDjyOqQNoeoV+upCkdZ+pFxuTCOIzNw2ilOtyUPh4bHTcWjYslvdOf8oH+F1Cv+1eYFX6+P+Yn6mKdmw1OzZRvywJwYxwgzi1UIhVZN+rra6fDtyntEHW0h5KgjaBIDBmL5qUKUO8jjJQupWSgdTcFkwZGI7OmjDE7PGNK3YHNvjTmD2vi4GEcoPYKBUgZK7akrR2Mt1klkW9A5ReeT6y9vBqnnQHkpBEdCcaQqllKzdQNeRL2z7LY+dcQdIlfKPhBSQufS9TC5wX+29/umqEvJ3cNiBLyVjGV1fAmBzbHkmmMO+D2s0u94b/jB9mMqoVg1iuXrJV95/hK5PEAuDpHLQ2SzRJQVVVFxBHzd/Du6f3fI95yMQFaIsgSGCMBk1rAJDiscwbtxRN5nSYMRoFYUeklRnkB9CitYLAJHK3h4KHj3pOR4FZcFYwMfnlk++lhQXH0DazcU+oBm9QHyzk9z/eA+9oHi8NizXERGZvy9+NgHUX7YiGDPZpSR0IFJS1gVrFSRrnOdnNYlKwGLwlEVjrpylJWnqCL7QNcgC4EqJbKU03hlDucRUiKbgjvHAydXB/wARnZ0TKqmbvhcgzGPso1MASZttQwghFTUjUYfQs4SsCkpy87RUlajHEd2tpd6FRMsbwnuIslWdIRgUXoV2aZ6BcWKUCwIOsl72AH6K/rX/4a+f0nfv6IfzqOemlknSRCLTHpqSxGB/4PUCJBKoqh2iro5y8qHMJqxeQJPE4D5brniHbXgvqp4bjdsts+QsoxM/OECWR7FY1kobCUJlUA1YUc3eTcE3ktAYWwqgj0EJxIFIyASQUikz5X1KOMovB9lQzKoLewAro+s3O0TnF3j3BZrNxizHjWuX9otz2yL7df8f7fPqINgKTWnL2oefHPBV3XLe/LX+bHqv+fdxxtOv1Zw/D//X7H8Q3+C5R/6E7wD/I+B/jf/NWf/j/8nv/Jv7vEve8n37JZv95d0GaDbM6baD5XgFBEChoFg4yhg1OzsMOaKRf8BB82Stj9kOFSTtIUMFHrSmU6X/I11siQaI2Zw+mwDV2eS6vVAffYKv/4+pnv+Ge7kN4dzW4RoULqmLFYcH36dqnmErk4RWXPaW8JwgRsuseaCYTjnev1dBrMez1EIhirAUuqxmXAgS1ZCUEqHlGECagpNUQUq7WiIzKEsl7TjOTcL+RbwKPiOoX/OZvsDuu6MEBxaLzm+8/spTv8Ttnfv068KfBVZWvkadYDwb5D4eMOof2QEuVlh5uND6mR+54l86bwIJ8mImOrgiUzq7/XXSAQ/Vh3yUzTcE4HfJSVHHLKUmt/sLvjYbGmFZxsCHw8bvqcbHooDTnod8yQfGHrJMEiMi+9DyTDpPAdBZyWdU2y85DLAZfCcBcMTs+HCxuI6srPdCHxlSDr+XyBlRd3c5+jgx2iax+jiGGfXdN0Z/XDGMFzFdUtMmo8+Mbva4NK0i6QRcSLO7eh7GnTdoc5f486fo47vv/E83xb17/4f4dsNjze/TPvvNUM4QAnBh8M1126YGlB7gPROAfkGybObJ38OTE+SIIHU4ArzhmgalQdcGNKRFONxjfvQvDGze9H7L2gT325/wOr816k/vMNHi4pvPu15/96Ua9z6O52nHaK/RwTnPt3fyvuog9nUmEaGkm/1l/yUavh65fhAVjwsFlz0l1EDOjV7fWL35umkxDGJIHUCzoR4832ZX8ObYkfLPulQiyBxbkCp8o2/B7v9jX1yTY65NjEJnB6MRPdRc18m4+hGBko3ASzZGDFP9eyzHSeG9e1AEkz1CMHinB0B6SzNN2nmxytUBygQPC4a7pcND/UJ78mKD5TgKwct9x70HDxWVO8+pHjnq9Q//Z/dqg0fTId98RHmyTfpvv1Nfu3/E/j2puYbfuD7Nho3t/4Km+7DTOpo5KQRm2unCN7KnfH8DD5B9iFRDEgGok9RQ5SDLOakpvSxlJ5KeyrnEgM2/fuyQR0doQ7vIOoloqgQShOcjbJ/3QbfbhDyY9ymR24cqvCjrv88fBCUbgIYM/h4m1FiZs1qIVBfUI6+lJrLMGBdRz+cc//5C56+eMizx5b7RwXLWnFn6VOOEaU+mjLWYv0Q2HaBrhO025J2c4/i6oT66j1Wlz/JYvMEKSu6/iVd95phuOI8dGyGSPa5pxtOdMWxqvh6fYdDU/JkWHPu1oQ+3mtVyqezrFwmR0i/Qng/1Y0pxAycLsvY0AfwPmAsDHWgqwV9VeKLuyylZHH9eCRA9L2lD4Zz1/PMbjkpCo68ppZRNvAoRJPHiyTRFaUcIuPVJkCyFJJWFrRCMwzFCHAfnRjqlefOwtKstvz+bx/RVHf4Dal4MmzGRm9LBDNroVj6gkPlblzfMJfaFDumemOTA7GzzswJOTlXjTWAS5I3ftRVzmtI5+3Ils5GiAEmSY9xPdFRviPjINkEMTW78tS5UjVSlmONNDc0zGarSkXPEogNwDjZFtnR2+4lfX+Os1tEsCxEPBoNggaIXYr0foOnIzC4+D7yvZSn83ItlO+zvJ5EYsRc8kNOTYAkKVcmLXAlRMxL5sddgEvM+0HBy9Bw6S1X3nDtB66d4cL1XDtDG1ykJohYpwpv42os40TVl/FZQ0wyYl/Gb1v8SADU2JhWKxPQvUUZmzadNNKjS2R5TFEcxoVN6MgiCRNDY0fmQzKC01rHhypEanAn05MhmlB1VXTqfeE2OKF4Yjb8uIz6aBtnMK6nz7rAidmaY2JQV+MI/sg+mEl8eN+jVJmYBSb97jwZTMXnTJd4roVUCjHTnY7M0tF4Zt9W9g2xw3DekfiYjRHuja9krVMpPbXxaYOVURMLMY75zp//BnAewswoUcVOfYjJrR91yiJILdP5Fre4EP9WRWRSSzojaY2nKaLUR6dBlQFTCYblkkXzkKp/TVPfo2tfcO56nrueV7JkuBwou21MStOstChq5PIIdfqIxVe+zcPvthS9GpPkeMziOY7J9lQeMOpQ7z5EYu5nNm3QJTKNsEU2pWRZT4tyN3gu20B/rZAuAo26OETVD+kPjhiONctVBKcXNRQqje7JSRV1f8T7hwmX5CBycSNhNAEtEns6b/4NcmJPSz/Ke6gdeQ8xY05LxF7HIl89QkqKKtDsFe0ji2C28WfGgLuVgbQ7kh0TsRkosMeentYBOSZeSi8nU0QZC7R83TPTxNyX7QhSIeyA3LzC96/o2o/pumecXfx6BKRdR8BSBKjTelHLcpzAWKliTFoVE2MFJs08gK2zN3TTcjG49oYrZ7irKk50zZU3bOyWwVxjzBWl3SBdP67X6Y8g9S7j/WZjaTr+Y1/Kh9nnELwgpGvQWMXg9ARgm5vgtfCeon2Xqu8QZgtmgx8usOZyNOMzZo2xa7bbpxi75bXrOB+u+dhs+J6qeFgueM+t+InvHPNTTwd+X/GPaH73798prquf/IO885N/kKN//U94///2b/il7xyz9YYz20f938SE8UT8KL/TDFaL8TzE5qQTFu8F1gq6/gyVEvXV+oxaSoI8wEhFl6YI1PwhAkMVYNidNoFYvAw+TohsemALZdsj+qvEWt7un5QfKqSqoxRGdUpVndCsPoi66CqBEWaNT4aI1lwyDOdx7HcPnI7XsaIWamzSxkJhmvIZB5lU1P9Ue8W+FALektTPmV1jhKhzbhJ72nuLQKCLJWXzmOHgmKFJ4LSOJrLBJRmGzyhnu8sW8gShEMJNLGrh09oRjfP2kXYxewTghW2RQlCWklJVnIjAQwlrai6Khmtv6N2AF4Ktt5zZjku9ZGsUB35iT/sg6K2it9NFNLI4Q2Qur4ng9GWwXHmbpETsyP7aXyvTwUWIgqI8Ytk8pGkeU1SnBJ/BhmEGfDECtbloNsEnMCkZYIdUBHqJcoG219QbT3llUecXuIsXkfUgP1t6XNx/l/r+r3O0GnjYljxRJReqjBICqUC/LeR+3rT/77O9YgK40xospvca3/stgDWJHRsmyZfcKA35gI1HenpugXjbbfCZwiY5nurqivPLB5xtPUcbS11K6vJmIeh8oB08g8vNs5hLhB8CUMu5jxCKa9dzFhw+CFbAgSpQkHbuJJCw/0ekBpcnJW5nlN+2Jkih8KOm6e3mp5PW7iebRmankf0Jwol5N8UoySeSefOeIaiUiXUrZBr7Z9TN3WFSM1lue8KNe3MUkxlB53hRiTz1ME5wxDs7EmkiwaCRJXdUxd2i5g+Xd3hXeR4fbbn7ziWrr5SUX3lM8eBd9L130Xcf3Xo/2hcfYp59l+H732TznZe8/J7mO6+X/JO+5Yl5wYXt6YLDhxDrIybPEp1IDnNgukBNRuSzJvx8NN8FGIRPiZxMH+M65/byXUXAISGRqIZBUho/NVukik2QokLWyygZBXjTE4oKpEatLtMPx/qgqGKOo9PzZO1rJZjJfOT6afd4zc3aPp243KcLLSQ6eII3OG8R7Tnt+h0uW4+xgXohow51KRnc1Ah3PtCqCABHo/bAthT0lWRdrairkvqi4WB4jd42cdpYaob+nMF3XHsLth3XvxNVRy+o4OiHDa3vsWYbp8lkiWK650gyHznvFG6S4tw5h3vEpikXDTgbsL1kWK0oylOK4iVlscKYa1yIedzaGdba0aJHo8TSSZokEyGFmOoGQuZ7ceWH9PeT6bvVFG2gXEeyjVpAvfLcqw3rtmStF2ydZfBuZCbHiZD4vBIxXu9K+PE6me8vKkyNmdti7q9zm27y3FB1LjXRJ43p26SBQmqaZs3omzIek/lhJOyUaFWPuEkGpZVe7sgfAgzdC4bhjK57ybZ7yTBcppzVokOUW5GJiAERMM9YiiCS/kTGVRCU6fjNgejxOIqpobXfBMjHzomk1Y2nDDKt2zHfHGaT7aMHGJlxDwhFk4xB898e8wEX5dJsmqRyIWpR+xC+BKi/jP9o40cDoDYB7T26t+h+QNopGRRZHFGnjposkaoEI8cFNQNOSky6XlJmYJoIVPtJJiCHGwpavWBTGtrugq2qeGU3HNmO+0XDia5H8wIvfCyoRAYL1Y2HlFUcT5Ez05dkYON8j5QOlfS19kNA6piTwKSYbO2axokRnM4adDnUJwDV+d/lDNyeRz4uzsfFOY5DRd1f76IOcBUEWGLCto+8MIHTu+C5oAmwFJoqjWqbxMaAWbKRj8OYbMSvvZ+Ygu6HKG4+TdSlZFlJ2kGy7qLUx6aPwK9rYGgK6uaYoj2lqe+xLg65Hs45sx0v9ZLhGtx6HWU+3FQYi3qJPn1E8egrnDz4DVavSrpZGSKZRvWUkIissZYKBu/NCFSPx0eo0bTG6wKps/Y0rGq5M3a77hznGyguIjNTyYqiOsUv79IeNhQHntUqsFpEgBt29SK9hy+iVzCywH2kxOr0fiuRZGxE1KBrcjMGKESg0D42mIoJ6BRKxGZTKZGlAiURt3RK8/eKKqTOthyTATdL+GA3WcvsAUcYk7P8iOdm/AvpvzxePRtnI5t6TK7SoyliGgMdXcgTMC1kHdeN+pSQkjPRXxO6V/TtE9r2Cdv22chAUb6jFjIBeQ2N1KNe/VxPbT7G9iajjyF4aqEjUyJEXWXt5TjSZ4Ln2g8cqoIjXXJoC7auxwzX9P0ZVXVJYdZIcxKLBKmiRqOeTP3eDlTPr5X9j2H8Ompx5lHZCcD2FoxP4LUNyL6KkzjGoaxD933U5B5a6F7jzAWmf02hVwzmMgLtwzUbu2btWs7anmdqy4flgg/9Aav/zvLo6T/n8MUPaH7mD6OTPibA4g/+z/ja7/ufcPp//j/w5B8f8T3Z8tK2kQWDGHU/bQYWMjM0TCZqksyaTCC12dKrc6QsWGyfUwhNkApYYFBsRxhwiqYMNAWUer8YD7GINLDtoNg4is31CNob88VoUC+a+6yWj6iqu5TVA1R1N72ASVc8NwgiMH0Z2e3DVWL9m7HJ0qTJimh8GSeHGgGFCtFTTUZwGqVGsPqT4aFPDu+61LzYEvBIWVKVx4TFffpVg1sIRDWfBgg3J4y9G+V6PineyKLOsg1CIkICqdlFK/K1I4DeO16ZNjLrqiNKSg6V53FQXBZLLt0QgWQkA45z1/MyGK5tyZ1BIuXMkNcLWi+jrFdqQg/ERxsCa/zIArrwsRnTBRc1KGfA6RSJV6VXLJoHLJfvUdYPEKrG2/Voqjbqi4pUnDGNGw/BUwhPm57OCYEKSZjIKeihWHuKyqPqDv30Q/T971I8/tpnOPug7tynuHeXg+MPOb20PO5KzlVN711qLDn2UxA5fpze9BxE+qSY7y2eMALW+es5YJ1Za6PUVLjZOIVsqBWvEPkFjZtZu2UYzqk3r1BX97hsA5dbz7JyKCko9uSFusEzWJ8k1HYZ1G8gL39iCKI261kwtL6iSTrUhZBxihLYQcClBhE15oXQCYe8WTJ9kiTHPPbZ07tmiRbvFVJOPzfJruw2C9zsvN8WOR/PS03Woc6EgSwPMY6ZB6bGepgBSenrsCc9lS+ReIVFjeT4JuYf4soTQVOSmVichnxQLHhH17wnK95Vnt/zk+ccPNaUjx5QvPPV0c9B7OvBe4t99XHUlP7Bt2m//TFnHwo+er7gO8MdvuV6ntgLvttfRYAm5WnZj2BuqJ1BpjeBcXMG9VyrO38cmEC+vK7s66UrBIMTI/tVikBtHG5mKhsbpTo+ytiQlSrv2SCXK4JzBO/RQzRR1AZcEbAWCu0pvESZMAOnxf4WjxICE9hhfH5++kh+n/ExJKNE378iXMHZBtrBc7CIsoF1IRhskkBIW1xTRGnEdoBNGYHqtg5sa0HbVNjqLof970LpJVov0apmIwv67jXWbbnyFpJW/oEsaaTiftFggudjs8W4DcaU0XtHFoRQTlO34+TtRG4Ke42wnHOq2cdcMngf2FhB31c01SllfydJiTZ41zEEx9oZrryhlSUmCGoRaESgCYJ65pGQCR0ZpN66WQ4gQYWC0miqTUFZ+eifsRDcP+noX0jWQ8m6WEZyiA2jRJInNTREZGpXUu3UjjBvkrrx2tnP9+fEnLzH9MFNf2MGUmd96bzvTI2vWPrn5uikW5+nRrNW/cSanuvXKxnPY1ke3wpKx+nhjqG7pO9fcn75jRGUDtjkXTTND2XZkjiLOd3vRZowKFMTIa8b2ZzztimL8V6YrSfzBtdcjzr/rdsiAtgRpJ4T91aBUf8+T217FRIY7fE+SXuSQerYIPjCusz/QwrBjgfSl/HbEz8SALWwAW0iOK36Djl0o55XkCpuPkLHRSwtdnmsMZcM8xQzs6wyOK3q1NkqSCNWZtJSNAVtcUDrLb9hOoIseGq2rGTBgSo40hW9aRMo4NKmGP+mTOyKDEIpNbnI7kh85M+VS6OHkxTAeAyIxU4eXSukvLEolsSFrhgdfcMnAtNy/Nl4XOZmiFKGWxmyPuwWw1JBVcyqCgvMQeoUGZyes7pl0lZrEiCpRdIJJMyK05RohMScT53wnGTk8fVsavhFh5KCOrEDVrVn3QfqIoJrRoOrBGa5otrcparuUdcnXJkzXtuOl97QrQWrzRbfbgjO7rC31OEJxTsfcPjedzj6Nc25MGO3Nzv06jyuh0CGkLrmHjEDp0PwcdPPcjKqxhUFWieztDJqT89j03su11BfbaO2nV6iqru0h4f4O4LjQ8/RKoLbOWEbUk41AYKf//g6b3F+IPfeiyRrkgHVcUqAOJ7VJOMYrfyOMaIqArKYaU4n9nQGq+ZOX0LFY6GKQMPUZVezdWNeJ+8UdSM4HUewb5X3yBDRjqSHHBOxfJ6kLOO6MNNM20G1kkmU0KtoHgeI7gzbPqfvPmaz+ZBN+5yhP8e6DUUIHAjF/XIVTQClphJ6BKMboaI5aYJOshHNm0rwrEW3Do4BT+cVnXBshKH3DpnYS713XDnDsZyzqK/ph3OG4YzKrpFDh/SHoypBHmXNQLXaKxTgJuN397pJ52ZcB8LYsJpA6rADXlsLdohMKNMrhAkIW43TObo/RfUddbehqE5H88i+P4tSKf0lW7tma1su3cBr03FPPOJ3/0rJj11+xOnZf8Pi9/8hqp/8g9MpLGpO/9c/z3/5b/73/LNnh3xDap7YDZd2SGxqAYlNncGlbKCW1/3MU8vjq1HTuaDffkgFFFnfMoHUGx/wszWxKSdmZqln13mS91j3sN0Kym2H6K9xdhMf/othUB8d/hTN4lGcAFA1IZleWnMZndTNVdIZXjOYK4zdYs0W51rAUYbMytMsZTF+XErNSmhq6eNEhfbIvQ7ruMe9oVzf1+jd/bcIYgXfRYMdux6bR0rX1NUJ5uAY0yhElTCvXNzamASHN13Dt+hjCqkRPkqBOefeyKIWUiOcAKHIZnn76uaZKQTQBcdL21JISVMe8xNecUd5PqDivFiNMhxWRG35V27gUlb0RlGWPklpRYCm85IhTIVW1FKMa8Q6uHFE9dIObLMh4nyN3H/PSOr6hOXiK9SL96IW+Z4+t0jvObOFjXf0wmFkbJopn4o64XBBplFYgUPirEJty8SwN+jmJerw38cJps8g9SGXcVy/OfmQwxcD94aCu6pkEwyewNYLhj3Jln0wOn89vxb3GdY5Mkjg8hRbZuDNWNVzhrWegdVzdjXpmMVjBwKV9p0GISvgW5/6GLwporb/Nb5/RXPVcr6pOWo8TWlRktGUGaK02KbzdCYCVy5MkmE5pxPu5lj+m2LeoO+C58INdL5hKT2HMu59m5CefJQBmJ0noQGbPkZvBxF2rz9gMmv0JAmQN+t3++DjvRqyV0iU+Yh/9y3yIHtf3ybxkUOJiMaYBJBaK0bDN5ly/wyCzK+3sake5s2PKcb9JsyaG3t1RJYSaoSkUZojVXJX19zTDe/Jivek4NGi597dCw4eBA7/wNcp7r+LOr6/oyU9vqbNJe7iBdt/99/Rfe85Fz+Aj18s+LA95lve8JFteWFfc+UGOu9GYLqcTZRmZiMwGiMa53ckMBR2ND2r0TEPSvlllDrYPfbZlA4SCeaWe7WExKxWSBOoOkXVe/xgUN6lyck5GKlGIoLwDtksCGYA5wiDxZmAMqBsQBuPtSLVciRg8dPFXKP/80Zkn0uG4PBuwPSvqa8GLjaaTe+AgkILmlLSmQBIShUodTw2gw0MFayqQNtEg8V1HdjUjk0j2fbv0hQLFnqF1ocUxQFrVbHdvsDa9QhSH6qSY1WxFAXvFAts8DyzHcZcJ9mHBpV0qENqBIskDSk/gU0jZSJRqSn/zDlj20vC4j5F95yyOKLTZwizxgbH1luu/cCahtYrTlSgdoEmJBa1lCiXQGoCMgHAc2Y1JAAVjexKiqvEoi4CB6eWd0xL+3pJS01XuJG9HKUfAi44lBdYEQkjGXQdQdLw6RqiMDU790HpubyfC1mnPowN410pj11gWsywkDkwnRnTShYotUCp6J9UlCfjRGk8Dx19+5phOKftXtL1ZwmYXhNIHl2ZbJzepggkYDo2z/IkxXyyYj6JXgjFMmlQq1GmY1cKJce8kZVjH5yOTOlJi3pf6nRca0K87koxNz9VkAxnMxnKplrT5Bo0PX6osaMv4z/qeP/99/n+97+/871f/MVf5Bd+4Rfe+Dtd1/EX/+Jf5B/+w39I3/f88T/+x/k7f+fv8ODBg9/ql/vG+JEAqJUJKGPR7RY5tFFLFCIymtiEQWbgN2kZMRuPyM8jksmfymzLgCwFOgF3oQyIZHJx6CNLe1hL2lCyKQ/4jf4KIUvWeJ6bLV+pVtxRVSzC3IBNeoB+xo7aFfZXM6ZkfK0hWLzrItvC53+fjEZ2pQImDaTbFsM85pyB6bfJe4ws5pnhh06Gc5PxR4ysMzmPydAj/pzWAe9jIetlGqmRkV0xZx1MYMHua2mEZKGiXpwIiY0e5o/YCZ9eAEmDemJPZ6Da+7cDWz9MlFpSF5KmkDRloOwTA1+DrSTDoqKsDinKU+rqlPX6B1y7gVeuZ7vRuPWA7zaRRT0PqdHH9ykfPeSeuOaZUGxmRdGcDaKEQITEmgo2FTy7DOoR8FQ1XkeAui5gVYkdeQ+Ay9azXguazTUDoIsjwuIe3WFFvQocJnC6KeLxHPaYTZ9FN/Jt4b0leAPBxQ64jKNWWkgqoSMzJzOoiQ2YKrGnp0mIeC/vS3sIJROTcrJQG69kpZCloJERsMsGOvsmRTkJy0lhHnHLCdsceInJmQARR8cm/Wk5jrjJ0dQj6amlNWEn8hqh6iiDIBV4h7n+Nu32IzbbH7BtnzP0F4TQsURyKEsOVMlCau7phqXU6ZhNAH85Wy/eFDtFWhovViKyfRslWft4TW6FQXoxMsm3wXBHlJzomgvXs7UdfX/JMERGcmUeovsB4YvRqT6D09nYT8koJaNmAPWnuZfz/T9+HtgBq+fg9TAErBVYG4sPb2Nxb/oSYUp0v0D3h9RlQ9NeUHWvMN1zuu4pXfeStn9N359zZTe0ZsMvDWesOab77iFf66+5b/5bgrPUP/1zO6/x63/hf8Hh/+n/wsmvHfNvheQHouXMdly5ASkZ9efnIDWQmJCRRe1EMp1yLf1wRd+/RMqKUmoKiCaUssEiaZlA+mXFWOQqKUj9mQRQR/Z0uxUcbNbRRNNcYN0W724fXf+sUS/fR5cHAHi7xvSvk6P6JKli7QZjtzjb4XyP9wMyuGhgmcDpRmqWKjaHD5L3wgpJIx2F9iNjOr/BDBbfdr3HUdNPt1FkeQ9rN3hvkUJTlUfU9UP6VUNoBLoMKD0x+vkc4EDOG6JJ47zIm1jU8c2FGYs6FojzbX9scIRA5x0vTMtvCElZHPETQnBPBt7XDa/LJR935wgUG295bra81Eu+YhSNtclEKuYBbZiA6YEITg/Bsw6OjbdsvWHr7Mi+suFN7OlUyIqCRfOIxfIDZHU3NuJsD4Yd7cmY1ykckZE9BEfrbcyHZJQycMhx/RoS4DQgcEbj1jmPGZDld5BlxeI//c8//UmRGnlwQnlUsjqwnG4ND33BpawwbxF73Wex3SYrcGukf3Z7wLTbB6lnBasgGttmbkAGD7KusEBTVSeU5SFVeYxSB8C//PTH4A3hvYma/uaSYrPmcl1zuQysKk+p4xkpdbzXBuvpjI8SHzM/ixGg9kxg0sxMFHYZyvHr+fSYxBK4dgPrAIcixOZVuo9ujaR9H2U+iMDh7FTeKveT/y01k0afCUj37P5r3P3a7zUx9teg/SspG5TliYXxpacb3RDlJ3zSXM+5eyHDDCTZy99n4PTOa2HeEE2vn+mL/O8Z1PlKueKebnikah7LgkfK885By527hsNHgvLBHYoH71C+99PI5VHMw5zFX7wgdBvs+XPs66fY50/Z/uCSb/zKkiftMd8Njo9syzN7Mcp4mMyCFTOT1HQP5cZQlizJ+VtkE0/TiFpE4/FKKDrpRpP5UpZj434OPmWQ2iEiOJ26jXNgaiBOr+IF0inqQVOuPW7To1Ytol4gTI83PVJNU3JCaWRRRbm/uiEMA6Ls0bXHD25kUcsh3Fo3vSkkkwzBF8URlAgKoumiDxZrr6ivrrhan3C5jdrTSopUJ/kk7yEo032ca7PBRTmx1gTWDVwuYL3wPLMlQ/OQ5dmC6uIYpVdotUCpZsxzL3zHa9vhQ+BIVSxkwYNiwRA8L33LMFyipEarGu+jZGYIFhEswrlEbrr9/akMTsssTcKowxBBao9dHlBsH1D3L+j6KCdhQ7w2r51hHSxtSkBK6Vm5qENdC70zGecBKRgnb8Y1fQyNWtdJvtCwvCc5dpb37BZzvqRVDabwafKhYxsiuaH1DiM8g/AjELvPpH5b7HuizIk4+6C0n+3pHrCJmJOnRveB6cyYLnRzQ8ZD6yZ9XKBUlDqEOLFm7RXDcE7Xn9H1Z5jhOsoWzozcgZ3cQiVgWqfJikJEzy6dSHC5ps6Nqvk0aSPUjob0juHhHkDtbvl8AqHnkqsTPnPzmE+/lyVPG5EJTopBakyo6JRL+ZTHJs+JQGTlfxHTgf+DCwH+s5qz/Q6Lv/bX/hp/5s/8mfHrg4ODt/78z//8z/OP//E/5h/9o3/E0dERf+7P/Tn+5J/8k/yzf/bPfqtf6hvjRwKgltahBhfBabMh2DWTwYmL4M1MeD/9FgAKOS4w2Vhk0qzNcgATIiJLiyqi1ID3FmMHTFvR0nAsNWfBINC8dj0HtuREVxypktZbrplMQvaTUpG0gSPLu56N8sdTFIJDSYuXwwhm7xyDvQ1m1EMSty98c6mOfcONHHNZj+j87cdxe60TC1ylieSkf7rPqM6HPwOFPkQtahcAL5Oi9+7vqNnfhtg5bJAsRBETT08ySjSjDq93PcrHREP6EEe1EGNhE0GpzBgMFF9YahYjswOaMjpVN+VMlqAImEZhlwfozRFVdZeiWLHpX3HmOjbtIWZj8JvrCFI7O7FxSKPD77zPA/1v+W5iqM71j3NinTXlXOqajvrTJJffEQStQNW4QlPryGJoCrEj7wERoO7WkkV7jlQVujrFLA8Ih4LVynPYRIC61NGI8osyXNmPkDVG8WlDj4lELaOBXyPkaG6R2dOFnLOnQRUiGp8kaQ9RaGRZRHC6TAaC+e+lj0IpVCGoZRzlHIKfMaincTdgBKXdDJh2adzqpnZjMqoaGdOTvloeYRulPdJUBZDWLz1Og0RgejKPs/1rzl7//1hvP2boz5B+iAajehHN4lTBoSxZCs1DWbASMpnDJc1uEVBi9yS6ZGia79l5ERxBjfjvKkhaIRiQlFKyDhNjadSnTt2KA1lwousoHWCv6frXNMMZRfcK1Z+g+4ahmYpyJSeAulRJhkLeLBrmoeRkjjq+lzlIHfYA6wxOO+iHWCwZS2RU2wxYR3a16RW2l3h5h7JdoNtjqv4BxfYBVfuEqnvGZvskyalc8M32AuM9Q3WM+/gAuOaB/JcIpXeY1MXjr/Huf/W/o/w//h3qf3XEvxMrvpfGCTfOILNrd5L8mL+7pJ4apT5GPeotfX82sktLoSnTvtISQWqRmgCDY2QrOg8u7QmtCVxu4XoNdiOQ/TV2uMSaK6xtE4P5C4jgcInx4tyGvn+FMdcYu8G5DmNbnO2iuVEqLFUILGZrwVJGw9SljOD0iSw4EoqViOZVWsWmVZbvyVMSnyZuZU+nvILURDZmjXU9IXiUrqnKE6rmEe1SoaoITmcGo7XgIzIyPV+e4PgU8h4AUipC0IQkA7bPopZC4zMrlJCal35vLYpjozk6b3lhWn5TaBpWvK8D7wnFWXHAv23P8AIGAa9syzM/cG0rjpyhlPFmckEwAOvgb3Wi34ToPt8HF7UyRwD1Jjs0w11K1SyX76GbB4TqMP6LdwhZj/JHWtVoVSFEgcMxBE/vHVrYcYxfehE1IEUYFYcHfJIuiUzqYV1jrMT7jhP3q5Tv/wz6/nuf6nwAiLJGHa6oV2ccXRkeGs1ZKEfGZjxGN9+p2gOnb2NS70fegyQTmBjHlVMDNTEqpYhNQikmACQb+FogCIkQJaVeUJQHHB38GFV1Nzakv6DyNniLSTI9ZXvBen2Py8PAURMoU+JQF2kvdYF152lNGAFqmxnUTiDTPiKcG0kJc9ZzZCRPx3vMf4hAydobLoPnEaTmlUb4nhACOz2BDD5nDWqpd4wSJxkOvZOvzRnWbwuf/DSEkKMOdWw4Tf4zuyHGeyQCQHHyYP8ScbMuTwYu84RDzs8n4gmoEAHUNzH148+N1MdRGibnNbN5MLSIxoMHsuBYV/ye8pjHUvNIO+6vNty5azh4AOXdJfruPdThCXJ5iO82+M0lwfS4q9fY89fYV2dsnvZcvtC8OG942t/hl+yWZ/aKi5lXQ9bkzgSdqM0KQ3Ax30/3w/5rhmmsPxM8stZsLxxVUPQ+AtWlkDhirvkm6YMhALP8aSbmQhmi5BFOovoCrTxm06HWG0RZIsuKoHQEJ50FNbuelAKl488VGq8MshSIfi5/lkHqt9c1O5MZvHk644cJJSTaO4I3GHPFsr3k8uouZ1tPN3iWdZT5GKyEwSeiwW7iZlxIsj6Bde85agKXTcBYz1UtuFod0zQNzdkBy/Ioyn6omo2q6LvXvLbbERw9VhUHsuRxscQPgVf2mmEok8FeFYlfrpsY1C6yqPfzxp33uOffATFfsjbQHq7Qm/uU3X2q8jldf45zLb03XLmBK29pRaw1Ku1ZucAqyJG9OxrbhqgbL2ViK/vZ+h4CLs7Eoa6inV9zYqiPBXcxeL9luFji9GISlLIRpB6IzeAheAYhKYhSiXqmtT4HynPMG1X56s4NrNwcDbDzed7PJ8Z01FYTqBGHkTNgOjOmy+IwstxViVILtF6MuEgm7FlzyXb7hH44ox8usWaDcy1+nE5P60FamTKDOksNZQkPJaYJi2yWqoW8VeYwT+k2KCY/r12AGeZYS8yD8oTp/ko+Z003O7+Xrqn9r9OtPXl0xfVkQDPIwEYV9D7mPTmP9ImsZt8+GPBl/IjGwcEBDx8+/FQ/e3l5yd/7e3+Pf/AP/gF/5I/8EQD+/t//+/z0T/80/+Jf/At+7ud+7hOe4bcmfiQAamU9qh9GQytvN3ERlHVMS72+9Z3u6gNNMhZ50xeKyLbMYBYQCo1QAzUGiONMPgjabcWjYknbX9EJTy/gte1YSM2hKtk4Q+96DA4fzB6zQ886iUngf3QDT6OE0uJlv8PGQOyhMp/mWDEx5bJkB+zKauwcIxlG1vTISC0mne5ctzsj0IXAmpsgNSSQ2keQwHlBEeKIugq7lK7p9c0B2EAjJEupqaVGuSF1h904HhnmEh+pgAlOpDH2BMBY8IG3JiCfJwotKFQEqEuV9XNjfWMLME1DUR5TlneoqmOuhldc2J7LvqC/blm2LWHoCEO/61QuNfreu9xf/QtOzhecYcYCOzdYckNCJDrLyKJGRrA6NyNGgLrCFSoaJJZRf3oe0SARxFXADxcotUTUp3SHC+pVGKU9mkJE9jQ3zcbgC2JQBxtBmJRglEJFeY+3sKej/rQf2dNCCdQbwOkRqFKK4Nweg1pSyDgS1yWX6hwZcM0F0D6Deu5WnZO1eaNACLULUidwekfaIxXD40PVkTUNkT02rLH9a4b+BZvNh5yd/3ukHziWmjvFkuPkbn6YATskR0LwoLAsCoNWfqfxND9f3gt6oxI4LcZR4cHLG6B1Zl+3yewDEhM3xGt04w0+JcdKCI5VFadLbEvXndFWzynr+5TdBt2vMCbpL85kPTI4XSagOhYJIn0ubgWpYQKi559naQs3Ww8GG78eqvS5j6afxkI3hBGsHgaBGQS9KjALTbGtKNsFRbGgLo8pqlPK8g6bzYestx9zvv0I31/F18Qdyqcriuoa2fwysl5SvPfT4+uTyyMe/m9/np8r/2vKX1qiWKAQvCQBwd4yEMGN2+Q+FJnRFvemfjgnmqPGa6mQmhLwStJTYaSkk9HIKLOYcpE7WGiHwHUb5T2KK0foXo/saeda3C1+CD9MtJvvATaB3lu6/jXW9QmUHuIURYhKxdloqxCSI1WOzOkDVbAUBYeyYCXUCE4fiUBTWsrSo4rYpHoTOL3LGrxFm34ORIncPLajvIf3BiEkZbGirk6RzUNYgC4DZTnJYkn59u073CYhkECxXXAsM6nnvhZzLWrNJPERz+t8mgMmFmGOjTM8NZu0ti54oDw/QcWhUJwnsO/KGZ7ZLS9VzT2jRjNamDGng0+PaCTdBRuZ0z4ym/M48A4Tc36sEVFvsjqibB4TFvdwVY00Jo6+qxqlVxS+x/se6zqUqgnOYTB0waMSSC2JnXqPHkFxiYj7FtlEUdE6Rbet6Z8oTN9S3P0n1D/1+3caSW8LIeOeUi6grhzHheVeKFiHYpy02WfE3Sbn8UnsaRfi689A9PzzOZCIYJxgyUaUhghKS1lT6CVleUBRHFJXJ5TlHcrq/mgyZYbNp3rfnxQ+mNhoMleE4YJ+K7hcR/ApA9RDGVmWgw20JkqlDS4zqJPZrQfh2MnzbpPCid+fgdTJKDEQm33r4HFBshKCpSqQBoK4JVnJDIzZHpylO/abVvP1IP97zOkV3k/36Y2XOZP5kBTTRODOk0936D6z+U0yH3MQGibJtcnsLVCKaEKe92mZgGgpBDKIBDoTQY7ZNeXT9SdgZGBWUnEgCw5VyT3d8EBV/L5C8mDRcud44ODUUd8t0HcOUasVQqkITHcb3Plr7NU1w1lHewbnrwpeXtc8N0ueBMczP/DSXvPRsKbzbmRr5qMSNbrTeHsIdJnZmQCyOW6bx/3H1XD+3vB4RNLtDZgkiVAKyUIWOKlZCRUZlIgZez3d0zO9pvF7xPx4EBKCRDlJ2RV0Fx267pDlGpcnepyFehkBaamS78rUTM3GvkLunsfPGlmH+ouk6ehURw/BRjmf7XPs9Y9ztomSPVnGJ5uiRmkxmfK7nKvFSbbBeg4Hz6b3HDUe5z2v68BF7Vg3E5u6KY+TNvWCjaq4vPomznajnvOBKjhQJY/KJa6/5mI4R6oyakT7Hu965AykzpGnb98U+6QIY+HyUGHWx5TbB9TVx3T9y9hkD4a1N1y4nktV472gUJ5aelZeJZm9qAudr2EAvMOKgBYT+cWp6ZpytsBdLji5vKQ+CpQHcP9xysculqBXQDzXr23HZZLoEiHqEw+ASvl49q8St+w7uQE0gtMZhJ5PPpGbVkzmuzO29L75oVSTJriUBVpF5nRV3UWpamw8x79vMcMZ1m6S/8gV2+3z6D3iEz95BNRzuyy+UpEYxCPTWUSj1EIqdKqb/FJ7pgABAABJREFUs5dRMYLTaibrIWdTppEIlf28puedGM55DtchKMMuiWfHxHb2KGe/N4/9iRgXGCVQS6AJgpWQtEJxKEs6FfOq9byRCbfuOV/G2yPAb70G9W/x0/+Nv/E3+Ot//a/z3nvv8af+1J/i53/+59H6dsj3l3/5lzHG8Mf+2B8bv/f1r3+d9957j1/6pV/6EqD+PKGMRdiBYNd4u8Gai8REjkuCzExDMtMizglKoZMcxhyczsB0QMhsplZElqWKpYQoB1Bbanq8j6aF963kq/aAKzfwxLZ4IbnyhnPXc79oOFAlG28jtOgnYDXHKOshVQShEgM8uC6N4Fqk72dF6NvB6V0JAm79XIlduY7bAMa53vT8oZLxnEqslyjhETXurJUjq3rnuWRAyrg5Z6kP8Ax+xpYUu6C5D1mrCZq0kWgEAw7nbUruI4s6uA5hB6RLo1oegheYZLSTO/NfBGh6W2QWdak9TSEodAT1Bwloia00oTqgqE6pymOkKLl2A1dO0W4UbrMl3CbzQWRRn94fOLlY0gg1MrIyY2SU+SD6p8fiTOyMTGcgVMhowBKkiPrTBSyr3WKrGzznG6jWBm83KL3CNUeYQ8XxyiX2tKBMupHK52tors/2xRzX4M3Ins5GFXH0cmJPl0T2dK1cZE8rn5jTRJmeWkZg6hZweh+sCjDqUctSUWufDGYcxag3ODMRmjEJsh7YnD29yw6csaeRsyStTGYgepT2GO91qSOTOq8LyeDFDZeY4TXb7RM224/Ybp9xFBwnxZLTouZYVtxRBfdEwYmQ3FWeg9KwqgxHJ2Y0gRVqenWxqQPBgbWCfuvi/ezBOomxEuMl3otohJbA6zI/ELTsjbyl68EEl4q9qH19qmuu3cCFuYos6u4FRfsc3R8j+2q8fuba0xmcLvUETOcmSS5yPo0utZuPlobAXAKoNVNTy/kE1JaxCDEW+iFgbWAtBbYT9FWBrTRVoSmqGr2uqGUeT1zQ92dcug3f668opGQl7rB4sqBevUbf/Q3U6SPk8mi6Qoqae/+b/4qf5b+GX1oSORapqHQCnBkL9BxSiKQJGlABrPAQDMZsxqZHlo3SyXAWDulUxaDECFDPj1NrApctbLZgriWr9SaynN02Asl+wLk366x+lrhefxewEZROerXBmzQBEs1tNHEsc9SfF4pTXbNQmkNZUgvFKj0aBCshWInAUnmqwiVjoTDK+uDc5FPALtATRMofhbwFiFI7QHXwDmOucK4leIuUmrI4pGoeYQ/voUooS1KDNzY5pBSI3OCds6hn4/0jSO1vA6t3pQKEkBCyYaIb9eyFiEaJOyxq4ZOpZhhB65F5mPKGtTN8ZNaspKKh4p4MvFMuWfdXWCHp8Dw1W54UB7w76KQlHPduR9Kdvg2cDnEU1aZm3ry4nQrbHBKlGhb1PeTyMaZZ4HVBkDICCsUKFSzedxS+x7kBXSxSw8Az4BB7bHQnA7VUuJA8BrIGt5C0wrMWjrXQrPuC7rmk+tevOHr+/6Z5+l2qD35mp5m0HyGBbTiHUKCLQK09RwMcSc1ANtD1O/nZzjve8eSQ3LRVjLndKDlFPHg7BlaExKZyo0nkEDxGaJReUBYrqvKQsjikLI8pikOUWowsNZ+0373v6fvrN77fzxLBx3zN2hY3XBLWsel1vgmUKu6UmfnrfGyMtUOgH/IUS5b3CEgfYo6XNGTH/C8BuztGhFnrLUtsEBvNl8FiQkUDLKVGASY19seCPt/jWb/fMQHVUsf88jad+BHMjpMN/jOaKL5NNiTHvka0Gx9704gpX8/yO3NfkJz/ZynAzCLO2sQZxIyANaOUlGe6bzLYUwvFoYryXfdVzT1Z8FhI3r+z5uDYsjgJFEuNrEvCMGDPzgjO47sBs7ZcPJFcXRW82hzysVW8DI6X3vDabTizHWtv2PrY3JpHniQyyaPBCggJCMt0eBHiCpMzMRF2pUgyOKfStFKW/AAS0cBz7czYYHIypHVRjcduSPfpMLtf489P92aJx2VYymjeudCowiLUevwdMfSRoFJWiMSiDs4R3O77Hn9+dmn5sAuE7Rs27sd4fr+gyPKSQ3BxWmJ4TXVueH2tuGod948jyavUcrwG61LeMEiNoTA20A2ededw3rCqPIsKzmrPRSm4WhxFNnWx4Kg4QqlFJDsM5zjXp3uk4UhHXWpbeuywZtO9QqsqAtS+G+vGCFKHW2U+XGrsOD/llzkfBfALeLWE7nBBcX2fsr1P1T2n7y/wrqf1jks3cOktLkgqEVgUjpVVHAnNQmm0jU88Z/tLIonLiplcUwKrB+1xoeTBxxWnZmBxMoHUUgbK8yWKAwoi4Nr11/RJki9fpTLEnCAPc8lwe9NiAjw/CZBOsxRCTGxpBErVI1Naq2oHlI4s6RKdDA8BvO9v+I4MZh0JC8GkmnBWVQkZvw5T1ZVzxrn54XxKIutLZ83pMklG3ibnkVnTq0SEmgPLGTTeryLN3tTp7SzqOL06//1R1mP2Ow7BXHFCikApZiC11GxkwVoalBDYmQzLlwTqHy5+qwHqAAzDwNXV1c73q6qiqqrP9dx//s//eX72Z3+Wk5MT/vk//+f85b/8l3n69Cl/62/9rVt//tmzZ5RlyfHx8c73Hzx4wLNnzz7Xa/k88SMBUEtrInvarrHmAue2eN+jlI1daKkRrsO7fkxgA1NiFh9Jl3kcmSLp1coIZJUlokiiUzPWZe06nHHcGQbe6xvOyiXXbuAcxyDg0vasZMEiMbxaG9k9zlv0bCxxNEeUCYRKoHq+RWSwCKtmye8uSJ1Hg/ImlpOpIQFpTjCyHneO3Ywh/aZO/DhCNupzT+B0UU2/433AGYHoPc7sGuTF5xaxuEjPV6jMgfAj0DX+/AykLqWnTHpdC6mphGTLBPJHhl0fwYGZ4YXzgeAjqBQBpzw+5rld+OTzRdZYa8oI3BZ6upaECthKYpsF+noVXYjVgq254CxA18pRhxp3S9FT1Bw8Vjz4ruVbXrIRYscsMY9XCmKHPIQAIkS97gRDzFn6QZe4BKJHSZJdVO+qday3UG42EQCoH9CtVhQH0RjxqInGimqWtO0Dg1LGBsHnDR/cuIEXxI53LXSU+BhB6sieLlSIYFQZwShdk2R6JKK8HZzO93VmTwfnyLrUKBnB7syWSaO18XXtgtOZQZ31Pj+JPS2lRo3jbdkotRzBxB3Jn5nuWvAddrik656y3nzIZvMUYy84QPJj9TGnquauKnkoCu5JwWlhuLNoWR1Y6pWnXEB5qEYt7p0T56K+YXABN3iqa4fpPaYXWOOxVkY9ZiepvBjB6s5JiiCiGVkQk9u0SNmwhNZHmZSaQCEkB6rkSFeszZa2fUVVfkxZ36fYPEIvF1irR3kemCQ9MjgdP4p0HU4gdc4r1C0Jxnx6Ik9TzEHrwQaaMiQGdUiTF4GmjC7zg4W6hG6I692gwZQCqyVtUWOrgkoXFKqiToDPchGbB+duzff6aw5kyVF7wPEPSprvf4/i/jdvMDRFUXP6v/zT/N7u7+H+zSEZpM6ahEPwOyxqIDGooxmeDFEGyboOYdaJkT/JxkhdUbQFtioYeoWx0zHL93RmT6/XkT1dbNYM5mIEY53rcP6L0aDebJ8CLoHSDh+GscAoUuGbQelKqtHg80TV0xogJA2RFZnlfpbKUWlPWUZTIVnGiagcwd3cE8dzsMcmuiHzkYAkZ9dY22ITWK90Q1keUdQP2C6XVHWgTJJPECdr9pt3nycZzoxqKRRuBKl9khrwN1jUubCUTNcTs/H4HBtn+K5Zsyo1vwvJT1RHvLIdL/wAQvLadnxkW35KHnLHSQrlKWQGzMIIyHbB0vnYnOq92zH0uU3nFhibd1V1xKJ5hF0eYpoGLwUqrVeaeM1rPwH5VZkaPQNxvDq4HcmUXODXOddJH7YwMqfW0nEpFGtToL6/4vRVz+mTb3Hwze9SvfuvKL/y4xQPP0CdPpqe9/o19tXHuIsX+LbFD2G0xGhkYOUkayExUifN2jeXjaOMVAjIlKdMQKTfaSQAEfT3EfjP0iZdcIkprZCqodBL7izeodArimI1ggFzM24znBG8pR9iDu28YRi+GIAawqhD7ewa3XrareR6m/Tv5WwdDiQW9a68h7cgDAgfYs7v3ciezmSPSebD7//1cf8dklHnEGpKEVjIAoXA3NY0GMFiF/PxkEgkQROwE7FkZFdH0DoC2NFQEccbQecs8xHCrszHG4/ijSbOmyPn9UrEdz/pUE/m5hOLL4E4YdKkLbIsCh6Z1giQo3yKEoJaKJYqsqZPVc0DVXFPaB4ruFf3HBxbykUkS9jWYdst3oDtoFsLthvN9XbBN7bVCEqfuw2XrmftDa23O4xpP8urssqsF2I8/lLE5j+j9EcyVE/g9Fx/Nr9+PZfI29PjnZsqbp3FyVmNJRglP0pklN9KoHS8YqY6zBMYgmAQmQGreXVZI2WLUBZYE5xDroYZQK0QSuOHntBtCcOAHwzBhbGxGlxmxk8gWP6bzI7XznWRWfLsTs58ERHzDxenJYYzmotLLq5OONs4jA1xylTH68j58AZwOkb8WcXBQuF81KtvCseqDtRl4KIOXFUltnrEsqw51Cv6/hVX6+/Td6947QZsmmw80RV3dIULgQ+HNdv2BYfmCqUWEaB2PdIYlHEYrz61r1w58+pYrALXrWJYn1BtH1O1Tym6Fxi7YbAbrtzAuR/o3JJFEYk0h8pzFCIDtpGarY+duDGvS5NxJk1mDuljNiYcVODe1YLeKB6YluUdT3kguKcGytJTv1yxEiu+LRVrZ7h0A21wmNTICSLmA1m1OHsU3Bb52/M1aGzniKQvPZsMnUt4FHqBUjUqme9m34hIyElMaW/Zdq9wbosZ/UZabPLgitMEuZ4VTMIa2WdpAqYz4P7DgNO1jBMSTZb2QEQSlBCsSGaFmcmctd9nnl5jPuklUkxAc24eZrb0HNieT4zPgeqxlkn/PNea9wLKENegFTEfXkiNTsS0uVb4l/E7M/7u3/27/O2//bd3vvdX/spf4a/+1b9642d/4Rd+gb/5N//mW5/v13/91/n617/OX/gLf2H83u/9vb+Xsiz5s3/2z/KLv/iLnxv8/g8ZPzoAtetwdpPYXZsxYfGu30kc40IXN4HRoZWoUSnFxBAWyUyNDFAX5Zg0BOeQUqGVAi7wpsMZw+OLJWfFkjPbsx2u6QVsguPKDZzqmqUsaIRhIOonez/cGOEVMoHTOsl8yMTadl0caVUTszL+koyJY54KyqNACcSoU6EYR1hjEjN4iRSOIh+/HWD+TSD1BE6LGUgtlECmJ5I+MVZlwOmo2+rM21nUUu5uiCOrY+fXAo2MrscLpSmkQrl4HiM47RJA3UGwSGuQxiGcHEe1ssRHazyDDWOy9EWHlFAoMerkZpmPNN03ynwUxSFFeUBrL7gMjk1XRB3qdnsrgxqgfHSPewevORoWnCXANBcVc6NEGQIeD0EQ9pj20SVZ4YuCIBNAXU5jdznWXTRIXGyu6FyHKI/pDiuOViGxpyWlyvIes81V7rKov5AIbmRPF1KxUHpkS861p2vlqLRD6yhDU1QBOQOnVV2NkxCyLOO9lfT9YDbBOh+nlJJCWUqhY6ExJiETOG0T4JBZgRl8cUzO1ZNK46S/lhkFo8FXMkkcR9wSOC1VFRliPq5xZjhjs/mQ680P6LtXlMHySFXcLRp+qjzkoSh4KOFebTg56FkeOuqVR9VZ5iQeD2AyiszvW8V7K4c+X2Nbh+s8w1Zgrcf0MoHVgsJJnBdIqzAuAdNeRqA6mwYltlkEqSNQVSdH7Duq4soNnNlLtt1L6vYpxeYB1eaAzXCE3Zt42AWpYyOoKWMiWGq5x6SeFZq3sPonFvUkb+F8oDNhBKsHF0aX+baIoMlgo1Gj95EVO2joZMAVAiMVQS4IUlJKRQWstt8nBMe2DZzZyKS+q0oeXTSc/uCS6qsfUb7304h6uXPZq+P73P0T/wW/6/q/ofvGMUOoR2Br401U1huZsFNIZgwXN+BEh1UbjKmjE7peUvYrVLFA9w3GqdGAMq+7g43s6YuriT0t24tJe9oPOG/wXxBAbYbLyChOIMJSRJOaWDDExLuRejStytI+R1LHNSDrqZPWgqRDX2tPU1qqhUfXAV2r2HRWCj8MsRHjxVjYZ8A2CEb5ndzYm8f4dbB436emeJT3KPSCun5IWL1Dvyo4KsNo9OlTwzTvg0J+OsBp37MivgZF5tjMZT4iCzO/7olFHVIzOE7WBHzILKgJKB4nRBK4cmkHvi02rDjgp1TDs+qAi+1rjBBsguOJWfOkWPHOoCmagULtmvIMSe7IzArr3MQb3xu3HQPB/5+9P4uRLMvT+8DfWe5mZm7ma0RkRlZWZVV1F1m9sKeabE4RHFCUZiAKIqEBeoDBAJIogoCoFwkgBQiQMNACgRIBYiD0A9XgywDSCBpBokRCD4OBBA3VGA66xbVGTXZXVteaWZEZqy/mZna3s8zDOefea+4emZGVUUV1Tx7AwpdwNze76znf//v/PikLyuKEonqTbj7HFHEeNymoaaITMrpdy+5ynBt1YG1D480gUrvogJyOUSw2KATXMuRdbJSFruS4n3O6KTl90nL43Q9YnD6iPP0N9OkxanmIzAtc1+K215jzC5qnO3ZrSddJGiOxPgiAeeSNSoI9/2ULx2nhOYlNEjGI60mETsL0le1ofDBEgEKqgO6YZ3O0npPpOVkWMB7p+PDO0Ns2HrvdgEhxrqPrA6rG2W4ounza4b3DO4N1PdZuyeqOXV3RNLCuiUUxPxbH+lAQDAK1wBox8KdVHwPNnMVH4wkwhAuOwdkR9UbqEwgev947dq6n9rCSDCLlraNQqhCunoJUXMLuBXf0tItiOtK1YciOGLoeQ3fDVERPJpO7MB/jEyYYw3g/S+31aZ6Rgrisv8Ggjuz90Z0+FqGGwHQYXdSxGy8hPBQiSvth+yT3tI7izVLlrFTOsSo5kzkPpOZMeo6LnoNZuDeYRtDtBLaHrpU0jWLTZlx2mgsrOfeO3zbXXLuOnTXUzgw4mmnegovoICMY51EyRwm9Z9bx3uF8SxCubCxO+IFBm0X+biaD4SXNnbPooL6LMZ3Ent47tq4P/G/hB+RHEqnreD1O+6T3btxH3tMIQSccVnrOuhx55ZGqAQxFt0X3BlXWgykKomHCWlxd43uD6xyuC2ag1N3mIuN6dNLfDNa7e9yFdPhRhsOjI9dXOzC2pesumG/Pubg85dm1Y9tYDhfh3Mi0QH6CDss3jnMWOxsyfnJLrhxFHrKQrnLJOjthXpQstz9AyoK1zGjqJ1y6DmfC/e1IFxzrAofnB92Gtj0PQYt6gbQN0vTxuuJxNs2ibo+pixqiSJ3DbOZpDhz1siK/ukdZv0FRf0jbXtGLmmsbMB9bd8ChFxSZZa4tK5uxjHOcq8iCNzErAMJZH9Yalt7GAqSMuS7e8m2ZsdkV7D5QvFHXLE8M+Uxw9MCQF2sOns5Y1XPWRUfVN7H4Y2i8wwg/9E+kjoPbKRVMXglDMRvk4JAW8Ry8yZS+GXioVMz7ifch5zra9jnGNqGg3F6G+5Hv94pM45CxWzDOXCbCtGBE90hG2Ef6OhVk0jUuidPZR4jTCelRibFLN4umuaRT3NRMnEs4Dh9b8fwgVMO+yJw6xu9CrKqJaW/aGTGkqE1c1BWCeXTiZ1JhUtH+jr342XiFIcD/BNIl/9yf+3P8xb/4F/e+9zIB+V//1/91/qV/6V/6yOf74he/eOf3//Af/sMYY/j+97/PV77ylVv//+DBA7qu4/Lycs9F/eTJk1fmWP84xu8JgVq0G/rmCU39IV13ibU1SlV7HEdpW/runK5fY2wDWFY6ZyV1cFxJO2kDBpmBqoKoJcsKWc0RWYHIRzawq7eo+QI1PydfXvGVqy3VekZVnVFIxffaNVscj02Nw3OsSx5kM+h3bPtNuIirisy1YVEZ8R5kc1xe4bIM2fehEgkob7BmGxEAkVcrNA6Fpaf1DuEtMooGSUTrpaYTPiQIS83CCionmDtHqRxOWzLtwkU3MqYTuuOuMRUfZQYql6OgD+TW4zqHaTym8dge+lZMftcho3gkrUcJGdwdkwCXPQa1F5TOceYU91TFc9WwsT2d2dGbikyHooTprlDtFSqboaoK2WpsJuk62DWwyeCq9lSZJdeCk2XG6x65luRasigk88Kxa4JI3UlwmaCrMvLlGcXmTebVfdrmOd83NV+u5zy4qJlfnGPXL9AP3rn13LM/8Ef53Pv/DT/9/4Fzr3luA28sOL8suVRoZ0JQYlrgeB8moUJFt26O1At6neELwaqC47m6Jda/d25oHkvK7SO8t7Snb5E9gLfvw9vHklUlB16kmjioVXLXv0aBWnk3iFQrlXMoC05VzrHQHAvJkXIstWVR9pSFpVpYisqTLxVqkQ/C9M1CU2qhHIIGrRrQHindU+YZed6RI2ldCMtJw3o/tKsn5nTvbAyfigvG6JweRenollY5WhVkeoFS1Z1J1SIGu1qzpd69T11/yGb7Q9r2nNwbTlTB/eKAB9mMN1XJ20Lxs8cbFgc78tnIlO52gmc/zNnWmk2n2VrFeRTlIOFzYC4dB3nLouhZHBjmR5aDdw7I71cDEsFutthtS7c2mCac17aHplYhSNBK2l7RGMnWKhZOsvGKhZRs0DymjW6iIFK/mc1DyGe34dn2B9jIIF45gz/7OhskUrohINHGU1ZJ4mJFsqzC8aukGD5+2tHHTos+YoGaWNiquxDeVXee89KzaaDpPbsGus7TzARdI9ks56hNRbVecegNRXHK9fV32Gx/yHfaZ7TbJ8B9sm8e8HOzb6JP3qD8/bc5X/k7P8c7/+efY/V//xXe+DXHP7g+4NsyY+fMEBKVjrnkrJTRRY0HS4e5YcgLHPoSnS2QdoVXcFCFrohcC65qx6NLePRYsPtAsHxySXb+iG7zHZr2BV1/hTFbrKkHcejTji/onLnOh8DDA5nHDgk5LBiqodWSGO4Z8B2ZtGTKBFa8dpGHHBav6V42WzqyuUQtcmTkn2ItfStojaIjYClGsX90BMGkw2n4GK4dpr+iaR7Tdpd478iyOYv521SHP8/6jfuoe7BcBHEaxm6AUNwAE+8Lrp0cswlZ4BKy4LajchoKd3OMr1mGxeLk/1zkDYXG9dFt56JgavGRyTi6eD/st1y7jv9Ddco/W5xwIHN+ffOYWii+2234NfGUnPv8gvTMcsNKCK6QQ/GkGwp3bkQe7W3r+LrTeo4gPFXVKavVz6JPf4H1SY6I83ZvBZ1RyLZAtwt0e4Ru75PVn+MoW9G3L2jbZzTNE9rukra9pOk37HxLZnpKITlSxSBIAYNwbiboHI3g27pgoTIO+pxlm7G6WLD6vor4mJa5/JC5DoVRgN5JerugsYqtk9Qe6nhshQVvYP6Gbbvvshwcclh21nBhWxpnqKMjehCgowtNZ0u0CiJ+JQukHFdULmHkovDc9Wt68ztBvHN9LO5HPAZ+wvK0A7dTI9AvQZF88uFxzmBtTd+vOVivaecFmyJc33sDszIUyKxPKKWAAWkbgakFovbo1qHbDtU2IRDdNjgbw1NdOxTNhoBobwfcGQKEzOh8x3PT8Cx3rBCcRffitQuiSCruJIOIlwqc2pOIJewxgolfjzsgoAVTuLlXdiJSR+wIUUyNzze6qEdxfW9EjNO0OD5gJCaXDwtDKKJWDGaQ3kmMDVeDhPNTiWeKYC51KNqmC4aLYpUfvkQKwUyEXJ2VDq7pY5FxLBTHQnCk7eAOrVvF5aOcXa/YWsmVF5x7x5U3XDnDtau5th07Z7i23TB/6qOwa0jzp4A4U7KgyA+opp2jN45n5w0+mX8IuSUZEUUSDUmlDKjAQioWKhsC0VJoWjJ6TMe+ezUU2S99y7XrKCKybBHFLSs8nR8LX+mc7r0biuLnQtL5OWe7jAf1kjee9ZwtW+bLlnJRo0sRgr3jmspbj+09rvP0raBvJe0uiP11p7nuNBtPyACJpqSpk3o6UoHsdQYkJgE/F5JSSLp+y65+THXx/2X+nTf55umMs4OWn39bDmaYTzJPU1JwuNAcLjRvnXguNoYnVz3Pjh2Prxzn9+DF+RxZ/LMcP3/K0fq7XF/9Q9bX3+Fq9yEX/YZlX3OqyxDeWR3z987/PrvmGYfLa+bekAO5zrBa0RYZ1oQuYCX9XvEeJl19MQulkvDgCMrc81QLLtVDDqXi0Bmct2w2cNWf83634VFxzLzNuJ9ZDudh/mTbgi4/CMdZvx3O7enes4SugdZbttZybjse9Vuem4ZTXXJsSs7aigdPNW8qx/1Fw+Fhxxe+sOXzdsvvf1Txwe6Q7znPI9fyzNRc2Y51PAdrZ+jx2L2C2uiGTsXuaeFeybEYdxd21Lme3uzY2TYWKLvBDT2yoyfvcijGRfE73vOSWO2xeDd2RoxwEfbQPambMIUhJud0ngIQxRiunUWzTJ668JLxKeI8kgEqE56D3KBEKPrdRKKmEFoX+f0BxeXHguEd2VowHle3zYHRDBV1kX7SjWwj+lRFz4FF0klN7QtmUuO8p40rvM9E6v/ljjzPWS6Xr/SzZ2dnnJ2d/Uh/5xvf+AZSSu7du3fn///iL/4iWZbxP/wP/wO//Mu/DMC7777Le++9x9e//vUf6W++jvF7QqCmD22DoTVkMziInMtxrkW6AkcTREzb4l2P8lAKHS9GBAd1dAcL5ZGD4qaCoBXFaZEVg+NSJgcmgLUsV2uO256HLudZtuDStLQm1NSvbc9cZhQyXAyvXYezLc51WDtxUguN1zkuy3A6qDHCWYQth9T6dDMYOZNiWGymiZSctLVaHJ1wdFKjvKAjVAY7o5j7IFYXzmGdpXAAbmBMT4MQ90wd6XsuTJ5C8FTYZgKQuUMog1AO0YSWQhERIGEeH/jMQ3XUymFifFdwYyYdOWoP89H64ES3cUIaQi9C4IXqDdLlWBec3H1sGa27EMBTd+7H5qJOLk4lgzAhZeCZQ6jKOZ2R5YGZJmXB1vdsfJh0uq7H9y2+b/aDEgF98ibFmyeczq5ZrHMuJpiP5PxQQiK8JfiGfPBdeYkkTSgCy9hmGpF5chUc3zfHVQ35pse7BiEU9bLicOED2iObsKcnc5LYcLA3kXsd+QyS0Oafx0nFXOpJWz9U0lFoS5458iK08utyLDCJqkLuidOB7z5lT3uIjqgGlBqd1EqFgkl0sKVwyhS0lRyXJjqoHYkD+irO6SwWqfJBnE54DyBypjdYu+Vq/S673WOM3bBCcZrNeZgveEOXvC2LMCGd1RwcGryFzYXi6jrnWZPzxEoeuZ7nruOF3bKxPRs7Ol8TPqGSmoM651QVnF1UPHhf8ksXVyzvbSjvl+jlAfr4CLXoUPMkVFtMAxBY1aaPnShChePBAC5OGX2Y/NWTC0kuJIeqYKMCY3LbnrPZvk9RnFJs/iB1VdCUgqocQw1vjnCuvT5xGsb2UmBgIXbGUWaCqvdslKOzNhzvTTjudzIdSYQEbydoXUlR3acwG4wJ9ydjdrwwW35odnzYHfHF54Ll5dOPfD3zX/pjvPXe/4Pn/6jgymcsVDYWRoQISI/JVDSJKeka4LzBJgeja4f7jVMSUcCihFyJwTl9sYbdWlCuO7LrS1z7HNNfhbR012GTIPCaQhIfZgcsdDaI0iuhB0F66ozORCikZhERVWR2T5CWKnwMXT6MWQmlQFUKmcXzXipc12P7EP7ZJWwKYTuOOJ59BvU0KwICcseYgEMQQqL1nKI4w81P6ReSg9JT5PvXxEwnF/WAxgXAvyS4Efa7v14mWN8cUki8UPgYmEicK3hE7K7xQ7bQwLNNi6XopgwBaY7aGd5zji8rwR/QC36YL/hWf40Tkkfdlm/nNV/oSgptqYSn8iPX9lXGnn9VSITMyLMlWXmf7mCFrEIdUcjQ3u4duELQtQrTSnSbkeuMwnyeQi9QeoHWM7L2OUqVNO05fRfMCVtv0Lajkjq09sfCjvN+aAlPrsnGW0oTkTIq40BlLGXOXOhw/3GSymgWIttzjlsYih4Bd7KPXOu8CxiO6MhMwZHp88Y7GiEQIkfpGUqXLHSFUuXA7kwFk+Tg7/rUlZfmReMxk87VJEYn91koo/oheFQjWKh8uNdqBN98pT34cSNgFpJoLEyHMo7eKLpOxLngfpfBgPcwgPHI3qN6G5yOpoPonk4u8OTIc/EAuUvkjQkdwaXrA+otueVuLuV9Eqfj8YnTIO0YUmwbQgZ1NJdMuywkAQcSefXCqcCj/qgtFLfN4Py+4aIet2SYNSdRcMoftzdExzSH761H+SCWyCh0pFb0EO4VztdcSHovSX69dF1I9xYJoWATz4PA/JfBYRjFmNZIehFwIs97zQa48o4r37PxlrXt2fkwB0mdALUztN4FcVqE66xUBbksULocuLVDB8BkW+0d394GkRo7OKaTOD228gdxOqHiEoc6iVkqtvMDo5taqHjehmtC7WwMvPf0WLZRzD+KuBglAjvYRrG7j4dWCtDuheOpbUJ3q8ypu4zmQnG/b1i0hqIKazCVxWMhZoPYXkbcmqBp1GAG6LwI15t4bQlO+jvE6QlX/HWO6dMpRFzXNnTdBcurF1yeL3h27Vjv7K1uzU86Mi04WYZzTUkD8RoGng/OCuAelVQckLodJNvtB6zthjhZ5VAX3JM5z3YfkOkKpWbobIVqVmTtjK7P9tYuLzPd2Hgy5jFsvjOwWHjaQ0mzPqK8fkhV/5CmPceYDde259wb1jbn2EjyzLEoe457zbEP51VpFJ1wcMf+85OPHmi843G/49p2XOmOa11xpQqe+YwHVzPub0ruLxoWC8PZacNB3fNgk/O4LnkkSx77jue249K2IWAvYkA612PoIkJnivIYkR6jmDx9feEVTnEcRGH5Za7skVsd7vvpu+F3R2H6lph965luP5JzOmE90pxExw695KZO4nSOHALfp+J06sgrtL2FRE18/+lwTowZWjfc0Xe5pafj5s+rISModrf5mz8fAhmD0ztc1xphsF5gPpOnf7QhxI8/JPHHNH7913+d/+l/+p/443/8j3NwcMCv//qv8+f//J/nn//n/3mOjo4AePToEf/UP/VP8Z/+p/8pv/RLv8RqteLP/tk/y1/4C3+B4+Njlssl/+q/+q/y9a9//R9bQCL8HhGovdlgIlDf2npodVVuXNB5a+j7TXB9eUNJ4I+FRNaw2NV7zGAR29+j01LpIFJnY3gFWYFLQRZ9R7W65HDbcb/TPPQFj7OKa9txHdmAW9eTCclcZbh+G1sr+4CnmAa7SIWXEptpfLQra9MFV6XUQ4BaCrwTQmFFSNqWPgTkuBiqYLyj9ZZKhqAigE1kFm0QLKxkYSWV9cyNZGYlxlp01kM2cjNVFq0IhMnS8FotOOmRNor7CRmQAUoic4PKItM2amLSegxy4FErHxKzp2OPie3CJLqSnoVXHKicQqrolriN+ZC23cN8OBcWOr0JqI+6C238TecGEep1jpGHy3g8SQ8yXPRMkZPrBVoHFte17dh4T1NLXNPhuyY4eW8YvEU5J3vjbY4O/wGr64rHQoZiRJwESzEy9MZArNH1kxx1iHBcCZkmVvszr21judxCXrcDIscuJMuFZVVJFqUkU4Kwy2IVOB0nk4mcG41Cn2oktEdaWKRgxAVQSkehxxC0rPBRoJaoeRXE6bJC5AUyFpoGpMcQQmPC59aA08HtBOGcVwqpYru19/TO3eKXTINLkiMuGhWH1jkhJgnWk2DEkFY9Yj3SIje5wvp+TdM8YbN5D+k67qmcB9mMh9l8cE2/kfcczQJz7vmzgie7gu8bwfdcw/vdi8EpsfNucCSNi2mH9z0ei8CTeSiE5EBmHOqCR++d8eUfSt5Z7bj38BmLt3L06THZ2Slq1aHma8y6ARy2D47UaZgqABORehHFvhQmpKJz6zQr2bqexjTsdo8p8u9xenlJV53RVYK6CUJfZRiwG8nFIiWvVZy+OZJYbZ2k7BxN58i1oLM+uij8jcWLj8d+cJT3B4dk9i3KIYV8Q2N3POq2PMqWXF9qzi5efORrKL70C6y++nd5+MNLnp8vmMuMOrZ5anxYmMMtPi3E0K/kNJuKHqrAFBn5zFNl4bzdtJ6LLazXAnnhKdZraF7Qty+iEJvuWaMY9jrG53XFgc6oCGLHSgSHdCmDGy9T/k6HdF7cFqMhFpnTfVyBrhQi1wN7HsA7F7p7nCQtp8IWg7BEunshnRzU3jUD2sN7h5QZmZ6Tl/dpl0vUHMrSR1766LpKgUuhcEm4L7zkNpTC3142UjDcy0ZyPaVrkY+4D+I9InmRpiN9nVr+A5/X8R2zYyUWPJCenyuPedrvuASuveV73Zr3VcWhUcyVo/LhOr0Wt92IHzcECq1KtF4gy1PaRUlWBkxKfNehrd2BK8F2gq7V9JUCzsi2FbpdIXdzdLYi0wdkek6jX9C2l/T9ho1r6J0Pc8DY7pvEm4QkMcDOG/AGZVvyXlAKOYjVC5lF3JSOQXv7eIBpm39yXyYhIHGi93nRck+QXubLwOuMwlxgjZuJAL0N7GgzHoM+Bkc7HzB24yI/uvFjK/Q+7kBSKEWeXKUyiy5TjXptDupxeG+jicDS9ZquG/dtYuE7B11HcDH2AtF7lAnuadn3YNt4j2zG4s1UtPTRq39zAiLCfajzjo23WB/WAIUIe87H9zuwuaf3ep2PcylnAoovitTD/TThPQAhLFKVONcOQtk0xDR0ErjBRa3i33SRJ/+yMT1fkwhp/VhcCl+Pn6e8F+dGDvVdSrm6QTlJBfl0P5FALoLreCazWKRJQYGBsdp76K3Ceqi94Jl3XHnLxlu2zrD1Pde238N4tM5y7S1eSKQsyVWF0iWZng2idNof4Z7jBqe8s93QCeCcGboAborTSYSaitOZHIPFVWJwc8dD7J/TC6GoxRgA20eHtHM+hqtFLrUIWy243dWw3xxhHnnuA36okZZa5dQ+o1lXnDSGZdVRlna4vyXWtIlYj64fO9Uaq2icHPOGeDW8x+scqWCS1iLOdRHzcYnbPsKfv80Hl/D82nCy1J96rqbkKFIHNJvFOnixctQuB06ogIXQyHj8bLaPWJv1IFI/yGb07TVX1++FTuZsSaUXqG6JbssBnyInppvp+mYIlY5YolyFQn9voWk8m8OS8vJzVLtH7OrH9N01jb/kue24kqGzYF4Z8sxxXPSc1QGVc67CPaL+mG2Q5NraO1rbsXWGc9NwrEtOdcUzlfPIZZxdzXhw7Xl7uSPPHatFR5UbztqMyy7juSx4pmecO8Pa9TwzdQgkjd2hqQMqoEPNgBdK+306xB2fp9d5O1AxFs0nYYrpfuUm/Pi7hPqbI2m6Y4dLnLsIiRYjuihhXYcH4f6fwhCDSC2GTr1cBOd0wsVlyg14U9hHBkJE7bwk02T6M2lI4SMOZP9npiL21FltvYjOJz98nYJu8+j6Tu+zE+6lPPHPxu/dURQF/8V/8V/w7/67/y5t2/LOO+/w5//8n9/jUvd9z7vvvstutxu+9x/9R/8RUkp++Zd/mbZt+af/6X+a//g//o//cbyFYfyeEKid2WEiWD8x8+RQTQ/CJUBvNoNbOfGGKgRl5LTd5E8PAYlJmE4uahVa/wBkFLlU31KdPOJgZziuOx5sSx5mc16YhqavMXi2yUUtFNp7nO8xto3hMe1eu6CLrUYhsd7hdR6dlykNtxjYtVLmCKuwwoZJSpo0eUcjLLmTbERPIRWNswPHMzhRJQuhg1DtNCujmHfhqlsWlrKykSsdBAChxESoDste78B1LmyzbHSeKqXwmUaoDt10COWhAYNAD42NkG5zqUUGIuZjcnXNlCMznoWQzKVmLjMw9Z7Ib20QVFW/RdgV0nmE8UMKfG8C1zC06Id06JenSH/6kau7q+5OCoh8SKkK6n5HjaftExfVBtH0jufUJ2+wvPf3OP4h5Eia6OaFfcYWE4k0bd9hoi81LvJPc3WbP73ehYDEbHtNZxuUDuGIR3NYFIJMBTHQ2Yk4bW+/19clUOepwh33ezW4dvzons4dWRSok1tSVBVqvgjidDkfikwwitNhwylwcStai1CTunN0UAMDa1pOJkypZd3G9vUU4DO6DsTono58tmkwYsD1BHE6DWu2OBcYfrv6MbvdEwrXc6JL3sznPNRz3pYFDyWclR2z3AS30lXJ/1jDt/tLftBe89y29EIGd0h5yCw68KSMbMMhYDS47WxkC29tw7XreNq2rG3Hm/mct82Cr17O+X3v1Tx8+zEH78zIzk6R9++jFhu8fY5p/OD60a1HTmfYUaReRCdYzbiIzpEsZc6Zrtg5w7ndcr39IWdX32dWzdgUC3a5IM89ZQZVFhjJNkvH349PnJ4OJQXzUkXWtaXuHEq64EATiWMdHiGICsxM0FcVqj0k6+5TNk9p2mf03YznZscj23J+XfD2xeXH/v3yK7/A2W/9d9xfW+ZGcy0UvXQY63AihFdNrwVjg6jH31iwSlXg8op+rjicOapM0Fk438L5JbQXgsV6h9qeY9oXGLPG2h3e2+CetuP99XWMt6TmWKpBlJ5lAZswFo4DekprN+QcCAVZ4QcROpkMpQoCbGqPFkogqyy4pyN7HmdxdU/XJveZH3jJwwIqdikFJIoaFrrhvzXetrErKxzoSmYUxSmyekCzLKhmnlkZnFWJrQthAZtF7FMK0L3l1riB9hicsAMCwA7M3VcZt1nUsaMn/v/LeMhJuJFe8MzUfFtm/KIu+DlV8F51yN/bvRhd1EXD57oi4JZMaHfPJ66lV3ylCKmQqqDID3HVIaaSLHI/GAjSCIVngcs9Xe5xlWDnKrIiI69nZNmMvD5EZyt0tiTPD2myZ9TtC3a7DzC+p3eOWRStktOqiPvYeoeSVZxraax3XLuOK9fh+i3K+7iYDXOSJHLDxHk6QT/1eHbeDaFuUuaobIHSJXNVDNfmJEgP+927IShq7BgbBWnruhtidHKchTlACo7KGfm7SZBOztJpu/OhyofFuri5Av+Rx+3jWziH6D3OiIghGg0iJrGnO265p2VXQ7/Bu4j3SC7qSfEsFeXCNvQJrxqPREnvLLW3dD4IiYVUQeSYvsw4x/dK4ZVC9owitTOIdH7aJj75ZE4hNEIahI9zddHuZ8fcMcK+Dgf49LqaWueDgBPEiSQSJREZRk7pVABJOQlaBxd1UpSmQorC3yisjNz4obMCBmZrygCYiipd2H3U8Tk7Am7ime/ZuCBOJ9f0xvbRhRw4uL0g4Gr0jExX45pGqEGoT2HoQzHmhmt6dJ7HoDTGFv8kTuvJY+w4nLbN+zGgdFKkg+BOhMSFD8FknVfUWDbOTrohDDbmIyRneiYC9sOhyMSIOqpd5AjL0E2xUZYNOQ/ajFOjWNYBW5dHF3UoyoWAamPlRJwW1D4VxF4+FMGt4rwYi7E/hgKURISii+3o+iv65gnzF1vOL2c8u7a8uRtZ1J9mKCk4Wmg64+hsQLI9XYR5V80oUs8m99HNlkGkXqqcN/I5fbdhff09tCpDPsf2BD2f07f5Hh5txBiGr+3k0miTizqDroCDhac+FtTrE6rrh8zqH9J2Vxi75YVtONcVW6s4MoKytCyKnrM240zmPNM5V7ZF2FcrM6SVXhKqN87w3DSsVM6RLjiUBe+pjPPLOccxODpheM7KjqVR3DeKtS24UgWPVM7GW5p4XDfe0Lv9DIlUuJpiu4JJZz/MNGFKrEir0ZiLEUVpGN3Se90903eezlGfLtD7W0VMPia0Ryo2yYT3EKNbOnVSJHE6S85pIQZxugIqEcKUS2UpowkqzUVhRG+E/Z+CSsfA0ul1+GWitR0c1h5iJlca6fNRB3HICUIkZP74GEpPdH2PAnVaA/zu9AH/L2C8RkzpT3J87Wtf4zd+4zc+8me+8IUv3Lr2l2XJX/krf4W/8lf+yo/z5X2i8XtCoDb9VXRPN1jbBsdQcoxEd4WNi0nnWqT3FCqGrAlBLuNCOIsBgBnIXEX3tIpOyvhIDuo7XJjZ0YJqfcVq03G/zQYX9TreNNrooj5UBaWQbKOgamwdGXphouulxCmJVxKrQDiN0llYwESnZeJQK6lxKkfaPEzOhcMSgto6b5HejhdsK7iy3S0nwUzpoW11JTUrJ+k2JcvGsmh7ZpXB9o5yESazMg/iJpkYBEhnPaILWA8fQ6hEHqZ1QinyztJvQ5uP6InhiTdF6n0+3lBFlEHwKZWlspJlDMzyOJwfF2zOtSEh3jbIrkH1M4TNhgVQ23maPATwbFpPlTsWP0YXdRpp0ZWGVxKvI9ZBFbRtcJgYK7Gdw/cNKdTp5tCnb1LeLznShnziZE/7eL/pKlafRRRbomMXVeAyhdQ+hM3pGwJ1bdlsBIv2Orx+PWcR8R6LUg4/39/BW0iLFhsdbphPf3tM4nRYHCkWhEC0UvogZE3d03PIFho1L1HzRWDHlyM/fo8TSWzPZZTyUcFFfet9wRCEqBhbwocHCe0xhpskkSu1/+6jPVJxqUCmFGtvh5DXrrukbp5S188wdsOXItLjLV3xUOa8qRyHkYd2scv5oNe861r+n+sfcoVFqwXF4gGr8owsOwjheEPAqp7w+cO1MbVJTxO0Tb/lh90LXuxa3lPXfCeb85v2gJ+7PuJnfrjjrS+/x/yLx6jliuJ+h1pvkRuDygJjfs9FDWBgERfgeKjFuJwqUaxUwYnuqbstbXtOff0tZvkhefUObZGzyx1l7qnyIPpNgw1/kiPTgYcYBGpBaodObrbB3emgdtBVGapfUHT3KdoXlO0L2m7N1m54bHa86E7ozjcf+3fzt38/87f+3xx9r2PehsDA3jtaERnUo/4wjJtnX8L8SL2gmy9Qh3AYEWib1vPsCq4vJcVFT359hWueY/rLIMRGccC5HufN4NJ8HePNvOcwd4MoXZZ24EdrHe7LA3Yq3n+kEvE+LYagz7sqgkJKZJ4h8jygfpTC9V3ISTCa3gk6wuJrWBrFa+ZdglJyS1qzGQo8AEqV5PkRdn6Mm0vK0lLkY6HSinDMZgp6GRjUWofPvQz3fS/3I7pexqBOjOGpe3QqXofXGdiNImI+4sZI72L8Gzee+6aYHESegCl7ZLYcS81XlOQX8yPea6954gzX3vLt9oqvqAeclR2LXrPwkiuhhs4eGRdWEkKL8GSCvOe8EopMB8ZyP1/ALDjRMz22Wo8sb09vIM+DqLlD0M5zujojrwqK7Qy9XVLmh+j6kDw/Jm8eBzZmt6azNcZbqombOo+uK+0sFy4WH3RJkS3Qeh73y1jca03N1oTijbdTYVFAFCWl0kiVs8gWKFXG83B0Ro/ogtEhHXB17pYgHZyiI185BMFFcTrKFdITRbq0/wSV1CG4dSJMJ7NCYMdO8TohGIqPcOd/siEmHNNo7rAOYaYCtdhzpnUd+F4gW4duzcieju7pVMgNyKIUMjjiPTz+JQKcoCeKiQThvhBqiBAN+06HTkalBhe1yzKElWN5x7Yfvfj3MUwx4ipEdHO6GxxqCE5qhBwRKDeuO9NujuQtnHbK3CVlDWYPBdIFw0diok7byO1UnI7zmSROm/gah7b4+BiEXO/phAcfsVbxtXR4Nt5yYXuuXXB3rm3HxgaUV4vHCYmQJZkqqarTcV40EaUTs9baZiiiD+z0dL27cewHXI1Ax+KaFuNrVzeE6cF5HieAnXexZV6CCCzn3EusuClWi4CXQ1LJUagOLnFDL9wQuJZEagAr3dBtV/vRpdpGIXArDVcy59xnHNssoB+Kfm9/9VaGe5aTNE7Q+Uk4or/bPa2QINw4R8Hv8fY/7UiFjORc9b4PQcq2oW2fsbx8wotnX+bRfcvDI8PBTL0WU0GmBauZprc+4DVmDmM8GyNo+hzhjijdF5lNfieJ1GvbMVcZ93XFe/2a9fX3yLIDdLaiKOe0ixNMJ3AxvFXFjtObw06WsUrCooB6BvXScXGSU51/jnL7A4r6MV13xaVpeZZ1XNiKk05TlpaytBy3PWcuZOy8kA0vbLcnx77Mnczkc8soVF/bnud9zVxlLFXORbZgLjUro1l1OVXCp4mwrs+F5xiBkjm199TSUfv0CAWYUIixQ+dDPXFaB2F6RI3a+LUTIEQW1qZDgT+tA2Ik49Qx/bIxmTPs8af9y/EeOpYkp67pIEoH5vwoTgfndMy7JBcB+5rH7j2t3J6JMV1bE94jMf6n4vQQcDgJOrw5bqxGb2miCScCIJXHSUFv4v0oBvuGoNvRRV1KRebCHOYuJOJn47Pxu2X8HhGor6OoUuNsh4xJsWl4Z+j766H6nhOSuxc3+NNShgVx4k8nt9UgTEf3dGBSBw6dt2Z0Ua9WFEdb5teGo23HA1PxQM94oRoaZ7F4GmfpZQgI2/o+Jqf3wdntzLAg8FJitcQrEFbhsiwITLHKK/t15NeWwTkXsR9h0ubxwg6TlZ6xmVdaG7lM++1vM6lZqIxK6sCEZRYmSJ3msDasqp5Za5gvLdr5IcQDxeCk9dbjukBflICoQriaqCpU1yNUh5AG2Uxvufsi9TS4Y4r4yLQjc5KF8CyE5kBlaM/gPreR5e1ci7cj5kOZAuPUT8xFPRXLpogPCE65sG8FTkdxUmZ03lJ7R2Mkric6qO/2QsiDE7LTE45mz1l0BRdi6JkaJodJpA7V00lFNomTUuGkQMvAk7753q9qR3stWfRBNJPZgsUCVpWkzCS5FlgXkomn71XJgMFI4rQzAtpPf4dMgRZzmUXXv2ARK9tFFtzTReXIZ5DNFWpeIhcL5HyFnC8ReYmMaI+pc9pbg7AhLGyYCCod8CoR+yEmDuoB43GDEZYYjWnKFNY6sX0tCRQ30B5KZjEQsRgWWtYGlmjTnlM3z+jaC7ytOZaaLxRLPqcqHkrNqXLMlWXXK54bxbuu47fbZ3y3XdPkRxzNHjCrHlAUZ+hsFRbHsfNij5NJFMCciW60dkCLWLOlN9dstu/TNOc8Mdc8by541G/5fjbn227FL/z9it//6Io3fnZN+cUvIKoKkV9iN11gzyuPUDYeH6F7YuXS1Ye4qA1LpFzAUmW0vmRre57Ylqv1t9DZinlxgCkesCuCi7rIoco8deapjL/VZveTGsu9RZYN3Efn91zUxkBTCLpZga7n6OKEsjihbp7QtTlP+h2PixOaq4//e6Kck9+/x2r5iMXVjEJoGmHJhKTz9pbod+v3hUTJDKXniPKE3VHFauk4PQjXwydXcHkp4NJTXm8Qu2f03QtMv8aYenBvhuOlB/9xnq1XH8fzluOZHETprEhufBEKxjfFaCUH4ZkJu3mPKz8VC2PBNPB6NL7rMI2n66OD2ofwq8SPF7G4lLbbwJIVE/60azFRmFRSD3iPZrkkmzuqMjiqqjwuUFwMNHPBRT3in8DdUSPdc1AP7ul95MdNcXr6/ZtDCAmefQ71SxaEU1wUBIFjLjWNs3zH7DgWB7wj4eerU/7HzQf0QvF+t+HdouYPIDjQhpXLOI9OJYV5qYt6utgWUcgMIYCH1LMCHTnemQ6PvbCq+PIDs9iT556uEzQNdIuMbrci2y4oNodk18fo3VN0tsLajqZ9FpEf12xcTedcYDjGQmiuFMa21LambUKAnlIlRX5MkR8OhUUAZ5NQau/c/jcFx+SAT0GGaR9OGdImBkuFYMP9QMN9vmfotkqidBLnNIJMjgiTpcoHQTobBGkVHGOTYKgVibtp6VTP6xjjPTDf6xYC8FZgJw5qN5k/iDYEI2Ztj2obRL+DfoMz24l7uruBHgoC/l3Fs8BiD/OX1oc2+hwoh8LQRDSWMphFhiwYh4iTubEHIeI+7hqqjOGHJmI+1ESgv71dnXfx5+8+hogzu6nwbnGDyBquxsnBvz+P1hlo4+hNCCQfnX6jeDLloye35PAcyX04dBcEEVpF0TOFR4fvB1Fr6wwf9Nto0OnZOhOCPqNgn0W+dKZnQ+EHGETpdA7sO6bbO5i0oUtgeg4ks8bwiOuKdA1KbukUApmyRULWSHAaqxhEhnAoFEyc5ulsrhDkQg1CNRACTX0IROz3BH1JiR5+OYUcd96N2B9laZRh63POpWblNQ/rnEUMaRu2ESE0bWRP312kSIJ8KmYoBH18/8kJ+7qHJOwHHwPyEuajePY2H75QPD42nB7o1+KiBjiYKerOsSgcswKaMgRW15Wk7QukPaZwlsqPHUjbrePc1MhYuHtDV7zfPuVy/Ttk2ZJ5cUq5XrCbV2MgohxzdpIoPcV2BRe1INfBzNMuYLPybE9PmV9/nqp+RNOec9E8DS5qWbDrFSsnyAvHsup40GY8UjnPVI7ud/R3uIU/SqgevbaBR957y9ZYzk3LuWlCB6rUA5qqjMXKhLlIx3firadrQecdrTdBv4gFldZZdqkLwDviVTe4pUUqqgVedXBOx64t7wOzJl5rp3OQm0zrNF42T7npnp6ugdUNpMdd3OlcyMF9nNjzCe2RC08m/a1OPojCtAvX2d7IO8XpLuKUXiYSh0Y/z8vscVPWdbovJi2kNzK8FhfOZyWm2K6wT0NB4JN0r302hhGs+J+Nf8zj94RA3dvr4I62Hc51SDkRobzFuhZjNph+hyfgPRYq8i7lyJ9OKIvEnyY6qJNrOojURXBkpqA1Z/BJoD48I6trqs0zVtue0zqPLuqSC9uyjdXG2hlmUnNtenobWF2BZRnE1dRW6RV4LTCFRpkCXecIVSJlidYzrJ0N7q2bbY0vG27CKGy9pfYGvOW57clMTRHF6vMssqxUzgOXc9ZlnO4MR3XHctlTLhz5zJPNJTqXEfcxEamVCYJ0niPyHLWYB2SK6jCqRyiPaZJvdRSpU0vVPuY3WANVvGEsnORA5mQIGm+G/Z4EA2u2SNMi+37gHLo8hCU2nafOo4M6Cy7qqnk9LWfJzfkqjk6XZcjY0tt5Fxx8TmN7j+9a4ortzqFPHrBcfsjishr505MbsyRUlf1kQju0eMuYTK+Cey+/Q5g/3zrkVuDMBiE1vjzm5CAI1FUugxDtPDffZnrf1of9aFuBbj+9eljIUTSohBzY07MsBCMWM4cufRSnC+RigVoeopbHyHK+F24qlBqEK2ENvm8H55SAiPpo9xEgcSTXSeblyGeMi8XB1UREhN0IRpQqv4H2mCFlPghPgTd9TdevaZoXtN0F2vUcReb0l/SMB0KxkmFC87TLeM9bvtlf8c3mgqeuo8hPuXf2h6lmn0MXJwi9gGwegp5i4NNQGjIdwrYxgLXBWz2wdYXT0fUXMEKz6k26/oqmPedFez4I1d8rlnzvw0P+4IXlF4/O0af3kHmOyc4RqkYoGyd040J7axTWysFBURPEwdR+eqgKtpmh8Zbd7kPy7FscZSvm1YzrYsUmFxS5j8Kfp+7C+fbjCjz9qDEv42J9OO/dIFD3lujs9NSFDAGS1YyiuU+2e0SeLVFqxpVZ89j3bC5ebTakTx4wW74XEDdSsfMS7cLk20QGpBe3A5IEIhY0Z+TlPbrD+8hTwcmhZ1HAs+sJ2uNih96cY2Mwoon3JhdFA+dMDKJyqNe0vl0dWRazUZTW5USQzvWQbTAwpNO9OQYe3jmcvS1SKwXW4LuObgdtr6gJrqPhfB4WV2N7/fAck7lFcHD2OO/QqiDPDyPeI2c5c8zK4KbKU45yFMasDmFKmQ7t91KDvcG1T2PAeey5a0f39PTnpj8//d7e60d+pCQxbY9Vg0gdFjuF0CDh0ra8KzN+SZd8LVvwvXzB7/QbNsC7zSX94oRMeRaCYAKIx6nyUxf1y85VgZQarUqknmMKSZVDmUOZBQfb0GqdunX8KBCs8xRqGjig3ULQNYrr7YJsM6NcH5Jd32MFlPUH1M0T6uYpbXtFb67pfU9pHUY6FjLjRJd00Rm5aZ7SdWuq2X28t1TVfbReovQCIRXeTbr2BjFt7ODz3mBMPey7cOwkkXpk6/rIi3e2G1nSe27R8W4jgNyP+y2LC/NcyMEtnZzSBzIfXOIpECrlOVRxYV4Jz2Fmhpbmxr+eEFQpgyipkkM2sZqjTuGig9rCGILZC7LWotse1bXIroF+izMbXOS/G7uLxoRuLJ7tzYOnBog4DyKERzUuIPFyIciig/rmGeN0FroZ4/kpnENFZ7WUCmFUEKjvcJoLBz7eU1PX41SolkJiXzJf/0ju/PDO/OBcnQqNNwWRJKpoHVApRFTEzZ9LzsfUxp8K71P3tExZHAnLl0TbKMr23rH1PTsbHNNPTT1gPITMIs4s3ws+lDLnZrhnEqWTWD0N9hxF6YmLkiCKTh2U01wWmIjT8T1ZglCWrnEBmzIV6aLT2ksUjlxIOjx5/IuKJADHgDIEVmZsvBxE6i6ye9McPQj5Gic9ldQ4G0TqxLOunWFre65Vz1YVrKWmkwWVl1EMF0ztV/thrPsitZrkUUjE8P9JYEz768cxFGBcjzUNXX9F1zxhdn7BxfN7vHfiODvomZfqtc3ZqjysTRalZddCk3v6ymNbQV9kyINDMv95Zm4sCF6tv40wDSe6ZKEyzrzl2faHXGUHaL2kLJa084f0JtxbpoiPJFJbEXKNYOzoU1JQZZ6DCpZLz4uTnNn5F6i2P2BXP2az+4DnfcMzPePCFJx0krKyzOaW47rngc14oku0EBg/SrPTY5vJxzSmIvX087TfX9iOC9vtoW9Sd4GO85yExQBGjFAsZhhS1k4IMw3Xgema56YonXzMEM7didA8nZ/Gv7f/8wy/d/d4uXt6OndJiI89F/UU7RHZ0wom4jQDd/qjxGlj5SBO91bcEqa7iThtGfVOFR3rDF8HITrNZ/bytxi1EK1T9kb8PwOtU+PvMwZTp2u2xmNek4nk/+/G71LEx++l8XtDoO7W9P2Wu0Kb0sS+69dY26A8VCq4hRdCUEr7cv60UtEtHd3T0TmdxGkgiNSlRiqFWh7jtlfkx9fMrhqO1h1npuJMVTxV9TBZabxlpXJmQnHpO6ypMbFl0TuDcBYnBV4LfBbTm7XCFiW6DZgCKQsyfRBeggmTvL3WXpJjNrk4p6L92Bac2rCMbbGmprY1W9ty1VxwIDNWKudeVnGmKx76grN+xps7w9lBw+LAsMwculLIyDFOQrWrY9szBDEhz5FKIVQd3G8quSwdphEIFbAAd10VEpNQK0clHYvIz86FpCYWIGxLNsV8mA2yW6L6GZgcZ8TgaGw7qDPYtIG9mmtLpsUgOP2oY+rkTGLtcNO58ba8VCEYTyh6n4KURECffAxbVJ+8wWz591ikAKrJvV6mQL7he/FGHo8DKUuczvARwXC3QA3lOuBnpCwx8wNWFcyLlzvNp06CPvIjRevJmk/vwMon7ukgeHhKFRbQZWUpKk9xIFGLHLVaDuK0Wp5M8B6ja0tAKAKksLTopPYAfRtE7Dteh4sLM50Wb9FtmfhrUwe1nKA9pEo4j+ieVhUyimppgW3MJorT5/T9Fbm3nKiC+9mMN7M5D4RiITydFzyy8G1X89vNBd/vNni94HD1JQ4WX2R59kfxxRKXl7gsGxbYaUjrEM6Fa0afB6FajteH2y1mBWiQUpHpBWVxTN+vOa+f8Xz3nB+013zHnHD6aw0Pf35N8fnPkd1/gMjPkfkGIcN5nsa8SbP5KFLH1mbrPTmSudAcq5JWW77VXXC9/QFaV6z0gqr4Krus4ko7Mu3JtSdXjrpzQ5DhT3rMSxWuz1GY7oyPD+gjdkBmHq/DQkmXc7LyPnm+Qmczdv0lT2zL9Tb7+D8GyPmKfBYYmMn9kha/dw1POvc1OnJ91ewtrs4WnB4H93SuBM+u/B7awzcvMN1VKPgNnP8uFlSCe1r524ukH3WUS085BxVFaTUv7haks/S1HgOMYbwfRzejtwZvbTivU0FKJfd0i93WdDtBY2R0oDl6F+7PXoTjfdoBMeXHDoiPyL2VEZ+U58e46hAWUEZxusoFVS5GPnl02efRDTx02MhwTxj2WxQ5geHj+H+30R7j99Pn+wu74BxNrTxy754xdR4x+TwseOQgrCghUF6AC6iPb8uMryrJH6pO+bDfsUXwqN9y2d3npOhZKsvChXN6HRfBU4DJPo5qfDVDxka2wBWCPHeBPZ8HR3quxeBkm47Oxs6KPnRJNWXAetWNpykF3VxyvQhC9YFUZJv75PUjivpDmuYJu+YZbfOCxu7oozPsQTZjpjUHPqd2hmvbsd78gKZ+ymz2gPnsc1TVfYrqzRj0pPBO42gQE7E6CNKxw2sy9xp54qHQsY/ymPB18bcQHpoUXCcnjrAR3ZZYm4XQVFKxlHpoZ05u6RwCb1P6oei7rDq09uSFo5CvZ3ErI45OqQql53vHOs4HQToe5t4FtEdwTxt02wb3dLvG9Rus2YbCmdlGLFU9dNIN+JOJyzg598ZiUyjStN4GFzAhMF0RWPQQ5s5eKZySIQtmONgUViuUidi9VqKcBdvexrJJAoNaFTjXxPlXgXQ9LrqoRcR6QDhnHSDvQnyIIPp4P/q8bxYhE+Zh3Kz7LuqU66JEKm0Q3dQRDeH9wJ/eC0cUo/ABhEDAuI4Jf9fRODu0/G9dT+2CAFoPwnTM2lAhEDrgbWKruutC9+sQeniTKz1KblNRGqIoNRGpEnt6dE+nvZa2WxCnBzyKGNFsMrqcU2eXis/YCUceC+k3RWqi+JzE6mNCrs/Gy4Hja6OYN7qvRTwn4z3L9jST4kDtDNeuZ207FjKjy9xet0OOHP7mdN8no4v1E8yCT0JizCVy4fl3LrhhXxfAJ2zbcf6oETE4ssOYLW37jHLzGPHijA9fwKOVZVn1vHGcf9RTvvLItKDMBLkiYLVyaLTHFHIweMlqhXafZx7vndvtI9a2RpqWI11wpApqt2W9/g6ZnnNSnDC7PKTrZvQ2itRZmC9BmMKmdV5nx0JpQIEIFqXnaAm7nWN7dsLB+kvM6kdcXn2TC9vyxLScy4JNm7FwhqzwHM47HrYZj3xOIRQmZhgkK9fUKXzX3GtavLopVKe1isHTeovw9tZzwv6czt94ruljP2dHDELz+LtRHvf75yzTvzII2fCxiqCf/vWPEKYhirO30R4q3v8kYsDvJLxHDoN7WglPpsbO+qk4bYy4JU73LnTi9U5gCdfUaWn3pjidRaNRMt3JeF1O4vTUPQ2wj0sUSDd+P1UHVHyk+UAwA4z3v8/GZ+N32/jEAvXf/Jt/kz/+x//4nf/3V//qX+XP/bk/96lf1CcdXX8dURl3sxqda+n6Dd53FAhmUjMTWcR7uD3+tFCRP53nYTEcBWmRFUGMzotxMTwZIitRyxPc9gq9vKJcNazWPae7gge+4LEuWdsuMJycRSoRgnlsNxGJd3jXIJwdL0BFmEyaXuPqDFTgh0qzRboWFSezWRbE6iRGT3mzUha32vv3F07ReWx3EYWyZbv9kBd2ywuz5cN+x6HK+X5W8TCb86Yveed8wRvbnneKDcWBJZtLVKVj4nSccHdmqBzK1SoIf0lskBKhWoQcudQA+g73sbMgpSBTjkI7FgZWIjCJtbV7mA9j6uBGNxuUbVFdi+hnOMM+5qNPLGpHrgWZsp9KoE4uSuf2wzNeNryUQ7J7aqt0XpDqK/4jHNRqeUJ1EnAnOZJt+j6jwDC2fsWQhChSicRVzEJF9qZAvW0sl1vINxusa9D5Cbv5jOO5ZBED4jqz/wan4nQXt2/XQba15NuPZ+t+3CiEGpA8CyRzZalyExivlSObg15k6OXBKE4fHCMPjpHV/O7zNQpVAKJvB6a8jwiA6VZxTpCaqk10F8E+B3I6aQPxkWiPaSK9MYH53PXXtO0Fxlwz83AcAxEf6BkPZUEOXHnBI2f4HXPNu/UlL7ylmn+Ow+WXmS++RD7/PN3p25gix2YKLwU2i211UiDiuSUs5HWP6k3A4LR54INKjej395ewuzCRFfE6oxcRTzKn66952rzg/7X5gPuP3+F/cwlf/ep3Wf78W+jTewGpoC6RqkVKh5TQtD00cSE9Eak7AZ0PwuuRyumxfK+7pqmfstEzsmzJ7MkCq9+hLjIudWDS5srT9I7KyMG98pMeBzMVXNzWU/UhbLCzni66qFXu6eNCyRYleXlKUZySZ49ohOKZqVk3x6/0t0RWILMwkZ4KiCPj97YLUKBQuiTPlpSzt2lP3yK/57l/BKtS0FnP+blAvIhoj/qCfhKMmNzTwQna4V3wzWhAiY9ZVLziKA4V+SxHZBqhJLKqBnFaZPkoSGflIDSn7bE3YnHPWxPOb2cGsRoY+NO2NnRtCJmqvRtaV9PSZx/xoYePwz00umGdC8uQTM/J8hPa5ZI8hSNmAaGUh1UJXQwVts6T2+SgDo9O+cGlOR0jK95w0x19kzs9CjqffAzdN8k1nY6niTgtk5AnBdeu4zv9lgdiyc+pnHfLQ/5+c84GeN8IllpSKsexUZyLgJXYYcbjlLGwetMRJoRCqRxUCVqgdRCnF0Xcnjps04SVSsM6T92HAlHdj0L1toRdMwrVbSXZuHsU8wOy7Rvku2dUu0eUu/ep6w/Z1o/p2guuXU1lO1Yqp4oItBNdsnE9F6bl8vp77HaPmc8fcnJMwCnJcjhWpCqHfZWuoWm4W/sxcpMnnOkgttpbwrRiFOKUELFYvy9M32RL50KwiGzpHDHwR+ex6F/o4BarCst8aUKwXukRrylETcgcredk2SII1DrHKYl0HmcFvhf41MrkPKKPaI+6Rtc7RHuN6y6x/VUUp3fDXM/Yeg+HMliww5GdXkDcL0HodRAE1XgQTrnKaQyIjywg0XzCp9rwPasVWQwxF0YhbDuaC5wBoRGqxDuDlCVKFjjZTUwjanidU+70R5/DYtKt5Qfxc89BfVfZRxFCZjtH2yfGs9gXtO9wUE/deKmAFa6VfWAnOzu4cdt4De3xGAFeiNApJjKULuM8SE/mP6Nb2vSbO453uC1spa0QP97hoLzb5hLe34C7SMJ07OpITvAkVDs/KaATRenUmSTSdtsPl1TAQghyIvJDKDbCsInb5aa7eS71+PtxRwR3s6O1QUjeiJ7eO2YyZE4UQgdGdhTZ0nPBKLQPaMeErcLTu+Ca7r3jKq5DAwf89c6X0jGjhEAQ0ES9qWnbF/S7R8zPP8/l+Yr3Dh2r1yhQp6DsPCKgUuFXZh6XCawOmEyZzchmD5nZhrx4l7axXLkOaQUrlXOiS9p+x9X6O+T5IavilM3u97Nc+H3UR7zvdBFNBEGkDrOBsK6qMlhWcL30PDnWuGdvUW0eotSMa7Pj3DY8czOuO81xKykqw2xuONt1PNjmzKSmidixNKbitBRTaXcMvgyvQEwCn8fuzpuC9f4Ixfn979wco6C8L5Gnzp7935pETk/ewauK0xMEyB7OZ989PRSlJmiPJFInoTaTckBfDGK1YHBPj0Wm0T09aEMT9/RUnG6NGljwfXRMdxNhOmkfefoYxeg8Pb8KorRW7lbuVsJ6jJ/72CiY/j98X/nkng5DiWnn237nyGfjE4yX3UQ+Gz/R8YkF6j/xJ/4E/9q/9q/xH/wH/wFZFlxfz58/58/8mT/D3/pbf+sfk0C9jYvmeJcfOG9h4tfHgCfhQyV6ITOWKot4Dz9cgEJ78cifFnkRXdTRPf0ScToNOV8ilyeoozX5xRXVecdx2fFgW3KiSp7J4KJOXKlSanLb00YHszE11mxRNghnPq7DvYs32UzjdT5wqL0zCKEnbYPReRTDFIUskdkiLPRUgdc5tiiDOApI5xDWIrsmTK7bK2x/Sd++oMi/R9ud03ZXdN2aD+2O503L437H+7ri/WzOl/yM4lHF0WHHwYmhsB69yBApScK6QaQWVTcEVMmqGlihQnVA4FKHC7LD2zHgJe5QNA7nJJl0lNKxcAFFcm37AfNhbYNTZRCrzRbVb5H9AbL32F5iB4HaDyzqjfLkOojUnwYTMLoo/eCmhLHd8k5ObgxHSmzjLs4OXsafTkMuj8mOZiy1Jbej0w1GkTpNA4aaq5AolYfjRUqQIZAoU/vvd72zXK0FebPFEvjT7VHGqlKUuRxumjdF+OQO7KJDvW8Es12LrNcfv/E+ZswG9rSkEoJCO6rCUswSZkajlgvUcjWI02p5gpyvPmIjhs6H8PkWkZf4ehMcmS4uJWKRILTDJrd0cB9IxLCIS2iANAEUyJeiPcbFWSqcreM5doW1WxZIjnXBg3zGQz3nTGashOSZ97znWn6nveI77ZpOzzhafpnV8qepDn4aDj5He7Bid1SFzotCIDM/mibjv96B7QVNlqNbjW4Dk1xJiezUrftyeB8KH0Uja7sY8JWTZwdoVdD1G/7a1ff5dn/C/+4bx3z9xYe88Yc26PtvhPM9u0KoHWCZbWLhpYl/IIrUtfcgHBZBhedQFhyrnKe2Zrv9EK0qpCyYZzOuiodspCTPHZmCq50jU6+nC+JHHfNSTdzTjrrz5GoUIW1cKJkiJysOyPITMr1AqpJL0/K8f/VbsVRiaEkE9rj9N4dAIqUm0xWz6k306qe5enPOW6eW43k4Z59dgzkXzNc79HaNS2iP6FCcip9JKFU+ODX0a5r8ynmJOpgNrGhZVvH+qyd4nvFzIDhWbzDlgdAO3jWxCNXEe3YMILYWV9d0a0vTFDROUBNasdO5LNh3T8O+SA0MhV3vHVJmIVypus/1smA188wLWBSCKhNU+Vg8UcJjXRCp627EfIgktN50UQ94j+S0HdEed4nT0w4y9wpi9dQ5NSzw4mPaCqsmCx4lBJaMnet517b8oi74peKY97sNz5zlt+2Oh/2M46JnrhwrrziXmp1UQSQREhN5u9PF01AeEHII85VZKkQRt6WgyiRVHgQJKfZF6qZ3WAd15+hsQABtWs+mhU0bhOpt6blC0VeLIUgxy1eBD1+9Qbl7n139mF39hOf1Y2pnOFIFh7rgQGWsVMGpLrm2PU9Nzfn62wAs5p8jz4/QejmgYNKcbNjeIiA+pFDYO7r92ONNJ7EuSI7Kj4txPeFoHqj8TmE6BUBV8ecWyEGYXkwc00mYDkHDjtnSIXOByiTmpmLxI44iPyDPVmTZMjqoJ9gNM5FBHMjeo4xDtz16ex2c0xNxuu/XMRQ9FHetbcbwyMTp3mshv4HrERInGIRVojtVR0ds+JFwX7SZwmaxm1FBCt5wvUdkApepgP1oJbIjFCGmuA9HKFR4E5BZrg2GEdffwnzchfW4KzBx6kdMYqT1YMWYCJDY0kNQogRi4KxWjt6O2z85r7vosDXe7QUwDm/F+wFReFOUTmkEIbdbQpwjZHoeAyKjW3oowEwQHrHz0d8hmd0cN4Xp9L2bLtCbY8B6TEMR4y8PwYFeYNN1Lv2MkKhUCGBEmowfGVzUKXAzBM8loVpQScXG2yFoLhUVMqGGyZZEIF0fnOhYjPe0if3b22DSkCqEhSfGbOqgnL7PGHKZHPA3iw6dD0F3jXfYyAb+cQyFQHmwJMzHmrb+gMXlE/z5kmeH8Gju+H3NpzMG3fm35Zj/AwRTvAosea9zRBa62BazN/HO0LbnXNmQm3Sgck5VwYfdc67W36IozmivfobNwnJQpecXjKgPgYoidWdH7Ee63y8Kz2oBm6PRRZ1lB9R2y7lpeJK1PLdzTmvNfGnJZ57VouNhnbNUORvX3ypATcXpaZfAzWM/FR9ctCklwfqmI5rJ5wENOX7v9hgF4lcfr0Ocvv2Mdz2SOJsKalMG9V4nGGMnwse5p4dX5PbF6cZKGif3hOlpF0sVn7OK/PhSWUodwhaz2LU/Fb/T35iOUZgeRWvTB8Oekh4zuWWoeM0asJ8T08Fn47Pxu3H8SA7qf/Ff/Bf57//7/57//D//z/ne977Hn/2zf5avfOUrfOMb3/gxvMSPH9buQmgTPi4s5SQw0NL11zjboIFKhoC9hVCUkTEUxOmRPy2z1D6sRn6t1EMw4suGnK9QB9vgoj56QXnxjIPLntMm574reKwLNjEYw3hHFjmite+xpsbaIFBjWlRvgBylg+RlCoEpsgnmo0Rpi3Aa6UZRWurFwJ615Zy2mtHNCvq5wheC4sDt4SaMCWE0to0tlbWj2DScPvk2/e4R7YTTWDcveGY2XLZXPO53PM7nVJzxhSbnjW3N0WnPrO/IlxpZ5mGDqmApdpsNVFUQp1ObNuxzqRuPcx7bj25Pb8OF2SDR2pPZ4PhZCc1CZlyJlmaC+dCux9rAoXb9BtnVKONwvdhzUbcd1DowLTdtQAWsd4blTH9ikbqPotTLROqPG2nSALdvUHcNkZWo1YpFfk7ejqfw4E5LLa3DZGPSqq7KyCS+m0H9/Nqw2wjy7iq8tvIYfQDL6m5eXBCmx/fc2+CedjXk11f09dNX2wgfMcrIzFwgWQiY5Sa0H1eefKnQy2pfnD66j1q+oiM1D/ge32yDoOUs9KFAlIQwZ9mb8EOYUplYWBhQH9E9ndzqN9EeY0trG9n4PU3zgq5b433DAZITXfJGNuOBnkVxWmGB3zZbvtVe8n6/QxennB1+leXqq2Srn6Y7vE+znGEqiVxCloewsDD5Gd+rc9EBYDyNEvSZxMkMJ0euoXIWnEH48JiKK9a1SKnwXiOERcnwW3m2oClO+I36nO+0a979wRv8qfOO3/f1b4fwxCxHqHOE2lBtQpMhcEOkFuCDUwmhsNJzqis67zg3l2y2P4zt4QuWOudKnXGpA6bmqnYxnMaR69cXePpJRhDHJU0vqTpPlQvq3g8CdSfBZQwual2cBMyHqrjqLnj2ik5FHx16aUk3XZTcnOanI1WpkrI4oVq8w+bBm6zuW944CoLf+c7z4QvI1z3ZdgPNC/r2BX0MRgwiqRuO1+RyU4TOhvw1TX7lfB5yCrJQGL7Jjt8LOb0hTA/v15rInTaBt57O464BF4XlrsXVDd1OUHea2osgHMQW6HDJFrHIdFOknojHzg75D1LmZNkSXx7j5pKqtCzKEe8RrrFiaAeufHDZV7ln20Y3jGZE8Tgz7GcYXdQje3oUo29+/Sqi9GSLhdfPKHwOjiOh9tARwa0bChoKMRTqn9uW92TGQyH5heqUv7n5gH9Un/MlVXFgBXNlWdkw31oLjRZmaMHfR1HdOB5EYObLiEJJ23JRBNZoCuvNtLjlou4nhaImhSG3nk3rglBdATh2paCtcvqZpqgqivWcfHuIzlYUxRlVecYL79i057SmpvEW40uOdMGhKjhWJfezGc9MzT9cf5td/ZTF/CGz6gF5foRSs+i6D2gHIRTW7uK+bIdja4p48NE9msRqj91zTWdxX2RCRkdlMFzMlCYj8L6TMJ0cYgnpsRCChQj5DXNlmWWWqjCUVRCmsyKEk+bLgGwTuUb1r4dRm2cH5HnYtio7xKT5n/MIKxCxkq+MQ/UW3XYB69Gc47rLUDCL4rQxdciUsTXWNtGFO6I9pjksiYU6yDhi7C8z3kX2fBAU1eCYDSM4qMWNgm+clxbgeokzHtkXw/1Tmh5hiM6SxCzRMTumGI8HoW5gPl4h4FSk+2T4nvN+T0gexenb2z+IICGMresc7aQ1PPzu6Ly9GZwnhRiETuMd166nd5Y2cmmTMB2umRohs+CaVvkQJLqPrgmYKO/6iK9xiNTpNxnTVzEVpve+vvFIr/eu4bwfGNrph13MbRiebPijbu/rTMRwSeEH1MeUK5vE6TRG16SMHQuSKy9Ct463dBGlktydM4IzWguDdII2IlIMPv5O2O6BoRvCT0MYqtxzS6Z9CQyFhtD5N7KDa+9wQgZ824+J8qliN5ch5quYmqZ9Qbn5AQdPzrg6POLDhePpVc8bUlDmn86u2BlHb8eA6petvbyUeBXwUfP521jXY21Ha65Y2x5JCE088paLzfsU+W9x+MGW9UHFchHCDykYOnisGFFToXtndNBWeVhfrSrP7tDz6ExhX7xNWRzRd1dc2panpuaZqnir1Ry1HVnhqRaWs+ue47bk0raxuzbIwlMMx5A39BLEm2LsGvA+uOVdtNB4uOWwhihUx29Oz7+Pm53u/exHCtz8iOL01D3tb2B9oigd5xXpYzbMW8Qe2iOFIapYnhk+CiILOj4mLubAnRZ74vTWBnG6JorTKYg0urEXwjNX+0VgrR154aLe5GPH+fRvcIdBL24p6XFOIBVIFxEgd0ygkgD/mTj96cZrag79bHyK8YnvTn/kj/wRvvGNb/Cv/Cv/Cl/72tdwzvHv//v/Pv/Gv/FvfGLWza/+6q/yq7/6q3z/+98H4Gd+5mf4t//tf5t/5p/5Zz7R81izixNHgUShI97Cuh5jtjT1U6TrOFQ5b+RzHuo5D2XOLOsoMhsvGB5VClSlkVWFLKuwSI6Pj3RjpiE1+t7bYfEc24pPuhd0Xc32ck6dr2id5Wm/49r1HMiMpcpp+pqmX7NrnpHnK4r2TVT3BqKfkedA7qmBvleofo6wFiUVst+GVsIYZGerOduDBd0yQx3CwdJxsoCDChalC/zGG47ZzgZhsbPBUdwZaPqSy/XP0u5+jr4RqDWcXTaU589xV99is/4m15vv8VvbD3j/6ru8kc/5fHvAly6WfEnD26sdR6c75mcCvSpQ8wrbtLj+GrHZIqsybOP4cF2HmtfopkWeN7jeh7BAO16wR0Y1LIzh1EnezObBkdXv2NgtXacmbdlhUZhLTbE5wcsZvZL0CBoJ6faZROXOWHIt2LaOeSGZl+pjJ029GQPawnMkkTYukGOLf0ql91YE1/pHhCiGm1YojHzUyN74PCfHH7LaFDyZLFrSpCV1y4JHCIFWBVrNEHqBKXJU4SlzbrkXfutDS/6ewdRP0PkJ1w/f5AtvO06W+hY+YSrEdzYgUy7WsD6XLH94hX3xD7m+/Ecf+T5eZZyonAci40wKTrKew8OO+ZGjPM3ITo/I7r+JOnkTffIm6vDeJ3tyGV2Z1owsaqkCCqVv8V2HMTIwaqMTRQlHCtnp4wLXCIKPXSikzNHZbC8EKGyvHu+bgbnYd9e4/pIDoTjV84H1fiwyFnEB9J5r+V6/4e/UFywWn+fth3+Q2dHX6I8fUh8esD5UZHPHbOaZzxxnq5HVOt1f6Xisu9D6/uzcs9sJukLQbTK8kuQyufAJAnXs0Ait6e3w+U3RTsqcojhEZ3OuXc9fr6/5L9drjv5r+BMHBf/HBy2f/6Nzyi++jcwfMbvomF9aZmvDotZsmoytUaytpEZQe08uMn6qWLHSOY+6LU+aZzztLtjVH7Dafo/VxS9gH/wMT99Y8c3ccdUYNq1j21pODzIOZv/4eNQwLdqEoERTQusEppd08zlV/Saz3efZ1Y+57J7z2yYUNj/uPmNffEB77QY317StMzEGw+dBOMjzQw5XX+H0wf+W85/9Gvd+2vGVN4M4/d6557vvC/rHcPj0Cf76PZr6EW37LOIrUiElIqj6Lc635B7mQgX0wWtyYOUPPke2WoZ7bVagju4FnMfHdC2Nb94MWA/ft3il8UqPjeLW4pot5vkz6g93XDzPeNFmPPOOCxdCvVpng9AidEDzCBnPZxXzHCIiyRtMf4mxNUJIivyYav4OmzfeYHVmOVvB2UJyPFcsK8W8DOdVbzzzwrNtLUqEvdUZTxsD/aau0v1wPTtxsps9frGLIs+IiNjPobhzeDcs/CTEUD01hNEm3n9CQySRUxHdYd5jkVRKsnGWb5kttar4X2cL5su3+evX7/HfXL9Px1t8Lfe8mRlsn2O1H7BIvXdofNwO6T2DSSWCyT4v8uBGX1Xj9vykrjvrPLvGsWks29bx3pHhqvZcbC1XG9jtMtabU/z6lHL9BYr1mnJ7TlW9RdN8SNM8Y9M843n9DNmuOY7htQ+zOV8rjvkDxREf2Ibvb9/j/cvfxqqKsrrHrDwLwqyaofScTB8gxG4Igw77awy4ds4ER6k3gEVHcXpkTId9VUkd95UOgdEiucH2hekU3rYQgjczwyyzzMuesnIBj1V4dMkQSiqrDFUWEc+k0K9QMH+VsVh8iWr2Jro4gSJc43SbjBgErF3fh26+fgf9Bttfsqs/CBis6Jg2tomidD+4cF3idU9dhgN3Wg3ns5A6bGcRZkmdd6xdj1UFVXSoMules5nGFBJmkJWOsmQo+qY5nTGCXZHRbTKyuiLfteh6hzQ9OBXunTHjQWeHe4ie4aPr8RNDjfPyTtkmSe0unoPJjdsP7OEoLgsR2dJxG8RTRWXBrWd6S28DO3V4rwS2dOvs0BkGo9ib8jcaZ7i2PR0+OHBFhhQanTrEpB7m4N67MMfx/RggGmIw9wINPXta+UeOO7yYe0LVy54mYT3wLiI8/C0sgvTReRixHz2OTIb2fYBeSDpC8afD7Z1juQdid8LIgg3Pu4j744HIYyCvZ4PjsW3pvaMhBLFlXlJJzTJyqFsXghOvbU+PpxPQxjjv6RriJpf75hYbvLZCIWK3T6YrtJ5Hae7Tz9FvCmFaSAohcd5hXRuQSYTzcekNq/4XeW9zj78973n7yvJgpX7kedv1znKxNZxvLFc17Npgkuk6cL1AGoeI2SvDUCXV/B2UmlEWx1xvvs92+yFPbMPCGQ5URu4dz1/8fZbf+m9ZbP9JftDdgy84cu2oMhVNEeF9d4XHOsumjWipaNypMlhVglx5lHS8L085fv8X8N5yff0e326ugjOeQ8oXJW8WNbOl43Nyx8/slvTe4tprrl2PmTDhp+J0Cji8ec3YO77FPtIjnQ+DMJ26CGDvnPDTn59+PRW0J4/0zduNN9Mzdor+cLe+dxsVckcgKvvdRJr9cOBMyKHr4CbaIwUE50JQkYISg3s6F54iupx1zM5JwnHbK67ajLVV1J4gTMdrbhK5KyFYCc9SWx6e7KgWjnLhIgJVIcsCmWdDpgqAq2u8dbimw3UO0zhc5+hbsSdWOwdKeehHxMd0TAuTqbtCx3nbZ+Oz8btx/Ejl029961v83b/7d3nrrbf44IMPePfdd9ntdszn80/0PG+99RZ/6S/9JX7qp34K7z3/yX/yn/DP/XP/HP/gH/wDfuZnfuaVnye0QE4aXSaM167f4FzLXAQkxIHMQ9AagT8tJRHt4ZFKIjIdQ/2Cs1LeCFh7lSHnq4D6WD4jX16yODAcbSzHXrPSOVexKtpHF3UpFTvf42xL319j+iuytkG41GYCWc4Q+JBlGdLMxsu90PQHhzTLGf2hYn7kODr0HM7heB5bjWNr7NQxuxfsZffZjUpCVUZu40zQLEvqw7eoLk9Znv80B+vvcn31D/ngw19j167Z2J51sWDjD9ieL/hC23DWNhz0DcUpqLLAdT3eOVwdrJMJ9SHzHEdciC0MtrYIBa7zCBeYeho/uKmLzFJ1jqXMWMiMUiga5yLmo41s3xpj1mizQrUNus2xWYbTEmM8xog91IeSgUc9bpsgKCSsxV0urenHlOA8fh4eaSETDsi4u+x0UT4uiIZoPjnevD7qGMuKkEB/s3p+q5oeuwqkCmKPzRQyMnynbtPrneXFNRTrNc4bZH5If6g4PbDD+x852xPnziDyQ9MI2EB2fcm2+YC2ff6R7+NVxlwoFkIwjy3JAesh0cs56ugEdXgPfXjvk4vTcYgoZgmlg79A6REXYC3GhNCLhAAI86cR65HcQwgZ3EMyOKenmKFpGFZv6sB8NzuWQnGqS06ykmNVciwyqhjE88z1vNdv+G5zxXL5ZU5Pfony5Gu0x2+wPZkhD+Fg4ThYeFZzWM3gwVKSqzBxHpLGXTq/GVyEuxmhW8GE7gzbS5ySgU8+CU2cDj9tXY5j2qouhcQLhVQ5uTjkymz5LyP640//tzP+4B/+PtWX3kRkFwgZkB8D0SC6qZULoSv4wJm3qqTPgnPrqWnYbj+MiJEihGbKr/L8wTyGjLih7VLK28WXn8Qoc0nWxGutCkGOOobhieiitpnC5SU6X5HpOQLNC9t8rEDt+wa7vsA0Ijo2GEKtpk66qaO/KA45OPgp2jd+H+UDz8OTcD94tvF88Ay654Jy0yGac/ruBaZf74UNe+9wrhtcitJ7NCE/oZKa8jWB2uRsiTo4HorBr1QQ3nsCPYqazuyHsKXvNTvstqa9hrrVbG0I2U33YhMZ1CFoVu6JvOm5k7M5ifdCKLSukMUp/VxxVDoWEe9RRrxHKnTmGrLI77cuOK6q3FPkyWW/f90e+dN2+Pom8uOmOO29GxyZe47viTs3fmdYMiZchI4LuHExJ6hIIrUYWtttYrZ6ATJcR859z8or3pEF0sMz2/KP+jVviyPu5T0r4VkJzcVksRgwH+N7FvjoHt63vynBcE2r8k8uTkO4JhzMFAczRdOF5z/fWhaFY17AZelZ555NLqizHJsdUWYZRb9BqhKt52i9INMVu91Tnpor6nYdihr5AT+r5xzrBUcytGZ/t12z3v4Qa2rKckuRH1NC6HLzFqWCYHcb3+CCWODd4JxOrsmpOD1l0t5CsCSX2EScXgjPIjdUhWE2D9kNuvToUqBLicwlssxDR1ucl4ksR9jXc37rbDnMP3AW1TbjfzobEHOmxZsN1mwwEXlV109CR5zrxzDECSIiHdd7I5kUhm6maVflZI43OIYhR1AIFaSQlDEhBT4LZug8D4XGIg+OfhjniMZAh6BHIWyGcMFcIE1sm3eEoGFVoPQc51qUyicu+klXEfGaS7ifvqwjIjGoXQw2HN4TtzMI0pAyTEHzwpE1jqlXRcHgtk33j+met/gBEZHEaSmyPbd02tap2GIjdu8uYRqiqCVG2WkqL4/FhlEIexVxesrlHbaV93c6CacZIunJknAdeNRB1bNCkPlYABDhkSPDjvVhfWKjCK2iIJTHF51C0dK2TudkhQJVsPGGjZM03qJw9GnvyXBeZy5cJ1W6RxFQLoNMJwRJghJC3D72YydQKtBImVHkh2hVovXsbvTgjzjkjc91XJUb4hzC1AEbWX/A/OqExZMZP3w2A9xkLepeuYvVOs/1zrKubRSnHdsWdg10ncB2oStY9R5lLNL0ocMhdScJjdIL8vyIqtxhbEtTP6X2BuVCVtVSai6vfot75T2KH/5Rzg81pwewqjwLKfcwU4vSDYGjnQlmLyWiYSQXHM4962OHPPhpqt0j2vaSTfOU533DY93zos04qVvKKGo+FJL3VMlz1UQW9e0ze8Bz3fj65v9Pf2bgrMf/d5GrDuEenHTPqdlBCbEnVqfnvYke+WindTxuJ3/vFi7kpeL0OG5y51M3lp6wl/dyWdhHe4yuajEUk6buaWBgQkMsRNrgnN5aeUucJj5HEqdPcsOy6ljdMxQHEr2qUPPZ2D0e0bHD89c7fN/h6hpXNwjVYmI2l+0F9Om1BKE8dcNMx13X/HQd+8xF/aOMsVvqs/GPb3xigfov/aW/xL/z7/w7/Mv/8r/MX/7Lf5lvf/vb/Av/wr/Az//8z/Of/Wf/GV//+tdf+bn+1J/6U3tf/8W/+Bf51V/9VX7jN37jEwnU44RFBC5lXKBZ24zs6ShmzqVmISSVgEw7tHZjoEIukXkWWMlZaC8ObcYf7Wa99XrKeeTgHqOXTygXO1ZFz7EpOZQFT2VNbdoB81EKhXJmCEyzZkve79BtcA1rHSbHXZFSiYvAvYt/z+mM3eEcdyQ4OHScHntOD+B4JlhVkkUpQ8KxllG4EjfE1OD6rTs3iNRKODbFJGCo9OxKwa6qaOcPmV0esqoe4FzH+eVv817zmE3ds8sNm3xJvS3Z9Yo32pqjrmbxxQJZlfiuw/UGu92BteNiSKmAAOl6oEMoh5UuhieGEoTKQoiiNqHKuZKaAxXCJLbO0PhuYFFbW2PMFtNdkXcNui0xhcYZj+0ERnu6jmHfB4Hak27Laft0JmADpiL1VKS9KU730ZEeHJSjSO1jFVRM7yTRDZduskqElGih1Me6BmU5DwL1qxyPpNA+HVjkUcC7KbxfbA0Xl4Jyex54ytUR8yPHg+Xdi9RRiA8TsrqDthGU6w63fcRu94i6PX+FV/jRIwTOwFyHluR8RnDmr1booyBMq6MfTZy+ORLmQ8DgoO5tCLJMR8fUPWBFkHoEMgQNxmDE6UjCkXUB5RMCSWuUtxxlM06ykjNVcSwzciGiON3xfrcJQoeQfOn0j1CcfI3dvTdoDnP0sefwMKSEH8/Hc/30QA+MPBj3T9MHLnIQcD0XW0+bQ5d7bMcQAHXXmArTN9uP3Y2vkxiA1Gg9xwrF367P+aDb8st/63P8mTdr9PFRCMJTW4RK4rZHthl0GlxozauRrND0qqTXQUB8bhu2uw9DAUBq5qrkxbOf5/nQFREW++mw/kmL1Fl01QwPFba51h6pwUqJ1TKEJWaHZNkBUhWsbYfbXn3kc9uLp9irK/pW0HlPF69VU7HCTY5TgeJg8QWKk69x/vkZX7jnOFsE9MijF3D1TFGsO7K6xibutN3h3OjucynEzbY430e0x+i4zT/qwPkEQx0cI5cnyPnyE99vp0MojZdjsSkN17WBPX3VUW8Vu15RAxtvaLyJi38/FJpuClswitTOhXkFTPAe1RFiAbMyFYTlIE6na2zgYkpcXIgvCsGmDYJXcsN4GWTGMRTRDGiPNPaKBzfE6fT9YXtEZ+Z0eD+2yabF3MhqVNEVKKlQ0W2UWmIBROTVxjZYBFbA1hue+Z6HMudYZjz3Pb/TXPFFvWBpFXPlOPaKc5mxVT2tt5HlPzkGRFjiJvFRODsQF1TMS3gd+J4yl7x1kjMvDIutpcrsUCjIc89aQ601Vi9Z1W+QSR2EZVmgVI5SFbv6Cdv2nO9117Te8qYqeSA1X1EFi+KImdK8W1/yvH0aHb493hvm87dRqojiZOJUj47T8IZDmsGAXSG09E+d08kZlt/Rh5oW4EMYooBlvHcmcTqfhY5BXakQCp7pwdklU0B4XqB89qm3dxrem4BdcwZhm1A0imHd1mxxrsHG+a+xIQSx669wrtsTphmO+f2ii4gljkGinAh0L+vXTR1QCqITceIeVCGrQ+eOPPdUZTi/czW29XcmFGh2Gmop6AjbK83LhFNBgDcEzIcNDOpQxC6QMjjBb2M+3CAQDd8XyTc4jjQXSeLpy0YIgPcoBSoTIb+hcyjzatdv54NAHf4Ot1AeaftOHe2BCd7hca8gTO+f1+FK4IfP7nxPt37rjtdN6iYcRbUkWCdxehDZRh1o0NL6WERrvCETMgrSKaAyYj4EWC+xQqJ8MI0k5EdyVieRWuGjgC1QKDZINspFodrSeIn0BuUF1oeiocXTRTd1F4sEFocVDuElPnbvhf2hx/tWDKRMwZSpmy/PVmhdoWSBdS8rZ3y6MYiGPuW3hE6srr+mbp6gt0vK80Munv80UrpoojDUnWPbOpYx8+YmwglCUajpxm6Yq9pyVXuuas/1Lphk2kbgWoFqHbo16LZF9j3CdGBbsNEkpQq0XlIULcY2ONvRdi+oXciZKYXi6fo7VOUZh48e8OLkqzxdOo5nHluF4yjX4dhfVQrr7LAeSp2lyniqTLCq4OQQnp28w+z6W9TNY9rughem4YlteS5z3txoFoeWbA5vFD0PfMEzXXBtO3rhXnIm3LH9P0qUHLpt98Xq9H+pm0H66QkxsqvTuXNTJn0lcfrmufayFzessfa/vilMh/Dm1Dk8CtOjAD2G3yZM2VSYZvIR9kVqSAazgPborWATkR4JDQUM99kkTh8ftBwcGmb3MvRyjlwskPODiK0rgq4UEXXeGmS5xTXbPfQptBCLeiCwfXx9cq/JZ29YRszIZ+Oz8XthfGKB+ld+5Vf4G3/jbwwYjp/92Z/lb//tv82/9W/9W/wT/8Q/Qdu2P9ILsdbyX/1X/xXb7fYTidwAY6FD7LmnjW2xtqYkVEMPVMYqCtR55PdIFVvf8tDiSHKOKBUuJNknc08Pr2m+Qs6XqNWS4mDHvDIc7zxHKgjlF7SR3+ZDOxSCxnX0Zkffr6naK1RvAU2mw4VS5562kJgiQ0YXrpch/MEuJQeHjuNDz/2hxVgyLySL8uU3++QCDu3HjrpzLGKvSJUHh9cmg20eRJaddjSFYFMsKIsvcNj9EYrilIvLf8jV9ff5reaCjeupi0NqX9E/n2NMTXG0ITtahCpibnF1g21apLXxeylAMYgTQhmCqyRILVMkh+4DO3xFxoHMWKiMa9vR+pFFrWxN32/Isi2i3yHNHN2awUXdR3HaRBd1IwP+IAwXg6ygt4LO+D3RL2y30UVsncf5G450M3VQi7junFSbXQgcc96OqdzCI5QfWasfdXyVc3SZqr+3JyMyLteIToq0IArBPyHtOr+xNnl8ZdheSIruEqkKuoMVR4ees4OXvxbrAzqis9D0YK7h4PKSdvceTfuCvlt/5Pt4lTGP7ulCW/LcRe70AerwLDKn770aBuBlIxZIbrkuAdcbjJWDU3WvvjCI02rCltTjYs2PwpJ1JojTtsbZBuUtB0JxL6s4USUrGYKtau+48mZPnF4tv0x+9ofY3LtPe5IzPwkdEicHcHYgOFtIVjPFvJAcLvStQkrTuViYSsUXR5l5mhya8eXuD29iAeW2OH0XB/euIeJxp4FHtuH/evUd/sh/9yZf+kNrsvunFEoh1DVS2v12tShSL+Ji3MoMq6u4MIQXZstm8/6AGlk8/jLXzMKulKNIHb7+9HzDTzpyLVHShkR5ORbBZNQXvArt42QLMn2AVhXXZo29/Gheu718illvaWpFjR/bvP2+OB1crqBUyfLwD3D5+bc5vud48zC8nsfn8PSpJLu0ZG2Prnd03RXG7Cb7NnGPu5E97Xp0FMuq6OAs/WtyUM8PAjf+05zHk5E6INLnvtlh1td017DbKrZWsfGBx5nc08bH9mmhbjuo9/jTISARQMkMna3o5wdkZQhHrPLgnk733OlQUjArJdYpmj5kH+QquOy9SteNu845c0OEvnEOuhvdDS8D6PlUYgtCSXBQj+2vpVCUIgrTE5EzMVWBKMqEEKyA/VBYPBtv2XjHT5Ur1rvnXNiO3+queFue8qa2rAQcS83aZeyEoRCKnRhft/QhCNC7cF/EtqS3Fe6/r0eghiBSv3Gcsygti9KwKKJQnUGmPVfasc0E3XoV3rvQ5DCgw5TM2KmCpnnOe/2W75ot6DkPpeYdqamyFQrJN5sLnvbnuLj/ZrOH4b3KAiG60IEy3T3RwetxEb8yti4nBMu0bTkNG4Pa0gI8FRUqGDqPEtZDlxFnl8tb4rSYiNOynCPc6zkfTb9GEJFRUkf3c+wIcG0Itra76LqtB4RNb3YDv/imMB22174FNDlHw+fROTopNjEUAVJHVLh+Jq73nuAiBSLz0SCSik8Bn5VywDsTOlmyiP7YEkRq6fyALQEghptL1cTjp8CIOiKEsnAOTzAfN531Yu98jr0GexkYIz/axiLSXUNKgrGhcOjaxSITQ3fENGdjOhLHuI8dGncV46d8aec6AlzVofw+ymMUpmO31M35qx/FqFcJZPsotMfee4hYA8Ud4vTk83Q8OMbQ2N7FbhE8WbwSpqJACksMeBXIfTj/rAidTrlPgjR7QvUKQocDinoQqi0br2miIN14g/MZvVDk3tJFNnXrQ5BiTxCrPRZnAekGpA3eTVBsKbh77Opz3u5lHXyacZeDdxAQvcdig3nI1HT9mqZ5jLpekH3wDi/IcC6F2lqOW8/VzkZjldxbe3VmNFOFANyQL3BVw7qG3U5Q7wRmK5C1I6/7yLNvkV09iNPeNiRGvJAarQPqI117GrNGeYsUAm82XFy9S1GcsXrvDZ6eHHJy4FlV4X6vZJjz7SEPTehU7Ez6/8CjPpp7vnv/kKMXP025fY+mOeeqfc6TfsdjPePzdcZR3ZEfeI4PWh62C96XBS9kMxQnPu5Yn4rTd4aG3qkqx0+mjPuJUD24rSdn5F2vY1pOGj+/KWa/rOg0KQ7u/f9EnE4vc/J8YpK9NOJPxK3tkNzTMHYZjeK1v4XCSGiN3ibutLolTifn9ELAYWY4nEdx+tijj5YhG2mxRM5XA75uur731uCUHr/nLN5afG+QncMpQk6DE0j8nWxq50UIeOW2SJ22x2fjEw7x8in0a/wTn42PGZ949vmbv/mbnJ6e7n0vyzL+8l/+y/zJP/knP/EL+M3f/E2+/vWv0zQNi8WCv/7X/zpf/epX7/zZtm33BPD1OohfgihjxokThFAOaxq878OC6wbeo5QuJFrrhPkQoGSYoEe8h4gXjh9lyPkKtTxBLQ/Jl8+ZzQ2Ha8Oxy1jpnPe7McRCCkEhJLsYlth1lzizQbcdoJEycBi7HProola9HkKV+iqnOAit/ifROX08lxzN9cfyGpUUqFxQ5mCdZB6r0wBV5oYFdBJbMu2jUC2os4J8+1PM9AKl5iHwa/1dvt1fsrU92/KIjgX2Ysbq0RULe012FFpd1GKO3WxxvQFqhLV7IrWjiTeMUaQOiA/QmSdTjoUQrKRmpXIuZcvOWjrb7rmo+34N/QZVz9A6G1zU08DEPk4i6ujWViIJ0G7PDXlD25/qzXvi9IhNCc9jTFgTCRvDDeLixUdnnI6Lo1x4VCaQ+cdjZUReIDPudFDfrJ5LoVEyQ6oSr/PooPbDIiuNx2tHfu5xZoPUC7YnM3565Tia330OTN9z3YXgyXxtkesf0jSPadtLrK0/8n1Mx8vO77mAUgUHWDFzI9rj6N7Aqn2dQ8gIW7EG3xkaU2K9DQu4vU2bxGkZOzf0sCAGBnejc308JgPXV3kXGL664FAWLKUOXMOJOP39ds0awWr5ZU5P/jDbe/dpz/LAuD2G+0s4O5CcHah4nt8OsUwTeyklshuLKgnhoyLHTMixfU9YG1og3YgXmGIFXGJJevdS1MDeFhIhOEmpkq3r+L88rfk//c0jfvFnPmT55UPy0wOE2iCUCTij69gy1ytqo+IsQWOVx1INQuKF3XC9eQ8hFG88/T7Cvc01CyAVjkaR+nSZ/URF6kwLMhVdjFoMYStSgsx8CN6SEp8FLq3O5my7c+z6o7sN7OVTurWhaQs6JuJ0dHT5SWCnQJPnK+wbfwD9EN44geO55Hzr+OETgXvuKesO1bWI9hpj1jjXDu5pYBA/EzbJe4uOxbRCKkqh+aT+yped43K2fG3iNG4SlmgNWIPdbDBXLc0mhCNurWSDDUKAs8O2HF2XI2N9H5VhoqDWBXeamqGzFdtFxXzmWZQMQX4vu++moklAgAiqPArUkxuMdyaKeLcLQEmYdhPn9K3zDuAOV6Zn5DkKggCakBtJ9KzSA8li4DMGRiMEQa7zgk4IalKrr2LjLVfe8E624H294UPT8L12zbvZAccyp5SOlVcsZca17Ni54BAcW/CD09K6LhQAnMH3YmArJnzP6xwHMxX3hQkIkcySax8FR8/6ZIZT4XhPe3OKP5JCUjcv+GZzgS0dKlvytlA8FBKyAywOU19wbq5pGokxW7SeD2zzqfA4OqjjvkHEILSpwz08povOqTt0zz0NVNIz15YiC85plQXedBCnw01AKDmK0wlvl5VhDvwJBeqXnd91/QFdlyNjETgw1SNnPXHUXTd0Gk0LL3uC9EuE6elqMuH+BlF64lAffz9IJqnonFAqwhOEcGdwUiB1MGaUMddhVQV+f0LlhZDohMsIBeGdE3R9hnAODYNILVQZReoQaB4wHxnCdfEa8/JOpeG9RQEp3OFGYfpVRgqBV4QwzCKzZK1DCRWLTZNjaoLFcDdEcGIRfsQqgrMdzhtc2q/R/acnuIAUIj3g0KIPcn+4wK+dCFFjv9pkOzC6KIf3dwfeIz7jR4o0e5iP6R+YmD573ID7gIDWygiFuRwZCwOxoI6kE2IQqjtCCGfuU/FoFKor4akI19OFV9RCUXvHRgSxeusNioCELLzCSEcb71fdxFHde0dLg7cShEJYFeeiGivHwG4lM6zr0KoMOU3JmvmK42XnN9yBl0g8b0Lx0WMwtqHrN2TdJVn7lPnTJ2y5z4s+p+scuyaEXq8qWBQuhAynQEI3xWf4gfe8iViP7Q62a4GrQe2COJ3V9ShO99sgTnuDTx+djfP2gkwfUORHGNtS247GNShnQ8Dv7gPW63c5e/Im5gd/lMeHcLZwrGaSRexIXUZ+9hSbWXcRISl8DPkFdQ/Mk3eYX79N3Tzhurvgual5bFuedjPubxTzI8PBoeHNK8N9V/BM5WxdP8z3XmXcPDeGMf11cfN7I34DH84dEYsMU5F62oFwU++Ol8JbHOqRO333uF2Muv0+p+f9nhgd/z9dw9L7HYRpsX9/ZPh5bgnT0+G8wFhJ7wSNExHrwcCdTvfZpbKsqp6DQ0O18uRLHcTp5TFyvkSWc2S1GEK/hVJ4Gzp1iWYKZw2inCG6LhaNLaK3SAv+Due0c0GYhoT72y+4yUmx4bPxyYYQcIdf7bPxEx6feEV4U5yejj/2x/7YJ34BX/nKV/jGN77B1dUVf+2v/TX+9J/+0/zar/3anSL1f/gf/of8e//ev3fr++myJ6NA5L3D2BZjduQeKqVZqCwwi5HkIvGnQ4qqynxoOc90aG9UeoL3+NEc1BBF6vkSNS8pFxsWheG4y1jKPDCdYttcapdW1mJsQ2829O0LsnqHc7NBTMrz4HrsC0FnM5RxeCkwleRw5gKHtoJVJVlWiuXs44P+pmMUq8PvlJkj15Zcu8F9OeY4eXY4NqeHzHRGkc05ioyz9fX3+KB9RlM/Z+d7ag5542kOdMztlvwU5GKBWi1xmw2uNwjrkFOROs8GLnUSqZWNaI0e8tyxiFzLA5lzoHK2ztBiAtrF5ihbY0yN7S9R/QLVlnssaquDeNxF9EFiUde9HxbFAdUh6My4KLnppB4/T4GT4ff7KIC7SeduqIaGwA7nQmDe4F5TDpkRjrmPE2ukRqrRMfWyEfAeMrSTqgKXZfgsLLqmAvX1zvLkCqrLdZi0lSeoY3h4GFy5Lxupja2zUDfh97v6Ebv6McZscf7VJ8AvO79L6Zhljjx3FJVHrcKNXx0cIw9OXvn5Xzb2cAAx4BQIwWqdo3eSfto2n5w/cduKyJvecxNNFtjWdlH8m4jTKudIFSxlNoTuXDnDY7PjB901l8DBwRc4PvoFipOvsX2QcXQaxOmHh/BgqTg90Bwt9Mee40qGNsRee5p+nPAPrzW+NZmCZGwbhLj4MTlGnbPxY48bBAU7tF8PDs87BIXk4v+7uxdcmJb//f/8Jv/kxRVnX5HoZcVMNUjZx84JUCJja2Xg3AoJZKDi+eg9vt9xYdZcX/+Aw8v/mQo4IIjUgas4itTOw8mB/onhPpLbU8nQ/pvp0UEtZJxsJg51tiLTM7beYddXL31Ot73CXDynvYZdp6nj4tRNRGlHZIUK0HrGwfxzrN8+5K1Ty8PDgHX63lO4fiKoNh2qN6i2wXeXGLO9hZGwsbV+EEqxZEJTCDWE6GWfcAb8snP8dTqnvY3itLNBqO5b7HZHe+3YbXOuO80GqH1wqaWih439EFO0x4hhiI4Xb4ZzGUCpPLD6K0VVuiHv4eOOtTIiQKpMkKuRazsdCZ8zdU/vF4XcrfNtOvbuCtOf8X6QhhJPPJMyOqfjAxnwEARhOpOeKnVgeEHmBbkTqMhdhXDsdd7zQGZ8sVhxaTs2zvDN9pK35T0+p2FFdFHLnEZarm03FP20COFwxvUYU4NtEH3ocILXL06nkWnBvcMsMq5FmPOowLPfrKEmFEBLZ1EDFzy672IB4+n1t3H1JQpJnh3wUEgeCkmXLdlZQ9NcUpsNbfsCJYuh/f52AWSCX4nu6RA4pgZGuLoh6tkbjN3kns6BubKh8yhzQ9aKkAKhROBNSzkg1saHHlqRpftk18yXnd/X2/dRav/+GD7ayXG5f9/YZ6Yz3qhujo8Spydj2nEAHjkIiz7Mv+T+TMqraIjQKagzFp+y2xkPqS3cusCkbntJ7/LxngqgCoReoGyDsw1S7pCyQ4hmeL0fxZEf32OitYeR7omJp51GctsN3Tvp95VAZT5gPpQnN/7OLrzpcLFjJ/aYDJ7ltJ9GpEcfPdxJlBxd0wIVhWl1i5c8BqSJ4KAW0avpPSnq7WVuasFt16j4iPeTxKW73uMw/Chsp591eDShoJZJObiprQ/HT/r9Dh+FaTGEyyaxWk2E6hCoGITqENAGCw8dklpIaq/YEO6zAWEYHNWFUEGQ9nbo/ul8CFY03mN8j6PH+HQ+TO9nCqXKgUdtrbm1HT5qvOz8nm7NQRxMXR0+uPPNxEXddpcoNaO6fo85oMwpm7ak3gm2S8flDGalp8o8VZ4wKiNWsO6gt0GYDiHDAevh15DXlnzXoroW1abQ1W0QpaMwnea2w+sXAeOUZQcUtgmvsTXU3oQ5uuu5Wn+Xsjxj9f7neXz2ec5WjrMDz7LylHLslgqID0/d26GTtu4h155cCY6PPc+Si3rzXer6OVf9FY/Njseq5O1NzmEThM6zg4aH/YL3VcFFzK6aHqbpGE0om5vjLtTHnWL1nlAdxegocN4UqdOPSyHwnjsF8yRSM2ik4x96eVfEy+eSd7mnp+Wtm3gPYO9jwnvAKEpPr6xKhCJC+hkbOyYC2kNSO0ntRQijja8zBKEKKuE5yA2LhYmBiAo1L4NzuprvidMp9FsoDdKAM4i8hL4dhOvwkOEeHd+gUB762/syheGmrpnQs7LP1v+MQf3Z+N06XpNl6UcfeZ7z5S9/GYBf/MVf5O/8nb/Dr/zKr/BX/+pfvfWz/+a/+W/yF/7CXxi+Xq/XfO5zn4vXwZRSrCPrtcH7jkJI5iob3dNCUMrgeNBZcAMLJZC5jOzfEe0hfoSAxOmQ89DaIRcLsvmGqrCsNp4jmaGFpPcWQ+AI68h6bG0T2MlmTdFe05kzIATaBUYimAKcFXglgxuvEMxnsCiDOL2afXJx+uY4XGjKLjmI7cCuTS4RG0Wgq6Viq+bYTFPK/xWHIlTtWcN5+4zfqS/pneOdyzO+aCX3XMsBW3KCSC0XC0RdY5sW1/XIxGBSCqEs3gWnj7ceFxcMKgNtPHM1OrIWKqOyitpaetciTUMvM7QKgTtSL5DZDN2W2EzRa4FV0EmQMgYm2jDxCSMtOMBGHIZ1fo8nOh37YXThsSdQ9wLp3BCQKKzF2Qbn+iFZOFMOXSlE+fFho0JphHqVG49ASI1SOUKWOCkDV1EHR1Aaz697np8L8s05BjCLY46OHQ9W+x7JFECX3nPCmaRJ4mz9jMvt92maFzjXTjhmHz9edn7PlKXIHMXMkR+AWh6GUMTXxJ0GhkmD79uBQ+37BtM4GjcyqNOEHxGXaULF5dq+E84nF5Yze+J0JSQHKuNQFxzrkioyBq+c4Zmteb/bcO4N8/nnOT76earjwJ0+PHU8OIG3jwUPVor7q+wjCwe33l50H97qAoj4GWkJhRPTBefipAXbxkC4qZs6cUHD/9/NBoWJ021QwUt+p9/wf1t/n8c/eMifXPe8/fs35Mcl5SkD2keu4brTYGVYtAqJRWPVhLnc11yZS9brdxFCUXrD0n2ea7viKTEE0jtsdIP/JHnUU5Ea9gUCr4Jb1mVZcFCril6AuXi5QG0vn2LOL2g2MvCTfU9PdP6SwrKCQCFExqy6x+rw55D3LfdWATvxveeOJ48lxUWP6k0IDKov6NsXcX/e4Z4e2rYNAkbUgNBUQpF9Qubdy87x1zV81+K7Zni4eourt3TnDfWVZFtH97R3Ee8RtmESYMQNVyvsO2adbbA2nA9S5mg1g3wFkT9dZYIyk690752Xiiq35NoGjFc8Ocdzz+ztk1vv1du9c258vaNjdAgtS7/jwhIm8aeTAFrGsL3gnA5YjwXBgVtKRyaDmJVGZgW9kCgnUW48P89jzNdbuuKRrni/3/Ko2/BufsCxmFFJz8qFe/ZW9WgjI1oFwJMJSedN6DYxG2Q7CtQ/7nG40AMGTUmDko4Xh441ksYVSLsidxblzND9lK6RmT7kubnkm81F2I56wQMJD1Fc5UvWtuMH/ZamfUGeH5LJ5V4BBJJoO+JXpu7p5HSfLjZtRBZAalEW5IwhbZUMhYVp1opQAjms1KN7ejrkJP9CaT7aX3Z7vOz8bptnwT09ESXvGqNQmYTqO8SP6YJbSPCWhPbwEcyw/6RRQvEuuHzjtSz9VDrDZOSZDvcuKRDSD3OlEDQuhkyXlOUCDCYO6wM2zhqP6SUyOqkl4HWO8AZhyhi8OcPaHUpmONeFUMT0kici9fBWkXgRiuOeibPZ77uoLQzOur3tpgRJ706Yj0Jbsk6TJ0fiZNu64aMfPobPbs51zJ44nXjTgmlGh9oTSW86sINR2QX3b+z0wNkgVHv2ROqpuXnv/fESpAEj3gN/t2AzvEc/UcGY/CE/0qwdYb9nce6WpS6QGBorEVhCjkaHiwaEJE6LgUFtowNTefbCFCvhyT2hQ9QrFlKykVlwVseiau0srTdD90/vHbmQsdga5j2GVLgIRXoX94e1O1IPu3ev5/5989iBUTRMmA+Bx/tgIOrNjrY7p6sfhWuVs+j2kLo+4OJacn0ARenJc0+eEzt8w1oqrauMEXQdmE5g6xCIWF026LZF17sgTMfgVW+bQZR2kT99M/Rb/P/Y+7MmSZI1TQ97VNVWdw+PjMi1Ks+ps/Tpmeme7gYxAAUzIIUQocxcDAn+BfwP/Bjc4oa3FIrMFYekUCDcBkCjZ9DT3WerU1mVaywe7m6bLrz4VM3MPSKysqqyunsOS0uiIjJWd3MzNdX3e7/nVRmZWZBnK4pijXM9vb3GE1gow6W9YnPzS6p3/4bFrx/zxaOKZ2vHupZuKaOnwrQPYnTqnWfbCuojdS6en8DVs+ii3nxG077mxl7zZmh4mUtY4tOt4vyJ5vTc8vTa8zQreWtz9t7eGZZ4cC7fEQp6V0HGMfu+W1yOdB3cFqmnq3G65o5F6vHXHYjU8698+EjidJpTDr42O+/mz3lEebznOBilbgnVLjB2BbroUB68vDUwrrETFkmKwJ5lNUR8lsLUWQxEnPGmtZH7qZ7wHsc5KSCmqFvP36iDdm3v1eie9j4K1DMH9Q8c6o8z9Ncv4X8Y3/P4Oxeoj4f3/l6OdVmWlOVtwTgoRt6p1nl09HXo4KlNQa0zljqLgT+xnc9MDmqdIxWrO/AeX8cCft9QeRVRHw/Il2+oasc6c5x64c0OTO4t2SRq2mDphy19f8myu6aPrfkLIwJ1VUm43xDT1UOuMOXUgvhNNshfN4651UZNAT5psZDVAes1nSuBR9T+j1mnG/8GLrvXqP6G/6lc425qrNM88w0nbksFmNNT1Epa830/EPp+DApQxoigazS6CGjnRhd1NghXcWWNhCXOXNR9ZOA512Fdg3M7vN1iug1ZVuDyTILKco3PZEPR97Lw0RqiiVM2H0UMlMwYRXqj1C2BGojidHQTD/L7vFd4KzeYFJConUfbAR952YUW11qZd+g6l4rq1414jMx7bvgBonNVwlG0qRiyHJVLwaOYCdwvrx037zQPu2u0Kdk9WPPjM3h0cncT/9wt3tvoZNgriu1v2TcvGYYbwH+j7e1913dlPFXlKOtAvsow64fo9cOPjvaA2aJh6Ah9x7CDxiuGMFuSqbThUtNmay5qBT+KetLy2stcpDQnOueBKTk3FWudj+zWC9fyZb/jreup6mecP/gTlmf/Mc3Tz2ielvzBY3HBPj/LeHqac7L4bmKrmy30g1NjyrlKjD7fjmKcXEviAhcecQqtGkY+qDzP6Hg7aKPmlvNNq4KXfuD/tPmcC/8J/4f/7wl/9A9uWDwxFGsDOLS2nDYDps8wzogNSxnQ4ChHJri3DZub38ifCY7aW9b+Z2z8Ga99Ok9FpF7X5huJ+t91HIvTyUGdqgRBG3S2IstWKAzt2/7uX0TiT7e0jaH1emzrTQ4qlz5WUGQnnKx+Sv74P+X8HB6vFNeN5/NXoF958m6QkN1mh++vsMOhMJ7Y+D6+vj4MEBwmIN0+ylBr4RQrdY+r8Z5x3zX+MUZodxJsevDW4nbbyJ7O2PZZDLrx4krzyYWW2td1RIUdMqiB0UmergOtDFm+xi7XZJE/nQISP2SMmI9cHaTGA6MwNXdLT1+bhyPKXHPoNJV3B27Q0Y06CaBGiQBaaTNzTyeRehKnK+PJjafMp82T89L6mluNdgachIT1ZPQEVsrw03LNpevYecvfdNc8NyW/CJoVE4u61GZUwsSRqAjBMtithEU3A12fjfeb73skoUErMMrx8lwE/WuvaVyN8g9EpB4LCDI/VtUZofW8sRv+5+aCamGo1YJTFfhMF7wtTrh0HTftJVV5RWYWM3f+8VwuIpyaoT2SSJ3GXFCbs6iTW6wAciUotJS1cms4T9B+Fsw0jW+77r3v+na+JYydR0mg/pAC++3XXPbfs5+f3Y9lgo2+wjC5qeXn5D6V5jIz24EaIJ/JFz44iO7pPIO6kGt7VUmuSx3DT9M5OYUSe7wHaz03VjPYDGPlulHOob24qLXdxtDNhQS5z9z0cxf5cYHp1nFNRoogXXv3BSUqI0qR0owFirwM1KWjaD2F0+SYWwLvGCgYX4n5b0/3+vvE6SRmp2yOVJA5YIIfvK5H7nmt4jyoxZUdPF45EZm568wg/sXvPuZCtY/oJ4I/4FLL96mRTa2jW9hEwS59X48EJ5ogruqEGejvcFUnrn8SrGslnz/F0CtDE2R+bUygCU4E68irvnH9LWe1DRK2OQZcEsa1rA8O57/f+3fCfBhUZHaLucEOe3qd07YvASmo5cGihwG7XdBvSva1YVdqVB6QHM5A8AofkYlhEFFaD4GyG8i7geLm+k5h2sf17LyoCNPcq1RGCDbyqGuKfI11YizpfUehNAuv2G6/oK7+mkdf/YR3v/snfH7meXziOVtNZ+OyMniPcLKHQNNPIfKFCZwv4fo88NUnZ5y9/QfUu89pmjdcuj1fuT2v3Bk/us55aDz1aeDpouPZpuKLrGDjeqzyByLkAY6H9+Ns5miOdA4nodqH+LPx4vVxxp6L1JCur9ui9F2Fo8BdIvXdY5ozpn/f933HbOW7uNsj7iNdc7PPv6/rGA75073XgjSbZRAZYsaDgkUu2Uh5KYhOlWeo4gi+6Z105prDHXsYxFBBRNExdgB6grt9xNLl6r2SnKxRmI73AI4wHx/wXH8YP4y/r+PvVKD+r//r/5p/+S//JZ999hk3Nzf8t//tf8u//tf/mn/1r/7VN/o9gQnvAeCs3JRqpnDElTbUKGEpalm0p5ZHbfQ4qeiiFBd1wnt8x9ZjvTxFV0vMsqSs9yxyx+mQjQFBCfORKU2uDcr1ONtKaFX3DtcrfFwEVzl00UXtrTTSKRPIikBuRJyui2nx/DGG0WoMXjPaRuSF3HAHCyYL+FI2rB0lZnhIMfwBJ6MLzHPRv+XXw1Y43/sS95Xi2dBw6rfS5nZ6ijk9he0W37QHf18ZTfAaZTzaqAMXdZk5cVFbzZkpuHY5S53Rul7a090UOmnMUlzU/ZKsK3GZwec5TitsFkYX9a2qWT+hMBIDs8gCzh1WZ+W4MLqn+xnjOtziT3vwTkLJvLTsrdBUpcNU0hL0tSNWWt3X3HwUCqMzjC7BVLg8Q8dNV0KW7FrHi6sZf7p8xPDY8PxBuFcI9WES5NtB3NNhC/vdr2nat3jfkYVvUy+/PcrcUZSefInwpx88kUC173M4i28buiZVzieBWpzTcTM8cwLNN1jzltckTi91Njqn1yanVpptcLyxDV8Ne17Zlqw45/zBH7E6/RP6xz9n/7Tm9LHjs3MRp5+c5t/JCexDcr5PArXqAlk3YLoWbCfCtN2Nzu8kTlvXzsRpO+If/MxtLc8/kFSneTvf3DWnVMZlsPxft19y5R/yX/67M/7J9or1J2EUqU+3PXoX0F0Am40itUvXaFwD/nK4YHND/NuWOljW/CE3/gGvrMyfvfWcLwecDwdBkt/3kL8TZrxvQCt85FCTr8iyGq0Lmuv7H5PbvKPfOHZNydYr2uAYvI/hVdEtBWhVsVx+yvrsP+Hqs2f8yQP52795BZdfGRZNI+J016K6DXa4jq/1sSAa2bDJLRqLTVNImwiZf18q3GFo5a3diXt66AjtDr+7wV1v2G+Se1rCEbfBjiK/je9T+zozcfo+/nQIDm0qTLZiqGuqSkSsuvhmxeG60BSZIjeBMLusJ6zH5PJKeA/5+kzMmRWF5EEfOhzH98mZGDeeGYoicqcn93QUp9UkTpeZI888Re7HMFPvFdZ6tDJjWyxO49C8CZZaaZ6akmf5gt90N7we9vzS7jnPTzhVcIrhzOR8GYtOyQVqlEZ7x2AbnN2SNw1tuxZs1jfTUr71qArNo7UUZp+tXQw69my8pvULtB3IXIfxliwW8fJ8jQ+eNjhe2x1/1V1xqjP+oS44V/DjrOarrObK7un6K8ryoaA+5udXLB4kgS+LrOnjDbabFSPmosKtFuYoVuqj4od34f0inhd2u3L2MGjjO4wlGhVdvXJ38OPH8xHueX88xq8rEawDNv7+eP0mb9+Rg06EVJnLdBTz04a+UCJtjNdMXGvmsYOuMCpy4+Uan99DpmBi6J2n7QUd13Qa20moeTBGXNSulLWo3WFMGUMTpfA7irbBi8P1GJUFjA5qDt3T0/vDkV5/ZSZx2uSKYuEpdp4y8xRWnv/XoT6m4x8gpBwVe6c47ZTknyido1U+BVZGvA3ALQY7zLqxstnaQhGIiBYV4msux2AuRH3bMXeBHqM+ACyH4nSKqpu7qeUa9bjZ9epJ7ffT54wiYi/0GDZbjF/nULAmoQTABAlkcwjX2ilDHwKNDvQEro2lieJ0GxxDxIAlZrWP4nTr7Sha269x436T43eruBEPXiqa6RTkHBw+DNhhR9ddyGEOjsK3mOERpj0la5a4sopmIoPP4/lCIPMB5TzGurETTA+DcKbbdyJE+yhMu3Zcx6bw3VtoD2VQejoOWpdk2YoibyLqo8EgOVG9b7m++SV1/ZSzX/6Izx8/5vmZ49GJP1iXnywMj2xG00vw44VNmA/JiHp8Gnj3JOAe/SGLzf/MrnnJzW7L66HhRbbip7uSn9FQrA0Pzzuebyt+bSre6pb2jlwKKaLc6h05fI3ucBr7MMPdpGJM+p65KJ3+rQ67WubCtp91N8RfJ68tk0j9deOub5nX3I6/ftiH8fVzwDF/+q7hZt0nSQDumUTgiWct+Mkyk/2pMkFCh1PYtRO8nDfZ+BiDswfF3+Asfujw7Q7f7ghDT+h7wnsKR+KgnhjUg1cHjw8OReofxrcbSn/Px/CHusHXjr/T/eXr16/5r/6r/4qvvvqK09NT/uzP/ox/9a/+Ff/iX/yLb/R7FEY4sEmg9h1gqXTGSucsVc5KZZJGr6a2xzG4qtCR+SPtjaqoRKT+Du7pNATzscaslhSLHXVhWe1Lap1x4weGINsNH4KE5QFD4lD37/CN4BNYys1tUUHXC+du/BuaMcRQggw//pl/MgZATCnFvROHiU2iSw7dqsZ0Tyhdy9LtsK7F+Z4vuq2wljONaQp4C963BLeldp7s/AyzWuGbVpjUemo/VcInEJE6DxgXcIO44JfGcepyYVEbqTDvvOUmRBe9zRiGLVm2wfQrMlORNQU+y/G5Ycg1rldYHUYHNUybvWkEcUd4udMafXgTmCM+moEDgdoPKrKnE3/aoYb9mFq/MBkrpahqh6rrDxOoYaywStvR4aZVHjGRjZyjTQlZicsNOguCi4mn9+XW8vISFu8uZTNQn/Hgkef52f0RaKlI0QzQ9tC2UF313DRfje5pcbl893Mxzz3FIpAvjbDL1+cfjVl7a2gjVeyhwzcN3V6zDYdMr8lDMD23Y8EoidMqOMpYKDs1Jaem4ESLOA1w5Xre2pbXQ4M3Nefrn3Oy/sf4J3/E9umKk8eep4/g+VnGJ2fFt+6M8KObWM7Rwcm56XqF7gJZ16GGPcFu8XY3itTWNgfitLhKJmHaJyHNDyRm5G2vVTxG8ahNLjrDFse/2b3lxg1c/PYJ//Rmy9PPevKlZrmWRbjRAdOCtgYTQ4CI15/PA69sw/ZApBYn9enwCzbuMa+9ZrCexyduLCB9CLv7Y427SDzBICG3piTLliidc3N1zzntLX53Q79XdFaSxJN7OgmrNgSsUlTlA07X/wD/5I/In4nr78028OVLRflOuNPKO3Tfju5p5w87lqYCy4Dz/Sg+5JGFK3gPPbJuP8rw34Hj4K2I0c0O32xlsd/scNsN7vqa4bKZ3NNe3NNN8HTB0kUGtSNxF6dzQkcRJb1PTHnvE+KjxGRL2jKnLgJ1DlWuvtF5VWSawqjDwNqRczyJ0X62IR2LCDFAbhKeZU66hTmYdzQECSJMeI884j0m97S4giodqIynLiy5Ef5/UR5umuygyLJYQIrDOc1FTJSvleGTfMmFbdm4gd90Gz41FbXOqYFTlbEwGd6JyKYRlmsG2GGHHTaUzZ6bdh1Znn97m64kUj/eWJz3sZgX2A2GvluKIOJajN2RuR2ZqQj5Cd4PdH7gRb9jbQpOy3M+05pnOueTfMm/H7b0/YZh2GLKcgwNHEcIYzuzLKsO0R6jkD8TVo+HsKunf3uvxMA1iJNWGYXvvbQOGy9txfFNGTeK08Jx/zjH88fFEhU5vek5pOC99Lwg4ZsYvxbC3Pcvn0/P2iMqpdxtpvhPP18NBXV4n8aTxfM/O1qbJCFtiNgKmAnUI59cxOn5NZ4+PgyNDnR9oG8DQ2cwQ4a2g4TjmhJlKky2xNkdxhQ4d7tjI4nU8zGyn2dC0fw4plni2HyXunfmWDhdKMrasygsVZ+N4ZsiNvm0gLwjRNBDkAydBJZKd/W5OK0wsau1EHE6co9Td4pSt5+zzG3liJdSB2uNAeUkqtEreeHngpgwosU88KFitYnFnTuDEpmJ1Ulgm70f8GgUOZoBjw8Ko10U7fQtoXrg0M3pVBgd1w2TK9OEJEyrkXM7Oqvj40r+TEExyXx7bkSw7uOrIh/78f0QWdVtsPgQRLy2lr/4oCP1/jFHfMxFzoT4G+ezAE7J+sKh6IeNHN7YmZTbHVl/iukfYPIlwZQx2H2Gg0l7KNvLvdJK1593LW64viVKzxF1x8gsrQ1eGZQ3o1gNki2RZ0tc0XLTv6MNjkoZKqXZtW/Y3PyS8s3/SPvbf84vHwWerS1PHhzulx6sMpres+3ESb1pYNvC+UKyoh4/Crz45IwHr/+Qxe5z2uY172zLK9fxaljhe49ZFawetTx70/NsV/DC5Ny4HhszrODQNT2W/Wbn6fsYxPro+r4lTMdfkuZTjcIrRtRHugelv3DLPT3/+BvcvpNGfMydnn/8TVfvk4N6uo7uC0lMIvVcAO6P7rdybUqXkjJHGD8niMgQu5O8szB0gpCb6Up+6PC767h+3eN7EaiJDurgp32+94ogsSp4rxi8PuBP98h1foz4+IFB/cP4D3X8nQrU/81/8998lN+jTTGmEns/4NyOUwwPs4pHWc0jU3CuDCslFa/ciBsoLwOmUug6F2ZQtZhB7ZcfxAL+uqHyiuzsKfbsK6pHl6wvB57sB54OC7Z+YBMdXJL0bDjRORe+Zb9/TZH/Nacv91yfLFivPKtqEhW1Duz38nGWhdHdmxv1vQjUMCXe56bHaAkufFeJWJ7arqzXNA9OqczPWJgUArbiqzf/HTf7d1wWHW+KNT/bV3zWnvDpVcfD1y2nn7ygerIgf/oUv9vimwY/2IMUQh03AsF7Mh9YLGVa9kHhhgyXLcbvDbZh63YQPE37ihT2VgZL7i2Fd2h7gvIrhsHQDZp95rFWmGfeSwhHb+WYF06EssJMi/8xUCEcCrYpVbptFbZV0aHqMUOs+A8Dvn1L077Buh3Pqid8mjlWjwL5k+eYh59+7Wvhd9cMO08TpqrpwYaPgFeQ65IiX5MXD/HlCUNtWC/8GPhzs3f8j7/r+eovNWeXv0LlD3j3Dz/ln//C84tP7kZoDHEDdt14Ng1cXil4EVh8/hf87vqv8G5HEY/Rx6jkLk8ci3ND8fSc/JOffJRgxDtHDEgMfYvbvKP53QWvL1dcRNbfJPt7pAFTXEQTrTFulL3Dh5YiIIGIWcnDrOJhxHoUShZ2l37gL9tLXvueevEpP3r4n7J69M/Y/vgPcZ/lPH/m+fkT+NmjjJ89/W44k956tq1j23quG8/lBjZXGq4Ci6sd+eYtfv8KN1wz9O+wds8w3NAP1zF0tMO75B6NrmkiAxePDlMD9/xtOi4y5q3CaRHaKPjz7oq/bK/4P24X/Odvn/C/KTV/8o83lCeO1d6x2lhW24xtm7O2hlNnODc1j7Vs1b4a9rwbrnh78W/Y3PyG5fKvWF49Z/XmD8lO/wHbJ5/w/2xzzh84npw6Hq96Hp8YzpYSNPkx58y291LAs1IQmIsFwoEN0r6sNa5aUpRPKIpTfnNZ8qevPyd78tnB77Nvv6R/9Zrri5x3fcZFcOz8QBccrbfsvaVRUNef8MnT/wLzi/+S/k+X/OOfBV5cwV/8e03xeU/W9SjvyJo97L6kb14wDBu8F7TIhK+IhQjXR3TLQI447E5MztpIwfdcaXL9cRxY9t1LvBpQ1fIboXvc1eu4uI/C9G6D21zgNtfYyw3t24HdpebNTcWrIeNl8LzxA1eu58YNNN7S+Rg4qRSZEhEltaAnATE5mgd7g42twnl+gl4+p3+QcbZ2nC81p4tvtqQ6WRhWlaYunDBvvYtooNS5MNwSp523tzoXRleTTgzXYySIjUUkRw5USrPQGUuTc6YLHuucc6U5VYF15ljkjrqwozBt8kBehvH8BQhO4b1j2Vm6/cCqyVi3OU2XcxEf80+zBaZW/Lv2gte24f++f8W2fsQ/NBWPleFZtuCdatk7K0G0BhpvuRquudn9lsX1r3Gvn7HtPJvGcdb7v7XCUlVo/uBJyaocWJWOF3Xgq8pxWRa4/CELrWXdqQ19fzn+nNY5XXfJ/9BcsHE9/6v6CT/TGf9RfsL/K7yi6S7YN1+SZbWElsU5LCUpK6KAGgsIaYOZ+JI+BNrZfTU3mhoj84xKrb6CEGitHkWXLA94HyTPI/d4FzCFJxRWsGPO4Z0DbQjOoZ3D2Y8zL/7z6gl53Jgnjuc81G8K+YtvQb7eBoeLYlpi7g9+whikDojWO1ws1iWefHLYzrt4El6hUJpCm/HYGqQAZ5Rwg0NwMavDU+dS6FuW+s5sl4TCyzNFkU25LXXhyTPPa61pKTCDJWhDMGYURvLkQE4hqH7AuVnB8K4KwRhORkQ4iEHhPge1Mozs8WTGkc87Fjjc0NMNhvMh543J2DiNjr93DGGbiR4hFcSCP3BOw8Sc1ipHm4qiOJUOPlOhdYHROTp2Dmh9V0joJCSmQGbn+3ENMvQ38vlgha2cihgRdePjcR3dorPjkDjUt9AAd4jP0zo6/ixhFFt1UCO6QiuFDX4sJDkvxaMU1mbi95igRx6ziQufPhYfJkfm9LV5+HkR9MjLHb9v9j79DoNwq0mfv+fSdbP3jbP8n+/+tm80UnEjPZYUKq7jPBZCIKSOgBBwDDgXaJq39MOWvL8ky96QmQpjFmRZjYnB7hLwPq0Jgp+CalOx2EW+dDJU3BUqLD8zd0oXET9j4j0/ZvXE8zHPTwBo20t6e4MPTjKtCFxc/jnONTy2W142/3v+tYU/PorSMFrxo0dl7JLq+fzCc7mD6zZwWin+8FnAaM/n/Oc8+h9it/HlX/DnzVsqbfhnXwQe/qGn/mTBT4cd+/95zTasGYLn9bCP85SwoVPhT7pp4kl8x3l9X2ji3Ek9Ct5zdZkwFqvmIrWf/bye/fzx+NC7SNob3Oea/qZ3ozTfz7uL4DZ/WquAC3L9JfOyCxzgPZIAnK7HAsi1dJUFJ5qB7z2+7YEtFtDFTTQ7mjEE8eD5Ooff3RD6ftQ8fDPge48bAr6PmV+Dwg3Qd5q+13SDYXCK1muaAE16fDMNwCBzUlB/O+ul36eh1A8M6r8P4+9Lh+53Glrlo9MgeEsWoDSGWmfU2rBSJrKnA7n2ZCN/OmAKI27dOd4jwuw/1lAR26CrgrwUzMdSZyx0xt7bkRPmo4Mouaj7YUO+27JtluxbcEvhTC9Lca1aG3nMs4fqg0yUdzGSP8bIM8WqMuw6T10EyiLQZjDoQ8+kz3JCuSbrTqnKhxizYG+3XNhWAg2VoVYleVugrwJad8Ce/LFDL1fCWN5uhRkIB0wmFZ3vWebJMj2xqKPAvzYFN36IqI+Bwe4xpiKzN5hBGMumqzBZQbHPCbrCak3fg9YKrQPt7ac+O6bh4N9jsvQgnLEuvjmrJBzR+kP3tPe44Rprd4RgWeuMk8KSLzV6uf6g18G3O4ZOKrtw6ACZFggKYwqMWaBNic9zQs4Y+lNkisud5csrWL7bE1wL65+zfOj57Pz+83/EmMQU7WarWF1taLe/xLmWLMjC9IiM+q1HUQdMbdDLFXp5+hF+4+EIR0nmYehwmyvaa9hYCaSbC+3zdHlgWgAEWTCGYMkDY0Dr2hSc6IKlzkbH6dY73rmWS9eT5WvWq5+xWP8R3ZOf0j/LeXTu+eQMnj+QQMTvOiQENAgTLyJZXKOot70IlsMOb3fY4Rprk7t/P24MnW3ETZvc0sFFp2bABLmRjI3VamywPngMx8JBCu5JYvWg4Mthz/9t95JteMzzlxnrh468DCyim1qrgO5ySAGKyvA4q4G4obMNN8MFYSsunRAcy2BZBMu7h38QWfNSYGkGS9MH2sGzrg0nC/Od0R+DFZzIEJEE78MSeK0IxqBNSWZKLp3GXb2+JVCHocNte/ohpwkqhvtNjqgueIypWS0+pX7wZ7z7dMWPzj2nNfzF5xAuAlknM4XyHtXdYPtrnNvj3+OeTkWIJJgVSpMrQ4G4p2sF2TdkUN97LPYb3Eah+w5VlHKd33cP9lbCEIcWv7uW1sh2h99di2s6itPdpZVQyV3Gxhq2QBM8u2BpZ+7pNE9J0LK+19nn3IT3CMFjTEnIF5g6UOWCAPg2hY4iO3S8SoHrsBU5PYb0PnVqhCjQyJWko+tyzgqZQkpDmMRPE8Muq8gSr1HUiHO6zIQ3PRens0wEaglaiy5OJ+4e6UTzgDze0z6nD5ptRCmcmZzHWc3eWzau5/Nhy7nOeaZkbdaqHK8lZMz7QK4NwfcMwwbbv6PadGy7gt4G2r9FgRqkgND0nqYPbDvHbgVtG9g1hmK/QPctOluNfF2jCzJT4rIFvWt5Oez5Vb7jcXHKSilWJmfve4ZBulOyOHfB5AJOp8Jx27wL0qI/dxvPv+ZUDEVT0pJceAmy7OJpVHQpQySxLIMU+wGQtmLt3MjP9EgR4mOMMyXBmzLUgUgGImwe/Ds+p+YeN2ji7g6Rwbv1A52frmcb78WWyXkNkbs+zmUaM5Mwzex4p2stNu9htHQ73Hd9C/pNM2SBKlesSsVprbheBHYrz3Vj8EZLV5nWgvowFTpboocyimWSF5LGfexp6ZJgFJBT0cLFt7tUnCRSq/RkAF1A5gLFQjolalVRqexWUOL8aotHB0KI9//pz/koTifndGYq8qzGmHoUpo0polBdRkd1eYdAbcf5NiGVnNuj7U4+bzX4TsLHgz3gcCslLl0RomXcxdVmJgAfu0bvG3MbQhLkdHRHH/wNNdsMjQKhHEkfi0dGKQgec8T+HbsjkmNaQY+fhGsiIiQ+jlGsHr9f/p2C3OC2S3ROx/1YsdGaQwf1sTNXKYWKIqgf5zgv+RZxfvJx7aFdi3PVQSFD60Om71x0nkwTw7RGTffI4PD3XEfaD1OHaXCYeO0ZM/0trUuyfIEPA4PboYOXTuAQ2O2+pK5+xcMv/pIXn/8Z7zYDD9e31+oP1zm7znPd9Gw7uN5DnQfqXPHkNPD6WYDzf0S9+UuK/ZdcNC95afdcX1ScbgfKpzX1w4ynpy3P3674wpRc2W7MzUjF6SRUEzsfjoszZvaaHGM+7ntN59dE4lEfOK7j96TXe37af5MxfwTq6N/fZBxfw3cZpI6ZzMcdjslQ4oO6VexLvzN9PgUVirtZ4YaA7sU4p0yDS5las1ytNFIgYmgayd8aLL53ozidRO/gonM6/h3rNIOXtz4+xuNwRJM6NtRhB9EP44fxH9L4vRCoVWSbheCwrqVAWuqXOmOpJKFaql2Skmx0QOsItI+LthHvERNXPwbeI43kyNZFTlYFytyxUjmlMmQoLLPqfnR39GGgH7bo3VvM5jFtTAJelcK6XFQyeXX9VOlJLfzOS9jQ9zWqyLmuI5NyDP+CMQgwLcJ18YC8OCfLV3SuYestl7bjRBeslKEmo2gK8muPMgP1xQXZ+Tm6Shu3baxIHg5lFCZHksgHx7L3nAbDuc65MQUnrmfvLVsszra4rGUYbjBmgcmWElLTlZg8J+syvM5xvaJPq1sCw9E+eC76GzWJTy7Ia5N4zInt6+WFRTlQzqOdF4HI9gz9O4ZhhwmBc5WzrPZk6+qD8R5+d02/l5vT1N45oSjkWQjvz5gCna0YshwyRZYlJIziYut4e6Eori8IQH96zidPwntFUedF6Ny20LQQtpBv3rJtXgCWFFPkmTae32VkJZhlha4XH3x8vvXwDt/ucNfX7DeGjdM0UciSIZszSZefxYWEuV/LkaNY6oy1KXhgStYmH8XpJniufMfrocHpgtPVZ6xP/wjOfsHu8YL1uefpGTx/oHl6mn/nYD8RZJPIIq9b1yrM1pM3Dbq5wvdXuBhM5twea/fYmLbuI9M9pFBEHERhemLZyuY7BXvB3S14KWHeMy2qZJFN/By8sS3/n91r/pOXP+GP2x0Pn/RkVaBeukOeahSpz1WOM7NFs225tlfsdnbcpCxcy/qLR2y7Na+tpus97QDN4Nh2nvOl56z3rBfmOzG+k3O6t0kwSHgV+foxWi5ojdYVxlRchBb77kuOI4h8u8O2nm4QvEdP7LqJbMlBQV2ecXLyh/SPPmP5OPDkVATTi7eKatOiYmurHgYYtji7HZ1I42MJidGYAvjshISIr2uljITDkHBZH0+g9jmEvkUVFcG58Z58+I0xRCZypt3mnYjTI2/6GrvZ0W8s3Q3sNoZdI8GI2+DZBkfj3WE4YkiFNHUruOvW8YmheCCbV1dWZIXkFBTZtxOoczML3R0dlfLazN3T8hhmDOr0NvP53SU5jI5HAjpApiaBroq4llopCUU0TpiKuSeLGR1ZFjC5IAHmIWsSd6/QQ8Dk6TFYzvaWfshwQdMTqJEi0qXruLQdb4aGL7OalVmwUoZGZ7KR9ANDPMfyAH1/w9BfUG23bNtztp3MYw++8RH+9sNoxXphaAdp0952nu0i0C4V3aoiayrM8ACjS6xqAMFqGSMBeDf2is/7G36SLfhM55yagneuF/SZa6KL+vY5Nzp7I3YiYTFS2BlMTjcfxek+eHrlcWh6FE1QGD/97rJ3cZPryb0nOMh8IDhP5gJaWsFQRRMD/ZwEPH+EsTCehXn/XOGP2J8oaIKWDXgU3ZNo3WsJiWsib/fKdeM1ndzVvXdSfAoBryYhx8TQyeMCwChcHAlaRstcmroU7xuTi1pTF4FVGThfBrZ72NUBl6VrM4/rwAV6EI69GTZRkGvvDEZ8X1CiJ9wpxCSh5QDvYbQg85A1oi40xUJCqFdITsY8dFOOXRQ64u+bbAdh9rlpzal1Lo5pU2JMTZ6lnIWSLFvE55mhTSWhidqMgaHS6Shz4BzVYO0OYxbSxaIMygpCw3nw2GgYkMdzV2AafH2r+7GbOoXEHR/5uVA9//6E/GDGq/ZB4dI1TAqz04fuVu74ePwT6jYbIQqQs3+QxGoXWcRzcZqjj1MAI0D4SJxVE4Ww9ByPMQPzoZCn5JWXNaVGROrYQaB1jnNtdDWb0eU8H4d5DJMg7WJo9xgs/L7rJrLQzcxlbeL3z4smebaQXCvfM4QBE3Gce7dlt/8di+t/x8kvf8KXlw/uFKgBnpzmXGwd143jciddtoWB01rx5FHgdz96zPrdL9jufstV+5bXQ8O73SlPrnqKR45sXfPg8ZZPLz0PTckrndEGJxaRtOeLburx+c3OT82E40j3k7vGfR2vt8VqcVFz9HvU7HuPzNu3xvEZzNG/j0Xr+67e29fn15/ThtuFm/vGYQjh5DSXz6lRpHYDmD5gtcO4ADQH8626wzUYnCcMluC8CNO9j1gPokgtv9d7hR0U1ko4ovfSIeXCjI9NQqUdFt6+C5v//5/HDw7qv/vx+yFQp5AyL22sZWRlLiLrtWBq59A6oFUgy8PMVWCO2jCyseL1UR5fUaLyElXXZNU1ReFZKcPCZGRWQ5AIthSWWCrDzg/YYY9rX1Jvfsp+X9MO4sqTlsNJ7EhOvfQ22EBVvP8xfZchmA/hZuYZUTS6PQkGrcFU0uqXrxj6a1rXcON6rlzHUmesgqawhnxfoHXg9O0OZQzm9PSWSJ0qjtoogpciQxbDmxa549RpTpXhgSm4MYW0wbse5zsR+3WOGW5iME1FpjKMKcm1xmtFNxTYGGZ21+Q0b9U/dk/3VpAgyT3d90rY00PAWAn0UN6jnPCn+/4Sa/dkwLnSLJYOc/oQs/4wfIXfXUu7T5hEvvFrpDWsITMlmVmgYkCiKeXcKIxCK3i5cdy8MzxsL8BU7B4u+PG5vzcc0fnJidsOsN8rqqseu/kVu/2LA/e0U6DCd5/ldQ66riVw9HtwUM9H6MWVOVzu2W5zrsPUZgxEh1tyuiXuNOPXCA4dApUWJvqpEed0HUN0+hDY+IFL23FtO8r6KevVzynW/5Cbxw8pHgUen8PzB4pnpxkP1999im57cfRuOxGpdx3YG1jsOrLdDSGyiK3dYKM4PdgdzrUiTrt2ZGqnll6DCNNJQKm1Gds5U/gU3HZqpLAeH91tSXAZZhxgD1y6nv9Lv6G5WvMng+HJ05a8DJS1ODW1DhIC1uU8nt3GxuvAtmzclt3+K5wfcK7n4evnrIefs+/OuOgNbRto+8C2FTf1tvOcd+JcPw7B+tDjnI51CkoVzEd8/n72+2aXhTYVmam4GLbYy3e3fm/oW3wfJFE8iJswuadtCGhdiHv69I+5eLri+QNxT/cuEC7ADCJ2Ku/RfYO324jy6O7Y5M3CEYMUIjSQx9dWWhs1hVLkyn9cgToLcv/NSxGqTTbdj4mdDiMbV0Rqf3MhvOndFr/d4nYt/cbSXs3E6T5jGwJN8DTB0QUbA6I8Lp53QXFLKEybYx8c2hMd+X4Ui0y2xGf5WPArMvWtHPgSQDz9e2r5vxufMhYQCLGTITqo4mZVpecy5+LHoMuxoKQNpTJUyozBiJX2VJkg0KQ7yY/itARK69FBfciyFWRE2iqubqy0xjrNdQgUSnFmch5mlRSN/cCLYceZznmsclbKiLCqAk4HSm0olaZxDW37luXugn13Hu85nsGG7w1jdtdYVoZ179m2cl1tFrBfBPa1xtbRRW3KiCzQEduRY7IK5yre2pbf2YbHecZZVlL0OzrXY11zWIw6ElPmaI9RpI4tvKPAoKAPnjx4CqVxiIBrolCFV7ggrMq8z8icx3vhhxelx3spQgTnpdDQezB7dN8TigLnP85xrrXkhXzoSGJ1FQV2Fz/XpzegV0auaQKVMuy8pQ2ONiK5rJ4C4mzwwi1mcqYnpMcclSC5GWFk1U4OahGev24UmabVEfNhxEm9WgRuFoHOaIKP3RpZjk4uaiMse2NvME4QAwH7NX8puahnx4wwFX3vEGOVUWO2izKCcfFAVjnqlZccFCXzglYK5/1MCE1/FRjnm5nIpFIHiuQBmawmz0SczvMVWbaM5pAVJluiojhNQjfMC5HegmtlHoxZGFnWYu0G7zu0LrA6Yxg0RAqgRwLcFcKyTy5euF+wno+5OH2feAdHX4uOVT1zUyfedK7eI0Kr1O3C3SpdLAiPa5koUt9yfnKE+5hhC25xdqMobZR0oaUQVXVL3vt2Q42ucA7np9mQDrspBFb0TS+mEC1infYZQVu8HkZOeWKWp5Hui352Lx4d0ymXgVSYvf38kl6ggx+NbTr4UZwGRuRH+thkFc53uGAZghjAigD75jXb7a94+PLf8jdv/ik/fmjvNJRUhebpacZ143l9HbhuxEV9WmtxUX8K+vM/YnH9b9nvX/K2v+DLIePHV4ZV25OdnbJ8vOfTL1ueXVW8yGR/m4wzIyM6FpSmIkYYX5Mxqu8Dp/T7hN65O35m0Tn6/G2R+r4xvwTu+vz9j494vasRb+kJYyfCvLOCWcfE8TBHf9kHNSI/jocLyDol2nRcUAxWj+Kx6uSZBO8Jbri1Vpp/PLKle8FtJWE6uDA6p5M4nd5PDmo1OrzneKw05nuw+573D+P+8QPi4+/H+L0QqJN913tp8ym1YaGz6PaSzbRRckM2ShxBWofoKtBgZuL0cWjNxxhaNt26KDC5IssDNZqlyim1Ye8t81tppqawxL59TXVzzfZmyc3ecbaEulCsyjATpOXn+lEYudtJ9TGH0XFBpDlwUGsf0PMwI22ik0Jatgbf0HjH1g3sjOVaZayUprYZeRPYXwwoc0NhDGZ9KFJDj2umhbvJxamcZZKkuzSG02A4VRlXpmDrB7besvM9zrYMZk9mtgxDIS4ObTBdRaYNQRv6JsehZs7pQ6E6z+DYy+283LQGO731vZIQSxvQQ5i5p0WkZtjS91c437FUhnMdWKw95hsgLNzmgrY1YyAKcBQ+lJxcEsaDqbBljs7CGPoD8HID5ZseP2zRi6cUT8J78R5zN+6+hX6veHB1xX7/OW17ceCeVmjCRwhoyCojAnVE5XxfI/QtbneNvXxH885z3eRsiaEy480/eoVC4Nb6JfKoM2Clc1Y6F7SHysZQq12wXLmOt7blJjgeRrRHf/4pw2PDkweep2t4dmp4cpp/Z+QEIEEtrY/ccNjuId96iu0W1W2w/XUUqKXtXNx94p52MRxRhDA3tpJmcROWK02mFEudT4FeqIMF0nzM0+T9KLQ68qBHkTqJMH/ZXjDg6MMD/rE1PHvUUC9dFKmnsdmXd+MgbMuN3dHsxfld10+pXcuq/znN8IRdV9D30Kyl2LJderYx8G1ZSpfIcSDWXcP5MIrTTXxLc7HzkU13xz4wGE3QRop4uuTaW+zl1e1v9A43KFqnI2duhvggkOdrVqufYc9+TPEo8PBEClAvrgLldhjd08o5GHY4uztAe/jRtesPRNgwb+NW0+ud+HuVcaivcUV+6HA3VzgGKeaajDB0YzfT/DiACNUJ8eE2V/imwe32uG3PsPOjc3rfZGy7jJ0zNAS2QbAA6fglHMDc/ccdG2KQ4GXv3dhCLK3BFX1ZUGSSTZDflYb5ASMJYIKBcmNxIDnBYHJ0TaGI6X0YK2QiEh2OaZMuZUsNUziiNuQz93TCn2XZvIBPTKeXjdbIsJ0p6gpQxsbNl+NkOeCDom0KHJpt8NQYHpqKK91x6ToubMsXpuFxLiaClTYyL3hHGddtO9fS9Rf45iWb7S9i94dn17rv3FXyTUdVaE4Xhm0XuK49myrQrBTDJifPCoxZovXm4Lwxcd2ztS0vhi0/zRY8NBWV0rRB0GPpXJrGJP7Nh4ub7zHQcyYEyFzg6IOmCR6Dk016UDgVg5S8wvQZlfFYpylzh7WKYhCnvBtC5Ix7lOkJhUUN9s5569uMZW5ZFXcLHvMxL+L5oCiDHz/nQhSpvWYYhWotAXMaVsrEazyjUVKIapUbHdXpfjMPnjzk+B49mHnHnP6wDWtyUDd9EqklEO16EdiVWtaCaFyeoW2Ozpdou0Lr6xHzAURMxCTA3XmsItrjAO9xx1AmoE0SpvWIcFFGACemthSLgZUKnKqMUktn50Bay0Whl6lZPLlgYeaejuJ0Ziqy5J7OV+T5GmOWZMWp4HBMBUcBeClMTDl3EIKnXId2LX7YYuxKEI72hr6PrGClwWoJyKMXx2B0zB9Fxd4vTh85f0f+7ntc1On4y4OehMABP4YmpgDFu0RqjyNX5n4H9ezjrxOYJpGaiLKcROlChQNB2qhAHjuIAbT+DuHEHzDu4xGn8yeo2KnlPSgvrurgUd6OuC13V1fTXIQ+EKojn5pwr3s6IfmC92iVSWbDHd+rNeL0T9gmXRL8gKVHR1xJ73Zs91+y2P41f/Pin/Kzhz3/i3vuTU8e5FzuHGDZt3CdI10WC3FRf/H8Gcu3v2C7+5zr/i0vg+PdZcnZ5Z7sDPKzBWcPdzy/XvBLXfJOtfRKOkam430oUntAK8Z9WTw4h8/zDtzHh7iQ7xpz1MdcpP66Ma/l3Oe4Pq7nzMcx7uqu+rU7ksrTNTJ9PDN5zUISj3+HAzGKKBiChBX2vSbrQkSdgfGC6IAwEtfuO42TKA0T0sPHz8/FaWsVg9NiVElsbCaH9/i8YkhrEut/CEn8YfyHOn4/BGqIoUE9AUulF5GtaKjHm3cUp0f+dGxVTXiP6NQ6dm19rKGKCpUX6EKTl55aKaroYsqUOCtTFVCTMB89bfuSevsVxdUTtg81zam0Dta5GlPDWz3nIItA4nz4KOLWfeNojyroyzhLygJzuuEnNqPWGQo9tmHu/UCjC9nAek01GPYbg8ktutjIAnq5GkXq4Dbo2AqjnDDEswxcLtiUhXWsnJlc1K5noTO2fhDHoG0YzBZjajIjQo3qr9BZielysm6B1Ro7u4l5D76YigFGg5+dGkmAmsRpEc1tr1ADh+7piPdwwxVdf0UIA0td8iC3FCdg1ucfHMxpLy9o+owmOlCPnVVegdE5mZHWypAvcJmmyBBeagY+wJsLqK+uIViG9SMePwp8ena//T7xe7cd7PagNgG9+YLd/guGYUs5d08fbGm+/dB1hsoL6UIojgEIH2l4Sxg6/M0F9vKK/UZzNWRch34UA9NILurDVZKIeVmQMLm1KTg15QF3WtzTPe9sy40bcDrn5OQPUac/Y/t4xfrc8+wMnp1qHp1kH4W12vaedpAk8es2cNPAdqsotw2mucZ3b7HDlSA9bMNgtyJUp5A838dFvzw3cdLKBl+KfyJyLU0uoRxaTyFB6FubwgE3JsgnwWDeki1hWCLC7Lzl1+0GgIZT/qPXCz45a1iuI5c6LsvO+gzsHTgIANuy9T1tTF53rmMR37LuKbtuyWWv6fvAvg1slwGjLKtKsUoida5HfIO4XaNgEnFKQ0R6tIMfize9jQVDx4FIHZIAM98PRQzPjR/oL25vlELfSkBKUPRR3LfxnHRKcVI/plr+nM2jBzx6EEb39MUNI3saQNuBYLd4184c0vFvhMQ99jGY75A/nVriE3+6AHITPlqLsLve4IIFY9BFgWp23Bcqg7OEocf3Pe56g297hq1l2Af6vabZahGn25ydM2y9YhssTXRXdt5FXu2E9xD33x1dQDMmqp85zgGUNrjcRAf1hzks7xoH9+mI9/CRQ338WEAK8STxOiR5CO7sYkqCdkS1pOs2jzxxWSPddk9Ld1KIzumI9piJ08dOzKA1qvAU9NQbh/cDrdX0fU6PolZaXNR5RePF4frWNvT5ifDMMfQq0KuMVjsqZSB0dP01Q/eObqu43ge2q8D270igzpMjtoTVArZVYFhkuF054QrU4eMypsC5gtdDw6uy40znLE3OpWtHpvnxSK/iXJhKc2XCfKTPJfdYHzw6WIqgaUjO64jHQNGjwBn6oCjiJjc3HuscWe8PhGrvHVnlMbm7V/T8pmO1HDgp3iO2zoXp+LHMmdEpFt1jSbQenBrF6torDIYtmlpptkEwMW0wk1AdndRZ6n5Qk4N6PtIcEIJD+eigTiLGB66ntZ66IopMUeeBkwW8KhWh04Lx0VpyWkYXdUWWLRmG7Z3Il0MBLa2rokNwtu47btEfEXyzvc7IRHUOigLtPPnCss4cK69Z6pxMyXwYjpjWish45tg9bdAqi+GIJVm2JM9WFMU5JluS5afo4oEI0/kCn+X4PJf3Rs/wJ2JyUd5LoLgd0MOA7hv0sKMMVnJkdHEQZjsgIo9jYAiBIoiTOjnAv67NPYlp5pY4re4V6w4Ev+SmjvfnJEwPwY+u6gPkh1JofGRF3+2m1qiRLX+Xi3ouTKeiccGhMF0cidJGyV5Jq9iB6j++QD3uQY7ez0cSqX1cS4fj9XVQoPRRiYHZ98TvH/FV8eMZau++oZLoGAVxpcRbfFd/h9aMIYomq/C+xzmLi91IeYCufct2+xu632j+5hPHTx/f7aI2WvHpWU5VWG72sGngtBYX9SdngZfPIfvdn7K8+ffs9i954TretDWfXjTUnzTo1YqTJ1uef9Xz1Je8NDk7P0zHfb4OCLHLc+wMiGGes2LM+HOzYufh77n92s2LNXNsSPq9xzWWu37nXdk0HypOzy8T6V5gcm9Hs1YWH/e4L1ZhREbdNT7EV5BmJ8lDkOurD4HGKzqrKTNN38k15UfRefp5Ze4/HyXnYQpnnHjT8rG1Gu/AOj26p8U5PaE9Dh+rwsU9GLEb44fxzccPDuq/+/F7I1D7KFCbAAudUSoRhsabuIqtTfFGnRZtSs8c1AAfWZhOQ5lMwp8KQ5Y5aqCOQUWZ0vRjq04Y09uVtzTtG5bNC6rNH7DdnnLTiABR5+KkdiEc4CYENRHYt/djGj7GmCNFRi3ag/Lh0C2c3HtKeMigcdhRjGqCoyGjAXZOs91m8fUZUOaazBh0VYtI7dKM38dwJik0mDxQFMKiXhvHNrqoN6Zk6wfeOgn9sq5F2wZjtsJlHgT1obtrjMrIujVe58LCjTHY3ofxvY8blnnwmZ8dgz6iPYZe4S233dPOoVzH0L2j7zfkAU5MwbruKc4r9AfiPcQ5uGU/lPT4wwUFYVwoGF1IQE22ImQFPlcSfJXJTavpPdcXmrPdBcFU7M7X/Omj8N7zpulF7Nx1ErS3uGzodr9l377Bhy4uEpLgk31wO9n7hsozdL1EFdXdIuR3Hc4R+g6/u8ZevqV727LZlFwExTbyan2YWhMnzyWzz4i7OEfaZE9MPorTBgm2S2iPS9vRqEBVnFGe/AH784eYczh/AI9PFI9PsntZdt907FrHthVn8PVe3NPtVnF2c01o34lzetgwDDdYu8W5ZgpFjG22c3E6uWin4prMYScmJ8fIRklNifUwCS3ijs7w0QXsQmBAhIPWO7rodktzQxccjbf8truJ3QGn/NG7JZ/ZPasTi8kDVe05aWWTZdyhSD1u5mwr3RTb3+Fcg3N7FnZL2f0E033GvjvjpstoW0/Tyj1iVUkhcFV66lzFJHbB4syFyIS8cT5EYToFUUoYZR8LV3MXdXAp5ioOLSiJnR/ob+6+9qyNgkwUqfro/jW6Zrl4jjr9GeGh4vwkUGSK6yZweaXI0/wbi2M+vqbH4ickMdYxso2DMD0VsjERQSc6teLGN3wkB7W92mHdgMozfHT5zcNlxuEcoRfckx8s9rpj2HkJjN1r2sbQdkbEaWvkngIjq7adtfwnvEekTt5tcZkdGx/DQX3wGGVQusJlWoRcdViw/SZDupFigddPqJX7HsfI2Bznobj7OhKTxp9BNu2aqdgw4j2Upla33dOC9YgusljMV0aj8mzK7IivjS6KWDiQx1ytGoKznNnoLrIGF2ClMh6aimsjRbor23ERBs5VHgUWFYtemlpnFK6j76/pujcM14rrXeC6EQzPrnXfiRX/TYfR0xywKhWLMlBVga4UoTHPlhhTjliYNJQW1u522PBi2PHj6iEPTMlXto0FwC4yee8/ecb25SDi9NTODFlAHHQ+3tO9Ay1zbRE37L3SFEGu4t5pCsUoVLdWU2WebpBgzKyLwdutFCe68HEErNWpY5lzkN+ZRjrV58J02qTbYQqhmgvWg9X4oMhdoPAKrKFA0RDfq8A2yP2q9ZpcTYGKCZmSOgjmLuoQ7nZefhOzR5FpjPaCBTGKIlMsy4AqwWXiogbERV1WZMNSclGGGCKoNF7pW0LNMa4gSXFp3BIq5sJywnsUxTi3pmtWO0e+ylgVltOhYqnFRb2N4lfCZWgmTMP8MYj+pQXtYQryrJaAxHxFlp9iojgdyjW+qHBlhS0LXG5wmSYYCMnmCeM+QrlSDB6DI+sWmG5JHiymX0rgYmRZz68358AyxNc4jBxerdTXOglvOafnAYbpOR+FxMGEtBC0nWAahygG3kJ9HChwPgrigvyYhyUemT0PXuNjkVreizhdRDF6LkznRuZ2o8WgVRQebSKa0d19n/m2I52P03sZIc5Zt0fq0tIjtkqFCG5QagogH799JmRHMTr9lvhJprPyrpHO3ukYBgTJkMIlgSkoOf65VBDRusD7fnRRa2DwDbvmJT/7zVf89Y+e8YvH97uoH6wyzpYSLr9v4WI3uag/fRb44vmnLN78hLr6DV8OV7wwNT+9yDjdNJSnp1RPVzw5b3jerPltDEtscOOxPZwT1Oim9kF0hbEj4EiUBu55fQ6/dtdqby5aKyYX9fxUf1+B6BgH8nUjxMdvlBoxH54Z5kNN98uvc4IbYodBfLv12O5A6zgkqLfB02BovKa0ZtSWMh87kuy8A1sd5uccjcMC7Vyknu6Bg5XCsgtqEqlvPZ/53JBKYD+MH8Z/mOP3Q6AOHo84j3KgVIZaGwr0xJ5WgdzIZJRuzmPLW9oE69tJqx9rqLyM7myNMlArCQ+qokCdJunUTpcpTQ70ww1t8xXrq1dwtWZzDttlDEvM4+JEiRgCjEJJ03sW1TfnqH7ocD5WJ9OmwaZFpZ/cwv6eTTaMbf7DKFKL82ffZxSNx2wCuuhRuTipVV6gl6vpd7gO1SZ+4t0u6q0puPEFOdBhhadrG6zZMcTFhtal8COHirxp8FphyXAmJfiKa1FuFuLYTkI1TMKTnaE9vIXQ3eGe9h5sJxvu4YZaaU6zgtWJJVs/xHwo3uPyNd1lz84t6Ece25TmHkIQR4spJJzGlLiyJJRTQCJA0wfMG0/or1DZCh4rPjt/v8qSwqL2LXQ3muX1BdfNF/TdJSaIOO1Vavc0H7bi+Jqh8mLE5HwfIzgrwYhXr7EXl+wvFJf7guvg2fmJV3vPTxMQd2IGVEqzMoL2qJXMQT1yjl/F1vZ9cBhTs1h8glt/SvO45OEDx6MTeLzSnC0/zrTc9p5dF93TzeSeVpuAai5HtMdgbyQY0TUMthnFaQmDm8TpUmlyLcJWGQXqUsscttaFuDNJIqYa3+Yj8dv6EEahdQieVjlabQ+Eau/kXN57y4t+B0Af1virJT9yDev1QJZ5llWc/HqksnRHEUPblqtB3NgheKzds3Q7KrvlpP0J3f4x+7Oa616TZZ7dAralCNV1DnU+cUWLzB8x6KXDYkQsOUYXdTOk+SE6Iu46jVSG1qU4S7e3H3twjuCIid1x3vQOB+T5CYvlT2nOH7JcB04X8jNvb6C5lnsITHgP77roBE6u4ClgyPseFxmOSfxUMAYkTi3xIqhmxuM+ksugu7J0FpTuMYVGF+0UKmOmqmBwXhh9Mem8u4Gh0wydpu80TWdo+kzEaS/i9DbeY9pgD9AeI95DQdqwjhvT+fEPDud6fBSp09CmIpipm+i73mu1D+Dtwesjj8kccjeJTrG4GQ+kNtrDvz+2PsefSU67dM1Kl5mm0rI2mrunZX0UorAl7mlmiIBbyfRR6DDGUD3oCc5jreN0GGi9xnmFC4q1zjjPSnZ+EBe16ylM7MZARwauCGSF0mxdQ9e9pb4cuNlmXDfC0t+1/m9VoIbEIZa3uggUBegahjKniJgefQcizuiCXhneDg1FpTjNCrIOnO9xfkDr+X1NtunHG/rEmUzs/iQw2OjS1Cha7zBa1im50gxK06OpkWML0CABp43TFECtNa0LFNpTWkOuvaA/CnFUN/c4GL/pKFdQ1VMNSM/UUx/bm0Nsi54zOIdO5k03HG7Ws4gqyYwnj5t24zXGK4zSFCFgVEaBCMUmKPqQeNYiOuRMewQ5xtPjDWHqo5umoQ+7vvN4jow/p2TNlVUBmyuCFZF6dFGbUlzUuoyYj3hdxbDE92E+YEK7pXG86k7c0wOcoZb1mTIO7xy6GljWA6f7wFpnwqFGMXDYLZaK9MA4dyb6slbZFIyYnwh3OonT9Rm2XmDLElvm2FITMkXIFSqPuMV4vELsNPJO4axCDQY95GRdSQ2YZinXm6lQMejuQKS2gT6+fpKL8UEvG3CI+0gi8VyQ1vLCHHwuhdOl/VtyqmYR9TF3UOckkTCWfUdB3B0EKKZz1KDEQY0cbKPuEKnVZMJK7ulce5nTtSfPDouPeSkfKwPOfYQFOtGikXAzM3FwXkw7HocScQSyhCg2J9f4cRcRBxcp0wYjzL7+vueU7pRqyvcLAbSY3DTgY4FIKQO6GAMajc5xOkPpHBVd1BlSJOy7S9y7v2D3+TP+/fP7XdQAj1eKy13gcgM3DVw3gccnmk8fBL78saL8/M9Y3Pw1r/Zf8qLseXNT8fjdhuJThzk95cGzLT9+5XjoJCzxxvUR4DU/EhNqUcvTw8ZXYR6ilwTcbzvLj10WTNfO+LtDOJgr7rsMw9HPfuiYXr4kTE/FIkcYr5vUhXBfACSIhqLvQHxMX4/XYsSX9gR6JO9h5zTFYEaBu/B+FKrnovSHOHKnIq3CpyKtTdxpcU/LPmDOn/5hfOzxA4P678f4vRCoA5IGHJCgmFzr2Mp6FByhwmzzNV+4mdtIj+/DqakzdJ4J608HwVooWQzulT1oicqim6jrb+i6t7j9FyzffcrNoxWbtee0DrF9MC5aUoufZ2w3/75c1IMNMQhM3IHWymZCuxAFWXEL490UdnLHInu8kcTJvkcxOEXTGbK9J79xmLxBGU12fi4idV2LYOM9uhHh5j4X9VZlPDClhAcFj6Mf2bqSNL4gy/bY4VoCE7tHFHGDGUyGZxKp0y3We8iy2Y3Mp5uIHAfXK3wXwxEHd+ietj2+v6Jt3+B9x0KLo2x51glv++T8g46/ffcl7RVsvYrHLzkBp8WgUoY8JqbrbMWQ5ag8UBaSHg1w3XgWF9cE1xJOf8r5I8+nZ9V7/7Y4qKFpwWw84eZzdvsXONeSIRvmUcZSho+B+FDGjGza72OEdofbvIvu6T3XFzlvh4yL0NElUete94ds4AziMK11xkpP7ukkxl75jivbsXEDVmnq6hEny5+wf3hGfeZ5+EAWro9Oso92ze5ax/Xecd14rhu42UJ3rVlsGnz3lqF/xzBsxlDEwe7xrptxp+2BOC3CVhYDaLPoos6otWGtsxieNw+lnZxpaaSWtF4llpuPAr5hiOzQvR5G13obpvdfDfu4iTvBbWp+5BUny4Gi8MDdIvW8vW037BiGK3ywMe3dYe2e2u4o++dkzac0+1MudE67CuwXEihZ5VAXgToPEoZn1C1B0vmE85ic000/zY8T4oOZQyyKrlpS6jvv2O/uPse9V7GlT673LuE9qocUy5+wfVDwfO2pcxHHN1u5PtPQdpjNxbeXtH7uzE0O6ih8zgOgDGoMSDT64yE+9leavFeYXDh+JncHgTJpJPHKDYrgoNkZ+k5jraLpM1qraV0Up0MSpyf3dOel+JHCOdPGTil1MFclwcN7h9ZE7EZ/EMyEzghanDFz9Mu3GS7IOcEd+JXxuafPpZMozj+3xsx1JmL2hGo5xHtE8VI7cVBnUrxP7OnknjaFhCPqPBvF6TnHdv4+GEO2bqlcg/cOOwx01kTUh2aF3JOvTY8NLW9sQ6UM5zqfnV/i8C6V4SYMtN07zm623GzO2JwHrpvAaeNYL8xHwSB96MgzNYZDFxmUUjfF52YUGJUyo6CRzhOlNFoXXLkWgLUuqJThxvc415CZCv0+BzWT2JOCZZMokAQxABNEpHY64NAMQY9CdR4DFItoBCgQ7Erjo3PdawoXqLRn8Jq8E2Gr/UiIj+LEUJ4Uo9qbEDEgRSeAENvRQsS4BRcwOz9e725Q0SAgQnXmA9YqjJZAK2MDWmkRqlEQphDEQqkRhzbH6BVKjQiujznSfJCKV4WBqoKbHEIns6ozoHyGKSpMt5IAQV1GdMVhUOJtiU9J79zs9TkOy4Zpk53C4JPZY+wUdRblHLroWa4b1teOc5/HAHfFEKJTVSmUitC2MM06sipWaJ2JIcKUkUG9IMvWB+L0UNf0dY5bKMgUpgzozJNlkB3d9uR+GaLhQ+E6je9y4JQyz8lMSR4DJiUPYLbSCB5rt5gQ0Hi0MjNR+G6mc1onuDCJ03dhCY4FuPFPpoJRdFATr1NxRE8u6iH4W2GCCfkxF6rn2I8h+HFOd/Hxi+gm58H4HAjkyTkdxekydyJMZz52xgTKWt4rI6/vxxguupkTgmhKPgijgHiXdDy5ZpNIHUsgYSq7xiN86+PDs3D6ffeNcPT/hBYRhLiSknWQopAPHpWK0XpCHqaCCMrg8GMmS+db9rtf8+Dzl/zqs2f85un9LurnZxlvtgPXW+lovCgF9XG+1Dx74nn5yWcs337GF6//H3xlW77Up/z4XcbqekP+9CnV04pn64bn7xZ8bnJeTzXz20iOuAdJQvX8uM3Z8v7oZ9437g7APHRRBw6vkff9xruc0/e5qY+bEOYYnuSiHvDj35a9sZ4CE+/4ncnAeLjclO83sSiUXuf0N/vgaZRji+DJaq8xg3yH84rc+Nh9zZFIffT6mLHJfBzHHUOD0/iIEulHkZoZf3rKHzgsVMr1OHysIIkfxg/jb3n8fgjU3uKjmFJqQ6Uy6lnrXgpIFO7WxGWD78ctfeeIPE1lDFpLqnmNuBFzpclQWGI7p2JsD9u7hrZ7R9d8yeL6HduLFVdrWNeSAlwXirpQ9LNKuAvioK5yT56pj76JS2Fg287T9TD0CmzA2ISz8Gg7oFwnjjDXiQDiLRwtO4QTlZyV0DpDbgN568m2AZM7dNGgii1mtULlBWYlTmqz7aU1y992UZ86zVYZrqNYaN2AI7oEbYszJdZOgYlaV2R9g9FS4AhGY9GjSB2ig1rr2+043oOz4iJP4rQewoFzWnmPch12uGbfvsEEz6kpeKpLypMBsz7/4IBE++4rdhsjsZGp5XdkmEeml87ROifLFpCvGMocU0jQo9GRUbsPZNsLvMrYn5/xjx7yXrREG1/zbQv7vWJxtaPbf07bviNEcndARWZbhlbZN66K3zmMHtnw38fwu2vc1WuGt+/YvVVc7UrehDDiPZLr8nCJPC2O52iPpck5Mfk4/zTRhX1tey6doD1MdsKyfkq9+hlX5xlP147HK3h8Yjj7SGzVwQY2jRO0R4MshjeafOMoNxuGTsTpYdgy2B3OtdJd4Fq8tyPa41icXuiMOorTS5WPLsxTlYnYFVmIZvYGxCJaWlBN4R49MfhPBZog7Nk6GHaxYJd7SxNDZHvveD00ADhWuG3Nj73i7EF/S6R2iUntGe9y167nxg909obE5RWh2lK5lnzYsmqfs8l/zE1jaJYiUldVYFExFneKLAnVsznXx+cXMUvNIOJ018/d0ypqi7evCaUzuuDYNXe8/t6KQI1wzFPBRKuCqnyMXz1Dr+GkFmFk2wU2G0XRzHcuwlL2USSbjyRaT/iIFJCYBOqpRXq6p073048xNpsM3Rtx8BoJvr0bBzC1/NtB0feabjAMXtNZTeOlpV/E6TALR5y5p8fnl7YhUZy+RyT0M+zGQaFVZTC6p7+740I5P+JXUrHgtpvbR1k6Pfr5hptb35sYnTpMTvhMiVO5QAIScx3IZ85prZM4rYQ/bRSqyEY8gC6K+7vNtMOslgTvKYeW5eDo+142VUNGj2atM86ykr23bFzPhW4F6xERMnk0GVTakNuBvt+Qbd7A1QOuNnB9ErhuHOu9+1sVqCHhWCT8Ls8gLwJdrkBlk3gRx3i+RPxB6xp6okNVGzb+0JF/1/mXNp5zvEeY3ed1YMTDdd7hVCCPwrSOuKUhumGdDmMBUYTqED+Ob0FReMPKayrtyQdP/5EELLMsMMt6dPCOLvx0rJwb34e+B+fw/YAuOmzjMAO4wUehmsj6VGit0BZc3OVrFwPhvAhdoxgZLxCnszFPoopdlul+NeF+vvsQdu3s+WsoioAqFX6vMPEe4DKDz3NMvpROvhETcx979/YLMs8euWuInjZzT5sMHbM8gjNinqhrqtUV62rgdKg50QWFMnS4sY0eJgf1wV9TOobJ5RhTkWULTLYUtFy5xtYLuuWCYZHha42pA1khwnRRyHxTHsWezHMbrJVCRN9DZ3J8fkKZpXDSiuoO9nvr9gzBo4LHBEWGoDO+NnBw5pzW3HZRJ9yH59D1OXJ5Q8DiJ+d2ENF6dFCrySENTGL4PUK1D7HYgswjEnw6OahFnAKUGgW2hCzIxywBH53TIkxn1TS3Z+Hj7H9t8CilxznKJlF6VgROx/D+MzWMdzN1dJYdnveHv2H+it5BaZCfUMfnbbp33u46IuZwaKWjYD3LnVAm7mukgJSYx1kI7PZfsPgAF/WT05xn1463N56LK7jewfUy8OxU8aNzePFZzurzP2ZQGS/6LS/yFe8uSx5dNuRPIX/0kEefvOCzS8VfmYpfqw2k7tmjv+XmLub4wXSuxu8hjA5qdYC1+ebjGNfxIQF9yWmtpWQgj/WO75uL0x7Bz+mI+dBHLurUVZQEa8lr0RPT/ej5GXUkHvvpbDFM3QwwFQKboCjwbNGCmYq7nTJEJIcTXCBw4M5+H+oDJoxVyl0YvAjUzcxB3RODGgmT6WfelRrRiYP373WO/zDuH+YjmW9+GN9+/F4I1N53BAZJg4/s1zqy6FJAYq6nm7XJie2rsmgT5sdRMKK334+L2hh0oSgzz+mQca5zrrKCxlusT9Vn4b1VynDlGnb7r6KrIuNMG678c35lxSn9/AxOa8XjlRk3M0YpnIddJzfWwYaPhvu42Tu+vOx5ceV4eQ2bjcLeQLFxFPuOrNmLOG17GHa44UowAsMG6xoCLrrbza2QGhFfpFJoVAY30Tk4OBb9JflZS3Z+hq5qzPqUvO/RuxalbXTF+4PiA20OlPwmXwI7jLfsfc9gb8YquY/Cg/cdOltihgfofo3plwx1jS1zXKbxpcLlGjQM+WyZE1tRsQHlQFtP1iVuXoceBhHs+wa/f8XV5X9Ps3/BU1Pws2LNHxtD/Qefkj//ww86/vb15+z/7V/x1cWCN97SBjdiEpIz0IZAnp9QFucU5VN8/YB+lbNahFHEuth5/uYFsHuBXv2E7B9k/LM/eD/3+O1m4M2N5/UlDC9h8eWf8+rd/5uue0sexUetSrQppN1TZ+PG87uM77OI5K5e0/36L2h/9RsufuX4zRdL/rLL+LVveWn3bFzP3lv6KFDPF7g6VtUrpTnROedZxaOs5szIbmsbHO9cx6thz8thzzWOIj/nwekf8vDx/xr7/J/w9MeOXzyDXzzJ+Mnj8qMFI37xrufFpeXFVeCrd3DxWlN92bN4/RXu5pc0zRf0/RX9sKEftlK0cU0MmnUS9ohibfIDYXoZCz5LlbEaXZiKc6WodSBXnkL7g1Ce49Y5lxZwse2/9Zo+aJpgaBBecGMCL3XOzltufE/jp3C7F/2Oa9vzu6zmp27Bf+E167onywKnq566tyy6nHWfcUrGRTCc5zmOMBYKbuyOvdvSNm/Y7V5QVedU5WPq7VPW7Z8SFk+wyxOGuubdKudNrdFlIK+ktT/LAnVFDMSK51IqVs2wP2ljnQpYYVAS8Ooi0gFGBvXeWy7aAvv6c7Inn00vqM5EjAV6PHtnGRTU9VPOHv4vufrsCZ888zw7lXvCF2/AvYa6aQjaYLoWNexxdititD/Ge7gJ7xGLE7LslY2LUpOzFaZuJPh4bXC/3Sy4asz4u6vItk6LeTO2a04tkC5IQdMBg1c0QcXzJ9Dg2QbHNjg5h9xAE4sdwjf3B2Guqcn1tsAo94YhBoceOJuzkpB/93uq84KGybsB11/j3B7nb4fneT/gXUfwA4S75bQU8qaUjoUmSevJgDpewycmZ61zzlXGqYIyc9ICnqdQRHnTucLUBl0V6LrCrE9jjkYZ10u35+XgHLpeoJcrzPKafHlNXvYUbzzlTUnRFhhfYDJxCf5le8nv+i07b3mc1SzjmmuhctamYOcGrrq3dFf/lge/WXCZ/Yhf6eQg73E+8ORB/r0GQh+PhPnIs0BRBJpSQyZFbjPjSYfgY1FeMB/B1LxwHc9NybN8wdv2isE2lH4Yu42Ow+/07OO08U4t9ONW3kv4bK89GVJIytQUVptHhNxNxKbkUbAu4voroZmkuKipg6ZwskZz7uMcV70+QS8lKFwVJbpaRqH6sGMrOBtDUDt83+E2V+RNg2s7Qm9xjcO2wvi0bRTZog00N17CH22gsJrca2ovXQJbFA2yBk6inhRWDXUsnrZB+NRJcE2FRPctVGvhUB92VaxX0LaBXafQW/l80IahrlHekw2PyO2OzFTSxaQH1Lxj46gLUYQaZhiFI3deugfnKuZ41KhqgVmux+MenEXlFarYsfzkgif7jp93GW/CgousZe8tNjh0YHJQQ5JMUUh3gMkqinxFkZ9Slo8oqieY6hnN+SO6ZYlba7I6sFx4ikLunfkssLuIxokksia/TW/nXaGwWQfaVtG2C7Y3C/LtI6rNp9TXP6HcvaDaf85+/wLveoZhwz70WG8Jqf1em/G6mA8XmbYwidS5EkTHsY6ZhC8Rw4Q7raMQa+O6cIJWpDfQQWGVCGcJr6DD9DfTx6kQrJXCKI/DkwdDr/yE7VEBFyYuiriqId2OdFx3TZkC01tW6Rh4q/hYGkzjLRo9no9DdFEnYTqJivOyavrTt4Xj24WYr3dGx4/Hb4z3wfEnj//NOE+LI3rWdRRFahfn7nT9pfWA8NYNyhmcsqi4D9jc/BqtDA//e/if+OdAw//uzxa3OiKXleE//mmN83v+3EpWyN/4gNGe5w8M/9mfOP47+2c8+O0/4pdXf8GyfUfNI+p/a/n56gXlz3/O2X/ynH/Sfcn2bx7w7/QFOzcQ1CSe3vmyhkNzWPpYj8dGDma6DkYUyNGvuStMOn3fvHDzoXcOo9R4noxi+vxhzx5vmH3OEQTTotI8KNpJOgfRsPOWSge0l+sQHTvJQjjonNFaNKI0/Hg9Ss+C84o+dogOsSOvd55BexrlaXTGqTesfEZtY4d8/H36qGryvlBGFya8iIt7pSHItb2NwnQThekmdp+KUC05Pn3w3Pj+IEi9/x6CUH8YP4y/jfH7IVDHDVg2W4wfoj3i2zEP6CjVKLh4Q3JOFm7fh0CN3Atz7SkUsmEgcagPFz/CMYPBdbTdJfv9C8qbz1lcnrN7sOBiIYzUwsD5UnPQ7jWKJhLgNdgA2XfjZLa953JnudgJ03bfgW0Vugtk3YDpu0mcdh3BtYIMsDsG2xD8IG7T9DolR158SHJjDOPE7IO45IZOMew8uujQdTMxqaOTOrgGcHgvi/Es85SZY2kMp8FwYgo2rhecQPD0QTifzjZYnY88am934oLSGUYbQlRflDNYMgk5O3JQ4wPKySZRD2EMdTGDPWRxuw7bv2PXvCQLnlNT8tSUPK4GzPrBh7un3/yO5p3nasjoGWQhOOO9hbhAyU0p/OlsKfzpXEQ1wbmKq3ZzpVkDw8kDHp0HPjkr3vu3hWcs4YjVpqPbf07XXZEaH52CLDqn1QgV/PtLyPK7a/zmHfbtG/avB64vSt4NORfBsnHDLRzAHEuWnKXiMJ6c03O0hwhjPdeuYxccWleU5SmLxXP06ifsHyz50Ym09q3rj9eufrm1XDeOi33gaidFJH0ZqK6uCM2r6J6+iViPRtjsvpMQuFnYYyok3SdOr6LrcQWcZYIJqCLvMJ8Vi+aOAXETTw4B6zRVTKZeek3rRUjYAi5xvJVmpwdu4mtiYzHm2nX8TileNCd4ryRstBBUwSKFe/UZAko2PDTV6ILQgHIDDS39kBjMA953ZNma3LXkwyP0cI4ZFvRdiS01XanoSzCFou9vd+SkbrqpRW/WXTEoET38JE7POf0hBFqvCO3uztc1MeeGIMv/sjhFL5/DClYLmduvG9nAZ92RquItIQrS84DEhF9Kjl2Im8MD7ua0oU/31Y89LoPCOx0DGKH1OgbUEP/uzK2eFvBw4CgZixuIG78Jsmhvg3DkO+9ElB43zGncvifKschnx2dyl3/skRjm2g543+LcbXE6hTMeOqjvb4UF8fmJU1w4qFm8pnPMiDYoRqcd3HJPF4Jh0EUuzul6ga6W0g2WT8iltG4SpJd8PM5kzlH1G5ado+8HzqymHzIaMq51TqEkIHrjenEXwlgISQGs2vV03RvK/WuKzVM2m4y3qxRg6qgLfS/v8/sYiUM5bjR1clAndvC8yDFhPpQyXHkRqE9MTgYSlBhFj/Fn7vib8+6ohKlI3zdiA7zDx/XvyMFVmkElDm6IuA/5/gGNiW7rdpzvRQATZ7Ea3cYfY4yIiRmyS+XlQWeUAkLfoooKlbeEviPEQohDHNLaOcYzPzaEZENcnOFlfZYBdiqI1lF07JURx3lce9dKYRC8XOpGOzju8emndXT+gbKLvoWAkjV5lgXINF4rtA94rXC5wWc55DEsMRY5jrsnvu1QKeDUGCkumUyKovH4B5OBt5hlTX3ac1oPPO4XnJhCMINBXNQmHuEkQCV2vyA+ZA1tTDFi5ciXDHWBWyiyOlAfdSNJ0Lt0JdW5Ot6OjcetjzjBPt62yiKwywJ7rRgyg9dLgtYU2pBo7vvmSynQWY/F0gVPTiCbCdF3cW9H52h0TZuj75l/XT4tbtO5S3HO/h2/L+5t5jbQxKeWn1EHCJL0bx9UXKyAD0cHSAmCQN7LOZwT8HHvdMzRhcOCsjJa8hk/wnBMhZI50uN94vT8yB/fx44f+e05cSY033lN3iHFpuLtXJpVSgpSqMMOlnjPdx6USgK1P1wDxDklPRdn9zTdO/a7X3P6xRt+89UjfvNJx5/+ZHHr0VWF5vlZxourgZttYLtVvNwEzpfCo372qef14jk328/5st/xsjjlq5uaT15dUfyow6wfcPrjl/zkdwP1LmPvrbiojxzId91Ljo/MXExWMGYtzx3Xc0e1/gDs0/uY0sfu7PT3tVKjye4+ofr484dOaikOJSd16pYbvGIwjiFoXDAjYrAnsZxvu5s1AZzGK4VREjpaBFkztfF1H6LmgBYECBBxIorCyfV3S5x+zzFLq3IfEs4vvedQmCaMaMQ+yMdtiGHzQYw8c4H6/vykH8Z94wcG9d+P8XshUBO8tIbGVO5CTcEniS9EfD+mFx+PVGVy31O16ej36pi0XKCo4+POlMamMCRkXSIbBssw3NB2b2h3v2Jx8ZRu9TM2C8XbKlCYwPnyMKhp/nESqBMT79uMwQYut5aLreNi57ncCT+LPeR7O7mFbQ/BCkvTtTi7lRA2244hlnkMhkw8zOMwtbkYIQ5qEalN49C7fcSkGGk1rmuM88JR9sItdIOnto7OOlZO88AUXJmcxlsG5WMbmsW5Hus6jGsxtsHZLUobTNxsmpFrV8bHYvBajUJ1UjiEJ8soTk9IjxRPLyzuvn1N275lpQznWckznfNgucWsH36wQD189Ru2V4ZtiExFJkeVRxiVDqhNSWYWaFMJf7oUzp/R4kq52kG4CKAymgcn/Om5MDbvGyl8c9tBu1esNxsu9y8Yhm1cFEhDrYT86HtbVL/NSAWjj3lthnaHv7nAXr2me7Xh5l3G623FGx+4CAP7MIxuy+RaS0PB6J4ulWYRudMLnVMrcehsg+PG92xcz9ZbnNIU+Yq6ekK9/Bn96UP8meJ0ETitNeuPxJ2+2Tsud9M1er1RDNeKk6steveWvn2FHTZ3M6dxY9hjKvbVkTldaXMgTp8qw0opVgqW2nNaDpS5G8O1UqdK4v2nkVq0rdVj4JW1asQ0VE5ROUPtFehM3HxKUQVDjmGvB3EQR5H6ynX8OltAJ+7/NeKkzowUqVIxyTnNI31HAcYNtGFgGDaRTW3J8xMq34mbzbXo/nzsqBjqAjtobC5sTJ3JviYtZm4L1XJrSdhg5eJ84QUBNB+eGIS4u+a4lyEhPjwhttNmlMU5dnVOsQis4s686eX6LDvp3AjayN8J7792RnE6vE+2jciB78GsugseoqvFBCjCHCci32NGN2lymIgondAnafE+itPz7hLvxiKeZ+4yUiS+qrojKkg2qb0Ub4KTF1Idtv3C5Jr/NiMFa+phYDjihB+Lncd88NSteri5n4udkT89w3ukQMICyEdUyzyfQ9zTyojzUhUFuqrF9VotRTyMAhcmE8erkwKIchLFNLqrvSPvB+p2z9BZukFS7xunOdc5tc6wrqeNuA+ApZaz30SBNQO67i1D+4r66jOubh6z2TouakSkLix5pr730MQkUo4ff90+/aigoVTGpe1wuXCoMxR9fK0nF9/ti+ugAM1tsSc5yYISF9nc7ZocnZnS4rRWHhtF7DkGRCtFHgytUjidYfAUqI9akAnOgXbgYiFjLkzPGcJFNRU66oWcT3UtwrTzGBePggOTAwRcLp/zXpNnHj8IuqYKHhcSGkEwJkmIqhEcVa4DjVO0QVr2jwWvb5Mjd5cRRGsoCjBlIBgRJYOJokaeEbICZaoo8hbI7JYOXnzVx9cjCZuHD87F+SDNlXI9K0GqzMKmVVGh83IsLqlqiaprivWW1cpyvgk8MAWFNuiI2LrbbRsFPqUxSaTOVqhshS9qbKnRNZTVJE4vSlhVIlBL8DCsSn1n0Ow8gLjp5YzftuK+zrLAPvO0RrE3NXBO6R0lUG1/NeK7XMR9DN6RaSm2Tu7Q+29mwo+eTEN3fY0g9SmPgiPEgo/q5YGbWonAl5zVPhZ/XQi3xOokVOMFgVjcxa9QQJCAth5F4UVEG2KAaMJhpfNhfo8KzvMBWuMHjVQQmxfR7pqrOPr41lOZfc/8K8dO6GnMcxhm98S7vjPNkePvNHK1B4UsUuURO+/FZBOxJcIQn8RpH+KCLtp3p79v6btrmuYrlu/+gs0X/1v+5seOnz91d96bnpzmPFtbXl4Grq7g3RVcrMVF/bMnsF//IxY3v+Ry8ze8sDu+NOf87GXG6vICsz6n+PQxnz55zfq64Mb1I9Yi5eUcHPM7TvPj46TG1yAcCNXp5+clAbjtrE6fGxEiR3PUfdfaQbhiKn7NHye3z4u5UJ0KIVrF5x6mDfo8QDjXRkRdVBSnoY9rTSBmich6SIo78kxcEFNEjfCmtzg0iiEEPI7d9IRxKsMFKXw6f6xr3Pn0x/tLWlG647c7hOmUpzBE010X7EEndRKmUzfDD+Objx8E6r/78XshUAccGYaMqbXxeByL0ncFMI3DWVlEv5948M0eo7Mj7kAbNU6EddwoiFNI3QrfyFHkAezoov6ScvtbFhfnXK/OuCgCeQaPTzyrUsdWOVkITUEtk1D9oQ6Q+XBexOm3N5Y3W8fFDm72sN0qssaTd8MkTkfutIjTOxHDhhu87wAfg2nk+ZYqG0Nskts9FRPuEqld6/HNQKh6QtHLphnZ+BjvCa7D5568hMJ6yk5c1Ocu553J2blhbO9OLmrvCpxrsXaLczuUzSJPT5zAaWiXy2I5Tz6S+PkkNjkfP/aYwYqT3KeAxA7fX7FvvsS5Haem5txUPFaB5dqiF+sPex3efUn/6jXXm5zrWDlN7GkJJ4mLQgXG1JhsOfKndSaLehA+7tUGFpcNOl9hH2qeP3j/ebFvhT+9b8HtQG++oGlfEkIvVXgFWuXopNh9zOH8KIJ8jBGGNoYivsK+/Yrdm8DlVcFba3gTBjZORNAuOAbvDsPUYGzpS+fxykio0FJn4yJk48Txe+169sGjTU1RnIh7evmc/YMl1SpwvlCsa/3RxBXpcJBr9HoLu42iftdTXL/DtS8Z+gu6/kqY064bmdMERwp7NExuulIbFiZjrQuWKuNUZ6zQnCrFSgWWxrPIHcvaUtVu5BzKmyJqTeh4YLwL+AHcYMfCkxsURefpe33Qot0PGUZpDJnMEUZh4qJv5+3oEHjpOowpR5F6VQ2ji5tCzhkHnIcMd8cuW3tLEyzO7uiDZ9+8xHtHaXcUviUbtmTDI0x3QtYtIvonY0DjM0XSltJpn96ndaE4p0ENYRSpD4ZPRclAD4ShO/jyHKWQFqVaF1TVI/rlksUiUMfjvO/ANQozTNeK8k7m5JDY4vHxhclR7WcbsHkr+fs28D6oby3KHo9dEN+ZCNOClxm7oMaX7Ei84JDD1x+J0413EnLqJyeJS90QpE3X/c9v3to7Pz4HPxEFFJictd90COIDdN/KPSmK4XfhRkJIMxF38zaPXGAEEZYS6iG91Sqyd2fiNDCGI2qj0IUZ3dOqKFHVEl0t0fVqdGDOBWq8I/RiaQ1DN94lM+eoBotte9rGsh8Mp14yItamoPOONjh2bhjPt7mLWsKiL+m71yxvXlNcnbE50VwtkotaUeWOItPvLbJ+l5GK/D58PfIhvVYAI4Ylvlapk6tShjK6U8dixGxdcZf7bO6Om86C9LGIYR7ZqKskgkWx2oaAV2F0VOdKj4iB9O9BeXJEyBZn+8cTqEM/EKocZVw8Xya3/bF78r4h/GTBEwQXCAV4H1Begkq1UWRZwHspULogrOdcB1xEAhUkl6ogPmolH/cgwbzpbymDchOyqbfy+lfvbzI7GHP0kwvyu7QGnQWsFtQTICJ1ZnBlRbavYpHffG2hf+4idDEQ7ODvqxR6qkb2tComcVoVVdQ3ZWGoqxqzLFms9zx8a3nsC1Y655ru4DcfXGGxsCfidCkhj6aErJTOvVJRVIL1mIvTq1Jc03WhKIxiFRGEad8yHxLIHujLgNGOOg9sY55KmrdaFHtqlH9IASwWz2NH1EDoHINvaGcu6q/bBiUBOrmo5yvPEQ8SF4RZiMWGeB+avz4+fpOOXbHyz/hBul5nwnT626M4PXs8PoQxANUFIyzdVNMK0CgtoW5eC4Paaaz1aC3hosFB0ArvpOtTGfXt+DV3DBefXxILUwH4PmE6zA7h4Zi7nBXTCyU/PRZc41PP4johdU5X2tzp0J0wOEzog2BlPocxcFIhCzmPmdzV6T6cupe8IyHQ0jMI8TE5t6frL2m2v2b94pJffXXKb5/2/PGP61vPdFkZnp9lfH4xsN1Krs/LTeDZGp6dav7dwz9hdfXnbLdf8KLf8TJf8/qy5smrDfmnLfmjpzx4/pInv655MzQ042OaudTV/XPrcUcoyJoinVLJ2TwXq5NTWY4rI77mfeOuNeTtnznEgtzloD547LPvc+nn4jpnLlJ33o2qeaEsrZd5RjIYRI+YFyDHYn28jwLkQeGDpw6KOmhqZWiVgyD5D04uZJmDNThl6NG4I6Pk8ZNxR+8hIVognWHpfR/8iPRIovQQPMPMhJHO69Rl6qMm4MJ9R/GH8cP4+z1+LwTquUMoISNMvHHB1FYxOYSOfkFqs/YuCsny9lG3OkdRrTpWxE3aLMaNYx/b6RLmI9eG3HmG6KJu2ldU21+zunzEoq65qSuKwnP9wEcHgojUIoJPjunjlsMPHYMNvN0MvL2xvNw43txIqMNmo+j3irqJ3Om+HUMRCRZvt8Ketjf0wwbve/IgIZYpZG10co3BPUjLcRTv081iPIQebOPQdYcqCqhq0AZd1+Acobd4F8h8ILeeunQ0vedUicB2rXu6IJvhWy5q02PtPorTFcq1qCEbb6QTriNDucMTKAnThwGRLgpDDmzH0L1ju/+SOigeZCXPIt5jeRY+3NoMvTQAAQAASURBVD398te0r1o27QnN7EZ14AwMgaAUmakw2ZKQL/C5QWdhFKi3nQTmnd5cE6pzVg8CT0/fX42RUMzAbg/51tPtfkvXXRHGJbhBm+IAixNCWhJ+tyEOakcYOsLQovLq63/ovuEtfnOBu3qNffcV9u0bLt/mvGkL3gTPhR9G5nEfIqc2LraTOJ0WxqUyLKMLcKlyCmT+6UNgHwY2rmfnLUEZ8mxJXT2hWvyYYf0It9asVo7T2rD6iM6/NzeWi33g3Y1co+qdoD387gV9+5ph2IijyO6lqyG6jAKeLKTnJdekYD3kuVXKCHMaFZ3Tkzi9KgcWS0teBrIqkFUKk4uQoAsz7tSV1oS44/e9w/c+skQ9ZevpGk3fafLek2uDC0pYqPG4FkfdFq0XZuiNH3ipFEaXmH4SqbUKkqadOZYBzl0O5HdbP7ylCQ7n9rTd5cge9sFRuJbctxj3iNyeooeBrKyABS5XhEzhpboGGtQsPHHOp8eLe1qnglacL+bDAaE/FKjHr6WiFAGjS4ryCdtVzlkloY3OB/YtqC6gvCNoPc1BR2PuAB6FzwMx6v5Frbg64qb6IwnU2+BQQdPH17dWGjNzld11hSRROgXEJGdJQjkNuFiQdONiPQl76U02YJOrcj4SCkUEYz+6qJTS+NmxklM6fGuBeogt7Mp1Y6Dw8Rjbi6O/6HjrDowtzOP3x2eZ1kfJLTvebxUjd1GErAnvcZd72ixPJwd1Qnyk4olzhKEl5LHbKGIENHI+m/WK+uEVJ52lHzStM5wGzQNTylxrBb+yi6GBZXTUpmJZM2xp27dU7Uvqq0+4fnDOZuW4KKEuPEXmMFrx5MFHdBXMxmDD+Bq7IK+XIHyUYHuCOMjnY17gEL1Lc+MGtsFRx+JfiMUIfUd3R7qnH39ufv6GKE4l55uG0RWZgu30bM60BLKg8CqMwrSO/9ZKjaKXCyayeD8WA0DCD0dvW7tDewvRxavi+TI9UXe7IG2M3EOIBpNBkDRBx3PXT8glE2JQnI5IFCXouNShAVBDXIMHmhDofOyTUhqtxXOaBGrnv3kBaq79pY8F8wFDzpjpG7TCzzEfuhTBV4nIcXt8s9dkHpCo8nISp+O1mq5TXS8wqyXV6Z513fO4W3KaFby2hsHb8bWDI0xAFNKVMhLyqCtZd2Y5upTMhjpiPZI4vSr1KFDXhWZZaopMj/uUuakmFYd6K4g6ud6j23GGJtqj2LslyjuKqydUdifdL64nDI4+9HTJRR1k/Zb2iGMY6UwwnlzO4W4cyNilIOx30AzBHRiMdMS9JeTHLTc1jKF0hy5SNQpuADrIPOi8hLx5JeCm8UVR0CQmtVdopdE2xMDygLUaZTzKhJibE+LbRxKoEdRCEuXnBbT3C9PJHT27oykVJ7FAwKIDLON6NHUrnpicE11wZnJWKovdELI2TbNIcqAKHsGP3N5t3AO+ts2YbTLvlhy8xTKMwrX8xvkZnx6bP7gPa8CGgb6/Yd98yfLtX/PuxX/G3zy3/PypvxPh9/Q059npwOvLwPWV5t1V4M0Dx2fnGVc/fcLq1R9Qbf6GN7sv+J1r+Ko74cdfQf0HV+Sf/ITFTx/z4/+u43emYOuHg6L1JE4n0f+uuSQJ2vG9inudwMGrcuyqnjPcv8kZdJ+YHXcI8pjD5Ly/q3h5/O/0PamTyMxEahs8Osj1tvNWsKLxPlCQwgYVg1PkWo0LzWleme7pLihqp1kpQ6MMg4rrTO9xamBQsh/pdcYKA2Sj4ed4zDty3ezfyTHtmN5S+OHOWzGoIHPMsTCdcJ99cAchpe4HB/U3HopbBOAfxt/B+L0QqE0UVuZc4/FrH/g7wqxNleQ4+65iWBreirNoBqtPAWIFUCDBNVmsAqcpOK09cqXJg8O6jr7fsNt/QZavqYtThvrHXGaai4exhxxYEcNgfOA4qOWbjJu943pveXvjeLMVcfriRrAB7VahNoG8aSZx2naC9ohuxGHY0PfX9MMWcJRKU2kjyACVjU6umnTDkA1zbjx5JizZubsrOCWLq95K0jvJXVjEjfRA5gJ+ECdnUXrqzrLqctY6Y2EyuuDG0LtjF7Vze4wpD1Af6AxlzXurxEloUt6NaA9tB/AiUge7pWm+oGvf8sjk0T1teLBsKNbmwwXqV79jd6nYWMM2DKODenIHhlhNzsYk9ZAVuFxRF3LT7a2gWfwVqOaS4fw55w/C127sd50b+dP11YZ9+xWD3QneI7qnTXT+AFM7/Ee4OYahF/GjFyblt74mvcVtBOvhrl5j376m+WrLu+2KV07zJnTc+ClMbfByo0++hCROJ7RHpSN7WhdU2mAUMd3ZcW17tn6gI6BNRVGcUFdPMYsfsV+vyJee1QJW1cdzT+9aQXtc7OBmC91lRHtsX9K1r+j7i5E97V1PCBYfA/ESd7pQmlwbKp2NXQ6VjmGISrNSWrAeM3G6qhzVStLh86URYboqhHFYFNG9Ned8iFgRnMO3PXnvsI0j27tRqC46jw8KMxiMMxivKDBjkJJRio3qR8bwxqmILSgwvdzW6sKOc0kVFCsbYtjJ3U5qvKUNnqG/ZmrpjEK178hdhxm2GPcI3S8IWlqzXW4kSDVnXIGH8ekGVBQilA+YIUwidVR3lZ9clA4IQ3v4uIzw7xPiow+eLF+SlQ/xS82ichRGse3u4U/DgXP68POH33tcUBrdMgeLZlmsD1YTPiCl/UPGEMXlIt2/Q+Jdh1v388l5Mksujzy+hPVog6WNoZpju2N8/IctpHc//gl54pi7lw8YlN6hXOKkfnszWm8Dg0NChf0UxDifS9N8Kl8L4wYSZF66q4U3oUA04kQW9/Qhf1rS6+Xbx/c5sbiUS7BaUaJrwXvoeimhatXy8G/lggkIQ0twFm2yqdXXOYxz5H3Pot0ydAPdYGibgjNdsDcDe2/H+zJ+wAZPpnQMClTYYU8/XNO3r6m3FxRXa26Whrry1EWgMA6j4eE6++iBiXOBTN7EETtYCUKV4pOL82nk2c+7EUK8ipQE8e285dRUVDoj2P6AUz3Jyu8fc3ecV5OgkASiuRNN1gUigIk4PbmnkzA9/zcgn0d9NH06DAOhj0Ut50SYcxb6Dl2UhDtCN4NzUqxLwv9R4LJKxRQf0FoRootaaxGr5y5qrYQ9XARwUcSqFVSxQNMQaKIIO672xs6IeAy/gUB9jIJJIjfE6yxTBBMIUaV0uRLMhxEHslIGrXOgQSn9rVAMo8Ej8qdVXgl3upDrVxkJhyd27OhqiV6uKE6vWZ8OPN4EHuiSShka7CjU6lFAjK9DEqe1QSnJcPFZjsszTCFBoiNzOp/E6VWlqXIRqNeL7M7uh3nHp+xnoMgchfEUxs9yhQLeQ+M0jT9h/e45VUSXudglZmMbfB48WdB4NSuAHt3HUierUZNYPB/ze9JccD4QCJHz5tB5Km5qEaQkVHDuSk2CtXycONThoOPBR4Fa3NQ+itaGOhV4lMbEPAeZ3w+FfN/78ZF/LHOlCyEhmeMcdChKH/6ZmSh9zH3GkXkJHl/ojFNT8yir+If5msc647EKrDPHqrCxa6896NrLqsPXMThwQxi79YZOs98Zmj7j8/0jLkLgIjiugx0DuXdx/Z9E6723Ung4el7qjjcdAtY1dP0Vzc1fsfryT/j1q4ovPun5xSe39y0nC8PzBxm/W1s2m8Bmo3h5HXi2Dpz/1MNf/Rmrq/+JN/sv+WrY8SJb8vZNycNXb8ifPCd/+ik/05/zl1nFhW3plUeFyUV937FWqMNVUJi7wT1BTbiU9wnVUnh9f6ddGsd76HnYYghhxIPM713hjo/Hn7njbySsTnpssp5gdFFLBoeLwcA+Fuo1gxfTgQ9K3NN6+stlLvedwSlOozu60YY2OJkf4h48oSCH4Bm07DGSueZ4fkkFsbSmHj8O0+dS1kQf9/YJ4zEPIU1/N+E80veHWWaFvfNI/TB+GH//x++FQK0Bk8Tpb7phju7M6d9RqE5C2Ecw5IS+GwXwtMjWOrqokXbKSplRYJ8zzxIrMA8S9jEMNzTdO4rmBdn1X7Eqaq7zx7x8lBbAflwM14UizcxFpr8R4uP11cCmcVzsHG9uPG+2ggzYbhX7jYjT5XbANDvUsBfxPYrTyT3d91f0w4Zh2FIEqI2ErS1MRqUMtTKx1VhRI6JXlXlh2eaeLPNjAvUkUssCy/cDwTlpWQR0XcuGxnuy3uMGT17K71opWKmMhcrZK0ulDC2OgXDgonaux9odWpd416HUdmx3Ih5JcUbnhJnbJwWdHYvTALgO271jt3+B8j1nxQmPTMlT41muLfnZGl0fbfbvGf1XX3F9kXMd+dMDbuRPJ6evA7TOMWaBzlbYssSXajx+vYObraLa9Pj+inb9D3ly+vXu+m0rAYl9q1hs3goGwXVx4WIwphIHdVwE3cW0/bYjDBbf7PHtTgLkPlDQPxhRnHaXr3CXrxnevqJ/dcX2reJ1n/MmOC7dwI3rR6FkYNaqqMQBk7jwpTZjaGCtDUVcfiWRbOcHGu8IKqPIllTlQ6rFZ9j1Y/q14WzlWdewLM1Ha0t/d2N5cwOXG7i50pSXA8XVK2zziqG/YBi2DHYnxRjf430PwaGDoD0Sdzp1c5Rx0yPCtIQirhDm9CJ3LApLVTnqlSdfRnG6zjFVGbEAwr1M7cXjiC3eYejRdU/oe3TdkdUDw85hck/eBayNqI4+kFsjm67I+E6rXYOlDeJ32fhBxGtfYIb49wqL0SJWLI2LISkaRxadggGXzZyK3rLzHcPAKFC76HIMwZG5ljxYtHtAoaUt2xWlCNXWiBtOq5lAzYj0mOOARnE63g+Ct+MiPxwJMfPhkIVontWo6iFZHahyqfY3A/Q96MjB91l+EMJ43zjER8hmYT7SsXFhvpgWxIezH+fcbb3DaINLbk8VA6Dg3gV+EqZd4KD1sQ12XLhPC/i44J85UD9kHOM9koAfgpd7np8c1L39dnNd0wfaHvywFRb8zEGtlcHNHkNSDD/kqB8HJCbBQzZNHHQoTYiPgDYaVWTj9aur5citVdXyvQVClVeY9UP87hplMny6T3pLGHqKXctiZzlpBlqrOfUZO1Oy85bep+KCG3EU47nnWoZhI2GJuxfUV+dcr8+4rhRlEaKj0nO1tTxYfVyRWsRpP6EGbKDpZwK1DQcIHT8vZkQXk8KDMgzALgxAxUJnBJoR53IclOhnG1c/Ex3mzsTxc2rq8Jm7+mASFoiFDB/8KKrNRa8kguFFoM71YafAdxlhsASXyQRlDN4YWUsZg+u7g3uEMmZEgIShx/f9WNAMH9CykYS45KJO3Yo+Bl05oEDE6Vx7ds6wDRKIHNQkuB47qHv74Rv9NCdAcgHL+eJ86lKI4jSpmKmwZY4vKgkZ1OWtc+LO4wqjEJHGnNuvdUBpPd6HVV4KnicvUUUZj3dGMGKU0O0uhiV2nL8eeOZKfm1yrl0/OoHnIyGS5LHGN1MRjMHlhqIQ53QVAxHrXI3i9LLU4p6uPmwNZLTi4TqnyHRE+jiMnow53ge893Te4FfPKFyLczuG4QbrpMjcuYYiePrgyIMenaB3IXV0VFxvISOicD0iAMaqtPBu5Rqbfl+IP3PgpkZB8KgjpONBGF1UArPZdZrE7CF48iDrUK9CZFRrHEYKuEoj4dDHw5GXMxPUR7q+E7t9FKjHp6HG/0TNVONnZW4cyILgdk5NwXl2wrNswY+zmmfK8NR4zqueJ0+3lHUgX0JWSXeeKjLpBpgZIO4yQ0AqdvX4wRJ6i2saPn3VsNsYbnY5F23BW1dxETwXwXLtLTd+YOelE7Lzjj64MWh5dKiOzzJ1qgQxkg1b9vsvefT6N7x5+cf8zeuBnzwu7zzPH51kPF1bXlWC5Hv5LnBx7vn5J/BvfvIZy9efcb35JV/1l7woO17tS55/cU358w3Zw0/4+fov+dFlzVdmx87bo7l/EqeTt1yNr4GMMKrNsTsrgNwxwr1CNbFYlc7rr+dMHw51tJ5L/9ap2B5m6A7uFqfvEq3Ts9CoEXvUyydBI4hAFVGBOnaUhRBd1MJtz0YXtayPJMdG8mzqQRCHDRmNjqK0Ghi8CMZ7J51JQxA0ZBX3hscWpIk7fShGy9emTsm03u/DlKPiguTQCNbTj/v/JFAPsSCe1ro/ID6+xVBx/v1h/J2O3wuBGqZ2K7i7pWLONB7HzPI0Z+KNIvXQyiJOf7fD5Nud4An6TlyDcXYSFIlw8RIbUoIS/Yj5QKlROBqCw/qOob+had9gzK9ZmZK11lw8eQjEQBHr6W1gZTWuksqfLLLj8dHqjpRxcQkNNtD0ni8vB64bz5ttGAMRt9vJOV1uB4pdFKeduMO9ayFYbH9N31+K46nf4FzDiTIiSmsRiiudkAFakAE6UGsJPCoKT1H6KExz8F4ZJa1pg2xexo2Nc+Ki7ntMbcmGQD4EisJLiJvXLHXGjTaS9u0FpyI3AGHVOddgTIGzu7jYziDyqBXR6ZhJK24whws7Ea79QUu98g6GLX33mt3uK9azcMSH5cBi7dGr1QefX+2rlk2z4nrGoJon9SYsjNE5WbZAmUraRjNFlsnj3bew3ypONhu83dE/yHi2/vobWDMEuh7cDvzuBV1/JbdWFd3TWUUWnT/ODyhl8KG/Y0vzzYdvLL5tJNiw3X1wV8T0CyZx2r77CvvuJcOrt2xfei7flbwJYUR7bP1A6+0YNDF3TCS0R640VWw3LGMnAEzi9N4P7NxAqwLGVOT5kqp6SlY/ZXuywiyl5XVVQn1H29+3Ga+vBl5eW652E9pjcXEpaI/ulQSVukZ4666LDmoXBSxGESuLqKRSGXIthbMauU5roNaByjjKzFGVjnLhKRaeYp2jqwJdV+K6zIVbq+P8eSBSJwapt/he5kXVNoSqQRcNWWXJdh43WLImtvL2YXRTx74SmcdQDC62vOHZescbbSl8jrbS3lpmDqMDZeZZBoVzhj6eRWkP58zUtdK6Huc7bLwdpE2c946yEBEqcx2ZyjB+jR4GdFlihhxvNEHrKFLrUYRQUaxIrHrpuohCZBS1xnHU2q7icUvuDBc8Rb7G1afkRaCOdIDegu0VpRW8R0J8qNS6DjKnxXGfq/p4hCgGJxd1H4Ikozt9a6PxbUcbPCY4TGxlhiRMy9fNkUU4uU1EoJ7CYgZimnnk8M2dJfPAJhnHUt78OUc+9wzvkcKRxqJbsCgvzr3eCqrjm47BBnonc6u3O5ybBOpDB3USycPBRvH4Lx4ytScxW8+KTwbpVpqjz9L7EfGhIxagmHAA+mvE6fExVEu0MfjdZtqYeofuO7Kzhqq5ZNkI6uO8X7DVGZsYYmxdj40idZZEFAIhWAbb0PdXDN07yu0F5eWKps7ZVIKvMspzuZNjd58j85uOtve0vY+itKcZAs0gLmp5zRRm8FKc93YsMKS5NaWjhqBRweMV3LgBMihjMFeaXySQSx24GuetwPPCUbocxO8lZ/VcqIZDN2cSqX10UydUkkfmex8xOBl6FK6dDwdO2e8ygvOyZvNa5kAgROxEwk9AFKfHn5k6bcRIIkpxwhPMh9YBb9QM86HAEZ3T0RGuJIQVBO1RawlXH7ziOnZcBJD1njLx2lax+BQYnKyPP+S8GnEwM4E7aesiGh865f9/7P3Lj2xbdt6L/eac6xGvzNw7997nVc9TD1bxJVGUaFqUryDZBiH79txww7ABdWQ1KAKCehKghtQh9AcYUsOA1LHcsCGBgBqCANmkLF/zUpe6pCgWWcUqVp3XPvuZmZEZEesxX26MOddaEZl5zt7n7GKRvGccxMnHjoxYsdaac475jW98n+hQa0JZopNRYgZ8987jAfA5jWtGfkPRKTGoq9nkUY9juQSMEQb1bIleraiPLrmz7HnQrDgxFU9UI4Uy4rVZM4Po05w5FCW+0MyTtNw8M6grkfXIzOkXBaencbQwzCqd9i95DQtJcieB1MfHzPvXqd0G53biteE7utAL8zEqqhjIysA3SXgAQ0duBqsH8IuJFIhSlCSGM/uSB2Fv/I5zsc8Q2x44vT/eswb1wNBGpD6cCkPxLoSIVZpeBYxSiVUdE1Ct8V6njqfxmMp6LG35Gz7zJwkPA4MaYJDFUGpvTYqJJa2i+C99Y3aXt8olXzQzvqg1r1WW06OO5fHVHiBt5qVITmW5uIN5YwpQD7/TBzuFsA9WFydXnDSW/rLhrauGq4tiAKvPvUj+PY2W991u6MbqEkg9BaszACiceIg4nNvR9Wd0l9+mfPh13vmi4f3nHW+/fn39fO1OyRsnPe8cB7aXiqtLzQcXgW+8ofmDtyPVH/45Fuvf56J/xgd2y3t6xpcfl5w8/pDi3pu88fmOt9cLvlvUnLtOWMN71zWVCLQZr8XEKGWUVI+omPvMYmJVhxuB6vx8MyXTvQBQDfvg9PR50/Gj0zoYD+7PePC9Oviaf5+Z3pYIcQJSM0peiWygwqiCrTdUKqKdSdJBIfkagE57gzp4libgvcFj6FWB1QJGWzUym7NRoSdSRs1MFQPJ4vDzAgNDegpID6D1hC3dpfs3/zzFiXz+ntGgNJOrbprXPovP4k9D/JkAqDO4kg33bgp/Yw+sxMDWyDq3ZS2b+tRiqGaf7jTFvpXXzUk2Y3XOKJEokdZ6jfF5EtufVDKL2seAcxua9hmFmVEUC+bnM/yTezwPYophfXK9tp7GxqT1FqgKxdKZa27Zg1O2C7Q2smkD75571jvRm97uxMDBXmnMJlBvO6rNBtNuwW6EOZS1p30nRmzdGW0nkgIxWua6ZmVGxunAyBz0bKVta7H0lLXIe5gyMbqmupjp++jDoE2sjABguqpgPidYRzELuNZT1YGZ8ax8yUobZtqw0AU77TDe4/DE4Am+x4ce73u07tChI4QWFQzRF+OmD2Shv4HJk8FpNWFPe3vBdvsu1l1wWiyTvIfmZNVT3y3Qy6MXuof884dsnikubDFoqPk4Vl4ziARa9KfNEsolvizQCeAPAZoWwiWY7Rk2OsqjwIOjj7+/N53o21aXnq55iO2vyKmBNhXG1BgzEz1NpXETYOfThms9sWkI7ZawXQtz8QVB/WhbQpb1OH+SwOmnbD90rM9Knm1rnkbLue+58nbQpMt6tYG06Y+j3M5MyT2UddQhyw0EaRP0ll30oERqpa7uUtcPCKs36Fcli4UYBq1qdaMu3cvG1c7zeG15ehVYXyq6c8Xx2Rp9+T5t+xibjEqdb6RTwLVJd1qkPTJ72qQCWZ26OWaqGKQ95koNLdGL0jOvPbO5p55LW6WeVZjVUsDp2QJd1QPrcs9QLUfW+U+FO1VtiQPreouuelzrUMbLXJm0QulJ7atSLkDDNhSiy4YUCDZR8zRqkQZJch914Sl1YGYUPqq0cdN4PYK/2XB0FxxNDIQJSA0jaFmlr7pYoqNDlaJ7GYqSUEp3hS8LYgKlQ5prdQapBz37xKRO8gBZPua2yPp0jsi8PMLNF8xmo0Fia8F3Cv0SWhPhQL5iOl6nYO6YNIsuo0dhg0K5V1NgcdHTRkWJGWQ4ptq5h+t63lhnHXJpr8wakmPhLrNMYhyT9QzkjbH/GYTRqgepBjHbSuA0cWDWR9+ivLBoez8aqb0M4NK7IAzqVhHdJpkJcwMwlRnuYV/e4yNeO2/S8sYod5hV2XwyjykYvDmGddZodFXJ2lrW6PlqYFy+SKhyhl6O3bUxeMzxKbHvKJuWxXZLt3OcXsJGlWx0zU7L3LtJG7YM1Ds56wTf0ycWdbl7zOzqFHtxh8tKzPEqA2cJoPYBlp9SPsmHSNsHmj7Q2jCyp62Mtb5X+E5RWE/w2eDSC0id75eYNvuZnYZh60XzZ2EKTHz5LqNxXApUqCb5YuK9yfcHN4doe4Ie2FYCUMcoXighbY7Rwgr18dUB1MFGQu9RJoDRCSuwA3gapwzIfLwDMO1HgDsB1PDxqcVgeKXFKFSMjeVvhT0t3zdRcektNgoUmMGbwSQxjuO77QNl8fH3lE2Adu/jIAFk3QhSq6SdndAY0BBKCEWJ0bNkOFiNRolKS/vgeHY+9rPL+WQ0OS2nj32gLMv26OUJenlJeXfO8rjhwVnk1MyY6Q2tH2BV+ZuIaNZOLoTSIosXtSaUMi7LAqpiZE/PK81qZj4ROJ2jLFSS8wFwewUB5yJXxzVFd4fSvkHdr7H2Kpmh77BukwqaqSij9KADfeO5HIo5NwDYA+AHBVrGUVp3cgxrKCOzUzGeSDX8+8Frx/z3su4qNXbBuBhwSmMTsckpjVFqkBfoVaRPcgS912JoHBUhKKo6EEKgTJ0SryKCUkhv2z4oHVNxUQyQ4ViXvFYe8flyxZeLOX954bmz7FkeXzJbheRfMq5Bw+v3XgYRjP9mtBRSGYswVNVQ+Npf4s0AWCttUGVFYQxx2VMc98zanvm6586V495lx+aq4HxX8dzWVGjW0Yl5ehwN1CslQHUmC/mYjWllrer6NU3zPidPHvPoyef4/jPHFx/EG7t7HhwV3DvqeTqLdFeaD5/DX/6q4Sufs3zn899k9exLXF39gA/7LR9URzxez3jj4ZrqS5ccf23FN77f8bt+wSO9o41+kPmQD5z43crI3TPtypgcSoyBqAKkYqqsJP5GoDotE5ByjCmbWjHe64dxGzidfw5KTEddzl1SMWg679wGUt8UPlWFRpLJgWScEiZ1owyVT+aiWpjUISi0kfWjKAECR5XDd7J/6JXIeORuvp2P2LSGuijvXSrNlbIDOUAKXvv55iEonbWkM9icWdFTssVUY9plIDrluPnn/PCfMYFfOhQ/fA3qzy7Lx8efCYBap3ar6YT3UZXhaZ4XvUdlmY8w6lDHvgUtifM1vcWXiJhkCUSDer/d2qiIIVKlBCgzqKcyH6Pum4BjLorZh7VX7NqnQzvg8cOvsLWnnPWavo+0feRoDieLkLTfhLnQ9HEPoB7B6TiwgzZd5MNzYU3vdoq+VfgtlBtPvWkpml0Cp7fXwGlnL2i75zTdc6zd4ENLHWFpymRyUbJUxQBQnxxoitXzMGiK6UqhtEKb8bpON9D4xFb2ThzKESazmdXEXkDqso3MisDcwhzRvq6VG2QMbAxE5QlR2E+yyazErEq3oqmXHqjkOu9uqNBnYDqzElUBvqVvn3C1fZ8VmnvljAe64n7hWR57zHKOWR6/0H1kH32fy3XJOiiaxBLMi5aLYuYX5ARhijnazIimxpcGpaWt1DrRkK4uLbG/IEbH8XHk/gsA1BlEmV1ese2e4n0jHzOBsGWxQOuKEHqUmoJcnz4B9m3Etx1me0WYrQnbteh2fwxIHbZrwtUZ/vK5aE8P4HTH5fOCs6uax85wHlrWvkvsaT9Ie0w3DAoZf9nks1aiz5ylB3Jr+jZYNsHSKwb2dF2fUi0+R79cEeeK2SywrIVN9GlZftZFHp73PLr0nG2lRXD+vKe8eIxtH9P351i7wfk2GSM2Iu2R+DkCio7s6QGc1ibptIlG/JwRnK5LKfyIKaJIe+yB04NWbQ1G2jAxxcAEBpLcUe5U6VBVTazqxLyuCJsNs+YSUwZhxJmREWasAZeZ1AVrXdBGNWwSBKRWrBGTRWMNRonMR2kCs5jMc7zGRy2u27rAmgpPZOZ7Qox0N4DUw/FHhymWFNGhg0MFj3E1KswTc1mA6qj13kYLGADkLO9BYl4alVoBzfX7OgQ1gOgRKIsj+kXNsoKqkA6ZtkcMGRMKEoxGO4hZGzSxp7Uy+GvvcHPI1kQ2HFMd6j4q+qDZ0zL5FNEGj456srGRYzVRQFV7w99MWyGzm3lmnOREP2tPZ6bJNHH/yM+dwcUE2g+mg2kTF2Mg+hbjAs7piT7xiwFYw+dOrNy+V2i/TXIyQTRdrzGoZesxNSo75ElNjx9SYS2xpzNQbRgB6sMYQOosz5PGrgzAl0sXpyC1AfAOc3xKaBvqbcdy5zl+5jmNhkZXbE3WoRam2nTjhYqEIFJc1l7h+udUmzNm8zm7+ZxNFSiLyNlWPrewXjXWxU8EhGVZjwxON/2YGzW9dCK1LagmUnaWGFq82+L9bmDdD2BxTF+DB6VpgpN5RomJ0iDpojSKUSIgDK3Xt5zfa1zW/JO6cd3NYJQw0zJ4xCD7IX4SepT4UK9O4sP3gWBCyt3GezgzqjNYfXjU0YfBWHcKTodbuhV01qEOI6RhVCQoRaUDBE2VwOnSBHbWsI6RtU/Mw6T9rFQxMKitY298+6A/UkIm3zvD3ySge+jICUK0iAZyqqRMJJZg65LS1BhTo5RGqwmglK7Fi+ZUZuiIGAvEokF9c6FJL0+ItsMs15jVksXxlgezPsl8VFx5O+yrbiLRTLtzgtGgxRCyNFAZWafmlWZWasri0+c+WfIjhw+e3kk3ynqp6XYLTHefsr9g5sQcurcbOt8kiQ9ZJwrFKPVxUJDJclPTyGtUBuRMog7L/k3h05x72FqfWY1TQO+2GFnWiZ0MMACgAvS5GCmUANVdOsgsL9DrQJPymh5DHwwnoaAPmnrrmXkZW7Z8NTCJ5BdpvSISYk8RRUv6jql4q1rydrnibV3z5dJxb9lxfHLF8m6eExCPIQ+2FzZ89Cp9JckspHOjr5OXdAmm0phVhU7mvnss6yQntHeOE5gtxIieumwpVz3l0jFb9SwuPScbi18veBoLzlTBWSi4UiL90ShHFzRF9OKFkszrDGKW6F1L0z7laP0d7KPP8YO3Il973vPFB9fH372jgjeOLe+vIt0VXJzJHPO11zTf+krJ6o++yeLy2zy7/C4fupb39Alf+kCzfP6I+stf5fOf/x2+9u07/KCoufI9PeNtq1AopVDo1B0yBagP5pYYCMEloNqjoroVqI5yscndORm4zl0CH8Wm3peymaLkDCA1atRwn842hzPP4e+n/+6Jk18maatwPaE/VQUGIbWULhc2pds967cXpfja+KigLxLJpcCbCeM5xIE9bYOjm3Rg6AmLOn/mDMADN4LSQ/ffRMYjs6Wn+4Gc42ZAOhewFep6pfqz+Cz+lMSfCYA61QUHoHpY2GPEK9GcC0HtPeKQ8IZBDzU0W7QuiGY7MH9C8KAL0Ql+yQ1a2K7xF0/wV2f47SWhaVKbo/y7Ti7jVRSW4lKVXGkrm7M0CbmcQCHO9jqAiYHWb9ntepzd0vVn3FcFxxdfIn74Jv3RCR8ez3l/pSmWkXomRiVVFVnMwl5lKGvjZT3Fvlc4p2jWWjZfjWe+6/ZBabchJL1ppQqyKaKAse+w3X5Ab9foYDlSmpOi5rVyzh1d80BXnCrDA624WzhWleNoaZmvhI05v6fRlRENzBvAnUPXadFr7WW5M4VsqudzMWXyDaF3LGeWu9ZwGgxrXWKNGF+0SfOyj5bgDc53aN2OWnqT6x2jQ/kZ2szGpfUAoGb6++hoL7/N46f/Hap5zNdnd/haecRPGMMX719x/JaifP119PG9j7mJHO3v//dsf+s3+P56wQdJK3kb7EHLWcAqKM2SurpDUd/Dz5fYuaGqpA19u4PdI8Xpo4f07WO0nvGl1+HO6uPv66cbuHquOX3ybS6vvidANJqyOGI+u09VngBg3YYQBE4KMZmOfsrYXWjaxy34R4S+R82WmON70nJe7bOBxEyxI9oO++Rdkfa4vMA9O6N53HH13PD0+ZJHTcUHAT4IHe/1Gy58N9wTNgNamTmd2FcLXXCkS45NxZGppCKOSkZ9ngvfceE6zn2HMSvm8wcsF19gdfRN/P2vs32wYHk3cPcYTpdwMv90JdoPz3p+8MzywUXgyRqenymOvn2OefaHtNt3aJoPkknpZQKnW7xvCNGhokh7lCjqBLzP9KgRv9Alx7rkRBlWSnFsghSSasvqyDFbBWYnUK4KiuMl5u69EZhOrcKDbm0yaCJtlOMgpeQHgDr2rUi42I6wXRPbLap6SLnZUl222K2nu/IsGs9ua1h1BcuuZOUNnpp1dGySIZ6PkU3weAWNLmic4UHQvD7v0EoKVoO8ktdUqqCKinlix3fBU/lklhM9NjT0vRXtbtfg3JbSHaNUQem2mGKJsUt0sULbFRQ1uq+JRZWYZNc16wcGteuJbkPfr5PsURRZlElE70TvGQbpmdnii6yPDSerwLxUbLpA04LuEgiVwPGYmUO6QGkj+vq6G9uxb43MgGKQz+iSwdtGFWIuEzThFQHU22ixTrQ9C6Vpld/riNrbxKTI2nwZOM9GsVPZI8eo1zfoyQ+f8Ppriua0ls1MAhpDcIRoiWleU9EQg8PZNdWuo20XbLvIuglc7vxLsXbPt55Hl2JoqrtnQ+FPJ/akDyI/FYNLRoliMDcAfB/14jEkfw41tKpXyfMhM0kzy1SZpI2rGfWnq3oYyy9q5HsYqpxh7syS4XQ9zNm6qtDVI946aygva0xfYsolldI8coYz13LlxQjYpR1mCA5ntzTtI4wRXZt58Bj7FptuRdcqjA6sm8CqDpzMFfPKiSlbpSmNoioUVaGvgWM+SbVkJmaWdNi0gcYGNm1k3UbOtqLxf3GhcGeK+UVLtT6jbZ/QDZ4b22TMJhr/snlXRDxaFVyFjk30LHVBrTQ2OPRgipd5aWNRaDiX0x768ZfsGV7FvDX9CIKGysZJEUVExzjcUyYGvBLpnkLpkfL7KaM5h5kLiR0Jpg8D2QAYvt54vJkxnaQ9go/iPenHf7sptI6YmEtsIvuxUJ4iybN1zvDYFvy+3/KB3dIRUarA6EKKQ9Zj+5JdG9l0ws6v0n1zm4RM2we2red861k3gU0X2bRwtRNygBwHKB3lm2RsoQthVNuuQFd3KLpj8RHRl6lwoYnXWNRjTO+TbC6rlRA9VFXtjePbZHr08mQoIkfvWfU9n9+t+fPfO+FpfcKl77nwyZycJEkxSA/5YT8wXLdSTeQ9FKtadKc/bWfDYdw7LrmzKljWPauZY14FrjaBjSmJ5h4LrVmaUdt7DXTtEwiO4yT3USTpIybFoSmIVCQgL7fX5+KRJg7kokBklvYMKgZ6AkSurTvAIJVya3wEeC1gtYB8GQw0KHbBUShFlUgGdTKkX5iCpUr5XCw4v1gO+Zwqmk9+4icxC44TY7hfzHizXPLXyyPerEWuY7F0SVZkB+xwTuGtYrctePikYmcNW6/ZREUDNDHQMxog58gyCRXymCuRqpor8UVZFp77Jy2zeUe12FAtoFzeAFrDvk41UsTR85kYA88s1XHP7MRxtHMsnjiutiXnTcVjt+BpDJxFy7m3XISOnXdslCUkBi0RfPQ4t2G3+5Dz5/8D9791h+/WP8us7Pk/3ABQL2eGH3+rZtO1/HYb2D1S/O77PT/7pZq/8XOWf9P+VV7/f695z274H3dPWOqC1fsnlP/dQ770f/7LvPHfFvwN959pvnef/1fwPLRbQgw4ldn6WmSDdJHWGVLxa9Kxko26U64hOUcCrAlMjZpzsd4lgxWdgWmyFEgc7s+Y2gU0iETZlEWdtaf3flZp7xUoiIOMSiYN5TviWjFz8nUKVmfGcZbI6VWgCY5aGzbBcuUtulJsdMVpNGxCyV1nOHKOVW2pgnhhaR1l7zPzHPeaO23J3a7k1Nc8UCVPTcUz33PhOzbeso2WPviPFbnMc3cG9LPBYf5dLtJPmdG5szefWzm7CcpPLHaZQyKRF5Py+ywmoRhMwz+LH138mQCob7aCGB8h5uq4GnBEqczGxM7IbYReAC4jm/qhPdV28v1LgNSZOR0Sezr2XdLTC3s5piG3HgrDKWtR95M6YD4OjWxSChRFjFgs1m5QSrPbvUOMjsq31O5zaHeHrltgm4JtrdjVClPBZZUrguN5yA/vlPg+WUV54Sk6R9k0FM1OtKbtlmA3xNCOwKNmkPVo2sfsGpEUIFpqFEtdsNQlx7riRBecKMOJUhwbz/HMcrS0LI899RFUx4by/oloSVfVeC4zw31qaHmTkZh3gwaZvEaPrjxFIfqzlS2o1FTvOwMgMuVLK3dPjCJV4X0CcnxmUbsEVLfCkJ5Grsrm+yN4ttt3aXYf8lZR86CY80CV3Ksc81XArMSkRpcf3TbtnryHffwezeOOdVyymTj5Zh2qzJ4Ws8KKwswG/elYjte5bRXl1kP7nOBbivKEk/lHvv0Quxb0NuC651i7lXOmDEW5pCyWA2DgvTlg/Hx6BnXbavodFBuLKi8JV2cii7A4TgBoYviFBHj2LaHd4p59iL9c484vaZ9Zrp4bnp/VPG0rnkbFWbRcJsZzLla4gyQIMk9XDeaIpdYDAyCDd2KKKAzANgaKYkFRLCnLI4r56zTzObFWVFVIjCL1qYy8nl9aHl5YHl0Gnl/B+lKKSovLp/TtY7ru6Z6sR/D9aMAW/cienkh7ZJPW3I5WJTkAMXIVLeeqEuZ0WUdMZdAzKQjdBE4Li3p2Tcd/KPyUoIIjVjWxrImmgHYLQDQFenk5vQvIXN4cISro4SQmRrCGTRg3kT2BJno2KOZBcxo0pQ4DKDczHhsVfVD0aLwq6HVkoYuReRukhdkqlxicguIpZbD2au+a5M35lNeochdOCMTcjprMVLMUUEymlbUyzHQU1upB+KDG9j/AVCeoWphpRpNam8HYDFAnHew80U8Y1HKssjEZ2NRZ4mP/E2UO6AD69mnj3aNpoiKGV5PFdcETk5anjzFpxu7rf+ZuhSkz7bAdMoPRWXM6RGmDnJrMfVTEPcAliK5wHOU95DXkngi+xThLcMJe773oUPtwcxvvYfggAOiuhXIT6H2f2NN6YE8DE5PGODCVcnzcu2S23iDxQbZKGmUAhudmg0StB9ZllvhQN7D6XyaETX1C9A69PMEcbymahuXxM5rOcNcbGm/YmJJtLIeiqw+yucwRU+HAuQZn1xTtM8rtEbO6oikrLjfyPB/kPll5kVGZ95F5JQB1acQ0+jAyOB2iMGZ9iFL46eMANOauMrvVlI2nbBqU3WHtJS4VZ8NQTBhVzyOyaUdrXCqszJWhQCXN0DEOgSw9GQM38aVHBd0o7dzxkEc2fa58r4bjEoO1KataE5P0iH8VyzcAuyvDXKmhOw5AeWE7Z1+R20DqKUB9E3M63tLDrHWSVdIAgQJhFQNYp7nqCx7FwBPX0ASX/DtG3Wcd4kDcaHrx4di0IpVntGdW6UGiK3u4bFvPthPmvbDuRQ7GObC9QiVWs7zBeKw5ZfK1gnI56FDnQtVtEeJ+EWP/8+8zqKfGiLfFKPNxjDk5YXZnzems5w1XcXzAos4lzHG+9Nd8DZISw+Shbhx7nzaMVtw/LlNRKTKbRdoZ2KXB7RaY5oSyu0dlL5nVd7H9WnKjCYsa2AOp915fiRxOHg83SRhkQ3unZIzfJAtyCKLB7XP4Rw29DLxlMNAnJqZJAFylNF301MrQRc9OObbGchlKKOacegGFi+7VDPC/vHydr9ZHfFEZ3qwsn3twSVknVq6HZmvoO03TGTZdwYUtWEfF90PPOnRsg6NLOvA5f5uu84e5aa0KqtTpt1KGVTCsXMHn7IqjwnEytyzmstean7QJqHYCVB/qVx+e22QSXMwjMYjPSghOutiiSsYlJV6Pndo2ii54jDEZqkcBqX0rWtTbd1g9+iYfPJ3dmh/cXRU8ONKcHAe2zzXffwLfeCPwhdOCL3655+reX+Do/Ld52j7iA7vlAzPnK08rvti3lK99gXvf/D1+6t3I75ULnruWLu2/Yr5XlUbrcgCm1fDVJHC6HAx7Y/T49FXpIvkruAMJkLw+RILKDOyxeDXkKmlZyiA13C4BMv5uYpIcw2Q5y4zhMW66g2/6XT4bUlzSkMDjECNnvk0HkNw5vIYkD7jCAoGihKIIg9wHua+vK5PsYIUxaiikOCtHKV3OoyRH/uvxuMaemCkjOoPRAxt8rz59YD46/ezRoYiUEWqlWZqa9284H5/F7aH44Ut8fBYfH38mAGrYZ1jldovpuPVRNvnCoCa1E8XUOigyH4QRqMZ2wvbThthuwTsBAavr+m2HEZNWbmYCikliciG/weAlg9Q6gWADGxzRGpNsRib3vAiWqKQ/JC2vu+ZR0j/sqENLad+gaO5il0f08xpXF/hS4eZZsysn/ekkuYiyoG2k7iyzqw2ma28EpnMSqk2dwOnnNM1jts0jbL8mxJ46CuN0qUv5qgpOVcGpUtwvPHfnPXfv9CyOA7M7iuKkxiwXFHdPr5/jZKY2dXXH+7EKrq9XwyUJ0ZhSJa3vKEAb+nrLTYypQiwPHyza92hdDUl3CC1KGwgOpVyijzgBqqeyHsMN17LdvUcReh5Ud7lrSk6VYjWzVIuAmQmb7KZ2/uFjXz3HPnmX/sMPuXpuWMdAE0cjMJsWPp8qrirLe+gazAxfFqDl8zunsK1iuWnw9oIQOpSZvRCL17pI00K5c/TdE3xi0WhVUBZzimKBMYvEoHn1s3rfa9oNmNKjTIs7f4ZJQPRU4zh6J0lHs00A9VPcZUPz3HH1vOD8ouJpW3EWFGfRcxaEAdEGN5zPDE6PJlQjkFsrMwC5MM4zXXQ0wYkxYvRYBVUxpyyWVNVdqE6w8wpTR4qkxyhMvk8GUF9sHA/PhTn97AouNyLtUZ053OYd2uZD+v4C51th8vkOH/oEnASyTMBe50n6vlSaEjNIAWRwutSBshAmgSkjZqYw80JYJ7P5HttyD5z+OHkkXaC0AGFx0oYctMGsRvmbGAKQDLMIaR6XdruVS4ZAmEFvLW9weiKNimyAzmmRDkrau0EpZjrQR0OPbD5WiXGU74dehcGsJOAE6FcFTnd4v0NrkWJQyuBTy/4UqI7UaGtHoBgGQ1UQNrX3Hd63zHXBsvDXzlnsu+F+ywmsqu5gKmGnjQD1PigVU4YVdeoGUelcq+zm/vEstiFZzsxkvDCcVKTJT3gFYaNocWdgGhhM3Iiyvtsb3isDDFMJklGrb7/1cQAHPmbYHUp7ZNbQwGrL64TfUXUdwYoMQNOLkV7bhxdiCO7aMDDfy6anGWSTxiLfnj74pHSWN3K3SZkdltnMDdqHHxXKJEmPLM1zy2b+ZULNlug0R8d2iznesjh+wtHO0jnDtqk4TXrUrfE0wWHxoncOQF6fHd43OLfD2zVlc061neHqgt1uHAM+MLChe6fovUqFQZhX8py8CcmNWaOxnegHi6RHZN3ARfLjaHcK1UTqTYtptsT+YigG2iShFKLj4K4bzoNDCk0rbTBJ6xxIgIHc7/m+ncaNmp43gdSTf90boHtdCAJkZ6A6KIHSYswFvgyKv5oBfnFZUTiYzQTwmSFs6hjiAFTfBFJPc+UMTk/Z07cRvLMcVFGI7mhhRpmAEBWdM5x7zaPQ8ty19KkwNB17KgSCVQIue2jsCFJrNYLSg79HkoPZtMKcbqzIwXS9dCYGB0orKCIxHUs0kosrHVFajBKjqdFG2L5DN5/SLzXX7sn3pC4aKeR//JZPz5aY5Qnh+C713UfcvdPzxnbG3aLmiW2wiYwhd1fSGJ4WWcJNILVKjx8eM21WaY7nhtNlYLXwtC1c1Yp+UVM0JxTdPSp7QV2d0pbPaYNc9zoGyqiHAijs7ye1UhSpcKrVKM0xFEaJo8xkYmNXKv+bQk2kpeD6Zfyoy/pxl3wEueMgh2CiwqpAgaJVnipoKm3YBceVthilWKuCE10wf0UF5v92Pudzq57l3CWNa0WzMbSdYdOWXDrDM695Gj1Pg+XcN5z5lid2t6fhfDh7ZU3jLH9ZJDZ7/rnOvkKqZK4Na2achpKTvuTu1nNyZTnZ9IkE1VIdG/S8RJdpTZuuaz4TBtJ8bEQPuygiVR2YO8edqPBdKRrEuhj8L6wOXPkep9Tg6yL+RpbebmjbDzk5+5CzZ1/lw7Oez9+/XigqC8Xp0nCyDDxZRp4+U3xw7vipz9d8803Fv/vK51k9epvz9Xd4ZHd8UPW8fzXnp59/SP32TzH/xk/ytd/7z3z9B0d80G/YBZdMAlNhO0kGiYSRzCtGV3vHMHqSeJSyqaMsEJQegGrx5nCoaIT0QkRFmQ2mQHXm9JLA6JDKMnrCop52KuzJfuS1K+lnT0HqXEg9LMHmiB/xfYZz8xoXkpzVOu1pAxGvK6C4GaQuRrkPbQJaWwoTqNqSyhWYUFIZuT/b4NFBJXNDL7rUjHlpZkbnHO4QkB5+HoDp1G20lwfEIdeTsQ/HumClS+4VM94oF5xS8Jt874Yz9Vl8Fn+y488MQA3Xq94+JQg+MhhEiLzH2Lm4J/PhPco7aUc1hmgFGIhT7VTboUrRTD1M+AZ5gQRKh3ZLaLYDezpYdx2cVjEB1GpsxR0Ao/S5hgleQg1MM9G8CqGnbZ/LYhI6nNtR92thDDT3KetjQjXD1zP6eT0AF8MxWAFMjHVoZwWYbs7BtwS3IfguJaGiNy1tQgIgO7umaR7TtI/puvNRc1oXYopoSk5MzQNd8kBpXh/0xyzzk8DsjqE4nomG7XKFOT7dN1aDPTO1aFvQu6GYICfIX99AG5OYYIqiFP3ZKp3nzKDOyU9OtIf2pQRKD21OOiUuwQMtUReMMssHzOl0PKG/YLv9kDdMzWkx41SV3DWBxdxRLtR+u9kNEW2LffIe9sN3aB+3XF7WbGIYGAa5hd1nxqACrUsKUwub2dQCiqXNU99D3EC5vcI6YakqM2NVf3yCum09fa+otzs2/TkhWkChdU1VHlMWRyl5MRw6z78KDeq2L2ibpEuuPeV6TfQePdulcZi075LZaWgbQtPQPt7QrmFzXrC+qpI7tyTJGZzeeJFKyeB0bp0CBmPEUaN5BKeBAZzeDsxpTxeDSD8UC9Hmru/hZ0tcramq0TDok1Znr3aeh+eWd8/8AE5fXWq4iCyen9O2D+n7C6yTNnPnO7zviUGUtZkkM+NcM36fH1XSnzaQ9DqThnPSns7saT0XcFrPluhkwPTC4PQ0dIGaFSKrROoYmcgKmDTWS98hAHUgeJnXV12JzyxoskZy0qJN3zcomqApvWiPaiVffYRZVDRep7ZRMYdstWcehUntVcRFT0B0gH3o0L7AeZED0rpC+d1Eq77Y0wm+5iYPg6Eq0eHdBut2LEzBvHJSuJpGZu8waXMsF5SVGMOBFGBDAJWNGdMNFoxO84BJ4PREUx8GUIbDwpJSoj+ohFGapTIyi7qJgTn6hbWsPy76GIhRNjE6KtCy0R68JSJ7AEIOm67zdXB6wp4+2ADcFpEERsMAQg/swMlfx1TQ9L5DuR5cFJalTVr9LwhQN70AWbudomoafOpwUGoiWZTXown4+DJlrTzOcxiVuyYyyHLAyT0wp1LZWOpTMqhz6PmSaDv04hhz3FLfLVjuPG0rMlyNM2x0SWtqmqRHbcPIKcrrsvMN3u9wdo3pLyi2S+qqZnO1JM9xwqKG3mXTaDGMNlp+vul+8jED1MKizszpiy1cbWC70YRLqDZWOsu6S2z3HJfGsHSqZMZ9mPDBxv8H5H4X6QA1gHv6huLudAMvz1H7BlhIPhhvBJIPtueJ6ABpk6uSNEjMEiQy16mYAIAYXxlA/U5TY73mqHOsWkv0NrGpwZSRYBD985QfT31HpqzpDE7fFFqntWPQn5ZOmQGYTkW8zhoubMEH0fPI7bj0fcrixqw7RE9lXRrbirYXsHnTjRJ5Nq0lRisBq31MbPuQHrDtMkANoVMDa/rwUueuRl9GYlGh9EyMp3X5wkX/w2KVsKdj6iicvbDJ6ciiPqG4e8LqzlNef+x5zc95TwvwNUZSWo8+5RniR5N9FjIYPWVQf5rOsY+LO6uCbRdY1p7NLNLMI3Zu8PUMU59QdHeoqjtU1TF9f0EXPDNlqHPhLxWIDs9l3p+ZqIaG+QxOT2fGLPURVKQgSxOoAVDL24YMOn2UR2Geml8UpA6Jk+UR2R6HSL3YKP4oldJUQebzpS641JVo/b6C+Py9HavkvbDbGp5ezTh3BWcRHgXLY7/jqWt47lqufM8uehyI5n2mgagMPcpXHUlSETIvmwS6Z/mhIuV0tTZslKVWhj4GznTJiSo4sYYHbsbdruTutudka1nsPLMTT7kqMMvZzZ2403NrlBAyXKSqAs57jr3GBkUTNb0ytLrARp+OScaCyTNqFFmqtn3KavMO5dMv8/ACXr9T3SgRdDw3PDiyvL+IbB4qvvc08GNvRN5+UHL6lR6+9edYnv8OZ+vv8Mjt+EDX9O9/n/LNt6k+/3Xu/+Tv8VPvK75Vzjn3HX1weCV5DTDsz7SuJrJSY+jEoo4xDAxqHT0h+RGEVFDVsZB1Dob8SHSqJYPPBU+Vlh0dp8agyUhS7YPS2bB0PJbkw6Wk00/FgM45cCZqcB3U3Ydv97+O75WLa8LWv/T9ICPio1QYfAKpfQKpF9ENUh+5AFrVQQhwOlK2kcoWzIOYy7fRcxX6tMfUSbpVJVKZdOtmrfopOL0HUO/dIjmLSPu3OO3uNcy14chU/Fh9hzdMzRvK8LoJlObVyPj8Tyk+Y1D/yYg/EwC1Oqhq+whexYnMh7DjBKQmgdQjk3mQ+eh7kfcwxQBOAwQjgEP0TjZq2dgrs4xS7GmpDszpVtjTfZ/Y2rezPqT9djRKnM6qh5XGiJjYxMyoTaBjboH1fkflLintmqI7wRQrTLmiLBegzTVNVIJH+Q5cB9ER+osBmM5603KuE8ChDTF4uu4pTfuItj3Duw1VjAJOJ63eO6bmrql4oLQwpxc9qyM3gNPl3QXm5AS9PMIsj9HH966ZqmXZhmg7QrsVhmWzBfrx3N9ggiHOzgqtA0bHyeZ8PI9ZJ4u8WE2YIFI99ugEzEflEAzD7bdnqkJYI1lqwm7pmoeY0HJ/doe7uuJEae7UHfNVoJiLBMlt7OloW9yT93BP3sU+fsrmmWLdlGyyY3S4bo4YUWhVYowwqGNR4Us5HyFAcIqiCajmHJ/uFcol8+rjNwubVtgoR9sr+n6dtFgVRbmgLI8wxRKlDEF1H6Nr+8micYami+iNsJWq850UU8rNHtAf0xgO1uE3PdtnimajudqWrLsygdOBs+A49z1X3g4sg+E8Tk5HLl7oJIMxBTRsMkRpgzD92qxfrcDoksLMKYsjTHmHbr4glskw6FOD0z3vnjkeX4oW6maj8Bewer7FXD6kbZ8lHfB+kPbIoE5uOVeQ/dbRjPqL+evwUPsM6qoKFIWYl5p5MRip6aoe9aar2cuD05NQsyXaiLySmi1R3g2sS7wHHwi+pwohzeWe5c7jY3KsZ2Qk5K89gQZNGwzzENBaDfIGpYlUITJXomRfRcVMCSvHxkAXzcDwCTHilLBifJJMCaHCuQalCrTuUKFABSNFrOggFDK33vRZ07zr3CXB9xyVFcu5Q89Xe88LfYcNmj6xmIOCUM0GNr5RYpIYAslwTCImiY9ozCDxoU2NciZtTsze/kwpfQ2PygmzyGfI/d5qTxMNjdqfLz9N2BjQURjTGgWBgZGWpSlc3AdbYQSmp6D01OV8quV3Yxy8XowCKg7ai9EJ+DcAjqIlLBrVHcru0J2YHA5Gw314IZmPbefZdNDtFIvtZTKYHYt8Y7E0bTCnesSM6cEnhXsOwenDGPU6X4x5+UKhC/TyeFjPi+M5s+2GVeNoeseJ15yqgkZX7IwdpD5UZrITU7uxFQa12+LtGt2vKLdz9HZOP4CbkmvZSkDqqsjAtMixGBWv+XFABrXF3O5sK7Ie252A0+4Kqq2n3u4wzZrQPcP2z7FuMxjQ5jJS3kRGSBdJgODMoMpzbr5L9wu7iXAxNZu6JvOR7gCV+GlxyqK+pRyTQOqsi51NGUElFlzAq8CgjPGx8NiLxR8Fy8bVnPiK067kTd8yrz2zuR9kP6QALaBQTIW2Aw+v8WPcIPUhoIGCMqJ9JGghpGgTpZgZFE1f8Lwr+cDDe77liW1okl+BUmoPDNbOoqyAy10vYLMUl6Vg4sPICr5uNA6bLptpSvea6sQIMZbXDn0AqHUBvq4pk2aymKWKUWIWZnnRGCQ+qloKTS8xhvXyJBWRTpjdecb9Zccbdsadouapa4fcSCHEjUG3NjrpMgwBwvW9zg8TnM6vf3dZcDLvuWpgU0VcrXF1RVkuMNUJlb1LXd2hMc+wdi1FsCjdcVM5nVwQzid96DaL0tma2dRBTc3shTwUVJLfS2vXlDw1BZ4Pp+DbWKHjv16PAdBSYwEzpOPPAG+W/igRf6OtLljrnuIVGai1rcaGmqu+4NwZvhV6HrpLnrmGZ67h0lsaFYECbWZoVVKk+zEzcoUQZNM874mpWHZbZIlDQjKHVAEc7LTlUpesdclaFZxawwM/515XcK/pOOoci9YyNxpVXh8T2ZQ1hykjhZXiUdEno20dOYmaBkOjChrlRd4lXXONwsSIxxNCT28v6ZqHLJ8+592z+7x152YW9fHCcLrUHK0CbRP54JHi4RcsP/bGjJ/8Ys9/+vw3OXr6NldXP+BDu+NRuWL3zpbZ159QffGbLH7iz/HN3/0f+No7R3zQb9kGhyMk7eexcy6D06LLvr9vDkHyDq1LkayKHq0rWdt0ORo56wLl9Z5GtZC4MiA+BaqTMW5k1KRO4HNek6bbogG4ViNQjdJoIjqxn3PZegpSfxyrevq8TEwLMbILbsgdrRbSV28qPMKWpy8IQVGVYSLzMbKpZ/iB9DLrC+bO0BcLzkLJueq5Cj1NcINvlIvp/ogBlL5R2gP268OZLGWUEu8gY1hqIQGempngLLrkxwslfkGzjsIE2hstxj+Lz+JPfvyZAKhHXZ8RmBgf0EfwMYHUU7NEL4msSgzqQeO4T5rTWsBo+lYAEy8gZAaqI+yx4waAOgGpsd0Smh2hz/IeQQxebtDMyyzqcgIS5Uk6TifyFCq1EhUkqQ/fYWGQqPChx7kdpb2kLMVwRUDqE1lYYDA4BFLrTmZJe7zbjCziLOmha2FPG1lYQ2jZ7j6gaSTRK2NgpQsWmT2dTOVOdcl9E7g77zk+tizveub3Csq7qwGczowNc3Q6GKuhBfiN3sNsSWi3YIqBYek/pvp9U+Srldnq1++lkUUdgscYGBnVyQQmjkaXSss5VGaWjtfju2dst+/ywIj29IkuOFWReSVmIbqa6J95Sejz5iG2W/zFkwROf0jzuONyXXNhC5rY0EV3s7xH0p82usSYOpmkpfsnKHynmG9aQn+Bd1u0qYmmZlZ+PFra2ojvFao9w7oNuV2sLBaUxdFwX2T9sheRDniZ2HrDpkuu9JtIdeEo+xZTaXTVooxOXRBSdHJtwG5he1kM4PQzZziLcdCdzglDlvcIQJjUhLLpRx6LhRrHY95sZOO4LsjDEqXEpGuMmVOUx1CfiNRKoYYN4yeJKTj98GIEp7u1Zn7RUZ09pLv6XtJBzeD0RNpjAlqomDkr4xiY6v1KESfNSUqAnFHeAzG6yqYzGZzOGpcvoHP5caHKGXrmhUnsnRQEvUen+bn0og1c2oi3gUXp6YNm7hXzDFKrSJ8upk+btSbCLGjKIPIeA0itg7TBxmy+Y2hVQatEw7FXHqs0LiYuVAyEaJOpaoUOHSFUAlh6g9Yzom8Tm9qhgheZjcnXwQzBt1h7ifctx/WC+aq9UeJDGNQh3XuKUJYUxQiCZoA6315ZgzpoJVr02qDMDOXSBjF0ifX9UeM1l+4ySB1GFjXCor4V+H3JEBMb2VAXKHpGPqM+YFJP5+28qZh+P7RQZt0/Xhxmy2zWmABpYQf54SzkzVYk4lwDdoOxiWVpGcz1Po5F3fYiBXDZQGiA9vmESWvS2pzukTh+ijxu4XZg+ro4xPWY4nuZYboXN7D+X1UMetS2w5ycUG1bFlvHUWNpnabpSxpdsDX10DF06RxOBWLwIu2TzCOd31G4Daa/QHdL6s0dWl1l22RC0hG2FcwmQLUw8q4fW1J9wwfRHV5vRHN6t1H4LVSXntnlhvLqgrB7TN8+pu/P6e0GNzFGFPPBcSMsd1C6TxXYdG3lnh4lPhgYhWNOO2WZ3Qon3WKgd/3uz0C0nshYpXGugKilCKBeRe/TGD9wWy7wg1FbczXneBc42joWlWNWe6rcnZOAalPerkt9GMqMH39gUqdP4KzCOU1vNc+7kode827o+MBuOfedtMGjZKUfpHUc2lqKLuB7TdtCXUU2BiAbad4GUMO6GfXKu1YRGig7AbVDodHl9bNbFBFXQChKmJj6TWVHpjF9hWuM3wmyN2jJv0QXRGZRm+NTqvuPuHNny+fWC07NDMV6LI5FiMon7fVuyJVV8KhX1V7zknG0MJzMFWe1aFF3dRSJw3pG0awoSmFRl9UR1l4MBej6QBZyGoMM2mQtyqShMPk70bDWeBUHRm1mUR+CaTfF/u+n4/7wwG460JFhGdX4s0LmOxUjPWBDpAmOUptXxqD+7npJow2PorClf695zjqB0kbPKepjFuWSwtToJCsRoxfzbt+BR7wWgMxvNXEE5WqlMYm4VTBeg6kcGCQTaS9dXm10bFXJRpdsKNj0Jdu14UHXc7frMbOechWkY+hA6ynvJ4azbRIYWaRuXB2YB8UKzUZp5tpQa9H71jGTP8Ahhe7ebmiax8zXP+DR+X0eXjjuH5eDhn2OWaU5mWtOjwLPQqR9ovnuk8BXX4t8442S//RjitX3vkl9/rs8ax7x0LWcf2BYvf89yjfepvrij/PaT/8XfuaDgm9XC9a+x0ZPVFm2Y6o/XYhx4kH+pzV7e+BhXOsKH3q0LtO/WRyyByYV9INK3UPp7zNQ7VQQX4N0XbmFSX2tY2gCVBeRgU0dQgZz1TVw96OKPDcB1RFog5dOSaTjIEu3eANeC0htg6JuPPPaiWzUhE1dlKB18rsqPbO2xHclJ1pzqkvWoR72nW3w7IIbcuk2d8IPOWv+7Omjp46BhS7E9FQXHJmKI10mbKHgVGlOdBz01wsjMjvOay6bis/iJUP9MTCof7i12j8T8WcCoJ7GITjtY8QrhY0K6xXWa5wNlDUEC8GEZNIixlWx7wU8TFIfIAle7FuZ0LJO6g0buGi7fZC62Q7s6WAdoQ8DsHnTpjDn4oOe2YRFHQ8mchi1cWMEiyN40eQcWdQtzrdYezXoBJflOi1QqcU76UrJe4wtOyGMDHIQcFqb2SDt4d2WtvmQ7fZDnLvCRM88TZ5LXbIyJXdMzQNd8UAZ7i8a7t7pr4HT5vjuwNbQ8xXm+N41U7Vo26Q5Pf4uACrrUg/aYZ8sI86V1BGc8JPvHVCPch/KEaMZroIUQKWtH22gW9M1D7navss3yoWwp9EcF57ZzFPMkKq9TveYd4TtegDjw/YS9/wh7vkj+scXXD03nO8qzqIa2utHE5FR3iOzI/OmJpQlIYFXwYFqIuV2g7drkSgwNaGaMa8+fhZu+kBoIPQXWJd0UnVJUSwxxRJTCOMzaofW12U+Pm1sg2LrNSb5WNSbgLeRsvYoE8hvFT14G3GtomsmzOkBnHZcBje0XW2TvMe+uusYA4Oa/XGXTSptDHvSHk6BUiWmEIMjU6yI5QJXF2JApvffIRtxfRyryIfIe897PrhwvHc2gtP9TlFdOObPnmCvvkfTvJ9a39uka9wntvvIPhw+z4SxsG+ipgf9aXlESi1JudYJPKiMuJ1XiT2dmNND18MrYFtmPes8RrT3xL5Dz+dEHyj6LM0UJCF0mtXU8DBGPGGPTS2bM4UNinJye5YmMguBJpjRGDIZ8HRBWjeNUhRRJQO/DJTZgUWdTVW1rge9+hidsKhBAOkJOK2SvEf0LX1/gQ8dp7pkcbxDL4/3zkW0/QCyyyZX4+qauhhNEoFB13QaoTTETkvbuC0SSL1NjO8apZpbAZB0JYhpPXVEuuBpo6MNhkrrEUT9lJE3BDoxOkOSQJD7UlpEgWsg9dQBPcCNif7UIHEEB/LonsQASk/A6Ql7mumrJAZ1cBuKzmH7SrT6bXwhmY82yXtc7cQg0duLgbU0gmQT48qY+mQymy8BI4dX/NBE8dp5jlzz5wCSpq8aN+VhvK4fJUX1SUPPl8R2iTm+Q7HZUG3WLDaOVWc49oaNF6mPxtR00VO5Nm1ExazU+w7nG4xrcPYSU6zQ3ZqyuU/Qip6Szmu8i7hZHIDqMnWx9G6UHRjOTWCQBbFO2K8XF8J+jZvEnN40FNsrYvMYm8xou+4M79rUrSKjNIMrwzkcmGPpvYhDQVDYbfvjL2+4Ocj3csfXyBGPQ0edSH2kVvk43YqnYxj+Ihcq5ZUiauwkUCq1acvzbqpdfJJ4aLdsohOdfV2yKWacxEIY1W3FUgeOKgGrqzIksFoA68Hn1VyHHTLZYzoNhQDeCglFwGlF0xXsrOE9p3g3dLzrNjybsqfRgy4qSA6o+0bGdlfT95HtbnwPH0SPukrH5IOw8nsnTOtdm/TKW3BbhdkFis4BBcFF4uhUOhgnFoU8fFkMRolapzb86f0RP7rkNh2tA8BvipcuHJvje/irM4rTU5Z3r3jtQ8vroRYDsDjOojFKV4PPILVv0dZCGMfUH3esas1q5qkqMIlFHYpSzmvyBqnKFY1ikMvL8OjQKRdH4N8o6cC9TeYjGy3mPVupNEEbQogCzk2AtP254OYBtg9I3/b99b/af8Z4n3g1FjhDDPRA4QP69tvopeI33Jaz0PPUNVz4nkbXVIv73KlOqMpjimKxB0x73+P9LuVQdkIMkrW2iFAmYkiBYq6LPe3paRfsNPI1tFHIYFZnSTJPo0s2saDdzeicYb7cEIOjmGn0wT5oaswKWS6HUc4hdeTOI6yUYZP8aeQR8FHhUInQ4PBOzBL73QdcPfs5PrgXeOPE8sUHN7Co54aTucMXmnLr+cGHimdfcrx5t+TH37Z8742/wNGz3+BJ8yFP3I5Hz+7x4AcfUr/9kOqLP87ip3+Wb/7Of8/X3jviYb+lcV5A6kkBXEg0VdKhlmPI5uUZDxDmtCPGarhmGZz2wSYDV0PWqVbBomMYDRUHgpsXQoeKA0g9Lm0JpCZeY1HLsY7XOWVlqWtBk31mxuE6jrF8LxwC0cP1nXyNgEVMLUOIg/GsAMiexsxodEWvC5ZdiQ1a1qkgbOoMBWkDBbJPKoyc67vOcOkNGyP5zDrWbKKnjZ4m+EEicprH5s87NQUtleGeqcUQVBlWSnMCLE1gaTyzQkBpoyPWaXa9rHeX3vDI7XsCfBafxZ+W+JEC1L/yK7/Cv/pX/4o/+IM/YD6f8wu/8Av8k3/yT/jGN77x0q81df0VcCKBEupmHWpvVWI0g/aRaJ1oM3tP6Pu9iTLLfsgbic7tTet6TDrJBLcHTk/lPab619MW2wx5DlrUEwa1fD7GlpgUSil0TCzHGPHKTV7bDUmjNzXOtxh9lYy9qgGg1gdAYjgAHLQyE+BzhjY13m3p2ydstu8M4PQsVZHniT19R9fc1SUPdMEDHTm5gTm9B04nBvVN0gCqnEG5v+GLfdIJ9y59PQBKbgCrb+gK/cgYWqyDIypDjCYxzAuRTBt0XIuBPe2652w236fZfcjp8gErZThRilUl5iG6RCr22ZDTdoTt5fCZ/NUZ9vF79I+fsH0auLwU9vQmVVpzMr0v7wFGF4P+tNb1nilbsIqqcejuis6uUyW9IJTlC7VcNjaiu4iza4KXwoVWJVV5QlGeoIulgG3RXQOmrzM/Xj4aEIAaoIXZxuNtwHbCaBg+ZxrXfadpW8NZW3HpNWcxso6edXRcBpH2EH3TgM3A1sFhDuC0Es27nChNNW+76Okn7GnQaF2IdqRZYIoloZBCgTowB8pGXG0fmFX61uuwbT2XO8+7ZwJOX1wKK8u2Cn0uutNh/R2a3Xv0/YUUpkIy84t2r9gyBbggzR8wsKaBwThUwGmZWzLz25SgKyUdAEneA52KLTobk746MEtVNcrOULZD2Q49X8i46XvM3OH7nmIWqcrAzIr0TRUMcxS90kl/Op1vcjeNGrpptBLDRB9Fk7dSERMVFZqZMjSYQa++UhqrgrizE+QVUyEwDMl7Rdbpj0HmDaVEk1OFGyCF4PH9mt5eEqPjgTLUd4trJryx77FBD10TKI0vTJKLuaELJLGno4GAwpcFpizRfT0WsnyNVtJ14b3ZA6lVKnoOh6lSy3C659vgaZWnjHpyb3268KTW5LwBYZT70DHfq7LNuM287RCc/hixg/2IAZQZgehBUiKzp5NcQ2KmxRhlbXVbiq6ncxVtn43UwmCWeMiQyrFpPesmsNsp6k2D69cCyh9q+O+NX4mbZ4p4IzgdGQH6aWTZs9xVtvc3B4jSJy38fmToYuyaOrmi2jbMdx3LxnHcF7RBS+u0qbB4HtkdPji6BFAH32Od5DJFMcfYNdrUFM1ukC+zocAFTQzgHFQVVFWk08KoPjRsC0GAaetE1qHvpUNFN4Fq56i3O8qrC2LzmH73QQKnn9P153jfEKPo/GdweuhmYNqLIJFz1VLpoRiglLm2Xuaiy7hRT2tThKCyrqdGxUBMUh/EBDofgNNTMGqfJZ1BaTV5dhaUeDXj+9L1tDFQKc1cF2yDZalLjnTJShtOgoDVq6bieNh0B44WNrVUS4FXQKLrr+8tk85IcE4PetM7a7hyBWdB8W2/45Hb8dQ2XAWLJbPupuB0ECNoK2NbNyV9qZIMRwLAPJRmLHL0TvLLrh9lPZqdEnB6E6i3HUXXAXNcXREP9GezxEdVRTZ1QSyqlHdPGI63FBFv62IZCuL6kxWOVTJLNMd3md1/yL1Vx+e6ZZIySPdsOoIQxsJRjOJlo60UhX4UIPXJQrPaeBYzuCzAlojMR1GhzYyiFOAUNC7GPRZ1lgE8nDenklM6+SUMXTsqDkzqQeaDiE25QxzWtDjklnm2/nh29Fg8Oozb8us4mXUYCpmyEjoVBlb1Ne2cTxj/afuEnYp4XVLX93n97k9SVXcpimO0maXDELnI7JMkcXGtW8kkcLqa5F5HphpysVKPRvfTCOk6Tq+bDYGdttjUidPoQE9J05WsHtfcdT2LY0+5jMl/IRe8ro+pZOUxkDVKFZORuHiX5OPrkT2DGRjC0nHX2yva9kP8M8WHr0Ue3XHcXRYcLfZz5nmlOZkr/EJRPfesn9Z8/5nlSw9qfvpzBf/j1+9y9M7XOb/4No/shve7N/j8O5H5+9+lfPNt6rd/ijf/wm/zMw9Lvl0Ki7rPJJXJ9c5ENW3qyV7WDJ5LeuLDNJX5CMGjtR/2eyPb2ibw2qGSVEueF2KQe80rn1K3Mc8zSqX7UE8kP0Zpj2mX52i2KL4omv2cz6hR5CrrX8PtuWD+Pmd5XRSzzr1uwRhojaenZu4qToLGesXCeepSWNNTXWph2sPxvGfuNUdO1qA2aJpQ0lDSxEhjkol79KnIJcci3auyDxGZRcUcxalSzHVkpgOltpRGpBfz+zqvaXrNk75kHUmGpA1P+s80qF82FDfnGZ/FH2/8SAHqX//1X+eXfumX+Lmf+zmcc/yDf/AP+MVf/EW+9a1vsVy+uIbpVGfSx9FZeQAlEGCiDxobJHF1VvSodSABx4Fg3cSYcLLBMAUkjeOYZD6uRdKlFr3kjmh7kfYY2NM+yXuIxEcGkn0CqactehmkvulzZibZ1BhHkVgTkQRSSzvXlE2tfUdhatGOGtp8iiH5PdShGrQwEzhtipWwbn1H1zzkcvNHbLcPB3B6YE7rkiNdcdeUPFAlD1Tkwazn6J5Lhohz9Go1ynpMwOmpKdpNoWZL0QLvW/RsSShngzHeeJJG88Rpm5YPatQkz9IYE2bdJw2lCzBi6hjb57S7d7navMsspnZWZTg2wvIs67hn/hNtO8iWkJjU/vIM9+wp7eOWzblh3ZSso0pV17EtKMt7CLAjphfGzERywMxGjXEXUR6qXUdsn4tmpxet01CUHzsJb1vPpouUOycAdaqum2I26E9rM5NNSUpYdAa7XtDc5+OijZEGMEGDg3lT4NwkMTAMGpN5U9r0BZdeswbWBAGnvWXn3Wi+ldnoH4OhD+1nqfIfELZn1ke1iT2NMhgzS4WCGl2ssGVJPPCgy+3AvYtsW5kIqkIP1yIE6J0AXNsu8PRKwOmzCwGnfa+Il7A6u0Sf/xHbzfdp28c43ybQLGmhhmzuBodgxU0feTrnDDJDSX+6KIK0XOvUAZCKdtksNm+AX5WZGpA0qD26b4llLdrWZYeaz1G9pZh7gpXW8Np6rNfMvaZBMY8Kj8YrPyR+PkZ6peijYibtKOlzCyOm1JHKC4PaJLZUqTVF0CPLPJ+7xBoLA/NnZItkOSDizcyFzJ4mOGz/nK6/pIiRBzpS3l1de35oGvpohrVNURBKMzHcvGWTqiXbH2Q+ikoY1H6G0iLzo/xuj7V7KBWQOEBEJoaTwTHThjLqV7bBDQq8YtTsJSL7/TgYw+XzH268e5lIfY0bkj3tT7im+cnwF0YA3r0umqzbHga5BgZgMCSgtKXoWkJ3JEaJvRglZpmPmwDqPK43HTQ7xdF2w64/A8ZNI0ixOMRs1ChXYU+nMRnsvGgJMHcUTOHm0UBOCXtoYI75Hw4wPYnRjG2NOd5QbyzLnafve1qv2URDo0v6GFjpMq3ZHovF+wbtCpwusXbU650150wlfi2FyCo4heuhr4Sl2vdxAAWHon4QEz3nwPUii1Veesqmp9psRHN6J8zptv2QrntO2z2n769kc57AFUPuvLme26VPfmPR4FCDOk6Y7mGS90kLedpq59eZgNQycMbdeQa0D+f9GPOGPUoLOExmuAyevZo1fBs9XRDflCY4uijySXNdUGvR/F8qkYVbBcPKGVZ9yYOmYmkCpQ7MimRum75OO5JCEIardZLjW6/YegEF1hHOoucsON6zGy5cx5XvBYxI7GmUguTpkjsIo9tQbq+o64q2qOjSPOtcpKuEiT9ds6eFjb4VSZhy46k3rRhqhiA5ly3x9bj+gIAaWQ7XlzJfKz3D6Bqjq2tmZsM1nHzvb7qnTOqA+ISSPfroFH10SnH3mJPTc944h4Uu9oDAiABw0rm1I/gO43qKzhGCGYrx+esfRyxrw6r2zMpAVUWaQg/roEmdoFV1B6UKbOyHvNoTh/nj0AfIJEajjWHv30ZWZxyeB1AggKVTWtijaX86gGdqAiLfxpKe5GQ3g9E3j8+9ZyZH96EcJVo+ePXqOiQ2xYLV8k0W87dYLD7H/OjH0r4oE7sc+JbgNji7ll9Nu3QnMlYGKCbs0SrJZ8x0IgxgqBKLOhMqQO7/ocs0ecT0CXCEwBYr9yGRXpfc3cywTnPPdiyDp5gpTDkhhX0Eo6nUQTwMkPm+QjrumpA8pGIY9uWeIL4lrqHrnnPyfMfzszkf3A08OLLXAOos86Hn8v7VmeMPHyl+9kuOz9+r+PJXdlze+1mWZ7/F+uL3+SB6nj6bce+d94RF/fZPs/iZn+enf+fX+e13jvmw39L6LrGaxVepyPv+DFIfsKjlkoyd1YPMR6glL0k/K1Wk7wNBC9Nah54Ya3ywwqoOBTiSebAiqoAjXGdTx5AIc+PvDhnycsyKAj2A01Ig2u+mk47zEayedjBMwepp52z+PiJsahfk/skSjm10zEtDEwy9LWm94Sg4au/FeF3nnEJeUfan8m914XFeY5NUSB80NhEE+miumY0bxPvHKNAqUqnAzIj+uZyDKOtd0FiraL1hm9a67/qOZ77jzLc8sw3nruOz+Cz+NMaPFKD+t//23+79/C/+xb/gtdde47d+67f4q3/1r77w6+QEAUgmiUmDlDC0e/cHMh+Fi3grurBei8yH8oGoRepjyqQOpkCZZHgF19m5uSWmzwxqP4LTvR3Z00kndGBx37BbnmojX6sQT6ri+iAZlQ2RbDqC8rKRDjIV6+AwphpaqQSQMHtgYgjZQEFAa2Ok9ceYBUV5ZwSn24dcbd9hu32ItWuWStiGM2VYmpIjUyVTxJI3tOLBrOfucXfNEDGzpV8UnB4+Z1VLe3AyqRyKBjAwkfLmOoZsSilaTBmc3mM+jByi/XMd/dAqGaJP53aU+SAgwFxmT7sO2z7mcvNHtN1TvljMOFEFK6VYGkdVTaUoAqHvUWVHNFtCKm74zSX+/Iz+2ZbtueJqWyb2dGQTPTaEgUG9L++RmLu6wmiphue7Q3nQXaRodvh+jfNjn2owtzN3c7R9oHeRsrO09pIQpXHNmJqyPEYXKyhXqOBQwWF0LeYbag/O+1SxITCL6d4PmllX4LweWppy+HSdW6fZeiPgdPSsg7RR7aKYInbRT6RSGO6AdHWG15tu6LOkR67gSyIshhfCwlIYVYhGuxYWO9NCAXnsC9uq9yIH0FoxVKuKEejzAVorGrXrJvDoMvDsTBhZvgd2sHy+o3z+Drur79AkcDozmHzok/TCyJyOk085vSI5AbwpEQRJlHIRQGswlUYZjU7mlFnyCHhl8h45BkC6GlnUytZo2xPnM6J1FLNkWpKStwFkZmzHzbTxXKAKceyoySxqrcfNhmGU+cjFwtxWqqOApVFl4DBMgGmZH6Y91lmPEz3sE0fg2rd03VOc3VAhc2Vx/61r58FvW2xY0SegUhmDL2XtmhYVlI7SBTSJWChCafCuwBQlpqjRXjboWreDzMdoxKUHRuGUhZlZ1DZ4OiUs6lK5V4VPQ4LcBDBiKAQJuCZMJX8AVt8UeT7P4PR0Q3JjxAhZZoEM8O23G+e1VRje8uqRmGS0tlTOomwySvSjzMeyvhmklqKf6E+7rUJvn2HdFVppzKRtdjzEfREirdRwZXQ6L8NnSUzwfGHy5x+6y3LhPo75x2gcnYnjyZMjdQLsFYBfcZjlCWF5glldUZzsmG0bFo3nqHecBk3jNX0yXHYxpBZcKQ44t0vzbSmbbGUI3TM0UCKFIB3mOFvgrMaX4DuNLSP6gMGaCPPysGJoZ2xgdrmj3F6hmnNC94w+yXq07VO6/hxrtzjfEHEDOD0Y0E5kWG5bBTUj0QAQoHk67m6Qdtt/vTyvi6a0ikFArYFFPXI18z08ZaHlV8hgdUAKtq8KmM5hlcKrZIYKWB8Hz5UMQmWNzZk21Kpgrg13dck8GCoM866QeRmoGCXxDGOXZI88mhjZEGhiP6z/V6HnzLVsvWUXPQ6GuW4aPplw+n5N0d2h2s4G2Zg2KGyl6CthyWkdUz7PXmFDNZF6Y6majqLZoROLzZQlOswSUJuKANkgUQvoHWqFr2dUZpbYjePcrFS6rgcTWpiM71cZenmCWZ5Q3D1lef+MNx72HG8rrrzFMsmaklGi9z3ebSjtFuM8zpmU72SQ+o8JoJ5pVrViNZPOCV1GkbsyBooaXSwpiiVaV/jY73Umgkla0te7TwaPjsSknp73aYEgS4LUygi7Wk38EOJHOTdcZ0vv35+3ANI3EJpyxKinrzx57XgL6P3y8eZr/w2r469RzF8nzk6xy6Mh91XBo61F9y26m1EokZUsTLcvbTSZKwuSvIfSw5wwBafzvJFzNUhm0Wl9a1J+3wSPZUJGiVbwgBg4YY7d1YSocLZjdddTLSJqmr/5MW8H9kDIUktHSJXIHCVmIkOiDmQ+PM639PaS+vwpz59/iQ9PI28ce47nlnvHYwHKaMW80tQLhy8N1a7j0aMFP3jW8xe/suRnv6T511/9CkcffoXLy+/zKPQ83M14692G2QffpXzzK9Rf+xne+Nn/xF/8oODb1ZLL1tKGHh/cUIBRyqT1U+Q7lbouXRqDT+Sj2eBTJYB0nToEd8RYDcaKIXREXcmeOfSpozOZKionXZ2Jae2UFHSngLRJ+dj0d3mw7OmNq3EdG/AfpQaMJAPWN7Or1WCunXO6qYBb3jmFRATLe70mOGaqYGMqNqrkNGratmRpDIvSU+qwVzzNczpE6gxURyUF81RQzR1sh7WQ3Lk6/pzmmfR8GxRN0LRBs4lwFgPr2HMeLN/t1jx3LVfB4VSBKV8MW/ksxlBqzC8+ix9d/InSoF6vpbJ6enr6Un8XYRC3z6LzBJnoG7zcaFFjggI3fuTFzhE9VGlaMj6ifSCGgOotuirxfY9O7Omhjf3w/TNjN0t6JC3rYB2xF+1p1wZcK/q4thOQ3HoBzXu4VkGbAkdZezSz2GC/8TJvVAeG1QBSCzM8KtGA0qocGNRal5jEnMtthKJNJQvXbPYGZX0PpWfE0NJsv8/68jtsNu/j3CUmBpZKc8dUzHXB3aLmgZnzhqn5nDK8VToeHO04OXUsTiPV66eY4xPM6hh9dIo5voc5PkUf3Xupa40uBNjuu0HzNho/FA1C34vZZd8Te4drI31nuOoL1jHSINpPI9Cbm7r3HdyHc5uAglwtHgwjE0OWcgW+pVl/i6fPfoPN5vt8uVjw1fqEB7rgdRM4mVuR99BSlQ9tD1yK3vnlmug9frvDrTvai8jlc8Oz9YxHbcWjEHkUe85Dzy4I+7eNnjaGtEHQGF1TVccUxUoYzcUSrzXGBXRQzC53mMuHbNuHWHuVjn9GV9/MypnG+dZztoVqfca6ey7nQZfM63vU87dgdo9YVBAExDfFMsnBlGh9s1b7y8Z5sGit6TE0UdH3JXObdOCQxdtHYcjboGiiogEeBTswp7Pu9JVP5ohJ3mNgUKXxFidAUK6y+yjO3F0qgLjE0uiS9rRVInlizJyymEuhoFhCMUqtBCfMql07MqV6F/DBDW3CgzmXjWy6yLMr0Zu+vFTYtUJZmF32LJ58SH/+X3i2/n26/mwA05zvsPZqcNIWdkIcPsmtzOmP2KQYJZp7o/60RlWVzIWldA4oPZFAesWh50sBypJZ4tQwkWQ8Wy0cMyfthEsnSZtHmNIeLe2Nk8jgNIxJoImRSgfMYJaYWzZl05HbCzPQ44gH4HSWftlnUe+d2aketW9pN9/j7OJbRLfhC9URX/mxLfXXfmb/BARH+8yyiUoMUokYXRMLRVlEqkKlR2KDakXIILWGWCukL6gCVgnYKfYW/hgdpp/hg0ufye0BpJB1qKGNAamSyDjQrwygHgGbCKLnzsj8zJsJNekaOjQLnOb44WAMTx/X3zmB05HEfM+wrjCnDVmyQdZiAfNkvPX9OYvmnHL7Gs3OsNlF1jWs6oDRqdtEizyAdZFt63m8dnxwEXj8TLF6uKXffI+2O5M12czR2uD9eF+Nq/91nt30QdqMZRb4APonaZacHzUkPfYoGx3nNS4ZPYY+EBpLXPaEvkO32+St0V6TnnkVYe68NhaYAXiCiDqBvojotmLuS55VK45MyTPXcu46tsHR+g2+7bB2Q283dP0ZIXppLd/doahOKKs7xHJBqGb4eoYvC3xhCBMRehXEKFuHiLEiT2C6Dt1d4TfviIxH95S+v6DLhoh2h/ftIOtRx7HzrUhXI5Cw4jgBDgcAmkFKAEhaoNUADGd2lxpKJImVpTSlSnqZEYJKqLrSaFWAYhjDwlhzRDxBRYq9Y9QT2ZyRdebInVkygtwrqkAJ8UEP88g2jS+pioD2oyxKNiW+SXu2THPx1NA3R+6K8wmwyDleLkh3wbOLXgAIBQL9TUZUKnx4p2m652w3f0htL6jaz7G6vE84u4ObL3B1hS8NfSF5gw4RFSLGehZdPwLS/ZpgN8TQ4oLHVCcUQDmf4+Yz4h6DWkw8AcwSutWcan2Psr1HWT4TE1BdEKK9NokNnSMDWHoQL2mQeBjl579OsB2L7YYvXT3iG1d32AXHM9fSxZC6Xiy2v6Irz6j6O1TdM+rL++x2D9itJJ/ZdIHjecS6SFncnnO8iljODPePCs62gfNVZLOJtFmHWolRcFW/Rlkd45uWNjrK4KiVoVYGowWk9gmE9jFSKQ0KamXwKg5eMCFGYYQm4GuQSNNmlARRiiJo2ugxqfOuT6zrUWQmnxM1FE6vx7S3d4y9ItfHxghYfwSu/VLR/y/+T1zdW1HOYtJSj8RUuOl7cK2CjeSvs4sL6s0KtS0w23dQapM/RVpvFWYy3kfJOT3Mmfl31fBVgGIBixkWyt5EGiKb5D+zDY4uOjrv+K8x8IEpOd2WvLGrefPM8uC44+iOmNlnzXtvVdK0HzuOQACsTIiYo5hrwzIWAxs/aHAhUsZIrzzeNzTNM5qn/z9Oi4r39VuAx4eOr7rIa3fKIVdY1pp7p5H3zwvqTUP1Ry3/blHz4KjjL35lyfoXN/zG+f+RB/0Fv3f+21Tz+5TfO+FnzB+gjGH58/9b7v7vf5n/9fz/iv5/nPJ/V4rfbM5QvUhBFmYGzEeQ2tQoPRM5lkPmO5A7/kYJu1aKUm5zwLB2+MEsVaTvQuiwxSKZGifz9iRBGEKPT3ltkQgFuXtx2rU49R4J7JP4NGq43nsFJTXmgbd5lWTCWp+KRhmsDkq+OiR32nnPue9Z+55FkjHNUqb3TcWpLThRmhMVmenILElUyTEmYsEEcNY6Qkj/psf9yFRyrXM6MawlTzuLik0MSa7SDvvaS99z5XvpEFaRo9XbHN37MvdWX6VafZW+mvNH3//ffZJh/T/p+KGbJH4WHxt/YgDqEAJ/9+/+Xf7KX/kr/NRP/dSNz+m6jq4b2xUuL0W7Nyem2ehCWlk1fZSkoUe0qHvyYNd0ztB3GmUCxpKqpmlCQazeQ2/RFQJ2JrYu4SMA6gk4HRPaFH3E92EwIRp08oYKWmb2TTSI0NfY08N5iiOL6qaYglCy8U7TblREZHFBFwO4opROX0dn36KYU9b30MWK4Da0u/dYX36Hq827OHdFGSN1Yk7XyrDSJffMbDRENIG7i56jO475SaQ6LtDzucgBJPMzPVveqDf9IqEmjM0IAlxlaY9JcSD0YqbX95qt1/TpHOeKuksLYlT5zI1xqM299/4qmSImbTXXPObq6g/Zbj/grip4rZxzrEvmQKXDsECFgBhz9gHopRCiNaHtsRtHfwWbC8P6quKiL1hHEgsoDPIeGVQf2NPoxNgtR4NCXaBCQPmAscKeDv0Fzm1F7iUxzqJWH8to2bSB1oKyO5xvIYZkkLiS+6OaE7VGBYPy9WC+IUUPzcswNG4b3130NGkskxJRHxWVV0mvSz5Dn0DqBmFQZRaFRVq0uuhxpE34BIqessWmkgaZhRnSJsWl+UE28YfFjTx+DqRyQkB5CF7hXMQl863cGmwmCF82Wtq0sN7C1Uax20irsE4yK/Oz59iLb3F1+R0BZIIdxnDw3T44Dewxwm+51LkAdlOYCcN473MdFup+WCxLnaRDylpAcFMMnRMYg6oKtHZiVqI1RjFoSWcwxtys67D/NulzmlvOgzwnG9fe/JwQ/M0S3DnJnxRrom9p20f0/Zq50rxeLpi/XmDuvLb3p/7yDNupJFMl95zWBdEkrbpU3BDGxX7hEkCZSCwV3im0Nfh6hgoB7Vdo36JDOzDJjC4IgzSPiGlMIyqEUUKkjZ4y6FvPxW1x2xgvIoMqwfRyxQmDZoSwM7HmOmjL+PS9r4evu/eMmF5r0EKMAzg9Bc3ye+X3FgZ1T3QbjBW2oHXSIdFYkfBpbaB3ch6tizR9YNMF1jvYbRTH2w1Nf4b32axy1KAeZEYO4pAFe/vdrYai9tBZNnSYZcPEkdEjJrNilCgF3ixZ1hL77ocCUKuqHvIBvTzCLDeUy475ztN3js4ZbFDcTRIfvQlj91Nw9Fi8FxAkRk/VPSOEjip0FKHFuA2mvIPpZph2SSwqojaEskzrVprBvUc7i3KiPRzdBtev2W2/T99fYN0Gay+FMe12IqEUHRAoI1RKD+3m+dpk2TX1UXPKwdWTIvn+76Y6nPI3kHsdAte1xwUI1lI4TItchpw147jQCQgejiF9aZM5qCO+NIvotvGt0n/DGIz5XVMhScn75dGqE5ty5/0e8K8Sq3I4Bzfo0GYQYpor5W4pd518nI4nrfpK7ivvO7ru+fDPZWgxdkPVrCjLRbqPEtAXAsr1KN+BE2mQ4Fu82xJ8O5AalDYYfwftw7WJWmsG496iithaE6r5oEO9J8N0Q+S54FUzqOXgCszRKcXde8zvPeFzuuIHpubS95MutGQGl2Q+vNtS9g2uV7R9FBa1E+Z87wJl8eqNVw9jXmnmlWJWCmgaS4haE3XKkVVBWSzodUnwbpCIsDEwwwyFkClLOoPWQ6drZJB+80ruNR3Hzib5qgnKCBAVRikQH71oyUPSgz8AqmMeIQeD8LZEbvqUj1gVZL64qaz78XHb+L735cDqJCRfDPk3n4xpu17MQptK0ZQVcIe56yn6C4wuJyagt8+UnogmoGPqpCKm853+Pa1pQ86HFJbnKObACs3KFKyV4zJYtlEeePAavC7wfUlYK0JoE0idXjuB0zcsxROJj9FoPAPrffQUCItaRynN+dDRdU+ZXb1H/fw+5/cKHp1ETuaOqlAcL4rBOH0xg2IZ8WVB2TSsn8757hMxVvypz9X8f34cjr77dZ4//Q2e+Y6HvuaLj0tOfvB96rffo3jjbZY//4v8+f/8f+N3/uCE39o9x/sW63ZU5fFebqFS0QYzg3K51/kJDLJ0KnhULnz6duiszvriMTp0AqjFNLwihCrdD7L39Fo6Tb1rUaTcIzqcCuhUbB2SvTQ+tEoZ6SD1NhL4PiqG56mxEJu/ZmmQXITNa4VCugVzzhgVOER+bhvcQILceMvGWJ77gjum5liXnOqSk6A58SV3fdjb/9+0lg6e1BNvHJtwoSaRF3M30KPQD51AG2/lEawUXZSiKI84nr/Gm2/+DYrjr9DfeZ2LO0v6anf9jT+Lz+JPQfyJAah/6Zd+if/6X/8r//E//sdbn/Mrv/Ir/KN/9I+u/T4kwChEndp4IjZVtCulk9SHoomRCkUbNKUP9L1OreuSYiXlRyCB1EaP9eoEiMT8/TQOAOqQnEFC7wl9IAbwNqZKLDgrILmwPkdtZMiT5H72OmhsT8CAQ23NQ8bYNDKT8rZq+cierinLFXX9YACnm833WV/9IZvNezi/oYpQT1qs5rrgxOwbIt5fdBwfW2arQLk06JkYqunZElXW6PlK9GU/zYb3BkbIqD3twQd8H/A2aRJHRY+4OU9du7NKr1JqbKX8CHAaEnu6XAnQ31+w236fy6sfUISee9WKI10xV5p5qrBncE8AgIhqA8ZHVJ+Ai22g38Hu0rDZFKy7kkuv2cTAJrn85sTZxRFczaxvnWQlRl1xOTfGeWGEdVf0do1zDT70w0Yn6FEL/aawTtrVrQPshhCEOalTEYNyRShL0VV0FuXq5Dxfj0C5evEp5rbx3YTALOZOCEkGvZJxYxLjYtAXJ4HTBBn3g5RH3AP49woT04ERBYKKKg7MN01EJxZ13gBPQW7RsNTXN5DBo4LHuIB3ooPa92Ml3VajeZAPYrzU9rDdwWajsFdi0GU8FJ1j+ewZ/vl/ZXP1bZr2UQKnDSFYrGukgDCdOwaNyNs3IVNg2sc4gBQvvNENPoHiiGHpi/3VS0XWuFbaTPSuBaRWWqOMGNxM9d/M3uP6UQ2AtI74W4QYzSQR/thjVBqtzVDYuvW+DyKd4Ps1m+27eL/ljpnxpWJB9dbpNakjf/6Yfqfo48jY0rqQjD0fpxYGdVFAVyrKiSeKLlIyHhTOF+gQ01hdoP0KE1rRUTYzkU3wHToURGW5qZU8M3Jt8DR7pZ0Xi9vG+CxtUAVMnQpajO+rXuB3h3HTenj9GfnbOJStMjid75+BqZnmBFlTE4PetxRdT2NrXGpn712k9wmkTvN872LSno5cNUjhqbnA2ktCsJTlfPCCyKDWYUzvRp0Bvxgnmqa5iVWlllcmjvQyH0o+NBolZu1+5zTeenwfMNaljrCOYDu0/SHpGOaOqPQwqxXFakO17Zg1nnnnWHrNSSjo9ciOHeanDFI7uR5t8Vy0+H1P6XYUxQLTrwcPDWVm6LwZB3JXQ/Qt0bcikeQ2eL/F2kt2zSOc22LdDmd3hNAlvelR0qNApCqmgKlG3co+vmk+lnV7IuuCXEktyckebzIbcLko/x6DFwIF4xqkKWQlyHWmCIOoRarFZHZ2BqnL9LcVZrhnuut83I+M28a3dAJM7t6h0DeWnEZ4KhIT+82nEayQezxrwU+JGPtm4vt58N5jbzobeg72/zpAkBYZuv5COpNcQ9mfU5bHqUMsSW+AEBWiI0R3ANSkdvdsMKYM2swwvhVAO8TkCzadx8VToKqgqxW+rqUrTgtIzQ0F/731m2kR6tWuxNLxeI/y7oLPac2DYs5T19AGn+ZD6WByXgzwvNtQ9mt8JzlP08v81/QB634IIPoNURaKyuS1MYLWY3cRqWBgZihd4kJzbV+gUXss6inoXKjRqG8qL+kSkcInA70sR1AqnQAxAap1FHJIBsXisObFNI9/xLp16z+oW76//vMw0l6ywHzb+P78fVgdQ5W2Tpls0TvYdlAmv5hN0LS2omyOKNs70m05yAHuR4gCQoPkHAYB931aeyWSeboKEDW9ilSRPZC6ArxSzDHMtRgangXNmW+5iv0gC4IGbwv85ZwQWlZHwqTO4HQ2YJ3KfZDewyRJuBKDwQ1AtVORgpgK+6JF3XVn2PYx84s1F+cPeHLHc7oMrGYeoxUmEYfmJdSziK1Lqs2G+nnPHzw0/PxXPa/dKfnJr7b84MHPsf7ev+CJ2/FBMePR5ZwH766Zvfv7FG+8TfHaF3nw37zN//z7z/h/Ks029njX4nxDdYi460K6PotKOg1AJHGQAq6c5iAgtetRcYmyW3SQOU+bmhg8IbTE4NC6S3OgIP06samnhfjgRa4x+J4YLR7RGcsm2bkomYHpdNcyvWOm8/9txL1rgLZKRf4Y0Wnt9oRJB1FmWgubOiLyc32MuOjpfRCpu+iZKcPGW2pteGJKlqrkWJd8LlasVCGSVIk4cxg+jsSq3EnfxNE8scGzCZ5tcDxzDU1wbIOlSd1ATmmK8g4ni9c4Wr3NcvV1/Jf/Cpf3FhT3I3eOI0X0/NaNZ+WzuC0UnzGo/yTEnwiA+u/8nb/Dv/k3/4b/8B/+A5///Odvfd7f//t/n7/39/7e8PPl5SVf+MIXgNyaMW5e9C0s6gaFCYrSGzprkpC9Sg7hOWFOIHUFJN6kMn4Epm8BqENviSHsgdPeRkIv4HTeBGYGdR8VfRxN+6ag0KH22SErbHjeDQn5Yag0yQ8/T4DY3FpqzJyqukNdP6CcvU5wG7ZX32V9+W22uw9Fa/MAnK604aSouG9qHqiSUwWnteVoaVkcB+ojjZkX6KoU9nRiSwlI/cnY0+M5l7b/3B68z2IP+Mbh24jtNDtr2MAATtsgbZ8ZqLzW6jk9d4eMWFWgcqU5OLrtO1xe/SFd/4w3TMXdomapi2SaESYahXL9lZWrFfrxSrUbTddoAaebkktvWMcoAHUyZ2iDH7WnYwZGhbmrTZ2YCPVgcqGCx1gwXQvdGmfXeL8bquYZQPsoBnXbB9FJ7knu2xYArQuKYgmmJhQlPmlW6OQ8b9LxZFbxi8Zt47uPjjYWSU+YgUHtJ2wJGA0weyJ9GlP5eufCVczgNBngmgo3iAatGhhnMhv4VNxRSQM4wHANhMWe7p8M/Gct4uDQ1mKsR3carzWdzpp2I7sERoOl3U5htxrVRMrOy0ZWKxZn54Tz3+fq8vfY7j7A+Q6TjJN8cHjXirYbL68rmNmV07a3Aai+ZaN7aKD2wwKngWG+zcC0mDGa4feZjS6azDExFkb2tFF5g5M3Ewcvn8bo4e8PmeUhnaPpiLmpmKUOQeoDXe7oNrS7d9ntnjCPitfLBV/TJcVr19c+f/GEtjE05A4hKPS+XmFpZCNeFHFg9eXQRURpSYCDV3hn8FWN8h7jl2jfYnxHUSxwvhUj3SDmVipmPsm4xoxtjwEVs4bgi8dtY3ylRaMkF5D6GIbi4ccB0Dfddx9/WNPruA97H4LTZWJsCtONJDMiEi8hSMuqdhacyGRYF+m9mCVWJjArZdPZWmFPb7rIdgflJhDaZ1h7hQ+OmS7RyWjoZSKDdWEA8/LvRwa1Y+ww62N6oKhSR1kZAy7lKL4NxN7JWmrbxKBuX+qYXur4U2eVPBaY5Zxyaal3gXnj6ZznxFX0uhA2rAkDUA2gg6fD4X1D255RlB3eNzi3wZg5RTGnMIvERq2T1qaMyayrmQFF6TLqsfYK51va7gzvWnzopECbtP2LBE6LLuo+q5d0Lfb0wYcrJXFrB9wN62V+reFvJyuWXN8kB5Nb91N+dwhSBzyD5FMkqc2LJnSV5izRfB3fq/H2Ba+ixG3jO+Inw0wdfAVuOE+HLE9hst2UCb/MJHT9vGeQWuTvGEDqvr/EB0vhNvR2TWFmFMUidZuMuRYwANFTs9ysywqyJhTlMYTkSTA9oqRVOgLUEVUrXF1TpsLKlGma/QHypx5a1g/2DOGWwusnCTVbYu68RnF6ymvVGa/7mvdN0qLOMnh4gu9TgWhHsBtUE2lbRWvj0FXS/zEB1FK4HYu3qry+PhZmhtEVLo3VLBXpY6RUXGNRw2ggXSTDRBgZmdn/aI9FjRrbm9JY1CicCgM4uueXkN7qtrN021XdX9H2Qe6RkHE4cl5Owue28f3miWZ5NJ7bppdu1aaPGD3maCFENk7RbRYU21OMqcYcSqV7+uCDD9I9Ko405uQVAYmlHjUoIaINH3KiV18pqCKJOCT71zZ6dsGyC3b0aNBIjnQ15/XYslpJd9608zlH/t6okSiTjbV1mDCq4ygiGKOnt5e0zYccXz6kvDhlfal4ehQ5mXvJ5QotAHUlc0FTy8mrtzsePznmnac9P/GFOX/xSyX/+Rufh9+cceZanvmeh27FWw8rjn7wPaovfj+xqP83/MR/+r9w/3xGY3d430jB1e0oi45RlFo6g309I2o9gNS5qKN9GAHqMJOuI1OjfIcOInUZfYsOS2JoCb7b6yARwLoaMAetG7wuQGk8gou40CQJtTgkdzkf28NH9gDnlAfc0N2o976/vv4OEiGIQaNJBMEMVLtUGM25n1cM+78MVDfKsUvG4dsEVNfK8MzUIvuiiuGeyxI0mTTjSV5pMSYCnZAIRMZT9v1dEP3rc9/Jz0SCKijKOxwvXmO1/CLL1dcoj75Kf/oW9sfnvHYncLKCkznons/is/hTGT9SgDrGyC//8i/zr//1v+bXfu3XePvttz/y+XVdU9f1td9ncDqzS20IGK0GFrVRShjUKNEaVYo2KDpnMF2a3PR0KR9BamVSW2TQKJ9/dwjOJEMi60Tz2cdr4HR+5E2gTUL3YuoSR/OijwGpD81tpucgb+bzGqqGrWtq21Y6sVqNVA3ThjiD07P5m5Sz11GqYH3x26wvv8N2+yExttSRPXOKKsl73NE1D3TJA6W4V1ruLHuWx55yCWZuUGWBqip0VaPKWgzPZstroM2niQEsy+aI1uH7IFrfnebKFTQxS2UkqYcEgGSgN58jPQD3NwOrSheoYiVv1z7iKrHLj9CcFjOOdEWFJEGjyaJcd53YMtmcE8A5RbMxtJ1h3YgpYpb22ESp0A4GLkyYuyqBq7rEDNfUDKCYJBIB3YtztrWXyUhvf8P5UZuFTevpkyxFcFtCZi0ojdY1oZoPmp4A2pXJfC1Jfbwkg/q28b0Njjo60ZDXMGcEUDNAJm7Z7I2jLPdzU0yZVCPIaIRFmUCooAIqJv3bCHlOyKDP8MpqBKdHTWJHdBt0f0zRJZMlXeJQBCeGSkWWeQvJXKkRc66qcRibil5aYWyEsz/gav17bLbvJXA6FxjEHXxw1f4ImDim/G0A6OPo4j62CI8MokHvPqqbN7tJG1pliZ0folbtKO+Rweks8/NiBZBRt1DY04cmJDC2290UGbzPIcWhDAiNjJDcNTCMw+n9P2FPX27+COvWPDAVb5dHfHHeU9y7bpDozp/SdibJE8m2Ux/MTcNGvIpDG7NONGStIdEwcV5hgwFqmRuclUKWb8UM1+wGFrUct0gYjJ9ZIiJAUR9Ft/dl4rYxfreYgVID07fNc3TMpn5TJeaXg6SG45+g2Tdx1BTsyXqUE5PMDAtl0ztIrNAYCKGlsBZlZVxblxiDtZih2vRoenmsd1KIml1ucb0wfmP0A3j6MgC1rFwZio7sGSWmbXHuHpEuHJ8Y1KOxXAgK68R0dshVGo9pGkKzQy87Yrv9BGf8BT9DOUNVs1H6az7HzLdUC8us8SysY9VUNGi8Kuh1kHlqkh+pLOHkNklHuMEWDYWpMQmE0qmIm6WwgAFIzMxoH/phDPhB09/KfE64xprObMrqMF+IqS35I27Uw9LWmHdkdq+MPgODCVSOAinQRqR7MAZP1Iqc0t8EUitvCCqVfdJ9UhysF1qJsVveQBcfY6J8GLeNbx1FG30fJDsEovfOxo3ff3zx9aNnhuvs9XEmyDr0wqT2UqzxPd5UaCP3kraXIrlxQ44YYxg8CORnP9xnRlcC2mYG9Q1DvCqEgVpXYCpwdQlFjTHLNDfczDSdhqzdY2H5JWtdHxnm+BRz5wF3lh/yRrfifjHnzLW03stViREfeuk4sJfUbkvZeGxv2LWRxjIYQ99kHvuqo0z+DEaJ+eRNKX0mdSgMATfqB9/ALPYT0Dnrn2slxsl7xuu50J9Y1MDAxK4ZGdRjV1/Soo4fDxe/zBkbOm8n93gmcOUc8KNynpvi1vV7oakSkNq7iC8S+aUaAUThbkX6HvpVyexqiTGLQb5GoYZ97NT8bmBNh5TQpJvaD8VAldBfTUMYL3TMxomJSZ0YrKJVbdiYinMUV6Gni47nPuUaqgQK2MzwoePunX7Cnt4HqrN5nbz+aKxdKi2yC1HhlKJEJy+bIH4J3TNc85jF2Re4vHeX58eR02WgMp6TBem1pZsi1IpojBjdPznm248dP/EFePv1GV/6xhWX8wecb9/jqWv4wMz40mXNg3euqBOLWi9PePCLP89Xf+s/c+46LkOHs1tcJYXXGMZurajNQDryhSEandYVialfgwqBoivRdrYnc6RcB75F6RZTLAleuq90KuYrZfC+3yPJOV3iXUGwDo9LzH4p1ghx5KBzJOZO9wxUX7+XD41D9+Q+YtwrKOeZNSj2gGozwZV8FIA6F3syUG0ToaKNnhJFqcXIcxPs0FlVKk2p871hrnX92OgH7GrqFzL4HQXPJR50SWGWLOf3WS2/wGLxJeqjr9I/+Apnr6+YvRb5+hcip0tY1Yp5pQjtD19O6c9aKPXyuc+flPi1X/s1/vpf/+s3/ttv/uZv8nM/93M3/ttf+2t/jV//9V/f+93f/tt/m3/2z/7ZKz/GF40fKUD9S7/0S/zLf/kv+dVf/VWOjo549OgRACcnJ8zn8xd+nYHRqOIAPPYxoJWwlE1M4DSKXmWgWtE5jVFmorGaACgvJyaGgClTEm2SP6zRRMs+/z8B1KH3o+Z0YAJOM0h7OCcGiX3QQ2vHqEG9z2SUz3Y9gzjcpMfpYwCn0/SrxAxHodDJqMboYgCny2LFrL7HbPFFivoe6AK7+4Dn579L2z5FBcsMNYDTg7Nycl1/w9Q8UJq7hedkblksHdUiUswMymh0VQrTUSdwqaw/lWELMGhjZsO0rD+dtaen7Om+06yDYpOMctro6IKXRWcA6JTIBxzIe+TvdVpEta7F/C5Je2yvvsvl1fdRvuFuMWdlSmbKSLV0Utn1iT0NGm3jVIoWZxVX25KdNVy5gnUyQhBAfayi3mbqqFUxaEpPGT3aCvikuktskvcQ3czE6NGGaBj0UW+K1gaaBLqEIOB2jFHMvIoloSyHJMYDpigpksSH6FCXr8QkcRcsM1+knTo0RuOjxiuNIbdSTmRyeEktxmnrbCqX5xQ+ZGHcXNFnBA7yJnvUDAyEZLQUQkdwG4zdUTTV8FbOFgSrsKXGasBFlAVtI3VnB1mWmNpRTYD68pLLi9/havMDertJ19uIzptrcL5JDLoXZ09PtbWD2jeXGkBBRo1aILU6RukYCX5gTedOBuWd/NvHe2/+sUVmTU+/N0Bpgpg/qjgYlIRBcimM8zGj5m2cbO7y+BuT7GJPP1hpI4yUg8js6c3mfRYRPl+v+Iapeeu1i2v60wD+/IxdX9AP7ccIky5MPAs0zEslJluFIujRuGvqJB5r2dRZRC9eBU8RPNrfoSyPR5DOtATfE6IhBo+KikO+cQBhj71ki/BtcaRLtNHD+rcLI1gwFOeG+W8E6wM3Q06HoyDPxmoyhg//PbNSByYUYtYkLBtwcWSv5sjdEip4tI0DQC2aq5HeKZrULbPpAutG5D36nWK5vWKX9KdjDBgj88RHSUzl4z5UzVeTZ8QYhw+qUi9Z7ibpY6ANnkYFeiVmojYoyiz1MeQrYuYb2obYbgntFpJ/xQ8jhuJ1VaNnc8xyhtlIi3VVBpYm0HhhWvW6kLwoNygohcaio5cWZu8EpPYtTlfotBblQu50nc9GlD5YWd+CmAvmtTKE7hownfWQzSQfKibo137+NuZmU0awOdg8H17zPR32nKdEBh38kPLZGKHHQ1QDfjMFqeX8CEgtRScF0eNU6gY6HL9BTOAy+GZeogPqo6JKnz6/XS71JhjiQH4jx00A9k0j+6afbwaib/9dVgAOwz/50KFwhGhRvsWpQuSVXlAKDkg5miYa0WSNoR3a5QFIUh/ZS6AqFHUVqWfCnAz1EaZYYUw1mJpnPuH0E+wxeNPaPRSVX5E/hD66h7n7GienjjcuIvdMzZGp2Ka5OiiRPBKZjwZnL6h2HZtmSd+Lt4YU6f54AGoYz6tOHJ2QQYcEyhlTYYyA/yFeN9rMDOoprWMw6UxjMEcGVC0hAddCpBhA6jTmaxJApRnA8KmZ2+Ge70VlxvLfHXZxTP9Nvh/fx72iCoZIU+wTXrJ8Xb4Gs1Jk7WazSL9S2PkcM2isX19Xpl3RIZ3LfE6z+GYfA1WmpSsG3X+vZE8i38vkIgBypFSBKio+FysqI0XGy9Bjo+fC93idx1CJ39XMaz9hUTPki8NnTzNHvidKZSiVp1QapwIFktckCgvetfT2kq59yPLyKfr8Dus7iqfLyLwMw7k0WoxT9RxCUWKaLYvzhh88nvH80nLvuOQvva35wfKLPNl9wHPX8rjs+LBf8uajguWERT3/C/8r/nzxHd4vN2z7K5xvhLRUniRyi+hKgxAcspGwL5UA1NOhmny4VIgUXYmxfjAXVmGJ6VqU69E+AdVeuq9CaAm6FVNG3Y2eScOarPG+lfOMTR5RcUjopjP7VBc+x2FXkpqsbbmbKQPZ2SA4Twe5UHsTUF0QsGlu7dNaPMy7GaiGJIkF2su13wUnuQFqwtS+PabFLcEn5H27GLAKyuIOs9ldFvO3WCzeYn70Y/j7X+fszbtUr0XePA08OIG372vmpWJeaYyGJv7w59nP4k9O/MIv/AIffvjh3u/+4T/8h/z7f//v+Ut/6S995N/+rb/1t/jH//gfDz8vFosfyjG+aPxIAep/+k//KSDI/TT++T//5/zNv/k3X/h1ghoB3qwzCwySACbK5JBBamnz1jRBo11k/zSEpDEVMWVMYHVAmQxU56npkEUdhTntI8HKzxmctp1IezincV4MGu1EAD9LEgxJJiNjTI5onLjyZoeDr9NJM4PTKDVZACS5LkyN1iVlsaIoVsznr1PP38LU9yE4+u07rC9+l7Z5gomOKlf/puC0MoP29ANluGsCJ7VltRJwWlcKZRSqLMTIzBhp483g9I1OYi8e0bvE1uxGkDqzp/t99nTTGTYx0iBs5DYxrWwCPSIM1fvp5nVs0x/b9bWZofQMfEu3fYf15bdpu6fc1yXHpmKhysQu11RKdpTWj5s85/cN50KQYsWmL9h6k4D0JO1xwJ7ObYd7usfs60/n4wSkmh28mCMmeY8Q7MiCTvFRBEjZTAjLG98S09+K3m5qAyuNAGJa4Z0YR2ozw5iFtFeb5vY3eMFogmOTmN/GaPpYIJpzGUzaZ6P5SWKSDUdzu51SChUP+VkjA1rBnm5nxKfWQphuaHMxaApOC5vSEpTGuR2F26LaZ8LGTHrUZSfshLxRMs4PrXPaWZT3g4GX9oHqak04/30ur76HtVuULgb2tHUNzu0Swy/sMexui+n8MWWp+Elxb2QLRGzUA3AVfTJQy2PNe9n8mkJkAEwhDOqqfvVA1lCQcuPPSPfKVCPQR3XDBkINWoSVinvGJXtvMTGt7ROTPDMZQhxNNYNKc4YuMLrEHOi/DzI7yeBxfIMW2z7m4vIPsO6Cz5UL3i5XfKW2HL8Zr+lPh+0ae76hcwt6ZC6IapyTshZiVYgZ1KIGU0ei0ShnB5ae1sLEmRbMbCgAST7K4DHFkjKIu7oPPT4BdVPF+2mMRZpXA1BXqmCeuwJiZKYNffaTmADV+3ryoy533rRk0Hp6nGry9bbIAPXUkC0DkHljUaiRpSNgWxi6JZTr0SESnMa5iPWjFnVjAz7IfLrpRGNeXUZUc546W4RhlLtgfHQv1XmilULFpEes8pUxKKWIURGUACF9KnT2MdDg6aOhJxnzeI1Okme2CxRtoGhcYlFvUbMtodleu0dfVQw682Wd5MAqirmhWjiqJjDXgVVIADVGQIQYCRONmSIovLdYAo6e6B0+dGgvwDSpoDtlvmYWfCRdy5DgvSiZWBHHokVxAzCd15U9nXuVQKJrxRtFZsDepIsvT5G8jSj3s0oFdJ0Y1Bk008ixRIWwvZRIaIQASkfJdOOoSS3dVmKamI1HBaSWc+CjaN86FUUvVxthe76i8X3HlGithS2a5tW9MRv3pbf2geubykl57f24kT39m0g2Qb45RqM6WfzTbOKdnPtUwlKpY2osau8DAPkaZ3+QkOVkoiMGjw7CQAxeESeJi1HCoJ6V0tq/nRt8LaSIPaZpGtc5hu6nKTgd1VBQlrX61YDU5uiU5f3I6x92vOEr3jUV566ji9LVEIOYNXvf4P2OWbNDb+e0rWLXRTZdHEDqo2QG98OOzCWaXqZ8LURuIBX8SXJI0z1kKvABQ56UgenMkp3qUNtEjBr15/UAUmc9aoASPQDI2TRxqrmcY893aAJi7/187bkJqFaKbIw6ZY9qxm5OdxOV/xNE7yK+H30XGhv3/FVArkOZNNaLWcTOKyqzEN+OXPBJzPIYxyR9kFqL07U9DMn6FKSWc5z3SlKV8LLJS6dFZD+0ijzQmiqWA7B8ETps9FyF3IkQ8bHk3q5kObNM1WFyjpk7FbJsQyZylVpTRk2XZgOT2NQ+RkLo6O2Gvj9n3jxicfEW28sVZ6vIahapikCV8AatJYV0dUW19pTbDc+fLPjBs557xyU/+fk5/+7kxzk7/z3O3SXPfcsHZsbnz+fcnbCoAf7y3R3fDXd47lqe+yYZ/m6SmWuHSUWbYGRf52pNLIFCic/LdPwECF7T1wplDdqW6DBDW09Z1Whn0dai+xblO+lc9DVBzxIW0Y3FCdfgdYlSW3zR4LxGFKGcCKymts9pUTeP1b3RcgNZQh18HeWx0teYAemRiJBNGG9iVJM7HtjHXCLCrvbpvTLzOeeTihH8PmR2Tzsnci5ro8w6TiFEQrPg6OhLHC2/xOLo63D6Ta5ev098U3P/NPD6XXhwBCdzzYMjQznRK+z/lDKBf9Txw9ag/mFdlaqqeOONN4afrbX86q/+Kr/8y7987d47jMVisfe3P+r4kUt8vJpQY7UVUrVS2iXQYBgnioa0OYiBlZ/egckiMSiqtPMPAUyZmEiTCVofiJWGtGvNwHQITGQ9wDlh8vZW01mD9YpmIu+R9Tb7lOTZEAbgaKqZC/sJ/PDzMFGqcfqdAK0ZnFa6wJgZhZlT16fMZm9QzT+Hru6Ab2muvsPF+ltcXb1DEZ3oTR9s1DN7+siUHJuSEwXHhWc5d9TzQFlHTKkngH4CqDNrOpucfdIIjthuBRBL4HR+BOtEWmXCnm76gg3CSN4FSxf8xDiPgQcxZcXo4Zylr0m70hRLdLnCNY9Zr7/FZvM+KxQnpmJhigGYzizNvFGwXgwxzUHyKcCA4tIZNlGJ7jRhBNMP2dMc6B4PbuRmr20ZEEd5uyWkdkvnW3xwe4xPuF3iY9t6Nl2g98Kg1qGDGFBKiR6iqbFFKUaLpQKLSH0UeUM10U38lNEGTxXcAAYsdSFnWCUj1KhvBGdzopHlHaaAgjpI5qcGUxFpa4sZ7IwenwDxvCXOj+m7xhiIweGVwdorjJFWyALQvqW0S6KpQZs9l2wVhJFMaq8D0M5SbK/w57/P+uK/0HXrVIyQzVTWkBOm3z6AeLgBz5vy6fEOn2HKoJ48+rQt8xFsEJDa27zhDQM4HW0nAHXwxL4lJI3oVwpkXdO7nkj6hED0amS3HEiRmHTFTNqYlDoOxqVTkDq7aA+SSxGZjzOjYQ+qTarjw5yhJ0wsg05J+CHIGPoLtpvvcXX1Lqeq4MvVMT+ha956bc38revnyz15l+7csfWGJtohedW6QvlkRJTG77zSrGZQzSJ9oSk6kvyGaFOTjnsAqdFYCnSYS6vm9h4xOIpii/czYVEbYdb4IICdADyT68BUAOTTxyCnkQyNMuCSpSlyC2QGpW1qfcyAdUA2Bjnhn7KrD7XDp6FIIC8MLZmHAGQ2wFKppTufxyzpQ3Ro61MhemRRNzZSFYreCTiz7UTeo95YQif602J2qkcPgTAaEiqVt8/q2vGrxNLLWvkKCKlsoGIYwM4YGfKLLng67WhiSaMic1KXWVDoIDlK0WnKNuLagNk2qPkGPV8StmvxjvhhsKiNGVjUOgHUujKY0lPWgboIzEKg95p5Aqn7iX5GBon7GDC5oEt6RDsUdL3a95sY5C4GSDTBkAmYLm8pWBRpQ5uN0jRqDyicxngf3jQ3jTEUyG+41vl1srGTPF8NzG6Zxx3EKCCoKsRPYVK6VSiYgNQqKrya5pqBgsg2WDl/On6kRMnLxJGpqM1YgMoya4PEAfsyPnm8+rgPXMMIXO+vdGry3e2bsNtEgtTeb6fvlNaaqNL6OQWHM0B96GEygtghOkysRCwp9FLMCtdBwQziVYViNYvMZ3A5j9j5nLJcDWCO0qNWRZbsgpFtOkoijWsiQSS4XkWY43vU9xfcvdPxxnbGPTPjuWnZBYdN58v7Hptk5ZbtlnJ3Qrcr2bVSoNt0gRMb2LWBo8UfT/v5TWBDjG6U1VFa2JAx7hmllVxnZsLYyVAqASFhvAY2hpR7TtjQN9ySsr6M977MI2NXwyCxNlnfwkeMlduY13l9M2kWLLWhiGqv6+PTxvlOCi9Ze7q/pR6itUjYVBXs5pp5sRoKL1MEdPpZp+fHM4KVwqoOaMzw+z4xq0fjxMyglrl/nkDqmYostTCpDUUiFDGA1NtJfeGDpuY1r1nN7F7OeCgpMXieMGqUD+aYQKmEsW6jw7uGtjtj3j5mtn7O9mLJ1bFinVjUqySXYjSUVcSXsmfQfYN5GvjuE/iLX4FZpSle/3mWT/+/rNcXPLctj4qeD7s5ryUWdfm5P6T83Nf5+v9yzv/sX2k+qI/4/7P3Z7G2bWleH/gbzWxWs5uzzzn3nntv3BtdRmZGYtIJThIqwZmGTAsZGaqhnigVEhIC1SPFA5Rky8gSD7xU+YEqiSpRSBROGcqiJFSSTUFRBbhsGdJkkCRERkZE3mhuc9rdrL3Wmt1o6uEbY8659t7nxo24J8N2EONoa+2zm7XXms0Y4/t//+a6OWcYrumHDaW7pkhe0Sp4IR5pRSxAVaBtlI+ZlzhACBHvlIDVTuEHjRo0g7OYocZ2DjMsMX2HBZTrUG6LNlUCxduxFs1e5N63oLTMl74nxn5U+8xB6jlZL5+quzzWD4hIUb6rEHa1ICVyn5TImi+Kuenro6mSEqsWAiObeswhggMFUAar874r/638oeO0WuS5ZVzv0orjFSgsxlQUxRF1dY8HD/4nFCc/yv71t2nfLDl9EHh4Fnh0DGcrzbrSrGtNXYiHuQ9iLbdtX+Uu/Yfjf2zj7/ydv8OLFy/4E3/iT3zHn/1P/9P/lL/xN/4Gjx494g//4T/Mf/gf/of/vbKo/wcRkvhJh0rd6JsMapDJYMibzBRSYfCgJDiPBFJPMm+fNnYBO4jFR1FJgKLWoIwiDLd37ZkxHYIiemGdTp7TUvgNTtM6TesNDTP2NGEEQ4YMRI6L8+xv3PiAm+C0+BfeBKeNkY2tNRWFXVFV91ks36ZcvAXFmtA+Z7/5MpebX2e7ex/vd6wTE3ge/pPZ02tTcKxLHuqSe9axrgfqhccUM/a00Xf7w2Y7gO+xyA3NbmRPx76TjXey94i9w7WH7GkBfx274Cb2dEoeH+09lNif3PSfzmC1gNNrtF2Dslxv/iWb62+gQ8uxqViZglrZybM0LT9DkCXQx4i5QVX2CRAbokq2HgmcjlNqbw5GfJm9h4BhxWhBMl4n0aFcRxi2uOGSYdjik8/pfCj/UQC1bDYHB94p1Ox3tS7Qds1QFQJOa4gG8SszFWpkUC8xZv89nef56GJgP/NJW+kiSc4MpZJNad4YzkdO1h6Q63ZQgVKJF5z4r4rP9Hg8EtgorDopLnXUxDBADHh1c9edtxypaI6SZI/SeL9nGDbyveAwboceVpNHsZZAEjmgFkw1gtZ6GDDNFf3lv2Jz9WU223fl6wn0d77DDfsUQJJ5vd+pHyugWi5qAyn8QylcjFg1MdsGPD6KrUQfpaEmAa8KP0TskALU6sTM6jti0cr0auwr96KO80DU5OMchz6B5AE/CDDtvGYIEws6D2G2iLxzoQOV9RRmCjD1SckwZMulBNBn5m4X/MH9l73fs02S+IMmGyBTH9p75MdhS7N7l/OLf0kRWj5d3+OLxZrPr1pO3gjY19+49b7diw/ZbzRNUOMcAErudxfpevF01BrqQnOyUNR1pC20MPAHTwjy960lKTcOQereF6iwYFE/oIgu2Xz04m0ehmR3IF7UMbk+3mzSvIrRxAEbNQWy7tTJZkBe5wRUey1A65AY5W3wI8t6VAOkxxwKCIwg2MvGGGh0B/gIk9pg/hR5No5RrksdIjHdKz6I+qS0jOFg2w6u92Lvcbzb4Yar5D8dxnkcmFQwtywEbrM/BaSWazz7zwr7NwW7plapT9dzl62uZjYfQ1CiNPGRwWn6XmObiCkCtnbo7RZfLwi7K8JihT66/72d5I8YuWmttADVuixRhUUXPdZGKuspB5nvFyg8Gp/8XOcy3+xfPgQ/FZLEpIdIjOFZMSnF6jST56I1n/u7GvQ3gemR2RVvSOln11xUjE3UDBgdnEM9V2zpg/srmctJM0IdSv41WZ4swFBQPnkhh8TyNSNYOv97RDOC1BGPSx64PkYIDpcUNa8KwuqiR0dZh63WrFUxHqN873azZvxc5pyVbjeD5A5JGwmwuAVcf3fjNqCR/obK0PUdzzwDr/OzxJgyCpQ0ekW+3o9zhUr7QZV7f0xWCIsigXh1xFUWyhOsPU72aYX8HTVdxPMm3ICXgGikue4HdRAm/kmHqlfYs3usT9/n9aeO10PFB7rgSnX00ctME4fR5oP2BdXulK45Yb9X7NbSqNu2gVUVWNb6t4xFnfLqx4/xPQQv6qCkVJkrEOe11zwsOg8JW46TB3WeB274ULtZ5abTuZiDUfPH8fXeWL8yMN0FfwCaZ1BsZHCqiZh0OObX7NR4s95PzeBXtIA/vY7QSTjwkC61bK2S+Vy5HDRaFAL7pcLYVQoeLXLbf7zHxjV39vldNgl5XZ7vFwD6SGJTK1CJ7ax0mlQ1x8ZjVOSBUhhvJKtAKV74liF6Nomo9r6y+K7gQVCsSzeSG4zKHtQTKalUWXFsMPgxSHPOoh6ix/uWYdjQdc+omifUm9fZb2uu1hKOCGG8ZrWG3mppLnYbFpfXfOvJEU8vB147Lbj8idc4+eYX2Gze5cJ3vPAtj3XFW1c19755Tfn2lyne+gJHv/C/5Ge+9H/lK1874dnQ8C3f0HWXlMUxZbmh8PeF2ITUc2iFthFbRqwF+xKQ2jlphDkngHVwimHQuE6juwLbFdQg1h9DhRp2KFMT3BblpB7ybodShhCGsWHh2OM9xDjglBdSUcxr9ES6AZh4KXc3KudNzTx0JO3nI8SQmh5hZNTb2VqrlaJEyfUcD4MU5X4dRbcTUJ42ynnXPe2d5zkmE9geEGAaNFqVWLukrs9Y1K+zWr0Db/8s52+csHwUeecs8NoJPFwrzlaGda0pjIRxZ2C66SWU+8X2FQYR/GsylJrmrd/K0fc9m83m4Gsv8/n/Xsdf/at/lT/4B/8gn/rUpz7y5/7YH/tjfPrTn+bNN9/kV3/1V/lzf+7P8ZWvfIW//bf/9it7Ld/t+IEAqKX77ScGIHHsTOeUZZDJJvtRAzTJBgOvDyQ7PnhCAGsV1snUIeD04eQ8H3NgWh716DntfGZOCzjd3mBP93EChoYwlzLfbe+RJ8E5e0QlOdNkVWFGby9tqjEsaLl4k8X6s5j6EWiL37/H5vJXudx8jbZ5Qoy9BCLqQ3A6swWW2nKkS+7pgjNlWBYddSXgtLDN776r4yjJ/959auPQih9msyW0O2FN9/0Be9q1kX6vaRvNtrNsvE52GZK02waX2JBp4ZiB0vOwM/FQrgQUtGu0XYERe4/Lzdfoh3POtOXIlNTajOGRcz/kPuaOqzqY7ARAEyCtB65ioCEKOB0n9nSXEnwzy2gKR5QlWis78yVMxyg6Cb1wW/xwhRs2IrdM/prKJPb0jEE9uEhhD8+b+E8LCBYc4p84WnwISzaaJAFLBUYcFNGW6GTzYe0Caz45SOmJtDMG0C4HPWoB2Uq0ZLHMRm4UFEpTREOhA1U0DDr52YbMFI4C3OdjmFmxgI5WADpU8iOFQ1guF/6ZeR3StwPOt6jhWr4eBPjTbpuOTTWeA12sATuB032Las9pN18Rlv7uPQa3oyxPsKbChwE37G40HNQIfnyccRP8yIXQEANFnIDZnkCDMKid19KA6wOh9xjvBSQuK5RJTGoOGbXm+IbFxfcw4tBODamhE5Z2302e872EWblBgt588pEeXwOpUQHUOlLZQGHDZLOTmGZDmFQtTQY/R7/6mb2OmuYMayqsqZM/aDWG3GU7ILLFR7IEurj8NbruKZ8rVvxodcyPWnjt9ZbFG2vsvdduve/h6fs0W2lm9qPiIzWnUiHYDKLYWZSadaVYLSMXC0XYig91tpgvrBTpWkuR0WuZezyajopqcYoOjjJK4S7BcX2yBXJ4fzeL+lWNXRjAK2pt8MpSmBxQCCU6hUzlwjOOjOCdcuSQmWwJchNkmO8D7pJMz4veQunbwCMw5Hv7ZSM4VAgQBBgZHGLz4WBLpHew66BtgS3Y3YZd8p8WZYpGm2lTetOb8Tb4MA3Nd7L50HgVRpuPLnha7WnwNMnLX9jpms7JNWK7SNFF7C6gyxa92BL2G/ymllDDevVxT+3HHzOVFdqgywJTakwRKEyg0IE6Knqv6VEs0uv2szmm0x4dFU7p0bfdz66JDHQeHj81gsa5+M1S3HJk1N8NTB8AJur2c8M0187vG/OS85ktHG5eazdB6unnU2M2SqEdUsErQHVKYxB0/NZ1pFAJpJZwB2FTI83YGBmUfmUA1qXr2UdPrQylNhybkkJpam04UlNGQ/b8z2z/JrgDH/p5HsBcJTEySm8B19PnMIEH83GH25N8/SN+Zv7fu8Fr6QRHIjpAUHbam+WRCDPAZNdkFItCsaoidR25XGh8vZI9aAqezvv8cQ2PNzIkiPQRBqeJnsmK6xV5yNt7D1jc/5CHRy2PhjVntubctey9xyE2Hz7bfAyX2GZPsT2iO9Jc7yPbBWy7yLrzrHrNqv6tYVFnFmEeB0Kz2bnIKpXcAMzrRYg5KE1Okr8BkI5NLCVew3rG+J3XndI8PJwrbq5P+bxlglVWA0lTMcxYlakiywpP1KyheTinZOui3LCMwRNVoE+Br4o4XXifcDy5BIqcVyN1sjTFZe9R2EMWe7au0HadQkczg1qN+9JMOLnZ9Lvp3w85DFGaB/PJto8JRI7iS00mp6Co40RaMIDxGrSswQJSBzah55m2eAr6wfJ6VCwLf6CGNQmIzDWHUerA5sPdYFHvkb3V4Bq67gVD+4T68oLm8g2u14plHW8dq1Aoojao6LC7ay6en/CN5z2vnRb8+I8Fnv6T30V9/itc777N86HlsVnyuK147Zll+Y13Kd/6MsU7X+TNP/hj/N5vv8+33QkX+47dsKHrL6iGM4rhirI8lX0MkCAFrJWGQllONi3j6wpyn+U9jwDW0PcK58D3iq4rieYY2y2w3RLbLFHDHjOIZabWkluk3AZrm8NafNB4L/lJg/IQIzat1xM9SEa+h+f10Dz3YRxJMRWVNK7z16T5NDHgQ17306/rUVUXCUpRwK39hZ+tQfMm+F2P+dr25IaTSoTCBWV5wrJ+yGLxBqujH0Hf+yJXP3bCgweTncfDtQDTq0qPvuU+wK4LbNvAVRPYdpHz61dFI/nXZyh+6y0+AP7KX/kr/OW//JcPvvYf/Uf/EX/hL/yFWz/75//8n+cv/aW/9JHP9+Uvf5kf//EfH///3nvv8Xf/7t/lb/2tv/UdX8uf+lN/avz8t//2384bb7zBL/zCL/D1r3+dz3/+89/x938rxg8EQG1MTQwtDilS+yAhMEOS2DilGZSmV4EuaiplabWwbxYYtigWQbMIloWDWovnYaGFubNoXOocJmn4S/ZTLjGonZOO+eB0KvokFLENiiaKzch59Gyjo4mBXXDsw0AbPPvgEsspMX2T5Gzuf5q4FwfTtLAyE7iapIDGVBR2eciavveT0L5gd/5POb/4VXb7D/F+j42RCkWpDIU+TKXPth7HpuQ1u+B1XfFIW143gaOlsKeLKo5BJHlkKwABkzpCu0MZSzBWlpKPW+QGJ+yt3Qa/eSGftzsJcGoafNvhrjray8h+Y9hsCp7vKj5whveD45lrOHcdV74TZnIMOAVKZQakBCkZU2N0gbXC/i3LexTVfUxxCtoy7L7Jxfkv43bf5pEpOTFVCka0M3BaJXA6cqUUN3VHspiR5MfSpMjXQRs8uyjXQRPcWKD1ifkmoHpqQGgzhj/NPbNjdAS3w7stQ3/OvvmArr/ADTth6iUbgsxg33aBi63jtdOpY/BiM/Ds2nHVQNNC6BQqJIA6e8UVK1ylR3+yiMIFjVssKfsT7HCf0u1wrv945/gjRkRkVS6xykFY1GtTsNISTFlrMzJl88ZWPjcYo1hEQ60cVTAsg2PrB2lYRM82NKjoIAZ0LGfHVY8C6RAGCY4Lbtz0A+MFny1CsjdxCD3OJ1aO77Ghw9oVOnSYuMLY1dQoCA61f8rQPmG3/Rqb66/TNM/wvkUpS1Gssaai7zfJEqBPBcbNLdqsSL4BlEwFbUxASjqyEUZYORVs2WPRKMWVKlg4Q9EUWBMwRUQZjzK7afHwDg3EvkO1uzFULeyu0KsT9Or4e2JTh92VPFe+33dX+M05frfFX21wm5Z+42m2Bde7gm1vaYMmZdJRMoHTCx05q3uqwo/gdG4c7gfDhbNcAVfRswmOS99x5Xqufc8uOJro6dOcYYzIroV5IgGD1h6PjSxtamlm2QqC58WHf49nz/8p96Lj55eP+J3FET+16nn701ecfH5J9bkfwz58e/bGHc0//0dsf/0xz6/WXCV7oiF4OTvKUDYDm03B403g7TPPg+OCt88Kzncd11vPpimoNz3DtaYvA4s6skynINQwuEjXR9pW0a0UGx6y2Kwpr++xLE6xxQlFc0TRPqHtXtB1Vzi3x9Oi4iSBfFXjg35PbXqxSdKGe6ai1oZKWRbaCLClFCWaE21Gz0fMTBY5WtPEEcTO3v1t9CP4BRPL6qYdw83id1Q1xduBU9lrNlt8mMGhusjQK9p2KjK1hq6Hyw1cPTMcPbvGX3+dpnlCP2zFWiHZSMXoMabC+714H+oCr9Pa7g1BuVHubNI5CAqkNywF+EAQdmDM1lWWGCMtnk0Y0D6xglAYq1jHEu81g4qjD7vzGucGhs6zbB118xy9+AahkXvbnr6GPj57pSqJeZibMgaMQZcaWwfKMlD3QfZVITWhokYuAWEO5T1LBjfn1lgu3ggju/H39fg4MaZ0anDO/z9nTc4VO7lAzSOzgA9UT2k1kfsnnT+lRqs7rcvRDxfUqHLJzMvMnsygcX7NOYSpYMbGGtnGYQZkHgK1N1eIDND1ShQHnRj7f8dz93HGtdLoKNel9lANDVYpKmUolWahxYN+aSy1EhJEXUjgdD7O+b7uM0s+NRGHENiGYWRj52M/twm4CWjnczUy8F7SfboJMtz8ev7PTVA8piYB6bpDadlDhA7lO5SXBhIBwpDAnCAWH49ODD562iGy30f2u3sc7T7NontCP1wxDDuGMIznUwB6ed+74NhGT0NB5wxdo4ntXtbPV+QhX7z1BRbbDY927/Lb244mHjFET+gi576np8MNW5ruBe3+2yx0zVobNvohL9AIOzQkABleP+G3xOpj13rxux4YiRbGefCdWAwkKyVRSVrmgbIjSSgKU1YrNQUoJh/qQhlqnX5W6dEexCWLj9Hu48ZckcddaoEuNWIcE2BVFKcUpqRORCOZJ8qk4KpGez+tpwZnjG60nwohP3ZCcHA7UUj5Djc0wHuf+Fg//poefW+jVsRKoYqIKcWiIgOchZ3A67KOxOVrlNdnGFPPmgTpuk7NuHkDZq48keOqxzk7M1+BA/a7EIKEcNEnhVYTFd5r1sjesNaB1wvHg6h4xy94X1d8Kwgb+T2357myPNMlj6PlzJWcqcjKBIyKFCqyULCICq80PRqvDF4VYziOjgodPFrDznscA0N/xU4XGPMbnNoVx1XNRt8jBGhPZb82pIZxrDS+qtBbYPcBx19d8Q8fnPCZBwP/6993xP/h6t/g7b/5P+Xdd3+Jb/UXouZVp5gPjgj+mjfDf8n9/9UXWf++/zm//40v8cZf/nv83z58m/9q9yFPtt8kRMlgUMpiu09jhnLMMyhLsRxa1rCqRBVWminUNTeBslIhZ2/0DtpEcrraaPq+omlr2J9Q7DzlvsM2e2y7w/ZXFP0lWov9x+CuKew1vd1I1s6ww/sGF3p89NRpbQ5RyIguglcBhT0AuKWZNyNwjYD01LSBgE9+14qIjsm3PTKpopXCMqnKx5HzYGbN05vrjnx/WmOybVUmyqFLjFlSl0cs64eslp9isf4s+uRH2b32Ops3C+49CPzedwIPjzQnC8Oq0pSJVCZWf0GA6S7wtaeByx1s97DdKprL7wPS+sPxPY0//af/NH/xL/7Fg6+9jD39Z//sn/2O2Xyf+9znDv7/1/7aX+P+/fv8kT/yR77r1/a7f/fvBuBrX/vaDwHqTzK0LglxwONxaZNgIwcyK5Hzp8oaRwgSBiPFrUmgoaJHGDpDUBQ6sghZnhWFeTcLubs5nNf4JDXP/sJD0Ak0UTSRZO0hVg4ZlGzjBEIe+vJNQQAvBacTm0In6wBhTJfC7rMryuKExeJ1FqvPoldv4a+/zuX5r3C5+Q267gUxDtgoKeuV0uJPxuEmoEgFxJEuOdaWtcoLuzAR50rkjNtFH1AFU3jh0BKHitDuRqaUhu8YqDaypncbfAKqRnsP7wn9QGgGXBsZOsV+Z9i2BRfOcBUlbHAX3Aj0ugQQjxncaXOqU9iZbPhEXmPsWkIRAd89Z3v9Fa42v8laW2qdLD1ywTovom6AH5nnOoIiHIIp23DoOZ2L6xzk6LO9gMpnXo32HhMwnTahKTHZe1nknW9xB+xnPXprg2wm2kFS1QuraHtZ6PLG3jmFumFpI6EmlqjVFBqayFlRa0K5QPfrUb73Sce8B+6I7PwwbQZixBsLgQQm6MSaTQCWismjGlbaHjAjtVLooOh8z8CAD4csKGOq0fZFgKJiFow2A6lhBKrlOrKJFTL3V7NjETF6FGtL6C8JbkffPWG7fZfr3Xv03SUx9qAM1i4pyyMpSmfg9K0RY5L9HnC77jyecfYhIIqIynNxNQapBU9jIg2ILVFnqbuAaz228aiyG0NQg7Eo4yBYoveoDDh5R+xbAaq/G//a5DUfZmC3320IbUPYbgltj2sD/V7R99II7IM+8AWUUMRZw3HOnJ5Ze+y8YRvzvCxF/i41CtvEzHWIkFPrEmvqpEhZYpOVTWbG3wSnQ/uc5+dfYh16vrAQW48fLT0P77cszxT27B56sUKVE9Dnnn6b4en77C4UO2doiCODmsyyGBxdW3K1j+y6wL0QWdeGs5Xm9DiwWSMs6ibQ97KJNRoKIwVblmpmRvX1saZhIccteEqE+S+FbkgFTGBwHTl4KbNNX8Voo4eoxmsvxMhCWyrtqKOhVnZsRC3QLJK9T4lKAUkkhrVObLOYGoUyxzbpMTPWMusFDkHqOVDlU1kx2n/dhPRysw4Sg1qk+yHZ4Qwu0vZy3PcttK1C7wLF7pq+v2Jw25HFJzLzydpD66lJNjYFk5/0zbs6g9QqMYB8jPjk26iUsGxjAl/6KHZJlTJch56rYOlVQZ+aqSYCqbGmOyuS1iKiTKC6ugIt97sjeeu/KpB6HuR2hx1BllVrJR7yxss8XkbZs5VKbD+KfD60gAImBVNlBv7NgLFbf2cGUOfHlwHTc7Dk4BrK4Gec9m6yZh/eKxNolddmO51vJglzfj6tBLzxZBXD7XsvA2Mm/ezIQowzOXRiecEhoDoHr+ffexWjKI7llSdFRhsHTAKbC6VpgqPQhtobKi0h3CttOTM1i9ScWmA4mdlBzPdRV6nZPAet5+GqN9mpdwEI47HJn9/Bhs/j5ndGK5fZB5EUgBeFuRkmiw8dIipEolaj6iKvXaKGCRwvIstl5HJliNURtjjBmvrAhzr/7fE9xZkqM4Ubh76fQsVfwTDHZ5jjM6p73+beccejfcVDu+C5a9kGx4BYnXnfMQwbyuGKorum2h2z3y3YLxWbOrKuIovSUxfqlQPUYrEUkr2SMHvjoDCDg+S3mz/CXInGIdiUfajH500AVpEuw+w1PAegk/HTxOSNt+ebMF6Psr8fyCpaxDteWWyqQ6rqlMKux8a4tau0j5T9xjzrYnxf49rtx0dRQTqGYTuC1YP95BZ8AIuLDlumMFCt6RcFoUrh2un6DgFCsosQhTKEsp5ZpOlxjQtRWKoh72s/Yhg1ESrmXwMSqzp7Vyv65EuN0vQxslWyDwRNrQVwPjYeQZYFKHrs9oQ4jM8nGX6G3hkBqUn1RvKgFkWnKFAGZj7UyUbPQFKDiBe1c1uG7gX19pxid0y7N+zKSGEzKzkD/6nW8y12e87583sji/p3fV7xX33qZ1g9/f9yMZxz6Tue+57HquTRpuLkvR1nyXav+vxP8Zl/91f4uf+s4UN/wnb/gqZ9TlkcUZb3WDZ77GLBEDQxyAWs096xtLCuROlRWkVpxbcZEvkqg9QuB2ZCM0BhY9oDQVvDsDQM2yXltqBsaoqdKG8L391hbcZUcwE+tLLe5uZtTOtXRJqCqHEdvRmKLM81zpgoLerYSEx2VwGvZizoGLCJTR1jsjhhUlHB9Bpu2sE5JkWFjjIZZDzHEXEKQFOVp1TVKYv6EavVO9Trz+Puf5bL108xr8GjB4GHJ/Do2HCyFI/pDE73LtIOE2P6fB/54IUA0+1WwR7M5Q89qL+X8f1gUJdlyfHx8cf62YcPH/Lw4cOP/dwxRv7aX/tr/PE//scpiu/esuBLX/oSAG+8cdt+8vs1fiAAamNqYuxR3hFIXp1KH4DU4wYiyKbR68gu5E5nAhaVnrqgUVF6Yev0QVPqQOEEnM7ynrtCtrJc3EcJHxoSa7pn8pxuiGLlkIDJ7HN6sKGOs1A87gKnZTFXJDbtzM6jsAsKu6aqzlgsPkW1+jTU92HY8eTx/5vr7bfwbgd4iihBQHNwep5KrVFU2rBKBcNaWRZKs5iFjY3HIAhOKUFqMQWYeVRiUEezk7MxC0lUQyWS4RtAdRxa+Z0ZSBUzO7PviENPaBri4HCNp99Ds9Xs2oLLYWJD7mIGpzPQlGX66bgloDAH+lm7wNoVtjiRUMTklbW7/hoXV1+hHy5YmopKmTuZEVPY5e2vTwB1ChJBgOddcAz42+B0AmqyB2MudLMI+QAgIQFK2ksHehC2rXM7Yf5Gh1a3b/feyUZ+13pKq8W3qpWN/ZA29oTDDcLNoTQiJTXgC4spCrSpx/T5TzryMc7HoI0hWW9MzAoM1FgC0ngSUDoegNRGpfTyAMZMhUUXPE30DAwEnySR+b2aCpM2zzZJ8OfHQVgHsyAqpSV1ORURxpRYsxSrGLMaPYpjdES3pW+f0raP2e3fZ79/inNbIg6FkYKkPAKYgdOHxRTjkfl44HSumASclqHJhVfARUUXPUXQlMqxjY4tmnXQ1INh0WiKKmCKgC4HdCH3odbCeIzGJ6DaEVKIosr2HO3qOwNawY1qCwGlhUXtdxvC7pqw3eJ3Lf3G0V1D1wgLunN6bDJOfoAyR62Mp7YBa8IoSwxR0TkjAHBQNDEmm53ALgw0QSyB+lQ8BqXQqhArj9T8s3YxzhHGrlBzcBqI/SXbq1+jdlt+bHGPnyhP+BGjeHjUsrrnsScLdL1A1SthjALh+gXD028xPHlOszXsgqaPU0MmSxa1GwgNXO3gqvG8nmx6zlaG+0eBp+tIX1lsFxhaQ99HWCbWixYGTG+zT2SkbQMDGaQ+E3A/uvEaD+n+d36HZxhD5F4dh5ox9dwTCSHSR48N4lsrYLU5AKsXynCirTDlyRJbGXn+9UoULQuVQGkVx7lYmFX5c7lfsjS7j6K/D0QGJtDiZmjxXL2iQsAMEReEEelmOGvbKoZWUewHVHOBc2K9FJO9R1Y9EUApP1nFZKA6NVTF3TQXuocFkkUsG8zI2g2CNio92jhklVkTRE2yC47GTM9lMjrpjTAHu4jeyrtdXGzH92NSUKnxDnN8/5NZfgRHHFoIXuaJ1NS+OeZ7jXyPw2E4VaFuVxWaOD6OLCbinQBkLjLHY/sR4PQIgtwAp6fydw54qkN52fg+5mQAc8Nu4MZhmv2dHBiWf/uuRtH8K4fKgOnzORibG5ZzifKrKm3LYk3EE3yPDz3eizO6T/v1HrA+0ClZe3ZqYKMNbfAjq3ql7aw5pVgg/uAGw0NTjEqKJiZ7qtTsys3/IQb23r2UWT+C1Bm85jZ4PR/z/+VSYDyGsx8KKje1k+1KtgPKI/m45jwQyRPQnCwCqyVcrWFYHWEvT7B2iTUVQyYmzP5mZuy20UudETTOaWLTSHZL376KU4lenWCOzyge3GN97xkPXjgexpLHtuLCdXQhCB/R9wzDNUP/Atu+oNye0K0qmpViW0euKliUEgrnQ3ylXtRtH2iT9/+caKHdQPQtwbcEfxuwP2zcx7HZZ5RiztOYM6tH258bBIHsjRyYmL/zBlmXfPKHZOGRVZ1GV1i7pChWWLtitXxLVFqpJlG6vpXhE4MjhvZwU3fj5tXKEABjxFJHKUN8RQqJcrcViwwg5PD0YHBB41GJyzFD7NPwldgBGl3ysoDY75QdMR83FVA3VS5zkLrJVkpKSYH9EpD6hRK7j30YxsZ2r6x8eM06+VGXpIa50pRIvkMRhWXvw7T3KJROjTKPDz39sKHvL6jaF1Tb17nerWlrxb6MI7APAvyTrILoriieed59rviZH4F/850Ff++3wenXv8jm+l2ufMMz1/DYVDxrS+497Xj93V+j+tGfBuDo5/8X/PRX/098/b895XnR8rX+mqZ5SlmcsOqusd0RuiuIKzX+fZP2jaVRrGuVHg895LMqwoc4gtRNHyltZNvCrhOger+HplR0VYnbWqrCUjQ1dthKhstsxFSPxRjAIcB+HEZe9Gi1lRo+EbEZEjtLfeteUWmPN6phlUb5mOyuACSbSABqqZZ8jNI4SuoIy7QnuOvyFF/62ZqSrr9b97pZsFy+wXLxiOXqsxRHn6d78Cm2j5asHkYenMXRazqD0+IzLazpdhA///N94Nl15MU1nD/XhA0jSz3st7df4A/HD/z4B//gH/Duu+/yJ//kn7z1vffff59f+IVf4K//9b/Oz/zMz/D1r3+dX/qlX+IP/aE/xP379/nVX/1V/syf+TP83M/9HD/5kz/538Orl/EDAVBbUxF8QVA9OQxIo3CK1LmCcNDhjhCgTaFn0ik3lATpjBJZoCmVgMy9V5RBpQ1JTB3TCajOow8CkoQETvdRWB7iIZrA6RhomMDpkTUbBZycA6m3E8wncDr7CWZbD7GoEEuPqjxjsXidevk2Zvkp0Iaw/Saby3/O1dVvEOKAjvI+CsT3cwpEnLqAmT1dKZFar7VhgWKBeGkVJnEFvHxQyGPQUSb83hG1lkC1oR+tPQKM7Eo11Kiig9aOIA0g4HT2nM0Add8JON13hL4nDA7fOIa9+E7vG8t1b7kKiqvouUrhiNkuIy8Od7Gns1zOmmWS66/GIId2/y2uNl+hbZ6yiGJ5Ym6A0wFh8hD1wXWRWTE3gZCQgewY6dI1MIayZSY9wq7IrCnyNaCkQ6wPvKcFRMLtABiGLYPb4XwnIWepa5wZwbkZ0HuELd2HsRvbDIFmyN17xkAf+UPpnCeLnGwdp0wkOiT9WWtisURbYVF/0lEkX85sdyPsA08Ik8ogxMhgAktVjMhZBqlhxqhGY0xBG4RtVyhNFz0mKNrg6fG40BJmTJSQFAnG1BMYdUeXXycgW+sKaxcJoK5GtovSsrl0fZvC6Do2119n3zyh7y4JsR2ZccauqKp7aKUZXEMI3ayEno/bm/7D79095gEeOQFdKdm86eDplKYImiYGtiqwjcJuW3aWch8oqohpPLrs5b5dpCvUewGq6aDv0EOH6pMKol5hvEOVtfyOtmM4WkwemWIHJD/vr8/FUmB3hd9tR3B62DqGnYTNtY2hc0aag1EgPGGzyBxVJ3BarD3kep5be+yCZgtsCRKmmhpaOz+k+VjsgLQqZI61dWoArigKmSfyXKHsegKn2xdcX3yJJ0//G357fcpPFCf8iDa8sWo4OnVURxqzWgqrHJnv/OVT3IsPGD78Ju3zgV2zoEmNrCHOHJOVkSDNfeR6q3h2HXjz1HNvbTleGB4dOx6fRj64MFRPOoatoV0LozdLNAGMS8fJQt9H9jrQG8XezEBqhJUFMsf03QXeR5xyElrzCodiKupz886oQK8EUC21kbUoNUwrZfFEFir70EuQzQi2wsHnJLB6tARhBlarOM7VGfzNza+D0KoZ+HSTmaO8MKjjoPAO+h6Zo4KibSFuodrtCf0lw7AhhEEA6rQGKSX3Q4xO7D1MiXIGoy1eW0I0KK/Jrc44Y5dpJSwfE5m99pCul9ss6iY4ymC48h1bu0h7Gi0M6nTMdu5wjlttHHCj2EnBpfro7LtTSMxGTGt67NtxHhjDj/1HX2PmxtxnUAz5cyVzAnnuz1MlHH7+kqHvADtGAPsOVt+4tscbuSEKpr2bjMykE1Z02t1l5Y2244ubNyLmY86qhjmr+o73MQfBX/Zm1fy1TSDr8BFryHc7srWYjoGoS2IYhNmp/BgW5RNhY0ge4iFGtkEaVNf6hpJCCVi9UJq1mvI/ciMgW61JELnYg5xbsVATxWJqQMZwYOlwM2Q1s5NhxpQ+ACKnwxeRLUf6qdmjZF3E4CDOrGxCBC8NrT59eVVreicg9dEiUC0j3XohdlL2CGPqRDaYrv3cTMjvo0E85Z1ThH4YsxxeiQ+1tpjj+5jjE+qTZ9xfdTwcVpxqsbxro2fAJZszCYMr+ytsc0W1WwuLulZc13EEqK/3ntP1qytH2z6MDOqul2ahchE9CEA9NV1fHiD2MmA0zOwjDJPXcL5m5XczRjzNCdPzynlqU/PbKalJjK4wZoEtVpTFmqo8oyxPWa4+K9ZhhYS0jyNfR8ElZpAdgek4u8byUNrK/owETt/xM9/r0M7JsdXi2Vt0Olk/WHxQBDQumfnOg/Z8YansalIL5bfG1HT5OG3wm3kAd82ZefiI7ClS89ZH+f1mBlIXOnCcnuldXXHu20Q8GsCD10Jy81h6NOuYFXui6pmzqAMCUuc1oUDRkfz2fY/znZCJuhcUu2uK7ZJuoenrmMIH5XWHROmMweOHSxaXG957dgKIRc5P/VjkN1/7t6mf/xN2229y6Tqe257HuuTsqubT7/4rijc+iz66j16dcPaLP8cf+MZ/zbc+vMeF73jWPWffrAjtc2xziu0W9J1NIYipjkq2HhmcXlWG0qo7QOo4gqiDF6XEtk0BqR3sllH86GtFu1DslzXlpmDdvYHZH84DIczu1RhELR8HVBQLrFyLlwlA7pHchRjNeE1lMlfOG5JgajuB39qPE3mMIc2sQYiBuWEbJ7Jj9pTPBiI3GyVz256M5WTrnqimEMSqOuH46PMsVp9FHX+O/YPXaF6vOHnoOTsV+6OzpeJkMQenpxDEqyZwvgs8u4bza7i8VOgngcW2xfQdpmtx3Q8B6u92KMVvWXjv92v81b/6V/nZn/3ZA0/qPIZh4Ctf+Qr7vShoyrLk7//9v89/8p/8J+x2O95++23+6B/9o/wH/8F/8P1+2QfjBwOgtkt8ENDHR5e6nGmLoNToCQYkyVaS4wclbGpl8UoY1F5JF9Qr0kKj8Fm6E2cFr0ICGWajj7kATptjbm6Qw2jvkcHpvXcH4LTLXfu8USY1d1Ejs+Yw0E8sBMrkiXrAmq5OwHW0F/+c84svcb39FiH2kuQM0ulV+k5wGibv6ToBAiU6Saq5Bc7nkMioI9GoiUU9CIdd9f0ITmsQdqV3qKFDFxWYVJznMMW+lVCPPoWkZeZ0Yk/Hvic0A8Mu0O8122vLVSPWHucxcJ5k+rvk7Z2DRl7Oni4piqMEOIm1R/QtXfMBl1dfZrt9Dxsdi2TtMXZP0/DJC2uUkMEBGJ3P58HXkIJoF9yBf+LBx6xRodL1nIP8IDObxWdOqY6YFuHBbRncnpCS4yNxBKczuKpDpOklaG3XBYxWiUEtX+968E5hhsDLt/EylEa854wm2CJJwetXAlBrGMMpNJEuyXS7GPB+GI/VEAPeRAakkEXbxJyenqtUom4wWlFEPfqYbRNrducH2hjo44CLUmRpXxJMTVmSGhnCQMmA9ARaZzuPZOUx8wV3rhOwO3q83+N9Tz9csbl+l+AbVBSpoFdgzYqyPBnB6aG/Is5abPPiV70UnJ7K47u/ByiYeg/J75SIU8LuKZRmFxwLpdmiWXjNorcUTcAWEVN4tBE4SJWlfBiTfN0A7/F9J0yGskIlFpcq6/GePxjeEYZObEGGDnfxVPwzmwa/3eF3HcPOM+yg3Qo43Q96VKyIBUBiT88yBLLv9C1w2mu2kdEKaBs8m9Cz9XIttNEzKFDY0fYnz7NFcYQxAk5ru34pOG37C37i5DN8VlteKweOVgP1OmAWBaosp/edmnDu6bcYnjxjv5GQ12wJlcETpScGdbXr2G9rHm8ib107FqVI/85Whocnjot7Af1BoGg83d6wbyNHCykyjJpY1L2DdikM1b2GFsWeBcE8oCYLXWU07XMikeDB4UZ26icdtUqBfkwAn1yfMv8NCKu5VQKsNlpsKgb8AaM6+1RnL/qJWX2ITOZ7TcJqU3NRTcD0eEkmoMqnguOgWaz0wT2uQkD5gBoiYWRQK/oehp2m3Dlss8cNVzjXjNZLuamVpdra1OjQofx+tBZS2qKCeCqG6BN4L3yzvG5bpcXDOjXzfFpl1A0W9aBkPdwHR6EkRLhUGjPaBCFe1AqYgdSrq2zDkQqe4FNTyWH6lrg6Qa9Ovis29YGNz0whFfpegLW0jwhBjVLnjzOyZ+z4/8TMzxYY/o7rNsR4G5SesafnX5v7Iuffzf/PwMqcYDC398gkdaOSb3YMaf02szVFH9hw3DUUh8DXzdee/zdrbY37r/FncoNjVmAXM7Zn8aqLtFsqLNnXhtm+KRLlmCBEEpcUhpU2FGqgSgD13J/+JCn7hMGoxubaQqnpSCh4iKXXh2SRyWrPj2GrWdWY7/25pVggzU3pGKnURMg+15lUJ99Lfz0BISExqLUPqKQ6I8g+q/cC6tSlZl0bThaBs1Xg+TryfGWIy4fYzTHWLJJnsiImOXqeM4XkkJpQ0dANhjhMqqTYd6j6k5d9+ugMc+81qgcfcHzS8Pp14EEoeWYq9sHR+F4AarfDuUZY1N19yu0Jw6KkXWg2ZaQqYVEENo3H6Fdn9SF+rAKGtT30rcJ2Ht03ibTRHfg0z0eIh5YpB+ByWpd8avcZ9Oh9nLUPc9aknn2efz+DVhM4nZSvxRFVeZzquPtU1UPJwKkfjXuL6YUkQO0lILNSAlbHG3ZJWhmCyjHut5us3/MIh8dQhYAKAT0IEznqOKqaei2hewDeSp0geSwC9WXyxPjU5ON990x4E4y+C5y+62tCKBKVFVHLYwKpgRGkfieI4i+D1HuGRI4RkLrPIHWadxaoMXjYayNgLVJLhxBFqexDanb70ebDDVcUzQXV9oTteknfpzXGzTbqqbkUfEexPefi+b3x/fxbny75p1/8NKfvfYH9/gOufM8L3/LYVDxsC7pvP6Z499dY/OTPA1D/tt/LZ/7d3+AX/+aep/6E/f4F+/1j+uZ96vKUcrVmWBj6lZCV/JxJbRV1oTleGoobAHUePkQGJ2B1YRQnC2H7btO9eVXBpo5stpFtqeispe3uUWmDmTViwljj9vjgMMHh/W68LvJ9p9OejBjolRNMIi5meEleV8MEVscgihZlUpNH3ofc5mL5EVVax+Ok8jOZKhinQOWb+EnOLsle0z7d68bU2GJNXd0T5vTxF+Hobbavv8bw0HBy5nl4Bg+OJnB6XevxmLaDWHBeNYFn28Dza3hxCdcbjT+H4/NLTNeicv7THUqRH44f/PFLv/RLL/3eZz7zmYMm+9tvv80//If/8Pvxsr6r8QMBUBd2TQgNzu1RYcDhBDyOYep0KZnodBRQOiSAdVAar6N4RUXDoMQTr1dxLHb7BMwKyyg9zphGeYzAdJYBMflgZsnhEMXbdReEoXeTOZ1DmXIw4gE4rdI2KLOmlR2Z04v69dus6d37XF38My6uvkLXPifEITGsJnC6VmZMqIdDZk72VytykI1Khb+aAOpcOKoQ8UN6rWbGovYBTBBAmQmcVt4J42zoiMYmQHPOppRiOPbC+rgJTse+Z9iJtcduY9i1BdfOch7jaO2xT6BjF70sEkqgCa3syIjMzFhrapFPFidoU0F09O0TNpuvcH39DQgttToMj8xjLHjT9QYcANJzMFquk0NJeRf8KM+ce5BnOflcMppZWAdsgxjGwBc5J50EofhOfA9nGzuRk1cjE0M8wiLbTmSMvY80Q5ZFCjnDhsONYYgeFTzRMAZjJkU8UStCAqlNsUKZTw5QJx4gVuuD1OTM8IphCrZxMbAyBUFPvqMlOehCnk9St6dQrZMUyLYL0oDI9g7CtOpxscf7lhAcxtYYU42WMOI1Hcbz4T3j5mdIm/YcUBNjSPLmln7Y4oYt0U1hg4MCY1aU1T2MtjPf6W4MxooHU85dEPRdm/ibm0c1/W5iCOTNHjGgg5zXfVC00bEJmoU2lMpSOkPRToGJWgeUcZiVbIZiUkEoY4i9sKvjAGroQe+JQytBqUUquOYgtXeTX33f4TdXhKYRv+mt+Mz3+4k53feaQWg5omhJj4UWdYc1QR6tHBPxBdbsB8PGGa6iGsHpq+C4DgPXfmAbhsRuAvKGMoHThV1TFEciuS1PboHTYf+EzcV/x5Nn/2S09visLni9cBwveqplwNYKVU5zXWhF9eAvnzI8+ZD2ec9uU7DzRrxEE1gj5ysxQlyP7Tra84oXZ/D41HOy9BwvDMcLzaNjxbPTyEVhsd3AsDFsl4qTdWRdTyzq0kJvpPiQACNhODVa0egaeCBgEFL0LprHcq0CwUcG9Wokwktt0FqPwIBPTag5iyrEIAF+Suw/GqUZoqzXwqouKNKalsHqzKwpb63Vh/fJ6FOZvx+jBH+l49+nOTpbISiUgMbJLxRABY9xHuUsYRDGmHfge1BNpNx3Yu8xXIm9R5KYqsSW1qZK4YZ2VPN406N9izGVNBuVJTCMzO7JiiK9jwx4ougJyVcxCudHKcAQEyDfBIdFsQlDWtctJkoTtASZbALgDD4Kg1rkvo7or7H9QOh7TFI76aHDDB3m9LXvmC0BEId2Fng8B6n3SXXl8H3AD1PwdP6YiACH53EOGB8wmvPXmflQ36EAuAuknsv4byqnxt9jDmByAE6P7OlZY9kTZgzqKaBKp2ZENib5qPbPtCeYXvv8Nd/83XkGxvQkhzYhibqBVgqrbvtmf+KR9y23gGq53DJbLat6JNwseXb6QKllj95Fj1XiT18oTavLMUh1EbMFiB7BaoMA1mcKUVKMgWZW7Pd0SBZPCbCO0qxsg58Bv2E8x/lzVA7ElGtAQrYyC10lCAogzvyAHdoN6FAzcvWcouuhGcII1Da9ANQn68D5sdh8FNV9rF3LHjWduXyd5GuwDT6B74i6qOkkUDzdX+aT2PGkoVMzypwcs7q34/6zgUeu5ANTceE7rv1AGx3Od+KxO2wouhfY5oRqu2S3WLIvFVdlpDRwvp2uyk8KUg9uAsKaXpQsvlNU3QDDjhBavO8IoR8DBDM78q57Jt83JjW3QO7v7EOdlaadmubiOUidR17Xsq2HKLMkpL0oj6mrMxb1Q6rqAUV5H1vdR5WnxGKyyVMZCD5Avl/OhJaA3LvpJXPv6k86oi1EOWmMPGqN9tO7t4DTGq8Vzka0VqJoKxKRxSSLD6UIMdc8KUB2NgXdxWqfr4M3x0cxqfPv9hFQon7lDpD6LVXgTUUgcuk7aZTjJOgziid1rwRUzRjByKImio1oTB7UqZY2owWE2HwM6R6p+ktss6fY1nRHGqWl2a084/GM0eHdFrN/gnn22fG9vPOw4rNf7Ln6Z7+bF+e/yq59ygvX8twueKYLrt/3lN/8KsVr72Afye8d/dt/hJ/+xv+Fb///7nHhOn6j27DbfYuiuk95fY9+WY0WcYOfg9QCStflyxscRitMKce/tJq2DxwvArvOs20D6yqwrkTVd1lHrsrAtquJWlNpjZlbfkaXaii5X9UwGXbJ3CfHPZuhET0dAz70B6GGWunbOtSk6gncFFnF0fJDvKnlBzI7egTFuYNBfQuYNmhViHVPecSiuk9dP2SxfJt48hm2rz/AP9ScngXunwo4fVIr1pVmUQpzevBxtOQUcDry/BrOL+H6UqNeRFabBtPsZJ6ITur8V3if/+syFN8fD+ofjo8ePxBXrrUrfNhjzY4YBrx3Y4qvjnl6mZgiY9EbGINzCqUpdKCLks7cKmEVFUrLRjeBXLnQnftd5pHD8TJAPaaOMwWP5RCXue1EP2NtHDCngZeB00aXaFNS2CVlcczxyRcpF28Ja7q7Yr/5V1xc/hrb7belGE7b5Dk4PTKnD+SdE3vaKk2dGCqHjLQZoyAFsWgdCToD1XmaD+mYO2LRp+fPPtU+AdQS3KDMIR89+omdFbOH9QycDm3PsIP9xrBrLJddwXlQXCHWHpvQS6K5H8ZgxIgafR7HYMS7wGlg6F5wff1VNtffwPktSyRx/oBpHnOid+rEo8YdrgDOfgKp5wyrG8xqNyt+5sEpN21e8tJ5IBUOvXR/k080IOEnI3s6dYnV5FmttB3BgyFZfORU5gxOiyxSvOPUbKMZ7yjq5yNbfISiQPcVFJ+8GBpioIgBreRaRDPeLwEBqX30+CAbhyEGOu3RhTrwpc4+pXAIUgdtMFEdWNpkoDrb7/TR0blLnJuFkaZ7MMsTR/uU8Vh5Qi58YiCEQTw4fZNA50CVgLFegTXrA3C67zeE2KGIfBRP+juPj2ZShzRP5hJtIELwaBR77zBorpRJm25DkUHqbUxSTY9Zd2jvJxZ1kpLO/WSVMYS2EUa1MXDDa06aUl7uce/xmy2+cbg24NqIaxVdo+k7LeC011OAbULw58B0BlsBQoCmt7fA6avoOQ8D12Hg0ndsfE8TPB2RqEzym15SJmZTWZ5Qlvew9ljA6fIUTAW+w+/f4/L8V3j2/J+yDj0/trjHjxXH3DOBdemoa09RxcmKNs1rAfHZHp58QP/kUsIRG0sbNA1+dq3PzmN0mK6j2g5cPC95/zRwsnDCINeKs5Xm0T3P43XB8qKh3vQ0i4qrtWdVwaIQL8HsKwhRmNVaAm20hsYKSB31/ZGxuGzeG1+CQxE+zuX3MYZWijLfO2oCEt0I+k2BZj4B1b2ShlSpjNjRaDdbs0TpMq7howXAHUyf2VqdG8hjJkCyHMhzcW6MCYPaHNzvBI/24kMdO2GMKRNhD0XjKXbb0d7DJf9pIIWqStNQKbHBitGhQ5c87GthD5lO/BdDI0V8ej2aCVSVR00BmGSfIF0tK3sHZD/kCHQxYIPj0ndSNOvkqyyU33SsJUTKA9e7IimlHH4IlP2ecnBpTe4wOSfCO3S9ElVUUY2N5zxGO5++OwCoY7sjNKKYCE2LbxxhAD8wBk/LxxSQNxIAZg1hz8R6zfdNbhTnY+buAEjhdqE5MiM/CpzOLP845UaMgDV5vZ7g38jkdV4rK2ckukl5owuUNoSY5+V463UdHM87vjZXauWfCbOfvfk7avZhY5je63dY7z/uUMqMe9AcYCU0tZiuz1ko5Oydyf0fUpaEhuBxSixAsperTSqobNmViRdzsLpMe/f1uIclhaym44UWxaOSpmBD5JmyNDoHLx6yq3OjPKszp/Mtr5l0DH2M41v0QRRZ0bcHHtTKC4C6b2UvBjKHHy8NZyvPvVXgyTrSHi85rh9Jg9QuaFAH4PR8LylAe6T1GteGdE/JPfaqhjk6w967T3XvGSfrnodNxQNTcW5KNr6nCxICN7gtdrjGDZeY9gXF7ohiWdFVln0ZuC6FDWg0ZCLm9wpS+xDZtZ6rJrDtYN+J/79qIkXTEN0W73bJYm3yBb+ZrzK3eslqlfn38lwiSlo97h3ztXDTAvqAOR0ldFmrEmMEsKqrM5aLR1TVQ8r6dXT1AIoV0ZZjOJ4KApWrG2xltBV8Vdk0v99gM99h56G1wd/h8/+9DlcvibUA6eEGsqNDhMGjtcIb8L3CaQlL9IWCYpVCgu8+53PLpMxe/ziRX3cyqe+YRmX9VzTcDVLfs16atKbGx8h1alx5kRyK37K2lFGaYlm1lZtknkjQUqN5HYX0xWTzEcMw2nz44Yqi3VE0a/bNAmUgeoV24WDOiNHjhysWl9fs2iWrWo7d7/qM4f/xoz/N8eO/z7PuBVeu46lreKxLrs4LVt9+TvH6l7GvvS3A7NF9Tn/xF/n97/19Hr/7gEvXcbX7JlV5yro4pV4sGVYntEvFvo00i0Mm9ccdhVUU1nC0NLS9Ydd61rVPIHVgUUbqMtK20JgSX9xjYcwIUOX71IcBGwaEaR9G9Ui+PwW3AB2A6Bl8j0/4iUm1fbbGnN+fSmk0dsRc0h9NbP6c/SJ+9ApZtsQuNDV442GNFpkD0wY9I7nU1X0W9evUy3ewy7fYJHD66DRwegzHC1hX4vO9KNV4nJt+Yk6f7yNPr+D8UrG9VNgXgXqzxzZ7lO9AWaKpQBviKyKR/HD8cHy/xw8IQL0khBWuWOF9zxCa1OFSY5EwMhATWJ1v2bkkc/DCxvI6MkTFoAwaxaDlscwgV2ZivoSVNQ/Ay17DWXqXvYb3wUk4TAwMwR8UwLnrJjDvZCMwt/QwdkFZHI1+0+X68wAMV7/B1eW/4GrzVfr+Mtk7yKSqIxKGOALUU9DfzdCgHDiU05FvAvK5WHROguecy1sy6YzfsvrwIYUlCpN69JtOYNbcfxqYQpJGVuUETvtdg9sOtFvFdmu5aEouvOY8Spr7xg/sfbZrkCCSvFiozHpN7GlrFrJJtEdoLVKuoXvBdvubbLbfZBguqdJxs5llzpTwLR7nN8CjdC0M4VAemq+HPObF8uhxGqfCdmLFzAtKPfv9gIpBip5Rau5HIDSEfrRbEB9SfQtUGVLKstERo1Pqcs8YkBgHJYnzyoxtEwG9Dze8KvtQmwxSG6ItBbz7hGNAbD1UVFhlWGqLjbNg0fTKupkCoY9iUTGYcAusksJ7ajTVubCNmgJPqRxVFL/bTk8Kh11wuOhx0eFDCroYzNQ8yvYruZgGkfYiLO8YByISTFoiAU99DAfgtFKavr8Wj9o4jIwsyFJh4I5NNoC6A0uYM65fBjVkkDr/wJAbGtGzD3KeCzWzTfAa0xUHIbHltoeFWBzosoB8P8+B6puvd+457z3RBwnt8YHQe4adJ/SRoVMMncYPir7TE5sySf5rG8TeIzGnMzAtth5qtPb4OOD01g8zcLqmsKs7wWlbnkzg9LBj2H2Ti/Nf5vn5P+c+8IXFPX6kOOItXXBsB6rCY4sJMMeHNJdtUW0jx/35Bc2LwG5TsO2t+E9nkG3G3NXaQPAo11M0Df2Lgg+PFSeLQGk8Z2vDutY8Og5wqhj2BUU3UFxaLleK9TJysgBTMKaBA5Q2UlpJa9c6Ym1kqxWNKQn6HgutWTbvj/NHqzQxvuRi/C7H3jscjE3TShm0VgdAQfaEdbN5tE8NPa2UMILTPV5pM4LVhdKsVDHaNbzMPziQAmujP8yFmEv9IdlE5YZfYsIHhw5emJFDgSqmv2GbQLVt0N01ff8iWfyIIgNIDOoKbWT9CYDWHq3bkUVtwoAxYhPkMXjl0x4nYtIKL4weIN+nMTFS1V1WH5FBOfbRs/H9eJwECDQjSG2Q/Yz3mrIrCGnNd86zGDxh6Cn7K0LTElph72SAOoPTqkyhqOm6BZI6qiXsN1PORLMn7LaTaqINuBa5/51m8FP4dE+2UZvIALIWpDUhTE2dm97CByzqGfh7iznNFH52Fzg9AeKH9g85NyLC5D998NyKIWSA2qTz5Ke9nS7SenvIjr0LpL6575gXyOMeYnwNYguR5c6HvyjPFNL6Fgmy7ryiEDWY7hlyIzf75aqEUxMIKo7rXARcFFZySGzKoDQWmReyEjKrOAxe/ICVpkGYittENMlqyAYz2YDEKWwzM6xLeaH0KBa6HAPN59Z88728J9IkizavcuMjy8kkLNsn0DpGj0+Wa9mvHi37qzBE2lbRzJL4VrXh3srycO358DhyfWwIqwdUm4cUzYe3bGDyXrFLr7MhsPMa18Z0f+4IzVZUTB8VVPwxR2ZR2+MFR6db7l8OPAoFz03Npe7YBYf3LYNrKNwWN2yw/RW2uaTaLnHVin2lsDZyvo8Ynfybo4B+q1rsAz7u8CFyvfdsGi82Ai1s92LvUTQe0+wICaD2ibwhjPbbu2x5HTGRI/Sda8Z8HFgBRW7t83PjIpNlvIJiBk6vlp+iXryBLe+j6wfE6ohgi0mRlpv86VWqm/4hGlQUi0SVwFCQFg9MbOmIm+wN4KWg8Hc7+kWJWUx7feWD1A3Z6gONcYHYaYLWeCuvRmwBK4yupsZVeo9yj8saNGeuWyWPBrn/vxNLGg6B6SmXYnoUQpsSkllu0CaQ+sg67lnwCaT+APB0DEGsgUIKYC7RrJVJzfAMUmsWeY1SSamtNEZpdJwUlt53eC/2X0V/RdEco5qaWIDyETNEaUwEN7KJvdtSb57z3ot7/NhbCwB++6cX/H9+25b+134Xl1dfZdufjyzq8+uK1YeO8htfx9z/NarP/xQA1Y/+NG/+4tf4xf/sMU/CA/7u7kM2xRG2OKauTihXS/plwa6ONCshMflPwEyoS01dala1YVUJUL0offKij2wsNNYS9QlLwAZHEXxSBjeJlGUJL7G30UClDSoqzmMLPgHQupjWHg6VDnk9FJDayZWhEmtHJf3iDKgOar7S3hxCKtSqQOts6bE6wGuqxZuY5afwqzPcfc36OHK0zuA0LArx+QbG0MltF7hqIue7FIZ4qbh+oSku/QROu34EpoMt8FXN4H4gYL7v71B3N7N+OL6/4wfiyrX2mBg7BrfD2AbnDB6R/SsYE88hTUhZ/qlFnueUHhkZeUMiHXFhQYQgxUGbC787fPvkuadFdEpsDQcFU2Zf9CFbeoTEAD1kTgsYMWe9FiNrOvug1vXr1Is3KOrXCf0l+82Xubj6V+z2HxJ8O266FIzWHhmoy8zply3uuTArEkg/eS5m307F4NVYsAJo/RFWHyEQ+gFdQux7KEugh2CESQh3g9RzVmUCp33jGHaB7XU5852OnMeBi9BzHfrRU7gJbgKnb1h7WLvCmAVFWowBXH/Ffv9NNtt36drn2BiSJEvfPt8xMhBEcjyzSLnJ3spfy9/P10r+3M2+l6Xtufgdl8FUZII0WXK4g09BQ3nR9WEgBJE2ySY094TF403SspOlSoi0vaLpGdmTTQ+7jjFYhrTJJF2Pcvv4EWiQPWUkJrAwakUoDN5ZtCvAZo7S9z5EiptYvVqx1gU2XccTw1l8sjObevDCbOpiwUL7W6zKDFRlVmW+rwujGaIRGZ9ODGolf0OjUpExqR0cEuARGEQClo6UIodfCcBsAItKHX75wQEJUbF2TVmeANB3V3i/H73iU97jCFSMIPX4lz565H1UnP3wXVuqu0BqBeyCGF0UoZdjZBQGO4LUIGBmvXEUPmIWAjLr4iZrMvGzB3fwf/k8jo/RR4KPhAFcyyjv94MoNeZetIVNCo0ETmdQOo8MTneDBCleOMtVJIHTjqvguAwdV64XcDoMNMETlZGwojuY00V5JkqL8lQAt/6KdvMVnr/4J1xtvsqbuuSz9TGfs2se6YI1jDYj2Qc7BvCNAxpUP6CMJgyO9vkwKkKaoCVcF1lDXAKQxsZHcCjfYRvDYlNw/WTJN+pIaeS+XNeadaU5OfNcbguKZwPVtmV3vuRyHTleCIta/KgVpobeKUoT5cOK5Ye1ka2FxpaE4ozj688L0KWsrEu3dETf29hETxEiNhV1K20pE2hqmZLi5yzB3OCFtI4DOoZbYLVVmtaIN7OAsLkYmRqOIGym3EDOf2O0h0rzeb66hBkzA/mihJ/pYaDoBqLRxEGev9q2FLtrYvsCN1wJUyonyDM1DkkAtU7qFpM8Um0KVA12SQgDShmxO5ntGzKLWqfZIs+PMQZcQgGzC2gGMGKMDHiufD8dF8PEVo2TpZkHjDf4TjF4zeAdbhCg2rWe8mhP0faE1VYazmUlIHWZGNR3qiUcYXeV/HGbiTm963CNeM13zRSEOgRNG9SY7dEQRvZ0P1Oozfdac4B6DiIfwq6H4O9NxvRHgdNz79+sfsoWH9M+Ts3OszCpuwROLJSR45vm2cygziF4gcmC4y55+7xMHsHsGbkBpTEqWcYUS1GNJcWPmjW1ZT8hih837AjBSRhV9rH8hEP+njT+ogpoJWw1pZUEWhEBTw5z9uqQmSbXuYTgDlHOiU1rsZ7tx6e9e1ZATuSSQml6HZL0Xo+samFTT8xq0uNaKRYo1konywzLNrrRs7pSErQIUzhh9iOW2SR5lUY5MzEIsBR8h3WDgHhpXlMu0vdw1Rwet3try8Mjx/0jx7OTQHd8THUuNh9KGVQ8lLrn19Gm19lEQ7/X+F0neQ7tjrDbYE5fDUBtjs6wZ2fUp1vuLXse9isemIrnpuTKy148s6i7/lIyXvoTit0RVVXSVCVbq7jYCUEi71d9EDn7qhYw6zsFVrV9oO3Fy/pq77lq4LoR9rTfwWLfoboNrr/Cp/kUJmZmtpyZ32tzIspNxq6ffV0nMs+cQQ0TADZm0CRFkFOgVEFRHlGVJywXj8Y6TtX3CdURoUiWGdqg3TAC1fk13gVSK2VlDfHt+MeVthNYHV36f3db/fMJR39UYKsJGLedIoaIGRhBauUVZlBEm2wrNMQCohV7q4PQ99lzT+tzxMLoAz4fWTH9nVjTc1B6/rO5phdrTg5A6jpI8P09E/BYPBWeyDWTBZDXkU2Q+WWBhLfm5xTltcarSJEsiWy2jYpCmZOwxFbY/f0lpjnDdif4oMTeY/DoYYAU3C6N6j1h/4RvnX+WH3srvQ+t+F2fV/yjz/xe1s/+MRcXlyOL+mm/4vi8YPXeFvvg1yleext9dB+A9c/+Yb744f+ZX/wvl/yD657r629IEHh1n8XlCcPyPvtacbWLnCwjTS/35ycZE1CtqQvFovBsO09hIxc6sDeaPSesvMdGN7Pm6dCmJLiOOLvXRN08ayyjqIKjo8X7lN1VrDCzoPuRVqctJMKAxsoOITrZt8QMS0+GTXcGhKschKxR2khWwEzlXlVnVNVDqsWb6MUj/OqM5vSEeh1ZLiUfZlEKOJ1Z0xmc9iF+LHAaIJQ1vqpxVYkvDN13CJr+4bg9FHf7qv9wfH/HDwRALUFsHcVwjbM7eiUAtYtxZFvkkUEeL21ujFLyc0qAao2SR6XG/w8qHBQsY5L7jM0KsiWFCaTMRe28gMmPbQo6ykB2BqZvFhc6AYrG1hR2QVGIV1ldP6KsX8MUpwA8ffxfsLn+BoO7hpiFyLfBaTv7+KjO8xT6cZtxliW2IarRA1brgBumn1NmsvrQJspMq/XElp4xKvNvHUyjGZj2Hrw/8KIddoH9RnO5q3gxFAmcdmyCE3DaT+B0n9mgyiS/bvHstnaV/GTXFMUx2tS44ZKmeZ+r69+kbZ6goxsZ5wc2KAmYzscooMYXP2dK31UYw9S1nYPVWb7u0pkbZe3cACcJiI9oSGCFTuxpNxaawffEBFyLk9uNAnm2MXUO2mGSa/V+xp4OCjWAGdxUzBIJYRgX8/F8Z9Wunmw+otYE+8mnGGNX+NBKUR8cyxRUWWhLpcwYaNcmJUJAmHWbMEhYkHasdEF7A6g2UY2ANcwDUCdG9UpFWi3y3kqZW/dxbjLN7VhApF/CqpHiah60lX+vjQFbnGKLpXhWD1u82xNxIzh9l4ruo5bNu76Xr50YJ6D6o0DqPF32qRCXFw3GprlAg6HAzALUqmWgDoHCR+wi3e9Go/Ss6AhBWNJ3ANIxICGrPoG4XjF0AjD7G8C0tXFMFZ+D0vkx/6xzagSnd85wHuEqZgsgsTa48gJO7/zAPnp6hYDTxXoMLCrL0wRO38dkcNpWxPYFu8t/wdMXv0y//4DPFEs+Ux7zpq05U5YFsNBxZJqLPULEtYnv5geUkfvI94HdhYS97gdDG3QC3m54UI8H04ETuW+hDYsXludVmUB7z6OTSGkUj+7Dfh/pmpp6s6e+7LlclqyW4v+3KBWLSjZjvYn0NqW02zCC1IWNWBvYFZp+8w6lrVJBadDqkyskALRdpTXb0eLpfaAMMveKvYhJIWnCjgaZI3PGwNwOJIPVpKaSVYouKSrmAbejf7Oa9gjzJnJufGWlRl6jpXE8WXxkX1lch3YDpu8omaTOttmjumtcf5XsPVqC78bGYlZGYVM2gO/kvk/PW8zCvEIYGHRJDBGP2FepGGSuSAVXNpMo0toUY8Qpn256LWoabSDIVbX1w+z3pAlFamiOLFOl2EZhUg9RMQSF85q+dyxXnqoLlPuBYumofEAvalRZossSVZSj1/zc/kfCQQWYzrZd2dIng9PdXtN2htZrsbyJSoJDSSF38TB0eghy3m5aZ82B6Vve00qN8+zUmL8dhJzHHJyeXy9zQGsCwVWSLyXv+LRQ7oPDAyfais1UkOLSmGpUeKlBE5RP4bWzl5se87uY7x3l2rQYXWJMnZR2awq7oq5fx9olWlcSBK3E9iWrrEJoCb6l655JiKfb0naXwNdffuN+zCHXeJxk4TEIuJoa7aL0MwJQ5/1rDDglTRUd5birmLw/o8KoDAgzWn1ksNCO+zY3U0+Z0bN+zqoWZWRSNTFlzeTWuoSCa8oYKVVBQ6AxOgHV8obaZIk15BqAqVExnq9EKPBuS+F6jPPiwZuAvKHVbJrDa7OwigdHlkfHnsenkaenNYvFI6ryFKULCP3o3S37j0gfPHvv2BrPloKhU7jG47dbzG7zSm0+9OoEc3yP6t5jjk8GHmw9Z9FyZmvOXctVytzILOph2GC7FxR2Tbmr8YWht5brvU/qoijeviKkoneBRQKySqsPGNU5hG1IvqzZ2/Z8F9g00LTQ7hXFNoz2St5LaGNmEMs5ybvutC9Bmnd5/ihiwMeZcjE1tHwUyb/GjDYfY5PwJouaiYCkkLquLNYs6ofU9QRO+8UJoSgkaDxfN1of2juMVk0JpJ41AJVvD0BqFaewxOxHnR+1Nq/Mh1qtQNWkfZzCodFJDZBBauMSuFcoQqdTJqISO8BsbSQtVMh1EMnTPc/fambVpKRBcNOC5WVjTkaBqfl618je1I1SrGIKXdWBe0BPMTWHVSKiBc9ODfQ+MGhDo0Ky+8h/a2JU5/pbK2leRYJYd/kW5/d4t6PoNhTNA/Qgr7DoBrSb6q4QpS72wxXfeC73QgbUfsdnFvzjfxPOvvY7uL7+Jtvhkheu5VmI3NtVrJ86qm9+G/tgCkxU9Yrjf+ff5/c8+c/5zD864qv9NZvrdymKI06LU5aLJdvVit3Sc76Dkzpwsnw16ppVbSitZlE6tp0oKYyOnGvYotmHe6xCoPCyPnm/x5p6rJUAVFrDs990XruPdAFhoAsteKl/dTEPtpc9UxwVPfO61pJ3fPLDUVRoTF8ah5qUs3J/W8ryKOEMK8rydLLvSeB0d3xMf1xwtgwsUy5Mtto0egZOR1E2z8Hp7aUawWnTtcKuT6zp7vgYV1lcpYmVIvQ/NFP+4fgf5/jBAKjr17CuHgu9vr/GuR1DaIlpQztnIeaPPsrmX8EBU0YjG1Kt1Mh6vFnQ5jFn3sxZsTdlyQFG37ps+3EblJYyUc88buv6bOy+1fUjiuo+2q4JbkuzfZer66+y3b2Pc9ezIxJHgCsD09myIy+Qc6D9IFxntnjP32cOfexjpFEKsv/rECmCZnBBZOwuYgcBoopKQCeI6NLLQhCky4kx40e8wZzGT6zpMDhCMwijah9pt5rry5JNU/LVruBZ9DwLPZe+P5DpS8EqQSTGLDC6whYrCrsYQaeiOMaYJdrUeLfj+Yt/yn7/GOe3lDHZejAdI6dIlh5SIN28Fm6C0X0MY7J7vj7i7Gdvjjj7mZuMqPwTEtyQbD3iTR5YKu6CnzznEpCidQ6EXI5ScjN49vsCiHSJKDU4CZXZ7xWuUZghoN2QGJMiWx3cntBfooZ0zWh53UorQpEsFYIFFsTwyRlYD+7/FH1/TtM8ox02PHMtK21ZastCSzGUj2+XAkib4Nklaa4KA4aWUol1QK3FY7pKQPTSWIrEeMjzQAZrCq2pkZCT02RXcjMAM3tTZsACOABGMtAlQHpgUAqja4wRWV7XnhNjDwTMjDU9Z+PAy8Hnm9+f/9xNlqgUX4fzzvy3IhBVHLdl10HupX1w7MLAlem5NCUXpuKZLjgbLGeuZvhQs64GAasWgXLpsLXCFAplpo+PC07nekxroIhoL56FwAhU55F98J3Tt0DpXdAja/pbfp+CEAWUvg6DhGHGgFMKrWsKu2S9fpuyOKGuH0yMabuGYi1/cNjSXv1LfvMbf5PTGPhCdcTD9Rvc0yUn2rJmSnTXKhKioh+03BeDwjYxBUxCCJHooe8MV9cl295y4ewIpu+iE/uL1PzQaEKSeqKBoUX1lyx3a+rLB7x4fI8nnyp4/VHgrfvw2QeKRRl5dwmX31qzerZn/W7PB5sV15+JfP6twDtn8Oap5Xih8CESImMYSzPE5OcZudhF3l+uuL74EcrLz7B88ZNU59+AL/3nd1yZ3934kd/xH1P4Ftc8oe+ecHH5a3T9Fbt+g/ct0FKkOXl+D98v6pm6J44AZQYO+9S0unLdOA9rGC0XboKQN+2Y3EzZJLZbKq3PVZLYJ29Et0P1l+josMNq9DsEYPcBffuEtvmQtn1GP1zjfCvVfJqbjV0RTUW0JSqUEGSeLu1aWIdmhTVLjJFmVt7juNAlT25PGWLKSZA9y0JbTAJYJKjZC68zWLSyKF2gomEfWjovmQ2XvuPM1pyZmnumHCXLZQKGtyiMhzJYysGyaCpW14HaeJaFpyo8xycNRbXH1hFTKHQBejYH5CHNmkD0WS0hdh59JwGoTWfH+/i5F0XBNoHS23Rv9Ikt2gaxY2mCm9jMs7V4vg7na+DmHm8ObOam9JxZl0HpbMs1B8GzVduQ1n3PDDDO/5RGpX3dhWt5FhyPtOWBrXncviCEDmuFgODcjqG/Eu9x5cfXnv2MZRYVKbExC0q7pChWBwSGavEmevUW/enr7O6vqN+Buo4pDHVy78gN6eAUwUHYK+gURRcpNhv48s9/4vvbmhpUTMCYl2s9gYQhgdQwsbmJIbG43Qhai82RTx3UmNsNsn/3CciGgzXcpHshn+OFtmOjK4PWc/svAawVJuVTTIzqiWG9VpJL06tIn0LVWy0Nkr2X609HBcGJBUlm1geHczv6/oK6fUHRHONtBhbBXyo+fKpo+3AQPnb/uODf+BT42PErLrDpfoTjYUt5/it0YcCHdgRAByImBja+54XvWCvDi/OKomqxiyv04rGoGooKc//NT35eH7xJ2F1Rbjecbr/BO92O/tkaWOMJXOye0/gtsZuRhKJjER2lb1l3b9DvT3hWLNmuI1fryNEycrzwrCvPuhIf1tKo1DiVZqqwCiem9baLaa2KbFt48jyBOM88q2cv4OJrtLvfpGme0A9XxOgxusT5RpqFYUoXCOk4qhhGwKpSZmw8ib+7NEeGGEZ1Zd5fAkm1MpFPhD0NQWmMWVJW91iv3mG1/gJ2/WnC4pRhscRVJWHG3NOpEa9CGJv9AlYXk+1HCKjgxyancp1YIPgWoyzBC1s8+BatK2HgjgDdqwGvTu8HikXAOcmuaSuFbzShU0StsJ2bQOo9DFi81qBhWCwoilO0Lkegb2z2JXaFQ1RCI/krg9NIg2A+5qGJGRieqyRH1cSs1oXJt1+eQz6aGLnwmoWCWgdKFXnbes58wUNV8K3Q8dQ3XPuBC9fJ+hH0gXpjrsDJii+rJuRAFLGewe3p+0uK7ilKWerLe2OjQrsB1VzgB2myeL+XfeD+27z7VcN/88aO3/fjsj9d1Yb/zR+s+T+G/xnv/G3Ht779/+S94ZJfczt6lvQfHNF3O17b/tf4i6csf+cfQB/dp3jrC7z1v/3f8R9/7X/Pf3Z+j3+4/YAPHv9Ddvv3ebD73Zxd/x4umjdwqSnko+Odh/GVME0Lq7h/XPA7asPzzcCTjePxVeC988jzY83F6eusP1hTP5XGatM+EztXdzmet3JGYsjns9KGdSzYB8eV29H5BudbyvIEa6rx+jcaQkwBilGsM4HZunQbjM+/m5vOOYvIpGyrqjyjKI6E3FLdx1QPiPUZ/dEp3XpBf2woTiKLGupiCi7vJVgDiPSeNL/Bux/C9Ubjz6He9JS7nbDqAbdYMiwW9IsCHirKOlInYonvXp3X/L8uQ/HDkMT/IYwfCICaYonRChtaynKPLVaEIKwjR4+9wUA5lEGSDO/FT3gEq5FwE4saC5nMMoLbfoV53GTKuhlI6ecLLBNIlAQFB3YeNrFflos3qesHlNVrUsRGR7v9Ta6vv8r19lujz/T83c3B6fnCnLv7c3D644zcKc6ejyUiszVR0fosANYwMH4uDf1kMWIioU9y/BKinuR0ESCxqjNbOvvRCqPK49pIv4d2a9jvjDCne8uz5CGbwemdF8ApA4JOibWF0dXIQC+LY7H0MMIkAnDDFX1/wb55ivM7inTebzYfSLKvHIwzXkyzn8kMrcygngPSGYC+8WsHI86+F5gXo7OfiTFVqm72e/GQfTT+VurqpgV0zppQISRAejwTuPT/4BS4iHHZRmHyrRSJWSseirNjpBLlNxaINC0YYvHJZYTr9Rfouw/RumTfWJr2iViZ5PeYi040lZFNyj44gmvFlxrJOfdRgsEy4ForQ6lN2tA6Cj01bkbAOh5uYvMQGbwctiLbqyTPMp+ulQyQZWC6VRGUxZo6KSN0KpYcOjPD8nOncRNghunM3roumMk/Z7+b57T8M+NzxXkDRH4rM1hi+ueQzdm8oTIH6L2JeArWbcHgFYN3rAaHH6BoI7YOt0Cqm2OqkRRZsKxRUAh4qxMrHwRUMUa+npnS2Zd68JrOGfaDYec126i4ipEt4k1/7tuRMb0P7iAM0cz8ppeLR5QJmB4Z00kC6NvHbDe/zouLf8HrSvFWdcKpqTjWhQB5HLJyQlS0SWXi0+u1LqJnBbtzavTIboIevad7QmpkTr62N0eMjuhbom/R0bEKnh0PeBwKfBCW9MkCHt2Hto003YLV+YblRcNVteTbpYTUPDqBUqvRk7owUQCBPlAaxaIIlCbS9pErG9hVhk11H1t+8uIE4PqNR9TUFM2nqbuON1afY2if0HXPaJoPaboXdN0FW7dnFwaq4KhTh6xSRppMSrM0xUHTqEsWQNf0Y/iszNGzgiMefjqfq1/WRB7nwujwvsP4luCEmagB5br0hI6he8HQn9P3lzjf4H2X5uqIRqe51aZALFGeaAexWKZ7l2nO1pZ+uBpfv3OIN2MMaQ4R3Xe2/ChnO58QBdzzAp+gEZsWrQoCjn0MaD8cnhiTeKSpqZ11T33M+wBF7zVl0Oy8YdGL5ZU1gbIM2EKaMdbKPgA4CC71g5IQRKdTk2lqMHVO0wSd7mW5jzNrehfdLb/wITUB5z7lN8MC5fyIJ/THBqdnwPTcumseipjB6bzmHzb+pnOQj3cTd1xFx2ex3DMV77m9ANTFiTQsTJ0aCD7N06lQVnmWlnVdK0tRHlOVJ1TlGcvlm9TLd1CnX2D34AH9o4Ljs8Dbx5H7RxxIh3s3KabkQ2wmAFwZCQtF/4psAGT/YQhjKJ2HZJxgmAHT6fMQAzrvZxJgLd8LHLKuZd8jFikZtJa9vIFkr5WsfZQAX3M1RT7nd4HVa8wtleFEZJn+XyqdrjVDrUWOreOkmjIzpqRYsHUEt0UPg/hPJx9q2wWareFi63jj7NAa7f5xwVunjvfvOc7va+KHb1AWa/r+ChV6ovJjYJhHmnS7MLCNnv1g6BrNsPMU2y1hd4XfvECvTlD1Jwyx1ha9WGPWx9iTitVxy+mV48yX3Dc1tdISFu473LCjN5UolPpztM4B5QVxs6QhkRtclH2pE7/bRRHFk9UqSssYPinXsIA4TS/h3ttOfKf3W4XaROrNFr17Tt+/EPWK207B4iB5LcGRdY353vVJJQkSGjrEcKtmyhYfGSQdVbZRlCsTWSXVfgoY9xoL2WNU94nVEb6qRkn+fASC3B/6NlqSmdXRGJTXad1hrOo1Akor7VDRjsxpYGJT37Re+h7H8UqI23kecS4fIwnZ1YPCBNDJ2i0MhuAiWFFbalOJ/eBIzzjc346NYxVH0MLHSI56yKD0y9jUd4HTN219UGoEppk9jpYfQUMCqVcm8DAael2O68K56/BxHuIaDmqIrNRyad0Y/ywq7QcCzrc4t8O6Lba7xrhKGPO+g6S8Cl4CPkPo8N5Qnju+dX74nk/Xlp/58cgvf/7fY33xJS4vtzx2e+6ZgjNfcXRdsXjqKd97D3NvYlID/Oi/U/Dv/RewCQ/5b3dPuN5+C2sW3LdrjhZLNotTLkvPs4V4vp+uXx2MVJea10/z3Oek+R4izgV23RLbvEbRX1LYFcbWODeF78KkEjeoMRNAM9k1XPqewe0Y0KhKj3ZXgADTo1I4n5vDMf7sDJzOmQ5GF6nGlmDrDE7b4lSU7sUKv1jJfW41qgJruWHnIXNadkDsU0bUpoHtVuGuoWw8RdOgh0FUykXBsFjQHpewhuPjQFlm9SMMr87J54fjh+P7On5gAGqlDMZuKYpjyuII7zuBOpxkus9lkflj9NRVkwQLhCWbwWqRysYks1Qj+yozaOejl5KdAAEAAElEQVRjBB/HomiyfJgXvBEJWMsMmFxoZJ/pLMssi2PW689hkz9tDu+73n2Ttn2efKYPu2O3wOkZsC6KqtuvOwd7oGQjcMAom3WyewJlSjlHSQhTGRV48cTEcgBSAygToEUYg95jfET7gCotygdAPFgjjCFpsXeEPqSQpEi/13SNZru1XDUFl4PlWVSch4EL33OdJPq75Dvdx8CgxCZF6yKB00sKu8YkFppODLcQOrruObv9+3i3xWSgMLPLmVjTIR8fFPOm8U2rjpvnfeJmfDQwffPzQ3B6ft6C1GvpNcY4417Hwyt8/KftyKQez7sP+F7R6wlodiObSlg9KoVbQl6chQkUfIeaXXo6SZKUET/qaCEOamQIfZJh7/02quY+1q6wpsYNWwbfsAnuIHgyd88Xyo5Mlsymz6y2OVDd4CmDxsUgzMOgR8aVwd0KxyrUTabGxJbOdj6ZUXfte7ogLP4eCXdSqhLpNpoQHdEPxDiMrOl8n968QyO32dRzEOTmZmr++/nz+T0tjhMyv4X0BBmknl81oPApKTsSIXi5vnOxYGTO7HVkrWr6vqD1Ai4tO0ddeeqFp6gipgBTBHQCNGd7Qnm80eRXRl6UpJjL18LsZ53ThPTYdBOgtfOGbVBsmew8tsFzHQaeu1bmipHJDlqV2BRWlEGeqnoo1ivV/ZE1HftLut032Wx+nYvLX8e4Le8s73OkS2l0zK6TXOQcNvGgiAJE6yHe8soeEsC385oekr/uZCFwk78Ro0Ol5TtGNxYuNghI3boHPA01D08CJws4WcJrDyLv95rWrak3W5bPWp7ZBVXp+ZHXInUhHoZGCxDgQ6QuNIsyjLYfzRCoy8hFGdmUisZ8ci9TAFdpel3gC4MZFpTFFymbd6iGPev2Oa5/Qd8+Zd98wL59Rte+oPV73LBnpS2rULDQlqWx1Mqy1AVHKHotwXmVMnTRj+tDZsDOw4Fns+jBxyE4PQXeZZslKRT3UxBVaMfPg+/ou6e07XMGt8X7Vhp8KR9g8qG2Y7EBEI0Z2TFKG7S2FAhAXVcXAKNnZwap+xmQp1MxfhOkbm+B1KB1SYyGEHq20RNmnoVyn5d4DOvZ/NcjzWoTFQ3i1dskGw6/UxQ6UJhIZT1GR6wJtzzi5bVL02bwGuc1g9e0XtNHlSw9oAHOo6fBj/6/uziMfuFdCrHMjek5A37+18a5EEaP7gNQOgGZ+mMA0zdDO+fg9NxuQxRMat6FQ2tLr+CF7zCm5lGx5EvdY7zv0Ml+zJoao8uU95Beddp3jUGHiciwXr5JXb/OcvVZ7PHn2L/+Nu2bJWevBe6fBh6uSSzUVAB7kQwbnU4kMrcGLQWznCeIGlTxsh3LdzdyEa8B7gC9wyww7O7HG2qxG+zrEIbk8eyS5Y4XsCjKzl7hMUEYjAWKQpuR8VppMwJKpdJjOLrXMbGop2B0+ePyMPezLZR4zAYMhQq4ZAuoZ3VDBtada3DDFWXfYIa1oAiIoq1vDM+vbwPUAG/eK3nr0vPBWaA5u09VntG2Lwi+FeA/vbSckyFqMse1q2gTQO13DWZ3TdhvCLsrzCcFqAG9Ok5hiUdURy3Hi56HXcHDWLLQls4H9ji8b+iHrVjPmFL24V2FsRXl9oReF3S5IR8EpF7W0BQ5wDeOEvgRwPGMwd7tINkpuz2EDSw2HcX1Jb59fNAgnK4dLw2D3OhIY4Sqo/wvzynzycRHYfTOQVKDzCeDCqPNhzzDtKYYZZMv7RpbnEB1kvxiK3xh8DZZFISYCCAQjEb7MAHSM1A5aiPyfpCAaVsKSK09RCsWH9GilJcaIPtQ+ym35lWMo4UA1L2Xc9D3kRapI+IguTTZ4kP7gB48atBEK+QDZerRgjAd/fFxqp0/ei7yN2rXPObg9ByYXgDleO7kuSVfadrDzT/6CCaolNsROTYB7zW9LhlM4NoP437NxyhzQG5SjXvDOK5Xh41MRoKRcw3e74j9Jcqu5Td9K+xptx091EMY8L7n+MUFTy7OeHo58NrpZA3zez6/5Jd/h+LBN34P+/1jng/XPDE1J4XlpCtYnxfU7zXY469iT1+jeOeLci5/7t/npy7+Fpf/+Jjr0POl/QuuNr+JtWvOyhMWi59iU5U8qwPPrx1HS/NK/XoLqw5B6hAYXOSFU+ybexw1YlVVFmv67jw1PRN2w6Ft4y44NPFAES4g9VZU6uXRFJCo9O19dnoUuOYQlM6fZ5Bb61JywnSBtUtRaNs12kr3JhZLCS4sDKFQKD3VzT7mtVksWfFTE3nXwdUWhp2m2HrKfXcATnerJf26QB3DYi1hi3UpYeelhf7VnZp/fYbit9yD+rvgiP5rO34gAOpgLSiL8adY31EWJyILjoGYJHBq5gV3wE/Mk076SmYO+tm2wseQ4BpS6MkE+Nyxb72z4M3A9C2P6RvAdGb5VtV96bCXJ3i3o9l/m+3uW+x2H+Lcluy9NL2jKYxtLnO0M7bQzZC/u9iZB8c1sTF8FCmjAfosqIoISB1UatVrcDOm46ygiD5giohJYYnGR1Qf7pT8CjAt/tWuVXSNoW0kOGwufz+Pngvfc+U7tmEYbR26mPxHETBW6+ogENHaxSi/DqFLzOnHNM1zVAwjsD8/LiEfq/G8JulZPk7j4+QfPQemDz6+w6R0+0zk60yNn4uvdBi9gm8D0/Pf1TMGdTkGnIEwqMOgcMlqQGvwSeYbB4V2syRubWVjCyI7dluMC/gwC2/RYvNBIbYNrtKE4ZPrZK7feMTx7iGri1OsPabrL2ia5zi3lRAen0GmEqPFlqNUmntULLVlH9wtoFo+YmL3xLFonTPq5uFLcJtFDTDZfEye1EOyFxkU6dgXSf6VWTudFEXRjeoOk87wzQ12SPPWfMOe55J5IyMPHTm4UuaAd37M8mcfZ88yA6nnz6DQBJU20zEmMMCN7KAhBgYTWCtDowyN1+zakuPBsOz9CFSXlcwBRSXX2V1syjyyxcfEkuaAMZ2Zls5rBqe56graoEdgepssAK6iY+MHrkNPExwvXDtjTQuT3RZrymJNVZ6OjIdy8Ra6WI9ejq55wm77VS6ufp397j2OgdfKNUtVjPMsTMFJo0IvNf5MUHgMZYgYJZ7Uc8DDx8S0TsGITYwjg3pI0vZAHM9zHBH7FDgZvDQrU5CM9S0L36H9G7z/oKY/g5MFnK6gfRB42icQeLdj8UTzYVXy7NM+gdAGrWVzVqAorDCpCyNSax9gUQTqAhZ15Mq8IvlgkdcOTdQKFRbCrBpqdHVEObxO2b3FYv1ZjrsXdN0z2vYZF5df5jo0LPzASlvWoWCtixGorpVhpSx1YW9ZQYzNTMIIQh4A03BgpyBqlAmcjtHjQ88wXB/c29lqTM5HR9s+px+uxJLDdynA9vZMP/ceFSBCo7VGO5PmBotVlqq6SkzcwyyBOUitA1gtcxmKWyC1NFIFpDbJB1ubmuA7dtERfT8GAAJ4XVBqfcAqljlUpO5NLv6joomGhTKULqJ7S6kihQ4YdRugzkHLPir65G3dJzuRHlI4XeQqSs6ArPHugDWdC37Hbb/2ecM9A4VGaWplJrbV2JRU4+8ALwWmA5kFF8f8gZs5IqRrZu5LOWVAyIz/ZNjTlye8aWpM9AyD2LQZs6QojiQzIwbER9ynS1CK4zmR4ejoC9Trz+EffIHzN+6xfDPy+dcCrx/D2UqPoUsZmAZpPuETSO2neRgmgDroiH5FFYLsO1TybPezAj+Bs3BDCTib52Bits2+lkHrOSs7+7SHG6B1iI4YBnahAzzWewqUWAZpQ6nMzP5DgGoCY3j6zVC1TGYZgacZQDLai5CvO/lwxAQqNXi3g/4K0x+PXvUAZh95/zLwE2/fls4fLQ3vnFm+9WDgNx5W1NV99sUHDG6H8pK+kZmkLoo//y4OXAXFri1Ybx3lVY9ZXWGOrwi7q1fColb1ClWv0Ks15fE56yPH6c7xMBSc2irtiQZc6PGupR+upQFjLtCmpmhrqt0DolkzYOiQNT+D1O2MDVjewFR7L3uHthdgtG0VzV5RX/bUlxfE5gl9+5S+v2BwO8lPmV1PIQxTl5xEVopT7UZE1BExjNYB85HnyKDipE7Nj0rNt1dpDjDJam+BKU4I1RG+rHBVgbeamN5fINOnNDFIGzOD1HeNDFrrAQGp87kBYnAHLOqDc/dSF+bvbhzXYBfC9jQK2jopZJzYmnmnsJ2gcdnqQw8WvxDwWpl6VLSCGn3VA0IOy28oH+t5UGIgHtyb8zHZe3DwsQAWaR+mVZwdhTjmK/nIuBZBBqkVBKhnIPUjb/C64qluCGFu7Zk3bIe19rhWxLynm9XA0Y9BqsFtUeMeTwIUxdqjl3kk5xbszrk4f8C3z/sDgPpoafjZL8I/+ld/kOOLL3H5/L/jqdtzbApO1IKjfcnyhaf69nPM8a+hj+9jTl/DPvosJ7//F/g9l/8vrn71Pnvv+HJ3yeXVr2PtghO7xlU/zkWteHzlOF6Yg7/7KkYGqcVuztH0gb4PXOwsw+YBhRV/Z61LOR5M9bpRikrZca+Sw5M1ihNTEmLkKgz0wxVKaYpihdbJSoWpnpd1SnIS7mJM6/R5ru3m4LRJCm1tKrHUtFUCpyd5g5rVPoOT+yZF9wDyeTvA9V7mNdVEiqbH9MmyJzGn+3WBPoVlCls8XUnYYpkA6u6Vnpkfjh+O79/4gQCofVkTvEL7Nca3lOUpIXSjPDAOHk+Pmda01BGTgljpG4nGMbNRRYbruSkfZAS8b4I/Nzu/GZScOnHJRN9UabNSo00lAYh2TVmeUFUPsMWJeC1t3+V69032+w/p+0tCHGZ/ZXzBByzMvDka7UhuAtMf0bqZs4dyAERPoIhaPKgRz7X8JnulICi8Ao+eJLUxMyGgLIVJbQcJzAhFBqdvvAsP/V5kv0On6TsJSNr3luvecuE1VzFyHj3nceAqeU5ncLqNPvm8KZFN6wJjypGRZK14UYMw27r+krZ7xn7/hMFdY2fn8SaT3M+O+biAzV77XU0Jf8f5vz1efi4OubQjOiUPavp8Dlfm0lwlMEWaE1akR/MDHrz4mnXCL4qJQRUDhE6hhogZ4uhvB7Kpl5BEh/d7zODxs62d1ggjwkG0YhMRipe/v4893lRs9vdYLBYsnp9w2p9T2PfYNY/p+yu2fof3/cgcWlFQa5H911EC1jJQvZ8BU9lmZx9TyJj3ydJnClqa2/qMh27WuMgWPjkkMYc0eqVBpe1xKh5iYutIiGkYw0vnQaQ3G15ZFjhXX9wEQea/4dUEUuevzV9/BmkyAT/bGynS5yo3QPJzi/1QJOBUUghELxtxJhCnVoZGFzTaso6aJhrWXrMaDHUbWJSOqvDUi4C1YWxMvaTeOgxHTOD0nG3ZOcPghZ184fUBML2NiTkWeq79wDYMbP3AVXAEpZO0eEFRHlEWRxR2RVU9GL3idHkqr6F9Trf/FpvNV7ja/CZhuOShKblnKtYmydPH+VIsXvpZ4ZSbeE0UmevAXQWRjCEqsfaAcZ4dvW1vsG1iSnJXOXhOT+Co93uCbylCS+U6Xrz/EzgXCQ8iqwrOjsC9FngxVKgQKHc7wnuKrz01GO3QCu6trQR7agnak7BExcLpBFAr1lVgUUaqjyY1ffxhFLFUMgc5UjhQhdGSUaC1QSuLKdaY6gFl/zqL5RXWrmm7ZzTNM170l1wOe1bKcGQKjk3J2hQsVcGxKTimEEZ1FJufrLjZ+oE+Na/a4EfPaU0CK8bGjTQCI+Lx74MDtxuBMecajCkP9hIh9HT9eQpA6iTAdmRPTwdPaUPQZipg8mGxBdoNaFug+1bCd9wueWCbg4JpcJrgmxGkLhCW39xnWyuVkHef/LUdMSY/asCYOjGpewbfpfks4m1grQ1lnIDc3JDpCTRxAgMaDGVUKYQugwMmhc9NbDV5jgQEMKkOpDkjIYh9svW48D1d8pzOVh7zpqAb92p5/xHH96tgbNRn5nSlzW3G9Ox3MwvbxTB6Tucgzjn73s/m5ltWMOpuTYyomQpeuJbzGHikDKe6oOvPicFjktKrsMsDD8wMbmsjeRJFccyifsji9CfpXvsM20+tuP+G51MP4a1TxdnKsCgnz95tKytILoJveixmYFrriNYKa8HpV3WDT2C0gNVyT8v/Xw6Szb83B9cymJ0Ba5/uq5E9nUOiE2At1hoDbtiP966LA/sZWF0r8ajOHxgIiAVYicbPm5HpvLdxfi1PLM+DwDwywUHuS+cbhmFD1V9iuocjcKF9wHaOxxvD08vhThb1p+6XvHPuePK6Jy7epNq/R9ddCaClgoRJzmw+9t6xjZHr3nK0syz2PeWuwW8uRnDaflKAuqjR9UpsPo4X1Ost63rgrLecmJKtH+iiZ4vH+z1usPSmkrBOU6GUxe6uES3OmiEY+pDtPsTyw9oJpB6Pd5jAHecExOlbRdjA0eUlav+Mvn1C35/T91d43+LDkJQnSamS1Syz/fu84R+jeFFngAvm+784zoEZnssBqxncziD1uCtPe3FjSnR5ylBV+MLirZa98oiQRQIKE2Z1xx2mqHPQOjMq9QBog4oGQiKWJBb1+HvK4G80hD7JOF5odKUS012AtRAkUyQTXkQd5cbXLQSXbJlgx3Usj4Maer6v+pgjkwCyCjKzpzNzutaRUocxxDr/fCYM+KgoogKvD1RxRFEPg+zfT1Sk15YjLeDnnLSSx1xlm0ksmcCU14fJusjj/B7XX6FNl77ncKnJ7X2PD/0YrBva5/jzH+X9y8C/deMY/OyPrvjST2+pf/Pnefbil3k6NJyYkjNVcNIXLC891ZMWe/Ie5vhfsPg3f14sE3/0p3nwC+f8/Pafsf36azTB8fXuKeeX/wprVxxVx1wsPsW3zgPramBVa1b1q/WSKKzi/pEdfebbIbLfB5rTI7HqtGusXdL67ViH5GaFUYpaCbN7HqCslUJbBQ4uw0Dfb1DaUs6sPu4CqfP4TuC0hH2WEnZsapSuQVvJXLiZtUWqc9IcJu+Z0VtmcLBvoW2h2SvK7YDtOpT3RGNwVUWXmNPLdeRoHVkv4WzFaIlkNAy8pMj64XjpUPzQg/p/COMHAqB2VYH3BuWWaL+mKI6lWB+ZFI7oAl65EaRWMQExOoXIpWDCuRQz+0KFkMq06JkCWyYe46Hn73xMUvkxJCexlWyxxpgqWU9Iyqs1S2yShcTo6LunPH3xy/TdBSF0kHqyN/9StvWYg2nztXz0dJ3/zg3QKj+xn22+8mI7KM+QUqybXJwqWbTFlxJ8AmGCivioqKN8rdBBwhwAX4j3qinULSYViNx36MSLsu81TW/ZD4aNM1xFxVUMnEfHVXBchtvg9EAGpwu0qUcf78KuxvR6AO87+gROt+25MNLjcKvJMA/NeNl4mTfwvFhldkZuGzh8N7uuTCWIN8DpCZieM2BHKXBaUA9A6uBQ3qO7iDcCAOaVWQ1yniRd3kE6f0ZbFIqIx7kd9eCIQYqoHLqkdERbhdICfFN9coD6tYeR/RDZrWuGxdsct78DWxxj7Zp98wFN85zWbXG+H9kux6bkxJYSVGIUdRSG1DKB1G3yIO5joEvArgdcjKgY0Rm0Tpud1MqSQ8fdTHkBppFjrzInOtnWEA+AaXm+qZmUj9JNK4/JD5cxeGuaV/LmXs0KLE9QCWAen0ZYKHMGuMnyY6VGqWr2zg5qtnHOzAHpiOBVSMBMwPmBIXh67am0SUFsQZjUGNZRs4iGhTOsnGGhA+vOUdjwUsn/+L5zgeo1Pghb2kc1gtJDVDRBJfn/RwPTOTA1Jm/XLA+UsFRpCBblffGbLtbgW/rmfXbbr3N1/Zvs9x9QB8d9W3NsSiplDoAKTUzgNKACoo1PLP0EUvsM4MVcMN0G6YQ9LYBcH+MIxt1UuMg6dLu4jMnr03uRgBa+4/Td17gaHhACPDiLLCu4dwx9H9gONfpZoL7e8rVvnmJ0oDSe0mrMUlEkubHRUFiTgqkidSFs6kUZqMMnv78BzCKirfixRgPO37010T2gJXm9MDVHwGJ4nfVqQ9s+o+lesG2fc+V3LF0nbCFTEViy0sKoXigjYLUpaYOntZ7r5Et+4bvRT3iyAMnzeVrzYySEHjfsCNoKK9q3GLMT1Y4yo2VBCL2EyiY2pw/9uK+4OXxhCVoYZfk4KF+gQ40ePGVTY7oa69vU4JZ8BSmKCug0DoX3DV301MGDhjLZV0jDLY7zfJ+usxAdOua9iZWmUdD09JynObULnpUqWGmbvNYnoBoEVM4mA31iVZdRH/h+ApOnf37PI8gjn0/e6/LYpjn6OohlUgalu2TfcOArnvYsGRzMc/bNoLy5pQccggcj4JyY0330YyPywHv/xorrx7V+sm0bm5OZNZ3W4agM2pRcDxveDz3v2Io3yxW/0T4XBURxklhYNUX0uMTiyjkS1lSjym6xfJvmjc/RvlPz+iPPOw/hnTPN2cqwqswtf0vfhhGcNiqmR2lO5w+x+Yg4pyhvY6Tf05gCpeTMzxs5GXieN9CzWivv2V4GYo92DaETtvQcpE6g9VgLhB6ti+le9D0hCnDdRkeLZ+s9VRiolWGINUttqbVhyP7U6Ft76XbG6h5mn+fGkFKiupTX4vC+ZRiuxeaju0ZX9WjfUHQDz84NH7wEoK5LzWcfWL51PvDi6PPUu3fZt89wbp+sKuQ6dgkI2wfHefScOctJY1ltHdV2wFxdoVcvEvP5BL06+fgn846hM4t6vaY82rJeO04bx+lQcW1SA9D3dAy4ZPUhQI5cB0V7jgVqQPklQ7AMg8ZXkb4Ukou1U1CynHMSiK3oe3Ctgq0EiOntY4b9+4k9fcngtrgUFqgSqDRdI/nOzbWfGvdUXjmZi4KXnKM7WNRC5hEf6jHrJ07Niak6VGIroEux2kusSldZQqGIxfjXiSiUj8TEos/Xx82RQWsBqs30s1rAabRHmXpiUServ4i7xab+JOO41lApeid73rqAoZTmQl/CUIgyKhiNdYnFnv2otQJbpXwcsUWKcTpuc0JIHh83Qymzp+fg9EJFah1ZWU9hBKC+abk2AtSyoR+VPZPdh3y9SM91FhQPTDVjSM/yD2ZrimPKK0i0n8QUSU2G1Fzzvsf7Xar7M/mgS/YfDSH0CZvocf0LFpctH16UvNgM3D+e2MyFVfz8jxv+7z/1c9jf+CtcuS1Ph4ZTU3GiDMdtyeLcUX/QYFZfQx/fp/r8TwGw/J1/gDc25/yB7be5evw63e4D3t+/z/lFhTFLTsrfz5PPnbGuPet64EfeePVmx6vacM9Fmj6y7RzX+8iTa8Oquo9tH2PsAtXpg6ZyVpGUSrNQhiJqiqjZM9DHIMoUWxNc5Cq09P0VhV0eWMzMQep8Xm6O+Zomv2vHjKe8l1Ja1P13jTjOX9PX8i2eQeu2lcabaxR1N4y2b8EWDIuSsNKs1oGjdeRkJVZ+WTWVA2Wb+OrPyw/HD8f3Y/xgANSlxYUSFQI2eGxxIiyJkVUR0v8bgvIjwzDgiVGjokHpnLBejN0xYASjD1LGgxu7nWPKOJEYDiex7D2oUuc8s1+0Lqirs9FIvyiOMWY5bhj67ilN84Tt/j3a5gkgr/lmdz8D7TfBaZgv7C8XcR1YFiRccw7K5sW2jJo+TddjQEwElKaJ4vDtEwjjY2ZTi6S90OKvGqLC9hModROYyvL9m36yVyEHnXmugmMTBnZx4NoPdzKnZZEoZ+D0cuxqAji/Zxiu6foL2vacYdgQYj92xPP7zm/xrvFRXx8/DgrWfJxvPn7cEW98PgfF4x0/k/6uSsVxuq7HBRMgOrQbMC4QO03MF1EAPUg4ohm8pIPPGNTihRkYhi2rviOG5fgXR2lwYk4A+OGTM7Devg+bELmoI5ta0TQ/weL5fYrqPsW1SL32zRP67pLL2ArzLwYqbUSKh6ZQikLF0Xey03aU+m+CeMfNg0tnos9baonpOy871yoxLQXQEkbyFF6an2ssYLnN0p7/DU/Ejcw8M4Ef6nAykEJLpfkoSGjjDKTO93gSnAvDPr2uzKbOYLZX8vpVZgAqYcRnoNqpzCz0dD6gB0VjHPtYcKRLttqyVoY1hgWardeUXnPijZwHHSjSPJBtL+YjRGFKZzZLHzRDsgHIvrRZ/v/YdyMwvfXCis1s+T4dO6UsZXGMLVaUxZF4TZenFMlGyRSnYukRHduLX2Gz/U222/dw7pJjDCe2ZqHteJ58kpoKqD/NjQJOB3xUow+eieBngTwmHgZhTkVPHNnTTbIvGCXEMwbRGBAW3WjZMxae0YkFj98TfMfyxW9wGgJX4SFPg+L+WWRZw9mpBBntwpL1s4D6duCrOun90zBaUVh18P/TtaXuA4tSPkr/aja/VR3RZRS2t1N4FKEosJ0hao2ZUe1134CpUcFh7EqAWrOiKI6p64f0i8vRBujJcMW5vyYQWeuCI1POgGrN2ghD8r6paKPn8bAfVRZt9AdgdQ7eC8oTose5bWIeK1xqcGcgcgpRDON+ISTgTIqd2/OiMOAMrtICVliFMhHvNThNvy4omgWrENBNTWlqdFJgGSOgR6sL+l7j3Z59dNSJCj4HqeUgkpjUgSYOhCAWIqR1QhtNjAbvO67+/+z92Y9tWX7fiX3WsIczxHCnHKuSVaxiFYtkDRQpUpTUpNgtS2AbhtXqP0CA/gEDAvygRz3pQYAf7Ve92IDRNmTDbnWjYUFquZtqtYoUSZEsDjVmZd7MO8Vw4pyzpzX44bfW3vuciJuVWZVliuxcicgY7okTe1rT9/cdoqMb9iy05b6tOdEFa20ObA+MmkBqHzIjTQKisofv3LM3F8IF8J0B1SMwLN7hQwwMIYzhx3cxmefzdV7TzBnTx7ZN80LjHJDOLKxsF5LZ2WOhgsPZ97Yybr7ey8D0RH6YNrQao0s6Be+6Hd7WfKE84/e37+HdDls+wBZnFHaVXj/5XWpdjoSGxfLTlKdf5OJTNa+8Fvjsq/DWPcPDE8PZ0lLYiT09uEg7BBbJdNWHiLeT9+Vx80EAQeV/9Pk7t3weOikWpd8eAtDzzT0gLDRlR5XInSzq4MfxMPgWYJLJZ4A67QVGSXgYRNEQBoLv088cDseAow2B4CLLGaO61oZa2QOPU5MYsp4wPkNDmKxgxrmWiSHpg8O5LW64puivMN1JCkc1qBDYXGnevgh85a14MP7m9tajis9fOh4//BSLzaep9u8y9DdEJ2ZFGkb2fxMc19FxjVjknWwN9c2AWezQ6yt0vSKsztCLFT+Kn4sqK3S9QtcLirVlsXKsN46HbcnGljTB0QXxBZfAxD19sjZUylB1zzHIhlSFgA4r3GBxC81QaXwvxAdj50AixKDwPcQOim2g2rYUuy3D/l265jFt94J+2DC4hhCGUcovv9+TMwBETavGopKsjCIxaBw9bfTYqA+A0VyczuMHSkLaBsLkeTtN27Le0lbseXRFLJZjUTIWwAhGC0kkGqEk5RDNOUg9t/pQIYhPNaCCsCtHP+rojljUP54t/6JUmErTqIgPikUZGZIftbXgiogvFEWTj9mLJ3WQ84xm2qPJtZc2gdRTe9la+bhN9h4ZpBbmdJGY05X1VIVHawnxzXvS0UouBW/TQYvBRAGmZZ+bkpaUrOlqHXiki9E2MPipyJnbWPhksvmYDGFysTSM67dh2Iz3K49h3u9xvhltjLTSDP0Fy6tLnl+8xuPLQ4Aa4GufXfIffuGG/X/9BpvNt3nuWk6HPafasvYVq13F8oWnWF1iTv9oBKjRltUv/waf2f1X/MZ/s6HhVf7l9j2ebb+H1gWPTM3N8/8NVRlYFAOrSt9ZVPtR2/na0rvItgtcN4HNJmCqhxTFaQKWLT72t4KRDYp1Wudtk/JrF2Wvt1bpGrmGS7/DhwE7zkWHILUUh80tkDr/fN5+kK+79kEKM8EQg1hq9imFM4RDy8O+h75XDMneY27t0S8qhrWmOgmsEzh9fwVnC1FOZVs+oxX2Y1qj/y+pKfXhi2CftB9f+4sBUC80QyhT519JMnJ0VL4bN4QxemIfCb4ZpXAQZ/8uE8nINNWHA+3twel26nj2N5u3lyW8VtVDkYEkqW6MHjdsaLsXwgptX+DdHh09mTU93xBlkD0DXjABq9lfNqeW65gmxzv6W2ZsmmQlkDePebGtExND4uXsyIDKjCejzMgU9ErRI8GJpVcMKmKCpvCRENQtMEpr+TlMgNTGmTEcaZuA6W2UcKRNGNgHAaebxIDN4LSfgdMmgdPWVFizwJgysVd6nNvPwOktIQ7jtTyEftN9fsnXd73m2MrjgJExX1T9oIHvpcztDwlMo2aMLTsy96e3TymIwWO7ASiE3ZAWwipElA+YwcmCOG0EJ3aDpx+uMV1L9OrgGCaQWjwXzcewXnnjzHCuFOsqcrmMvN3XdKu3WD8/5bR6SLn5Y8ribGRT79yGwXcsnOXUlNTaCJMa8SbLjOpWeQEdvRpld/PF48iCV4cL5OPrPb/ycxfbXEDKvvBzlrSCg/CU4xZhYuzl30pgxwh+JF/TcRxCPPcjHqIw3b2Ks8cppv6ejimDNQpMkgXrdP4kkJoYiBl0waSTCKlSFhiUbMavfE8bvFhp6J61EaBaGJeySFyoBFQrjfGaMh1Hlv3PJZYgm4Fj6X8OSpMPYUw/d83oKdxGL+FpCZgGLUGIdsli8Sixps8py/vCmi7PUCnoL3TP6ZrHPH3xddr2GUUYeKALltqO/pNZ1kuc2HI5gjeka0nUmFQc8Am0KmM+10MGKWSmdaRhYk9L2I6/k0HtQy+gTHDpwbIjUA3MEt57zP5tytByHr7EtX+NZwmkrkq4dx55EWAXVpw8uaLhlD9lAqmNls3B3AvVaMWqNtSlpi4Davh4lhCLRcRUcQxpbREv/KHQ+ARUW6OxaQWvki+z8i0qePH5QwAsmwC8unpE11/Qdpd8u3mfU2U4sxX3THUAVJdKjc9nXZ4k+w/HLjHwu+hpsy1QujeyEe3xsUeNvTuNu9k27KhvH6xFCLNNqRcfca3whSJWCl1FTBnShiVLpRXD2rDVD6m2a4rdOcVuPbKpM3vbaEvXWbrhAjFv5w4mtVi46CDPsWNIAcCALtDKymhhFCH07GPP42FHExwPipo2lpzqYgwHFcaSeK8P5Ot0eI9f5uE/AtP4A5AvW2tkS48MTIcZa/rg/Zn8f62azvMYmAbG4k/uX5mNPd3blFWguOUTOuVBJHZsLjHOCAl5fD4sWiSANhWNlSp43O+4qB7wWVNRhYG+v6Be/yTGriiKEzkvXRKix+gCY5ZU5Tll/Qrl+nP099/g/iuBNx/Am+eaV88s99aWupwArOwl3zudMLCQFG8zoDrIuDtaZOaLe3tJ+yM1PQOajck2NYeMs6noZtB2PYFqHwCgxhQ+SgqMzWB19oEPvsPP2YgJrAxhwJtBQtWTwiEmS5BNEK/zWrsZUO3TekJTKzt6Do+ZFum5nY/ZmdGfrYEEHG/o+0uK7gVFeY7RhlAUUqTawLsv4HvPOj7/+u0QWqMVn3ul5J+/oXnw9HMstt+i7S6kKIkfPZR9jPTRswkD17rg0llOG8ti6ymWTljU9UI8pIsK8+CNH/q+ZpsPvVhiVjXl8obVwvFoU3OhK/ZGCkyDj+xwk9VHktYP3Qs5N8AGj/Ies1iih4lh7ApwNiM4QIioQQgVZTNQNA12d4PaP6XpntJ2L+j6C/phS8jsaZXXTGL9kvd1ueCvRtBc1lVeGaKX6+iiWB1m27X58J7vuUFTaM3gQ3o2Ztco/YJK/X8emIZWYyBp9KKeISQWtdEEwghSH7f8M+myYgk1Wn2YSkgmmUU99i0P/mPKjwCWlUGXAun5qFgU4nffltCXkd4qgpXQdNulIoQPU9B6Yp7OFcyJT/HSdtd8Mv7bWDg9DEYsVUyZCJGq8ImVH7CFANR5m5QzT/pOE4IUWIeg0EEzBCmge9LGQMdk9SFBz72pD5Q2o90USsbfg3kxU8lyvkuyIvItethOr5qNG2JZlIrdyuDcDtVcsrt8g3evPF/+idvX42/+TMXbD36Jrrti0z3lybDnxJQSmNhbFlcl1aLFrt8dvekB9OqM1S//LT6/+b/zt/6FZhte4Te377G5+S7WLDh5+2/zxBbUZWRdDaxrw8ny4wdET5eGRyeG6yZwcR5pl4+wN6cUyYfahx4fJY8i6Mnqa6F0uu9anoGg2AXHgOfMyuY0Dnu23TW6vjcWsF4GUv+gdgsnCm58hpX3qfgme+wwaIKOiUGtEnEvK0MUziGWRQ2UjYyJwKi6MCtYryMnS2FOny0UZwvN6cKwKPUIdquPIQfqf4ntE4uPP/v2FwKgplS4qFFBKmDV7hwb3IHkD2SQGWKQBasKidkmCxWURgdL0MUUGjT3kjwIZ/EHALZ+ycA1WXpMnns6Vc9NYseE0OHcjq57Qdu9oG0vcW4LTHYkc8/ZOWt6DnseyFGYJP4CUh8CIjAFpcEEUt+y+sig/UjbduNmV4CzKTzGK2E3lvlrBKjObMEhqju9V0HgkDzpX8cMRMXEkPRswyTdn7Mj57Yek9y5HMFpYxZoXaTFqPjfdf0VXXeFczti7FEchtAx+3oOPB//28vbMWM63zh161XTex6968yy4fgvxjuPdHrX6fMszCFJGo9BauW70RPOWzMupsdgxBBEUuTy4l7udmSgH25Qwx5cLjZw67PWjP/+o7RXTi2hsKwrz9ki0PWB66Xi+vQ+1bM1q6f3KTevUt38KdZ+j6Z9Rtde8Ny1o93H0kRqJQzYAiOhNkaNDIchBjrtD4IO3XyRCSODDubPROJOp4LXeA1nn+fAyAhSH9h6TP139C+fgdNegVblTB5qb7E0s22AB6HgBJ8OLRBUIBOUfWb6HB9n9m2PYiOUrU6G/Lsjw00xQe7yd4MKtGls7aJnn8C9je5ZaMtKW5a6oFaGMy1FrjItHGGS/c9blvtnj9tsedEm0HYeeHftO5H/p2LakIBppZKlRyGWHqvlm+Izne08jPjDhWHL0D6had7hZvtdmuYxy6hYm3JkyuViXb6mKJ3GSD8ypebevOJZGkYAL8sOzYzdMT/XiUEd0vnKx9x7XJ6wZDEVWnSsyFN4nmOMrnA04wa8bd8nhI4qeM6C5ya8wbOguH8/Updwehq5dJrwomBxtaH1a/7IFfTe0/vIZwI8OD0EqWECqjn5eMJxljXoiuQpKgv1vgdnFd5qBquIWo1MQ9Mlxlhv0abCz3SS+TpQiJVAVd7nRhfcdJdcui3PXct9U3FuK05MMVpXlGpi3JxqSxNLWuPZxYE2qS26FM7XJ9DUpcLOWNDKx+CTJEVN88GYazEqKxjn2Bgd0WiiFXC6qOMoa89NghCh0ZrteonZL1hs1pTXp9R2jWlXaQ6U8d65PR1tehbiCPBlNjHIIXY+pL7uCEH6PYbE/E0M1lhw5XbjeZ/bitZWnOpyBPkBSpWl0IcezZ5wa7rKYDQkRcIMMM4AcgapM4B8APylz2bcTMq4YhMgPQaV5b83K7z3yTrExzCOG3msPVAfoVIh8Db4LM/a3Z/lG828OJy/zr6WWlmufMe7oefLpuStcs2T3ducnP0cStcUxalcG5/CsEyJNUsBpxdv4s5fZ/tozU/fC7x2qnh0chuczs1oxenSYnQqqgXwIYj/t09WH2ltV1gBqI0G8/HZ1E6XJa2tZU1cHQDTudiCsjI+F2vQhiyTzjYGt94zeGGLug6dgOnoW2FRh5agW5TfJ1sHg1IdQRn8zALNB4cKdgSqvduzx9Gn4lQbPJ32Y5jioMPIqCYaeW5h8qGdPa8mreRDEMVlCAPDcMPQv8C0Z+jE3otaU+w8Ly4033k+3AlQA7x+v+Te6x3d48+w3PwE++Z9hn5DnIUl+vRc34Sei1ByXxk2bSE2HwuHXTToxTV6scLXqx8NoC4rVJlB6gXFake98DzSimex4MaUqdDnGUIQqw+3GwHjrntGjJ4ieGxwGN+Jwq+v8V3yaS7MaHkBoAdh4ZrBYZs9urshti/o2yc0zZMDcDpGCfrWsz44Wn6k8E6ty1HhChPYFKOnc7uRRV2kvp8D+zwRnWw+CsyUAXRUFJO/Ndk8RiPnEwtQRZxhs2kH54VdjGMEqT+oafQBSD1afZhKLP20vZW39GFAtw/TFoVGFRofIqWT3IoyeYZbC9pGvFEyxyWlgHbDOGFGnceEidQTE7liJGXxwazGuRc4TPYeB+zpFNhb2UNw2hRxVPdOl0RCvQGKLtANBgZRZLaBEaQ2EVCRMwV91DTaMsQKbyLBR7oD2x8pGJIKID1hLCIHFMprSby6kxDnR3B6ToZzrsG371Nc/TSPr+Dp1XArtPD1+yXqp/7XnN78KS/cjhdux8mw59yUrKlZNSWLC0+57Fi9/Q3qL/2V8XftK29x8lf/Jl/e/nPa31zTxlf4t7snXF3/Ca9873e4qX6R90pFYQLrquOn31zcqfz4UVpdCvB6f+V5dBb41skZ9vKMojjBmJreb0fVU5c8pz0FC2a+46hxHbsLoAmc2ZJA5HK4lkDn8uSlILXch6ScTz+PUad7YxLOVM7uV5o8015bhVLGNK0xgyVaoSkMVlTHOuW+ZOsi7xS+UZh9oNx3opQoCoaqwK81q2VgvYTTBZzVAk6fLQ2nSzOqpwAYPmFQf9L+fLa/EAC1WURiVAxIsFJZnaCDo0iyv9yyh3TfxwROZpDaScXKy6bEpA0eacIc08LDZBmSm1KakBY3NssRExidFyJK2RHEzhYLfS8M3n64pu0uGPoN3jeo6LFMwNaQNrIZYDpmTcMkgcoV5wkWndKNJ7uPw4ljnnBP3kSqyeojs4um18tkWirNFEgAPklo5kB1z2QJ0geV/v5h80cf19EfMCV3wdFGx967EfhqE0gwB6ezr5uxNTbJxUySK4s0qqEfNiM4neV92TolFwJgAh8P99N3T7i37TtmX88WU7e9pw/f4wB4vpNBHfkw4PToea4Tt2e2KJ/ePoWsuQ7TtahQoP20oMkyQu0GsfcYGdTJU9ODdw2xfYEaPjfaeQBjFXhsH4PFx8OzAlUU1CmcrXeOZ8vI5dJztbJcrj/F+tk56+cPKcr77PffY1e8y/XmT+ldSxs999KCsdaGApOedw0KKj35lA0xUMWA1/YAGMlAxhiG+SFO6647nvtbKiEcMGzm4LRLoOVYfDG1yPhNNW6o77QhcohnvhYP54hPlh1hVnhiTJ0nH0diBenMriSgsoReCdgth56l6/K1ijmcrMchgE+fF4nB02jHThkq3VMpw40pR4l09oc9HpMyaDUPCfSkcLsgRYQ5UHjjh5ExPW40dTUC05k1vVx9RsJn0zgdo8Ptn9Dsv89u/w77/Xt0/SUn5BA1JqZUYoaacQQOUlRLxx+IFGl0G79X4pudf2bG84Xj/uuBBhn7hAF+aPExtgRueLdD61psGUDYhqZGhw5jypElKMy6nhgcVXScBs+GT/MiaO7dDxQWzs4DV+crllc76pst7dtrvhUKBhfoXcfnQuSV8+IWSP1xtkUpDis5NAbEb7S30NuIM4rBaIIuCFpRaI0xBtutAdBjEfpwzlfKYEzJavEqVXlGP9zQddd832145lrumZL7tubMlqxUwT1TjPdqrQxrYziNBY32Y9jO3gsbcOP7A+WFz8AUEAhEFdI4MWeFhfFpz+P5fDMTDRgrnqt1HQUsHGWfcbRe6JeKfqXYLpcU65p6c0559QC7E7BL64p+2DIMN/R+L2NDcASVbI+Spy6IPFlH6e+D8sQYJXZAh7EgprEMwbONHZ3vxnDJc1txbqqRjZ69H41SY8Dy6PE8Y0vn73OB8GV2G2H8zFgI0kqNg2teJ2UwaB56mNsc6M6BirvgkvIqrYqS1YCdqVO0zsCpHjetx3PpeF/v8Kg8bsfAkNIFjW/4ntvxZVPyxfqcb22/j3c7ivpVrBWAWmsB0qxdij91+YC4fp3m/BRzHx6dwKMTw73V3eB0boVVI7tt8JHeKfGhVrPQxLTzzs+c/THubTObM9t4aFNNwLS2YGpisQRtiFqsfnLQ1DGTVIUgmRpuQLleAAHfwrBFhekkfAIl7z4eg1eaMC/+Jjb1FkcXQppzPHW0uGgZVODElOnZM0LeCHGaa2dN1ppiPeh8h/Mtw7DB9i8oi7WsrWxJue/YXi759tPIexf9S2Xzn30dfvtTKx48/1mW++/Rdpf40IkSKk5F7q0fuNQ9F9py5izrXUG98Njao8trVFmiiorY7lA/bGCitsKCLWv0YoFdF5TLnlPjuR8s16aUsTM4fAxi9RE6Bifqgqq/Gt8qRofxLdq32GGFKZYEWySGedpHBWEjmq4VosSww3fPcf01XfdsBKe9awjBHayZMjgdw7SuzXuHCZyebB2VMgwK2uBl3TJbs/gYyVhcXiuMxbHZuCT7iyOyidb4zJ7WcRQIxJDWgilg3HuNDhG4u29HrYSRSZBiDsAMqtXBHyoT8h71YwKnQcYWbcWDurSK0khgYgaorWUsMgMjG1QlO6iYLDbTEU/nxu2dzp1rxqQYnl5ze81VZms5E5OtxwROWyvAdAaqx/NKALVtIrYRv+r9ILD3EBntPkBR68BZ1PRYej1liAB0wY/rSKM0IQYsKvmXy/pa9qQRPZLrDgsSOUAxW4bJBdSiRuivWVzd8OLqhMeXtwFqgNWv1JSP/yZN+5Tt9m2eDnvObGJRu4LlrqR+4Tl791uY1RnFW18af7f87Jc5/dUdX9v9S3a/fU4bHb+9e87V89/knl1zUf0Mj21kUXoW5d3Kjx+1na8t9xvP/VXgP9xbcO/JQ4xZYuyC2CtcjLSJILMIllZ7TAKnDaTsDFnHaoRJbZTmoVW8N+zZ9ZcopSnL01sFZ9kL3C4Q5XsSokdFTQgepTp0stuLoYVQQ/AyLyWbHj14tBbyoNQs1XH8Gb5TqE7UIdpN3tOusphFpK4lU+ZsAetasa4FxP+gNcAn7cM1BT/W/c4n7cO1vxAA9clJIJhAv4KhNWx5hWp7QrG7R70/p+ieUxSnlP0FVXk1Wjz0/QUqBooIMQ64OOB9g3ctRXlCYRfCwk2LmhAGBrfHu3b0rBM5/cibSowpM1aqM4CQW4guLXpbdIxYxC9xlUcnZQ4sNvKyZM6WjkyBaQKu5lfIIkUhPqcRWTQdS6H0bPE0ZxkJwDx5no4MqMSk7JBNZ6Fk4C+UpldhXAQUSh94TpboKRRJHYLTeTuXF9GZJbnLMv0ZQ7IJjj76BEolf0ggJjmeVgXG1hhTjcxpkxaa3jc03QvcsEvAdI6nSJvkg0tzBPKm+zn9bOb79iP4E8V4vOQKt0HqO9ohyH3X15PEXKuUFJ6tZVLRJAaRvga3Ez+8pkL31bgJPPh7aaMXfYv3XXqeC2F79hv2m29Qb77GcL8EZGGXF6NZHmM/+JQ+VDNasVpO0rFXzwY2jed6H7jYB57dBF7cLLm8+hK7Fz/L4lnHvSffZ/3uP2e7e5vL/VOeDtcsejhLoWlrU1Brg0FTawFDdVQUUR+AI8dMvhE0gYNwrRhHN8NxI/IyfvucVRPy7zMB09maQimLTaF+dXVvVnSZPDondUgKV7HN5K/pZYwKoSNER8DjCdgYMQlYNkn6BozMQ9K5ZSAn+8E6vPj1J3BFjiMvhGtZkBEZgoSR3ESH8gMmKT4silqb0Rc2b94Oxp/cL9PflwJZCmVMX0/gvYBLpjgR26TkOV8Wp6O3v7Wn2PJM0rSB4HYMzWP2+3dHSxjnd6gwUKFYp2OSTbT0cx1z8NEEhlmlGVQYQXYBKIRNPW1ihanazsH4eOjbC9nPUBbX/RE7vIv+YGMbiQxuT99fyD3LPtQ6e7quKIqJ+dV2LxiGDW33jLJ5TLn9JosXn6J6+ytcf+oz+NcNp+eB9eciN1dr1IsoQPU3tjz57oLv3q85/VTH597s+OKrhi//xOQ5/3G2dQ3lQr7unTCvuh7aPooXXwldq/CVot8XhMZgO4seHqK7CjPUqGErBUk3SWOd348hvUaXVOU5VXk+Wj5d+44Xw46+ucKGgZ+qTrlnK1ZKxocyjflrLX7qUOLNdL+a4Ony/Uqbozk7N4eV3R7xEV/5dBze7WTzbhVVHVguRbpZF8JEm8sNfWBMtW97aFrY71fs9p8jbj7H4qrl/tUli8f/gt3ubZr2KW17ydZt2YWBKjgW2rDWBYXSnJpyPOZc9HGxxUVQ3o7p9GV1Ls9VcNz4lqvQ8XbXUEVYactaF5yakod2wUJLEXCl7cSizvYds4ITYSqaoaYxQCNgz7GU/rCgPr+eMmZ30dMHKRp0qag4ZBA6hScbXWKLFVWyF9AJnD5WzM0DLr1rko+xjHGSN5JHbmlzq4/MwJ4stgSIyy1mJq3S/HFzxU/aNb9kFvyxvuLJ0/+eNz79dynqVzFuPXrNa7tC1w/xq/tsH90nvKp59ZXAm+eGV8+KDyWtNlpA6t5FehdpBoU5KiLnccloeElW6Udu40Z+5rMJQtjQpkJp8VPH1GAroqkIZY1bLAlG461J7Mtkg5M3j3nZ7CLKM2ZnlLsdptnJe86k8tPx+BFYmBcXtNKgC6KSeUoKgk7mz+jZhp6bMGB8T4ViqS0PbC1F7lR4PUlri713kzWNEqblgJP5ZtB0owLKE3xLObyJrh9SBs9JCHyPNf+N7fi7v6A5X9++Ef/FL65ZV1v+x+oL3Pt3Mi+/uPx9uu4FA4OoImLgwrXj73i7xO9qhqB52LWctj2L5j3CdouqVxSvvIW598oH2qm8rKmyRtUrzOk9zHbL8v4lr6xb/M0CXI2xilpZnihD4Ttu/EDrd3S+YwOUxQvK4hnWrimKkxQUusJYAe+NrlHaHli5DKHFux3DsJFi3HCNczva9mIC/FSBNuXoMTu4Rvpz6LFmcfBved3kfTsG0QEoLHslxYUzYDlDk/Oc3hNYagXRUCebgS56KZpFj4/xgNwkRRex9jDlFAAZAgQrHz6DWHf7Mx41I+KuYDFDRA8FRTegiwLbyJ5Ua4t2O3KQ6MfVqlJjSmFQhwilDSyKyKKAroS+jvRtTH03gX/eY4YcjJzVFMlqJab9UAJ1cyEyh9t+kD3eZDmlWDAPRgxUdvKenoPTpgBlIqZQpKEbbRTKKIpVZDl4XOtot45ma9g1lqa37JwEdud2agJl0CxUJYCo0rzwLRsk5DcQsUmtaKLCpKKpT/8FPxDQovJwO+ZB5cAMa2AspPbDhrZ9j7MX3+Piu1/ht88999cdbz2qDq7L/+43Tvi/3vtF4n/1GZ594//E5dU3+P39BfvK0VTn9E3F8ERx+ntv47db6psLqs99bSxa1V/6K7z5xV/kP//N/xdf/efX/H++91P8H977l1xcfYPXLv4q+u3f4Le/+Crvvhj48oXjq5+ubvlh/yjNaMWnHlT4AF9/y9Fdfp7F/l2WzXt03QWd20kIbZwwjM+YBWulOTWB2nheDZqdtzzTBe+HgYsw0EbNlxf3eW/Y87h9yrbfUNX3pWg4Vz+NYHQqqscgwHWY5hOYitXG7cZj19FJZkpShogHe4VzBUMwRBHhTLd2gKLzVNtW1CFuwFc1/aIi3FOcnwdeuQevncFrp4aHH6Ce+qR90v68tr8QAHVdQzAikeh1pF8ZQHa7BZPEZ95iDAmw7PAxYIAiIhEpbkuGm5QyaLMY7RLmrMUYBewUGwuZGFViSYQwudHOm06vyx6JRk2eZiOLKE6/exdbeg7OqCQ7Ffmw/NYx1zYznQOyGcw3PYPToy+qUugYGQjj4jxLBYkJeAvCviyUFo9aLZInHRW9ChMzEkXPxODO12eS9MoxZBli9n68Cb1IAKM/YEl2IQUmzZilRtkDINbMvMMllMrjfSPgtG9SyvldAVUZhE5XOxcZ1LQ4+CAGtLzgjonhuAKe/q5Sh/8Wo1CXRin4WInI3O4f1PIxpw1yWohm9ld+doFxQ5YlsMp1wpI2lawFZyC1Ch6cANS5aT0Bo237nNOmoQ8zu5vExMrMP/1jkAg/OC1Y1YZV5SVBOll/PFtEni89VycFF6ef4/7wa1TXf0hVfpvt/jFt84Tnvk/PVcVp8qEdF7tqAp3H80k/l0d/+jpTio9f/4PA6fya46CubCMygdOTPUUGXbWWMDQ4ZOPlxZEJHqcMPvRoXeC0JH+nag4xDBAdTiVwKPVxpxQ2cgAU55AfR0QHxPojRlxiWI4aN8UIwoAVIEIV4wYoRgHFHV4CAIMbx0DFsdWJOrh+fl4MIMnvlUIhLCCrhVleVedYu6Kwa4pijbUrrD3F2DXarsZNbd+8S9u+z27/Lm37gmG4wYcWGyNFOh4ZX6dig7DeprhIrUBnVrPObGk1HrtFJya6olRibeCjSYoTxZDOM4drwaRWyeNg/sig20FBK0ronnMNRu/S/FSj4jSVZ+m8BO9eSeHCNQesMC7gBNj6t7gOBfceBlankR2KPSsWmwbbdayeBbbdgv+wh8ud52zZ8fq98mOXcOZxw4cJjM0/y3ZBxkqAYigU3in0IEGKyonPpk7ARRw/PDpWSdY/gY7zjbk1FUYX2GKFG3b8afece67koa0PgOoMQsxZkYXSaK1YYOi1FBYWwY7zVpfY/m0CJ+aFqGzDFWNMvpPdyCbTafwsjDDLS5NB6qxWEpZm76AZYFvDoo7s6si+VuwXC4ZFyWn3SxTlA4rtN9H6bZpGM7gb2jiI1QCM3rroZOUV5PmUZzHiku1HjHGcU4xNoE5wON/S+4YuDuyc48b3dNGz1nLdKmVvMd4EsFEYpTHa37L5QB2yT+djbJi/NoHdc1umbfTTGJrWA+WMHZmzQKxZjOq4/Fy4sbAn7NZMJFDEgyJbPh9NKmDNqAMBJ77OaVx3CSDP+rW5NVz2Iu8iPPEdP2MKfqa+xzdvvovrXlAs3xzHLqUtyq6J1Qn9eo1baOpavOQXpf5I/TEzg0YP6sD0ETlkVH/M+13pe3Mm+RTyirYH4HSWM4fCjKB0DpM7tESAMGhwkTAI6Ge7AqPNjFEqRQGx1Gvk8wyE9GFgnikzb0ppNMmTXStCMAQcexwuDJRe46LYfgRlKBIAV83+dghi/yXzibCHtS9xbkffSwFIm5pCW5SpsM2e6rLivaeWbzzu+JUv3N6qGa34uTdLvve85733PsPq+vPsm/dxwxbvxXgoIvPK1g9c6Y5n2rLWNavesmws5TagjEeZLcXVU5SRv/PD2H0okxR22qLKErMwlGXgpHSc+ZIzZWWctOWoTgvB0SmHG7Yyt0WPD33KUFhizB7jNjPw0o5je7ZHdK6RUDm3SwSiRvzGY0hzYQ4JN/gwJNsXh0Jj7AKT1rQuhTd63457u5zlHpSQVhyRJrjRSmj0Gk6KtMzkzXugrOgYV3thAobH8PHZHDeX+Ls81qFGz20AjoszKeE9epVd14haobVYathOWJsm/c05i/rjDE3MtgJ6HD8URk8qIKUhaEVIE7zYCMbpfA6fpsPv1ERk+EHhZQfhiIkYVWix9jAqUpgw2nlozWjpMXr2zsBpZRS61OgyYoqA1oEj8cYIUodkY1mqyDoq7itLoycV4FwRBIyBxTqtK/IeWMq3XsL0Zvu6+bWQloq4YZA+0D2n3vRcbizvXrpbADXA3/yZmv/jLz3i/tNfoulesNu9zXPX8NTW3NeW9VCwu1QUT64w6++il6eUn/3y9Abasvzqr/L67oZf/e/e5/+xW/PN9n2ePv93vG6WnFZ/i2fFGX9aBhZFz1dKLVZwH1MrrGJVaU7WkSenC06LM6xdY3RFr/a4ZAW4DQOF12yjp1eSCVPbQE2g9mKxkVUGF2kv83qxxMXAE9fSd5coZSjs4pZiKt+JcDRfZJIQgPcGnwDquXIhf2+6w/f0Vo8AdS602m7A9N2oCoqLpbCnS1jUsjZcV5pFKR+fgNMfX1PqEw/q/xjaXwiAuiqAcppwhrWiN4aohe31MpC67zcMThN8i49+BKk9Dp/8FoFxUyEMxoGgLT5k4JLRhH+p7QEzcN6OOVTzf3cx4JR4AuZNbEgb2DlregRpOApMI8n6lR8rzxngzn81zphIAvrkEMQJlBpPCE3IniJzkDp9n99Dj+zoHAiiGOKhdH/0uj5C7F7GqNp6Sdntgkgp8+SemZNOQSSz1Itp05zDiPI19ROTVL7uD5nuTEzpu0DpsXJ6sDC4PWLd9bNJfjX7Op31eA2VmQBrxCU8A1Eqve7AmvcuJvIRu3t+7BmY1rPjC8FjjIDLwbcyabqthMQFJxuLeRk3eEg+jpmpK+ergEA/XGN3NwR3Nv7KfKFdSHD4j6XVaUJe1ZpVpVlXCaheRp6vIy/WkU33c5y894jy8hWqm2+yLb/HdvsOl+6abmjog8fZirOjJMeDYhHx1uJyzqCes6dfBk7nnx2D1MCd4LSAiwtssaIs1hQp9M3oKhUdpqCpOYM6BofWBu9lg6d1i9cFg9LCCkJsP4guyYAjSgn4rJNlz1yWqonUysgiPrE9RMEQCAyoENHKEjRYXSdGRz7hMPm1ZbA6+MTDDvRpdMp57Wp20caw0dQnszIgs8dN8ooUtURNXT26xbjKcnEA31/jhiuur/+QXfLq9L4l4rCpuDi/H3ocHxgDMu8Cqgk+MavlmhXocYM6B6rR8qzouZrkyHc7j4NDFI/OHA43nzcmQNPh3BZjSgGwokfr5GGa2ZbJ2kLrIoEvnsHtb7EG18Gz5bP0pxZrI4s1NCj2ZkG90diuY3kV6NyC7+ws/2bR8/lXHJ++X94pI/1hW5iDZGHmwzf7em4lBBBHJPsQiDqWMYejDcYky5xbV2nK8oQeeD5suOw23HMlr9jFaP8hiosJpB5mv28QdmChDbVOXqta7uPG9wdWQYeMeDkO7zvs4MlLMqMFlC4NLErFohBfT6PUCOT3PrNgI9sOtgu4riO72rNbaPbdZ1hUJ5wWZ5TlPW7st9juH9N3V+JNHRwxRvHUTfYcc6A6F6V8ctl23qBDARZhVdsCbSpCWOJdy+BbLmNH1++otRnB7yrZiRRav5T15mcg9FxFAYxjcAaj54GGfVZWpHWBsStsLlonRVUOp86qKoAhqamyIs6HLoGV7kDZttRWApYSQ7ZIwNS8uD9XoeVj7uMUwtgEN1oebXxzoH4zaWJ44Vu2cc1ndUXpW/a773B28jl5jqOTsaxY4asaVxWwhLKM1MUEBn3YJqC0fPQeej+B0yEXHsPHv0HLc1UIhhA9embHo5RYeqAs0ZaEosBV1RiQFwvAKnQR0Tai9MQ4BRh68L0Acw6NLyxWG1RIwYS+w/sMZjY43+B9O/m5zot3d7RpnWfRRhOjIQbNgOMqWf0so2XQgSqaEZjMILUnUibZ/kBIqokWb6pk9XGDtUu0rrF2jQaqXcXm2Rl//CTwlbf8nUDPpx5WfOXTjqfPI/bJ11jtvkPbXRDaHk8vhJNUJBOQuudCWc58waopsCagjENrR/n86cF7f1Qmdcy2DcagyxJVWsqqZ9k5zrqCs2hotKFN3v5DUnHF6Bl8Sw6Kk3vS43yLNXsB72eWiWPhO1n35XvpfDeqW2MYRhVD3h/4IGGYo+WHtlhTjZYfw7AVdWEcMGkMyH27S3u0oKCLYjW21KmIHyU8Me+rDJJzUmj5uU1gqeRHhHE+VrMJTdSHhyFpICB1DMfE2bRmmgGq6Q6Mrw1W4QuInWZu92Fdn8bsFhU+3sW5ANJpjaMZP+f9gNICRo8M6gTQ63DXihlg2svCpPz9UMfCzH9aJYKUAmvCaO+hzBykvvsYlFGo0sou0TiUUUz6X2k+An5iUmsVWShYo7ivLT2BLjpZ0/mEKaTflSDfiEnPzVjYTMXhGPN+dyJPyVZ+jNxM6wex+Sh3Ozabc97fhDu9qB+cFvy1n+v4zT/6dc5u/piuu+Ri2PAk+VGfqQW7jaV6MWBPn2NOv485fXBQsNInD1j+/N/g09v/N7/63opu63l7/32ePf+feM2uWdpf4x29pCoDi6Ljyz+x+FjtEta14WwFj081un4oPtS2RjmLx9HFKGtzep6HnjNleDUqrAlUhScECSSkK8h944kPnOiST5drQow88Q1dd4FSD7FjmO/dQHVuWQ0HoJSE8qpwqOhT0R2UG/IYoLwZ17PKB4zz2C5ZcLpeFCO2IBSKukyF6QIWhaIu1MdaBPikfdL+Y2l/YQBqVU6TYb+M9FoxoIElUWtKwCg7gtRKWcruBSiNQ4m1R/J/NoCKHud3xC6OVh/iZ1njg8MERwxps5/es1SaSpnkX6qmIKLU5huvDD50aZLOPovzyRhm8n+yX2JiA+jiwD4kIruLDGvngAkB2hgXUi6GcSLMpJv5Bksq/3ECqGEEqSc/1jACNYSZ55pSB2A1gEmA9XHLwUkhVTzzNdkHd+AV+VJwWlkB6GfsCJgmiQxOe9cm5qhc3QPPaJXd4Q5luRKKpJmDz+poNXgXMD1erryaPGBJh/Hz3AwiH0skzpjVAlZPVy2MYPTtdneA0yF7+sh/OrFPVLBoXwmwaWpBkz0jsEcCsg/kgCNjPzAMG9T+Kew/RVhPDITMoDZKAJYfZ1vV4rm1KDXrWnO28KyrwOki8se94uL0DZZP7nH65FNUV39AVd5ns/0ObfOEp76T4Bulb/fVO8BpsZz48MD0nPmnlTr49/xvbgZOZ4adMQuK8oSyOKGwq9GuYh4oBRywX7KvuDZVYgDu0a7BawEpB7dHKY3zGaxuUTGmwFXpX/I5jH05M0R1VNi0KcvsSgkwHAR4BaIuxz5zvJDLvv3CYHPkoL8pIG4qnuVrBYiNyMwLVpiP1ciANGaBtQuq6hHGrsST2UyskeB2uOGKvr+kbZ+wufkuzu2JsQcCNuZSy+G9mwpHMA55dwDVKI1OgLZG2PRFYkqPTKqjIh7kMfZ4bkjM6TBjUI/P1/zYPCE6nG/Qww0A1iyJxt2yfVHKYM1iTIaPMTC4JvmVT5usNXDx2hdYnnIAUje6TiB1T73ZYruKP1xVvLgJvH/d8tb9gfNi4ONovROAyQcYPOxbGJwEA/a9JJoHpwiDQg0i51f+CFDSNo1dhz6zeQzUKhCVQSk/PZPps0fGdFus0KbEu5Zn7oar7pr7ruSVYsm5qagT2JpVR2OY6QxMzbZB+cYttE3zvB/nTZXHhhjxvsP7PdXgIEzPbwapF4UA1ItS/D0Lowgji3oOUkfWdeR6Cdd14Glf4qpXWVY1y6tzbHFGWZ6lINBnDH7PNnpWwbHQdrT40cGPICUxoHKxzrdENRCjw5h6DBQr7ILCLvDB4V1DM1yzjwMb5yhRVEpTaDOyDrNMGwRwn1+7Y//pPOZmBdU8ODaiUsaCxSS7L1usZhkU5ThPxxhwvh2BrL67lHVCHNAxpvSSdKzGUKd1XGaCF2qycCiUFvsylWzMULefB3JInXxug3iYPxn27MLAPrikYhFGeRc81zHwptZ8tjrhnZtvcfbG306FFym2hXKBLytcpYVsbD86OA0SQjp4eWaaXpj4vZf+Nj57JlvJfKS3/sA2Z5rdshhIHsaj17Q2eGsEnK4kOFTbiLESHpqBpQzoSUvFozQkqeAhOILb4t0W5/b0wzXet2Ldkiywsm2LHNzk7TqX1x8QFdBp+agIQbOnxQUhViyiYUhFmSoVtAqlWeuCvXajf6zDCUDuSpzSGF3S96Ww68ozFGB3hupyybvvW/7gnZZf+vzd/tA//5kFb1/s+L33X+f86uckMHHY4p2Ukn2UfcZODVz5Tux4lGExFBRNHIHRxeX14f3yDnPvFVTxIfxkw+0HRWlNUUXKInBiHetQsE7+vK1xMxY1kmDh48iqDmHAmA6XLep0OVrw5AKrgNidzG++xydger5WNbrEmIoQJbsh+07rpAQB8MHJ9fINMQ7YKEF22UvfKk0RPPvoxbceUmCiosQIi3VkO4cxRDHvg2x6H0VMe5NeLPO8T6qZtC44YFHPKQ2ROLP4yAD1cTA5TIVcbeWWBK0Z9KH3s2nXaN8RVPux+lDnYxlB6hkLMZ9XPPpzyoeXBJ+qg69GW48Z8emuZpSojPLrShDwV4nvtMnjhuEWe1oY03ccidYoo8Un27iEIfixkJCLCd6bkUVtlKyregyNsrS6HJXA7VFook7s/KBI899kDZb3F0EJeqCiANVRaUjvE5JPvvc7qt2G4foez28iT67v9qL+5c8t+K2vRarv/iW2u+9z43a8cC0vfMuFLrnZFyy3jvL5HrN+jD65j16dHfjT21feYvWXf51f+2//O7bxFdz2fd67+Q7G/A+8Vpzhi1/ke2XBovAsypYvvrm48379MG1Za86WsDgL+NV9sfIzlZBlEB1Ti4z97w97Vspy31fcD4p6EcR7fCfPBG0JFFyEgUDkRJd8qlrjusgzv6PrDLp+IM/HHSA1zOe1iVGdWe3HTUc3quI1MkdFrTGDmRVuJEBUD8KcxnegDcFoYqUoS8mOyevBj6qg+qR9mKY+1qLKJ+2Ha3+mAPW//tf/mn/yT/4Jv/Vbv8V7773HP/tn/4y/83f+zkd+n0UpQcV9mnSck0mo04pBG4JOdh/ajExqpQx19WACIgeNd3sGHEXMIHVk8Du6fkNVIn7UuqSwi8TAckTvcQzoBCgICUmNjKE58HXg6xwmqU+uvOd2TJyVDZkSLzUt0v8MQMZUMg+hH1m5KkmIw/heydMxJnCcMALW2Xc6gyYaJeB0YlJlNhVpM5U3jnMAXeS6E5MQ5qC3v3MxkeW82dvXJ8/ZuX/nMLKrJxBpBKd1/ihGlnBmbI5MCd/jQ3fEjHkJYxqVvCgP/SKnsITJJuPDBCWNoXXp5yodn4IDts4EWB+yu29RSl/W5hYkau55adJxzq9NZp6In3TwLT6FE4XE0sphKvI7EvIgILWfXQ/x4x2GHa57gW3CgUee1gmcth+Ph+XFzUC9ii+dMIxWnCf/rVWlWZSes4Wn6UOy/KhoT3+KkyePuPf0Ver6IdebP2G3e8zFcMHStZyakird01xwcSEceCH3ifEzlRcmdsex1cdxG8MVj353KjzdBqfL4myyrCjOZnLomTRzVkwAMH5NCC3G7SiKjmHYYFyD1iVOFyhnRZzsBpzygsBG8VLLVh8yHsh4kcG4IYYETvvR8mOyAAh4b9BRmM25rxwHOcp1COOzKD+/zVrLz2xmLswZkFpXWLtIn5fyuTgfr8nIlnNb+v6SrntO270QtcywIeJRxGTFNPW6qKYul7eGipmSJQHRCmFFC+EmHNh+ZJuPPA6aPB7Oinjj86Vun/dtcPrwmVIJHM9s6Pm11aHD6Bk4P+uvuYCX5wrvO/r8usQwrB9/hp2vWJwFrIUqFXlbXVJuFEU3YLsO9/2Cd24sl1eBxw89D8qWj6PtO7nwPghQ1rbgnKLvEzDtIA4SGqOHiO2c+GvmRXwCo5ixMj9My9dEmP6BqJ0AG7Yegeon7obr9poHtuKRXXBmKhZHm+p5wXWe3ZD7/ci0n2+8I0QVk+dpj+k7CMsRcMvgY5k2I4tSUxdSjMvNh0jTBwYf2baBdZU/oO8DN6Vms7jHYrFg8XyFsSuMWWLt99jv36fvr7jxgugttEWTWJ+JSavz3E+SHsdA9CExAHusqYmmwmg7AtXalKOPaxt6mugg9Nh4t0XG4f2Yin5zdcmgSHP2FFqoj5jSxtQpqNqMctuQ2JXiO9uKH38Y0NFRIONbOQPPq+Q9nNnSS2MpkH/PnuTZW7REwqDF6zQp9Gan0+ePGGl0pImBB6ZiFxxXoePaiR1KVlpsY6BUip+p7vFH23fkeqSCW7QlvqoYqoJoFcbGEaDObOgP29o+sG0DTR9pBrGJ6fpDex0QZmD/8dnUynnEMKl+UhjYQdOGUBT4worndAKnTSnAdJm8eg/DQwXQC0HGihjADE5k0W6LdzvcsKHvr+iHG9ywG8HMEN34fIOMryOJQY1GVCl0egKs5d+leBpDIQBr9Aw+ESq0rBnmnrknicEf/JCe857B7dL7FOO6regfyP5DWxZX11w9e8gfvhf4ylvhThl3XWp+4ScKHr8Y6J58ldPdd+j6K5pUiI5RyDH74LC+Z6Utz5RlrSrq3lLshFW6vOyBCaSO3gkTMQFUH3hf+w787F5qgzI6efwGahtYD7COml4ZWl0ymEkl1HjPoIQ4IXurAe/aUSU0X3/Pw+KyP3gGpmMmoqgCoyt0UscdgNOmHPNqBicWgCHZeszB6VyQskpTG0ORWOh5X9IFjzU6KUfFFjGP/0YlFrXy41iiQ/ZhlyKfdgPKHyqD5j7UU+C4Gp/P8fLqOUA9/ZsAptIfUv4kXiuc1kCJ9kvMbo12W3Sox+vz42zZ0/7YGgOEPR1DnEIT56QgplyeefDkXS0z1w/+bv5QjPYeOgHV08fL2dO3jrUshOVqNCU9snp3cr2jovVmXERqJbZQaxRnytDogjZ6Ou25CcO0X1AyD+pcAlNK7CvTejIr60LM1p6yq5e1g4YoqoMQepzbQ39NsQ1cbeD9jefVO1jUq9rwK19U/IvP/wonV79L0zxnM1zxfGh5Zmpu+pKTnaW+GSgvrzEv3rsVmghQvPUlvvjz/0/2//OabXhEv3vCi+s/xpqaV0zNTfFVvmk1pXV88c0PdYk/VDNacVYr1uvIbr2W4GC7EtJeTGNEGGjoeTLsqbVhrQz32pKTYWB5GimXA+UmwCXQlryvC66jQxN5YGqoILQbnrsNbaup63sYk5WrH1zUyTZFOnSEYHBu/m9CbBRdKCjfYYFgp3sk1jd+AqeDg1SwVYXMf6XJ1m+K0n7iRfFJ+4vZ/kwB6t1ux1e/+lX+/t//+/zdv/t3f+j3KQ7YJLLBzZNPAzitRbJsNKXWyQ7CUvWXwFQZ65FQvZ6BIm2mVIz03RXEQFUJSG3MghJmG34JEWujT2xDnSTf0jJbzijQMzBybheQm2JiEIaYwgCVRidP2hwGmEHZzAwY/Y1iHMGWoAIJZ0oAsx5tS8YNqJT/R39LYLao9lPIYVRjEnEG7TSKITEuXZw24XKuomHNC4pjCezcQmHOKM9+nZP1hxzqged2AqOUnjNIZYGTJZsjOB0G5rz07Ok1sqVVWvYoncC1Q89mPft+slaYPh/7FY4BCcyYo0fgHLN/E9J0tmmQIsD482PQ+q42Y/hMDNa7J6zJF1hAPADlMxvXo7SDaInKjkCP+PV1KSDKT9ctevEf7Z5QbVu6cFghz33xh8jaudV++7stV0PzA4Mgsu1HBqqbvudsGXmyjFws4eb8Hvb8lzl5903K6hUW9R9zffNtnmy/Rxs8Z6YUkGbudZdUCCLPn3xk54D0h4cGDtnWkQmcVqqY2XpM4HRRnCbbipU886aewGl9G6RWvkUHeX3wHcYs8X6PHRYMQz2ClSGKF+OgHMQESAcP2qBjmBWYsgxRURhNF5LEPTFBVBTLDx86skQXE5LFxlTk0Wlzbu/oM/M271s2natJoLdYn1RJ8lslVnWN0kbsQ8JuDEzquucSHtNd4txeNqBMK8W7ModyHWjUWMQJqJb+mH2Dc1FRYZk8qCGKxRPZk3raUOUiXv56XsgDDgp1B8z92XOWx4QYPN41uHHDLhYfwfQHMuh8HcUWxYqUHRlvfAwjSA3w4L3vAp+hoaI6EZC6rCM9is4UhK2haDTVtsF2lnZb8d2N5nH58bAMrnegegGlnYO+nYHSQ0S5iB0k/dw4jxlkg6/7Rhbxvp2pPQ5B6vnzlsfdOYt8bkUTvJvmA22xxRJjSga35x2/48r3vGoXPChqznU1znMeJcWmNK+9rMhw/H1Mcv/BbSXUrTvHOQELIatQhCmTwenjMLyTEGn7wKoKrLsJpG76wKIOXJaKfbXAVZ9i9WzBiV1j7RJrarb7x9zsHxO8PGsrU6BRMg5GRSsHLUXwPF+nohQJGNK+J5gy+bkWVKWAWROzKwe29nSzYOlIgJlS6KgcMxaKFQZrEiNaW0zyDTcp8DDPzTHNSZPcX4LQwhhu6NBRRL0LZUZ2pGYa417WppyO9D1ZPi4svbWKFFr8RwUMkdf5KOBFEzRtsDwLhkaXbGPFhRm4CQO7MFAqTY/41X/WVNShg2EHxZKYQFuR+BpioRIbMP2NO+xvXtYGF9m2nm0X2HaRphdwOrOnQ5D1dH6/4eMRSACQ/b7ltmeroVlfVTYxqIVN5q0eA+TKktFzu7gDoO76bCMAhIh2Aww7gtvihmu6/oquv6DvrsciRSTJrSMjqw1SEZC0tlYACuWnZ/EArFYSshmDwTPI+jUMEpAaA7W2AlCiDzypdXA0MRB8i0vPeh6rq+EKSM+YNiyfrfn+44rfe7t5KYv686/XfPUzjn/5/Izzi7/Mfv8uQ3/DMAyQCmcDolC8cB2VSixqLIveUjSB1ZUn+p7Ky74oeg/BY/qWOHToenXAohzv69Cmj04+5lYfGmwRqQrPqgssomadWKW9Lhm0HFsTvKwpCXh6lPdENRDikNbrhwvJrMKKIWkq4rzcrETdkdYNGZyOMaBSIU3rQhRF/Q3e7wmxH+2+bGLq5pygShsqZVjEgEWxSSHQQyIt5MJ0VoMWKo5gaqE1Nq+ZgCE6sR10DWrYY1zAe5sY09Ly2nkSCMUjAsgHMajjyOzVGpzOzG6xvlGhoiyWaH+O9t2t6/pxt3ngqhzsbIwN2eZkrvDMCgZ1MCFkpnH+mDdPOFCkjfYeyX86M5rn4DQIe1qZDFIfhiOOx+Pzaw0YgzJmBCpLekLw+EFsI/aDoQmz41BStFyjOdOWJha0xqFdsm6Jk2WcVRNLfPw+ColMAS6KHZ5PBJJIQEUFKisTJcci9FdU25btdsGzm8jzG8e9tb3FsP3qWwv+zc/t4Ztf5Wb7XW7cDZe+48r3bPyCs8YKi/q6x16+wJ0+xdx7BX3y4OB9Tn/lL/Nzu3/L7vfu0caHfH33lIvLP6AoTrhnaq7sl/hmCU8/fzeb+4dt61qxXkZenFacFWcSJm9qQnBobZMN3p4r32H7HZWynKkTzm8qVqee5f1IUTl5Hi4ij7ZSCL7GQYQHpsZXEd9ec+muoSWB1PWHAqiBxKLeYy0jSB2jFxIEMgdoI/sX4476YXTgupF4BBWhMKNyKmeSlFZ9wp7+MTTxoP7kuv5Ztz9TgPo3fuM3+I3f+I0f+X0WFmwxMUB6nydEmVxaHRnQtFREramQKbHqXozvkQedodcSuEEPUQAHF1q6Xja280AuIG20IsE3owR+7utstEwiBj0xrGI88FwEmZxi4u5l8NYRBZw2C2wCr7J8FRIwkWRnxpR4P0keBaRWozSIKJN/BkRy4GGe1zOwXCQvylIl6SoBoxVtkv1KUOGhJ69Lx0+cgGjiBL7oo8VGBl2OpbzZV3KSyR6C08wW8WoGfs1ZmTFI0naIQ1q8Jj7kUYhgXvRmIAKlR+B/DkhP8vD53/xg9nReZE2BhMlrbWR45A1aOu7EhM/s6vweL/eyPmzzazFu6mcgdd4Mqqjxvj/63QRQa4uKFqU8WSIfo8O7bWK1TIDPGPnie/r+ktPdln2/hPrwmTb6g8nfH7b93rcV7zee1+95Xjsd+NIb9S2QZt5WtaG0msHH5E0tlh/PloHrtebF6U9w8vgB9568SlU95N3+hufDBa3znJuSlS5G7/Sp6DL5UstW6MPD0sevzOC0cCEEnNZGgryy53QGp21xJtYVdi1e4aYWKbSpDiTRkCrvrkf7DlyHdluMXeHdbgR15aMUGxAUPnQMDGMBSyU2dT733EZfai0FOKs0OihMUjw0cSD4QFTCeTQxEJNP9FjsSTLdu/rRFCBiRr9JrSt5vbbMQ5KOWf6+3+K9ANPCktvQD1uG/mYEIw7tdPIzfNfDOTn4zwHrOVidgWqiPN8mMZvTlTpgVGfrjzmjOo+VRinm/MEManpy4fIQnJ6KVuK/mQsAAlAPhFBM1+gOkDorbsaPYTeOm93VHyCJDZ+hCRUhgdS2lKslSqSKxSZgBsdiE/CNZf8xkTdubhTKapEldwrdBLQngdGykc2gtPJ+DI5h2E3gdEh++WEK6AwjCD19Ld+HI/a0I4d0RQClCaEfCyS2WGNMTeN2fGfYcek7vrS4R42dJMdR5N6SZzHN49k7ebQFOpj7s6f4DtVtKPav4l3B4CJzB5Mig9R3FOeMFg/CVW04dZFdK+GxvRu4qCNVGbmqPZvKcF09Yl1VLO1aCl9myfN+w43fyrxJZKULAWUwk1liAJeUQLn4PQYMRjcWMY0pKctTseGxq3GBOd6PBFpny5l5cXY+j+U5LCukjKkPxo+5ekBA8I34yPY3SUafrRtEMZFDDufy8BjF0kjWa+FOgDpEsTvzMVKM4PRsfQdjCFcGp2sbsCakMK7pXneDYbWv2AVNEzX3leVal1zEYfQz9yhe05HPVCeE/gq1fEQoCqLWBKMJWgmxYM50/ggM6s3esWkEnN52olxo+0OAOz93IUC3/1Bv+6FbjF7qHblQHjpimPVLLVJ6X4i9hykZmdNVCctawkNLO4F4vZtZCASwXcA0O6LbMnQv6LrndP0FXX8ttn1xwETZ/GSF0DGbP8YogdxpHe5TcBl4otdpjFWJ4KBSFoAihIEusaldkMJ2ncITbWLjLnNhOTgBtH0Dw/RMu2Ezzm9WWarNCVfvv8Lvvxv42U/d7UUNIt1/93LPt977ImfbL9P1l+Kt7nbCxoyRIVl9XPiWhTYslGbhLLqJLDep8IQj+guKvif2HbFv0UOHSTJ/vTqdrlMvDL/Q7Ih9m1jXwryO3icAMGJNoDaehdf0KNbK0GvLYEo8kV0YIJCs/SSMOUSfmLXqFuliCoUP43wtTfx6c+Eq7wnuBKfdfnweMnPaJmuzfK/mSgrS84KDTRhG6xSbgAwbAxWGIco+0KRcipGJjWKIfiR9MOwwg4dgD1QzReYfzPrkHMCe9/1jVvLkYR0TC1tWDXLYiiEY/GKF9R16WGHs8s5n6f+fTfmACpOyQsK7Ia/PFFMB8WUZBrkdBCSSQGJ1yJjWBkwxWQQpo8jxBBmcVubuv6NK2XtnkLryHX4IhODZNDJe9LNNjyGyQLFGs07+6zYRxQIIA5oI6AmkTudYpuKp/EzUBkICIVlwir4vr+Gca/Buh232bHcrrnaeZzeee6uB1+8fMuVPloav/SR8/c2/xPLFv2PfPOVmuOHCtWzLM/aDoW0Mi/2A29xgLp/iz5/eAqjrL/0Vzncbfn7/R2z/5B77xcDv7l/w7Pm/p7AnnNuKi+JzfOOnOkorStePoy0KzekiEE8Vun4ogeDaprVCJYUJbdl3T7nwHUV/w0pbzpolpxc99bqnumcxtUfrltf2FSRP9i0S3PyaXRKqSOg2bNyGrtMsl5Pd0V1EtUMVtRRjndujdSKuaUc0sjYxSaFsYGZPl1p0k21Smi+CVmgroaN5/tOfAKk/lqb4JCTxP4b258qDuus6um7yl9xsNoAwjKxV+BDHRatRedEqE1GrA70RyXLQZyLZal9Ng5pBJbBaKc3Qa5zbM9ARY6RG0YeBvr8ixkBdcwhSI+BC5xvu8mIrtJ55lN3eSGgSWKUUxGlR7ABtFhTFCWWS+uegMJAK3bQBF4ApJOBCFmZDQggDTgVMTOE9RELeeYbZAWSwGiVM8wRU91FTKIMOg/hTpuYSoCJvM9PHI4DWeCXu2DvdFTaXwyGyrNcnXDuD0zkUUieLj3zeo7QvhsT0dWnTM1Xjj1nT43vM5JXzMIQ5MysDPgD6Tr+0dE7hcJLSI2M5HAAl8iGLj3lg10GK/BFgPd7j2eeXeWTfHdzoidGkTaH4sOYQB0DCG2as9Jg2+N7vcSlQapp8MzAmfUI3V4TmFcLUHUYWyEcBqF/Wv3fvwPf2hqdngbfPA03f8OjEcG9lOF2aOzdshVU8OLEURrEoPYtCWIXPlpEXdeT6ZE17+jVO3nudh91zrm++zX7/Hr1rOTeBE12MG5SgUrEoqRFyH/4ozOn56yOMIVk6gdPWLimLNWVxSlmej+C0sSsBp+sHRFONUu9gRQYdUlL7eN2HiV1qug7d3aCHHaYXVrUECZZ438i9HrYEr1JBbnrWNEqCf9RhkKpRk32FSQxiEz0+uBR/GIhennGTnmljwhhQJkzwqU/l/jSBqPL8aWXQphpfNy+kAAfe6F33jGG4GYFp7yQ4KSYQLI8DOXBxKlbddY9i8gdOIHX+T01AtWwn0qtT/SuQi3TyVYARqLZpwzW3Rsqqk+M2Fu1mVge5jZB6kkCLvEZCpaypCLpgXlAbz2kGVEckICpLo3FiQ7DdfhuApTbAp2lCSTwBY8X7lQV4reldhe0GtA/YrmfhPprFx8v6eL/RWEAPkdJ5yn1KLw9hBKSFceUn2WN0hGFLDK3kQYQ2sYmy6qMjzsbg0eIoj2UxTBLx9P04xmWgGic+xclOoihO8Lri0m35XnfDI7vgxJSz+6opVaQnjB1+Huw3byNjMzr6YUvoryibjpumFBb50VLC6B/MlinsZHfUuziOfXUB1gY2pWJTnbGsKhaFBIq23TN2u/do3CaB1NIqbVgqO7IBOy/emJl1KuNYshibAdUxhjHENNvzjHOqXaVznoq4x02PG7/5/GbG+ygA925kSo/+swn8yfqGzIyds2MDceqLyaonAwSC5YR0DKnAQEy9+XCOOQjhIoPUh+B0WQZsMYEjaxxV4Wk6y7a3nHnDdbCcRcN19JQJID2xji9W5/xu85jF6k3iYinjvTVSAzHxCKCG3gmL/mXqIoCbvWfTeK6bwHUT2TQCTjs3AdRikSffO6dodx9t8/uy/i1gofwsB9xN9/T2mjkmIF6sTCKLWsDpuhBLv5xt4fN6MwNzg8J2A6rbMHQvJH+gu6DtLhj6DSoMlDB6yecAzKwYymxYgGaWh5IDOT0Br3KRT6NUnBEehDEco2ZgkPCyKMGoTgdWuhizHTJIrYKjiV4sqfI17K/SdXLCrtvVrJ8t+d47K/79qw1//adnC61ZW9WGX/lcwfsvBnj2y5zsv08/bHFuJ2tNYGCy+qi1eK0vqCid5ayxyKQS8IMj+hsK74lDj2l3xNMHqHqF6VtUAmyzDUjsW0K7I7Y7Qj+xqEGYqtZGChNZqEiDYoFmgWbQliF6Vml9oIMcox7Vk17WSjPAMj0h0/vPfiKZFcXBOhY4CFXOFlnDsOUuWw+rFGV6Pio9s/zBUFhRxzLATRiSz/xkmRhixKspLNEk5nwV5P0aROUxuB1h2FI0De1QEoO6BUIfe0sft7ssM/LPp2BhuSqZSe1Q9KuVeFG7Dt2+uPtNXtJe1r/nTQpm6euXLJKzjcH0/UTkufOcZoXFuWXkGEQ9a/OxOftPG5X9pw+tPTI4rY0aQek5OK2MIgZZ0+oETitjoCxlRvCBaujxQ6CyXhjO3owxihOLWnGGpdGBShnaBIKORKwouU4wgfHZvxzk3wIq9YORQiGK6aQIC0Gs7Yp2h9494GYLz7aR+zeOdW1ukXq++FrJ//eLmvW3f5LN9jvs3YYr33EdAztvaDtDv/fU2x6/2+KunqJPH2DOX5muT71i8XN/jQebK35x94zrd+6xC44/aq94+uLrGLviXrHkj957lUXZ8ZW39AfOUR+2LUrFuoJ6HYnViYSkmwofHIVdCgnHLhmGG7ahQbmGqjcslGF9uWK58lT3oHq45F7Z8tqzHpoSn0HqKNakbxQrPJHvdBu2wzXenx2wqI/JasdgdQBU1ITQ4RxEI6RCY/JrUl6MrtPnmSo8OCHjIOB1KBR2ppz6BED9pP1Fb3+uAOp//I//Mf/oH/2jWz/XOi1YjaL3sDhikxg9yaIGreh1QTSnnOzepJgNCHMTfKU0zgnDkBiplaaLjmHIILWnKE4PQOoudHQxCKNgxoCrmIKVsjfleOyzRVecBexka4+yOKEq5e9Yux7ZhcJGEs+2MTwkWJzS6OzNpswUGhI9Xolv7MjiVpGgU7VdZfmusKbKqEcWaa1MquYqSuUogmafFn599LdsStLJ3HkPjwHt7DmZgZkcGpcBvJE5jZkBW4fs4IMAtjF8Z3IInssys3/1FK6ok7ft5HOb/44Z/XTzMzGBZ9P5zAIvtBuPCRhtMWAOVh8GvWSwWh1YgWQAOBy8X47ovtPC44BFfTeInlnUeYMoQGWy+lACWhMm9nT2q5YwqWkBmZlGEU8/bAjtc8z+p8ZFcW5GQfwIk+jL+vfyqkUNFf2m4PGloes9904dD08cr51q7q8MpwsBq+eLn1VtRhlUaX0KGgssish6GbhYSojig/1/Sl2/xtX1H3Jz8z2euiua4DhLvtSF0rgMqMz4Oj8MQB1HMYEwfTI4Lf6ta1loJc9pY1eY4hyKNX5xhq9qfGFxVYG3WgKkCo5kkwblS7FE6AK2O6VoGkxzn7K9wHTP0brCJV9qpQxusKkg1x6C1NmuiGkTkDfxJrOplcYGl5gjyZeaxKYOHh166Zsjm1qAqrk8e+pndgKnDljSs8JPYvMHLynZzjW03bMRmB4l/aPsNyHIIwtLFBQvayqOJi53gNVhBKqnmy+AV1KCJ1ZMSMVGQKkpXHb2e3n800ebraxKOWboayV2UzoiAEkYhMWa2OohDGhdJPsqc2scmCs55DByQU8A5rZ7JnOLtiwBFd6k8bUwVDJIDQwrg7ca2zmM83AbW/rA9rI+Xl70LKIaw2F038oGNgoAQnCQixIzr+ng8/PQjmBXHrekGNcnRc0UnpstoAScHsZiprDyjmcyT/RulJsbXYnvsT7nnf45Oz/wSrHkzJbU4/ygxnC0+X28y84r65mc2+OHa4rdDapZ07aK3kf62Q7/ZYDEXa0uNa/fK6gLxaLwlDZQWmFTX1rYWbH8WNuS8/Yx1iy42b5N319x6XtCjJxRCriS+ksThGXuZuehYx7TJqB6GDzKFzhVSE5EClOcz7O5n+fC1V0tF3aPg49H79kESs+9Z4UxLccFCUQ/uuZSKJLhIRAT+z0VlhSjxQ6IL7zRip5AEXXKDIipSDn13VIHCiNM0arwWBspq5A8eCOmEECkXA70e8dqZ9k1llVvWTvDOlp6BFCpbeDzpubf7N9lMfwM8FACkowmanVggzyC00Og7KWA8TJG1eXOcbHzXOwC140EkfbJVmfeXAonDU7R33y0XfDL+rfSBoKe1jihI8ZS7qVvD4gdmSkeTZIzl1CVAk6va1gUE2usdxFvJ0BOdZFyuyV0zxn6zJ6+Yug3eL9nlcDhWhkW2lJpk0Iw9YFNgEdCgbvg6aIfw826pBgaEumDGCCUMAOpURodNCFbfkQJVMuAU5HUiXVaawuTOuDclj4G2mJNjJ4ayLkT5fWK/Xsr/uDdyJfeGHhwene/+fzrNb/wece/eP4K965/kbZ9xvPm8ajo8TOrj0vXUSvLQmlMKLnfp+Jv8PgBog/4fks5OGLfE5o9Zn1K7FtUOQtO9E7GyHYnIHXfyeuHw8mh0EGUBl4Jq1RZehVZ6oKFFi8ZCZAVBUoORQ1xmoFf1kRlqUWNlrIYMjgtzOklWheEMAhoP2zxvqWMwlSdPszIoM7s6UJramUplWaBoUjFqjBEdinsdJ4vIHur6WdltgnRBuM9wfdC+nC7RCKIkrMQhGRVMAOfZp7Ux5nAxwDVwZpKz61/8lgl169fFJhhie5PMcUpH6W9rH+P9yFA3n7fCU4f7c21D6IAPCL3iP806euZgu+lYfHSbqlb0sv1Hf7TppjAaZ32DS9jTuemks2HMkbKlqsFRe+peyk+DkEUvQdWH0TKVJRZp3FnFwZ8hGGmyAyz+SQz+InytahOhCgRxnXgtC7NiqQQOuivqbYD+33B5S7ybBtY18MtgPr1eyWfeavn8vxnqS6+Tts8YecHtjGw85ZuMAydwrWBYrsl7K4Ju+sDgBrAnL/C8qt/ndev/zm/stuzvXxAFzx/0jzmxcVv8UhXvPPOf8GyCiyKli//xI/O2he7M8VyGelXJ8kKsQZaUZtbGUP7ekvXXXDjd3y/32KVZqHusXpvTb3ecPY5qN54wBtvPIfH4JuJSd3EwEIZ3ixWhBj5bn9D399QlkJQPFSAHn59l6I677vnbdpTd9zKF0KmF2WQIFEt82HOePqk/RibyuqTT9qfZftzBVD/w3/4D/kH/+AfjN9vNhs+/elPJwAqTUyaUe6YWZzTRB5pNXQoemPotw9Surzl2Isrezw7r+ncjjJCpTQ6Bjp3TWxl0KnKexR2TYyBYRBJeRfDgWwxEHEq+5CpO1nUIL5UQwyT77SuqKt7lMVpYj4uD5KstRY2bGbu+tCPizAfkn+wsgchIo6ekDZmMqHJsTklLBGvZfNVKEONOUhO1lpRRi3BH1qz945NjPQjsHobWBmvfDwMl5O7Ib8zTdA5CAIygJfBaZ0Aq7mNxYFEewZOxzhBgKOlxx2s6Ww/IMC0BNQpZW4BZjmkBTicPFIir3ztgWpcFB/KyT0hTGyhGD1GaWI0I3Aik5qck8kFiLsu5CjrP/zXl/tOZ7Z1Do6Sn2tdjZNlTOzpY+A9AzzyXPcjCxGliYi1QT9scf0Lql3H4GRjMF9MfxT50cv6twrC1jSDI+w0F0PN5RreW0fePg3cPwk8Ohm4v5rA6uxFXVg1AtWF8ZJ6XAQWZaAqI3XtedF8mbN3XuOV+hUW9R9wtflTtvvH9K7lzJQstaXUhiI4fGJYjbDlhzy9ea8YY1GUxZqawi4ElLZrrFli7ekBOB2rE/r1GlcVuEoTrZLwqCRTVDqOye4xqFTHUPSDZegMXVdhuzVlc06xe0S9f0YIHaaT57xLfco5xRDaBAzF0Yt2zvzNTStFpczorexiwCTWdB9DYlN7orfkQLWQnreg+7HPidzWj/0u5n6WpLm5hTgHH3u83+PDgHM7uu5qDL0Si4Ys/4UcgAqTlc90D47vUV4N+oS6RVATcKnQI6M6qGR1gGwRTNr8i3IkYmMax2afMytzfi3nxcoMTr+sGcQGSpj8cp7KS2iiDgVRO4LSB6FSeR7zSeY8tw7K5+V9Sz9sUerZ+LfEUf5NmlAT1orx0i3BG0U0ljAYQvhoS4iX9fHF9YZSlVMwTAKtjgHpGCbf2syWHsf94A6ek1zEzeNYBjhHxu0YrJU1O3neuF18ilGJL2oYyEHF1p5y5Xbs+xsehZr7tmaVPOyNrHDxIY7hWTn0KBcbMpDqVRDQYrim6G6oNw/o7pfsWwmx63083td/qLaqZRxclC4xqT2LMlDYyIX13BSGa/sa59svy9pCF9zsvk/XPucy9PgYOLMVS21ZpA/yc3QEF+VrJkC1hEcH1aO8kY+XqJbuAqgP7K/iZNs1n98PC1B5PTGtK142Ls9VEHOrHkb2dJaTMa7Vsq/sEANGSTCimD0ctszSy+B0UUWKKoqcvFQoraiMolwKUF1vPYudo2pK6t7SBkWd7BA+bQK7/fc5a56ghzeIi8XIKs7Np3m295HexQMW9Xze9SGybwMX2wmc3u4FnO77wwsVgvi/+06hmojdfLSUxJfO4RhIxf4QenzyLte6w6b+rIBoZiCKVVgbRs/pRSng9KIQEN4ndmgziJ2B6xW2CZjmmi5Ze7TdC7ruUnIYYuDUVJyYkrUpWOmCWpkx/NKow0yAJjGnm+DZx4G9d2zDQBscTQKqewKBIaHjZppvUtBoRI2WHyYqSqaQca0UJRq0RQdPEz2939H117eua2lq1s9Peeede/z2Ky3/qy+/vLDzn3xxxbuXW779/s9zuv02F5e/j4/9+Ohka4ob+rEAX6K56u3odRyCwrnAYvCEoaVsBsxqR9htsd6hjEUVCQj2UkAMfUfsO0LbEJqG2Duin54vreMsuE5RRsVCSWhipc1UtI1KWMkhefWmYw5HY07u+TJyKxlfTCljTF733gFOD8MNwTfoGFglwLBMRYo5OG3GQqMZ2dUGyeIwqfAcXEMXvChkEqheKZPGiol5bdUUrNrEIYW2brHdDba7RzeUOBcPCB6ZRT1XNxz/O0z722PGtU4AdVYS51G6WSq6UKPdCezPXvoc3dVe1r9zy3ZDx2D63Cd/ZE/PbQODH8kyx02RcpF+ADidW/aezv7TOgcXHnhPy0cGp8WD+u49lLrlo2KSv3oCqfuBohfS2uA1g5e/j4qEnMkELJRijWFpLKU39CrlOI0AJuS5RyNMiGyPaVEEJeC3TyvRvIrLe2AhZ3RE32K7nmZXsdl6LlaRs4Xns0fnVVjF5x4p/vXrn2Hx+BE327fZDxu20dNgaZ3GDQrXRsLgCM1+BKmPQ1OLN3+K5dd+mZ/Y/Pf8yr/zXMf77MLAu5tvY8yC+9/623y3Xsg6pGz5/Os1P0qTfZxiUUdu1gvq4gytS1kL64KiOMGYihA6lNK0Ldz4Hd/rbigSSL387oovLHesf/qUe1+ogAYeAwmkvsClwFPLp8s1gcg3kroFDkHq+d4ZAGVuqcMyW3q+7zbaTcS7A5tNJrBa2WTrePe1kKLWJ2DqJ+0vXvtzBVBXVUVVVbd+brTYfPgo8odFUAJM36WhzlVkrWhPl0QtEr/MpBZm7awaNmg639FFR5Wq7TpGGrehaSaQuixO6exVkkcKSC2gaRzDUiplRnlSlo+KNyXJp1KY0yGB09auqMr7FMneIzMDYMbIDZWwvAEdOmKs8WHAhJ5gKtmQp5AQH3qil4rrgB+9sDOb2qnsBS3BLl4Haix1SrE3StgANYY2SdYye6APHpequxkgnq9RMiifAZiJozhfZE5MCMiBfym5Qh0FAM7sLkJw3F6+ZkaxOtgcZ+b0MWtarvfilu+tvMdhVXP2RKZjmJjTc4Bt/m/GZNb7oaxVA/HAL1aPAJJOC5L5z8bncgZUvwyczscEEEI/TuB58XhoW9ILe372e973Ik3y7WjxMT8ODbhhz9BfUG+3tH19IFP8qO1l/dtVBUZpAardwOpZYNgUtJVltzY8XUXePQ2crgMPTgKP1o77K82rZwWLUkvFWSvWB4xqBKguoH0LLlevsnzvlPP3XqOqHo1s6mfuitPgOTHiyyoMkeSjObKhP0zLthKZzWsTu1Bkp4VdYe1CgGm7Rtv1CE67xZJhUQo4XSl0FbFl8gi2k41RunNjSI5zkaFXBKfomoJhaSkWFdVuyTI4bPMuxkhYWqtfyHM0gAut9OHgWAaL1rIgnksrJ7mlYQhKwtWCQgdhP01ekg4fPCoVyYCXMiq91wd97VAu51Lhrb8FNoqdRxZL5st9ZOuDSozxSWkwb3P7nGwIgorCYCCMielqhLaCBFzGvO2LCfwS8CF7Uwur+jYcfrzZyuOizozr+WuR8TE/PRpweJF3EiEE8UiNCQgMUyHPz9UmM5A6qzFijMTY44bd7NLJPVgA2r/OPizwK40uxMsyWiXPv1ajJPLDtpf1cb27lI1gZlS+BJCeB73OmdJy72bSyuDH12XWtBRt+6PgvMmjOF/b8XodfETJc4jirRqCoyjW6MIyuD2PXcs+OB7ZBWtTjBkOhdJUiSkZgrCkQowJCMsqIogMdN0zqvY55e4RzU3J7hSaE2h62fR/2CC8eTNa8eC0oLQ6jXuO0oQULB24tpr+6gvUxRqTwhOvdUHbPufK7wiuI5gogJ4RiwL8QBslJCw/qYfAUXpaY9JGeXlyQ1YwKDX2ybvm1bGUHafi0K3C08FfTdLsGSf9dpuOdB4ena165iC1VmYMlXMxJDanlzVRjPRESmJiUh8X7jI7T8BpW4OtNbrU6NKA0dh1oGgc5TJQXEfsJlLsAvvBiA1C5XlVt+yvLum7Jyz6Frib6eijsIibPowkjQxKZRB3cJFN47nYBy52cLWDphVw2h0pILxT+B2YfaBsBtT19iXX8+720v6tq3TrdmnN1qfi0kI++1ZsxrwXH+pkZWKtsKcFmCapoBKIHDJILYxv3ykW25awf0LXPaNpn0nx0gk4vVaGh8WCE1NwqktWKSiwTEWHEnUwxzUx0BNpdGAbS3basYsD166nCY5dGNgFxy6KtZWKQZ7nzKbOvtRRMTDQBI9XkUJFCeBLT1+p9DTIR0/fX09kgNSUtpRXa8x7p/z+24ovvtbx1qPb1xkEePq1L5a8/6JHPf81yvf+BW33FJPnJmS/oQNc+W60Orn0KQCxhcp5nPO4QTF0nrr1lCd7irYXu4PFQqwO8l4peU4L07ohtD2hD4Qg9d4QhCFs1ARSyzWXv11r6XOz+pA8w8kixajJ0z/vHUgvDYq0niqTDaBcV22q0WYohIG+39D3G0JsKSLUSo8FuEoJGadMQKhBj7YSpdLUKmfzyPNRao23UrS6pGMIHpeKWEWSDc5Z1HUKWqySzYd3Lc5tqLpryqaj7wqGXtZsPkiQ6xhan51XjtocmDZavNnnzUcJPw0BBg15kNMLIV4N3QK7+GgA9cv6N0gAa5+Ofw5Uz5nU6o56l8qBu9Hd3ufAaDFljvqnT8SAEOMUxqimAshUDJnWyNpMwL/SJGBaocq8/08zwtFkq8zRxTUWZaQHx77HDo6yGqh6j/N6DMadH1MZYYHmRJdc6542+hGczkQHImjEIsxGPQVDpmugI6MSe8yCGNcRPnnObzFdi2rW7PeKy11kXQWutu6WB/RrZ4buU4r6D17Dmpp+2NBETxMjQ9D0vcYPSopNQz/a+LC6/dzUX/xFws0FP7X5Ha7+wzmbxQP2uydcb77Jq+/8Dv3yl/lWqVgUA3Wh+NTDu5+jD9NkPSO2T8PKsCrOMLpI+9xqtEh0blrXti1s/I5vt9dJDXGP5TcrfvL0GYuf/inu67c5Bqmvo1ixnGrLp4o13+luaF8CUh/vKcyH2ZdHn0B0f2CzqY8sP4RBrZhnWsjvT4TMT9rH1xQ/fm/vT0oKP7j9uQKoX9aMygzqDJqksAKnKG1kUQgTqS6grWHfRro+coVme7rCbBdUu3tUm9dY7Z5T7d+l6p4kBsYFAM63tL4hxoEKOMPg/Z7t9jvszVNWy9c5PfmMpIV3Vzjf0PuODkfhPYUfqJSm0JOQMIcCDmkh7BRoVVPYJVV1RlGcsl5/Fm3q5N06BYMBB5t373YpcMbhQzcCjDENgOLb2IvXpe/GIEEXBobo2eMxwctEmpLlM6i+1JalsaxUMbJNFkZzj4JzXbELjpsgi/Z9cLTBidd1lGXknCU93/Qfg3wi0TuUSsr3R+A0HLABs7xY3kSjVNqsKpnWja1H+fsESgtjWuTapUi3UxEg2wvcJbk5bpPfNbeAlNFjccbsUwnk8AdY2hT4dOxJPQeF54zSu0ITjz2p/eyaCejUjSGQLr1mbmEyvfeUQpyPJSRwcSwMKLBR0bobttvvsrz8NurFA8J9WRT3Xham8WOYPLtVQbALjAuYwWO7nvpmCzegnniiMXiteVZVvFcVDCuNWkdee6Pl/gncX8HZQnO2EFlYaRWPTixni8hrp4F15bl+3XPxEyXXmy+xv/xZzp50vP7ed2kufpur6z/k/ZvvcOJ3rLSlwtAkWe4wK6jc2WYL6vxczy1kqvKMsjgbfafL+hVM9ZBY38ctVvSrFa6yuAcaU0JVB8oyUpZQl7J5KcyhWmTaIMDgI4MTr9G+h7a17Noz9PnXqDdf4OTmitP9U/rmXdrmPZrmPZruBV37gsY3XPiOZfQyBqRzPwZXC625pyvWoUiMM5eujx9DT10c8Ax0oZWthtKobKeT2M13B3xOKolbYXYHIUlHiolZEUAlVrHOPpfp/cOsD837mo52GlvUkTHD/HdG8CxD45mdnCFNjwmzMK7ZhldHkXuPdhBaH/ifjmGJcQqRDYifcQ7eE1gkEBOTO0uhD4ohMwb5Ycvgnxzr4G7wocO7hn64oesuWOy/z3LzWe5d/CTD6UPa0zX9aZKla0UsIjF8PMssv/s+GDub2zLo7MY5bD63zS2uXuZdObKKQk/fb3Bun5Qg4rOag/NsYjOOHutHS8ccbugSQOIR2X7f9yglbGpdrNmEnsthT9HfcN+U3Lf1OH8WUdh02SpgCH58P0XERc/F1R+ilOHM1JxqzaU+R2uP0ZHSegojFg4/jIfjyVI8KN96VPFiM/D8xvH+tef9TeBPyhU3L77A4sVnOL/4GmfX32G/+Qab7bfZ7R6zGa6oXctnqxMWtubUlGz9wI3v2UePi5IXMT13t+4EEFPfyD6auc1e/xKGXH5PmdPNCHBPP9MHa4TjdcFkA+LHscKQ/aknhdgYjDv729kSQUeFnjH+MtvWxJgAA/kAAUGsFXC6PDXY0wV6vUbXC1SZitp9R9U2LK43nFw2nF85tlcGNyjqheesipy93XFx+bu8vniDYnWCq07Gvy8e0dD1cN1EfAj0PrIodJoHJguMbRe4bgLffirM6f1egOl5341BAF7VRU6ebLHNHt3dMGzfv/uB+oitLM/xfoP3Nd63o7VQng8LtzvIN4laVBuLGk4X0xy+rvQIzDV9ZBsjvYPtRlM96ykf/z7Xl7/Fzfa77PbvEfyONZoHxZIHtuaL5SlnyrJWmgWwUBKiVqiIUQGjDtcrPir6aBiCpYk1W2BbBC7iwKUfuAod73RbdsHRRMeAI3oNiRSB0hhVESlpfUuLxwZPkYpXmRmqgYU2FFGzcTtav2Por+m6K9rqGXX3guVwzdptafY/x/+5VfzD//LlAM9bjyr+9//biv/b69C9/7d49vx/4ubmOxTJPsMTZf3ie9rg2fieemF4M5bc9wVng2XVe4omUmwD9kKsa+pFYH1+ga255d0LEH3ED5HQR/ygaLeatjH0g6ZzZuwjI0itxPpgpQowSJEbsRZzMdBFT4haMnlSn/ZpvnUKFHYkmMzVlVV5ilKGwe1pmuc4t0VHx0ppVlqCsFem4L6pR4B8DkDPrSKAVHCcrCNQcF9bHpqK9/ye9/s9N2nfBLDUVsBHBQWGWlnObYUnMriWrbtmvxeCQF2sWRRvsTc12wRCGT1J+bWWdZ4PhyzpDEobLaFp64qx74/gcEBUOA7aQfa+IUBnFU1RocP9j9CLP7jtWs+u8zR9kPV/mJjTzknxS7mIGZwopVJ/1z7AsMO5Zra+0oBHR0Yv8OIOj6sMUo/XJAHZJdKvTS4YJlsPa8NYQDSlwSwsqrAoow9A6Og9MTF5lNFgDGR7j7JClxVoC2U1Wn6s7j0FnFi1RIUfFD0QohptPtZK8dCU7G01eZaP1p5yPj6BojZKEWsEpxHQM6Si6bgyjWEMhnauwfXXVLsLFldr9osFz62sSe+vOt4497x6Xo5ZFg9PLJ//fMuL3/rLVBe/RdddcBU6tqZi53Wy+XD4RopPopDYYYIjh/eNTVuWv/SfU7z2WX71jf+WT/0mfM58hn/VPOPb3/2/8Oru2+hnf4vfvHiFJ5uer37a8dNv1C8Nff2gVpcyF5wtAuXDiDp5i/LyHB8GrF2M+6glAiIbs6QsTmja51x3F/zP++d8q9vw++4Bf+1fnvJfvvqC1S/8NZZf6Xj4R7/LG793xePHC95tKp6FyJbAwhj+k/XrfKff8E73gu1wnfZuJykf7DC36rjdZb2ZbeqU9hMhjkzQScp+WxGKAlVMc5MUpqHpA7s2UFr9A/NJPmmftD9v7c8UoN5ut3zzm98cv//Od77D7/zO73D//n3eeuutD/0+hzYeIv/wB95b+evDVi8jLeDRdFTAKaXWty7KMGzGr4NXdPQQPbUyrNHs3I7d/j3q6gFVeQ6A6jUO8bCWwBSZeIowTagCPEhauIDTstktSvFUKoszbHEuYWGmvjXozeXPWtcjQBp8O27cvc+BUX2q1InE0nkJkRIvzuTHicMjwTAkkLlUWjz4oqfVnlUsWOnMqlacactCGVbachNk07pVWgCq5N+Xz/WQkXYbnM4b3DnrMW88D897YjvOwaNxc5wZFIlNcQxOW1Ojk5eoMUuMqeT7VATI4Ww5VTdXMW8XCFLFU8l1J8hrYv6eiVUtlgVmBlTLZCVhQeleZUA7SpCChGDqxDgapnOOLwfN8vnnbfacMTpnVE4T6cutQSZG4ozRlgFDMnPUM7gtvr+mbAbAjotSH14K2/5QLWqFL8wU7Bgk5V0Pcm1M11FqTdgUuKricVPz9AROZuzq+yvFulKjTNhoxf2VxuiQEtQjZem5WZRcrn+K08f3eaV+hbq6z3vv/2s637M2xSh3JwYGFe58TqVNTP45a3BkT+syPYfp+dM1FCtCWePLSsDpKoPTkbqOVOUUGFWmROfSHG5OIMu/ZSGTNyhtH2nayGXQbKs1dVVSbWpKU6N1LcdhFhhd0DTPaYYrVJisbLSWZHpzBCYZFEaL5cfI+giKNng8AU1OOI8E5QjJMiFb+IQwA1Pn1/HIjiKO6Nb08xGYztf4B9gJjH1iHEfkOHJfi3HiRd5VCLr9YM7GoyMQPURHFwf6BIiaCL3SAlBoI5sQJZuQIn0GYVJbkGyAFLToYsCicCreLX+OufA3BTsKKJfbnGnKdF0R5ncMw0jUyrYvWhlqoAgeFQJRn+ELNdkNfDQHgJe2ENpxYS7Xcho/5+C0zFUTMO1z4Sy1uQVW9i4eXJNUILfB6RyOZsYykxoBI9L3+dLl+don9nAbA46W6D0mVsLQt2uc3/PM9/QxcM9UnJpSwtHQY9aDMAV9HkSJRIZ+w755n0XzLsXuFcqrNZsTzeU6crYInC0C6x8QhPdhWmZUGz1gtOPFTeRSw05XBP2QpTasTT2OT9v9Y9r2OReuHUF3nUGpBFLHKM/qbR76D2hHBbypzYuth2PDHIw+LmpNhQ2Zp7L1VzYR0zEFGiZA2qIwCSS0470/Klhk1VsuGikZx3oCvVL0KPqoqIOwZTPOqgzo0qDKEl0vMOtT9OpMguW8I7Q7dFmizAXK7AFP1yixCFlGXiuW/On+KV3zmLr7OeAknePkEz04AaCMzmN+GNfC2Z9628XR1mO/Vwy9OlgyxABhEHC62HnxQe9uiP0Vwd22m/hhmi3OUMrT91eyDgkDKikbJNyyFVuf2e1XCZgTtZPM2aVVYxEWhKXZO/A7OLm6ptt9b2ROB9+wiIozW/LA1rxiF9xXljOlWSuodRBwOvmHFzocMNRCup8+KgavWAXNOmiaoDlTFWfK8ixY2uApfY/xvVh/EMbi4gGjWhXECINKNjVRAsttnJ5Bsc7SEAN9aGA2vEkIY0X9/JyLd77ArvU/ENz5mz+z4Nuf+nXO+ku67oq+fz6qfHJgaItHh4GnvknWRAUEjY+GWkfKoCi8FrvDIRA8o4WNBHbKZ4Dolaz9Bo0fmMDpQZRWQ1QvnTIMGqPC6N0fUOg4FW2BKUBegVj/FanQrcdCtDEC9PTDlr6/FiuNxKBfJWuXkXST9i9lsluZmLfH65u5r7F89uk57akZioAfIm1wdNFTRClCmzReZC/q7H/ehIGuv2SRMlzK7X26VYVfKCESWGH8miIxqWd9GpgAbD1Z36yref9QI1GhtDGNEfK7TQKpg4Nh8dHBwbta1wc6FcRqyMcDgDzvB2IQBvVte49AHPes8/VWHGeT4/vhY7y1BmV2j8bvM0idgGqQcRkQ32mjJ3B6BlCP6z8fRuA6Kwbks0UZI/ugskIvFphaUVSRsgwUQ6DQCu/NuFMzSVW3wLDUBZXusUHmGJVVx2k9kBXVGpF2ZZB6oiBMH3ksmfbFktdhBodqIm0reQPXTUg2X8KknvY/8P7pw2RxqVMgrKiDwryI6XMWiHjOq2OAOrXirS+x/PJT3nz+m3zld0qexXP+YPMuF5e/y6vlA1arX+P7ywWrKrAoer74Zv2R2apZIVRKXiV+scKayds676OMXaGHCq0l+6Ys1gTfMwwbLnzPN5oLDIpf/brj1dU3qT//VRZf+6s8NP8WuITHYJqSZ9GwJfDQlPhS5uF3+t0BmxpLAqkPAxTnivz5z8fPL7EQFWsPSzSV+LSnlvfWWa3Qu0DbBwr78fTlTxqgPgmh/I+h/ZkC1F//+tf59V//9fH77G319/7e3+Of/tN/+pHfLw9yRgsgI5m7E0jtQ4RSOndVQlnKRN0zB6nl9yyM7NnMooaktPLQIezkhTKcKMPW7ej6S+rq0QhS518IQRHE/RkfQ4Ji5cgkdAeUKtCmxhZS6SuLM6ryHFOeoUwNpp7kdKkpGJOQdQKqR99O34oHdWhHwDr4Dt1fEUJHEQacb2ZS+QnEDtGxD8MIUPcx0AZHrS2d9rTGslQCVAtArdOHANWb0HPjB3ZeGAVNEMbZvMVbZ5I/z0aFD5TIZCF+cuOas4fTBjYDVBmczsDbXeD0HKAm+0GlCULedBammZN31cTyI7jZ94YY5iFv7oARKJ/vDvQ6Bl9yEFQIdgyImtuazGXQ47UJDjVfvI0syvz1IWg9vmxmG3LrOmfW6YzFDWCjbASG/gXlbkcIIv3KC1P9Q8jSj5vyHGwco9b4wmIGCAUSquYGCAIsmnaH3Rlsd4KrKjaristTzdOzwOlp5GwdhZFVi1zYaFncm8RcyfL3bam4WjxicfrXuffep2jaZ2xuvkPvdpwk70IdPLvoccojEMshw288hxm4kq1m5kUTeQZrtKmJRirmQ1UIGFgpilKY0xmcXlWyMSmNFOQEoBbrkmm8mxYy4lMK2w6aGkII7GtFs6joFw9YVjXlVZWKM5nlrbm52bPLQYekjYK26CgbrtwykyVbAWVZpkbRRi/3RiWf+pjgIpWD+zwxZsbvnIU50/vme39r5HgJa3oWgqpHkPruheKx9/vxtHgs4ZsvMOchbX4MqhnGfqpCTwhK/l0FHKKYMYD1AavUKLFG2xEwnTM7UbIhK5QeQbI+AQwuygY4M3znihU/8/2PB/8/hKylUBjT/AEexTAcXrMasMFRlRVDVRAKQ9DCiPo4Wgz+FiPnLnA6z1E5QC+E/uCehIPf7ce5LeSAxQROT3orxhDLzEYKTCAlTH6xEnIGIWoKIqSArCEO+FxY1BXWrvG+4SI0DC5QaTP2BTsfF2YgdYzQho6mfUaz/z5F/Sr15oTN9RlX68jFAtZVYFX5WzLdH6adLA1ay9jxbNsngDOw0yXRPGBRCIgj/algqwue775PAB4mkPrcVuKn7Xt2wdGTCkYHffiD2hEIPX5zyI6GqdissiLiyGMdRBHhc4BiHGae9IFs45KBpuwxa5XGMoXXzfveHKge/wbiSa1RCZzW9DEK+BYUg9OjncEIJpQlerFEr84wJ8JYDEOHqleoYvLijH6HKQLKKGytecUu+cb+OU3zhGV3gx7uQaWJXgDmELKsHhot69vexwP2dDPAtoWbRsDpvlW36tkZnLZNoNx3M3Ba1HYfRzPFKTHs0jxXEl2T1jhTnyY4kfuPj0EU7+mCMWcm25j4kFWSUngttgGzecymeZe2u2AYNhQxcJqUDA9MzUNdcl9p1iqyMoHaBCrrKWzAmoC1KUBtcq1IVllKLBGcpnaG2msWQbMIhoXWtMVqDFq89r2oCGPAKZcrhgJsJV9qosIpsf8LMRJnrMhcqJQHYgZSp2femBJzs+bsnfv822894D/92TUf1M7Xlt3XHnC6+St03XOev9jiYzv2vAxSN8HxfGinoEhd4NH4BCoXIWK8ptCBEBRFEyiLIIxUw21gP127pjM4r2mdpg+aPgHUsudiZI3+oJaZpnNwWqlJgTUHp62pJnDa76girLRlrYVYkMHpWlnWWRGqxB96DkKPz+7ss5l9D1BKFQpvIkMIvBvcyPzO+RyagMZQKDMqavbB0fUbuv6Ksn9B2VxTNqc0TUlfC+g2OFmLGnUIUoMAdLL2k8+LQnG20GP/AA4A6tLEUR2wr8VuyjkY6o+HdbnrPM4kgNoxWnv4IOfhnCI4sCEKoSQHHyN72JhsBEHG/WzZmFnDeRyePyvHIPXLAhLnTSWLj8z6V3oCpzMQHWfy1uxLPQ9HVMam3xGbDwBVdNiFwdYOW0QKGzDuNmCYVQO1MmMQop3NlhEBqUMEHwNOKeycZ8f0GChAzf5trhQiOEzXYrslvtfs97DtpFi5aTyllYweH6LYHJ6uKewa0AwhJCZ3el8PIX+jLZgfvP6ov/CLnDx/j5+8+C4vvnXOf01gu3uX6vLf86h+leb053l7CevKsa77l9oVfVDLxMSyjDSLBdoke860f48jse/wPmhTYkKN93ue+44/bC/47W99ml+uvsOj9SnV577G6i/9Ksr8j/D158nyo8Sg8RgwVQaXRpB63DOnS6N1LigeKpQPv56FwquUG5PXXEaU3Bn3iTPsR/Z0k73X4GMCqX84dd0n7ZP2H2v7MwWo/8bf+BszRtyP3u5mUYMwLYBSQR9ZpMGlLOXfIC2YgqJDqlUV2ScN6lZkjlkSLiC1pqeD6Fkpw6ky3Oweo5ShKu9T5nRkpfEuAcRhwCnxvFQxAwMCqhhdYU1NWawp7IqiOMEWpyi7BlsRTTUC1FHfnvhyU0HAIB28SFJdBwmwjr7Ftk/wfi8p0qHHuT3Ot3jfHLCqndsyRMdAoAuBAiXyZO1YhYK9duyNxahlWtylhGKlWSnLSg3c6J4bb9n4Hu87hjhxIabt2we0GCTsKDJKd+/0Yz7Y6M7YVakyeew1fRdzWusapetDYHoOUM+vefZdTYC0ik6q8kcg9HQaRwZyR/6qGTzJRYTsS3Vs0aLULoHWw3gdBDBO13VkmIZDH9uYr9Mc+JuYaYf/dtRGtmkCr5G/oRCWp4kR71qGYcNit6F15+K1mgHqj6F7GxfQd/BuclU5GrE/0A6RDkaHGjqKqz2FqaivStzFkm615OlpwfNTeHIaOD+NnK8ij06UbAK0Yl3JAedgGWsDu6qkX/wUr+7/M6ry33O1+RMu2yesQ6RWhhWI1B0vjEBVcMwEPmD9jeCpGWVcsjgxYGqiLXFVRSgM0SpUEUdbjzk4nT05BaA+3MDnlpksGaReV5FmkHPc1pGbMrCv1MimXlwsWSSFgdaGrt/Qd1fsYkvwh2xVY9QIqGaZIszY1ClgFY8w4lL/z6/V2ZpCzThSGahGcQxOz9mWck1n4PTcKmT0mZ+FBc6YDQfPUPQzoNoj7o+HILRO7zHdr+n1c/ukGD3+yJIkjtYG08gX1AQguyiAV680LkbKtGnJjNsMlmXQIqRN5hysPrYByd/72b8fmqEcjb3z+xCdSHK9Rg3b6ZzTOFhen2IWK3xZ4QvLLRPbj6mNBbw7wGk/Dzec+U4fWiV5mc8SezoDlTrOgGlmYH2c1gE6ypM1Z9jaGWgtm0pAwxA8XZSiwxAEdNOp/6A0W99w4VpOTDmCogGR7ornqhH/ViXzxjBs2e3fpaoeUW8esHixYLMqeVYH1pXYEX3q4cdzjXN47JvnDqPzMxrYYYFTFnyahbJjAfdZd8FztyPEyANbszYF90w1AbjB0R9YJOgJeH5Jsflg3hnnosMC6nzMNCNb8jAvIaTi0BimGPys38XRK17ef7L30DCC0/lzBqrNDJy+5RnPEYs6CgA3BAmb9QOEflYIKmpUvUKfPpD3SwxqdbTZ12VD9BGzLnnVasDR9RfE9gXGvYkKdgzCzSzqXSdzbWmh9JDXu336t30r/pt9KyBR9OqA8YqL6C5SND3Fbkvsr/D9dSI3fDwANeUZxm+wdkE/TIHNOnlRy9qnRQVP0Ipo5iBcCsQqNYWZFEJ9shLbt7C4uqG7+Rb75v3k4dyz1pb7tuaRXfDQlMKe1pET66itWFaUhbCmbSFzfQawQOZ/KTYISNN34snaDYamtwJUe01DLWGLSrJbrlyHCsmnXTkZW0KQOWjmS+1xI/vRkscFhUrjTkxrvCG0MOhxHtO64uTyAf/h7fu8df8HB4799a9E/tXzr3CveULbveDm5tuYVGQJ5LkDrn136PGbQOp1lGKMIWLSM14MAdNCZf1koTDr+yEqfFA0vWUI4sfbBk0fZYztk5e7ZOAka4M03/v083FeI6lWYsApIIHTeiyg2RSGuEBClwN9d4kPwqBfJVB6oS2VllBMsd04BKdLVGJSH4LSuY0+x7PZs5SZAm8qhhh45hrxr4+BIgaGICzVPG/XWogNtTZshi1df8FiuKZoX1Du7tMvCoaForViEzQ4YVHnNgYjqsnaY1EK0WJdS//IBSofBLwaAeo0xm/KDBpDX308+++2DwxG1pYTs3NiT0sfUuhBlFjM9kR6GMSi8ijjJjOobV5HpuZnexufisv5Eh0zrYED9nRuypCY0/oAnL6zZXa1FlA6g7Tj2F2CGir0osAUHpsKXlpLUcDDgbVNiWKh5Dm0SmOUxsSAm9EIAqKQMzFOYduz507CE2/fu7mKWrsBPXiGRtOWcN1IkXvbKupC1k0+yL5nWGmMKVFKpb6YGN2jbZU6uEbH89ZxU/WK+ou/wP0nT/jCxZbXt0u+3W/Z3HyHqvo6Z99/hYv1p/ne0nO2GFhVmgenLw9+femt0ZLD46qC0qwmEompCVY86XPzaY1ODGkdX9LT8sJ1/A+upfijM36p/l0erM4EpP7LNZh/hf5378M7QFPSRC0LiBlI/W6/oxlmSiM7kVnG63HEkM45V0CyJ5r2gtpUQpKbgdO+kNfmvpT3dM0QKftIYcLY749B6k88qj96U/z4Pag/aT+4/YXwoJ636aGS0mKZz7AE+oi3U2W3TgNMBtRiUHgUPQUqrKmCMN2q6vH4/h2TfJQAPcJ2XSsDbst2+330aUlZnI2/0wPKi2Yxpo1UVAFQaaAqxNqjWFHYNUVxkkz+z4nVKWhDsMWYcB61HkHqeIcvFzAlJSMLgPx93b0Gw5bgtni3w7stbtgwuBuc2zO4Hd63dJ3GJ1m0wyXmn6f1gS54Km1YhQKDYqkLTnUxAtWZVX2qCzZ6YGksrgvCskoTcYQRpJ9Y7glGifoYi7oTnL49CRxKfrUuEnvyg209hLlaoU19CExrc8CcjtrINTXHoPVh9ffg0JWV7zNonZkDM7a776+J0aF8AitT6GW2Yxn/vqnlGujiTqA64sjBbuBnC5g5fzL9G8kLNF3oY/Ba/r6SnZnS00nFQAYOFQKUNb5hGG6gfYFzb80m0I/H4qNsevRiFhCaveFmzzikwo02qHz+voVhK5uXxlJsKsLFCcNqzfZ0wXViVTdvRNaVAL6jn196z+xdt7OafvdXeVC/xmLxKheXv8vNzdt0oWWtDEtlEkjtIGh5ljh8Rg8Al/HDTFX/md+YsMQVsVAYK2FRdSmeg6XNkk6dvtYjOD3foMAUVhNStb2vIs0g9/C6gKqMbOvIphRPQl+8wtIW1EbY3Fk90ndXNLQwA6m1kvCfHGCTN5YoJja1KQQICgNtcOK5q6Tve3Kw4MQcSeYUyBM557mmBfnB8yoA2HEIqlJmZKdnNriZBSSOz0sMcAdoPd6XBNKPX89eG6JnGG7SwvPQqz2DZNInPeBGYHR+RuNxQPLsjwwfktlZKZNYv3G0+DgGrEMCvzPDWu76Ics6b3ryMOxVgChhgo59OvcS08tkudydYf0DTLHEVzXMxqePq02brO5OcDoXA0Y7llRAOGaze58CXn3PPM5uZFmrlxVJUwEuCoNLp4C8zLy16f7UylAaTRFlTuxjoIu9hHqZGq0KlFG8cFv6xOas1NRfbJLyh8ygjAHvG9rugt3ubYrqAXV1Qrd+xGWtWNaRRRk+lLT/w7a61LxxbjHakSH7DFJHfcYiFeuVtuybx+ybpzx3G/wQCCw4NeXIpNau4yaInc3cK/rYeiu348Jy/jyfw/O9lbAzyY6Yt3HTCWMR4lhlAelep3HGJ9ArByK6GFL/mgFPSlMoM7FZZy2DIP8/9v492LYtv+/CPuMxH+uxH+ece+6rW7e7JVlSSxZI+IGMFduSbZQYYzAQXqIMlEkl+YOqVFKpVCr/4QQbHKAIrhQGh4KEQEwwJFgxFCCTYBTbwhK29Wi1Wq3uvrfv6zz22Y+11nyMV/74jTHnXPvse/vevschafeo2mc/zn6sNdecY47x/X1/n690MkS6pOiUpo6K2ouAWQ+R1iXiON+fdNWgN6coY6VFum5ko5/XE8W5l0LEbDc8VCNVgmG8IoxX2GFAhQZiIvoiUCuGUdavLoggLcdF+NTDCH2vGHpFGHKbQDHoLsTpunPUux16uCH4HTH2U5bGixhpdYZxF5L1kVFLy2u4oOrmgyUs3oL3WN7byj1t9IldL87w+vJ9nh2+Rt8/Jfg9q6S4ZxteWorTSnFeORobaKognPDsAF6K04KsAFNJcaMcq3odcEOkHSKrIdANhna0dENFrUXcLIUO7RU6OLoUMtIjdxeQ71fkoiBewkZTRjQpKKhRg6JCkVIihA43qnwvq6h2v87F1/52fu6e47V71YfOB7/3B094+/KGd57+dh4M7zMMl7jhCQ1MInUgsY8efH/0s0FbgjKsUmGuQ0gaEzVaJYw3mIxJWTpWQ2IKinNREDgjshfqsjjdpUhHRqJkQdrFmIPaxYU8pjgXAUlyVHIxf0al1VMYYkpRghCzOL0qgvRdxaeC8VmI0yvEx2SQ4L0iuk+C9R2M8jopTDQE0/I1XbGPDp8FdaukA3UKXlRqyvN4Fnr64YJheEJVP6DaPaDebMRFXUtmSOnou8sNbLR8vTZQG0VbaVa1Plr/jT7SjfEIAdRWCVeD9wlbvxjxaj9EQiUO6pAW7ukwi+H4hPFhMpFMCMUYc5fv8VpCpH+5T94lPN81luGIwFHRpAQkqpJendEeR3iP8LwRZume1hNz2qKqZvE9Fl1ZdCUFBa3J14SGJAaYsLiuV0pPBS2tbsf7SkFDDAYxrzs/7HVa4j1y0T55iIFqcLjBEkbFoU9ZpE5sWxE0R5+v2zWYjMgo68hyJJZL5PLcn+NP3zGqT/0GVt/3G3n13Z/l84/v8cwPPB2ecn3zJVYXv8DJ1895/2TDV1aJbeNoa/2x1jUFUWJ0IliNsdu5cK0ssZqLWCU0u3RYCWZToZKlV55f6i4wPKD+a6f85vYvcN5uaL7rh9j+HRuU+U9Q//Xb6DcTV/sWk3KXqFG3RGpxUteNvBZaN8QIxszi9FKYLqL0Mveq4EW1aUHZqZt2qfNM6MaQ93Q+0btSgOL5679/AW3Mf9MNhf62QP3f+viWEKjDretPq/KP3IiMBpMdJjObenaexOykLiJ1DAoXa3TYUgH14ZUP+Ms9RPCM7FLgVFuuvVQJz0+/G2vn9junDqigZ85wDLO4omuMXWFMizErqupUhFO7Idl6mqCSNiStiUbLe61I2TaetCIuLii9qJqpmFAhomPCDieoKNxeO/ZUYQC3J46XeHeFd1eM4zOMeQ/v9zi3z5v8/k6hGmClHQdTcaJraaXDSEquElf1Jk/Iz/wwtUCOKWaZtHicUv44oYiQxEGiiot6ftnuFKan9wtxuritTHadTIGIC6xHEadnjMosTBfBczmO3ev1nV+fnb35xpQXPSpGlB9FVA2DnD9hGQbms3N6WDDE55b25YZufvJCJpNjYIE4kxFKwnMqB2+5yEmLd2rxP7EcVKYDn9PVFWp6DCoxsVr30eH9juAuCV7NDuokC9RPOmx/wFDSjPV0LKdDcMeiUp5Kdqq7XhZso0X1T2n2W5pnG/zmlP5ky1e8ZbtNnG5hnd3JIAv/7bpsWiPPXlvhVt/H9v2XeLV5hbb5b3h2+QWeuQtO0KyVoUuBkQFDeyREywNditLHLkD5//k5hspMnF+dBeqZx1k27SJOr2rZvNdWNiiTy2bBo46ZVTb6xDaIM29ViaP6IgvVV3Vk3xhu7AM2VUVtWjbdu2hl2CvN0F88J1KXvyOOjtn9FEhZ5NGsjZ1aNMcUj+pRpXRSTtEEE3KifNttSfc2c3opTs9FqWpyTS8d0Ee/5w7uW2mjLoK0znPFEa4nBVQcCOHAMuw9pTiJOpOISqApm3s1O+QK27gIxAXRMQnNKeGQ9larZjyEVnO4FszMZJjd1UvB2mbO6XPu6knKU9OGRJPNfkWkjgPBW5y+zsfQ4Pr3sdGj63Osaz502/RJxoeJ08vw1oJ4WBYwJ3HaH0ScLlglypSmKJkH8vOz03cZvCnuQvl3ZoiLWF2h2OTiS6sMViuqFDEp0CdPCIe88ajwuuIyOlyKnOQ28wkZgs7ngMamwJAcbrym69+jPbzFpjpn+7jhujnjaZtoq8TTG/9CQ3Feu1/nTY3DqKVIbYATVHyNGjg9vIXWFYeD5Zl7hncHAE5NzT3byLkYFI/imA90LjSr5zMRlh/fNT8u0TxFmJaC0/F1eHtoZeUOlu+BiYBK0jIe1Mxp97mQRgyTix09X0+BJGu/xbUGx+49+RxGFemShGBVUVONlqYKDF2k7gJV183t7BnpobSVj8t6I2RMmDGkEFBVzZm6pFGa0Xd4d0k9DBgfiU7uDUHDqBNdD87O7soSSua98Gz9mMVpn/K6OIvTEZSD6uCpug7T72G4Ivj9CxWnAXy7pu7OpyBqIHdHuPwm3WOmFJyzM25VFZeozmKE/Hdxjx0G6A4Kld3Tzt1gUuDcNDyoWh6Yhvuq4r7S3FsiPRY4j+KuXIrT8jFzAGA291WNsIbdEKm7SNMF+qCpg6GONbXR0zljVY/2A4cUGFUgRQe6OhKpE4qUPF7FCfmhpo4NEdyqRO4O6HHjDb22GLPm9M1LfvXeKX/ltON3fv+Hoz5+3w+2/FsXUF/9Lu517/P4yX+NDx12cW/16XmROtAwqsSZMqyy+Dfmyt6S92uUmURdmMW4boH0KK7pIk6PCOvWpciQ5syaIb8fF4W/OafHTOHKRZyu7BqlNDE6xvEG565pszhdK310j1yOuZgux7k4p+fQzJlfLGGFd9/tXFDoYAhY7tuG6BNDlIBoHYM4VFPMf0tTac1GVyjf49yOfrigrh9h+weTi9o34qLWOrFuec7pYfT83ujioDZUVh3dFypfRLw4PedtmybhuP74ptU7R+8k86KIZkv+9BSQ6BAucjHpFDyGHwlhP3XBQN4HJqZifRll/i0done9rmVo9cGrE9kqfkT7zCRiizCr6lbE6WJUCh5ViXBtao0p6JvcVWAg4/GkTC7nmBS4q3ytLznU8vznQqrKhY5vNEqHd5m7dRjQ3mFcixs0XQ+7FnZDpBs1lYm4IAUFbZnY7XcdQ2UUqq7n5/4RR/PdP8T23Tf5wZ8beKvesu8v2e/fYXfzRe49+QyHdz/PO2vYtoFVPfK9n1p9pN+7XHdrDbFSc3ZU+R5bHRvMplwnf9x9h+J93/GLvYjU5me3/Kb6P+W83VB96jew/dG/B2V+Cq3f5P0vNFzEPP8pI9jQWtZyb7s9e389/b1iiit/5/Y+406sx+ScFrMSRfPJ9+3ioI6xdBDJfXC6vnPxdhmUet39jely/Pb49vgbPb41BOo7Wl20Igf5pGMuV7mnxERl5PNywbctdBF8UEgsWIuKkXolArVMcLNLq7RwEy0+t+ud64pLd831zVc5O/3OSaRWSuNUh4pWggmVp7SkFwdAZTdYu5qdvdUWX1Xins7CdLCGZPQkSCcj4nSqmDYf6FvZVWUyjwnlarRL6JjQLmB8wA4D2r1ONfbUwzUrv6PZ/TrjeME4XjK668wZvslCwShxiimgwkAXPV307I3nxFT0umajLFsl4SMPVQV2w4muuQwDT33PdQ6UcSkRloJUShnrIUJ1EamBDxWq73JOzy2RZUFbY/RCnDazOK1MKzeEhTB9l0s9mduCdSkQmOnjuGDN6BAnp692TjAOQXiLREGviGNJROmCXrlLlPFhmM+9RRjUUWjibcCkHJyFNn0kCR59TU3lArGbJRQoNRcMKAJOdhYiAlpKDud3+PEqO7vk5lic1J906P6ASXOxYFkMWDqoieG5AJbizJJWZWF9q/EKpQ2m27K9Pqfzb3B53nJ9Dutt4mQrm4LyspdOi/4sMlSaq+ohm9Vv46XVK7TNAy4uf4Hd/uvU0dHk89XHIZ9ndnIOLsWXu3AT8k2LKTm7PUoYjs7ubnF5C9ajiNOrWk9cuRIgcnuEqHE+4TI3eFVFVnWktpFVXQIiE1dWc1OdsbEV693njgTevnt8p0h9bpppc1rcwH0KVFo260aLQL0vDsvsFosZFwMLGTotrvWjY1Nc1bNzegpIWwj/S1HrLjTHdHiX59HE3bZYu57nB93KNQtHSJ75Z8QVEbjlCEwl5omJMW0X70sgYmldDSkxpDC5x4qYDFlMy5sVnWC8w1kNMzfT5Ou9bN5EfJ7buUvbdMzOPV8ue+YgW8EEeRFF3Hze1rW0MprYo+0W0otj3qVp4/A81qOEHMoGY3YMFUOodJs4cciUPIUwhyIWQboUNOZz4vjxLwMui8dcTsj0HEM8BmiyCFKKBzYpTAz0KTDEDp0CxqyIGG5STwgjHkEDldfHKk1EwsFCdlEPwyX7/ZtYe0pTbVk3DVerFmsjj288lVG8dv/YTfzNDqMVL58XpcIJpqaI1NHQxVPWIbDefy47fmoOB8tueMrb4x5XRR7Ylvu2EQ7vMDIoj9xRZn77XYL0/H/z95XC8vIalq6nnCqSAjEaSuizvEVxUGqPSlpcUlqRMMI3J2S3upQc1JL/GwNR6flkigVTJDx6k92V8gBn8a20QQcSHcLgN0FTq0Q3WOpDpLkJ1PuOsLvGuOdxGXpzJh/EIOGJ2pJcj6patuqSRhm60OPdNe3YYQdHsJqo5ax2QK9nQbWsZb2H6GdhWuUHnUrxGiQUsQvU3YDtDjBeEf3uhYvTAOOqZn04Q++b6XUEpmJTue7L/byE75UibJURVlM3UMh87QP4G9jvfo2ue0yIHfeUmbjT97WI02c6sTEzb3r6++FY2AeFMQtzRzHklWmiUugaTCUhgVUTGdxINViMs9SpmkTRMh+rMAr+Bp/PsVmkJp93s0gNJgunhVtvFNiUGJHC1zDIPe7B4y/Tfe2H+IVzePWs+1Bx5+Xzit/7tzj+zOWneXD4MYbxgsvLX0YvUB+l+4YsUhcH56gbgq7YYlgtnlcZBiajgwjXMgLksLXSbbDA4qQk7vIU6VM4Eqe7bGCR++EcIi+YtLkjytgV1jQopfFhwI03OH8DyVFnxq+eVxVT0XYZdlqcomHRnQVQ60ilpXVeK2EK3yV4FpRJ5RNmtHzKbggknrpekCT5flECE42S9cBaWxoUvT/QDxe0zX2q/n3q3QOa1YquaXG1YrTCma8WBailm7pweI0WYfp2e7+p5zBwIDOHI2MjAvXBvpgS826Q4yMouRm/c8SfHqJkxSywQSpGVMlAWgYe5+4li3quiyXesd//psdyP1eMLiEccagB0Nk9XTcT6qOsCzGWZGwWspXMxUa6L+90vivpRKgW64ZFn5EYgZi742xeq5G/9lG2VCkG8IMY0QaPH7R00ox53hziNJ+GmFBa5qOCXF0Wn0qhThkjQnz90QVqffKA9rt/kO9d/wxfDKc89h1fDzuubn6d1eqX2D55jZsH93h0GjlbBb73Ux/5V4sQK0Z4UgXKtGIuUQa0FSzGZFwxc+f7tEYPFOPWkBKPXMcvcIFR99E/s+I31f8R53/XP4J58Drb3/n3o6o/y6e//hZ61/IsaLr8ir1uWkwj8+Jb444bf0kiUtk1mcyBMbXsHWAyW93GehRxupjlkmmy9rPo3Mz3d5eD70tAsgSjRkJULIkeo0/sh287qD/uUOoYGfzt8d/O+NYQqG8JYcubcXVLpA4pZV6forZSPSxCWoyJqpY5LESFj5phu6K6uY9dLNqX/MvkZNMDsIsjJ0qJSD1ecH2jOT/73iMndYyWoCsRzPKmzZpGWoJ1gzVrCevTMklFWxEqO1XRSjhVMpCsIADQYJqE0vIGS45e+bv5WHklKJOocM7I5sW1aJewg6ca7mPGgZXd0oyXBHeFG58yjs8Yx0uG8ZJxvBZ2dcwtvUoWmUOSxeVBe05MzV5bTrVlqyyv6pozZbmna85Nw4Xveew7bnIbpKc4AItvMqM+skgNPCdUq1u2gqU79dh5ldEeeg6Be06czu00RZhOWh8hVeT98edLJzswFQ7K0C6QtMY4j/ZuclDjBwj9hFkRp+KeEAe87wjhMAnTIfS5Lcnh/WFxcy3iyW2x+db4gMWcLIKO/698ro6/mAsGYfqeRJjEaasUOoLzHd5fE4fZQe389GOfbIzXsmQrrVEfwmCnCNZH16u8v922rMYrVP8+K7ejvXgZd3LO4XzD7p5mfZpYryWUsGwC2laOz6gVO7ulXn2eTXufZvU6zy7+Cs+ufpW9u6ZFMcRO/obSaLMUSvVUPLlTpF6K6+b4Op64g0ZNIrUEI+rJUflhrkqjFaZWk+DeVpFVHYTvWUVqm6aAyEur2FVrHjz7Hla6VPnl8RaROi1E6o22uSVevmfMG7MQA0GJm3ptLCexZh8cXV6saSWomcgsVC8M1vO4JU5nC4yIjQvm9IeJ08vAkruYcGWRaKuzHFIyM+kLDznF2V0mzupx8Xduv54iKBsluJNaGRotQUmV0rN4n1nTIhLIceujiNXFieWzExoK/zZMaAKYnZ+FCT49xlKcUnM7t09Rwv7y54X1X14HnQT1oZKeujicP6CUZhyfTS35OgwkPuRa/BhDxGmmUETvuym3IcRxEqdDPHbOzsGuYRKnJ6xH8pQnr7LzTqtKBLKFYDo73+Nz8+vxHCmCa1IJR2SfAn0ItPl1LUiWjVaYSageQdcyB0TFIfb4IHzcEpQEshEvLf2BwDhec+gfU9dfx9ZntBdrfPMaz6zh7cuIUf6WsPzJhtGKl05nkRpiLjJGOiwqnLG9/tRUkNFZXOuGp7zrDsSUeFitODEVD0zDszDS4UhRobQ4mG/jO+T1W86JcyHsrswIrUzmlHpgJCU74SLKz4KInkrbOVBY+alrrQjVXgV0dqYWF2kkHYnUAKMWAa/OvNoptJQ0vSGPhi5JS7cJBjMmCZLbRapnI+b0iri/uvPYF5HaBD/hP8qwSuVze4AwYJzHDgaPlc0qioFZQJ324E6hXJLuubxjTYt7g3IJO0Ts4LDdATXcEJ2sRz7Inf5Jhq8tYXV21IadbokFpfCXjEZNDurb4YjZPT3OeI/mmePq8DbOXdMkOKsa7tuWe7rivjKcqSxOm+P1jgRZgndiZrFIYRCnoJKZLQXQVTG7zI7qVCW0S5gqcs+NVDcR04FxFhMNxjRzwTCfX65g2JYiNUr+QJQ/FpSIsinJ/V4hbwaFTQnHOBWwuptf5fStB7xz+ll+7sRzb+M+dD74oc+tee/6hr9w+bfxsH+frn/C0L9Hm+TeUNB7Y4qQQ5EjCWflntTpSvB9d1aPZdw+aybONLMwHUj0kzNaxOld7jDpszjtUsw4QCREXqr1KF2JMzGHIYKsPd14gw97Eadzo0DM/N6IuLRBnufyGh+1IHqM0oyIi3rKg9MJayKVibRt+NAwyGqMGJV4w9d0ZoWLkesgyIpJoM6BiUB2UVvG6BiHZ/TDBZU9we7PaJoT3KrGNYbRJvpMvliK1HAsoAgK5O7XpbIKrfXEpF5Vis7JWq96MTVOeid7Twlum9nTBe8RB0XlxKRDztwpqAPcHh8OLPGNxQRTZTyLVmp6DYEplDveCkr8KEME5Lt/5rYwLViPOgvTNgckijg9zdXFCZ4FalOlyT1dONSuMKgVOaxXTZ0WpZi1rH+oRdGo4KiUUpOAfCzSL7o0Yb5HJp8d1B47WMZRceglNLdrBfdXXLZQ1sLHYqbOiENdG1RVi0C9CPb9KKN+4/O8+up/zvcfznmz3nDVjRy6R9zcfImHT78L+/4pT7aa803i6bX7SCzq0T/fNn8UiFgMYxkFVMYyFyZl80HZa/Qp8Mgd+CWlMdzD/D9rfsj8ae79gT+EPnnA9nf+9/n0z/1R9JcT5mbFs4xtlb/XoLOT+q1xx5W/ZhhF96mWniMNKRrQsmadM4gELVreU7QIU7SI+fX1Xq6r3hXMTzEczfoWzPlD+/HbAvW3x/9/jm8JgVpaihIhqls3bTW1O0CaxJ1gS7pxvpHa+YZa1wX1kZ0oURNWG2x8gJ3C7fzC7RVJPgrqQ2luoudEW+6bmqfDE65uLOen30NdyybEhw6lHCFPbFppjGmxphX3tCnYiRZMk9Eex+J0rLJj2krYjbZQt+K0lNbF5wXqeaSFy0ZNbpvgFeNYMQwVelixrhtsd6Dq91TjFe14iRueMgyPs1B9weh29N377JLDRmnRa7Wn055D9GxNRadrOhN5VddslWarhFF9T9ecmYYnvuOJ79hNyecxs6mznJJFauB5oTpvej9siBPL3OI8tXJT0O18Q8jtNIX1fRfn+zZapYjRpWAg36syUiU7+2LMYRUOPXbg9pM4HYMEA90Wp53fT47p4DvhbBb2ar6plnVy2cAcv8LcwVf96Iu4wkqcfkNxU8uznTdMSjbuFmnJ936PGtIU3hQifEiX3UcecXxKJMzsLvMNFkjFXZ4FxeJ8TdFnXMrxBjyGHtO/T7V/wPnlA9zFS3TnJ+zPDc1JZL2WgEJrZ5HaacVQ1cTqddarDQ+bBzTNA54++wW67j2alBhiR0oJCxjbHgkxRw93saAUF7ic36p0O99xihsl4nRxlukP2aDcNU7WhrbWme0ZsggQqU2kzu6PKwu7Z6+z0YbVwnWaUmDoL+gXTupNrNhojkTqEhY0pEBUiVabCQUA0EXhby4d1HeK04tzd+LaKsNR8ORCJJ6DEZsjYbo8fiitwksnrZnmBds8mJE/5e9Gjwr9EuGKMc2E4lGqx2hL1JYYDSh/+0kcjQnVkXFIldKslJlYhQFxoI8p0pf25+wycykyxjA5wqbfWQJtFq7qCf9RNjZ3PCiV20vLXHLkOUvFNT7iVMc4Xk4CtbGbo1bLTzJiHCAtsR5zkS5mDMCyBVged56Xs6M63mJOyzcJ8dnataS3mwat9Pwz0eV5oaBZcujs5CK+q+MEQOFzAJK/Q6hulcEajYmeXegm3Iwxa1zouY4epyIrbSeBtCBgqpQYGRiGZ+wPb2PNmrVu2WrDlX2Vd18Ho8K01nlRInVlRaSWtZQnRDkGj2NkiBWbJw+x0dNkcaF0K/XdY971HZHEK9WaV6o1Wime+oGOEWLemCU9/dwHCdPFHakX4rTWDdau5d6du2HKNRuCQWsJK035GBdXbilm6COh2mcH9khQYepUCClQoQWzkN2VAG10YgBIM7O2zjzZkB2hBWs0KuHrGhR1MFR9hb2JVI2j2lxhTt+d3NG3h96cZcSHiB5p7Bmn22/A+w5y8JXxJTDJEJ2SNzPfL4hgXBbkYpoNDQbpogugBzEkFO50Gi+Jfp8Dm1+sOA3Sgh2aFpsRH9M9MAvU8ShLQqEtNLUEwLXV7AINUTBVuyFx00F3pbl38Yx3D++T0siJluDOB6bhoao4A1qdxA2b26BL8GEJQdRaZSSeRsdE0nIX0lra8pMRscjUehKoxVGYSFVi7SJaO6xNVIeIHioIRnjbdg7a3EfPmOfUSaRW+X9LUSSBJ3dviJFa5nOlsEk62GStaKTDojrj9M1zvnR2yv1Nz+/K9/UPGr/3B7e8d73j65c/xivdO7z97p/H+R3V0awvInWKfnYc2xzmS+S+qj44tG7RVSDXxfyxS8KaLsL0shBbXNMuBhxpQgAuxWmtLNa0gkPMhSnnD3h3mMTpKot/MZ9bIN0pIlbnN21kjtOJXbRyfSOB3+UaH6OmQdjN1ibqRhzzyhyvx4KTfVTtIvUQ+Y6hIrCS50qii34qCpfAxHLvX2tLnwL7IC7qujrD9u/T7l+ivV7jmy2uUnifcPlvVpb8eI+NWSXs7oOG0YpNaxh9yqGjia46Fs8+yei8rI/LYyru6XFE2OlDohpkD5SCGEVUzvRJocf7boFckPuuQU1F3zKK+x1mkXp6jh9BqF4WGNRSLCiu6fw+hTj/v54Z1OjsIs7ZAQpxK6vJQa2f+zsgqIywKOwI5iMXLRYO6sVKVzJZUullAr3IEbnzuS2OU0rSnav8iBkH7GAZxppxzA73ULJo5LU6/j0LMV0nTAWqspKZUEvY78cZqt1w7zOaz7078kbY8sh27N2B3eEdtje/yubxp3l2/xUenwae7SVf48PmMJhNhSHl61GTBd7MeFaWUB1nSE1awbSGlH107q0jAUOKvOP2+f/vwU9bflj/29z7g/8Uqt1w/8d+K7r6WeyvJeqrVgqSKheudQ31CZXSfG284Wp4NnVUVlMnvRTZdYSkDCnNe0GlS/ZVQT3OSFeAFIr5S+VOWBgNdFqeS4iJ2meuuC7XYuLQv8COg79JhuLD59MX9ke+PT50fEsI1DHKhFvnilG1qI4aKaVD5teJSC1oj9okxizmlhZ6nZ0bwUK0ihTArVaoEDDhXJzU0WdRKUwuEJ8iKIMjcRM9Z7rigal50r3HldLcO/te6voM5TQ+9EcOopLMXcK4lDbS4qEN0TwvTgtfQaGrlAOFpTXfWnnsJVijPC84XlQVUcFlVpjz4h4fx5lbuGvW6GFFdTij7h5Q7W9ohlep+ie4/n3a8YJhvEQpLe4Ff6BLI330dDFw0J59dHTGc0gVxiq2ysgbmlV2Y7xkGh7Zlvfdgae+5yI6ogoLkXoxUgSlZ7EgeRIaXU7jFI/Ev6VbsjBUC09WHJJ2Zj0p+5w4fZv3DeLuCVZPaJUpcKi0ggapyaoggSDGeUF7+FFa2zLPO4ZBHL25nX0pTjt/IPhu4QR0JAJ1Kixbnd0YWbCD55i2hUObbn08+64/SMgu/zdLhUWsLr/BJiZxuoSH+TDifUc1RILXxCg30I/Uj/YNhh+vJUhEZedCdlod4TCOHnx2TIciRh+L0zEMCyceIqyPz7DjU8xhQ7V/wOnlq/jTh3Tnpzw7t1Qnke1WjlS9CJZx2nBTnbOufyNn7QOa5iFPL36O68svUCdw9Phc7VfVjKSYXWRZAMwMTh16VAioECFmofcbHMM5LOTj3fEqqzjfWqosThsdsjM7ZTd14s1XK+AVNtrQwuQmBiaRWgXHXmeheilS5033kAKHKNvuE1Nx32Z3mQeix+WFeAlNvEucLu7pErq2FKcLb352T8/hiEtx2kxFqgX/TVmWDDhtt6j2ARPqpzyKMIAW1nXKYabGr3OxMmBjS4zj9LsUIyl3KQQSPiWskk26RomjKolFTtoppV2xRlNrTZ2fdxHBOgJdkqDZQ3Rc+GEKYiru6qn9s/AZkYN5u81Z3jPxqFN6fgYoVzykLCB5VHQ4v59/Vwof1KDxsYf3HVqnO5EepYPkCF+0uIZidMQwitN6IU6X+cLohqY5Q0/hbHLPvi1OF2Y4R+7pxYaW44JbRhGScb6EFBhDpFZ6Eqo32jKEkTF2aNVmpFdLiCO75AjB0S4wISkJpzKkRPAHuu4x1qwwdkOrLSfvVzx68iA/rjAJFC9SpL63tcTEJFLHmHgcYTw5o/EjdtHlUcTlvn/Cu36PT5Hvae9RaXk+j1zHgRFivnajRuWOkm8kTlu7mrqejNlMruhZqJb7uczrNTEGZg75iMnMySJWq3wOxQmPJWs4rwIxSaEjIuJl1LImaqKZBBE0bBXUGBEYEJxHALosqImTGq6iAmfRXcJeJkzlMZv3Cc8eYV9+485jrzdngvjo98Tg2VHwPjn7IfTSsq01OlRELx1awd9i6y/aCZPRaCAYNRc8Syjifj9zp8crgt9N98tSyIvxeSzJNzUq8E1NXZ9jMpZhDvaaC2EgBX+bu3kkAFgfhSN2LrIb4GYH1WVAXX0V528kGLFqeGhX3NcVZ0qxMZHWhEkwCjkIXT4RAUbHlPEoCmsjtgJcFmbiLPynbK3VWTwpYnUdPMpElPGzMDVUELSIFnmZ8iyj3cYcmkjUcksr3Tf5fhkJedpJ0xwOxUkt52mIA13/PtV+y+mjB/Rf+0380lZxtur4bd/zwQKS0Yqf+IGGf+cS4vXfzYPhKY8e/2VM8tO9V2YWeV3KPcKlyGACQxL+vQTRLUTqLEZPH+eiTRFqw/R7wuSQLvcvl6KsD/L3l2jhI3Fa19L9ksXplIJgPdyOEDpSctg0C00udxf5FNBJ4ZXCIp1HLglOyef3LlUEDUHJszIoTA48bXLRv2oStk3YVmEqNb32YYxEl/B9ohoSD/cjsWsYWRNIvO8ODCnkTAlxUtc5LHFrKuk8DSPDcEFfbbF2hT28TXVzSr1qGKqKvj9eFVVWjs107D/iGruygoJbVYrdMHcGvojhhFg4CdTOQ5/3k2EUvIcZpQuk4AlRFhWjzD2hOyo+J2Lu0JTifcnl+DgjfojTHxAR+gO+vhxTMGB2TwMzf/qOUc6N4p42spk9+p4Szln2T7OpoDzHgvlgChYnu6rLNVr2b88ZlKZuP48KgvkwzhOHhnGcMR9jfhlCnJdWKYv+ZU1qTRQTXF2hqo/Hn16O9rOf4vVff4vPdee8Wa146nsO/RP2+zdZXX+d+uIBz840j28Cm8bz8nn1ofuZci+Axf6orL3L3korkq2PviaH9lbnNRyx+McUec8dslB/Dv+Z5of5U9z7g/8Uqx/+3ah2g139l9gvHNAXK4yr8lw4d85opfir3QXjEHIRNk6JVdYCukEt0FYpmVygzq/Dc9lXWX+IUrCaXNS6HA9YJTFr1mG+TkKEw/jxrptvj2+P/18Z3xIC9W5MrMc0tTpUJh1NbkWkPmJRp8y3W1y7830pzUgMA8MgTubaGKxpaIw4nI1pqKoTenshacz9EyLgSTxJjjrCfV1B/5h3unfYbD7D2cl3UlUnOHcz/d2yGbN2Iy4+LZD8ZGuCNXc6p4s4XdUiTp9sZeFSLYJlihhfGGVwzC+TpOU0Vbyn9kkHu0PKCfCWfrTs+i0cXsN2303Vjax2O7bdFadXv4obn9J179MPjxnGK7w7cBkOXIQB43tqFO/Y/RSmdKprTrXlTFk+pWs+ZxrG6pQdkV8YL3lvPPAsDHTR4ZVHpSIoHd+wxGUiYVkojV60jFpmYbqMpRhFCSPIrKcSRhlt9aGsbzSCVYHZSgkQpW1W+YRxC3eSdyh3mLEeoRdXb2bZClPwKc7vJ853CAdicpiUaFC0SrPSDa9Ua9bGslGViBpoqXIf3VznRPY+haMNwZDdKiE7Onxuo0y5Ml8YhLM8M7sHU366Jj+ejak4NTVayUJ+jAOju2LdjXRjyzjKJvPDXKQfdXTd24RwPblejxxYHzBEVBsWxaSC+Rgnjrx8Xxa/8phbzOWarOv7rNuXMe2r3Hz2exlPDXoFpk4Ym1CbRGwUu82G/cPvwnaf4+XLv5OzX/33ubj8Bfz+XWLqce4C564xdk1dn1HZFcJ8k0A97w9ofSmC2r6lqSpidYLrNMHmivnE9sttswvY2Cep9m5aw6Y13Ntarg+e/RC5OgQuthGtI5cvGS4vXsO+/zLb9x/RXL3B9vAmNzdf4mb3Jv14ybvuwDZWnOiKjanY5CC4tbFUSXMIfmLVr7TlLM8Fh+B56ntuwkifz80iBE5r+sLyzJgPVUIRlTgyb4vTxXlZXsfbYYdyDglb+oj7Vm1I1Rq3Wj/HOdeunVjyyo+oMFCDoIJcc1RkVMpIKlToSYwMhZccE1ZpRgJDMnSxhGmJSDmmmlYZVsqwUhIyW6M404YVVkSB/LCuGrhKgV0KXEXPTXTchHEqBiyvbznPZ2Fa3pdrW0Zpwz6WZMndE2lyUY9ul7s7eoyuX5hAPQyPQDGJ0s4fjtEb06kwu3BTCni3zz9TqmFanIumxVYb6uoEo2tiCoTQSVdK3iTHKCTuaXemcrFTyfGatoOZAZ6IJDWfn1WaN4fluI0IS3wXBINUoTjVFZFEHweG2BOz4IKu6WOgSyMmek6UQSlFg0aTGJNnGJ/gL/d0w1PO+vdYH96mqn6cN18549Gria/dD3z6QeDV05FXzywvn1Xf0H30jUZxMG0azdnKc38TeHuT+FW/pnv8Bifvb6huttJmb09Zta/QD0/p+vd50j1i7J7y6XrLZ+tTPlVveOJ63nF7bnxPVC0mthjbou1qyoco9+qlOG3tRtAepsVWZyjTTpkCsgmf5/W7OmTK3C/Bw+MRMmZ0N0fnQUzi0vfJ0xGwIVCh8ClSK8OVHtkugqDP8vpllR3VW6WnELgdkTEpdkGx62ouR8uDnePB5YBe/cc03/l91J/6DZgHrx8feC0utbi/wr33Ff6a27GPHm03cq8IPXq4EdfhkktZ5cLLAkVWsHDBMBXXbRepupGq67D7a+ifEtylZEfkDAwgH7cDKXlGt/tE59I0ahhXFavVPaw9PQo3le6I/LdtTWwUbRs538Dpag7+7cbEdRd57yry1mO4flNz/8t/nXff/ik2KfCpest3N2e8YVpeVRKK2C7QHoM3LPbuU/BdCcKrbJw6Cq2NKBNJAVIAU8kPGiCOEV1rcUsaTX2mqbaR5iSw6T0nN55714aHNzWP+5r7oeWhrggI5/TKD+xTYCSggj26BpQxEDQJj0NEY5N5vLlniIqEj4794V2cPzCOl5z17xOe/jZ+6tFLfPH9G370uyu++7W7O81eu1/zP/u7a/6zz8J/8TP/C773L/00X/3Kv4vuH2eswCxSBxJj9Oyj51kYWGnLVZBroVV2EtjKWIrRBVflorwvQnfprPJZjBYHdZh50FmY1pl3LyHy7VRgHMfrKbg9JofKTsiEwIkg59iQ5oJicaOzQKYoxYXvabVlrS1bU3GuG+6Zivuq4sxZHgbDfe/YnHpqnahPLfbeKeb0DL1ao4wldnvCfke4uqZe73nwbODh05ZXDyd80TR8ze+58qMgKqKgDCut2eaQXYviqd9zff3ljPLr2PodW/cDVMOn2Tdr6UpspZOvqecspWIo2PWRfozfcO5ftxKqvaoUqzq9sJDEmw4qNe+hdwfoe8X+WqGuE+31Abu/JvZPiH6Pqc+I9Qq7v2bfv8PorudcnSjFhlYbtkaY7mVvMnHSy1DiLA7qWFSemkmSkreM85H3y01/Lj8unNOpdDAaLQuuEo64FKlLuH3wkDteKD8f0hyuescw+a1GOuiElc4UlJgUoBQq6YxaK90U85otUHppySaMeT6V5zkIjs7t0NpQAWa3YmgUu0Nit5IMGhDkRxhU7uKU3JhaaarcPVCtFXq7xZzex9x7+aOcDs+N9Q//GK/s/iy/9WrH1bNz+hj4Un/FxbNfwtoV56blWn8fX3w9EeJI7yIvn1Vs2rv3ebs+0I1pCuScjm1e58d6hW800VZ5nW8md7UKajq+qXD/leDVCkYlpMhbww2P3IFfHNZ8/j8643f8J/8mv+9P/hO0n/8R2s//CPcevcl3/IWf4tFfveS991Y8HSqug+G+WfGqrmm14e1xz6P+MTfDE4zd0jT3qKuTnDe2xpi1PO60QWs5a3X004yqtcZoQ7AGNcj9vKw6YxSNZqhF99kPYkSs8yErx6WbPSXfHh91qP8vOKi/Pb7h+JYQqF3IAmtKMyQ+pjtPsClUIrfIG5WOEpEds4vaewkPiJUieME/xHqFDluM32HDKSEMVFYYmeN4hQqJhEdhGFXgJjppO8TwbP8mWmlOtp/FmPUkkhUx5WgsNyAFIbFYewjKccZ5FNd0EadrU96rSaC+q2IeoppaQUoC86qWxXtfQ1NLSvxYw1ArXGPwTYtvKurDmgaw/VOq+gFN9w798JRhvKAfnuHdTpweSRx/h+i5DiPnpuHM1ux0w/1F+Mp9ZfjB+pyHZsU7bs+7bs9VcPTKZ4Elu63yBL0UUFWKxMz304gbQlAqhhBGEaryJvZ2InYZxbFemE93itO3Xgd5gUScltZaEacn7rQfIQf3LYOHimvW+/2ROO3DnpRbFVulOdEV57bhzNS8UW3Y5k3xSmlWIMnjSlpRAQKKMcHOiKtrl+LkvuxzeFdBBvgU2QU3OTB9boMsgvXzBNY54OXU1KyNJeTNU0ritDTOk5y0InnPCxGwQugJwRCVQUWD0ZkhrZ+fvsoitwgTcqyX4aYz3kMcQkuxujgvDUr1eL/DuR3D8Ji6e4cTbSdXtdsYWE/dWOhKIvE8mr0+5fy130NV3+fy8q9zffNVnLsi4Ql+n4sCgbraAhtiDGgtAUjat+jxErtfY1crfFPn4Mk5GEMKSRCqYyfBJx2VVZyuLWJtlvHSSUEJRK4w7HiZLdBAdv8LdmEYnqCjP/p9rZ4d9o02xJjYBTe1DZ+YirWxaLUSt4If6DMjrlzhFIHwrvbN29zaI8THsTi9RPtMad/5a+SA1FStCU2LW81hUypGdJCOCpXxK1oblDfocP7cDXRGCDgSkRACIQvFCrlOopIOA680TmkaZYgpTWFAsrkX5+ZKGUiRgGKllFzzKvG6TjyMmjEZdrrmKkUurOM6ei7DwD4XA27CmK/ruZOiHNnjYtTUYT45g+fYngW3LwVCdDNe4wUxPpw/oLVaBB2Os4AMR475+ViLk1DYwpHCmbZ2TVOfUlenSIq6x427SZwugrTcS/RzFqTJ2ZnFaxGppZBXHNYpByYuW0Q1s1Ad89tIQicROxslwnOfmcJK1bJ5Sg0hOg7JU2XOcXH1xJTwsWfon7LLQtb5069xwme44YzHMXc/+cjoHaNPvHRiOd9+sqVdaQk/HQWpMPrAO6eRa685+HtsvcPkTiBjN7m7Qq7Fi+svEYYbYp14ya54pVpjlOLdcc9l6glBjr3PeDNgEcRq84Z77nDQup2KSNMyKR4L0/LJInegYJ3u6J7x4YDRNT50hNDjwyAOfGUEpZVEHAwpYaLHqzlcNKaEQ/A6QSfOlOUMk69LRZdybSq/9lcJQtAwVIQLxdmXnkL4JdI4UPV7zPnL6JU4XtM4EPdX+Kfv0H/5S7zj9gwkqhz+lDICagoDzkOzFKcX7fB5/aujrE2aXY/tDuKa7p/ih6cEvyOE/VFXUeHOpxQIvvtE51EZKq+dQtPeed8GMRBEW5EqRV3DqmYSp2MU7uhuiFx1cH2t2Dw90F9/kf3+bR7oipeqNjunNVudqBdIj5BErBqjHB+TcQ86QVSKykjAlFZqckGnIMdQON7ipBasAFmEyo+7smAkOFWZcuXLGQDIQjoYHprV5AKNXtBQTvmMG5lb0JU202SckAwHsqN6Ei5gchB3/SPs7sucPTlj87XfzFfaFdvGUVvFGw8/2PH44z+w5fHNji9e/y5e697h7a/+X7FT1888ErIiSCkSgsOiGGJgpe0UErvMPShCYlgI0SGlo46fIkyXwmhxTUeF+DdVhdZWsnlM7qpQGuf2z2UMFCdpfjUWsAR1ZFwt9zoQHrYiMYaROnp2yrALjoPx7FNNZ1o6VTEmA0PF/Z2hahJ15rmqusGcPkCvT+U593vC5SOS+xKmGoEeFzTjUBOszBs3wU0ivU4zg3hjKsYUuYgjXfdEiqv9CrPbUldr9oc13qrc7TuHZhfeswQTpo8kUB932704Z6ULTMvGkIs8fQ9xUDQHhxl6cPspw0MpS9Ra+NN+fxSQmFKUgESlphDB6bpZrGFu9dc+57AOiSOsxhRPEyGW0Ngg/RRH4rTwUj7EYb1AMeVw23QrWPGjUJKMmgNHy3M5flUWLmpmnMnzvV3cWheF6V6ndI/2Lco0GB8ZnZXXZuGgltcuUYKhq2yMqFXCVhltVNXodvOx+dPTc33wOtUrr/Hg5V/i1csN903LiTnw2O/o+sdsD2/TXr/B7rDm4pDYNpG2Chj9fPCn8xKUG5JoFrFMuTCtGYQ/DckIGuhoZOxbmmaDfF5lkVoXpGeSPfET1/EFYEyn/JZ/60/w0j/6T6FPHmBffoPT/+5Porf/d5qfe5vm6w31vsF4g1GG18yaqpbMmffcgSt/Pe8NFvtOYxpUyDeT/JpoLd1/2guHuho0zlvioEp/oDxGaZmcuha0Bnfr6Y7HefbfHt9gaK3ZXV6LSeVj8u0/6jjsdnjnp3Pt2+Pu8S0hUE83aS+Cc4jpzhAErebKqojUs2Arbgr53FMWAoqoIWkIVhMqi/YVepRWcBMGquw8iXGDNa2IfVE28grNoCI6enHdJLjefQ2As9PvIUZZwC5bzqcRj+9wU/ieFvYdzEiS8jaL0sLuE/e0Eje1OhaqYckvE2E/JDmGoxdXSeeYOGX9KNXU3ipcpRgrQ7ArtH8JW62p6nNMdYbt3qYez6mrJ/TDU8bxGuf3dGGPy5y5Pgauw8iNddxkXuCZsmzRPFSGrVnxUNc8tCu+7na85w7sohfHSUwSjFaciql4fY9FaphlNnFQFQHLolOL8H49GHFILm/2ZWN3tzi9OK/KTfGWc9o4L+1sWZjmlnCXYpgwH953R87plBxNktC5U1PzwLacm4Z7uuZVVbNViq2CVkdWi6Rxa4SXV8ZhtLig2AdDHy27BDst7q5d8uyyWH2phymIbcjBazHJhuH2YlDnsLeNriY32eFoYSkbZ+USwasXJlCLkK+mayTqUV77OxaB5aYf47FAPTkL7hCkl4K1DHlOkg7f4XyNczcoZakPL3Oy+wzu9CX60y1uY6agUhB3fQQOL79GW/92HjYPqOuf5/L616TDIg7SzjiK4FfZLYXrnKK46qPfYYZr6v0G31hcp2eBOhfjZL6T0JvRJ9qYjjiS3+yorDpyLdxfy05Z5opjkbqdjm3gcrykTx4V/XH9RhcsjaJRhoPywlEOslndGukGeLlaYRBH0yGFD906HXOnl+zppcBljsVp3cyu6RJ+mMNRl+J0qBt8s+DWxYQKEeMDOmhUjCStxdkQNjlpfh5zgG525qaITz5v0MUdM6EEKAtj4WIegifqRFDCxZyD2MRRHRIEpVglRUuiNpFTlbiXFK8kxT40XOmGC9NyER3PwsgjdeAQPWMMjERCFgeWYylOzxuf5bmUxa/MZi7sZhBx9EUMCYMlo4985u2XR6ImNE55n6IXES0/DqUrjG6o6hOa+jxfV2baEPgwzJ0SBQ2zwGwdHY/l6wfTc5Y3PwnWMTqCEuefyUL1Uqwux3TIBQab+aat0gwp4uhRscpOwYohekKKVMxsSlMYsKHj0D1CKc3q5ss0wGn8Dm7iOY+8xvksJAdPN0a6MfLa/U+WgNXWmm1r6F3izCXOTyPeJ/bO0g/3WPkRkwOvUvJU1QkAfX/B9fiMr443uBR5rdrwsl1jlUaNOy5jjy+acrV97vjfHqXTAdMeFe5B7t1Hs95CrC6fLwNOYxiok6eqTqU47HY4v8uF4sMtVIyny9duKCidLLpFk7tY8ou+UguRGjW5qUcSuwQETRwqnr5TEdwV2/0vEK4vsC+9hjm5Pwke4eaC8Wtf4skvdzzynWDOtJ3uUUR/JE6XwhlwFOq8FKq1C+iYqG+uJAyxf4Ifn+LdFTHM3HeY75vlGvAFp/UJh9KyjpK581jkKPddpS2xqtBNYt3CtlET3sP5SO+EPX25h+FKs714l8c3X2J0V5xXKx6YlvvKcqagWrB4XBRhOjC3/QcKVzyBFsFQR5XXfs/PaSkokhZnZAxJjCiZU1vektYo48nsKkDmnpgUsa95qGuciVOBVhBkMSNmFDotwnYXE8hSpJ6lV/l6DD3DcIUx71HZL7F9/5xx/QN8sdbUdkQr+PRLd4vURit+z/e3XNz0XO/+PtzX/kNU8pg7RGqmZ5UkGD0JN7rWhrW2Eye4iGjF6ToJ1Mxdez5fTy6L2J6EU6UIucB5mDrfv+V3+1sBuAVDNwnSk3lFy5wxfe1YBJgKjykwxpGBQBcFM7KLjl3MQrVt6UxNCDUPdzW2SlSNx2wP2HseVWWRenNGCp547xVid0BV7wMHYuxwjxSjaxhtAg7c5MwOl6K4NrWmSXIMhxTY+Wu6/knOJNqwutlQ7V9jrCxOF1TjvP8zStaD3ZjoxsjGp2+YRfKisB7L4cppj+wr+14RRoXuItXgMP2elHN3ylweqwqdTSBHRWHixJ6ezqcFe7oMCXjmaKkSUiKo461ByC5qOMblpSjXbxGWJ3G6PIm7xKMwr55SDPK5GzLfJBDH+LFyOcramOOngYTY5yLLVKafn/9clCnn/13rmJxrE3pUaDAugDd4Lx2ZhT3tPCiHFO9JGDLCRyWsjejaSLdA/c2J02XYl99g8/CXeenLkZeMmK6ehB39cME4vM/q5pKb3YarTeKqlQD3YjIsInWYivFpMusEWUhPf0fnc2vqdIZFwVs6M5KW0GSVEjG7qKefJxcMlJoK0xe+J6bET/+FV/gd+3+NV/6xn8S+/AZ6c8bpT/wh9OY/xP7sr2C/EjE3LbU3vKor0ZhK3ow78MzvGQparpa5QOs6v15BNhN+fhzS7ZGP39Dg0URmkbowqa0VxKvW+VpcDDd+opftb7rxEz/xE+z+x/8jfuY//s/40d/3d/4N+Rt/+n//p/j+3/TDfNd3fdffkN//rTK+dQTqLNoUOLzRTJPWN7Lq375hL+9LxfmRDARrMLYSrlFOkta6wZo1wYwYu2Lm6cnqUqHpVURFL21kKbDbvcnpyXdNE9M3GlMA313u3VvPYXaIz+K0uKhVbgd7/liIi1pE6tokxnxWCItWRO+9LZzuRK9h1IqgNcMg7fDGVhjT0JoWOzylqk6pqhO6/jHDeEl3CDgG4oI7JwEhjhsz5tT1mk/pWpyCynKmNrxkar5mG94e98Ktio6oojgsTM2UPDxBtESkLhwxD9Mmq7T4BL+bW/tDL8EXS0dSTIQP2zNPffIJ5UTEskPEuIAdxikUUWW30/GL6Ymxz5zVA97vCL6TIkcaaRKc6IozU3Num0mcPtP2SJzemEBrI00VqKuY2YkpJ0jDvTgSnMI7Rd8butFycIZ9MFzFhp0Ssfo9beljYJ9Kino4YgMuRWqb3Z5bU7FW0np3Q8Ita/4xTi9HjKBfgH7lQy+tfHkBVlo9jw7rwrLwQc7o54XohaB99LVjpIBWPd7vxfU8PKbpH9HsX+fk5jO4k3MRqldG8DvIdTpsK6K+R9P8rdyrz2mal7i8+gL7/Tv4vFB3wOiuqZk5lDoOBL9HjZfYXUNTN4RqNSFTmhq6Ufj5tU3UoxQonNdU9u6ukY87lo6Fs9VSahPH7HU07MNLbGJglTwhDOx2X8f7a/oUnyvIVIWZnhdqMbupxN0bJzf+y9Uqh6v17KPPrcZpam38RuM4JHHBls7saW2a2TWts+BV8D62ItQNrqkIlVqEnUqIVjIaFSI6JukS0EY6JCC7fTI6KI/lfSDEgYDHZWFCbipy7kWl5fqKcpwypYIYE20WKkqrtYjUiqA0ddRSpFKJ1kTWOnEaFS9FxavBcKVarnTDr2rDZRi4CW5CrIxJhGqnRCA/wlQcnT6zgzr3ncrCunw1xds/8E0P5w4olYgTniFQAjFnbnt2tixERJAFvrVrmuacpr43CaXC9e9wfnfr/NBTyNbtkN3yui1DFI82jqqW71ERrbQ4qAhEIoGATrKhkMKFmlrmixhjc6GvURqVIiPSUSAOwZqAJ6aIzWF7xevjCZlJ/YSu+zoATfSchjfYu/s89RqfRbxuDHQusao1J2vzieaEykpI3bZRnG+kUD2OkW5oscM5VRgwUdrttRqwdsV6/SpKafbDBW+OOyKJ16oND+2KSmneGnc8DcLmd35DXUlwkDlygR0H2Up4kCFV64/+4PO9V8WAyu5jE3pBZeiWKvbUfk/we5y/YRyvcH7H6HYE1U9hnX2K+BTwUYpMBVcw5s6IkchWt2yVYqWkq6njWKjeJVlnvX/ZMo4jQ+c4ufoKzUvvY85O0e2K5EbC1RU3X7nh19865RCfgFq0b5e1RPIs8xdKXkb5WJ5zxETQg0N7h+0OpKuv4N0V3l3h3PWEPll2Fi3vnYKeeoG7Ww3RVlhtpuurDBEmW4KtMLXc51aVBBWKKCEC3FWXuNlB83TEXf0q17uvoaPjnj0XLIMS51/B/bmoGbNANS5DyhKyOEmK5WpCL4RtCcTLRTIzu6qVFgd1ClK8LL9AAtJsFhREzpXwx5GQFA9jTaCZCo8+RVJ0mV/uSVEK3VpViypXPBKplx0bCkEvhdDRD8+w5usYu+Hk6xueNd/JF2swavxAgRqEXf/j3+/5s4eW85/9Pp5d/iLrxOykvjV1BMjXQ2JQiioF+uinPBI5hlkMXFwr0qXHkWva5a8Fjl3TWteTa3ru1JGcgRQdBUKilpkUy/u+0jmUep7rP2ied24/4X+6OGfo7EIWqm3LzgQ+1UlXldYJXfeYzcWEO1DtRl6uzRlNt5MwOfN1YEcMB8bHW8bUEKw87z6GialcxKuVtoyZRz0Olxzy3tKYNe31jmBP8VqjpgBPae83el4P7ofIqg/fcM7/qMzqjzOWArX3EowYO2gOHtsdwO2JmXGvsikg2go/PMX53RFmLxGplDhPq1sicWRmUZvFeXb0/LJqLVkOt/EeudgU5UAkfXwwyr5xCkgMIkITveA8tMmO6/x5DNL5Mg7E0eV5QeUg1k+4NlIKlRRRCapmQauZ3koRhqN7Z1gYXgbZ5/oB4zzK1RJc6eW8MVnQ1E7mklzeyVxs6RJRtRX+9McMR7w97PnL1C9tuN+OnPmKra5oULjxhmF4wvrwiO7waW66xFWf2LaR2oas6aQph8D5gvYQ40zM3S3kfAqlLMFWYirTerpXHhtZxFkdM8KuzMkmH9XCBJ8yW1LiOoz8l25P93P3+LHD/5lP/eTvp/7cDwKw/dE/iL33M9R/8Wdof/XAo4uWXVdjqKmNnnjjtTvwNAwMw1NCGAnRobXMz7aI0x8gUteHBhUqfLDEoPBBESvB/ficP6YXXRZlvMhb+N8MY7vd8kf/yP+aP/K/+WP8yO/9MWz1gjhIeTx5733+/X/13+C/+PN//m+YQ/tbZXxLCNR+wWats9g6ehFjtWKG6X9MsUxncQCtSJqMfRCukbENyguLWkJ8aqxpiNHl1PiEhNtFQNEjrb610qxiYLd/k+3mjWlyWrKSi+u2iKYqQLJM7t1b96NpPCdS6wXKZHJP3409mQvHiloYKYxeBOvapKMQyTIBDhpcJ6dQkdoNYLMYVMT7ym4JYRDkR+gZ8ITsoiwJ3ofoubE1ptpyhripV0rxhqo5qywvmxVfHW8m7EdHn9nUelqoJhYiI3MYks/BXksBqQRo6fKxsmgvi6RQ2UmYyo35lKjACWIYRZg2LmWB2k1Yj0mcTn52fIU5uC+GHueuce5G3FuhI8aRKsFaiZtCOL7C8q2VmqqopVXVRU2VkTYgf8ZUiaoRkdpU+XGHRHABNziGTtN3mm6w7EbLPhi2tOx0ZJdqdinQR2FWD0mErLLJKOJirTTr/LhCksV2SILCUcpIwF9MRC9hU/72DuebGN4fgDC3wH6I4+62CP2NBOjl99z5/ykSJr5bEBzLeMk4XtAOT6m7T7Hdv447OWdcifs2ZoHTN5ZktkT73azrM2x1Rl19gZv9m4zDM2IcGYbL6U9pbfD+MLW16+GK+mZNqCzDoc7oIQmPksJRoraR2irqMaI1H8hs+7ijrTUhJratzg5CmUdjRgrchBodX2YdA+sw0La/TNd5XNijUkTHMLnuY968TgJ1FgF8iuyjy8WQmhNT8XIlItZ77oCLnqRkKV5YwEo9//o9z5q/hftYcOcnpIe2x+J00xIqK69fo2TOzwvfGBXaSUdNiomoFcYH1GqN0bLQLW2EMxM3CGYmRbzf52wCl3cW4qA2Sh25qauoCUoWyq0W2TPEhFN6Qn7UiBOwRhOCJiZFmyItkcpEGpvY4rkfNYPXrNyGxwtH9VUY2EU3CdUuBhxp0WHAxO8sW6CJw6wSMTvkIyLuvjgH9SG/tsXPDWTYRcF7ABn9MRLiAClh7Jqq2rJqH9I29zM6y0/itM/hS1rp7Mabw/iWYynKyQt49y4+pSmKUu4IWuKEiiMvEXEEdJLNjiZza/PRdKT8f8IeJaXc5p9ywVr4syN+Ys+CaGlBeZy/4dC9lx+Lp0mebYzs4wOeOcs4RvpRguRW1ci93nC2tpysv7l5QYrcmlWd2DaBsy2MY+LaK7rhJAcw7bLzXTARdXUmP6w0w3DB18YdLkU+VW94YFpMo7DDjkdhwLs9SmkJdZ5CLwNak/nj0kZNvn6TNs8xl6fXRt/9HAuaR4UwYbesaUmhx/gdwe8xfkNlT3D+htrdMLprRrcjDeKCHXPhoGBySqu+S/J6b5XhPpb7aFYKtipRJ0WXsR8SpJh4NFb0QQrG3W5k86Sj3e4xrdwnxxt49HbDl51lSPEobyHGHkKf5667l+5lDWMA7Rx67GC8IgxPGLp3cO4anwviS0FazqdyDczBks69GAf10etxR7ixUhZtN3TrhraFbSMOanFPJ3oX2Q2JZ3u4udScP3mfy5svMg4XnCjDy2bFfWVYLdzTY9S4LEyHtOielD+ISUxCNpR1rbzZSjoGVV5XaQ3KKG4vPYQ5G9EZ5quMIea/kYKjDeKoPI8j9/uaoCyjqedwW5+IwdEXfFDUJGNm9JAGoptE6rhwUsucIEU073Z0w1PM/k2M3XD+5ppn9jV+RUd+8NPDh6I+vv87Vlzsd/zlz/xDDOMVw/4tGpnVpvtBMaomwKu5/X1MkVFpDAFTkAyL3126hMIkRqdJoC68aRGE7hanS5FwDrOdMWyTUzqLTTrvO4y2wq9fBK6Wrqrys+Vcd+4GH/rcQdHh/YE+dPTJcRgFkXVjHV80DeMh79V0h20vMafvYs9fPmLJ15/7QfRqi64blPkqcIX3B9zFhpGGYBKP6SaRGkTQb7RhkwT1cRl7huEZ1giL//zyfdbasDcbvJFXQWsRqfsxd89a6MbIrhfX6QfN92UvXMS9D7jNfewRPChPZrgr/F5R7QJ1N0zu6eD3Etxn50KjdxKQWEZKUuQtIbsT1qIU95d/M6WjYkhZO0Eu6i+u+TCJ08+7qBcHJ39PXoOYOKE7UvAw5sDY0rFS+NOuJ40DyXliKGvk4vz+ePuf513Ustoq6OxyDaY7fyI/vBgIYUDrARUtOjTT/lY72ZsVB3VNFqhjIqaASlkzQLK8rE3oSrIRvtmAxDLMvZexLz3kZPMWZ7uGE1PTKs1V6BnHK/zwFN8pul642FeddAmKMD3rG6V7dMy6j/egfKJ0TWnT0DcVulrM7dOeQDqSdIrZ6CZr24B0ESuYukG0UlQI/5w8531tvJHukS/c48f/5J/js//QI1Y//LsBaH/gt2NO7mNP/3OaX9pz8xVLHTS1qiaButKa2hnJ3fGXxOSo7HoqENvMpE56NvnorAVZW6Fii44JHy3BK2KjiFaEaq9B24TNJsSi13j/bRH0444//If/MP/sv/DH+al/+0/z9/6T/9gL/d3/5h//l/nbf8/v4kd+5Ede6O/9VhzfEgL1FB7mYTQyedU2328+gnvoo1aUk1bCKDaGErJXhFh5KwsiS0qWkFtIEsIA7fJqoNWGy5uvArDdvIE164nLVzZlhB7lR+EHLkZxcnyU57FkTi/RHncdEm2E3V3E6i1ajqUtvydN+BCzEKlvGoUPFh1TFtQ3mCQiRpUFIWM3hNDRDU+Fs+wPBCQUzUePU9J2PqRApTQ73UgIEZat0txXmq1pud9WvGVXfG2U8ILL0IGOKC1t0qWVb5kOH6PHhyXq4djdaVm0ZbsVt4cymhQz6qUwBwP5+SaMCzNvOsZj57SyHLUah54YJRjR+w6XF8UxjqgUaLKTYqXtxO8FWdR3KXKFYlSaMSrGZAhJ4UKp1PuZT1dJ2rhsqBQpJNqQWLuA2wfc4Ol2mr43tLuW62DYJcMuJTod6ZK8jTnkZulYaJXJgrniWXISvEiaW1Pz8YlBFU3+Ew8fhmkdpqbFw7wN+iDx+TnH9IeI1B/29ZQiSmnG6NFmwPnDJFQ3w2Pa/n3qw6eotq/hNieTUA2CBhrXDdG8QlP/7dyvH1DXv8jN7tfpuscioPU5KCoF2oZZXNUGc7A0tqLfvUSv1SRQG5Vd1AZqIyK1eYECNTAFpclmJk6bGhGqI/vYYNxDmuRZP3udED2pD4yxQ6WAnnVGACq0hAIpWfRphLHbp4D3PUMK3LMNL9kVVmn2/SUuIQvJJC13EzU5Pc8HLHiP5edT8ck0d4rTRfBKWhMqQ6wUqoGyBUhBQYSobwnVRqPLhkZrdC52lRvq0rXvxhsInWzqlc9iQ0LCWWThm1KiQ1FnVndhUkedcMoQVGJUmpUyjEQM9mguGJNik6C1gvvZVo5tA1WXeN0bnoWWx7rmwrY8i25yVe+io4+eXfTTAl0lMoc6H+OUWZ5R7oEhRnS+Jl6UQB2jY2kmKDiPCe0B4nRLTkTkJF00q/YBbfOAtn0FYxophPoOPxX+hJctgkUJI1skved7gkp6un/e1XEhQp5nyaS+PcocmJJFQs4CikSdnudTF866ySK1RwQT+R0VKWkinkCk3PJ1goin6x4tUDKBJnq2fqRzL7P34pAaxkRtA1dd5P4mcnrQnK0t61Z/bEd1WUesasW2SRzWIlLvTw3DcMpqfBkTeoLfodWAMTU1Z5NbaegveNsd8CnyHfWWc91QtRo77HjLz2HRk+Mx53OUHIEYe7mPluJPNgkAU2YEFCTX85X70vkgPPmYHcU1yh0wfov2u+eE6qo6oRqvBMHgDxJojJcg11iQPXOX0fvKMurEqC0PMeKm1vLa1yg6JMD4ChiDxvU1vddsO8/m2lM3cj71neHRruW96MRZWvAG/oB3Vxi7kek0etBWivR5fSMHIUg4a0ZFjX4vrukcpifC9OySXiKJSudACY9M+eMXNsolo+zdRcZKOpHO2igCdTu3dYt7OnK1A/U0kS6/xNXNr6PiyIkV9vQ2u6dBhKEiTo9pokED2Y12Cw0gWTSyfrKViNSmkvX2UpxWmgkfuAxDSyFIwKEx6Fqeqt0CONoYScFz78oTnGWkYjQJl0IWqhMpenoCKSlxo0zGC+4UqfVCpI5KCmvjcEWnK6xdcWI3nL1Z8bR6yC+/MxJi4nOvfHCL/m/+zjV/7jf9rbwx/H38+pf/T7jxgioXJ4u3dengzLdFVIKQhBms0jGygOX3T4WdLForsukjuxlNjdF1DjDO13bOt1gGmUJ2Wy+F6SxoW9Pk9yua5n52IM/7s6lQXR5XkkyQ4Pf4cMAtClPjeEXnDwxhpIuBM1sz2i3h0BAeKZQ5oOu3MNtTzL2X0ScPpt9rX/2ciHnaAr/Gw3CJ94rxSkTqSOIpPX0MkEQIKzkd21ThUmTnd/T9BVrXnBy+Tm0aktbs9RqPYlzkDxU37G5IGB0xOWztrrm+z5kCBY3gPgIr+aOM0SmiEVOKK2iPbhT39HhFGK+IpZNVt9P8PY4X4p4ue7YYxOSUzQz61rm0zNEoDtfb6I+weIu5OFUczSUkMQWeY0yXgMOUTUgqO6yTGyd8EgCmBCSGSZyOfUccg1ymefs34YQ+RKS+fa0cDw0qSZjfgpcMcv2UPoolwmae1xf5C2EQc4ZzGB9x3kzIQBCBV7tASGFakwgfO8+BdY2qmikr4Zse2mJO77M5/SrbR4pN3utexpHRXePdJXofORwU+63gnFaVnNMhJqo817ogzPUiUi8d1ADKtMTKZKyUOco8MLoSE+HiazFK95tKSIdULpAX/rlFT0XpQ/S86/b85RTZvXnCj/+pv8r3/f2POfnxfxiA6o3Pc3bvZczZ/4Ori0fUNy3GW0w2mhXufKNEpL7ye7rusXSIREewI1UKWLvoFMt6iumbOag9NmhniM5IGKQHtAjV0Zals8wR/tsM6o89rLX8iX/hX+IP/ZP/BL/3H/h72JycvJDf+5Vf+VV++j/4j/jlX/ylF/L7vtXHt4RAHeKCzZonr1J14/bNKy7e0rGoW4qpH4UhlaYgH3kzpsHoWiZAU4vTTJUquawCghIepQJs8tzcvIlSRkRqPTvwSsCPSjlsr7FH7UK33dO30VnL58rH0KumtUzhVmuFyTxqo/Nb3gAUJ/Vho6TdJFqMq4TRahqUH0QQyi1dq9Vrwtk0DcNwifMSzDM5k3JYX+MMvQnsdc0up2lvlWarNK8qw9ZuuGcq3rQNf+3wlEPs0ClATvtetoJPrsAwcFsrLS1QACYGdPRo26DiOruAK3Sopg3wcvO7bPVXUTa88jPxbqxHLjrEIPgG7/eEcCBkDnVKnhqolabWhkYbDGpyKDsV0ShGHamTloDEpNkmzSpoToNh8Iatc7RNIEawbcJmgVrnWF8TItUm4btAu/WMh4C1ibNuxn/0UcTqbsHQXD6bcjrtkjit99HhFVS6xpbAq4U7w78Ah0YMA4E4t2kq/Tx++jlX9MyNBY7c9dNi+COiI/I3y5+OI1pZQjgWqlfjBU12VNvNS/Tn54TKZO6mwjcV6fycuvo8p/U5dX2P3e4rPLv8goRyjTezSFAXl1CeW/Yt9fUZIxV7rdE6LrokyrUZ0UoCRL4Rg/CjDqMVq1rjwryhEf6b/B3vI3u3RsVX2Dx5I4tJjjQERkYRMVNA59bl6fdmZ0IZJTTpJkjS/T2T0Tam5lkYGSmvn2ARQB29trdHwXsA06ZUKZsxAXeJ04ZQ2Yk1r+08x6aYBFejZ6E6eVBB4ZoKYyRlOxkjbmptj26qMQaG8WrxeSKoQMoidUwi1CcFJkURp5UhquKcTlQq4lSgUganohSuNKxyuOwKmQdcVLQhsbGBaANNFbh/MnDqFfed4TVnuHQVF7p+zlX92Iurq7hCfQ5KDUo2RlJoFTegUoqgAioXGF7EkNbfck7kbozF5mviAheRQlVU1ZbN+jto25dQSroPnLuZxGkgF4xr6ursuTDiIs6FkJ1bytw5r0znWhanSyjj5CyXB4Sa1KR8DmJJyTMqj01lO5l/bTkfJqEaXHLimVIWpavpZAuqtLTLT47j9fTwYl4rtMmzDgN2eIX9sOHpqGnqyK5P7AbP2Upz3UW2rRSd2lrePkysdl7aacuaomRcrFsY1oL66IcaO5xTuwPW72UOGC8BsKZl1T5EKcPQP+Fd3+FT5I3mhHPd8NnmlMf7R/Tu+g7cg5lcRTH0svlchAPevi8/F2h8NEzG9ci9SbsqI3pazNCjXDMJ1Xq8EkHLiOEgppC7nfbTmmXAZ/FcXKQ+yTXpTGSkZlQVD7XlLCk2JlKRqKOmQ0kRWClCVHRjxT4YNoOltRGtEgdneOINu+Sk0zc6vNuz797Ljs9r6vr+keA2B0P6PAeLwByiFGtSFvp9EGzJbYzNkrkuSKKM/Yhh6kL7pOP2VF26DUp3hLUrqM9IK8W6FbRUW8m11I0Sjnixl3DE7ZNLdte/Qt89Yq20hG5n57pWGakTszjNHFopZ8LxktioJPkzKmFNRqXZiKmk0K+MQlezKK0W2TaTOJ1ZtvMvnUVqs4pUWfS6tx4Je8XoDaOuGE0rXSxJkEshBUaVXcJZoH5epJZ5OCjh3pc5QVAfPcNwidZvo3XDVrecVhVf/MwJITpChE8/qO8M0mtrzee/P/DF/Y/xHcNTvvq1P0MInaA+kjCij4eAt5IqPaIiUHsSaoGNkkeXC3OqzHtzV0zJk7HmODxzQhREfwv7VAKQxWltTIM1DcasqOwWa1dYs6ZuX5YuNCN5QSUIuXRhlFG7A7gd0e9ww1PceCFB75UEvTt3w1XY8+X+ir4OjPUJY9fAu6D1Ad1+Cb05o/2B3350dMyD12lyl8MmfJGX3U5CE29WBN0QUuJx7ERczTcDu0B9jGFkdFeoTtMf3mKlrBSvjaajxWk17cHKWnA3zOtCMROYozk+RAlS7FykczPD90UM7yGOEL0i5GDEquvQ3SVxvMS7S0I4YMwaXW0ZG9krOLcjTIG3kvFgUUfIGMhM81vr9cgcHHjszM8fqzkcNSY1OZtFnE6zUzqPpTidMmN+clFnkO9UiMofEzyx70jjSBwjwSW818Qoc/w3j/nQ0v6fZhZ1VGlyUEPBe9z9++W+KbxvFS0qCpLOuJCDEsVFDRnFGBMx5zkUB7UgPpII1HU2dnzCoTen1OvIViU2SgRqouylvLvGDhE3Gg59oltB56RLFDQh//mlg7o49o2PeQ1pUKYlZDxU0nraDxRtQOuqkPTE6KITBEdQMncNSQwxOko3QqW17FcUDCkwxMAT3/HXiXQXJ+z+nUf80JN/hXv/4D8tz/HkAac/8Yf49Jf/GO1XDzQXLfVQUUdDrRW1UlTI+V37nnfGJxLW3Aw09Zjv4SdUlaztTNrKe9NKITB3hBlbEbxFxYrgNMkkklOERnLKlFYkC+HbDupvavz+3//7+cz3fDf/lz/xr/OH/5f/0xfyO/+1P/LP8/v/sX/42+zpjzi+JQRqVwLEPIymCCky+d5mLsuNO9/AYppE6kJuKDdsqbZ+tL8/iSF58pMFlM0TZphdV0h73JAiK2U4xJ6bnYjUm/WnqKpTIIvUoReR1ztUbFBZKJn/5jFnqIjUy7fyfMqCBcRlGdOHG8u1Kv+kyZm5ZFtDmtzY7TrRRYWPGp0Fam1rlLMkL6xEpT11fW/hZqhRw4UsTkKHR5AoIXrqMEi1MiUcAacjO2WFwZyxH59TDWe15SY4SceNIz5JArHRjVRHVRGzyvFxRyK1bNqKQ86jY09tWlQMGN+gvbT+FwFr2U48VzHjsTA9HUAzi9QZ9ZGyw0wE6k7aCoMwIHV2S9a5pS1mYXpUcaqwGxT7aKmVptUmi9Ty/ipotkGzdZaTzrPtPDDQbgO2jdhWo+sS5gOVUdhVwrRCR10Pnr4z9INhcIaDM3RR502enjZ4AXGBdXkReBPHHPpiMLad2K8qJpRLxBeEbgqhI+VXrwSCLBTEO3/mtstxiQ6YhaWlJ+iu8ZxHF5QiYlBxIPie4DvGjGppx2e041Oa4XVavg+/EjxHsLKgDZVh3GyI9g3aakPVPGB0V/TDxfS7BmbhrIxKWdqbh8CWwVTcTJCF0iExP8+zdZQAvxfAoobCoNUZmyQs2oL8iDHxzCv2fsPZO29kJ5KEGDl3nTEFgvsAQEOzEAgNgtCxSk+MykP0kzPxjeYEO+658AOdSpCCLNZz6y8LgeWucYSCyYgAtMnX8+ycLkJXEbh0DhwB8qZGTrciVCcDykGMz1f/Zv7wPPrh8cKNK27poOJ02hWhWkzK2Q2ar7EYE15pXG6jdtpQ5efVqSjzQBaqOzTboOijYhM066g5tyN1HWnbwElU3Bs1r46Wy6HiWWi50A0XdsXXTM1lGCZO9ZFYLdJ0dr9FVMo9J0qQJy9ilO2nKv0sC47VjPQohZuauj5ltXqZzeYNAHxGJnm/I8RxwnhoXWHtmsqeHAkgYdFVMzufY/74uPe5tJrLDyznkOKFThSdYRKps2AtAiI4JdgPzdyxI78n/w1AJwGExJQmBJVKipTK389/L3mc30M/zxUpBZowUPsB7V+jG055v9Z0p4mbDs43kbNV5Gyl2TZSeGoreb9pj5mlZY0Up4JUPBapDTQ1tC3stjB0K2x3jnU7cVFrQ8jBU0ZXtM19AIbhgvfDHt9f8x31lod2xeeaE94cd+z9LLrLMRfhKkVPVAPR79DaonyDiiJulAJg1IqYg2qnIONbGlyKCmIiBoWqRNQ2rsba6kiotqZFuw3G79G6yW23LcZco12Dd3tZs8SBwwL5cR3GzNUN9DrQUfFQVdwPmnsmstGRFghBiqvlnjoGzT5oapeodJJ7LrBSmnNTcxFGXG6D926P7R9T2TXWrCan6ZFIfQdHWkRnN6ES5PueL+CmJGtV6RSQ+2X8Hn6sFQAAkXdJREFUgLn1444U87ogRlkPLYRvnTscQrvBrhInK6ZzdMJ79Dkc8Zli+/QrXN98iRg7zkzLfdseuaeLON2V45zmInut1HNFKK0TlY2Te9pUCCqtVWgzd6KpO4LXp+cX4iRcKSMk00IRskGKWuuV58wLE3sMhjGHJk64j1woCylAEkHkeZGaPNfEqQtDVupyXH3mUWv9dYxp2Dxuef+t3wQEQnJ0Y+Q7HtScb5/f+v3Wz1luOs/jw9/La8Nj3n7np2lTECd1SvjJtSljCifMI6rlvWD5cRb3KbzoZbCxndbr0+/Jjtrl+alQKG1FpMk4RWNaKrvBmDXWrqiqU4zZYOwWu3oFqg2pWuNWa3zT4JuKYPVREUu7hPGR+jBguwNNd8V6/zZD9w6Hw9t0/Xt03ROejBeMwzUuRcb6lNC18DZovUfXfw29Pp14tGWY85dpvvuHADgJX+BVd8AHzXhoGKm5iaO4qMv3ZwzARlf4lHgWHeN4zX7/JlpLvk+rDUk/oNc1A6WVX/aCu4EclJ6NOYncTSzfJ8JelEBFB72D4QXxaf0oIaPJKdSQaPYH7O5CAlnd1VQ003UL1YZQWapO8iGOOpUIz7mnC95jcuEv0CghJXQWpKNaoGOmN+FQh6TwQRNDFEHTQRwjelGsWQrUkP8fT+q6SdAkLPzaUfAfseuIXU9wieAUwX10Ybp0p94W34G86EzZRZ1yoWe5YlDT9STHb+melg4kFQdUkOvM+BE7jEccasgCr5vxOcKghspGTKVQxqA/Id6jDN1uqNaKVidqpVhpi02CbvPhwOowsOs2jCPsB1jVKWsOccK0hMhUYHEZ8WGcFLSUslBtiI2isgsQygL5p5Um5XwXnaIYT6akDym9jUlMYToFdJKA91Iwcbmz+Inrpdtht+Xypyw/8v4f5eV/9B+fkD/3/nt/F9Vf+vM0v3Jg/bim3TfU3lBTCzYtm9G63nPtd/RxJPiOuj6ZMFuVldfFpA1qvEQnj0obTAyous1Guij7zMoI9g9IVcbSxnQ7Eujb4yMOpRT/+r/8J/gdv/N38gf+8X+Eh6+/9ol+38//hf83v/RXfp4/9+/9mRf0CL/1x7eEQO0z+2r0MNrjsMTRH4cglvamCQmS34rIXQSJ8nYkCn/IZvw4oEvPLcpH21FZtpU07FZpDn7Pzc1XRaRWlqqyU3sOoc+Mx0CwWtpYPmQUsX0M4nQ6Do2cq+hGq+dE6ucErfwNSz718ZBjsVvLRrZzGu8sxgfMoCf2coo9KQZxUwNt+9LEg9O6Yhy0OIkR9+Q+h3DFXA2PKRG0fNwpzRbDFs19Zfhb2nuc2Zq3xz1PfM8u7EnRYcxa3HK3Kr7CVVyEcRSHdW6p0bpFhx5tWlS1FaF6NCSbU3bvEKnn4xVm3jTMInUs4vSeEKSVMIQDMY7S1pOdUksnwJBbP5fDKEWjAlop2mSoMMdiNYZt0mxjxZmr8EGzaR3rTaDdRqomYFqFqfW00TK1pjmJ2DZSNYm6i4xDYDVqBmdwmWM7Rs0+arrcKtulyJMw8t54YJcC2m6oq+1UYFEhQjQSRvICQtRCHJhSI6Zr6bbEw9Hn80LuFiKnvE/z5+qO/7+91RK3ENn56lBBExkIwaJDn9ECe2kTHS84NS318IDYnBCaBt80E7/YNzXp3kOqesW9/tG0ERozy3VYLDSLQNDsXkGuoC1jEJE65gqaXJ/y8elBUja+mVb+u0Zb60moWtWKMSjGkNg24NYwjpEbr1Fnn6PNYWMhO/V82E8dIzo7EvStx6SV2Kqs0lMgp0+RC99zYk54vd5gleaJ7znkDQwxOybjQsRMAZ08Mw1/8ZqW61IvRWqd30zGNulJ3NKL9lnI9wKbhHWnIeYNriyY8zynNSb/gEF44lWef5o6C3SQ2+aBNIo7Oc13iDHlNs6U8CphVVyI0yLkCw/e41KgUZb9rYLVTmlWSbFNhm3QGJVY1Z66lhDVuvGsY+DMjbwyGHZ9xbU3nKkTLuyKZ9Gxj8LePBSxOgVcRvkMSeIAyzY4pjtvDh97LGWPyY2cYkZ6uFygUhjdUjf32K5fZ7N5A6Xs5HoLoZvEaWtarF1n8WI9ZT2U60orQ8iOG573TS8emL61CNCTUD6J05MvsHytFB/k/l9yEhIBn4MUj1cFMrT8ODFjYIjkVnYpthYBEZJcX9kZU5xnIQy0sacOPdvhNS6bV7noNYdt4tAnrtdwtcr4hCaybRW1UZytI5V5Pp8ixJS7J9JU8AdZT1UW6jphW3AbgztsacYHVH6HyiGOZcNbRGrBfSiehB0hiz2vVXJ9vzXc8MxfZqH02E0twcb7HGosYnK0FcEagrWzOF0pVJVQOk1617KOWd5i0Dir8F6wPsbVmLrBjC1mWKPdBu32aCMC9RLh5k3D6HYT9qNLoxTWc7eDTxKc2KdAZyI7VdFheagSGxO5r6WgX5y9k1CdFCaUNQCslOFlK8ixqzDiQscYB5zbMZh6Yu6KM+x2V8CyeJcF58XrMRVZnivaloLL3PquX1CHBEGhgri/ZH2bX4xs6qjq+4zbLZtt5GwleI/KKnF8jomLQ+LqWrF+3HO4/mX2h/fYIO7pB6ZhlR/wbXFaAghlZPl4ekg6hykalcRBbeOU42FbsCuThWlxZ6gSRFmcK7cWxkt35VKkTjFiQ2K1jXjvcVHT9zWjMoymZswCtU/Syr5PPl/7UqhTSpfqF6hSKBO0xzKEOlGCLQ/0wwUm85e3X/8+Hpk1MUZGHxjDwOtj5KXT6qjb6tMPan74M5H/6gBh/5M8HC959ORnWSeosnEiqoVJYBqzAH3nWHSXKCXdMUzu6VsdjwtROkYpjcqvkPO9rk8wpsWaFcasJse0sRtsdYaxG3R9Tjh9Hb9aM2xb/EqTGoVp0qL4nA1DHoI37P2aNKwxhwc0+0/RXF+zuv46/e7L7HZf4cnTn+cidoThRq7x+pTQreEtUOYKVf9l9GqLffVzR0/dnL9M87nfCNFz5r6A9x391zXjWPN+LjCVrBc5JwX1sU4WlyJXqWffvT+x6BtAZoUH9MwiNSR2/fy8QFAeYz0L1ILKEXRCN0I/gntBAnXsFaoCPUSqg6e6uST1TwnuKptyDsIB1i2xOZH10lDCx+cimSJRKSP86TvcwcuOLQmcnv8vEDN3uvCoxUE9JkW7cDQXDnUMCbUQpFNIxMXnunxtdFIbCgGWqI9QBOqe2I/EMRGcnsxtMSrCHdNnEc+/0SgZF8RIOorsWxaHjq+5kiEQwkjJYolqQAULbo/2p+ghEbxiHOdroI6lEHTbQQ2qyg7qFzBU3WJXhlpHagR3YVG4OOJ9hxkH1LBmHJVkaeQAUKOZHNRL/aYfxSFcOUGAKW1J1RrVyPo9GmmJnLvdzYwQyoV/jcwvpERUgZDApShBkYt9S6U0a2NxMU7mjSs/8uV4TZc2PPtL9/gdT/6PfPof/O/Q/sBvp/7cD3L+0utUD/8TVn/9Tdq3Au1VSz1a6lSxUppWGXbBUYWBqzAyjE8mHn4bOpp6pIoDVfJoLR3pOnrRJ2JA+5rQtFmPsKhg8FgxV+Y1URq/7aD+Zsdv+S2/hd/2Ez/Ov/nH/2X+5//SH/umf0+MkT/5z/xz/CP/9P+QBw8efOMf+PYAvkUE6hRFXA717B4ePUDKcsV8gxYB9xiy78LsQF6K0+V3k3nDKgjDUFyzOQQPMq9vvuVopQmlRU/loIO8+FeI0OVTwirFSmkOfsf1zVcAONl8hpJoHkMvvMRhzHxUQ3IK7LGAIs/t2EU9ekmIDlHQIgV3cndI4gd8rQjyGflxx5Fn3YqT0vuI8wrvK4xr0WOfj00gxn7ij2ndUNf3ppunVpphuCIERYwjQwoTS6oI1OXjoC2BxJhF6k/pmm1lONcNXxtveM8duCxu6rSa3BblhjQ96kUYlgqH/DWpvprYY+wGVYRq06KciFq32wPvPCL5/6fzI7MgY8Z5lOReH4acSh6Olhllo3K7dV4rqeJapRlimAIXqqSPxOoazVYZrg4NZ13D6XXgpPZsWke7ijSrSNXEqX114q0ZcQ1BnMOCXH6uHq6DpgMuUuCd0PPmeMNj3xOVpbEb6upU2KHGTHzuFBUvYn/bJkSgKcf4A77vtnQtSdR63mwfbU6XvmMZd7kYll9ZchSLpzTiSV4S5oPvcf7A6K6xdkM9vEzVvoJuH6DdhlhV4so3mlBZ4ukpq+5vo6ofUO1P6Pv3GcbLjA7pFu3Xnmr/AAusQkDHU3pqdlEsVXO3hLgkwROiYdOaT4z7MFpR2Rn1saoUo1eMPtFVsFmD94n+/B6r4TOs3KWgFvyB2HscPTq7qLWGBnP0OshrISK1VmpyyEQST3zPqamn4MRHruMmhSziKmLy6GQzZ9hMXRFae+DY8aH0sXs6GTN1RtwOWythlGWOLfcDaxXei1AdNAuXjJGbSJUxTVqwHxqogLZ/JF9f3CNCEMdbzE7q8pvGFAkCh5AEei1zQhGnh8yrlK956byImkZZVplbv1VmKljR1Zw6w3oMbFo3CdXtKtKuAlvvuT9oNtcNN77iItZcpciVDVwlzz56Dlm0HmLgJox4hNMXOWa7fpIxu48VCiPSb3TZGVq6BVra1cucbD7DZvMGtjrnsP8K43iJ8zuA7HZdC0O4Op1QCMDCPZq7MZQ9ek1mxMjygX00Ab60uM+OxuxyVJGUTBaaxF+fMl36tlA93QcmkTpBlIyFIuqoheAo+Qo9jLN7KkYJ4a39jpOmpT9s6U8rxl5xWCd268R2DZsm5eDD3EZr1NQttRyFOS/otFmTK6HJdQ2uUYzrBtttMOM51qwJIbdE5+OnlaGuTtBK0/WaZ/4GP97wkl3xql1TKc1b444n7lrWALeGtXIfNdlZboYKU1liZUTWyK0LxYyp7igylfcpQjAiVI+NQjmDHSzaVVRLobraUCc/sWyNqRnHSgrruiL4Gh86xtCxi37CfYTi+CPSK3FTd6riYTK8UnlareijnvjIS8cf+X2N4pVqLQVpZdhFJ4F0sSfEnjG7WUtA9PE5e9ed8vjedruAe/v8Lefkiyk/yZ8RvIrLgZqeREIrLUJj/YD9acP5OnG2kq4do9XMnu5gd6m4//ht3r/5Mt5fc57d0/d1hSFNYlQHR4iyecz3HaNEsK50QXsk6iZOIdO21ehVhdJ6CkDEGAglIC2QcsjCcdCa3J+UMbNIXVlYRer1wNp5vFfc85rRWTosnakZkp/QSvvk8rXs0UbE6VmkXhYj4tT2Px3kFKSDabyh1xatG1569FXgszwOG2IM2UU7sh8iL51IgKrRirbWfPaliqvPDvzX/Skvdf8ko7vm8uoLrJOiQcLecwTkrRd4xg2o5YqriIxK3NMTukTNb8siYLr1fkKB5GLMB7mmbX2Gqc6hOSOszrh55QFhqzGrRNsmue9ZsHaeu6A4MBPjqBhH8BvFYd0ybBpWmy3N1cvUq0/h/I7d7i2u3DPiuJvWguGwhq9u0Poxqv4LnN4SqEFwH3XwwiEff4XgDrh3t3wl1NndL6aZSaSmhCZaXIgMw8XkOgdolZ1F6jiL1If1fE2XjrcxyD7Q6LLvFaf1foCuF3b0ixiqi1RDxA6eer8nde8TxisJQfR72V+ZBlOf4Vbr/DPPjg1D0WET1FpnkXQ27RQGcPkcZlPP0lU9IT445lC7qGiiwvsiUktH8pFjOhx3KUvXcUTXXnI3FgUoyHNAiFmcjrhBERx4l93aCwZ1vMOoU9zTYbFJmgRopab7PcrkAqJGLR3UtwT8mCI6O6d18pNILb/PzoY3LxgNKXCnD+0UV1rmMr7BvvejDlU1KKOodBIec36txxQIoZMMJ59yjgZ0jowbnVFjITF1AHgvcoH2btrDh6YVml+eMlGlw31pIhRhOmXch9JG0G15TpV7SUTHjDNNCpMULYbKSPGojwGfIofoecvt2EfPxZdO+bF/9S/yPX/PVzn5PT+JPnnAye/5SeyDn6b5qz9P+6U9zZOWtq+pgyA/rustjZc9/FUYOYSOoZdC4+h2NPUZTd3JOiRtgbxOjBkDC0dY0mQ0OipClTe5wwsqMv9NOv4P/+K/wvd9/+f5+/4H/wTf9f3f9039jp/+D/4s1xfP+N/9r/6ZF/zovrXHt4RALTwlmdCMkg2XDJVvMvlGkIXbMUiL01XH9HPOIwsUPwc9RA/RKfQQsUOkGhxmHER8dXuiE2RDjAMhDBl0P4qrrNzplJaAr+ygAtAJBoRfWKHYKI13N1w8+2vs929zevJZNps3qJuXqbpnVNmpq0KDi5agtYS16DQJKeX5TQJ1yHzaRXvHEneiVQlOLAiP591TIebjl93UE5daJwlos4nORSorj+Vaw6AtKjRov8G6c5TfEV3PkNvcS1ufNWvsek1dn9HUVwzjM8bxhnF8hkMYbEMMjDowpMBWB3pj2ahKgvzQbLGsUHyvWfHdqxVXrYinX3c7QX/4HVFXtO3DKUBlmeQtz9MBh2mDb/1+Dr407cSxo3CspqC1hWCtzREGRJU7/nBFcJf48Qo3XjCMl8JH9ft8vghTVaNwJHz0YpxLx41cJUSlzw5qi0Kr3PyZ/698bvL7RpscyGCoOk17bVipSsQrpYVdqxRbxdQaC0ybvBHogF2KXCXPV9wFF37gKgxcB8dBga1OWDf32KxelfO1fUVu9jFiXCLZ9EIc1H/b+iHGqMlV74pz+AOlajmGpXW2vPfMAoJbLGrv2GpBPu7Z94NGFs56sShOhdNLwmXhoPOX9J1lGC6p61Oa+py2fYWmeUjVvkJVn5OaU2LdEquK4aVPo+6/zrb7WzntLvG7rzH079D3TxjdVQ7tuca5Hav9KzTt66wvH7B68jLu5Jzd+YarU83jk8jpaaJznvsbxdnKc7YynK4Mm1Z/ovDE28zK2bGdpsDUtz/d4pvvYtucYOwWrRv25i267jFD2BNTIETxgdSZsb4cerEhKS7rIQYex07aXk3Fd7dndNHzyHVcZrdsSmGBWDIoNRCjIYTslsidGyl6+e35Oo22ytxpcVEGq6e233L5Wkue28hfl0Wyz5vavdWERuEGhR4UxolD3hhxZuuqQjcnbIC6f5+6O2cYnjCMzxjGa7zbyRyAnxAaKjuAXMZBmBzkU65rcXsobJQHpcv5qdSUem9VDmLRhnPTcOortoPhbL/mvtKc6cR55dm2wqxvV4HPnu7ltXUK7xR9X3A/LX3YsI+aXYLHKUwBql2K7P3IF3nzmz63ylClsVQpEZB9j0aQWNZsOTn5LGen38Nq8zlQFte/z373JQ7de1n8PKOpz6nq+9j6DKWFaZqiOGtiGIj0WXEreA9/hMgI0RFCT4h+wiEUB2pxL6eMkiLdck8vxD09vZfCS0Q2jQEpTityEKKSzamsC2amrM6/TyTOgAoeciCYoEuqeX2RYmYLe5zvqIanHLr3qKszToanrNtX2LYvETbiUL3YNDzOwk3dinhzuo009cyYrnMI61KsnnI+vGwOnWcSgO0qMZ4aVDhjBTQHaXEdRiRrIberyjW14WS7wfs9w3DFX9y/xyt2xav1mh9cPaBPnvfGA+/sv87l4V2a5j5t+wClLDEO2DBg/A7jB9qxx25OGDZrxm1FsoLnkQITR2ujYxxamhxupfjkc3F99BXJbVBDwg6R9cV96m5PM1wTB2lXd+OFrFPcjWQQuB2H7jG7NGC9o1UjrTKscwjUe9rwprasdcV3pTWvKsM9E3lgPZVJxKjogwjWxQG8Uprabunsml0K7FJgHz19mvE7Q94gD0myTnwp7uWpNaXc5cBd97kiIy7XhKqQ1ac1yIsqQDEk7OAx3RXD+HQKvDO2ZbP+NOnB99C8Dp97Gd54UHEvIyie3ATevIh87euK819+xNM3/288vfhrvKprvrM54zdUW17N7PgukcXpSIe0aZchwV9yvYn4lah1pLGBVRNYbzztNlFtoNpYzKbBnJ2i6xq0eU6YIgbiOEJu8b9zZJG6vLXnHlNFTCWFwuamYdVXrGhYVZq1rmiUoR9v6FIgIPxbrWs0VRYp66ljgpgLU4X7Abl7Y8SHwKFzOLfHmP+U9fVnePDkBxi+/ml+8dU1X3mYeOm+47V7jodbzf2N5qUTS20V3/96zf2N55dff4WLz/9zfP4v/Qxf+fV/C9eJa32HR6lqOoPuzvLQs8i2EKbhuBCYFnul486JWZQuAYiV3cpa3m6w9vQ5UfpwesqwrUinivOXIqs2sG5h08ictqo42uuEKPtAcWMmegf9mBhG6HtF36/Y7b8Dc/0pXtt8inDzZfY3v8Zu/zV+7frLvHnzDr9Wb/hFf8pv/MVzfvDXL/ktm/+Q7Y/+weeOhn35DezLb1B/6jfQfvbnOfulN+n/yjlf0RVvx5FnYeSQXOaJ5UK+kXv5O37Pfn9g6J9ys/8aJ/s32ezeYHXzGVab1xnP7tOdrnjHK9brRNtCW0NTl5A58vOV5/roGRwOirFXjLsXI1CfvfOEOl3AeEV0O/rDm1P4ZAijBOc2LxPvfSfDdsX66TMOz36eEmIcgrB31xlxUlBwBe0xF/3mdXvxFeezjT4KXsnIHVZ480pjohhVtDNivMmXq20DKRzVfCY+9VTQHBPBjRl1MS5CUbOmMEaig+AS40EzDppx1DivcQuRuowwFSRnXnY8uoLhqCNBzeu8KSCcdNSRIA8oiv6wwH0Y7eSeadfEFKjdJabb0uzWuNWWg1XULYRRTd3AUn6SY2dtko7bunlhDmpg4vUXpE2FYh9HfBBmebM7p9s0HOo4YTpGD7WdO8J3Axx6uU7TDuz+Bh8GTHXG/vyUdp2o68TBGrCNdFjYlWQxwGRo0Tpk9MuIIhcvkserKPu7FPCLrAmrNBttWauKEysFpiEbOd51ex75A3/xHcsbf+ox/5Of/aO8+g/8Xprv+c2sfvh3s/rh382Dfs+n/5ufZv/Xv8DTr8DTi4az/QkXdsPj6HgSBp74jie+Y+d3dO6a7vA22qzYH96iqk6nta6tTrHVOdpuMNUWY1pStcZ27YQmBQj99Qe9FN8eH2F87nOf4w/84z/Jv/5H/nn+2L/7b3zsnx/7gX/jj/2L/G//2D/HarX6G/AIv3XHt4RAfXsUlzRwdHMOCbpxdk4XYXoYi+ig8maFSZzGJ4xL2MFJyMDQo9yB5HdEv5+4wrIRE97flD7NQqi+NRSyeXAkSJJa3KTEOF5ws5sZbbZ5IM6BoRXHkDOkIU1prSWV+PZznZ5zeZsqkCp/b3FMyZu+tXAzWZwei8CdRWpBhMjfKou+0UNfQ9smXJ/wjSV2FZiGkpod4zi5qpQyGFNPbbN1fSahQyni3E5a3JFWWZMCNorgUiXNSMQkWYCM0gc5OY7OlKG2qykd+N1xz9MwMI5XpOpkEpskTFEc3OXxMD3NAHck12uTO1KVn1J2ijgdbTWlPKsws6eLazrGgRCHiQs2iR1Z4DhedBX33VKskHa1SMImhS+O00mYzo9xKVzHY+G6MN2q3DonCwPDSh87WiOyGBxTxBHoY6CLnie+z+3+gh2o7Clte4+mvkddn2OrMxHvl+MF2a8+Z9cooxnzAnVMcXqcJRDFkZm5UTbsh+i5zqF7Pm/eA0zp17JpEkFMl2T3pRPtSIySZaSNJWRpLgSQP1dKCw8vJTyecbwmhBEfJJzKuRtWYU/lHmD9A4w7R1dr/OaEpA1+tUZXFaZas96fUdXv03fvTu5Q53ekg7TxN35HFXrqMKD9ffphy+ArnnlFU0trZzemxcZLWJ6fxFFd5bmiKk5Lp6htorayGarXiXFjGE/OaA6fYjU+xfsdzu2l7TiHJnoSOkWJx1o4QIo4vWzt1FrOeZciXfREZVhpy8vVCu0Vz8KYmdcrfEYraWUmF3UJWkoxzC9tDIivOX96R/fILF4dz6tGy0+6LMz5NjFqCFotmuKlgyBU863Vtg+oKJ02i26bFCc8FSm3M6t5oyICU8phLkzuGY2aEEDztl+E6+WcYJXmOow0yrA2sqg+NRVn0XI/WO4PFacmcmolTNHaiDbCYV2bQO0iK+/xQZA/vdecOUuXTG6fT1ybF+Osyc+4tCxhgVGBtafcO/sezs5+I/X6UwCMh7fp+3cZhqcYXVFVJzTNS1T1A0x1JkUJbbO1ptyCj0XpmdEb8vzsMiJkFqfj4vVKRUjO7Pqypfwg52kZCiZ2Ydlo+yI8i/clv5fwTL1w0yukmB1VRGWxUQoUerqvlqA5kPPL+Vks6/t3iXGg8nus27HqH1B1p4zdhnFV0a0Vw0q6AupaWt/bei7K3CVShzTj0HxeGyidwGpxM1cVxm7kLRyIcQBmgboMY1qaBnb+ZgpPfKVac2YaXq3XWKWlyDw8JkZPXZ1Oznf5o1bO8akjQuO0Ia0U6GNh+na3GZQiVJo+ntZ9EcYxEVcKNxgOnFF1K6pug91vqPunUrTOa5fyPvgOHwwh9BxSyK91QTdYfHZcGRRXpuJhqngYKuFTW+lyCkk2yC4quqgxQdNhWOWuqE5ZEV+13OvGFBkWgnWZK5dCTuRY0JH3z4/l95S5ZU5O+eRDOwmVxu1x7pqC97CmoWke0p2fcX567J4evbinL/cwPlGsn/0aN/uvUafAfbvh3NRs0dTAeIc4XQQgs7hPl1GCEcXkMYci2tagVxV61WI2WzAWXR9346Tgs3BsSG6UNV9u979zGIOqa8zKkoKjdpHgYDs6Bq/pipNaR3pb0zqThQ+Zc1J0uXi6RGJYybeBfBqXOUk+UimSosP7A4fuvQmV00SPim+wC1ve8yLI7noJoYTZxLJtNG/cTxw+F3i7+zt4w13x1a/+e/TjhRxvHErVzH1pz59VKaXZ5JliLs7pIyH69ijidRGmzS3XdFWdYqszbHWGrs9J7X18KVKdVuhTWK0T56ciTG9b2aOsqqUZp+yLxGzTqcTtzpEYywo84o3i0L3GytZsdYsxgtu4vvkKXx2vibnowWHN9/zsr6DrP8f6t/6+O59f9cbniW5g03V8+ovXhOsVoWDJAhz0LFKbbDRplaZPkRAODH15fLKvaKOniQHtz7len7HL6IaxTdQ1HOzU2EWMgkS4vlaEUREH9cIqUGr3SLBrfieGHHedg+BHUvKCYmke0G/FAWr2FwzDk/l4506pSllZv6iFezrN7unbc5mmoGdmTvWoIiNK3lJiVIo6SlaBDxrvIz6zolnMDzCL06nglgJAykJ2LkbnNUURswt32nstAYnZMR2SuKfvmhUmkToL7+Vtmm+X6JvpGgukJKiPqec252OUQk9MUbqs4vzCei9dwsHvMW6HGXrssMYNBjc3L4ho+9Ff8m9uRHGd52eT/66ClIQ9H73cJ3yNz9pMZUv21XztLtcgyidU3rNr0+IbzaaWNUAyWsxlizetzNFsZXRF0BbJIMmILMo5VTIMImNSDPkero3CIJlQtaqplOEG6QDfBcdX0w0/9UsP+dHH/wXf+Xf/Gic//g/Lc203bH7bH8A+eJ36pZ9l/cUrdr9qWTnLStesigBuLI9cx3UY6WKgC3v6/lnOreoI4UDlb6jc9YQ3KoGwxp1jsoEOwC1Ctb89vrnxJ//ZP85nvvNz/JX/13/Fb/6dP/qxfvb/096fR+mWneWd4G8P55xviuEOOShTmZoQQxqBZAnJGKphFWqxumyX5TIUbmM3hjKuRUttaFa3hz/alCdk2jaltpo2NrYZjMvQq9texqY9yLJRLYrJSJYLWUIIJKRUpvJm3ikivuEMe+g/3n3Od764cTNvplIZV5f9y3VXRMaNG3G+8519zt7Pft7n/Sd//8fZv3DIt37rt36eju7e5Z4TqOWhkERq4lA3ueMAaqUiux6E6d5BkxYrTg3itOrANg7bSBMNNer67N0S79c4v5ZMwiCCVO+8EpFr12nVM8zbkM7XRFnIhhhommscp0VoNX1IoiraGtsUqaFXgS+kq22w8kA9PcF6Nsbu6eKUSA2SN9e5CK7PspavB38q09rHwXE1KWFjwZQRV6nkTjTDw2EsBIiIVKC17KwrZSjsghg9rTnC+4CnxSUXbBs9XTSS/WQ8ZdQpY6yfkMjxlSimaB7UJWW5x1wXTNsln3Ar2iBilS3mFDtZ4amBRDoO4JbsamAoH5ITmG7+I3F6cE+n+BflmyHaJCRxeiuObCcU22WFXAvbTuepVDz202S5RvxouqLSP9q6CNK/6wW+/uu3EbH7vxtP0MYTQpfE3S4G1tHTKdB6QlXuU1WHlMU+ZXlIWV6UWJTTAvVwkJ8b+2kzoVWy8FwCdfS0MbCOHWvvWIaOOjg2wSdxPeKVQakSbSxal1R2MjTX6TMMjSlvaaAGIvb40AwbK95vWNfP4LoVTWgIviHiMJEkM5FaAMlNtY21lAA2LmXC1Xi/pqqORWB2S0xxiNUGX00GV2+c72HsKwfRv62v0DTPUNfPEEJH01yVbOpBeFoxb+6jaA5YN1OulYqmFTdQ3639oOtF68BiYl5wPvW44qK0DCJ1YVKp/wKazYRi9SBVc5W2vUHbHeN8jXciy3Up6sOmkuWxSK1H122htAjU6frr/xCk0eJlKx2tr3txXiilcUrL5pNfi3gQKkJoUMGi4+2bvMTU+BCAFE3Tuyx9AB22izyQBnES/RHRui973orUKhhMxzbnupihgqc41a1k3ATKh5juB1u82t4DeqFasVsSuvsD2bk3aKU48R1GKayTrL9p2rzbMwV7uuRCKDhwlle1C+ZaxLLKerSOqeGSLOS1ikxsYD96itRAdYrCnBWL8QLol6A2yvNnoyJVeZkLh49xcPgV2NnD4Gua1afYbD5D297Eh47Z9EGq6j7KyQPo8lCqW2AQpyVBJQnNYbtpIVVP7eDw9X4jDqQUP9C7pmPwI2F6u6nYi8f9uR6L0+N7wfj+alS/ySgOeY8nKNX74lFoiXwZ/ez+50W2IrUZIkPOcCXGgEuLtaa5lnodNPh0z7HdZcxmn2K+R7eZ0k4LlkFhSkVRRtbJeXy6emDci6Lv1dHPl2LfvKhQBFtQ2IUsmtxKmgCHjqjMzqJZNqknVOUF2vYmV3wj9+0icGBLHigk9qPo1lxvr7PaPDU43cdobUfbTVPcwkhOfGBHpB6X9fevB3ZjhEOIdE6aP7atbEBtMLjphG5TUpUVxWqK3SzQdRLh66cxpsS5FaqzOGXwfsMmdvjefdW75VTkmq+po+dYO67rrVC9n4TqwgQKA1UMlJ2hjRIHsomGjTJJgLUS90GgjSWr4IYN5ZA2l0+L1KcbjPXiwCBi0z/zx2Py1uqiF4pxAdM6QrccTAhaG4nCmj3M8kLBwSJwcS4VPwCdixzVkZvHMH9mzfr4o2zWV7hsSi7bKRdVwTTlpS7ZNnDuz83Q+JxImdzTIvyR8qehMCE1RpSmiGZqMZMKPZ2ip3NUUYHZnRso74hdI/M+Y+Q537bbqc4o5oP0MQKqsOjSYyeRsotMGs+ic2yCZuM1G2WpdcnCFPgY8NGLCWMU9zEe77vZ4yHdJ4btzWSWcTTt0c73lsBeeJil2+dqq2nbwKoBo700pyzklUwLxcsvRTavDhw338jLuyM+/ZmfxXYnxBjp6NCqr0o0KdP8FDEQexd1EqlhK1QPgvTo41acLgZxum90O2xClofE6QW6+R7NYkq7b7B7MF8E5jO4MCdl7cuGei9QD29RqobyIeKtrBn7e4RJFRjORaxVxBLq/ZKgLzO1BXOTNqiU4ej4E/x2d1PG0wQ++etTlPlPoC2zN73tzLFQPvqlxHrFgy//n/GfVrQnU7wu5GeMROqQ5kEzbQm+o4kB7zc0zY30nnuCb5i4FUX7ALPqi2nWFZuFpp1GbNp07O97/Vq3O9GoLsVWvkjl/75+mqhFBPWpF0u/7lHKUBT7qOkDNPOKctPh15+hbq4PTtZxvEdxmznFcM9K9zGt1JBD7aPcX9sYkpEpRfyomIRqRRs0hY9Yr7Eu4rvtymscBRW92kZ8egAF3Vag7pHvk0xr56TyTKq5Nf6sSI9Ti6HePX07+jGhsQTcIFIPDqnxsQzCtFSm6FPn0Ps2GaZqdFtTbFrcdEIotmK81nKferbK1M+V2NaEts8KP/0avMSQuA7VgXeyed45qHUao+kU9uK0dwrbeHDJVFYsCFONtckRrhVRm0GY7tf9mu2WmlJShalTZYpSfYWcxNg5pBGnStVKJiYDmNaY1DyxNyydhJZNcKyD45fbI46uLPjaf3yF3/WZv8nhf/3HMYf3A1B98Zuwlx7CXPifeeTmp5ndqJjWJWWQbOqpMkyU5aoTkfrEdxy5I1lHuprObSjdisKeUBR7mO44RdodYd1StIrexNAtP2/v5+8ULl68yLd+z/+Rv/uXf4Df/V/8XvRpx8NtOLp+g//pb/0w/+yf/NM7/jeZLfeEQK317g1VxGkwYStW9+VNdbfdfRtHevQ3uxjANyJO60bc08VmI+J0c0Jsb+LbI7xb4twxXXdM153gfC25wqGTBW4qP4etEDlmLFD3MQGkxXmMfhCpF4tXpZurxdhSmnppRSgKfAEu5ar5sPUF3k6s3gpMMmkrrKK0esc9PdBfGW6b/6RVejz2TmrV/ywRqfqMt65QeCvu4iH/cyih3kinXGWwZpqyokuMKbFhgrETERO8x+NTaY2IVGc9OPvz1qq0EEFRorioCkorTQiOfMtRqGnb3hUXKOx09MAadRQffd7/AeRzbekbrUVb7ojTUZtt08QgJaCxF+V9w7iUvBem+gm976u06Evd+/8PeLUVK/qu7cTIrdOfkRZ86jSNHdL9Z70YOP45/T8bFreka1OBMVNKM6Uo96SU3i4oUmNEY+coLdEnO5m++tZjeSHciI4ueOpU5nylW7MKHesg7rEW6TCvsOgkPpd2ynz6AEWxR1leGEpCtV2g7AJstX2Aj9+7OOzGiMgVpZwi+BrXXkuT72Pa9iZNe52mPaLrJGM8xpSrGXth0eEDxC4mwbuT/HG3YeLXFOWK0kywbk4op6ksS+OriqgvoosZk/IQuzkEwLkNITXKGvJmQ43tllTdA5j2IkfVBbpW0baBesGoKU5kUWnqLjBvDZf27fMSqcdVFkaLg9ykRb7R0jCtLsFNNd18QbV6kKp+mqa5npo/1rLplCZ6sCtS9xsvJrlnitFCpRddmuBFbCEmkXqKRvFZv6FPMnRp4a59i9ZJnA4VwTfo4GUyOjQ4PfX422p8OCf3snFPgrFIjYVQQj9qa1Lmuld4r1E+oIxGBdnE0mGG5jJFHLtyw5DBGIkE709tZioicRCqw8ipOybufBwrTP39YhQ/4ZttaWXKrZ9qy28UC3FXd5aFKlkozRRZCpWjX9hn5raIIHT8LG6454ONUAybtJHp9CEuX3wDexdej5pcgm5Fs/oU6/WnaNsjaWxrJkxnj1BMHkCVh2DSJkQ/hn1qNpzOee8668uOZXO5b+jZ0DcX2o3+6EMStsLxcC7TsfeCdP857N5f+1gWEFecJUrP+F6oVp5tWEuSo5NQ3Tu0xVmfROrg0oJ666g8nZ/tg6NLDahC8BSFvHbrVpj2gKK7jN3sUVYT1uEAV2lcpVFFxJQKY7fixrhpaL9wH8+bYv+gAKkcMBNpVpZym0MoCEmo6BfQvThVFHMA2vaYa7Gma5c0ccoFW3FgS7lG3YYn158lhI7p8O+3mz2a7dynmy/wC4XTMUUFbcfDWKTu50jVTvQHQy+PrpSFMQS6VtFVBlfNKKuCalVhVzPKeoHWE0x7TZqApWxq11nJ4acVodF3EsGhg2xSxEidyoKPtOMZbbkY7VaoNp6JDYOruvOKLmVW132zYmUkZ1lFlsoksXpbXdSmKCtxRPshGusW0VrFwX3tYqA/ZS+2RCHNsxuJSEl58VpZaSC79wjVhch9C9ifakqrU0O3wPUVnNzUXLj6Ga6efBwdai6Ue+zpgoUS97TEe0Q2qepuM3JPg4y5s1yMfURe3xjRlAZVWNR0ip5MUZN5ykw9tXntnYjWrYgiqt5AEqEZu6hPNVXTZUHsHKaVPiDVLDB3jsYZeV+VYaMt+6akDZ4uREIMuHR/iKEjaEbNBU83AZdt0h2RGo/r1jRpXguy+V5Fx373EKvuIjedpm0jkyJyMIunRGp42SVoX6Pwm7fzsFvx5OM/Q4G4Hjs6NDo1c+1/7fN/JvRZ1BLtUSQjwRRrJhTFnkQCFvu3iNP1/oxuoXfE6cUMabRZaaaFYlpuN9Z7+uqywVWtdq/407m8sVJ0wQIHTMyrmI6akx4df4JPdzcJMfJh+wj8Z3g1H0AZw/QN33Dray0mlI9+KXuv+lXubzY4r/HrCq9PO6mlWdtEGZwOECTu0LsVfY2nzCEaJm7J9MqEanpIN1/Qziq6StNaNTR/JkSUB9MEdN9fqHtxRnrbPI1WDM9W55ZDg+/CVhTlJdqDS0QD1fEx9fpx2dRTWjaFo6NEIk36eWBvQDod6zF83rt3IrhUWSuVlJpSSbXt2EVdB3FSF8lF7Tvon9hRiwDdi9P9PmgIitAkjaFTQxyINFrcfq+4p9Xgng6hd1GfFqVhW/lJqqWKp6pV0txh9ExXUacKhLQJlSpQYFtFFWOQtQoQ1a6ILTEqa4JbYbs1tmnQTYUvNH2vKaXMEA/lOTUG/K654oUS6hW+DXRBnzJapPfU16gQ0F0kuF7wH20gjBzUzkkMa9l0kHpcxWKGmUaKpIkErYi2FHexqdDaEIKcm16klkqoQuYkwaJ03MmjVnH7nvWRkTr4QZQeKpKNXHcnSgTlq27Dr0XPMi649m+nfNWVv8fl3/9fMvmy3wNINv3e138TD372PUx/c011xTNZVUydYar10ETxmq6Z6pauXdHEmq4Tw5TrVthiTulWWDOl604kl9+v6BtCAjh3a0V45vnz7j/3fbzy7/9D/u3/55/xtv/2D93Rv/lH7/5/8dgb38A3fMOtz4HMc3OPCNS7ZZytG5dxpRua3wrT/e5b244XWdvMadUkcdoFynWDXZ2gmmNCexPfbRs/dO5kEKdlZ2szLHClCYynb47Yu67G5cAwPF+H4jyDEpE6dDT1VVarTwNQKou2FUZLY4FQGLpC46yi1dt81OI2FddD2bzaFarPFKdJXxu65qp0Pm+dzBi1LQUukkCtikjsc1iTsDu4h0OHD04mJqHDRk+MfclsRWGnBN+K84ttqey4DKo/eUPW2MiF2RJTDAMskkvrWrXHlW7NNdewcUfp/ZEYlrLYHyb6femedMwWsVM+VtIsMeVP9+L0OOepZxC/fE0ISbSMjhB6YTrt7MZegNBpgtE3PBqJyVEeoUHJ9TOeL4w3OJ6bs75r/LVeTElX5iB6yKKm1CVFuUdhZxR2Lu5eM0sChDjJdLEAUw0bKL5QxEKhbuf2fB78/PoKTkkmcR09jVJoVaDNDFvNmBWL5OY+oCwvpBzaS6i9R4es56hNmnSlHPhOInuUa1HNMfQCcy9Kn0ZZyZAGJkBM8S2uu0nb3tjNFnZrvN8Mrz0Gj6ceflTvaqx8IwJHeYD2hyg3I5QTopFS+WgM2pbYYs4sOrr2Gl13jBvuMzfwvqH0NUWosd2KRVmxWU852hjqOrBZRNaNCNUHU8+miywquZLmE82kvDM39Xjs92Wy4z/WiovazaBZTChPLlDW91M1z9C0N3BuIi7qKG6E3pXQ3wBPx30YFHNVyEIlTQ5rvS1nBxEzL9oJN5qWTWp2CgzxPcOmUxKq8bVsmgURqbUPspE2Jik0fS7tIM4lJ/VO3Mfw9NyK1C45qUOQqI+otWxi2RIVPLrqReo+93jbTC6EFhX9qZHZL0IiMS2iB9ESiOr06FbbcUz/1DmNOA1jdOA7tIPPtKuUWS+idZXiVPr/FydwiqogDJsGa9ed8fOfPxOlqZShiYGNUrzqga9jevgVxGof6uvUxx9jtfo0TXsdgLI4YDp9gHLxGijmu81pgb7Rbh+r0veKcG41bPQMz+3QSU8A3xJil5ozboXp3i3dO9j7P32EEmzvxzuNWNPHPnoF0nWuwMRIoSI2RTU4Qloc9m7qfikahoWpvHMBopMqcB2Rd8UOAs+YEDr6O9l2Q6vB+hqThGrbHDIDfFnRVQWusvhK4QpNW8TUdFChtAjW8nO3H0NaJPbih7xIi9ITjJmj9RqlNkNZrRpKktN9WBciUitN151w5Ff4bk0TPJfshIk2PFDMuFnfZLV5apgbyP3PU0SHZStSF6spHYYunb9+XjgWp4zezpPG47mnr7brUqPtto20paKtFE1V4ipLVVWUywnWTNCbCu+2i0Kj5f1wfkPwNRvS5nyUDEuvIkXUdCpQR8dJsNzQNgnVBRd9wUEXuVQ6ChMwNjIh3CJWS1615kjpJMIk12ASaNsYk5NYROhaSa5xF7dfc+le2hFumSbINf7iYDqP6tYiUHdScqxNyXT6AJuLlzg8jNy3p1lMDFpL9MSqCRwtwTwTaG7+Z5arJ9jXlou24qIWpxmkzTKiuMsH9/RuCYKPCj8SIaVBYtj2cSnFPa2nE/RE3NP6DIF6EKfH56lIwmLb3nY+ppLbWhUWMw34TkTxsgosuo7aJ5c8Ut3SpEqwPgJAnoAKoibuVE2cJVL3m5wiZIXYSeXXqftDFRyLEKibQ1ZNyVOlzBX2ppHFJDItZCxMS7h8MfLkF1dUzTcRnnwvnd9gUcQY8bSoWKGGZuTqFkPOmedk7J5OwrTp3dNmSmEXEg2RxGlbHKInl4nV3uCc7sXp6SzeIk4vKmnuXFrFeIoT4nbecvqiH29SDQJkkH8UtSIUhnY+R/mHmIwMLEfHn+Az3U1+za0xqxn6oxGlfwXgTJFa712ieuWrOKw/hu82dE9pfFPAGSJ1pQ0uBnn+JxendyuaZHTp46qMXYhZoTmgWO3hqwpXVanqdvRcSnO5oBXa3SaW5nlS108n8a8hxoDzEjWldSlGlvkruHk4F4H85Gk2mys436R1oDyjS6VFoFZnz0fHjeMH53HavB2i/tL4L2JIMZC7LupN0GgXpSKz8ZTyVJLd8bD7e8cCdOitu+mBuiNgBzU0Ruzd0/7U5T/+/20Dx1G0R79WOP3SlcwctLZynhQS33NqLO/E5gRHTBvcIUpcmgOcW2HdEtPexDSHlJuOuiiHiYrWFdDPt/vX+eJuVYZ6ha8jbVTDPHL3hbihkWPb2dTAlFsE6r4aIDQK04mBSCmLn86xpQjUOAiFImq9XcvrEqW2lVyDSK00IeXexxCQupwwuKj7DU+XjDJaK4mT1E4c1SjKFM/R6xFXXc1VV6dN0wXHH7rIm6+9n5e/7beHyA+0Ze/3vhW7/8uUv/40kyc9k6MJ09ZSxoIyzb/nuhialK+jpw0bmQeFZhCqrTnG2jlFt9ypCHfuResk8TuayWTCD/7A/53/8//1/8LX/YH/HdX02XPZn/ztT/HP/+E/5ld/5T+8REd473FPCNRqtAAJQZr49J+P84rGZal9pIdPC6wYICZx2qZuxLZpxTm9fnpodufcMc6t6Lol3m/o3DLlAsmCN6aGQNsF7m5J8HiBq5PfARhPKVFIXEUTWk5Wn0KnEpVSW4yyRCON74Ku8FrTaSmHLOzWMf5sbBdl6lnFKaMVYXBNitsgxNsI1acWgVJac/oh6oeMT2LAq62zuLCkB0iBNiUqFCi/bR427uIMu+L06UVUKrDEAFOlebRYDKLL027D0i/lYZ9KvouiL0Njm1N1G3EaU+2I0+PGiENzxOS67X9+/9rH5wFEuIhIE02ZrI+aXpB2yvtU6jh2Vm7ZdkxnELfHXdS3f5W+Nt6V78Votg48LYrE4GQxukDrgrLYx9pZ6p4+G5pIGjuXRjXFnGhLXFrAh0qhqzhM6D4XrqiKophi7JSpnXFp+uCOK9pUl6E8wE/m+GqCLyxO60GE1K7DbtbodgPdiuiW+PaIprtJCA1Nc3Vo0jKe8Mt568VOPQjzxs6lo7JdUFSXKKpLzOavGqoq6voqq/XjdG5D8O3O5NH7Bq30EP1n7Qwbaqyv0f4Q4+fEYjZcYz4tMAr3CkxxgG2v4bqjFCkkglPb3hjckdXVCXZzkWazT70puVEr6kVkXUdWC1g2gYPUp2HRaOaVYVpqCruN+zmL3kU8xiQxdytSR7RV4sacziiWh7JhUOxLFrWv8bHFpLHsiNh0w9sR9noXtRJHQu+mmURDrTzr0A0NsCpluGQrrruGtV/dctxab8Xq6GsZx8GnKB5xEp2+XcYUWxBCHETqAbu9zw1N4qxsEJalVOC4TuGdQgUjDUNBhGpbStft4pBiqK5ot25qv5HlUp99PqB2xzkxbVrtfsfwZFH99/fOtiTecqvTFmRx00UnkVgxbGMtXM24fc/upliKpHiR1i+DOK0tFw4fY/LA10plw/KzbE5+g+XyE7TdsWyYFQfM549SzR4lTi/sitNhdJ/1NUODxJE47VODTd9XPfWxHkHET6l4ktfdC9O9ON2L0gqwqFvilM5iG13D9nv7uA+lscHTEVnHIHnTQ2jQrlC9pW+SFkCTrpl0BKP3V64rPYgF/Sax9w3Wr7ChxrglFjDFDFtO8NUEV5VD49BQKGIBaI0r4umYfikPTlFoOkR5BqbKKW0kr1Vc1M1Qzj0+PiBFfMlNSaFY+TWd29BGz0U7YWEKHi7mPOM23Givprgkic6apudsER06OKrlHjAWqaG/YscmhrEwPf7T01fcGS1RcJtaBPraRlyh2BQTXFUwKQpsMaNKzZVNU9K2sjhUncWh8KGhoSNEifkJKhK0EXezD4NQfRw0N1TBM7rgQFsebQoWOjLRgYkRMXViA0WMzIDOi0tv6iUKpG9u3Cpzi2DdElgGLUI1nm7kKfYxbjdbolSyWCWz1heQBHUm2nXQHNE0z9B1cp8uiwWT2aPcuFTyyj2J95iUmhCgdYFlHbh5U7G48gzXTz6Oc8dcsHMOTcVCmT65N+Xhb8XpXoCHZMyIDJFwkPpI9PnTRUQZpAlaYVO0xww1SQJ13xxMG3lugJSpj16bKiupmDNm10F9CmWMuKhDwE4CofVU00DbBGaF5yBoNsEwVwW1Ebdsl6I+OtKmTuib+VqZqwHx1N1nO9/oN8jl3Vbd6fm4o/Q1U/coprvI0XRG20bWs8hqJhnO01LGwqSAw8PIM6894L4PfxVPP/MrEOrkpA740EojOlWke1A/F04fezF6J6JED+K0MdUw1+zj16ydSoWemQ3NwHbE6bnBzKGaRGazyGzSx3qwI04XZjuv8SEOUYU7431Uabs1MIFrFb5RqC6iu62w66Yz4H4q4DD9jJvHv8mvba5hZgpzMsV8NAK/AsYy/Yqvu+V6KB/9MmLbcKH9BCGs8Vdm+PZWkbqImjLdLwjy/jbR4/2GtmFYQ1kzoww11i3R3SG6mWPTXHIcQwgMa5f4XIvFO6Rpb6C13jHg9D1ByvIi7vBl+Jlieq2lXf4WTXs9xX9oQmjRMbnZ05Xcj99ewL01kmh4Jchpkb5FPkY65amjrA3PyqLulKYLEec0MnUQkXo8z9sRp4NiPOBDErLD4KJWSWvYuqflNaTvOyvuo3dRj9a14/XtsDZTetAETovU21OQonPi9rwrpYcNYYcIPbKxuyK4JaY5wTYzbGPFTKSNGLTQSZbdvs7ovWzMvQiE1RHtWiqBWmQeL+K8IvSmreAxnQdnUsyHxO0A20rJPn+6i5hG5nlKG9rplMlk66COBdIXI8Xy9JvIEuWxdVJrXaSIjyAftU95L5GowpBF7WJEE4bmxDqqYTPEKEWJZq4sGDjxHZvguOkaee4WnuXjB7z5//sEX3T1Pex/wx/GXHqI8lWvw+xfwuz/L5S//gkmn5J1XFGXTL2h1BUlmrp0VM5w4tvUMNnT+RXBS48rpyu0WVIWK3k96T7i/YtjIsnAH/kjf4S/+APv4p/8vR/nf/9/+u+f9Xv//rt+kP/yD/0BXve6171ER3fvcU8I1P1zt3PbHbbxTviQLR3U7v/34nSn0o1OhOly02CaGlOvoD2i3TwxOD+c2+DcEuc3owVuiw9tKvN/bmG6F6f7BW9ERNX+o0l/VwB1fXXIk1LaUpoJpp9caE1jCpzWwy6j1lCaJFIbbtnJ/VzO7519b0SlyaAaKVq9e1py00aiXf9QUkbcSKncRh4e4i4eN8TQqhelt+K04YwJwPBYh4u6oFSKiZL81ae6NTdDTdtJtp9PQrK1U3GAD1nU2wztPnNaGjLd6itSvejlWlms9KX8I5F6+N4keKI0KppkWjY7grGUc6eOzWdFxJwSnPt/K59vhajTH1HjBULfWG77+TjyxKT3QetKyiztTFxxZiLCvZ6Ic7qYEypxbLTTglApVCVpKEZ/7hfgIy///VSTS+jk1A6LB/GVbBQ0hZUyLiOxCjpIMyaz2WCX16E5wnc3aZtruO54qHro3IrOrWVjqY/MiI7drFm25xaFUgU6Ne0xdko5OLe3OdxldT9FeZHJ5PIQBTJ2avbvP4DzNW17gz4X10aHCU6ctmGGCoFQiFCt5pfRxZyyWGDbmyJSd0epPNLj3JoYPXr5KWy3ZFZfotgcUm8WrDaGeq6o68jJLHI8A/AsGnFTT0vNpOgXdHoQqvuSfslrjLQu0LowqkzZnqOhisVGfKHoplOKSpoZlcUBjb2JcisRBpOLWhPpe7wOG1BDdYSI01Olh80oryKbaJgowyo4mujwRA5NhUZx3Tcs/Wq7KB5f59qKQO1rlDZot3W0qRBRXiEFC+NFyvb50Z+Lrp/tJ0wyscn3RpyFUMmzxnuN6XYXhZgKVSww0VGEeqdxYqcrCL3guBWG+6twt7ritN1xJEqr/j6ikmNEcj37Taezxnt/XZ6+V21/vEmvt5DNGVNKczgfePzxv3/mv3k+nISOWO7xwKU3cvH+/0LKMo8/w/r4IyyXn6Rpb6J1QVVeZD5/lMniNcTZ/QQrrj0Vwlacdo1URPg6ZWIuR+L0WpytoRvE6XHVU98QdSxM98/jcUmniHi74vRZzq/TDqGdzPX076xWFES87+hixCmPGiTx00K1/KcI6VbVgQp4pPS/32Ds2Wacy5aYbGxt+yF4t6IEaa7TLDD1HJvihnxZ4QuLLwxRy8ZTPDUXUEGyTE0X0Z1H+0AfnSQbzttmgmangkh6MRDDcD0WdirPqU7TujVXfUsbA5fihH0jcR+l23DdLVmumiGWZRIaYhSRujjZT8/iGW0oaAdX3GhzO+k/t1SCqJFoZWQeBeK2LiysB5EaWqtoC4O3+0xtQdW8IpUQV6Oxlf50a7yv6WhY+g6nZU4TlMEqPQjVWilq5TkJLVeVZWMnHETLIhgOnGGaxOpCh5SfLHNMrSIhZax2g1AtfzZJmNmgQcMmitgi154jxCixOkQsOjUcG21iv0i5ibbe4JprNM31FIdimVSXUIevZXop8uAB7E+liW+X+iUsm0BzQ5ojHi8/yQLNpWLCvrZM09jpo4Y2+EGcbscCdXK2jSM/QARqo0WkNkVElyIeq6JEFZNBnN7JoPaO6B2qnGwzTIMXd7Q2kjmdMqlP0zuoMQalNbrUmEmg6CKTqWfWORqnWQTLXFvqWNBoT6s9PkiedNdHfUS1M4/rM2rH9TLjTfFIhFNVXPI9ImxW0VH5hnb2SlYbQ7MnEWHNTPotTJIxejaBg4sB/YpvIkbPM1c/QAy1bMBGaQquTHrmDJU/uwLoTtb0KNbjLHHamtmOOK3LQ7rpjHZa0U0NzKCcRCaTyCQdZ98QsbTqFnG6p48q3DaTj7eI086prTi9iZTLbrsBlwhFgZ5eoOJLBpH6yWsfhPVVmF3GHM3gowC/AN7d4qQuXvYqQr1iUm84bJ/AdRvCNQWdxatCdlI8dCrgVdqU7i+8kUgdW4mQs2aC82sxb3RHQ+NyYxcyGU/rmdhHRRYFJrw4wmPbLTGjygLdv69mymTxao4uyxmaXr/G0eq36dw6zTckJ93Cs7qnYVfAhT7iQ56LffRbFyXqw6R7wWbHyKTk74LGuEi7s2ETCGbbh2ksToegxvveW4E66Ql9nIfzW/d0L0qP7wR97nJ/L/JRYpfkt484dQ5uJ1JzWqQmyH2hP03BQRKqg9I4t8aYtcR8NUfYzR62KukntMbMUMoMDurOa3wX5b7Xfe4xEWF1RFid0Gw0bZT7tmw4CFppYnRo14rhS3omDmL0GIn3UOgmottajD92TjctmZfyzO40YBWuqijMZNgw935NjHZXpNZlmp/InCQms0BM5zUgWdQ+BpySJuU6KmyUzWXdX1tKUSrFHMuBLcHBJjiOfTtUHW5uzNm8t+NLb/xDDt76jVSveT3m0kPM3vQ29PyXMdNfo/jkhuJKoFxVlE7W4hszpUiVhqVvWaes6xaH82LE0L4gBjfM9yVW7cXZhMqA1pq/8/94D7//v/4D/Fd/9Js5uHTxzO/76Ac/xC+999/zmx//+Et8hPcW94RAPQgHidOC9PgPsI3zaJ5dmA5JCNqsHz/TMS0lwW7kmnaMS4JFLtguM2ErTN/yII5bWawXqTUK71dsNs+MhENpCmQRwcMXhs4q6lqlxlanF15p8hUZjmI8MZOy9ednk+kFK4nf6L82eilBFq7ASKQNgxDXN6ACZAc/3Uj1IIxK5rZP7peevsxcRAJxmZ8lUI/FaTmXsEi7mqXS0hm7W/OMq2njMSF2hNBR2PnwM4YM6udYn/UT1t5B3cd7RF+nRfitjZ3k56cmN3orLm+zBbedzkNwoM6Y6J8SoceTfZAdYTln22Y6audzs+MO3uZum+TYN0MjmG2Ux0IWCmYiE95iTjQVfjofSsT9TMRpU0JRRsKLUF1kH/pqmOzjbCGCSYpl6BcMZePQrsM09U5O/PHqk7TtTRmzvSDt6sEpGaNMFW2U8dRPZJOnnHFpPoCPHcF3dG6FayI1EJVJZYx7VNUhVXmBqro8OLyr6r5bogV6x6y8z+JoVGo1dFTX0aGCQ4U5KnhxhVeVLIjKKbqZUzbSiKxvShOCTCC79hohuWiKboXdXKBdH9AsJpxsDJt5pF4EtIZFFZLbKEheYxkorWJS6FHH+yQEOBnznd+O/dMMDkWrkot+D1scUBQSD9OqYpig9y7qkJaypxcfUjInjoRy1GhuqjSbKE1EjoOmjh7M9n6qfMNJ2AxWi7EI67ojbMrzV8qibIHpXNrsE/dzJH3ceW6owcFRWHnWnG661jupy1KE6tBpQgHeyWai6kWLXqS2C2xRj5pxdhh7THQB5fvGunBrgEe/eXbGPTuJ0uOqCG36DT+dNpykkaRJwnUvqFk7ZcjgT/ma/f2gz9/XenJLRUnnG+BzF6hVdR8vf+jrmN//tXT7l7FPf4zV8Uc5Pvktuu4YYybMpg8ym72Cau81hMWDhCKJ0zu5r01yTUsET0jNSbfidH2LOL2N9ZCeESbpADbdD9TwuR4azvZZmaebzN76wu6g6ZACGyNBR5roaUaRH2M3tXxr2tEBSCJ1RJ7jIYkXGsRZHaWJD/TVS+3wef+xf/+NbzC+RrklultInJipdiKSXFUOm4Fx2IROfnofMM6LUxZ5fsrH8XUk114ILUoFGfcxEGIY3OU25YgrJDPzZmjpujVVakZ0fzGjVEY2ozafxXWy4eDchmlomKXqBKmOmNOEgsZrQghp/pfGsTkV+6HGc6bdaoXWbv+utgyxP41WOKtZmymmfRl2KZu2vTC/09+i03iv2IQNPkjUkdOBibYUaU5DBKcCDYqVcnR45qpgri0LZTiIhkUwLBCxulCRUgcKHcURrDxlVBRBUyahukSxQVHGiMcMk1KThOqdblHIa7cxDNd18yIJWGxu0DZXaNobhOAoy33m80dZXb7MfRcj9y12myOumsDRJjJ7pmF9/FHq+hkeMRWHumKhbKqq6cVpcU/XKRajL8w2iFjTElLVwu4hadUL1ApdGlRZoqezoTmiKipxRw8nx4C3xLYW8do7SBEgyhhi139PP7f1Q6NEEJGaskR7TwwBUwZM4SmqyKTyzDrPftAcBEutPbWxNLHYifrw0sVBoj5GbkkRqdPVHSMydU6VdzESlU/X/65I3W9Wlb5h/swettmnbiqOW01dizN5OtnGWZUlPP1Fr+CyfzshNFy7/r9CaOWplARTOVWTnXnsLQ0Rhw2c/r5wqzhti/3tnLM8JFb7uKrCVZZYKYpJoCwjVSlC+rSEabkVp7dxhnLs/RolxNuI077vTaRoW+lFpFeBYu2oVmt0t+tEjCb1l6j2qfZew0F03Dj6GJ91K/TmGmZ6GQaR+oy4D20pHnwVsV4RNhsu1NdwrsbfnOKdlXFpYB07KsRBHUIkpM3yED1d9AS/kUbm9TPSC8ltKIpjiuJoO2830nNFmwmqWKDSfVbHF8dd6dxa7KogIqmpMMowqS4RLrwav6/Rq0A8+iSb1PBb6wLvNsTYYVFYdufb2144u9Eege3Gby9S91FFTfAyj9eeTVBorWSDLqa1otKYoNBKM+sMWkX62iaJZJOKivGSrXdKw/gjw/+HqPBB8qZDGK8XRp8P69FRvEfvoI7bDOrtynV3vcbo71QSoccidT9fVLG3emipqlLSENAhhhjrJWbJFgfo5oRiUwFSvaSTQayN0s+gbwAZu/ZFyaAOJ9fxR0fUG8MGpLFvul8PedppJ8B0Dt1FfKfxdqvp9C53J0XKFC6gUlNoXSxwU01VhiGCTxcRb41kU9s5uqvSHKSfA7ntWlgXmLRe3zZM9BClebWKDD10HGpwT3dB0Rlpnlgo2aQoleJQVwQj78Y6OJahI3Qr0U1WC7pf1nzp6l/y8Pe+Xo5/fsD0K/83KV7qg5hiif1soFhW0BYsdSkxfMhcqAod1is2KfrSkcx2nUclc5lkk7+4MS2/0/n6r/96Xvd7vop/+D/+EO/8K/+3W/4+xsjf+Us/wDf999/Oww8/fA5HeO9wTwjUXauIZtt5t99tGwvS8jEJD52UpRZLvxPloZuTwXHZx3l03TGb+hkRmG5Z1Mrkrn9s6sjOcnLslH62rMr+L1TcOqnTI4YiQudXrDdPy7cpw1xZLFAMTuoJXa2p9Xbx1Ocu9m7q3vHYR3QM4nTYbR4ypv++EHb//5bvG4nUITUKUz6gXCuCdGjEORn6JoXStVmcYAaPxukCrTdYM906jEfnSqed8D7rqUQP4rRMPNSOa6afBIAaROopJikPU4xSo8iPFW3oqIsFIXSU5a2qqtYWgkUpvyuIkMTp3j3tG4n3SA7qnv7zsbtKK9sXl6G13dn1lH8j3YX7Hd3h9501wb+NC1qPzuVYLJDXZJLD8mxhahxzMm4uGE0F2uCrCcEWQ6yHL7bOaaXjmbEQLwQ3mRGmaRLlgzT46DOkmxPolvjuJs3IJd22R6zrZ1IufJ0EaRmrNsIERaU0RhXMjGTtbkvxt2PTnOHo2DafCrTB00ZH3VxlWT/NsTIYO+dw/4soywMKuyfO6rKiLOU66F3Pu9eH/L93q3QM6R4SnRhpqsmogaJGFzNMd4BJ96teqO5/RgxORCe3pOrW2M0B7WZBM6842og1ZzkTV9T+NDItfCqLVUwLEar7Zqo9vUi9aeOQ03q6QlRrUEZc1L6qUo6kZJcbO5Eql1QuN3ZR6zROx+w4X+g3opJwrUS4XkbPNS+q3KGtREB0DcdhQ9vu/ryyvIjWE7nOtUW34mozKaMxaLvN0WUb8zHe4OzcqWaJ/bFqEQgl01QRqoh34Lvb3Fy1RdsFNjoKL5sXxlQpAz2k6sLxoqBfnoQd1/PpqonTm1V2yNUv0ubfVpjuc+q0rnZie4ZoI2VFjFapOayZEIsZaCMRBUWBb2+NVXkhPPLIH6B66Gto5guK1ZKTGx9iufoUbXeCNRWz6YMs9r6EYu81+PlFfCWl99p1cv91rSxUfE3oloTknPZ+JZvJo8zp24nT/WbV8FxRahCmrVI7onShts2cni3eA+RZPpQs30asDkRm2mKjwgZPHcPQQDGiRo7qntEGRkSKcgOD60fHwFmO+BA9GpKLyGOMx3WSHRp8LYtUt5T7vZlgOnEdRVuiXd8Ed7dcHBg2Z3XXcTrDXyszxHxoFYjKyMIP5Hpnq5HqdM2CPOecW3MSa666DXumZKoth7ai0oZrruaou8nxcU07XeL9WjbEolSjSIzPgsZXdEETh7EsjkuAMonPPu7mLfeRo9NSYdx243/o/5vmWbWOOKOo1wsqrSmUpUpuLX1KnFedpm07GuUI0cu9BZgk8V2nBooAOorocqI6CqWZaxGq50rE6kXULJRm4TX7JqSGtfJvSy0uQh2VzO+iYqMUC/pqFM8GtRWntfw+HeX3T9P1uA6O4xcpvzJ2RzTNVdr2hBg7ynKf6d4Xc+PBgvsPAhcXhtJKvMemDRxtpEHi9JkneOLk4xSh47CcMx+7p6Nk6Y/F6Q6/I2xJbIkhqNSUTPXXWRJ0jPzBaFQp7mkRpiciTms7ZFBH7+Q3G0sMHmXs1lnYi9Sn3dOjRonD3ycXtTJKsq8LyaKeto650xw4y0ZbNqGg1p6NdqkPizQJHqI++kaqo2dAvwERA1JloRhEalTYblQlXbJ3UQffMD86YNo+gG0OqZsF7dzg9hV1cin3GfT2cuS4+SLu734fMQau3/gwMYnUsuFeg9JYMxmapKsYdlzfwFDN04vTkj2dqi2sCKtDf5NiTigndNOSUCnMNFKWIphXpaxzSjPeaBrHeqS34tT6pRenWy9xPjvRHrWI09Wyo9hsKI6vSmVOj7b0PVcAKOZMFq/hYP+LODr6DZ7s1hhEpDYjkTp6z+xNb9v+mPkB9r5HKDcr5m2L75ZStXY0Q0qz4FgVacNxFO2l5T5GL/KFhrY5IoQuRTnIpp1Uhc4xZpYEyMmw6Fduex/+XAmhlZR0pYfomcLOme29luMHLqGLyPzais3y40MGvdEFrT8i4imU2TFtna48GvoP9f8/fo5GIN07++gFAmijJOojNXEQB3WUOWXQ1E4iSEQy1lgb0EZtG0iydVBvPx+J1EmYHn9f754+3RwRtm7q3kHdxjCI07djvKkjbvNucFH3IvVObFb/s9Jme0wZYPLM3wwuatcdUTYL7EYiYFTwaDvHmAkd0ni+C+KgDm1L6BpiV6OKZ8/dfTbcjSt0N5ZsmoJNygvvYkgz26TRpKbWUkUa8S4OTctF10hj2iliA7bpwEkFFcUcZjAp5bneehmmrrKEUioJhv5S2uC9HzbStTLJbDSO+iilXi2kTb40j7NEnIrodPwacVT3rv1+83ShDYFqcMtvgmPpO6Dvl7PA/9qCw1/8GeZv+a/kWVNMmHzZW0AblPkgytzEPhUxR3C93uZbGyUb0VLJ11Eks47EebWiUShRTXbyyTMvCn//3f9P3vDG380f+u/+Dzz8qlfs/N0v/Ov38fhvfoKf/zfvO6eju3e4JwTqzUZh41aEHtOL0tGLY0R1Ee0CtglMbx5jNquhAWKXyua77liaH7olnVvStMfbxn3BMRalx27pfmE7FqP1UOwmqDMErz6DKVUrnRKpxV3l3ZL1pt9VtcwAqyxFmiAtFzPaVJY/OKmHktXtAqt1Ea3koyArlNPNErskRm3/bJ0H4z8iWm2bCjkHuIhxHhU820aBfohR2LrV5KYfYieinakIff7aCI00RCu0HoSpMpX+l6MM6v7m7eWkpndg2/DBKMU0JpGaCQYRHa65mqPQstlcFXd8aAnBUxQNRWiw6aGp7UKOp5WmZ2MGgSSIe082L/wpkSm9HqVFDIsBnbIEVWoOM3Y892XQ46ZSdypI9w6u3g29dU7vitFDLpdOrlJlJW6kF/KUCFOyQJhKw5W+6WByM7vKDlml/aZ+cBKZ0NXPz51/FqZtKLwamhpSX5PYjtEmUh/b4X09OKW77gjwFFGct1NtmShDlfLIi1P2+HG38FvfMzWM7dOidd+cpQmeVehY+zVXr/9HjJlRlgdMJ/dRJiextbKTb0fv8fZ9TQvhIJUGKnWm7t2+wHD+Q1GgbSHu9m6Bbm9i3JKuuUbfEC12cq8yvsY0R0zrSxSbfdrNnCMq1vPAbBY5mcDeDJZVZFrGnTLZabH7Wlsv411Ealn0t6cucaVJkQAVRbEQF4+ZYYw0YYmj+1t/Fx03PwVOCdPbjSiGz7cO604HNsHvZBjiGk5CTduSxk+gLA/lPGuDUVbu2UlsM0aLM9RogtfipOmdSiMXtU0Oap2iPW65TpKIpZKTPJqYFrHdbkayNmAmKD8RUc2tsaaib94qZdn9xlS/6IiD4KAUO07p4Y+2O/cIcbLdXpjuG8PuRPecIUzvlge/OGX/Y+Ijv5dusqA8OSLe/DjHJx+ncxusqZjPHmZv/3dh91+NW1zEJ1fjsDEY5A+ukcqVIA1qvV+lhqXr5xCnpfLJRCiQ6I7TwrRVekeUtun5c9b9YEzvfBw7qc9clKqtSGiVxgQ/clNHgvKn3NRjJ3U8o6QfVIoU2ukNEf1gnI3R4T0otUb3zqHQoH2F9s02xik55q2TZpT9s+92InV/jas+G1xbVJDrTXJHzchJrYfxCWk2kkQrbBKpveG6W9HGwL4pmWlLpQz32SkT33LDN2zWT+DdhrI8ZOJrCrfEuAepQkD7BU2Y4DrNZiEiQ5Wclz2lFfHydDPFfvPb6LgTAbJtsCbNUdv9gmgWRG0obEmh+14Wkkstz2adop4aOmSc+xT5MdMWix6eSS4GXIQGj1aKpe+k8ksbZr2rWhsWyvKgN0yBqZa4j+19EoKCMikZm/7eOHLl9W7qIoahadWJ7zj2rVSYmRcuSIzp6mdYb57CuRUQmU4eIFx4NfsXAw/uqyHeY1V7Vo1n2USOVtAd/QbL1RNcNCUXzSRlTyeBmlFjxBiGyKfBbTxEwWlxrZ3K7e83GZQGXViJ9zAmic12R5yW02ZlQ8XYraMwfR/cvgR+7KTuY0B0WRA7h2kDRRXomkhZBiZtYNEqFlg2Rl5To8VFXYZI6KM+ohIvaXpJg6FjyAIgqVfbfgbiqBbxzgN0DHPLGB12tS8Nl7sVprlM0+zTNBWbhaabR4oyUpYiDG/u0yy713F/lM2Wmzc/hk9xHw6HdyLClOXBmefkdEWP1sVOjxNj54Mxop97Sn8RRawU2gaslaxZo7cbTaXd3o97MdpotTXbjAw6sm6JtA7qTrLm61rJnHUJ1bKjOj7GbI4IqycIvhnm8zsRd/3zsVhwePAYMXqOjn6Tz3QreT5MLw1O6kfCByA4EamTkGsu3E9Rrwj1ikX9CXzXyvNqOcFjuW4K8OB1HHKoAUI/jpNQ5r30jOiFTFnHzAmhxZgmbULX4kjXFmUq9FkNwV8AMXRDxY+K8t5OJg8QLz9GvKQIjaK8+mlurj6dmiPKHCXEDhPlPTq90dvPx09X6/Vz9N4Z2sfEOcUQvaBR1MHL/U0cEBi83MOjPLtrb9LPU1RRKgysTQavdGqHnsu3EafH/38WIUV+bOM90p+4Nbr0M7ydVzlaB/YRn4EkVHNqvPf+61PiRz/qQ/rHIUj1Z29IMHaOaRbYlFGutEQXdnEtArVXuFoR25bY1sR69YIF6liv8Defpj32LJspG8K22iVuHdTyQlMFVOdRnSY48FqB3ZrlggPVidOa1CAxFjPsJDIp5H5QOqnirSuFryaYYjHEfJzuidFXHAM7UR8hOvqGiUF5qXwiYkYmpUJpuhAojLwmkYUNUyV51F5XdHqbW730HZoNv6U0hhmP/fyHAZi96W1yfrWl+qLXp6P5IHATgINmD6IGXWzXORaMV1jl0EFhku4g7ZDlassJHy8+jz32GP/bP/x2/t73/w2+70feM3zddR0/8lf+On/1L/1l9vf3z/EI7w3uCoH6h37oh/jrf/2v89RTT/GVX/mVvOc97+HNb37zHf97v2RrjQAI0rRHhb7hYYdtGml4OIoAWK8+uSNEO98kx+Xpsl8/ZFIWbEVoI0WEKL3NpDydR3mWu2poijA8YLdlSx5ZkLrRIrZAoWPAdcccH6/YbK4yn3+KxfwVTFePUM1fQTCvpm4qVhtNU0fqWWQ9ka7cswo2XWRayM/btIppGUcZbeEM18FoEucCnY+0Lv1Jk7rWRTYdLGtY11DX0KwVxTJQLpdQX8O1R7TtDdpuievWUnodOxTSgCqoQPARpwzKWaydJ4FNnIQW6WI9NwV7umRfFyyUuGgWSZzu15lGjdzcShoGeRTL2N+q4yBSl1pLR3gz4XIx4YZreLw9ZtXdZLP+LMaKuFiVB1TlRaryUITF4gBTHGxjLpRlaIoY3ZB7KqXlTXotPom//eJcdml7xEFSYcx0x/E8bti3K2Q+ezSHCFLVbUv15edsF9CMBGr619ULUtoMbumxey4YPQgUxgV0UIROdrWjllx1NITPPbqM+hP/nFq5ISKjaW8OQpPzdbqmWooIM2W4oC17puTi9MLgSmuTgNxEzyY4jmJLE/yQW3eWLD2udlCQHNdb0apKGaK9cLBnCl7GfHDzd3hO/Jrjk49z5BquRo9XFmsXTCYXqMoLLBav3HG3KL0VquUicOCbYVMkaj00vJHojwkq7KHCfZimZrJ+htAtRaRLEQfB19BcQ9dX0CcVU7tgev0Ruvke9bTieFHw9AKZ3E1gMolUZWRSRvan20qMnr6hkNwDpDS2aU/lxGnw1hCmh9i1iPNlscdaWTwdOkYkUlGkapSWjbgzNgi2sSBboVrEacUibVhtdGAZPavg2DMll+yEY99yzdUcN1c56Y6I0TOprjGbPkRRXpQGm90hhbuEaaaY6QzTldS6lEqQkJo+EtPiRQ1lhtb2JYdyjONqAa3B2EgoIFQKX1i0M+CSSN0vCrVFFwssMAHa9iZKGVploIOAGsb+NrNfyrVjTGEPauSeTuPdDJtPRapI0YMgPa6a6MXp8X0hpkUdviYqC55howRAbZDVQXRE3xDam88xeu+M4vg66qn/lZvH/5mT5W8TYuBw/4vYP/wK9MEX0+0dsk6KYt/8VAWPbmtUt4ZuSXDLIXNaYj1GzYy7Yzq3kYifU8J075oulGamLWUSpPtNrH5z1KDE6UWfNahvW20xvo67GAZxul+U9mLg+OtV7/yMkWAiTZB71eCMiV6SZpVJC7rduUUkSllqVPjkIdXKymZo2gA1fbSQLsVNPWxctni/3qmo6Tcremd9L8oMz4r++XeK6JZpo8Dv3Mu0NsRYDQtDn353CN2wERtCJ6+P5LDUBcZOaZXhht9ww62ZRCUCrSnYMyWHtpIO9+6YJz/77ynLC8xmDzKfPUxV3Uc5eYBq+iB+fpF2IVUkV2rNZCbO0OmEbYZtCaWJg9hVpiiQqZbPSxspLWwKcW6uS7ln3gS6maGbiyutWh5QrB5ktrnJZPMU0/oKdf2UjO9uieuWhNCyjh1NcKyCY6IMU20o03XXlz+HJLSd+G1lnR49gy4XE/Z1yVxZDnQ/N9KUMGzwedhGJcWAUWbY5FsGWXifeMeVbs3TquDw4DFeefn3Eg6/iE996r95foP5DG7c/E8sV5/Ghw0Ky+VH3s7x6y/x1a+OfPGDFYcLS+ciN5aOJ244fvtq5LOf0Rw98bNM3ZLXTC/ygK04UAYPLKMf/qyC48g3w/kaN0i0SoswnYT4ljiU28s1FjFlck+X4pzWfbyH2b22o3figE6ZrNE7EW66mtg26e+SojVyTm9/mRk2bQC09xgv899Jn0UbOi43BXjZVDRW7jlGKW66Bt03x0KMEEoXSPDdbjxcJDmso4ZUrQije4SP0jwxtHi3oWmPcL6mLD5NVR5SHF+kun6JaXWZML9MN1/QLCbUU43el9tP91DBjf03c/n+L+H+Jz/Alafex/Hxb0HYoKPDuWMUGlvMsKYaRKBxzJxJ4nRR7A0NqPt5ti4PoTwglFNcyp4OU42pRCS3VqqZ+rie8eZSm6oeQmSIJeu/7gNsusCmjRxt4HgDR0tYLhWbI0153TG7dgNz8jRu/QTr5grr9ZOpElQ2/aQqROJIyvICtjjAlpeY7n0x5eR+9hev5ubxr/Obx5/gqe5x/nO5xxvCRR77DzNe8dGP8ej7P8TLvuNPYC49hCom2PsfBWPRkzlm/5NMH7/O/hMdl65N8KsJ11XB9Vhw07ec+JYmeqxy2CAVN00MbGKNdy3Btzi3xpoVrZ1S9BVsZibnuTiUe3hnd7MsPgdCcHL9GVmX7O+9hvmr/xuWX3EZFeDiRx/n6hP/gpPVZ1BKUxaL5LZfM0tGoX7N3G/onrWRG0hybMouDoi7VaPSelJc1J0WMbAJhlp75rGgVkYqE5RhiQZvmAbN3AfKzlBZyfcvbBjif/reI/Iat3EeO/8fb3VP+6i2QnSq6B3y8qNnE71sPgWPS07q/pWOG2LvGJGi9GsIMRCUHqIz/Sh+I6YeOtsvJL+29rTtydBvSSqmGibBY4MjTi+gykPm0wc4Ov4YR9ZxsyvZrAzuxjH+5tP4/UuoyfwFidTNb32I+hO/xdXHLU+3BUex4SS0bIJLzntF37wQX6O7jqLpCIXBaY3zipD6r8YAYQPlxlOsTvDdTbSpqA8vcHgYOZiKQA2wWES6VrFyc7S7j8Inw1yq3PJ+WyFkzLaCWfUmMm3xqpYG5qHD4XY3AkKq7NTIQzbd3o1STNGyoWqk4m6iDVddzcp3XHe1NFAMDQ//p0s89uTHePnHP878q76GyZf9nuSk/j0U9z9K+ciHmP/6R1n9wobPriYsgmGqFVOlua5kw/oktMxSJrV2DV1y6HtCStDOvNj8yF//H3n1F30R//lX/yO/601vAOD/9z/9v4lEvvM7v/Ocj+7e4NwF6p/+6Z/me7/3e/nhH/5h3vKWt/Dud7+bb/zGb+RjH/sY999//539EC/OaHENRaplh+kcdrOWPOluRWiu7jik2/YmdXONzq2lyaGvB3e0eG6j7OwiAvFZDZL6hUK/SO3dL8/W6AG2wrRXcech7AgiPEZ59Lq4zarqHdoOT9cds17v5lOVy/ulaSLSNHEz/M24pA2mRUyducOQ1bab17YrUPeOg7PE6f7zXqCqa0XYwGTTottaBAPfZ+92IgzE7blV6fCCijsijB+9D4XSlEoEwN49LaK0GhZgpYpDSS4jkdqkrvaSWxuGhVqPQTFVBnQFFo59C75lHR3Onch14TYpP3gpkQ1uRRkdxs4ZmieCCDZ9fIOvU9bwre6ErcAsO6ExhjR5L4cGZGMHtR7nde/k+J0tTD9XjmwvTAPbJpBjweE29LEmKgTJ1A0pW9ek0mmtUEYjBeRRMkrlMv6cOVl9EvD40A1NDX1opFQ4wp4yzI000ppqy0TL1lEdHSdOOimvQsdmKANOk1sFUrnQOxOB8diNva8hEum7NvvB0S+CVXL1J1f2IFbrkpKCuS24z06pS8eRa7npG266Y5bLm6zUE3RuOeRWF8W+OIf0BG1SPloAlEsO0RZOOfdjatwJEgNiwkXZPPE1qluKs2C4NvvJmccuLWW3xm72KDczms2UbmpYLqCeSOnsZBKHSIvTma19rn0fezHO/Ift+x61FqdR7+KVQrjhrhTSRhXq7PiDdOUPnw+O6j6KIZWu9+KL0Yoibp2uANo1HIWOur4xdAqfjX6H0RYNmKQ2664gaEit6OTgbMQ5Upnz1k09diec7nWwfY/0ra7j4EXohSHf2ZgSa6byLNJ266Q+K1M0nRkxD0mjIQ2yMRDkvYpR40OLSVUpklNeAS1KiWtONrI8uLFwYIfj2nkdwUkX+NQ1PISWpjm65T17IbijX2e9+gQnq0/huhUXDh8TcfrCl9HuHeBP5aqIw6bbxnqMMqdDkB4R/YaWD+3QzHgsTvdxP71rulD6lgqLQieBGnn+mPR9vYu/f+7ckkM9cky3qbPg4O5MH70a/b8SF1zB1nWtdRIiU/mmSVmDDT41ydQwNMeU62O7uA07FTh92WqMATNsUhrQJSo0aF2l6zZdG/21oOU6CaHBxDlKNYNwze2uk/4+k/5sn0N+Z84i12hvUeuGR8W4ZLkX3ayd0edSb2jxoaOLQSIftMUqzYEp2YQ1y/ZqyqVeMZsumfo1pVtR+JqJuw/T7bGsFqydSg2YIt0EulIqwabJgeVDhHL7Hg/Hrfq/h5Bux5MJ1EQcChmJsogv5F2iTOeqHW3ouG6Z3KydCAvJ3Rq03Aut0sP8sDcwpDOUbometXJsgmOqLbO0Mbuni8FdPUUNjuN+o693Hi+j5zjIYvmaq3nG1dTa8vKXfR17F15PuPBqOnP78vPnw6a+SvDi4damYvPAo9x3OfLgvmF/JtdE3QZWTRD39BLstcBm8xSPmIo9XUpEG7vO6Tp46uiGcnE3Eg9Cet0GRRc9PppUXn97x6NUtowiPYwlJgEods0gTg8idZeE6eCJ3t8iUkfYyaEm/X800lRRGY0pNb72WCtRH3PjqYP0WtgoQ60ttSlo0vxFNrECLkV9KK16n+QwXuSAScUWYRAi4/jJm8Rrn+4LXXecqkQbnF/j/YrCrbBuSdU+gGn3aedzNqaEPvqrgNXFffa6r+D+ZDc9Pv4tfNhgIji/SseVjBm6HDlD++ipfhOsSpuoqcdBMkiEQnqPhMKgioi22xjD02yrusSAc2akh0trGA+btjfXKJq1whynytqTp+lWn6LZPEnT3qRunsH5ZnCc9xvBxkxo25tU1SVKt6KaPYrSE6rpQ+xHaQy/XH6ax9ulrAurC7Ccwm/B/q/+W6Zf9lUiUg/i9EXs5RXVpmavXuG6hvs2FYRe+QLfW+DHrz8gG5gqQOwIHpmL71RbGmKcDgKdig66DS8WSqUoKqXZO/hybj56mcUssvyMorv2H9nUV8R0ZCXGMQQxKhmlOf1WnhXncatY3W+6MNwjiUFauQR2m0rCTqQRwBItm1VBy72xU0yMiM7WBEyMu3Efo3vGWJwe//1YnB4aJY7c07JBts2f9qPXcPY5HUc06uFlRJUqgVMjRHXKZLPb5D0QA3jVorymS9eDdSeY9po46q3EGZXlIU30rKJjEyvqjcZvHGGzJtSrF+yidjeepr1es9pMWAKb0f06wOCgjkHMXqpvlBgiykWikfu5MlEiRLuIbTpUt5aNcDvBVYXE/VgojYz9qoRqEllNNd10il3Oh+oMmfeYZCDrN8WrnePWMRBNclKn6rOQHr8+BkJqmGijHvSc3vTklfQSK9EstKGOBVMtz+s2hiHy44kQuHRzwv6nl9jLH8XsX6J4+LUAmEsPUayOcDeucrD/FMvG0nYFUzQtkakydCow0YYQI50KFOk12VStql+cR3jmFC972cv4b7/rv+Pv/qUf4N3/7B+zWa348b/xHn70R/4eRVE89w/IPCfnLlD/4A/+IN/5nd/Jt3/7twPwwz/8w/zsz/4s/+Af/AP+3J/7c3f0M4qVp9q02KZFuw5787OE9ia+O6I9I7Kjd0p33QkhurTLKBnSFrnvjzMoC22kgcNIlDbsitOnsyhPi9Q7D1zVZxkl93S6qWlSswclwfZRyWJ1XLVnIzjlaLsj1FoP5XkHJ6+gAlRYUFPhgojUfeZiLyhNC5nAlSYyTbvBrVMpc/Z0SRw7H88Sp1snpXFtK3EOZh0pNhtUc5yE3bXsPvo25U6HQVzSiDtxyJ4dyg3FQa0jFEqlaAaJZyjR0hyxF6pVlCZBMGQwAvio5PekEqt+67UdpB2Sg0g+Q1ec2E7eQ9+wiQFHTdtJZl/nNlRuSWEXhOhvyWwFholfCA1907rTGaDjrCtCJxNIXWLNJMUglDuL+O358MPEGBhEadiK1c9HmO4FhsEJDiI4nOGejjp1oIczXdSnG2cBQ/Ms3X3uT0fJX5fc8hA6iuiYK8OemTDXBQtTMNGGIi1gxbnccqVbswqOTfR0CiRs04q0lMa0LI7sdlHHNhJC/jhxHQVPoMWnZa+P0tiri4FGKYrosUpTBnG1eRuZaMNE2bSxUrJfllwOU9ax48hJafrTx7+BMXPK8oBJdZHp5D4Kuzc0CDJ2joqpK3PsRSNDTBsF0YRB/IxaE8qJXBuukmaA2hJ78S41SAqhxnc3Ub5GdyvK9gDTzMWltKnopoZuqmimEecC1m7dSqdF6pCifvpO296pwWDQT+616V2XGqVUKk/e3vNg65qBbbwHMHQU3xJ3Nql6N/U49mOZummboMCmmCWveMadDAt5gMkogqcXvgFsU+GwkgN9hki9zcKLO4vk0415b8tInO5Rg7NZ4g0kFkHcsChFjJohU3S4TiNbCX+bNdhnk+78fGUk/zd6QopbAAi6HdzVwOColfdk20hG3E4tzi1T6XBLCB1tV9/yu14Ix0cfYV1/Ftet0Kbk8OIb0Be+jPrwwi1NUU3nhuzp07EevTPI+/XgePO+HiK6xuJ0H+lRJpf0RBsWpsCmz0WwtoNTuo+VMoph4QFn59TD1kVdqtFiNG2gejVayMSIR2PStemVOKoKNEVIAnnQEjsSFSE4ESIAok4u+q1Q3RODHzbcQkA2vtMzVseAGRrpmlHJq8UYUV19aFDJZd1vYkhMh7t1o5PtxkZfCt+PrfEzUBaE22M040ivUyL17r8rhtmqCoYuSI6/D1Jy228sXLITKt9x7FYsl4/Ttie03RGz6TETt6Rsb1J2DzOpShpX0HQa10aci7SluKm7kZsa4uDG2h5z2iDTsnHnrZSGl6Xc+zycLVIDVfPMzs9y3VI2eHF0I5EavW3EaZUeyqF75+D2TZYYkBPfYtJ1O02i/Z4ptvMmtd0kWQXHOnRcdw03fMORb2mVpZrcx317r2L/vq/FHb4MX1bY493jfaF07U16SamqLrJ5+YQvvSDZ05NSp94GgWUTONqIm3X+zDXsKHu67BsjJoG6jp5V7Fh7RxO9OKhH8+yhmhFFgU7ibl9iv9vQbAfvRJwOW6dd9J7Y1iJEt7WINV0jzum2IbQtsW1FlO43888QpoGhERhGdn2HLOoOrA1MbGDiA9OomSKbZjNVUBupAAtB1gwdKepjeCic2sRTWvYylJyJGPunWUybWdJkFSCElq5bjRyWnVSSpk2/wtfY7jKmuUDQl1MTZCXCUaFYX7rAwn0596Uxf3zySbxfQexEpE5GxbLoK/yKYX5qTLnNa9fb/gdYyb4Pthjmmeq0ktm/ZTuxg7K+OR09Nl7DbDrppbFuYFPDZq2IxzC/ucIePzOI03VzjbY7GmIeZdM4bQak3jGtXdK5FVW3HBzg2lRMpi9jPzSEGDhafZrPtEvZ3CwPYTnlwV96goubDZMv+UrsWKSe72MvXmBStywax6XrHb4t8KQNll5E88nkpKRxYuEDMfUtICqpVPUal+YUMU4YerGkas/olmef0BeIUloiFB54HbMHZb508Jmr3Dz+DdpumdY78t4730hD4nH2NEOLv52fe0vVcfp6P9p9lLz5sUg9xKGMRGqvg2wK6shUaXyUSiTvNUFHfFRMIhivKczWSb1zLEmcHv+/P7XMGaI9UKN7Thxc1W0MdCE5p++gid14TQipb0KQuZ6STi5pjTtuorKtmiCZwLxvQck10balGKPsnDJF1ZTlBTbBsQmeJdB0Bld3hHqTmnmunreLOnY17urTbK7DsrEs08aixFj1+oZK1R9pUzvFtpnO461Gdan6I92zdRcl3iPlT2szoZsaZpNAaUTP8BFmk8hmEqmnkW5aUk4P0LXEDjq3Zrgxjc7zMFfW5RD3YXQp90XfEtJ7aZTCxYhVaRM5VeoWSd/pdQ2jFGXUzLVlrS0rZWhTdNs6OK5Hx7Wu5L5nChZPPkNx/ycxh/ej5wfy7y/cT3H/wywOn2Bx7Fh5w9RraX6cDBNFNOL+j7LZIznYChXjGTX8mReLH/ofvp9XvObV/C//8r18/MMf4eWvfhV/8A/+wfM+rHuGcxWo27blAx/4AH/+z//54Wtaa9761rfyi7/4i7d8f9M0NM02M+D4+BiAxWefpIgdoVviuyOO148PgrTzm5RLu7klRzri5AEJKXNSbYVpJQvCIXvylINaj0SU/gH7XFmUPSG5p3p3jAg1o3KmGEQkDD494LYitUIWR45ucOPE6Jkuf4syOqrwILBP46u0SOqRMvXSSO7atBAHQWnEaVC6bbPEXRd1erCGcd50P8ljmOD17unZqsFsVoT2ZnKrn+D8Jk2MvOyYs41J8b1LNQnzQJoIdhRIvMdM94ssNYhRJZK5ONGpLMtsmwT1i48uSCMB76Wh4lAfpKCNjB4gUKI5NNX2PfUtm+hp6aRRQ5RcYFfI9deX9/U5rsBQuhyDG6I5xsjfb5uc6eF8l0M27PjnyaWQmkiNxLRxYwc1csONReleOB+L0bc4pdMiYBCjYStIpygJSMJnykAei9IA0fTiaBoDLqCagA4ygYjLO3dY3m58d+0NtIYySkOp+8sFCy3NDSfKpqaYURzTKT9z6TuuxQ5I2WqmRKvdvG+TSsiHc51c/NJIyG3fy+AItIQQhs0sr2Ka/8lHyf6TxYJTARzJiemYaEOlLFNtpNEVlkNd8UCcMWtPOHI1y/WKm5srnNhPU1UXmFaXqKqLlOUFjJlTBDdkwWJlAdfnwQ4CdXJm9XNyBamUcynvfzCDeOTdCq0lbkL5OuVY72PaObaZ4jaFOKqDxpYxidRnO5dCAJfciDFA7BR6rELpbWNOyU1Wg8NDGv+klLczSjp7YW8YqyiImlJts/yMStUUSkm+YH+PSLEMJuVSHjXHtG5Jc3oDIvqdcvhyM0mvy+DQg0gdgyJaCCniwzl15rkIAfnes0TqFAc0xHyE7ZgenGSp7DmoNt0T47DwGJ+7wQWXitYDTqqIlJZcw+ixbCsvghIRXCuJUlBKE0IvLo5qbkbCok8xV70g7XyzHRPR7ZRI3gm3G+Mnq8cJfoPWlr35y28Rp3uGaI8u5dH7ersB07unQ8qYDh3eb0SkTqJ6TOO3d06XfURPEjj7CowCiVsoVGrIm54R28adDM7UW9zTpGeL2jbrHRok9c7pdE2X6DPFao8IUEZvc6mt0tggblHJpg4EFVFRJxGq38beZajAGW1ihHRdmLTpKaJROkbfOx7N4KZWo80KFU5FRoX+mdSMfmdfsTF2Q8vzsRepTy+6lTKo0A1l9L1Ivd2UTbnUPomtoWUd/ZDj7GJgbgoOTIlVimVwg5u67U6YdyfMkpt6WsywzR7NYkrXGdZO0U5kk62bRLpSKsN8gNIz9PSQ93BbpQDyUaopIqGUse8rhQsaFeRZ3ovUk8nLTr058qzwQcavi5E6idT9xohGjBIBRdc78AbxYfdnrYLDqHao7rFKUSozRF25JOxugqchEnVBWV3mcPYgi/krmM1fRXfxYcnSXi3xNz9zy/X0bNxufPvQiMCsC/bmj3J4WbKnL8xlLtK5KNnTdeR4A5sbmumNT3CgCw5NxXQksPcl8qvgqPus9iR4jBkL1F0IBJPKnpWROWKaJ8axujSEznpim0wG3m2F6a5JsR6NCDZtI+LNKXH6WdFmyKLumyUqDcpETCHuzakOLHZc1IZ5lOaJLrnzdPQE5Qkx9blJgvR4s12iAVS6P4TtRidx+xyJnhgjztdJkPGjDONb3dRTW+CmM7qqwFWWaMBbTX14gUl4HZfT8+Pk5LfxfkmMHd6vRyL1IgnUdjBkjI0VjOaoffWRmCDS6Tujkqvvg9ObbFoL5tTz18ddcXrZiHt6vVa4E1hcW1PevIJbbsXppr1O2y1H0VB98zmpVvE+5cq7DZ1bUxQLquo+bHGI1hMmkwc5SOfz+uZJbLuU54c65OHPzHDuBpdWv8j0tV8iTmptJGZmvofdXzJZHnFh1org2VnSjvutbuIQsWk9FaMIl5ILbdDBpfezk4zaIJWeGvCpYeGdcrvxTYpo0NpSlYccv/YCl2eBZz6lKa/8R9abJ4nBYYs5ehD75Bj6t3NsUuhf31mRb6fp4zF8Hw0CEoPRmx9CEvHTfTPoiKfgSGm8suJ4Vpo2KKbpmV2qKOtHHSlOX0gwOKefK9qjjSnag3EFSxgEzLE7fFsfk9bDp7j1eRmGeWJExGmlFLunLA4fYvAETaqW02i3xHRTiu4I295EV5exxQGb4FnHjmUMbFpLu4awXBJWR4TZPnr6/ARqf+2zuBvHrI4NJ84O+dMy3xnsH9sjTu5+3XUYW2AKI+vMTtHbgY0LaNdBHz9nJsSpStVPaoglnBYwnUA9i6wWGrecUa0OMe0R1q+SkazPoe7P72j9PcyhvYwjNEFt3z+Trqk+i7qPafXowYhg0jxzimamCyrdsgodLj2Pj4LjSJecrAs211ZU157CX3tyEKjVZI7ev0S5B/Opo9yUlPRV5FLBWysxL/TzheEaueN3KfNCWCwWvOsv/xX+h7/4l7lx9To/9+/+HWf1mcu8MM5VoL569Sreex544IGdrz/wwAP8+q//+i3f/653vYu/+Bf/4i1fb29+lDa0qWHaCZv6ipT49mW9adc49KJTivAoIjsLzr7UV/VOarUVLfpqIR3l64wepr1x99m68Y7/bmjikh5Qka1YHWJIZbnpe0IYHl79ZT/sGqtWuqJjWC8/Q0TyMVVsIczxocB78G0kNOAnkRLwhUzgJpaUQy2idO8UGpqM9FEkyZnQuW35XBtSU5EV1EuoTzTxOBJXa1x9IzWdXOFcTddt8MERgji3AuLq8DHKA0rp1I1Y4VyD9x0+OIqYJqMx4oPHoVmlzFWUYo+AVh5NSO7CkUCdSm09ChfsqOwq0hFpUqnk8CeKQ69AYj9qFF0EHwKdamUSFAIhRBQGY2qs24jrURu0Knec1AAhyoxcGibKhCOkz0MIw865lBj51FWYYfEui/szMj5j+nus6O3KyPf1H7Hp0amT69bI30XNkF2q7NAJJCpxZopI7YkqSglZ8LI4UHoQGkKQGeAQWTByqagQKBonLse2RjuHWz6djvm5J5q3G9/aOybIJsVc21S6bJlEjY6RNnrW0XHkW458w9I71tGDmUhkytCwqhyyEPumcX2pIYhbNsZOHEkxTWx939wzpvesb+sXR+qASk5FJXE1SrOJHS54nDZ03tBpT6ssU72Nn6ii4n4zoUJT+YZj37FubuK6DW27ZtqtqMolZXFIJDmLdCU54aZK5chV2lTYjZFQIYhjMqRa0CDdqIPfRtEoXdPnkGuzgW4NzRxdz9CTGaopaYOhSyZ7Y0WY1YodV0kICudF3AlOGuKEJmDaDtOtCCGIaBs1sT+vBJk0o+QGqqTBl1Oa2jlaY1inpUsbdwVqo2CKkeoKdGqGJfRj3CJdtquoaKOmQjNB03lHF9ZIhrMhRvBejq/wUloYCnGg+2lJ6DShU1CIg1pbGULhWcT6EMRJ7tPKxLUtqq2lnLZbg2uSUzINnuiIoSF4qZQIIQz3mhjiSExPm3kweiLIokQuv+SM01ZKI7UhRrWTY6h1XwpuRvnDaYOjv0cNVRtdWtjKs5NB0A/D87QXqO9kfD/bGG+aG2ilKMtDZrNXcbKo8DTD/UUF2fSKnce0DdF1ck7bE4JfpezpNd6tU7zDBudrnGtxvhWBIWw3pfvXLc/0SN8TwUTQQapxYpCndlTJb6jkjNverXw753R/LST3Su+528YLxFuePZ6Yyl237psYpZxbpVgXYkzCuJby0hiQ3s9B6gf6zYxTKCVjTKEIyqPT8wal8drKNaILvOp2nI2Sa55qE5QheJ82PLebofLz7U62LvTPvG3eZQwSNxJCL5b3grecUdJ9V+69ang+ynPHDb9Lrr30b/D4GNhEjw8Br4P061CKCk1A40NgFU4IweO9I4RI1a6ZFxdR3WVMu8A1E7rG4KbgJhFXQVNGmhLibLcJ2ziT1AfwDpwH30BoIXSK4CB4RUTJYlU5gnLyJNcVWs9ReolSJSjpakKUDa1ucLVGyiQya6UgRnSUa3S7kXH2mOtGn/fbFqQrwxPpFCgknsDahWyEFhcpyvuI0wdpQ0uxXOKXT1OvHk/n/XMb38p7vNYYO2M2fxUHkyUHpiB2kdWJ4mjluHq95doNz41roK9ETm78GnvaUkSIPlCrSJ2iSU6CRHctQ0cbPbWX2KhxNb8CgtIovR3ba1WwjIoTAtPWUzSesIlMVg123mGrBs0KVThU0ckcqI/zSCJ1bNbELrmmmzV+uRZxOqQdDRBndPqlKih0UCintmOj64itI7hAaBzeBzoXaH2giSJsuRDxQaFiKnUP0gxeRyBKNUl/T4oqiltOGfSpXPgQRfDqK8F2nyHp/UkrlBA82nc43VF4J3Nx3+FcS+kaCldjzRS6fdRkBq0lWoNPMSOxKiimj7CYP03bLjlZnqTf1KaNfJlbxagorHSg0KpEawd4UI6oNlIbpQpCt8KZSGdKus6gW+Re7aGL8rENYArQTqa4zsocZJxLPV7DbLpI7aR3zvKGYnOiMNcC6uY1upPP0GyusGmu0TQ36LolnatlozZIFI80p+yfxSpV6bR437EunsL7QFV5jJ0TsRizx7S6j7Y54Vp3hI1QRc0rWdB81rCJKw7Dx6heGTB7F4jeEWKBsxVuoglli9pELCVlkF4dNqTnVGS4tlWIKfpJIqOkxqtF5v8tStVoVdF1K0IEuiWb9VMvyviOydUfMZTFRfb2jqlPYPaJJTdu/Ec2mxvpG+X+3rkVXbfBhCQYh4BL6+1A2FmDBiIu5eSLEB2Gr0e2AjWj8d87SKOSc+GUxwWzMx8vIjTKMVeWGsVEaabARKXKXCWmJ6vDsDmpVdxxT/vYP8OgTVEhISraqAgjcbqLKVqJyMZ31MHReCevq3/WEWU8qwA4nGsgkhznkfFiK/T508GltWk/T+xNNiFdn+P3NaCCJmjZkAohyjMXiNFS+A7vHSvfcdK13NQt11vFhWVALWvKoyVFeYw1M7RTdyRSh/Ux3VNPcv1qw/W15Xon9+569NpDWqc419K2xygzR6sUSxdbYpxAYwhWD5tUxUlLXN6kra9KVFb0xHiCrwPdRhO0RA/SBowD7eVZsDayQR7R24rH6NP8ZFvhEvuNnmEuogCTqipD0nxkzdIljcJEuQ/LR5gZidcJo/m1DhErYgc+BJoYOXYNV7FcawL7RxGu3qS5fp1y7/pwjh0VdQHOtngsTSjSxohP51HmQqRGujF99ElrkN9/Z2M88/z4ju/4Dt71g3+D3/PWr+ctb3nLeR/OPYWK53jVPvnkkzz88MP8wi/8Al/91V89fP3P/Jk/w/vf/35++Zd/eef7T+/ePvHEEzz22GMv2fFmMpkXxuOPP87LX/7yZ/2ePL4zmS9M7mR8w61j/JOf/CSvf/3rP49HlslkPlfy+M5k7l1e6PjOc/RM5guDOx3jmczdwrk6qC9fvowxhitXrux8/cqVKzz44IO3fH9VVVTVtvxisVjwkY98hMcee4zHH3+c/f39z/sxfyFyfHzMI488ks/Rc5DP053xfM5TjJGTkxMeeuih5/y5eXy/cPK1+9zkc3RnfL7GN9w6xl/xilcA8OlPf5qDg4MXftD3OPnavTPyeXpu8vi++8jX7Z2Rz9Nz81KO7zxHvzPydXtn5PN0Z3w+x3gmc7dwrgJ1WZa88Y1v5H3vex9vf/vbAQgh8L73vY93vvOdz/nvtdY8/PDDAOzv7+cb2nOQz9Gdkc/TnXGn5+mFLkzz+H7+5PP03ORzdGd8vsc3yBjvf0Z+T56bfO3eGfk8PTd5fN995Ov2zsjn6bl5qcZ3nqPfOfkc3Rn5PN0ZL8UYz2TOi3MVqAG+93u/l2/7tm/jTW96E29+85t597vfzWq14tu//dvP+9AymUwmk8lkMplMJpPJZDKZTCbzeeTcBepv+ZZv4ZlnnuEv/IW/wFNPPcXrX/96/tW/+le3NE7MZDKZTCaTyWQymUwmk8lkMpnMvcW5C9QA73znO+8o0uMsqqri+77v+3ZysTK75HN0Z+TzdGe8lOcpvyd3Rj5Pz00+R3dGHt93H/k83Rn5PD03eXzffeTzdGfk8/TcvNTnKL8nz00+R3dGPk93Rj5Pmd8JqBhjPO+DyGQymUwmk8lkMplMJpPJZDKZzO889HkfQCaTyWQymUwmk8lkMplMJpPJZH5nkgXqTCaTyWQymUwmk8lkMplMJpPJnAtZoM5kMplMJpPJZDKZTCaTyWQymcy58AUtUP/QD/0Qr3zlK5lMJrzlLW/hV37lV877kO4q3vWud/FVX/VV7O3tcf/99/P2t7+dj33sY+d9WHc1f+2v/TWUUnzP93zPeR/KXccTTzzBH/tjf4xLly4xnU553etex6/+6q9+3n5fHt/PTh7fL4w8xs/mpR7fkMf4s5HH9wsjj+/bk5/hdxd5jD9/8vi+PXl8313k8f38yeP79pzHHD2TOS++YAXqn/7pn+Z7v/d7+b7v+z4++MEP8pVf+ZV84zd+I08//fR5H9pdw/vf/37e8Y538Eu/9Eu8973vpes63va2t7Farc770O5K/sN/+A/8nb/zd/iKr/iK8z6Uu44bN27wNV/zNRRFwb/8l/+Sj3zkI/zNv/k3uXDhwufl9+Xx/dzk8f38yWP8bF7q8Q15jD8XeXw/f/L4vj35GX73kcf48yOP79uTx/fdRx7fz488vm/PeczRM5lzJX6B8uY3vzm+4x3vGP7fex8feuih+K53vescj+ru5umnn45AfP/733/eh3LXcXJyEl/72tfG9773vfHrvu7r4nd/93ef9yHdVfzZP/tn49d+7de+ZL8vj+/nTx7fz04e47fnpR7fMeYx/nzJ4/vZyeP72cnP8LufPMZvTx7fz04e33c/eXzfnjy+n53zmKNnMufJF6SDum1bPvCBD/DWt751+JrWmre+9a384i/+4jke2d3N0dERABcvXjznI7n7eMc73sHv+32/b+eaymz5mZ/5Gd70pjfxzd/8zdx///284Q1v4Ed+5Ec+L78rj+8XRh7fz04e47fnpRzfkMf4CyGP72cnj+9nJz/D737yGL89eXw/O3l83/3k8X178vh+dl7qOXomc958QQrUV69exXvPAw88sPP1Bx54gKeeeuqcjuruJoTA93zP9/A1X/M1fPmXf/l5H85dxU/91E/xwQ9+kHe9613nfSh3LZ/4xCf423/7b/Pa176Wf/2v/zXf9V3fxZ/+03+aH//xH3/Rf1ce38+fPL6fnTzGn52XcnxDHuPPlzy+n508vp+b/Ay/u8lj/Pbk8f3c5PF9d5PH9+3J4/u5eann6JnMeWPP+wAyLw3veMc7+PCHP8zP//zPn/eh3FU8/vjjfPd3fzfvfe97mUwm5304dy0hBN70pjfx/d///QC84Q1v4MMf/jA//MM/zLd927ed89Fl8vi+PXmMPzd5fN/d5PF9e/L4vjPyGL+7yWP8bPL4vjPy+L67yeP7bPL4vjPy+M78TuML0kF9+fJljDFcuXJl5+tXrlzhwQcfPKejunt55zvfyb/4F/+Cf//v/z0vf/nLz/tw7io+8IEP8PTTT/O7f/fvxlqLtZb3v//9/K2/9bew1uK9P+9DvCt42ctexmOPPbbztS/7si/j05/+9Iv+u/L4fn7k8f3s5DH+3LyU4xvyGH8+5PH97OTxfWfkZ/jdSx7jtyeP7zsjj++7lzy+b08e33fGSz1Hz2TOmy9IgbosS974xjfyvve9b/haCIH3ve99fPVXf/U5HtndRYyRd77znfzTf/pP+Xf/7t/xqle96rwP6a7jG77hG/i1X/s1PvShDw1/3vSmN/Gt3/qtfOhDH8IYc96HeFfwNV/zNXzsYx/b+dpv/MZv8IpXvOJF/115fN8ZeXzfGXmMPzcv5fiGPMbvhDy+74w8vu+M/Ay/+8hj/LnJ4/vOyOP77iOP7+cmj+8746Weo2cy5865tmj8HPipn/qpWFVV/LEf+7H4kY98JP6pP/Wn4uHhYXzqqafO+9DuGr7ru74rHhwcxJ/7uZ+Ln/3sZ4c/6/X6vA/triZ3EL6VX/mVX4nW2vhX/+pfjR//+MfjP/pH/yjOZrP4kz/5k5+X35fH93OTx/cLJ4/xXV7q8R1jHuPPRR7fL5w8vm8lP8PvPvIYf2Hk8X0reXzffeTx/cLI4/tWzmOOnsmcJ1+wAnWMMb7nPe+Jjz76aCzLMr75zW+Ov/RLv3Teh3RXAZz550d/9EfP+9DuavLD8Wz++T//5/HLv/zLY1VV8Uu/9Evj3/27f/fz+vvy+H528vh+4eQxfisv9fiOMY/xZyOP7xdOHt9nk5/hdxd5jL8w8vg+mzy+7y7y+H5h5PF9NucxR89kzgsVY4wvhVM7k8lkMplMJpPJZDKZTCaTyWQymTFfkBnUmUwmk8lkMplMJpPJZDKZTCaT+cInC9SZTCaTyWQymUwmk8lkMplMJpM5F7JAnclkMplMJpPJZDKZTCaTyWQymXMhC9SZTCaTyWQymUwmk8lkMplMJpM5F7JAnclkMplMJpPJZDKZTCaTyWQymXMhC9SZTCaTyWQymUwmk8lkMplMJpM5F7JAnclkMplMJpPJZDKZTCaTyWQymXMhC9SZTCaTyWQymUwmk8lkMplMJpM5F7JAnclkMplMJpPJZDKZTCaTyWQymXMhC9SZTCaTyWQymUwmk8lkMplMJpM5F7JAnclkMplMJpPJZDKZTCaTyWQymXMhC9SZc+cnfuInuHTpEk3T7Hz97W9/O3/8j//xczqqTCbzYpDHdyZz75LHdyZz75LHdyZzb5PHeCaTudvIAnXm3Pnmb/5mvPf8zM/8zPC1p59+mp/92Z/lO77jO87xyDKZzOdKHt+ZzL1LHt+ZzL1LHt+ZzL1NHuOZTOZuIwvUmXNnOp3yR//oH+VHf/RHh6/95E/+JI8++ihf//Vff34HlslkPmfy+M5k7l3y+M5k7l3y+M5k7m3yGM9kMncbWaDO3BV853d+J//m3/wbnnjiCQB+7Md+jD/xJ/4ESqlzPrJMJvO5ksd3JnPvksd3JnPvksd3JnNvk8d4JpO5m1AxxnjeB5HJALzxjW/km77pm3jb297Gm9/8Zn77t3+bRx555LwPK5PJvAjk8Z3J3Lvk8Z3J3Lvk8Z3J3NvkMZ7JZO4W7HkfQCbT8yf/5J/k3e9+N0888QRvfetb84Mxk7mHyOM7k7l3yeM7k7l3yeM7k7m3yWM8k8ncLWQHdeau4ejoiIceegjnHD/xEz/Bt3zLt5z3IWUymReJPL4zmXuXPL4zmXuXPL4zmXubPMYzmczdQs6gztw1HBwc8If/8B9msVjw9re//bwPJ5PJvIjk8Z3J3Lvk8Z3J3Lvk8Z3J3NvkMZ7JZO4WskCduat44okn+NZv/VaqqjrvQ8lkMi8yeXxnMvcueXxnMvcueXxnMvc2eYxnMpm7gRzxkbkruHHjBj/3cz/HN33TN/GRj3yEL/mSLznvQ8pkMi8SeXxnMvcueXxnMvcueXxnMvc2eYxnMpm7idwkMXNX8IY3vIEbN27wAz/wA/nBmMncY+Txncncu+Txncncu+Txncnc2+Qxnslk7iaygzqTyWQymUwmk8lkMplMJpPJZDLnQs6gzmQymUwmk8lkMplMJpPJZDKZzLmQBepMJpPJZDKZTCaTyWQymUwmk8mcC1mgzmQymUwmk8lkMplMJpPJZDKZzLmQBepMJpPJZDKZTCaTyWQymUwmk8mcC1mgzmQymUwmk8lkMplMJpPJZDKZzLmQBepMJpPJZDKZTCaTyWQymUwmk8mcC1mgzmQymUwmk8lkMplMJpPJZDKZzLmQBepMJpPJZDKZTCaTyWQymUwmk8mcC1mgzmQymUwmk8lkMplMJpPJZDKZzLnw/wdEx4ZXPg3jAwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import xarray\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "trajectory_plot = np.stack(trajectory, axis=-1).astype(np.float64)\n", + "coords={\n", + " \"time\": dt * inner_steps * np.arange(outer_steps),\n", + " \"x\": np.linspace(0, 2 * np.pi, n),\n", + " \"y\": np.linspace(0, 2 * np.pi, n),\n", + " # \"x\": grid.axes()[0],\n", + " # \"y\": grid.axes()[1],\n", + " }\n", + "ds = xarray.Dataset(\n", + " {\n", + " \"u\": ((\"time\", \"x\", \"y\"), trajectory_plot[1:, ..., 0]),\n", + " \"v\": ((\"time\", \"x\", \"y\"), trajectory_plot[1:, ..., 1]),\n", + " },\n", + " coords=coords,\n", + ")\n", + "\n", + "\n", + "def vorticity(ds):\n", + " return (ds.v.differentiate(\"x\") - ds.u.differentiate(\"y\")).rename(\"vorticity\")\n", + "\n", + "(\n", + " ds.pipe(vorticity)\n", + " .thin(time=10)\n", + " .plot.imshow(col=\"time\", cmap=sns.cm.icefire, robust=True, col_wrap=5)\n", + ");" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/examples/ex2_FNO3d_train_normalized.ipynb b/examples/ex2_FNO3d_train_normalized.ipynb index 04b79a3..32deb52 100644 --- a/examples/ex2_FNO3d_train_normalized.ipynb +++ b/examples/ex2_FNO3d_train_normalized.ipynb @@ -97,11 +97,11 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "train_dataset = BochnerDatasetFixed(\n", + "train_dataset = SpatioTemporalDatasetFixedTime(\n", " datapath=TRAIN_PATH,\n", " fields=[\"vorticity\"],\n", " n_samples=Ntrain,\n", @@ -112,7 +112,7 @@ " out_steps=T,\n", " T_start=T_start,\n", ")\n", - "test_dataset = BochnerDatasetFixed(\n", + "test_dataset = SpatioTemporalDatasetFixedTime(\n", " datapath=VALID_PATH,\n", " fields=[\"vorticity\"],\n", " n_samples=Ntest,\n", @@ -493,7 +493,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.9" + "version": "3.10.17" } }, "nbformat": 4, diff --git a/examples/ex2_SFNO_finetune_fnodata.ipynb b/examples/ex2_SFNO_finetune_fnodata.ipynb index 5eb9bdb..4fde7a2 100644 --- a/examples/ex2_SFNO_finetune_fnodata.ipynb +++ b/examples/ex2_SFNO_finetune_fnodata.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -14,11 +14,13 @@ "import torch.nn.functional as F\n", "from torch.linalg import norm\n", "\n", - "from sfno.utils import get_seed\n", - "from sfno.pipeline import *\n", - "from sfno.visualizations import *\n", - "from sfno.sfno import SFNO\n", - "from sfno.finetune import OutConvFT\n", + "from fno.utils import get_seed\n", + "from fno.pipeline import *\n", + "from fno.visualizations import *\n", + "from fno.datasets import *\n", + "from fno.losses import *\n", + "from fno.sfno import SFNO\n", + "from fno.finetune import OutConvFT\n", "from torch.utils.data import DataLoader\n", "\n", "get_seed(42, printout=False)\n", @@ -78,11 +80,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "test_dataset = BochnerDataset(datapath=TEST_PATH, \n", + "test_dataset = SpatioTemporalDataset(datapath=TEST_PATH, \n", " fields=fields,\n", " n_samples=Ntest,\n", " steps=T,\n", diff --git a/examples/ex2_SFNO_train.ipynb b/examples/ex2_SFNO_train.ipynb index d7f31f2..fdebbe6 100644 --- a/examples/ex2_SFNO_train.ipynb +++ b/examples/ex2_SFNO_train.ipynb @@ -2,11 +2,12 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", + "\n", "import numpy as np\n", "\n", "import torch\n", @@ -17,14 +18,15 @@ "from fno.sfno import SFNO\n", "from fno.visualizations import plot_contour_trajectory\n", "from torch.utils.data import DataLoader\n", + "\n", "get_seed(1127825)\n", "\n", - "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")" + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -51,7 +53,7 @@ "\n", "n = 64\n", "T = 10\n", - "fs = 'vorticity'\n", + "fs = \"vorticity\"\n", "\n", "modes = 32\n", "modes_t = 5\n", @@ -63,34 +65,34 @@ "\n", "path_model = os.path.join(MODEL_PATH, model_name)\n", "print(TRAIN_PATH)\n", - "print(model_name)" + "print(model_name)\n" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "train_dataset = BochnerDataset(datapath=TRAIN_PATH, \n", - " n_samples=Ntrain,\n", - " steps=T,\n", - " out_steps=T,)\n", - "test_dataset = BochnerDataset(datapath=TEST_PATH, \n", - " n_samples=Ntest,\n", - " steps=T,\n", - " out_steps=T,\n", - " train=False)" + "train_dataset = SpatioTemporalDataset(\n", + " data_path=TRAIN_PATH,\n", + " n_samples=Ntrain,\n", + " steps=T,\n", + " out_steps=T,\n", + ")\n", + "test_dataset = SpatioTemporalDataset(\n", + " data_path=TEST_PATH, n_samples=Ntest, steps=T, out_steps=T, train=False\n", + ")\n" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", - "test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)" + "test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)\n" ] }, { @@ -102,7 +104,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "16477183\n" + "16469791\n" ] } ], @@ -123,7 +125,7 @@ " epochs=epochs,\n", ")\n", "\n", - "l2diff = SobolevLoss(n_grid=n, norm_order=0, time_average=True, relative=True)" + "l2diff = SobolevLoss(n_grid=n, norm_order=0, time_average=True, relative=True)\n" ] }, { @@ -142,7 +144,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 2.4506e-01: 100%|██████████| 256/256 [00:07<00:00, 32.73it/s]\n" + "train rel L2: 2.5415e-01: 100%|██████████| 256/256 [00:07<00:00, 32.93it/s]\n" ] }, { @@ -150,7 +152,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 1 | Train L2: 2.88542e-01 | Test L2: 2.36428e-01\n", + "Epoch 1 | Train L2: 2.94550e-01 | Test L2: 2.48261e-01\n", "\n" ] }, @@ -158,7 +160,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 1.9789e-01: 100%|██████████| 256/256 [00:07<00:00, 35.08it/s]\n" + "train rel L2: 2.0928e-01: 100%|██████████| 256/256 [00:07<00:00, 36.53it/s]\n" ] }, { @@ -166,7 +168,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 2 | Train L2: 2.22476e-01 | Test L2: 2.01887e-01\n", + "Epoch 2 | Train L2: 2.28612e-01 | Test L2: 2.04835e-01\n", "\n" ] }, @@ -174,7 +176,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 1.4089e-01: 100%|██████████| 256/256 [00:07<00:00, 35.39it/s]\n" + "train rel L2: 1.5019e-01: 100%|██████████| 256/256 [00:06<00:00, 36.98it/s]\n" ] }, { @@ -182,7 +184,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 3 | Train L2: 1.64353e-01 | Test L2: 1.33638e-01\n", + "Epoch 3 | Train L2: 1.71589e-01 | Test L2: 1.42282e-01\n", "\n" ] }, @@ -190,7 +192,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 1.3668e-01: 100%|██████████| 256/256 [00:07<00:00, 35.23it/s]\n" + "train rel L2: 1.2508e-01: 100%|██████████| 256/256 [00:06<00:00, 36.99it/s]\n" ] }, { @@ -198,7 +200,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 4 | Train L2: 1.27368e-01 | Test L2: 1.18642e-01\n", + "Epoch 4 | Train L2: 1.31235e-01 | Test L2: 1.23328e-01\n", "\n" ] }, @@ -206,7 +208,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 1.0184e-01: 100%|██████████| 256/256 [00:07<00:00, 35.23it/s]\n" + "train rel L2: 1.0274e-01: 100%|██████████| 256/256 [00:07<00:00, 35.10it/s]\n" ] }, { @@ -214,7 +216,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 5 | Train L2: 1.10718e-01 | Test L2: 1.08227e-01\n", + "Epoch 5 | Train L2: 1.12786e-01 | Test L2: 1.18151e-01\n", "\n" ] }, @@ -222,7 +224,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 8.7137e-02: 100%|██████████| 256/256 [00:07<00:00, 35.07it/s]\n" + "train rel L2: 9.3574e-02: 100%|██████████| 256/256 [00:06<00:00, 36.87it/s]\n" ] }, { @@ -230,7 +232,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 6 | Train L2: 1.00158e-01 | Test L2: 9.13309e-02\n", + "Epoch 6 | Train L2: 1.01444e-01 | Test L2: 9.33668e-02\n", "\n" ] }, @@ -238,7 +240,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 9.0038e-02: 100%|██████████| 256/256 [00:07<00:00, 35.28it/s]\n" + "train rel L2: 8.3628e-02: 100%|██████████| 256/256 [00:06<00:00, 37.25it/s]\n" ] }, { @@ -246,7 +248,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 7 | Train L2: 9.17266e-02 | Test L2: 8.72622e-02\n", + "Epoch 7 | Train L2: 9.28242e-02 | Test L2: 8.72365e-02\n", "\n" ] }, @@ -254,7 +256,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 7.9815e-02: 100%|██████████| 256/256 [00:07<00:00, 35.27it/s]\n" + "train rel L2: 9.0726e-02: 100%|██████████| 256/256 [00:06<00:00, 36.93it/s]\n" ] }, { @@ -262,7 +264,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 8 | Train L2: 8.46043e-02 | Test L2: 7.93464e-02\n", + "Epoch 8 | Train L2: 8.64262e-02 | Test L2: 8.41527e-02\n", "\n" ] }, @@ -270,7 +272,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 7.7446e-02: 100%|██████████| 256/256 [00:07<00:00, 35.23it/s]\n" + "train rel L2: 7.4125e-02: 100%|██████████| 256/256 [00:06<00:00, 38.63it/s]\n" ] }, { @@ -278,7 +280,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 9 | Train L2: 7.87417e-02 | Test L2: 7.83852e-02\n", + "Epoch 9 | Train L2: 8.04084e-02 | Test L2: 7.85832e-02\n", "\n" ] }, @@ -286,7 +288,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 7.4958e-02: 100%|██████████| 256/256 [00:07<00:00, 34.98it/s]\n" + "train rel L2: 7.8043e-02: 100%|██████████| 256/256 [00:06<00:00, 36.85it/s]\n" ] }, { @@ -294,7 +296,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 10 | Train L2: 7.21966e-02 | Test L2: 6.98854e-02\n", + "Epoch 10 | Train L2: 7.50227e-02 | Test L2: 7.30931e-02\n", "\n" ] }, @@ -302,7 +304,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 6.3778e-02: 100%|██████████| 256/256 [00:07<00:00, 35.12it/s]\n" + "train rel L2: 6.5504e-02: 100%|██████████| 256/256 [00:07<00:00, 36.41it/s]\n" ] }, { @@ -310,7 +312,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 11 | Train L2: 6.75049e-02 | Test L2: 6.56732e-02\n", + "Epoch 11 | Train L2: 7.03902e-02 | Test L2: 6.92643e-02\n", "\n" ] }, @@ -318,7 +320,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 6.4403e-02: 100%|██████████| 256/256 [00:07<00:00, 34.86it/s]\n" + "train rel L2: 6.4749e-02: 100%|██████████| 256/256 [00:06<00:00, 36.76it/s]\n" ] }, { @@ -326,7 +328,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 12 | Train L2: 6.38217e-02 | Test L2: 6.19074e-02\n", + "Epoch 12 | Train L2: 6.71201e-02 | Test L2: 6.54357e-02\n", "\n" ] }, @@ -334,7 +336,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 6.4994e-02: 100%|██████████| 256/256 [00:07<00:00, 34.97it/s]\n" + "train rel L2: 6.5272e-02: 100%|██████████| 256/256 [00:07<00:00, 36.15it/s]\n" ] }, { @@ -342,7 +344,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 13 | Train L2: 6.09427e-02 | Test L2: 5.99788e-02\n", + "Epoch 13 | Train L2: 6.46277e-02 | Test L2: 6.37715e-02\n", "\n" ] }, @@ -350,7 +352,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 5.3289e-02: 100%|██████████| 256/256 [00:07<00:00, 35.17it/s]\n" + "train rel L2: 5.7286e-02: 100%|██████████| 256/256 [00:07<00:00, 35.41it/s]\n" ] }, { @@ -358,7 +360,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 14 | Train L2: 5.90501e-02 | Test L2: 5.91233e-02\n", + "Epoch 14 | Train L2: 6.26866e-02 | Test L2: 6.30527e-02\n", "\n" ] }, @@ -366,7 +368,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "train rel L2: 5.8226e-02: 100%|██████████| 256/256 [00:07<00:00, 34.79it/s]\n" + "train rel L2: 6.2292e-02: 100%|██████████| 256/256 [00:07<00:00, 35.93it/s]\n" ] }, { @@ -374,7 +376,7 @@ "output_type": "stream", "text": [ "\n", - "Epoch 15 | Train L2: 5.87937e-02 | Test L2: 5.85706e-02\n", + "Epoch 15 | Train L2: 6.22802e-02 | Test L2: 6.27012e-02\n", "\n" ] } @@ -394,7 +396,9 @@ " device,\n", " )\n", " train_l2 += l2.item()\n", - " is_epoch_scheduler = any(s in str(scheduler.__class__) for s in EPOCH_SCHEDULERS)\n", + " is_epoch_scheduler = any(\n", + " s in str(scheduler.__class__) for s in EPOCH_SCHEDULERS\n", + " )\n", " if not is_epoch_scheduler:\n", " scheduler.step()\n", "\n", @@ -404,7 +408,10 @@ "\n", " test_l2_min = 1e4\n", " test_l2 = eval_epoch_ns(\n", - " model, l2diff, test_loader, device,\n", + " model,\n", + " l2diff,\n", + " test_loader,\n", + " device,\n", " )\n", "\n", " if test_l2 < test_l2_min:\n", @@ -415,7 +422,7 @@ " f\"\\nEpoch {ep+1} | \",\n", " f\"Train L2: {train_l2/len(train_loader):.5e} |\",\n", " f\"Test L2: {test_l2:.5e}\\n\",\n", - " )" + " )\n" ] }, { @@ -427,7 +434,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.05844555719522759\n" + "Test relative L2: 6.25601e-02 +/- 8.51579e-03\n" ] } ], @@ -455,7 +462,7 @@ "\n", "preds = torch.cat(preds, dim=0)\n", "gt_solns = torch.cat(gt_solns, dim=0)\n", - "print(np.mean(test_l2_all))" + "print(f\"Test relative L2: {np.mean(test_l2_all):.5e} +/- {np.std(test_l2_all):.5e}\")\n" ] }, { @@ -466,7 +473,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 16, @@ -475,7 +482,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XmwddtZ149+xhhzzrXWbt79Nqc/aTCJJCQ0hgsCAS1ABBGwbAChMCIRlCuKoOFK2RRoDP7wZwmUWlDhUqhEuZeyxMulrheM5bXg95MQ2h+5XIEESHeSk/M2u1l7rTXnHM394xljzDHXXvs957xvTs4hzG/Vrr3auWb7zKf5Pt9HhRACEyZMmDBhwoQJEyZMmDBhwoQJEyZMmDDhYxb6+V6BCRMmTJgwYcKECRMmTJgwYcKECRMmTJjw3GJKBE+YMGHChAkTJkyYMGHChAkTJkyYMGHCxzimRPCECRMmTJgwYcKECRMmTJgwYcKECRMmfIxjSgRPmDBhwoQJEyZMmDBhwoQJEyZMmDBhwsc4pkTwhAkTJkyYMGHChAkTJkyYMGHChAkTJnyMY0oET5gwYcKECRMmTJgwYcKECRMmTJgwYcLHOKZE8IQJEyZMmDBhwoQJEyZMmDBhwoQJEyZ8jGNKBE+YMGHChAkTJkyYMGHChAkTJkyYMGHCxzimRPCECRMmTJgwYcKECRMmTJgwYcKECRMmfIxjSgRPmDBhwoQJEyZMmDBhwoQJEyZMmDBhwsc4pkTwhBE+93M/l2/5lm/5qP7mN37jN6KU4nu/93vv+rnv/M7vRCk1+nvVq1710VnJCRN+H+GFbAcAPvCBD/AX/sJf4MaNGywWCz7pkz6JX/iFX8jv/8f/+B/5wi/8Qm7cuIFSil/5lV957lZ8woTfR3gh24aP+7iPu+AjKKX4pm/6JgBu377N3/gbf4NXvvKVLBYLXvKSl/DN3/zNnJycfBS2YsKEj228kG2Dc45/8A/+AX/gD/wBFosFL3/5y3nTm95ECCF/5ju/8zt51atexf7+PteuXeMLvuALePvb3/4cb8GECR/7eCHbhrOzM77lW76Fl770pSwWC173utfxjne8476XO2HC7wVUz/cKTPj9jR//8R/n537u53jsscee0edf85rX8La3vS0/r6rpFJ4w4fc6no0duHPnDp/92Z/N533e5/Gf//N/5sEHH+S3fuu3uHbtWv7M+fk5n/M5n8NXfuVX8g3f8A3P5apPmDDhOcSzsQ3veMc7cM7l5+985zv543/8j/MVX/EVADzxxBM88cQT/LN/9s949atfzXve8x6+8Ru/kSeeeIL/8B/+w3O2DRMmTPjI49nYhu/+7u/m+7//+/k3/+bf8JrXvIZf+IVf4Ou+7us4Ojrim7/5mwH4+I//eP7lv/yXvOxlL2O9XvM93/M9fOEXfiHvete7ePDBB5/rzZkwYcJHCM/GNnz9138973znO/mRH/kRHnvsMd761rfyBV/wBfz6r/86jz/++D0vd8KE3xMIEyZEfO3Xfm0ARn+/8zu/85z93vvf//7w+OOPh3e+853hpS99afie7/meu37+O77jO8KnfMqnPGfrM2HChBe+Hfg7f+fvhM/5nM95Rsv+nd/5nQCEX/7lX77/FZ0w4fc5Xui2YRt/82/+zfDyl788eO8v/cyP/diPhaZpQt/397m2Eyb8/sUL3TZ8yZd8SXjDG94weu3P/tk/G77ma77m0u+cnJwEILztbW/7SKzyhAm/L/FCtg2r1SoYY8JP/uRPjl7/1E/91PD3/t7fu+flTpjwewWTNMSEjO/7vu/jsz7rs/iGb/gGPvjBD/LBD36QF7/4xTs/+43f+I0cHBzc9e9u8N7z+te/nm/7tm/jNa95zTNex9/6rd/iscce42Uvexlf8zVfw3vf+95ntY0TJky4O17oduAnfuIn+LRP+zS+4iu+goceeojXvva1/OAP/uCz3s4JEyY8O7zQbUOJrut461vfyhve8AaUUpd+7uTkhCtXrkzdRRMm3Ade6Lbhda97Hf/1v/5XfvM3fxOAX/3VX+Vnf/Zn+eIv/uKdn++6jre85S0cHR3xKZ/yKc/oNyZMmHARL2TbYK3FOcd8Ph+9vlgs+Nmf/dl7Xu6ECb9XMHm+EzKOjo5omoa9vT0eeeSRu372H/2jf8Qb3/jGe/6t7/7u76aqqtyS9UzwGZ/xGfzrf/2veeUrX8kHP/hB/uE//If8kT/yR3jnO9/J4eHhPa/LhAkTBrzQ7cBv//Zv8/3f//38rb/1t/i7f/fv8o53vINv/uZvpmkavvZrv/ae12XChAl3xwvdNpT4T//pP3F8fMxf+kt/6dLP3Lx5kze96U38lb/yV+5xLSdMmAAvfNvw7d/+7ZyenvKqV70KYwzOOd785jfzNV/zNaPP/eRP/iRf9VVfxWq14tFHH+W//Jf/wgMPPHDP6zphwu93vJBtw+HhIZ/1WZ/Fm970Jj7hEz6Bhx9+mB/90R/lf/yP/8ErXvGKe17uhAm/VzAlgifcEx566CEeeuihe/ruL/7iL/J93/d9/NIv/dJdmTrbKCv3n/zJn8xnfMZn8NKXvpQf+7Ef4y//5b98T+syYcKEe8fzYQe893zap30a3/Vd3wXAa1/7Wt75znfyAz/wA1MieMKEFwieD9tQ4od+6If44i/+4ku1/E5PT/mSL/kSXv3qV/Od3/md9/QbEyZMePZ4PmzDj/3Yj/Hv/t2/49//+3/Pa17zGn7lV36Fb/mWb+Gxxx4b+Q2f93mfx6/8yq9w8+ZNfvAHf5Cv/Mqv5O1vf/s9r++ECROeOZ4P2/AjP/IjvOENb+Dxxx/HGMOnfuqn8tVf/dX84i/+4n0td8KE3wuYpCEm3BPup33jZ37mZ/jwhz/MS17yEqqqoqoq3vOe9/C3//bf5uM+7uOe8TpcvXqVj//4j+dd73rXR2CLJkyY8GzxfNiBRx99lFe/+tWj1z7hEz5hkomZMOEFhOfTR3jPe97D2972Nr7+679+5/tnZ2f8iT/xJzg8POTHf/zHqev6XjdzwoQJzxLPh234tm/7Nr7927+dr/qqr+KTPumTeP3rX8+3fuu38k/+yT8ZfW5/f59XvOIVfOZnfiY/9EM/RFVV/NAP/dBHatMnTJhwFzwftuHlL385//2//3eWyyXve9/7+Pmf/3n6vudlL3vZfS13woTfC5gYwRNGaJpmNHX7MtxP+8brX/96vuALvmD02hd90Rfx+te/nq/7uq97xstZLpe8+93v5vWvf/09rceECRN244VsBz77sz+b3/iN3xi99pu/+Zu89KUvvaf1mDBhwjPHC9k2JPzwD/8wDz30EF/yJV9y4b3T01O+6Iu+iNlsxk/8xE9c0AacMGHCveGFbBtWqxVaj7lPxhi893f9Pe89bdve07pOmDBB8EK2DQn7+/vs7+9z584dfuqnfop/+k//6UdkuRMmvJAxJYInjPBxH/dxvP3tb+d3f/d3OTg44Pr16xecJ7i/9o0bN25w48aN0Wt1XfPII4/wyle+Mr/2x/7YH+PP/Jk/w1//638dgDe+8Y182Zd9GS996Ut54okn+I7v+A6MMXz1V3/1Pa3HhAkTduOFbAe+9Vu/lde97nV813d9F1/5lV/Jz//8z/OWt7yFt7zlLfk7t2/f5r3vfS9PPPEEQE4cP/LII0+rUTZhwoTL8UK2DSCJmx/+4R/ma7/2ay8MgDs9PeULv/ALWa1WvPWtb+X09JTT01MAHnzwQYwx97S+EyZMeGHbhi/7si/jzW9+My95yUt4zWtewy//8i/zz//5P+cNb3gDAOfn57z5zW/mT/2pP8Wjjz7KzZs3+Vf/6l/xgQ98gK/4iq+4p3WdMGGC4IVsG37qp36KEAKvfOUrede73sW3fdu38apXvSoneZ/pcidM+L2ISRpiwghvfOMbMcbw6le/mgcffPB5bbd+97vfzc2bN/Pz97///Xz1V381r3zlK/nKr/xKbty4wc/93M/x4IMPPm/rOGHCxyJeyHbg0z/90/nxH/9xfvRHf5RP/MRP5E1vehPf+73fOxr68hM/8RO89rWvzYzAr/qqr+K1r30tP/ADP/BRX/8JEz6W8EK2DQBve9vbeO9735sTPCV+6Zd+ibe//e382q/9Gq94xSt49NFH89/73ve+j9ZqT5jwMYkXsm34F//iX/DlX/7l/LW/9tf4hE/4BN74xjfyV//qX+VNb3oTIOzg//k//yd/7s/9OT7+4z+eL/uyL+PWrVv8zM/8DK95zWuer82YMOFjAi9k23BycsI3fdM38apXvYq/+Bf/Ip/zOZ/DT/3UT02SURN+X0CFEMLzvRITJkyYMGHChAkTJkyYMGHChAkTJkyYMOG5w8QInjBhwoQJEyZMmDBhwoQJEyZMmDBhwoSPcUyJ4AkTJkyYMGHChAkTJkyYMGHChAkTJkz4GMeUCJ4wYcKECRMmTJgwYcKECRMmTJgwYcKEj3FMieAJEyZMmDBhwoQJEyZMmDBhwoQJEyZM+BjHlAieMGHChAkTJkyYMGHChAkTJkyYMGHChI9xTIngCRMmTJgwYcKECRMmTJgwYcKECRMmTPgYR/V8/Kj3nieeeILDw0OUUs/HKkyYMOE5RgiBs7MzHnvsMbR+ZjWnyTZMmPCxj8k2TJgwYRcm2zBhwoRdmGzDhAkTduFebMO9Yr1eA7BYLJ7T3/lo4XlJBD/xxBO8+MUvfj5+esKECR9lvO997+NFL3rRM/rsZBsmTPj9g8k2TJgwYRcm2zBhwoRdmGzDhAkTduHZ2IZ7wW/8xm/wRZ//RzBa89P/n/+Nl7/85c/Zb3208Lwkgg8PDwH4g4+9iFobFtpwYGr2VU2tNQ+YOY+aGdeUwQGnwXEaLJvgeaJf8avtHR584DO59sBnovYe484rX8xjL/c8dh2MgoNGMW8UjVHMa8WVheFwYagrjfeB3gZcCDgf2HSe45XjZO3pHbz7w4H3/U/Ntd9+AjZ38N0tNqv307a3cG7NnZPf4Krv+YT5da6Yik8yCz75xpKHX2bxPbzrf+7xtlXg19tjFIobZsGLqjnXVMVcKR4ynocWLXsLC4D3CmulShmCorea3mt8ULggr7n0B/ig6ILCB3DAGtiEgCNwHjw3fccd19IFz4f6cz7kO5rmBsbM2Zs/wJUrr2J25VWgK3AtwS7xdoX3G9arD3C2/B3a9g4heJzbEEIPeFm/0VFUKBSgQaXHSiquSudPDB/XqKhEopQevT4scffr8h2FUmb0Xa00SpniM8Wy4uvqwnIMu6AveR3AB4f3PSE4QvCE4PDB58cg1agRgr90eTsxWnc1Wk+jq7ztShkqM6eq9jFmgVIVTXOVZv4Qqj6SL9R7YGaEqkZ1G8LqCdrV++n7M7xvcW5Db5d431NXe8xmDzFfPIyp9tFmH+bX8Ysr+Kqm2qxhdRO3+TDeb+g2N1mtP8D5+kmCdzi/yeeJAqoAM6WZKUMIgf/j/b+br/dngvTZT3z8pRit8fGsCyFglOZ6NePhap8bpsEoWGDYV5oGxZ3g+LX2mN9qT1irQFUd8uLH/ySrT//TXHmRZzaHawfw8BWY14qmUlyZa/ZnmrrSGA1GK2oj5+156zk+t9xZeXob+N3bgd99r6Z+b0e93lDdeYL18a9yfv4eervi7Ox3eEjBq+fXOdQ1n2xmfPKjZzz4CvC9593/x4z/vFT8ensMwMPVHi+p9nhAGRrgqvE8MOuYzyzeK7n2vcJ7hQ+K3musF1sAZJsAu+3CefCcBocj8EHb8rvdCR+2GxwQdMP+/ou4cvgHqetDQrD5GITgWK8/yOnyfdj+JJ7nFhU8u66SADgFATVcw0rLNTW6vp+GjaF2V3EVeriOs20Z24rta2bbTshrF9+/zB5s240Sobi2Q7QNztv8PNuC9Lm7LEt+a7xfSluyi8Gyyw6m19O6p8eVmWPMAm1qtGqYzR6gWTw62ApdgTagKujPsav30a4/RO/O4ia4vL1Vtc9i73HqvZeIjQH5XtXI49VN2rPfYr15Au96Nu1N1uunsHZJwKNDoAIapQk+8BtPvO+ebMMrH3txtg0uBAKgELsz14ZGG2qluWHmPFrtcUWLm9MHzzr4eD2s+JX1ba5c+0SuHr2G2f4f4M4nfgove43nkSNY1IorC7ENTaWY1ZorC8OskX3tfOD2meX43NK7wBPHjt94Am49YWATOHriFv0Hfobjk/8vfX/G+fn7eHE145PnNzhSFZ9Ya17z0jOuvqIhdJbf/WXN247n/Fq0DY/Ve7xUz3lIKwyBfeM5qC2zWq743iYfQWyD9YrO62wPeq/oo33oEB9hiacPgTuh5z3dkg/bNb13nAWHqg85PHgpdXWAUhqtG7SeAdC2H+bs/An67piA2IIqBOp4PQcY7DTiLXg1+AtyrYqfIM9VfmfA1v3zUqjhmijO+20bUdqh8hp6JtdO+fzCr29dy6UPsP08+Qje22wLQvSldtqG+PnR5xhs3YXvbn+/+KxSOm57hY7nv1Iao+v8uPQpAIyuxafQBq0a5vNHaBaPQrU//EBcFt0J7ep9bDZP4txGlm0WVNWe+Cj1Feq9lxAOHsJXNaZroT2D/pzgN3TrD7Jcvpvz9ZM41+HcCmfXgCU4z/s/+MQ92YaXPCpsIA3USmN23HOMUhyamutmzoFuaJTiqqm5pmr2leY0OH6zP+d3uxOWznKK46EHPpOjV30tpy+9htkLPPyw58U3JNbYnyuu7Rmu7lfURtE7iSt6F+hs4ObS8Vsf9jz5lGLTgnq/Z/9db+fOrXfQdney3/BJixsc6orXaPEbHnhZwHWeD/xmzc8d7/HrdolB8aiZ8yJdccN4jAosKsdeYzFGzgvnNL2V86D3ms5pzp2hC4o+wGkI3AmODs95cDxp19y2G9rgOHU950Aze5C6mmPMnLrao6oPUBi67g7L1Yd22gKtFC4EPCFfzaH424Xoyozef3qrUNoRlZ+nOGRsBxRKDed/el2+v/U82aenufb109zPS/h0Pef/RbwQ/IVrenT9h2JP5njDs3uvhPjZZ2FH0cM+0lWOJ7SuqMyMqtqjMvO83s73cfsNWteYaoHCUJk9ZotHqGYPwewKeAeuBbeRfeDOsd0p1p7iXEdVLajqK1T1EUrPwMxzzII2sL6Dbz9M397G+5bN5sOcnb+PrjvGuY73ve/d92QbHn/sxWitAE8dxA9J0PEc0oBRmlopKqWpleZ6NefhasF+cV64uJ+fsGt+bX2bttpnb/Ew+3sv4uilf5rTT3mYq9c8Bwt45Co8fEUzjzFGUymMlt87XTueOHY8eQZdDx/4gObo155k86GfpevucOvOO1GbD/Py2RUOTc2r6kP+8MLx4hetCF7x5Idm/MZqzvt9j0FxQ1c8ajyHlaPWnsp4mtpRVSHnGqzTeK9oneF2V/FhD2sCp8HyAbvhSXvOuetZeccpjqo6xJg96mrOfHadprmO0TPa7jar9QfZtLfFD3YdOliaaAt8zEtcFgk/Ey9Abb0eth7DLhuS7IMe5SLyPTG9r6rL/fzkQxT+w7bvELZi/F3L2v7MZdiOG9L1n5YhttZFOxCK94frXl9y6ccszYX9/Exsbortkg+nlEabGVW1T2VmYgfMnLo6QJt6vE3eZV8i+QVazyRXMX9IrvdgwbZiL4Il+BZnz3H2nBAcptqjaq5LvFLN4soOactw/j5WZ+9mvfkg1ra889d/+lnZhmeLd7zjHfzJL/oC/vKf/Xx663jdH/4/8f9+23/jta997XP2mx8NPC+J4HRhaa1RWqG0ptJGHDilUVqjtQFlAHEyZkFuqvuhpu40zq8I9pTGXaNmHzMLzPagMXC40BwtJIBrKsX+TLM/N9SVwnvYdJ5151E+oJQnWIftPb2CXkGDovYWH1q8bwELWAIOguWhZo+Pnx1ypAwfV3seOoKrBzV247lSG2YmOt1KURlNZQy1MjRKU6sYDPvCaFSSyAHoiYlgL4ng3uudSWCQAI9oFAKw8Z4T33PTt3QxwKurffYWN6iqffYWj7B38BLUwSOEqkF3a+hO8P2S4DcoHCF01PUC73t6u8LZDd53lxzIIuAiBRdbyd6t56Ux3ZXIHQIyI4ZjK7mhCiMghsWMno+Xt/v0LpNew2tu9N97F42zzQlg57utoG94vMt53A4Q74btJHa5/RKYzzBGEi7G7FHXVzAxQDPVPqa+Kg5VsOB7fH8GweJdi+1u4dwp3q/j92uMuQZAXR8wnz9KPX8YXR/ExM6MEAw4hfIO58/p3QnetTi/wrolwXeyH4NDqyCJvwCVgpkyzLTBex+355m3Y6XPGq0xWqO2EsFaayqjUUbnm3tQRpKQIVAbw9xU2ODijbNlr59hVUWlAmYBe4eKg5kUig7mkuAxcfcnBw2gUg56h+0cPWA14Az7m6cwbY/3K0JoxS5gQTkeaA55+eyQIzSP1Z5rB4rDmcZ6WJh6ZBuMNtTa0OiKBpjrQIWiDibHNx6FV5LwMSh69JAIZrAbLoAKivVwwtGGwLkP9MGzpOcsWKyRa2hWH7G/9zD7+4+jo7MvX7MEL/bOuiWtVnhv8b6Tv3xOj70OjSqcrCIxWwRd43P88qLQLlthdL3zGkmPdfHZ4fXLbUX5uW2U1y0MtiDvnzAkR308z7zvdl7jlzmaZWB4WbC4C7vsZ2k3tW4wukbrmSRkqgVNc12e64qqPkJXB9lWBLchdBtCtBXBn4Oycvopg2kWaD1DK4Op9pktHkbPrw1OnHfiyAWLtad4v8LaJd53OL8BLEqLI14FRYNipjRehbg9z942NMZIoAHRaZbLJdsHbaiURhuN14oQr2kfNBUKRaAOhlprrDvH2jvM3A0WdkGvFb4BX0O9pznYN9RG0VSa2VwzbzRGK843Dt1Z6B3BBfrK0wdF00HT9syspfUrQujwoccoeLDe46X1HkdK82DTc1AbDhQ4r5iphlobjNboZBuMbIcBZtozN4qZFt+gMkNByHtFHwPXZBO0UqhYFHKADY42eLoAK+c5D5ZVcPQqgG6Yz6+zv/cwdXWIyoXHSgpAymLdOQqHDxbvOkLo6EYh3nAc5XioHFzDdnE4BlfbBeNLkppy7AfbMCQ543Wg65EvMfgKY/tQvjcstxo919pcahdgfG2WPkJ6LwSfbYJ8pruQHN69XD9axoXE0I5E0agYtrWfZFsquS+PEsFV3ge7bEVV7cv1rmdUzRGmPhzZCt/fJniH9xuUchhjgDramWtiX/QcXe2j59fw9T5Ba4xygMf6FcFv8H6F82uCF9tBcCgdMEETkut4D7ah0mIDDIpKKaodiWClFFW81iqjMUqjtCEojYt+zNxUHFYzUIrWBaw7Y9612GVDW9d0weNrUHMItcLMDdW8oq4UwQYq4+k7DzpgK0cH9EETnOKgPyO4c5xf4UMHyvJQc8SL632OlOHhKnBlptnD45UR22AMTZDjWBmD0RVaBSodaJSmQTPT8RxTCqelgNx7jQoGGzQqiM2Uc9Tjg6b3jhbPGk8bJAaSWOGaBPe6pqr2MGYvnn8tdT0nhAXB9/ig8aHHBrEAQYnjsp2kufS45QScGr1a/h/fQ4vCTvI3Ch9Dx/M72QelZF/Jcsb3ytJGlPZhfK5s+wx3D5m3C+rJHgzPXX5dkqtj21EWecprfpQMyh8oP5v2+OVxRkoqZxusTd5/WlVo06BjociYCqVC9G0BBXUlfqLWNXV9SF1fybaint1AN4fiFyiLd3Jue78BbzHGoNQedb2XP29mD0i8kYpL0T8LytP5Fu9XQlzxawi92Aju3W9QOqC0ogqaRokfsgu1NlTI/bSKPoXRhqrwH9NZsBcaFqZiEzr6/pTenlC3J6jNyzlvA6oOnAewRuFqBRqcUZhK1sn2no32dEAbQDlNbd/LOrSE0BH8mqOq4eFmnyum5mEz40rdslAVAWh0Q2MqKuUxKBo15Bo0gZnyLLSl0pKQtUbTB41XChU0la4JymODE3ugoh0g0KuA0TNmsyOa+gBjFjT1EbNGfIRAS9fPqOwMH8RnFLsSE43RFjzdkbrsjA1FMbk4mkMil2L5mYw2FHWSD6OyLdCowhYkgpU8vzz+Lt+/m29wYf3v4seX8QMkP2GIK5zvI/ks2gBv8d7mtHpKCsvjeJ2G7fRuKs6HXLh4dpB9apCCcrIXxsyp6gWVkcSsMTVKeQiWoehm0HWD1o0kjasraDNHmxm6OkCZRggkNhCUx9PG/eWoqjlVsjVmJrmN2dGwWt6BtxAsXUg5iXOsa+NvPzfyLz/90z/Nl//ZP80/+ut/nm95/ZcSQuDhG0d87h/9HH78//H/5PM///Ofk9/9aOB5SQQn+DBUjn0I8kegC541jobIaIknvImVJgN0/Rlt+xTazKlXFucTqwGaChaNYl5LMnjeaOpYhfNemMCdFYPV2cCyDSxbWHew2Shm5y2+vYntT7D2lL5fYt0Ga88By8P1Hq/QFVeM56GDDfODgG4MxgW0CsLSIcSKmDCQZDsCHYreKdo+Be4hrncQ9l9QOQnstxI+LkjCJwV3HbDGs4ysvzuu41a/4abd0AdPpzTz2TX2Fo9R14fMF4+iF4/Q7x8SoiNsghXT6efU3rEXLHV9QAgOa9eROTokQLcZMHfD0zle28ldY5rRZ0xMXgzfrTJLCYgBa3pfDNXw2+NTOwdr3l18LSa/vG9zose5Nj53eO9iQaDctnK7qp2JJpBgUX5jCBjT83I/leuslCn2RYUxs+xwKV0Jc7c6QJn5UB1LzpQH19+k23yYvj8lBEvfL/Nx1LqhqY+o60OMmUlSef4weu9hgpmhvBQ7VL8Cb/HdMd3mw7TtTZzraLvbdN2ZsIBxEKTma2IgoCNjq1Ia/xzYYx8CfXBsvKMubt4OTRcCWilqpWmCZxM62u6Yw3XL+aZGa/A+YBQ0RuVCkdgMjYu2wUXPZNMH1n1g3YttWG/ALD1mfULY3KJvb4ltsOf0dk0VAg9Ve7xEGa4YzwP7LfVs9w04MWdcZDU6JUWe3itq9/SMk9ImAHRB0SE2wYXAGs9JsNx2G7rguW03nAdPXV/FVHMW8wfY23tcjr2ZDwngYAnB0viW+WyJUiYyXnucXYszUlSsx8FFgRhcwDh5MzyPBY4dSd+UpNi2EakQMjhqsnytTE5eyfvDdZSeD3bk6YtDwdut5I4kSX1RGHJObKIBsRO6wQc3Wudd65KXF9k1PiaRU8cBgPNPX2TSxb7UuslOqzEL6vqAqtpHKUPd3KCa3UBVBzu323UndO2TWLuK69XFx06SQWaPurk+OHHNVek20AblLPRLXH9M8I6ufZLN5kna7hjnWqxd4X2PimwFYdsojNKjIPbZokosjeAzCw2GgCL5Eb33bLTD7MhGGCRJ1HdnrNYfojJ7zE+XrDeHrDvxI7p4SqTikPfQ24DXQzF52Xo6B6drWC8Ve6cr6vMlfvUkfX+Wi6k18GC14CVas689R4serQNu7XB9wG5d855AR6ADDNAH8RtMPO5ua5vKYrEL0IVoCxC/Yxkcd1yfbcGJ61irgKKiqg7Ymz/IfP4IVT043Oka8K6lqa/gYmDi87G1cU1DZqfAEKDJk20W8BCkpUJyGaiVCd4ySNMj21CjtdiCxE4rE7rp3imfry61D2l5pX3Yfn97XyTbUBaGLrMNcs60o2TQxeWOC8upwwBiUB33udpKCu1KAqd9tes3dtkQExM6Yj8qmuaaJHSirVBlksZbbHuLvruVt9f7Fu9dtsfG7FPPHxa/xMwh+hMqMgRdfyzf9y1te5O2O8G6NSHaPkVAsyv4f+bQSMHUKJV9EdkHYfQZIPrlHgJsgqNRknlYx+TXTBm8rll6y6a9g1u+h73bh8A1Vtcq1l1gUYutWHeBReNxXhjBy41n3Xuch2UL5yuwZ2BWnvrsmPPuNl1/hu3PqQM8UC14ia440oGrs2gbNgHXC4OvPHs6PF0IrJGOoUaFmICJ2+Uv2obSP+gIrINn4x0r33PqOpaupyPglGZWHzKfPUhdH+TrR8eg37k96mohvgAagiZ4hZc+oy0u8C6owhbsshOGUZGoYPuPisdFESjZh+xTFPfDRKJIy0qFnhxPRNuQ3r+wturie6lAVqK0B+l58Bbn2+G+7rp8/08MW+NLW9FfKBRtdx9tF4m2i8/PlIFYJszTPi19MLFDsk55n+qaxOqr6ys0s4eEjKIqIRMku+k2eHtO393C2fNse9NxMNWBJHfq/SHmcG0uKLvuhLZ9SroNfE/bHWf/5JnGnrugIPshtdL5XgrxLhbCpUmkPni6MHQYGEW2M3NlwLf0/SnrTcNm+W72n3oV5+xxahWLuedkL+CCfK+pwPRyfZysPadrsQ9dp6iXHt/epOuO6foTnNtwVM14uJpxpCqOQHIMfSz0OEUXmbcu+gzroKm9FJCNglmQvMc2fLQJ69gpde4tS9ez9tJ93SkwZiEs4PpI/Mn6MNuC4V5cgYegHcoZrHKoZ2DEh0TvjmJdTvKqLR9izNDd7jQu/Qit6wvdtGVckQqgKW4fF48l7t7lM+R1fFry10XCWfpM8HbkMwx+gzy3bpPjAh88Pm7X2B6MH49YxEUngbxfHpAtm5E/G9KGDXaYIh7LheU6EnOGmEZi5r7wxwYbW1VXcpxJ4WcJE3iD606w/XGOOVKsoVQ1+BLZtrTQL/FuA8HSd7djTuIU6/qd+/sjgR/9X7+Vr/+O7+ct3/FX+Zov/aNxvyj+L2/40zx0/Ygv+9I/yb9581/ny7/1nz1n6/Bc4nlNBCf47bZ6JOHZxRNUkiXyukGMsfc9zq3wboPeMnJGqcjikeRv+hv/JjEhnBLD0DuwFqo+Ovdukx1/YcNJwms/JoEPG0vTeKo5wlA0F2/CPsR1jz/vIEo/xM/6IRm8C6n1UxLAKieB5b0Qnwe6EOhxrL2lDR6rQKmGpj6grg+lql/tE+o9fFXjjUb5Gt3NULYFDbrap/JDIJhYqKWB2ma87Loxp8DjMlavPK5ywlOem5z4HdhtsxykyedjVSoZhe0Ejx5ev7hSVqpIjIO69J53LVgIwVxw6rSGECqUGrY13UTkcWLXDElqkCSPMYyMfX7Pl8sabkS79oXWM6r6ar4B6+oA6gOpvpfbB5K8deKUdN0xIdjRTSX9hrA89qPRnRPMjFA14B2qt9LW5S0+tmmkpI5zm5gMTEkAjw6DS5+SwRp1F27C/SE5PQSPUSo/T1XPSomDFvB436Jtj+8V1g5JXpGBAK24YBtctCfJPnRWkkLWgrFe2lvdJgbCrVzLwaOBhZYk8JXK0dSebc16t+NST9e0FHrUhSTP+PuK7SvO5cB2sAldCGy8JMzbmDj3SjGr96irPepqH2P25OZs5qjI/AvxOtF6RlUtcG6B1w3KCddYxSRFCD7axjFTLWFX4LadANa5TXmwFXAxubN9fZWMxeH71YjZnN/ThSNXJoAKhyQlwPPzYKMkQkqEbWRdfAvMcLHynIpEWs/wvhVm2Y6kdfk/OXyZbRl0tJeDPb2bLMXF5Pm4c8CYJsrGyLE19RGquUqYHcq1nYIugH6D9xusXdH3IgUh5/TgUEnh6UAcs3iuBG2EveOKRJiT5Vi3wbk2nhvCAiztg47F3HCfVXtJAF/+frYJQRjxekewoZUS5rLb0NszFn2PtYrOhZwEHi3TB7RPj4e/zgZ6C75XmK5Fd2usPce5VfYfaiWyFfvas185KuNRBrwLpNvCLtbGcK9PSd6777fkJ6Tvlv5BFzxtsLTB0Qcv14yuMdWcqjqQzpJqv7g/xkKLmUnbv5kRgscCJnhQnRSDQtzbWe7gYvK32OuSfNhOAhdM1TKxI4vTo3Pd5EBj8CHGBeVxAKeU2W0bChtR+hTyWhX3QXEixCJZsg2peKZUhS4KyEqZ0f0+Xecl0megpmQHjQpA6XXfD2fGXRI9uzou8tcKu1Luy+RraDOT67w62Fk0Sttr7QrnVjt+W+yvqg6khVNVYicSol/i7Dku2pjgbUwCj/2I+0kEj/2Qcv3UKBhOMYcPAZSX+2aATvlsV2ql6ZWmRtG5DmfPabo1dXvAxtb5O84PUnNaMSooJ//BWoVuA1UrRXbrxJ/y3lKhRB5PBfaN2AYgJuIuFn3gos/wTJD8gy7E7Y2kGxu89DsqQJlIEJD7iOy77XutJE81ELwHVRSEMytt2NeheHyZnINg3EmU7ENKQGwnK5ONKP0Io5vsO4AUhVLRaDupnYglpS9QIsUc+fkOosc2saSMLbxv0WGWEz9SVO+AJvr/q/i9i9d8fr1MVoaUpN3dPfCsEP2vXTI5o9/f/pqqoj82y4SUUXInx8ubfK2r4GJruMRr2sxAV4QoBREA5cgxmny/FfKBWxdF8kJK4x6ggtyakm3QKnUK3d3ilO87wkhuxkTmsAngsDi7wbkVs66lWs/pZ4Y+xg+dCUXnocQdnUPe7xR9pzAp9xAl/MAz04YDVXGApokZVu+VECOLjkCjBrvggwKV7JOiMvKdRDYruwolgeyzLegJ2HjVGt1EKcLFVixfZVtQXpso8WeTSdplmVQYJ4F3S0WpCwnJ7Q4AXbB9R+uA3P+k22VISqbuFxiKxanbTRY/xBW7YorRNmwRz+ByW7CNUJzjQ5Fo8BtSbiB9O/sB8uVyD6UFXojDcmI4bVtpV7aSxIqYKM4mWcX9meIx6RYoOyy2O6tyMQvQDBIRqdCmzVxyFpDZvOV+CmEg22kzR+m5HI8ieSzkk/SD0Z9wbcxt2Ms71+8T3/ftb+Dv/4sf5T9+77fxRZ/9hy68/5f+9OfxwNVDvurbvpenbp/yf37TW56T9Xgu8YJIBCdkw7yV2EkYqnGK1m7o+zOsPaVZr+k6YfIAdC7ERC+AOGW9DWgNnfXROYsJYCds4PMW2g66jaKxfVGZWdFHxp+za2oU+6piP+pyNTOPuugfXLh5dAQMMZkbFL1LFe1Ajcf7ZNCfJtAr/qT65zj1li54zlzPJrhYm1fSPpYrYNGp0QZvNK4ymN4Qqgbl98G1aG/Reo4xcnFWo7Ojya2Quqh63/V4XlJx22bplIZ3m7m3M6FDTNIG+7Q+0N2Mc/ClMRoMUarWJaRg05gmJn5MvokAoxvJrmWnfVUmf4d9tLsaOd43VVxHed+7jSTuzHyU3JbAaoPtT0YMZqNrtDL4eFMXNvB+TvCgK0kQeYeyHdgW3y+lOm+XWJcSPGusa/FRN3pggxbBl1L5Or4feALqGYSEuRgSHSSTtL1Q6AC9Pac6P0WfX8UaRdvJNd/FaK+pxBYII5/cKeB8YN1FRnAHm16ctartJAkcg1rrNtj+HOc2zJVmX1UstKc2Hq0DygSCC4Qc0CUhF4pugeiwqWQbCkczFZCKDoHR9hdJH+kQkOWtcWyCY+Ul8dMGJ00+0TlKlVfMXAJ3X4GyOSFsqgMqs4erhLGi4/npcyJY2hq3bUAI/hkHbCXbt2TrANlB22UjtpGTNsW17aM+3fZn8nr6sZMWtmzaeFkD46/8jKynAcr1HtuGXdDa4JyL17XDxEA1JYb0zgDscsmcbdmYVECThUpRRyVz4DYiBxFthWhxDdtafreqFjGhLElgpSrwFuVaOV9si7dLnF3GwGUlTpnr8Clhht8qEPERYP2N4QkXEr3JV0jXWvqvt4I47y1dv6TvzzDrE5arB1ht5LPL1rPudLQN0rGT2HabXhh/6z7kYE61AdNuhP1oYxdRLMLVKBZK02jPrBLNPhBf3PUhFniG5JQkbMRvaGK3QOc1ekf2u9QKThgSRYlZLEngjXe03mEJcv3pOid+TLUvxxm5PlJewNh96vpAgvKYUFRKo9yQLHW+uzwhkRKQJJ8n3d+GwGLMIhlLvewquiYfQhZ/0TZss3W27cFluBsbWB7vZv754vX0meQ3eD+WnhitVyE7o4tOgfK3tBqIA0HXl/pdZRCcvqdGdqIZ2d2yvXu0/9K2RTsB5IJwuS+UMlSVHIuq2su+RE6mR5+CYAnRTli3wrkO62J3CQEJH8MFHcN7wbb/cWF2A4MtSDDxvEyde2XckZiD3nf03W2azS3q8wXL9T6rjUjRgTCC13Wgi36E+A1yX1/30HVQtZ667aFfYu062sk+swrnOlDrQF0QSsoiUSpoia8QMjGkj/GELmh4yRb4qBVesoE7PH0Y/mz0oQJgVBW1ovdG50W6f9a+pa6OhRAQPNo3sh2pbTl2CZV+95gScFGzu2T1lbZBntdUo8KOyffLy/yH0o/e5ZsP54bFOYvyY//h6aSZhu/vIMEUfkXJ+EufL2MA2RZIxSATu4p2LV/irtgtUNiDoaB0EXdjB28XirZtRVp2+pNk4F4uyGs9y9d5St7m7bbLvB9y8j36m3IuFQw/kp2w2d44u4y64ZIEFimiZ6uBvGObGfwQGPwIkUuRFLOO3UQU52iyJ9tJ4GQnUpeyxYud6E/ZW59TrxfY2ZzNRrFsU7whsUVTKXASW7Qd9J3CrhWLtfgOLnbhBTwzZVigaJTCqIDWQZLA0RfpRjFEyAUiiPMDXPJh5HHvtNglr6NNiLYAKRC7uC8UUqBN3ahJHsxU+zkmratjbHWO8xblpNNL7nepU2iHVIESZlxi+24XguRgDfred5N20AUz9W5kEuCu9iGvYVGMVcrg3PnovQvnVEHwgIvXf4n0W7t8hdI2pNdM7GxIRdzte38pKZeKQmpHQlj2fGkLYvEorTthbKOTXb3AtB53bZb7oIxHkpTQ0Mkck+lp37hNzldQ5GRyYt7MBvbwDjvh7VJm13iLcyvJSWzJdn4kEELg7/2VP8db/sPb+K8/9B384U/6g5d+9ks/99P46bf8fb70m/4Xnrx1zHf8q/87z5VExXOB5zURHEgVeXmepB+AKA+xg8WDtH6f2yXn6ydRyrB/epOT0yOODzydhYNZYN15aqNiMliGPRmtWHee89ax3IjBO1l77pzD7WORhfDHUJ2fsrFLnD2n78/YtLfp2jt43/OoaXhcN1w/PGdv39LsBUwd289ckKCsSGJ3wec/lJYhTl6DBaMCxge8VmLctyUhIvsvs4Fju+c6VvOXwXPTddxyG1rvuG03LL0l6BqjKqr6QJh/yXibOb6qsbOaoBXWNyjvCFqj/AKtDRVD0tW7NrLdkj6Yu5AkHR0bNW6z2q64az0f2Dcp2VlW3LaDsLKi5m1uB0isHO83wtpO7dYxYSPrOrBwL5NnyD+79bu7nMoqJURSO3pm7FZDEjYxCH0rNdWtddhu9y6TwNuVyTL4TdvjXXJWz0eJZu/bUbJKWG4d3rcxGN2LFV1pd6mb61TNDdEEhqwBqCzQn2dZFO82dN0d2vY2m/Y23veRGdyNGDwxFRYfX3Sg7gUuiBOhkQplaVRdTJSgwMTARtof5WY2UwarPbVztN0JfvkeDp66yqY94OSK5uRaoDGBpoLUJpOGvHQ2BXCBk3Xg9jmcnIuztlkqjpZLXHdC392i7Y5Zb27S96f40HNFNzyoa67MWxYzx3wRzzsX8F2QNi7ciI3UhUAXA7g1iiYOfEpH3hTB3cV28EEqJrV4LYMMgbnjem7bDXdcS+8d6+Ax1cAGrutDaeur9wcmeApSgqUCZsFmhmBigjkn1bZtrdxtlK1XwIi1l6vERaA5BAlj+yDLuijzUrJ4S1YqJFarVIvvZgfGgdbd9X3La1Gcm3GLadOUyarZaJ3T+gAEnxw7+a/1jBAsOjp5uxJal7W6p/fL3yu7J0BseGhvxt92Mcg6z7bc+RZr1/m3q2qRuxGM2Yvaf1fFRoA4c704x747pm9v0bZP4X3Hpr1N253i3Drv47JIlGQhKqV5Rr2Dd0EO4kJKJRWt36WtiEwXiLapuIRqpfFhQ9+dsDIz7Olv42++jKcqxcFBoDFwMPM4H2JXkXzPaMVy47l97jlZS6LnbKmozx1qfQff3pTW1vY2zq4IWA7NgutqsA3NLLI8OmnzlBZPCcgg+g14OnRk+ygan6ztRfRF11AXBnvggGWQIVAnrmPlLUvf0ymozR6mmtPUhzTNNdFsrCMLMC3YO5p4rhk9y63O1q5HsgdyzMeyUT74C9IvAztnSEiWCQZgaAvcYRtkWdWlvsIuNn8p+ZTO+cQe2db5lWXcPaDYTjKX1+v4Wo1t1NXF6zX9TrJTsi4tznXogil0N1mJEmVAO07kjCUzpGg0y+uRi8FxO6RAlIrA5zi7HK1n8i2MaajMHlUt2n/DnIIoG1MOjIqyEsmXcL6j65fxnLFAIR2DelbDuLZRC4dMBhZu76Ot52W8kdix4meLLam1Bi9DpZzbcH7+XpQyzN2G2VPXOLlRAYFNn1jAjqZS4kPEApHzsFxBf665cnpKtV7JvuhFFsO7lj1dcaQqDhsr5JJGyCXBjdu/++DQSrEOjjUVC+Te3wTFppCWSbUiH4tHay+zA9bBs46yEGe+Y+Md54k8ohRaybDAWXM16j1flfuxnmdmXArqjdnLjDZXyBqlzrML2rcFxjrWg753WaxISRwhYEhSQT4/LlqIH7GbtSe/f5Gle5ktSD7zLl3fYXnja/GiLTA7X98lU1FVexe+s+03lLGDc+s8p8Rcsm/L9UzDKnete97fRcJdbEIsKOdigNjrur6SdT7FJg9xXQg2FoTPRz6Y0hXak7sNTH00JHjS4KdoJ3x3jOtPCMGKnejEl5BkTxpGHe6rUJSK0MkPGYrCkiZLg80MQ0GptA/l/1L8eqYM8+jP9W7Nav0hrpz+NgvvMP0NzhaHzOeOdg51BfNaCChGi6TU6anCHUO9dlk2pu9PcXZNFeDQNFxXOncMmJgr8HFAbEdgExwaFa9xGZ5tgiT4tQ05dmitpvOaPijWXnESHEvvOPeWlbNsgsvdAVpV1NUiasdLB6noxl+FyOwuZU1c7K5KElKXSZmkc3K7g2XoDErSkBVJBqpk9KbYOenPjghUxWO4SM66jPCRunmynx4GqYa0falj57Ju6GdSeNlOoCaU/hCQ7US1o9Czqzu7lJHYXpfSl4g7gjzEFvH1giqZxltSPIW8xsW5TsNxSb5PXV8RObmU70n2OTL+k60o7bJsb5SFSB3PqWhedDEGuxRJxu42zrd03Qm2P48ElN0M7HuBtZZv/PN/gv/yP36Vn/23/5hXvezxp/3O6177Kn7m376JL/qrb+LJW3+Cf/nv/19xhsILH8+vRnDRNJSMromGNwVERqmBCcygyeN9R9edsDEz/OpJ7PkrWMaOtXUnVfneSavWugu5/XvQ7wpRHxhOlrA81bi1YnHaygA13+J8K2zgfonzG0wIXK32eFApDq9amj1PNVcoUyapFA4/Svb4mKwiSLJnjcZ4CY9rLUmnutT4Kv5LYnnc6pkqgMvgOPMdt+xGhsPFAK8yC4wWWQgJsqQqo8wcX0sS2GuFqw3KzzDJcQe0dznUVHqDNjORTaBIwGyhTNiM2i2TA5kqO9UstwMB+KomXHKhKOfQtheGKghjGak2p3URDeextmVpsF1MEstxuKintYuxuF0BF0MnbVBVfTQETal1ISaCvV1K0iUHoO2FJPBQ+drWMDVPy34M3ubksvdJo7HNN6zkJJbLS4+rasFs9qAYWT2nmt2A2ZEcC4gMv3h2OWEJ9t1tnGvpumPa7s5gbOPNdNAEHq5LGJyt+8XACFb5fCwTPJ4AgTywyKHogwxMmGmDIzD3jlV3Rrt+gsXxIyjvOVte43QdWNSBxoU4lG5g8ggLUKrryzZwVuh3sQKzOWfTH+PsuQRz/ZIQOuoAV6sZ15Vmf2GZLxz1TLoQXB+kzTOo3JIJRbInJrWT7h9eYxgYznpH0izZhcEmCBt4GYQJfOa7rP1nCVilmBdJ4KraQ1cHhKrBVzVQo9JwPy8WpwpWnD3vqGo5L7ZZ82OGWJkQmV04l0fJ3qexDUEbfKGrobwfEtXeofsVeSp1v4Qi6eujXtsgd9BHBlo/CpB2OUjbmnnABcZiZRxaH+ZtLmVWgFHBKMSEinKx7QtQXhxZn2RKIptXljcUhUppmLTsUiIn7/Miab4rQe66ZQ6AZb8s83EcJZi12LpSE9jMHoDmSDpHbLfF3DnHRgka73v6/nRUKIJAFZJNkEJRFRn795MI3hUM7koGp7kDOXjb6jtvlKbyYP2Grj2h3TzB3p01y8U+3nsO9qRQnDjMpjBsyzZwspZArrew2cBsNcwW6LpjbL8CLE2AA1NzpHQuEJk6tXgiiWCvcZGRY5Six+UikQE6FOugRtmtslsAhmKxg8wm7oIkflahZxmTPhsvbHRTzamrBXW8t1Hv42eHwz7VGuU9Whtqb9FmHguvQ1tjsgPCBr84VBGKc1qnIKcZSR+l7pRUBFJmPta/37INsm7xvE1dLCEOLvTCPg1xPWUfD4VS51ZZwiQUfkLpHzwdI/BumqTSSbWXWcvJ/8pt0XqefYh8fcZk61BwMyPmYLkfZf/tTjZtB8Hb2sgp8bvTBhMZwG4YHCnn8e1LkubCIG+iJrAycykqJtkYL76ET/JU8Zro+lOsa8WfCJZSP7yKfsTTdGrfFSLPoyKzb4z0fJfH6UKgx+OLRLBBgdY02hB8y2rzVD6Wi+OP52z5AFUlsjByq5ICswtkOanOyWwBfe6p1ivU+g59d4uuPxMfEctcLThShr2mYx6LRDLPQP56r+lwdNG/Say91GXYIR0DxqtR7ABkNvA6+NxBWEpGrWM3oYoJF1NJx1g9u5ETPknvGaDKpI7ZKKE6DD1qi4TqRSm5EumaMWYxSu4kqRKxUWKbEmEka0aCnGfpPptimOSPpIFCbpMJJEn+zcWEgfOtxHax0yHJBFnX5gTWaCZCQpbAGXc6ZBmL+J6K8gvJVhgzp2JI8ogvsXfhPp9jCrfJMizOtfS9QblVtlOX7Vc5Dh0q+jgDe/giCzitR0oCJ9mdqtqjrkQPNknTmeZokI3J+9lmX6DvbmPtOaOOz1jwN9W+FJRTAlhVhT+XupOW0Xc7E2klm+41EvGa+yMEX965GMgzfWQI7XD9lx1ELoQsRVeiVpqZNuDjUNbuhHb9BDMlQ6DN6T6nh4quCzQNbBrYm8v9e7mCbqVoTnuadYtafZjenomNdBvpQNZVTAJ7ZlWSjZHB930kwKRid4eJrH+Jmxqv2GDwIZFlFBuv6QK5OHTuLee+Z+UtvXciK4mJ3UJzGUwe79Fm9gBhfh20waiKJsqAuSIWDYUtKK//4W98n00F45T0TYx/YxZZ2qX0s1PcfUGaRBXykAmF/GN5f0ukiOSDp7hBSBE2xwylbyCSHcm3vrsm72AbSobzkFzdlrupzEwGtSqfC0apcAtjkl1ZwCqLRNatc4EorWNCaSecl+0zShfHokgEF3Ibsq4XddhLJBnBZMvq5vowK6A8DpHMJ3HDSSaqlXbPVPuo6oBQ72U/QjHoh3u7xNpT2u4Y71u6/jTmeSQ/8pHAer3mq77kj/Lu9z3J//7WN/P4wzee8Xdf84oX87+/9c184V95E3/+iz+Ht/7Ef2M+v7xQ+ULBC0oaYhcG5t820zCQq9F+g4rJlt4SHTFp5yTpfxa6n6LtNzhs1oJrFaoPmD7pFI0rwjqI0zVThkYFTC1MYKUZJYIvrD8hO5ZD69nQ0m1i4GaeVht0aPXMmn+Frk8XW7zkgh23Xu5CMBC8ImhNiAmXoLU4fDGZoEIFW9q4ygyDEsbMtYv6vbn1XIskRdaE0kZ+15j823k5vnC4CoZiMiIpKZ0el8nQ1IabbjbWjZk1o9bVIuHjoWhbF2acVxKMKeVwWevLEnxMwgQLDGxg+Y3EDL6sdXPYd2WL6HZi+MKx2mIrlYzGNMjO+U6cv7SMzMAaGII5CE3JtxSw5f1tCwe0zUxGGUQSnf4sPMKFP9mGIll7HxHd9jd3aXyWuNjuKe55SlrQL9H9VXwvXQIuSsd0NtCZkJk8w3tRNzzq+1kLyobISHc5cBDbIEHsTBkaiJIQjCRjgtu9/jIoLoySuonZZ0S8CUa2b7ydoxbwovsg2YXEclAkHa2yel7htdlZjMkJGS9SEQBBF3InGtFLLavDhRO23VaaWSQxcbnLNoQqSiQkexTXS7ktFk4K8lKFP3UJxOtCBpWtc1HIZ6bCuJ37ssELyQkqq+SyTcNnEyuu/N0QRC80eAea4XH6za1uhLENGBeFSpbeqMC2w86WQzPREFxpL2zxV9qOYdu2B3DmYQ1bLZyywEGCxrtN1vt0UUN/GBoWRnZBVm0sy3Cv2LYN5RWShkXBUDhK0hHbvoRWKYQP+byZdS2q3cPNFL0dfAVIUlPEx2Ifks8RvEInSSk/7HMdBh3BZBvKmQDJLpT3flfYzXj25IGSrtxv2a9IyxhLR6U2d4cMzrOFTUCp7B/k8ysnVYbrLxiDsuKoB7+JP1tcR8qgcqKy1M4emCzlENhSpzO3dMfzbdQlZOZDUaiwDZei8BXy/vepQ6bNgarcL/tsuxN7ccSuu4S1BMKc0brGBY9SHqPrfN8N8Z6b/Ia0L7aR7EQJFZPI6XHpFiWXqJTOSZ+T/4Xd3bLHZTGuZPOl97MvsINRXfoY5baM9SGrcdI+b2Sh91n4Eok9Kv5YyPWg8vrdpZX9bKBRMqg2DDJM2+3gz6RbKQ2iNIjMlM+apXHuQNL+1SHrgELyKyQJ7L18xvQhFywGHXbpqqqVDHaqopxU3oUOtk+fcSwhls8xsH/z59JrMRFc2oMu2oA++EzGSdqb5XVa+okpwa/cPCcH0zyNoEz0tdzOVmvlW5KsWYky4TF0Csxi67kZEgOp0ACDXSgSwNlOAMqT2WPy+6V/sN09F+1DJmxEW5DkULzFB0s5FHcsf5OOVXqtwnsrdjW+G4LHBY/R5PN+JKMQHOYuYXjqHAJi8bjoTCp++cI+V0PL+mUM+8F+JImeQXtd6yYf5+xzlMOePLkQP/gEReyzzXIuz6cLK1zYCJdY5oXPUtiD+5aO2UrujlaDcYfyM16mioNnicfE9xKXepGJMtbjrMFauf/XlfgMXkvuIfQKY4X4JLFXFwv6UhSulRbJGO1HHYLej30Gk+YmKHJXoYv2NM0e6b10DA3FYp+T4KncMQg3FBIuOsa90R74qsZUqY1f7ic+DJ1u6Rz0vo36+CJ/khjtgtgFF1Lyc3c3QNlBuHOQWDontzW8vZP3kt+/5ReU9ziXiVtlfNcPSeDMct4alJ0TqVv3rOBQqhQ3DCMiggx8HSxIZhoX1+0uKGUktgjiY6SCYdp/ZbdhaTvKQXMqJptLv3n8/qC5nJ6XSeDhHpEkvEzukM6kw7Jrq/AtSlscvEWZcTxa2odc3EsFPh+PnU9+SZJPCSMbcT+4c+cOf+oLXkcI8DP/5k1cOzp41st4yaMP8rP/9h/zpd/0T/jiP/pp/Kf/8r9xdHT0EVm/5wrPayI4sYR0nPBbsn9hCOBKpKCqCrFK2p3RbT5Mc9pzdlpjbeD2XuBoPtwikzB7mu67bD3LVlq3zltYLhX1saNedzRnJ7j+OLfB9XaFc+dcU4aFrnik3uNqbYXtVyu0UbH120Xmn4oaO2X7t0zlbNB0KrAukjtNEO2fTWnUi8BOmH6D1t9JcJwESx88p5ENfOI6bAi0BJSSKZ6ldo44QNKip/se5QMqBqBeK+lXiVBehl4Rg5VkcMvBahcSwWVbcnLY0o0/sV/KpEdk8Ywq+HGCpLfLbKy72MYMwrDt7Vlu1yg1a3MbircXK3aXoKziyz7fYAvjtz1MoTKzEfMn66wWwdkuho4wAQaGzuj9S4ZUDO1spUNbVPSKBLckk/YyQ0Nem42kIKrqCvXsxqDzGQM/ZZH9358XmsBS2e+Kipvtz6NOlyUFL6XelomOkFLDkLiuYCLcC1wIMnhEQY2misveFcBtV+p1tBFJ22+zuUkze5LazDGnD3K6lFO+MSnJ4zG9El3gPrDuJZg7XUvL9/kdjWoDi9MNYSOTkJ1biW3wm2wbrldzDnSgqkMO5L3sjNzGlZwuENvQR1awbAOYoHFRc4yYRJL/CUN3wLZMzG3fc9tt2HjH0vece4uF2OZl4s1+KB6EYOVadFKU8fUg8g+gg5WrxNvhGvfV4FDpMct9lGSO7LdS6mE0NbZI9AAo1wozHUZsHnm6iRqVy7hPh6FDAyN+lZMM3ndYN7Rcl8yey3BxuJLPdx5x7Puc6OrUEjNq9a5HjlFpG4blb2lq6ZIFfDGR4520VuZgdQeDN3+/6EyQzR3L1JSSOcAQ3CmTWQcpOVfVR0PwXThyqrdZO9x2twjeZjuRWH7OrillY3IrZrxuEzP4fmGDTPgeghb5q+LvyLV/uS8xshMIc9j5lra9yZXlbRbHCzZ+xsmB4vb+UMgt673LFo7P4Wwp3QLuGKrzM2lVs6eZqXCgNAtdcdXMWCio6pBrJ8GBc+D6FJj57Df0wbMOjkWcVL5WkpAaSwSXPkNKGkuAl/yELnjOfM/S98MgWZB0ecHu2C5SSOdQPNeaOcYdSctsJcwar+fiU0AcpmgIYTYkUYrCR8nwK7sDyu6aXBgarUQMYuwpajMw0GSI7ybLQ6VOhZKdnCRsUvJxYLX2l7aujvZsaQ9GQdGYETMEvR6Q31H2fOQTJNub5Ri2pF4u/vZ2wnd3ULgrWPRsJYO3u4qUzTlzFSzYZbYd2+zkVHQfmNyLnMg31b7IxtQHo+OmXCsnYn+ObW/Rd7fEj+juZF/CRR3xgMs2YpCOUXAfklLbXUOheJx8lErJNVVrTR3vrKmjyW0F9HWUsqkA269ozR3MesH+6inU6SOsKkXXQArp60ru+ZsuJns8rJaKxXJNWD+J607YbG7S90tM8DQorpiGA6WoqjBIxnhJ9Fir6aLcXPIbUieRtIDDMgBesVBD3FB2Ci3DIBm19I5V6Dl30R5EBqAwV6s4CCgWJbyFWgYJu8U+Qct+0N5SMxQNvC+0pKMkQGWGjqEQFqNztbw2km3IzLfYtTbqDiivEbcZDF3sTinl4ralj5Im9XAf7XPnXJlMkOee0aBUpdFUJJ17eZHR+xcGNG7ZinwuBg+xCyG93vVmZB92zVQpkZi6eZlbHRhpm1LSTYZVL/LnSx3P8XGoSJ2DZaEudTllmal+iYo+Wcms9H6T/ZNdWrKD5me68dncMYC3uP5YpNbam3jvaLvb0ZewQjyJZIvLEt/PFE30C0pZKYkSx51EKX6YaSMF3Pi37VMAOVHbaIMnsHEea0VSz5g9lJ4zWz7G2bl02lgL3g9Dq1crRX3qmN++iepXbNYfYNM+Rd+f4X2XZWOuVI5Z5aSQrIYOQyn0DMlcsQsBE0LU/1V0TtOocT5Bug8lL7EJcY6Il44kYpFY6ybHvOk8oZphF3sxSecx/QM0hQ3YJb1SdsaarfNVHrt8b0zSZEA+B0u5s1Qwzt+NMQEw0pwdGL9t9g2sW2VJK/ldn21BWo9djOXE7A9q0Cgui8WXYZcPMb6vjzuSQ3BYt5b7fyw6lp9Tl9zXIV53eug0Krej7ByQfX1Rb/ji8kv5noa7+TFGz7JEVNmtWBL4MokgJnKlyBdjkDiouIwRlXdgO/En+mXOC/XdLTbtLTbtU8La7s8JvicRT+4HTzzxBF/0uZ/FH3j8If5v/+u3sre4fM7L0+GBa1f4r//X7+DL/9Y/43M/8w/xn//b/+CRRx65zzV87vC8JoKHJLA4XFIZ16NgMbWAJ0fNKBU1eTSrYLF2yWbzIa4cn3By8ADLTnFnHjiYBTrnJAGsiimdNrBsRRKisyILYW8rrj75FLo9I2xu0be3cotT352xFxQfN7/CkZnx8WaPa3srzFxRLYwMgop/vgv0Xo2SwJ4QRdilXd0EQFV0kQHURAaT2QrqQJzSpOnl4v87vuPYtfTBc+56btkN58HjFSiqrGU7OHTDEDRvl9Ji7XxOLPnaXNRSq+tBmqFfSbKoSATndouywluyfmFgEUBuMc0DyaLmS+iOcZ3oQjm7lGAhJiCd77H2PLN6RStKkpFpGEVKTAI7K0LDhGJI4vMDJ2Qbu1o8pNJ0cfq5zgZPDGRFVe9TVwvRLYoD2Zrm2hD4brV9XWASF9VI+fnxABr5v9twp4EtqXJqzN6oBTRPAi91uQopCN8dZ01g25+ODG1v11h7jg8txDZOAzmpkx0hpWMSOGCDTJ1195EITgMjUxKpUQYdr/30Wwku2oiEOt7EmpQIbp+iXr2PECz7tx/n5PgI8MwaYe10bmjpXHdiF1yIkjHHitlTHc26pTm5Rbd5Ulq37Iq+O2MR4NHZPgem5sVmwWElRSITk8HBqZjsSXrfYZTsSUWidP07JcWhdH3uYk5KO2iyDS62fzuecmtu9RvaIEPiVsHhc3JSKu0S7IhjFNwGbTtUZAUHbbCzxMoVnoqORQNtRQpFu1j9z1IMZSL4LrIwsSgUtqv2MOhJ9rEI5Db07S2sPcU5GULWdSf0dplZOzIxNgZ0RJmH4GNlPjlppU1IdkBlO5DlFVAxTagpK+PAmAUA8Tdc/h35/Vzmz46S0jUKaRUV25B0UGtpva0OR7qhw+8VrbbO7bz2d3UOlIng7c9vf7eqFvk7dX1FWuxi8D2yFSkhnzSBYxK4lI3ZtLfYbG7jg83Dj6pAtrRJNkazpfN9HxX8PsSBjnEZqSClon2olb6g8Zd/t0j01EozUzLgZBV6Nu0t7Olvs1AVVXuV0/2r3D5w9HH3aT0kg8/WcOdYsTpVhBb2bm/g/An67ja9PaPtTjDBcqPe40DXPGTm7GtPVflcJLJWFta1OvsNKdnTe0+vJYFjEquHQFMUgrb35ZAIlqLQme/pg+Ms6QMHFwtDiqoYyJQRC0PSJSS2wGtJmIEMklKA6s9RdjnYgpgU3r6fJWRJgl3SD9FvQFXj9u6Urdy6P6WkogTKfdSbPZPiaGrj3mrb3IkygcM4mTNK8MQgML0HQ0s1UMjMDJI5pQ7iaF2UFi3AuO+1rrNmexkIV9X++LAUyfVSNzQljFIgPQrkdFmYKwgBbiMFph3HSlpjz3f6GUol7b8bOamvm6tj2ZhCE9j1x3Ttk7TtTZzraLvbbDa36ftlkdwZBsSZWJSRIs7lh+3pkGYKOC932TRgrYpzBpqY2J1pg0Ge74JRCh/kveTfnNsl641HKUN3/h727ryCc71HO9N4L/ebxNDqOkXXyeNwOzC78xTt6gNYe8qmfQpnl1wtCshHOmQ5Ke8Vro+J4D6x+AaJGx9jAYOjQ+GUxgWdZ6qkzyYG8DI4TryQRzbBcWI7znxP60VGCqXRqkabgY1Xwjdz+sUCVwkTsNYGne4PboPvl6NAf5ct2C4YZ/mSqC+dpR9UNWb5lVJ0YWjvFgbpJkqO3MlyFF1/SteLn0Ds3EkxwwU/fqtde9f/skU6f22rKFTag+17+WAfPNb3BLuOb471UmHcLp5sQ2UWOUlc1wfU9ZVh+VsxQtkqXq5HOcB2e8BmeUzKpG/ZvSW/JcX4/FtukxPuw+6sMEisUzc3REqitPPpvPKO0B3HoXIuJ4HXG5k10PXLaIe6nIRPBaP74f3NlMHEY+VDwCr5H8I4eqyiH7HQVcw3VGgUzY7YUaOYa8OerjAoWu84cSs27e0saTA7uUV9ZQ/ba+xM42yg68RWtCeaq089RTj9bfr+hPPz97JafRjn19QBrpk9HtE1VxbnNI2PxaE49M3K/ICkHw4ICURZHEbmCgTFGtELBpGP6xjIacdRPm7lRR+4z2SyBm2SVMjA1gz1ntiC2uDqihlQmXm2+0kiEWB7ho+cO26nvCSQiweXFoJK4tQlBeFEEEnSoV1/GgvBPbZPcorRbyx9w5TgVMNwupRHkbfHPsBl2NWxUz7WylxIzKb/SboOxK8oi1Lbv1FXC5HOiKSTUpphVwK+lOq5uLyhM+yy3yuL11W1L0WOgvCTBkonhGDBSY7D51kDwz2gLPyZ+kh8ifL4uhblgH6J64+xUa5VZm88RdseFxJE0nl3P5JSJycnvO7T/xCf/4c/kbd85zdSVbu7s58N9vfm/MS/+Ha+7u//Kz770/8Qv/r/excHB8+eYfzRwPPLCFY5JEcrtbM6b9RFr7BWmhpFBfTB0nUnmPUJzfKIjprVSnG6Tpp+MvRFBkNJO+eylQEvou0nQ170+c0sWG/703ySed9xYGoeqfe4pmseVIq9fUe1MOjG4DtHcEEmf/cqtmAMAV16nPS91kFhcDikwtgRYuJnzFZKTtw6GmxHGGl/9sFHzT8vrVkqafo0OQmcLtxS41fbDu2D1BCNxmtFMKAcUTM46fKJfq8BcfLNLAZoFSg7CuCA3KK1rfub2kyV95jWDYGe2+ShW0nTc715Kg8lkwremhDZO5JuEa60CokBNiQBUnKtbNbyBIKKr4XULHNZcDgkexQi2WFIrPUwOl9dcNhgpW1YgUXFm8+hJNtqFw3loH+T9IxyIriUucg3zIHRVxpy+cw4OCuZyGU73ei3khNWaiyWmjtIZT9r9kTWddef0FsZZCJyGzKoYZsJnAO4GFxpFDZ4fGS4brNrng08A/kiFYq2EztmK7HkosZXWdVXBLp+SdcdY8yMvfMz7PlVNnOFtSEnd2SarySG204ebzYKljA/W2LW55DZwF1uLz7QhgeqBYe65roy7NVtbP+O2xFPN9eTB0kO21gWiVJByA+yMVECZ9ctSSr6MujBEzj3Ngd4vXdsgqdXoFUtCT7dxOnzDhX0iLEnWm01rq5wddLerNC2jsUbk497On+1qqITViR/o7N4ob07JnlC1YzsQYbtUN0mO5HOLmnbpyJDpKe3S9ruNOoxF1pjRTos2YX8uDh/ImEq2oF4RikzmAI9pNvL9qhhuEUKZkNOYmwPS9T5+2K7rV8jKWYT2+E8lZkRYpEotVHJb42Dx7ItEhjprslnLjrS24ng7ffS7xgzbs/P2udJay3qQQZtyEzEPrF/on54vD/2dilDn3wb7fSQ3DHJPsRuAdnruxn9zxZyDQ332ITsR0Rbse07bLeJV0pTR61mExy9XdF3tzDrJ6m0QZ9fYbWK16COieB4oNcb2KwU6jRQt54mDpG0UYPW2U1m+x2amiNdMTcOZaQ91HtFcJLs8V6YPaV+eGrhrmN7aDIb3XYBbMfjUvevjd0BrXe5O0DYwNXFluFcIKwJWuNqQ9DSKaF8TNR4L9c6Y1ugvClkUOzoXCzvfdvnWKkJDpHhbTu5R8VCRKk/ae1akort7VwcTn5aKtymnaWKR6q0CmUxSClh+mSadhHsFUnh7X01tMD6nHTKra9J/gBpHS25647EKNZo0+Tgz5gFJrjRUM20L5WJgyV99Gv82CfQumwBvbtLL77H7m6BUiNRljvL+uVGCzvL1EfCAlaVaEo3C4LWkoDd7izqT+m6E1zurNtcSO5kfyINkkTdt9JfyfiLZUECKreFp79amUuZwLIceS8lgpcxAdb1S/ruNovzJc2spvcVtlasKqgqYf31ncJ1UgierTqInQJ9TFSq4Nmv5uzrmiu6liFQNZgaIm8D20vSJ7V3J/RBmHvrkkCiyOSSLvpCjsgQjAngPnixCZH918XuAJTJXYRlp0oIFqWlU8jOalwVCyE23re8E9kYIDhJQChNllEDRm3YMBSMR4mekqQQfYXsqxaDglJiIQ0lc+58lEDs7Zq+O8NlHd1xzJB9gLjPJAmcirYqJsSrHdf/mCm3awDm8P5QnJHaQFFUjh2LqTiU7URiYaKG5KyuxTbUTsglABxk5l/qyNJFgs1aUGpIBJd2xJiZtNmXCffyfyzel12KpQ0iVDh/nruNpOtC2JYlszuTXqp9VHNVtD5JPuaAdBzTf0nanQ0Ju2DZ7iwSb/7e/Ycq+gSemAhOjMmtz6WB9I3S1JF4sisPAWmGkWampGW/1nIftHG2UFWdMutOqNcPAw3Waywq1QUxS49Zn7DZPIntT4UN7VY0AWZKc1Q1HADzuWiHd63Ge03fa2EEU8rEkBO8qCg3iaZTA7FknTsQEb3wELsCgo+xG/EaGHcVgyT6fVXjaoOdidyDWexRewd+D+VaKSZElq52s1HnUDrucNGHFYboAbravzA7ZCQxkMgJGnDkIdFSIL6d51VYt6btTui708wsD6HPcX3yElIjdkCJP6OqXBiTa6EYlFYwY7dx0Q5cJHkAUd7FkeSBfPbx14XvXxDfCgLKZcvOncfVfrYNuri3a21FgiTGfNvfT9rso+6h4vikzuKcb4hDA9MQuNHxiscpzREhdqMnZrbkRBjJVOlivkDOD9lBAlRi7nPJT/RnkZy2Is0rCvj7nkt0fHzMez94kx96018bFwjuE3Vd8cP/+JtoXvtVnJ6eTongXRixAEbJj6eHUgoT2yKc78C2orPTV+KIFZpdJTonr7exdavrwPRS2R7rHqaWQkujNfuq4kAZFjpQVV60TYxYI+9CDOrGWn8wMBuTPuGgCRqy/phsehnUxXWNRn0dhmTPxrtsuF003Fnba8dN0nsXkz8O71qMa6naDldXhKR9WFxGSTM4JWrKYE15Bi97x+AW+Yy/8DgzgfuV0Pzjvu67W3kYSRoQkATZfUhaPoPmZNpLIe6yQc5pnAQOhcM3aB2pHIBdhIwmU0FCx4AcI0J6Z/x7pWqVChBUIPhehhtoSwekFi+lZCCEJFza0a+Wid+8z6JDYWBU7d+SUh4q9zGhkzR6tjVFZfOiZmFyxqIMx5CQlqS0y4M+UqLTkpjRKfle/pVJnRQ0ZTY845arZ4sy4VzFxE4d7cSuJE8JYfPI51RITrkwxuRcDFiJgOhtyIw/Fwa74LzYhqr1mHaD6lfDZOSsyWyplGauDAtlaJQq9IFD1v9MCZ9hmvdQJMr/lQy+M5A7BO6WSE9Fok1wuBBye5cNHls4hionPRJ7zRGCyUkA05/LftYGU9W4qryuhRmoQApA2kGoYgluA8yBzeBYbAUZ8qSUnXE5IBgNeIqsv9yJYc/jDV8GFFrXRmmSlAAe7EFeV+ByifWxHUCp6OzGbd0OAC+giqkED8Hk3/cqZLuQJAourlk8/1xLH9d/04ozWCZ9Epu/ZPmkZJNoEZeBVHOhMJQ+vwtlq6kkd5L2X6HfN1phK7Y+FuzSsJ3EuEjtdd53URvQ5eA2JXfybzMwgfMAtx1J3GeL9P1UjCoLQMk+bLPpd8lSlK3pubXRbdCuxfQh64P7mAhOMpxdp3CtomkdVdujuw2932DtOmvV10oz14a5qmhQ1ObiNqdEMIyTuWk/weAziH24mAgehsXJg01wtDHASzbBEWLQI+e//IaPA4UkwYXbSNHImtw5VN4vs2a3Njlxo4JoiHsga4kHQ/BVDjry/WiXRmS0CXmrolRRyfwTP+FOHopqYwJBArzUBUA8HwZdvhCfU7D+UifAriEuJQNwYMlcnJRdIn0nF5DQkliWHSG+Sq5ApX0vCWiCjwXvOFSnCLx3SUcMCdq7SM5EO1LiMr3B3dtTtO1vycZoExNF6VgSk/baREZw8qHbeJ/shknyqbMr3Zd2FJU/UthV6peCtfgSuahc/OquhLAp7Fb6bE7uR1/CWIfvDb3TeB9btj2SBG5B9YFmLZI6zrW5iGwQhuJMGxZKo9VYOzzZhV1+Q1pPFyufHR4TVGZSJ+kIeRxkOFywWYpqmB1Q6ANH5M601MJr22wLdJy3kmZ8yM4R7VgpDMUCg4s+QbBxpojZWTAGBruQV8CinB2CoCQZF+9Btj/JpAUbO4XSgDcpqljG/E4lHn20fWVXoFJahuQpYftpfXG2yqhFekdSeNsuXHat7XxdaQiBwZXdkqeKtsEk29IdD/sMRgmpUvppuzsgfW7Extx2dTzABkI8FqqiHL7kc8fFuNsj+RCpsJ1kf1QiClEkgVNyKUp9pQSedavoTwsBSDooxinf7eL+veBu301F6+RL1DEJXEpW7uxUCEMBWoc4lwRfXEfRZkctCN0HvB7kH2dtDzZ2eYQ0d8RToXKXdKNG4Xa2C73To+5hAK9SEQhIPkNBNEvDqbtUHPJiCySfELIfC8kWFHq63kqXsPMoFyWltMZXNcqn7jrxCRI0cs3nIrGKszS2Uk+5OKS37EHqXAW5vxQJxtIWpMGPvT2P80D6HDMQzydQ+BjXD0ngVBSKbODYyWdid0Qp+1bKIzwdBgb0WEbTuUGiJh1v+ZwfzSoYMXd3sHiTXF2WiLRrlDodpOW2WNjlfpb/z8xuwdjO5OKQd2LvIxkg54b8cK6UMqLpN7PER2J96/n4eAOlJjDRN5XEb7u13TE3wf3ZhWH9gL67j6zFJct1uzySFxae10TwnjY0pmKhK/ZMdaHylpyv0hDXSFtXozS98ugQZMLo5kPMTh9AuwOWV/Y53RtO7LqCOuZtN720fK9WEuB1NxVXj4+x7S1sf0zX3aFtb9F2x+JchA0PVtd4XDdcV4rrs45mL6CaCl1X+HWP76E9g3atOfd6pPXngwxq6Y2jD0Nr+GjbykExMUHs4//z0LOJ2j3SdtJy7m2cchzwsVKlozZwGQTIkKQ0dXYlzv3qSZpYdffNHLvYo5/VBKPzCetNQX0CVMHiy+LdML47QQ7qdLqQI0MkJIZIEdBtt3HtZgCX7d3CrislHpQxuZIv58u4tUuXBqZo9yqHwgDZ8JaDIYJ3CIcqkJLDF1M8xaaHDm97WZ9Os1k/xdnyvfmmUtf71PWVrCFa14dUZi/uxllM0OzvrMhfhsuq+ReC7kJvNbVt5mq8O8+SHC7qErXtMb09H9gcOGGGc7Hdu2T8Jbgg8hD9fUhDpCJRrURj80DXUSJCdP12SSagwAfR4UVrai9DWJzd0PWnGLPHweYWzemLaKsKO4vXqJcBDin5a61M5G3PNFeOj+HsfdjuhK59kvXmSWkhj7bhWnXIw2bGdVXxoA7sL0QaQhmFjZIQfavYrA3roEb7xDNoBBPAqSA27ZLbWrIJIMHeKvSsnLR8rr3lzHWcB4cHmfyr6uLmK+e9i61auj+j724Ji6Obo/urVDwgjp3RaOcJ2uBmM7nuqxptG1RiAzkZJEdxox9N7S1tQ7Covs3noLDQl7ndx/uWzeYmXX+SixB9ZFXmIYX55r9lD6BI5Cb7sNXeTRHQbSV5LkPpiHnfo321kyEMnqAuyqAUoTXetbQuafxqlP6wMA6UsAKlzWsei0ZzjNnL8g0pcXtZ69Y2s2K3FuPg/OVALTve84HhB4MGY2L+dCfY/jiyBVe07U3a7k7WBC5bOAf2TnFvU+P2a0+IxYv70w83qgzQxBbt6Yo9XbGvB63r7WRPshseScI0XgpvG+fp3Ya+P6XuT2jaA2bLDavVoMmodfoLrJaK5rbl4IMfRPUr3Or9rM5/l7a7HdmPaw5NzYNmwZGuuK40s8pRVSGz/qzVdK1m3RrWkJM0aT/1wbGJ7el98GyKhFRpC0Y+A56Nd5y6jrM0OyBIh8B2+6MEHz02SgLZ9ZPoXqa7VzHZ480Q8LkmtvPZHqMNygzMQO3a7LjLCg7DEzMLuLQJqfXPW4Jd5jZh7zcirxFZ586tsp+QZBcG1m3R/5OTKjoPMAFIQ2eGwWkXE7vbduCypG9CqR2I7wmxeKviazoUtqIcLLO9HALWCoNcFqjR6kl0YuGaGZWZUVcH2WZVUWKmTAbtkpgZ1vUiG2I76MuBXqEzuK3zqVQlrd4le3PrGNr2Fl37YYK3tN0xm/YpNu2d6GdsYqtruEQ//COTCrZB9DGF2SYt0Qph9e7rmoWuqJVmz1QstMkyUkDuKAIwxfESOQmF8eBxWLeht2eo9R3qmRQ/7WxOXytcBXatMKeexeka07VUp0+xXr2Xtr1JH4ucB8pwo55zqBuuq4q9usPUUkAGkYToOs26q1hDjgGIj2vlMEEGVHVBsVY+xxFd8PQx2etCuOAnnLueNngx8wqMGuYHCLN0LZ0RfkMFmPUVzCLej3zA1RVSBAZta3SSBqGwBTDYg0KzfpT43VEUysmeSFSwkUmd2KdJkz5JRDm7HgZQxUJ3htLool9HaTPESbHgY8wMU7R9bydRnw6XSTCVGuTje3I831JdSF9y3gcvtiH6TCmOSNd6ZWZU1T5V9BvGQ/cuJoqDl2JdtgduHF/s8i/Sb6UEcGovT0h6xcLmjLYixiGqOhgf3/6cYJe5Vbxrn8yxoLVLYW+mji/fE3AX7MT96ocDuXs03T81g9ykRrqEpIunYV9HSQilaXYUlgEaBg1hNDTKoBDygnUbrFsR3EZm7/SRclXwgfZu38FtPkTX3Y7dLqeoYLlqZuybmhuFpJSp5bu906x6Q+816yD+lI8dAKXPkExY8nscqSjk5HPRT1i6PsvUeTXMI0n+Qd+fRpZ5Rd2e0awP0ZFE5o3GLmIca3t0P0fXe0OBN/kFMGaK7sBo6DFEgkiSnBk6V1NSsO/P8iyGJBdnY3yTJdwIMQlMjhe8kuvQxCLQIAXRUEWfRus6Sy/sYvpe1n2XIOzeIVG7/b8cUpv2dTnA+m7yVgGPsxs2rsvrvjG3cyd46uwohz+mwu7d1nd0LC6JHcYyUzA6mfOyBnufCyFxuGjqWDb1VUaygTCSCHT9sTDr+2M2mw/l/ETbHcfjL8NWA54qs7zv34e47Ny8v2VOieC74tA0zGIieK4q5jv0I4GcBE5MOTG8BqsCbfD0/Tl9e4v5+U0a7zCnC5b7ws9KwVtdyf/1Bk5PFf1ZHAB1vEEvP8SmfRJrV1n3sG0lKbEIikfqPR7XcLXuubrfMTsEM5+BMcAau5EksCR7oI8VLA95Ou/Gu9iWEui9w1xCZu+DtGzJY3Hc1t5io6Fee0cb2T0KjTYL0ZEqdOcSRHxcqmPJKdB6RhMsyswx/VVZT3MA1uUq/zYrsGT2CjugcGxG78ULOSYe+82T9N0taZV1K9abp1hvbkYtSRsrdn1O+CrI7dbbcCqQdazQmGpOUx9kPb1SyPwy7BJQLwXit4dGjDQHgx0ZczHULq93FaAGxK8THVZ8SwD6PrBpFVrNUNpQmQXz+XVmzbWo/XVI0xQ6itv6qgmXDJeT98qScWHU47FIYuvetdj+hL4/Jelgd/F5upmK/mJLaksxYWDNlbrAQGbrpgAqaXfa/O17Q6k9vNAVh6bZqs7vOEsCRVHAi14oitat6folxpzQb55ktlxjZ/s4q9jEs23Q9gPXSetWfeyoj59kvfzt2OY6tg1NgAfqOY/rmiMF12cd84VDN0pWY8OQBI7JHse4SLTxomMO0CNU9mQbXLEHk6OXpGb64Fl60fayMfBLchCp5XEY9pBYaw7rWpTvUcrQtjfzzb0JFl3NMHWNjkzg1B0Acp37ukb5Oco5lF8MAx/T7t+y36N2wHhzT61cbfuUtMNF9mSSfpBhj8mJG+v8ZqYC4tQNrU0NVX1AUx+wa/rw/TttVdb6S6+XQ6bKds9BQzg5ocJoqOI1JISyLpeVWgWtEqczaY3vzR/MbLyq2ssD3PJ+2GIJBj924kbHQBcBXpLt2A7GSz3GqPOWbMWYjbli096i686kayMm8XXwBbtvOFaJzd/E45TuYS54+vtwjqRLQ7ppEutWozjQNXumYr51D0ha40BOGjuCaARrkQiplKXzvXSm9CdoPac+XxJO99h4uZ7THyj8MVx56hb+5Dex3Qlt+xSr9YfYtHdwdoMOjuvVIY+YGUdoHjCexcxdTPb0mtYa1lHnL2sEx32ly3O3yCUmewCSwMpMv5j4Tbp/SUDFJhZ8aoNGghGltBT/umMpSPYzar/BFLbAVzXe6OwX6FpaRLWV+6UEuf2oSKy8E2ZQ2eqdzg3bSSY8BobiJwzJ3037FG13In5CTCKGIEnE7YTqiPEbW9yNmVPV+2iVtDYPMGZB2aUDEtyUOnrbSGyosoVzeD3JMqTjkRiS9aiIdCE5NGIyO9m2bTGEPm1bhan2aJojlNI09aH4C9XF4Xupm2DspwxtpiXStmy3uFbV3miZVXM0lpgqdN5TgB/sMstLtesn2MSujq4/lYJyf1bYQ5cTsym5k/wIs0PP+17ggh9dJybKeTVKs29qDk2NQbp4aqWz7qdjPHC2TPpIe7ho5nexpb/vz/DdMWZ9BeUcdlbT1QZfKfS55+DmMdXxBwl2Sbd5ks3mQ7TdnSi5teHINDxS7XGkKh5UmsXMYmopIAM5CbyxkuzpiiJRHzx9cKz97v0lclM+24XtGGIVZEBcKMgVCVIsXtF1tzFRE7bpH8D0hf681nRxkI6xFbqZ7bYFMCSEtgvGJYriUdKhT51Xm83N2C4vcUzfyXyG4Z4+HgqdRpKiZNtE5zT6QLqirvZy0fWywa4JSW/3smJKLkrtSAADI4Zfie0i9fi7fmCUbjGc5RBEDreqqKtDZrOjnLRqOGLWXL3YERCvfxfnOsg6DJ8ZMf4K/fC8Hwp7kr4rBalh7knW+SwlPqqYeHJtLhSFyORs25si7xMcXX8Wmd1rkpSOTG0g+xWJcHJBzuhZIMcpedis7MuZ0uzpKs8XODQ1+7piP8lqFLmHhEGSxTPXhi5UaOVEe9yCd12UMjqIs3kc2gdMbzFdi2k3cm2sPsxq/URksy6xdsWe0jxQL6SQrBsOm0QukduodZqNM2y8Es3f6P/7mOjVanc3oXQV93koXJolkmRjHPH6ycUKH7t1JUGv9YyqO8a01+VtrXF1RTerCVqh/Iyq7bOtKPMFiUSmbCe2YDtG3UZkgrpiNoDIxd3Os0K6LnYRByvHFJEmS515ifE7dATXWYfb6AZTLWLMEKUVoi0AcuK0lHop/3tvRvfZ0arHeMK5dfQdPGVhKMlIJT9g+OIz84llOYP81NDREWNf01DneEjyDVV1sCX740Z2yxfM6+QjDUSzxOIdhqeVswa2fY7yN0p5TK1ES9jMHsizBbL8TzzmuM1IE7jvT2nb26zbW1k2xrk1ASt2ISaBa6Vx6iOQcHWXx1L3vswpEXz3H1c6T+XMgRpjPaz02vbjZNQVKXEnjDNlO4z1OGvoOnHUq0qWp7Xod7lOodce0weqVtq2fKw4S9u3SBNI67dirgz7xjOvPM3MY2oVk8AC70s9r9TWGd/baoVNQemutnlHZA9Ho+5CGLS8orG3RRKY1LIQ9b22MXJKghv09FyLClYcIu9z24qHoeUrPh43h46hnBslimUhA53fR4aVtWusXdL10YnzfWT6WQnot2QH8u+zzcEV5p8Ee1IRb+qjUevzZYngELc/B3AxwJNjlHS1BrawUxqfngeP9zozhlGa4DtUkLYzFZM8MyUtnxoFapBOWHvLOngsLcppLNDbNcYsqADvxUBn3bTEoCqcKjkeT89UUN7FFo2xpmhK7KTKfpqsLo/Xcs77fpiwHHX80ral45ISPMT/O4U2wtPxp58eKVhMrZw5YCwYgMDoOjLRAdLx28lGhBCijZDBIdr2mD4QtMJHeZiqkuvYW4XvlSSH2nhjsudxf60jE1hufBWKuapYAHPtqbUnklLRJrkjcbl+sA0JpR4okKVifLwhl69DGpIVBiaxd/ReBjykdrCBNS9s+TLoGLNcO0nu2XO0mcl/70ZFnpIRWB7noLUEe7rgTe3oDigfp/Mvafsl6Yc+VnetXeF8C7l9OIyKQuW5NDRQyPWWNKyqaj8HdyVzbrudUfbF8DwPnQtlW9XwvtbEFvroBAY9sq1a6ezcSXDYxgRw/H6AuihelOy3TXC09HhnRPPPVaOkExBtQpTd2AryFOQ2rJ0ok79woQo/rKQZ2rqKY5WG8kkLp7TgpuA36/gx2O7tNm9NZOale14gFonu3Tok26Igt3tnyRjGXUVZfglGdqO0IzoGmZIQ7LOdVN6h+4DrNUFLAjfFSLoP6E506JxL9mETi5sWDcy1YYFioRSN8lE2ZssmpPbvuL6jQbPFrAHY0gQOY5/Cxo4hRxC7kHwFki5wIR+1lfhJ/lPWrHctxrbZFijvCXVFiLbA41FGNAJBmEC+rtE9EHXegjbgE9PUjO5dCgZ20Jaf4NxatJr7ZaGhKcWhJCcwSD8N50GyBRTMnjIIqqoFpQRLCedatB4HMOm/T9sQTee2bEt6XNrH0u1XW/vaBz/4GUEmGeite2xCr6RY7uw66glH1mXBAE4M/7gL8o/vavXctis+uK3hUdVYYkpfot8aHxPOM3MzSaqJL9FlX2LoshqKRdlWZHv4kUXa/+kOnApSdewmapTOMlO53Tvq9+9i/eXWbxQqDZcKHpExaFG+wfQO5QxBg+kDuu/x3TEhDjQTdmeUL8BlSYhFav3esRNcUPRe2r+TxBzF49KGpqJxmkdywVcoYohBsTolTIv+lZB0r+Vc83EIlDB9iw4BkxLoCZFVm4ghLhWQjcwASOflZcXiIhmQJQOi32XtOb1dR2b5mtSBko5x8hNEA3jghYksltgDsQUzjJnH4YwDS25bkzuvm3IjG7DdYp2GcJf7Te6LZSFoN6tPlrElBbH1uSy3FA/zEB8FLD3Ot1gXC7F3IcDsStiUcGVy2F2e3Lq4/tFmJJ3PNItkBzKreORTJAm6WIRPxfQYUyWke7ZSCn3vbsPFdYLYnUsuCktxShLCKQEMF3MQeXh9GHwLH3T2f4bEX0qK+vxf9zKEHe/yXIxhmJcMh02SUgsURsUkcDxdXIiDp1E4/GgAtYu5Bq/S8+Gc6uP138bErw2e3rv4fYorqthHweXzJsnradsTjMwD8lrhKk0wYPoxiUw7HWcKxP8uaslbwBS6v8kmZFtQMIjDQDiwdp3nUqQOYu87kg54Sgomu+9il2WSv0mxgtZV7sSrzCITRkrWbCnZBikmKCQvInEoMaV3XS8l63eb8Vt2H8sXtmxE6mDecT8ajosQ0bYvCe88Xjd408t6FvHM3YgxKXFbIvsHu7qNCpuyPeh+WAD5d0dDB6tmkBTZJhTl4XY2xh3rYhiw7LcyN5GuuY9ET1Gan/CRRJgSwXfHnq6Y64qZqkbV+W1nbFyRK3S0iiAp36iCxfSO3hqsTResio8Dq5UiLGFx2lK1LfXZcawqycXSR+F6a08xAY6qOYvt1kGjUM1QXXFlG1c53Tca5KwLnHR8YksXMP5sdNpKJ24Tdf5cEJalVcIUSezXcsolkCumQ+UKEsXE6YauuyOf0zOCd1SqoomBW9AaX9fZWUsVvYQLrB83DHQh2AvTvVPVNyXQ+u4sB8opnE83fA+MCQ4qphmlHcioShKn9T5KaXHqdia/dzN7tidn+uCiUxmZOZENm9l9sRBAUlIrnBQQ5zPddBLjRMWkxDYqFDUxIYnDuRXtxuPsOrIUFnTdMU1zVRzWap+qunKhhfuZykYk7d/0OGl7pht5b8/o+7OogS1DNmx/PrThBzdysEfJ39iSLcPhBGnQAMh5bJSivk+HbV9X1Fom986jFEzZcp6QbEW6tspCUk6kpOK9MqJ75xzKh5zk8ZUkp1wntqFeO3TvmJ2eygBJ3+K9w7o4jMSeE3Ds6XrEPtQ6SOt3o8VGGIvtFW1vaK3ZmvxNHljRe5X1Uy+zC8DINtjI9NmEpPc3tDwpzJgJWmBI/FT0djlyfsx6X5qntCGYGb6Z4+vtAC9pUvVDNTcUmn7phh6niZNZ6MeRWbrKU+RL1p933dgxorQHasRU0KThNs2opWvoCtg99ECeb1fBU6Ekas1DDlB2Dm4Ig3TMYBtSanKQkEnXjqTL4gCzYj2SVTUoqhCwbFBO00VpnL4/zbagqQemjxyv/QttdKPHW0k3IcnFgCTE76XbZaFjl3SAbX9CCDZ3yAgDoxvkOpw438khS7+TRXtUqcQ4LoZuD/W8FyTJmJkyzAvZmH1dZaZfgt4uKqfOhaKQlHS18/CfzJAWFo/zQQ5YO/jre6driElga1exTXEZ2Wo9+0ozV1X0W8CoQFVLh5IyKgcSrTVsnJYBT6PEjvgCOgaaJQMYyOzftA1pboCPDKEuMnxcYsUUlOZcvktFzygP0XbH2RbkidnaEOo9lN9D+SHI186P5wFsMSmyBrhsTPQbLvoJzq1GrD/rWmx/novFhOF8SQWglNSWxxdtQR2LQIkJmBCCtEfj3M4A7yLrR3yGpFUur/W5aEpk9fiCFZjlYi47w8PgQ6Qkz9C8Pr4uTACPMLKUVTgr+6ftbueOhzqyhFOCe8TkydrMsd11RwB4N9kYWSHLQFhuB898B3Mnte073+PsGh/6kd+0c9hsURzzIeRBZ/cKj6QklVLUsRhcoTgwNftamH6pq6hRigYd2cBiErf1tvNy4/XnFSKLorQkwxNrsLdU6wrfKmbLDboVtpqzyzgg7hTbi35lFWChKxYYFmgaleaOKJI7YZ2mtZouqGgbhmvNRbk5o4eC8RBbDDFE0gLeeEvvncQPMemTfOuyMJQKFdatZVCs6jB6htt8iPpsPwfvbjYfhkpDJpI8LULU/y0TPlvdan13SyQ0on8q59XZVvGxiPuAEM8hhY6F4IYkF2WqeS4KlcOvLrvmtx8PReLh82X8kIYqZ4ZfIRs1DJYty1a7sCuFEbJtuAzed/TdKSgtEhluQ9efjJjO24mtMrm1XRAbY3aBGVwWoIzZH3UwygrFWSRhfIyDFZZ3393GudTSfyIJveBktoofOsCS77BdYIYx8ePZIsUDGhnqZqIUTPIh9kyFQbOvKynSbO39cdyR/striaVv4323iZ0pmWHqHKaXJKru1tDK/a+PMpRdf5rPpX1dcagbruiaA6WpjB86T5zkMzZesw6iAV7uk1QI2i4ap3VsixlDlpD/cvwwKgpJZ2ySW1DKUHe3aNZXqez+wPhmKAwBmUxWksiClmJp8D4nfnMuIenJFpIwwbs8QyjNpJButNO8PpIEjl16cf1TuCexQyp+SzwkQ9Xncm0onX2GYXtdvt4Tyk6BIV4YEp+pi3iIGcR/d3Y9SF0SKAdMw/j83iWLlDyIkJ9TDLa7DGLPAwHr1tARfaJUYF/mGCnNCEnbuCsBXl7vu/IqaV9sQyfJsJhc12Y+dDCZwVZoK//T7KgQpBtxe3ZUijtSTibgR+TB1C3wEZk08BwkgidG8NPgupnRGEkCL4pEMFxMBm+jHJaWjU1k8ZjeEtqGvtBfyi2dp3Dw5JLm9hOE7hhnl3Ttk0WCQpLAD+mGPV3xeLPPdVUBIQ+C041Gzxd52e1ac7puOOsqlkjbqy8cMxv8iCZSGu4y6etjsrf3LstKpIAuTbyV9oY0vbIasV8GxlpRkR7p0DiZ4NyfSWtRfcDcLqnbG6DkxmXqA9hV1U0398gQkATjMk/wFf0u0ZodtXtHBrCwKIQNkY9JWnTcPq2aLP2QqnZV1sccWr6BbMxKQ707yZOCujYnPlOLvLPrnPhN7adp/ZLUw8A0UxhlhoSovsiGLZ2VkhFulGahFPPohDsCnRPj7IGNUqxWH4rtqzq3rAhzwcQW8QUmORV63KYh+6MYCJEYfemx72KCYmhZyQNqIhvTu02sVsrfLjkIkKRWYvFrFDYMA8uS9nWFotaa5j4M8/VqzsxU7OuKK7oZtWltw0VaWGbJhKESHpDEWMmYV97LgEggrMGhcVqh1iIVMz++g+pXhM0tNrFty/s224Z9oFEVj9R7HOlqcAp1oJoHzEFMpmhL12lONzXnzgy2IX4+FX5SECzbMtiCxPRL9sGGkG1esg19sguZLd/kZM+2ZnjJWu0RO+HcGqVMbuGtY1u8rvYxzVVMLZIEF5g8W0WgUlIgaTvZ/lQGgUT5kbY7xjnJptnIBNytB57YSonVbEZFoNTyrfXgvGy3dcHlwR2M7UOaMpyYKZKMWhVMiJ6AzdeEgXz+ayJTJSYdng7pWOp4vIWZNoSKve+w7U3a7mbclprK7FPVe+KIVwtmzTXq+jCeY7PcpimfHzOAlXJAmxM73o47BZLtTtuapl2nlvhSn1Xa9FeS4IkBW9onZWKniuyLZA9TkcjGhEVgXMR9ttiLRaJDXXO1mnGom6xFvK8qmjT4aXS3GSMFSqWkQm5ji0NvAJQPqF4YwM26p16vUd5TLW/Tnb+HrrsTtf2O6bsTlN9QA1erOfu6itqCoGOyx8yVdAucQNsbzrpKWjyDy3IZqUjUF35DshU5IRX9inSvSYkel7QCIQ4tE9ZfmiNQBj7eW0Qaoo3X5mALvGtp7Hm2BXX/MGZ2KHIxsRuqlI3J8wOISeBCM9j3y9ziGYKNLZ637iILM8guCVJRGIiJnireK3e1eyffACDJQVyQfbmk5VP2y9AS3ttzuv5sy26lYrYM26uR61ghRQqjLrcFHtGwl4Sxwatx2jh108hWh2ivNwSg92v6/phVtIvazEctoHW1T9Ncpa6vDAFdbMvche3iUWLrjO4Z3gI2F5edPc92Q6bcH0cCxTJeA2dx0G+f2VplUaxkBKdB0RryvU3O4fsPnBqlRXout3s3XDUNB8pkUsl254CjGMAWkv1I916PJRYeVI0xe8K0jAz4ar3K8gjV+Rn+/AN0UW5us3mK9fopuu6YgONIGa6aGQdKc6AU+8ZKkahOnUTQW825M6y9Yh3sKJ7wSmyB88NrqYsQiF2EcVZATAp30W+QDgE1SpCAJH0Uwo4HsmxMYr3OvZPiUHWAmd/AzfcJJslHje1B2VWY7ULSDS4KxCFY+vbWyE9ou9tCHrEbcqeC77csuWxn8hG0knbvrLFfJW3PIWbYLcVgsdZeSqoYtzyPySPO99g+3Svj/XDLFsyUYW6a3LFSKZ27UDKDs/D30mDPbP/xWRc6kPxbgQkQQo8LPQGw9oy2u5P3RWUWzGZXaeorElOYPWbN1SwxlRI0o+0ttJzlR4aHZedBZgFXB2OJKT8MeAopwe8dzi6jzb+JzH9YDrFhcHEWScd2AT3NHpF9dv+IR1I6+SL7t1KaA1OLJq+Wwq0w9c2l8UuZBHZKpGiS5u7aWykWVQvqan+Y9WB7kYRYnxPWT9JvnhQ5nfYp1psPsV7fxPsOEyzXq30eM3OOlOG6CixmrugkUmycZhlgHQJrXI510tDptmBXlrMEPEHII7FjyCPSmraIIVCJcy73Yeta4BQXJY+yhryeY5ojav8YcDV3D4pcREz0OnWxY5h4Hyj0YLcHQSbpl7a9xaa9lbsBrBNZnWQLShZopJWBSsNa5f5YxcGFWtexI2AxkpEsOwG2ZVy2O2hAGLKJNJjmrfiU+LUr0rA/sCyCyrJle2bGgalFi1rJ66k75eJ5Op750AfPyom8j9hyxzp2iqcyk+SIIvs5OLzb0BVzSdpCD9lUc2bNUbQNFSAD7VOy9jKUHRC7UOoI54KyqtDV/ngOia5i/FjJHKnuGNvdkmNsT0fzYnq7omtPcG6V/UIdQibhmUiyq/WQm7kfhP7u23hPy5wSwXfHoa6YRePbbLV0GsbsPqnWh5wISvILkhzVchPzFhVbF3Qb8IOAmwy1AJrTnubkFv3Zu4WVEtkMuU3ebjhA83GzQw51w8NmxpHSgMN7Fds7DaoZEnG2V5x1FadOsw59vnknUfpyQFRu3YjblXS7QtyeNOQhbZswgOW0T1UsE41b0gQuBx+Vjktis3k/CHc7b7H2HKVMdGoczp2TBP8reyRTgLe1ab04/8Fv8hAx25/kyo21K9ruDm13mqs3zreE0I+qYOWlWla8pIVrzmx2Tdh9uqGu9qnrw52JnV3PS52/si1nl2bPYLhlGFoIPU1IgZxipg1zbbLhrqOMyTbjNB3ntri5ytuSuANhyDVoqsJBLuVCZIDHmt6v5XzuKjozl2EMSgZa1NUelUkDpC7XNQPyuZycVx8ndyetIp8nqvriOAlLO7WpCktpm+EnCZ4KGa6Qzl8XZGABpBYrGfw4pDyfPa6ZOfM40GVfVRdY+aPtVZEtF8ZDZ9I1NkgkRAfFdlnHKmhFiBtdrx3z4zuEk9+JzMhj2vap3Bbv7IYqeB6o99jTFQ9UCw62WmZMrUQ/HIA11klAt4zJnrJSn5M9W8/LopAtbENiCQrnbLANiQVcMuMSA7CUhSh1qYKVViVn16B0lkmZuRatDFV9RXSDy7bB7QRBGAbB+B1FoafT81IMHQGlXUjV/DQAzpg5s9lV5rMb+bx/JlNvL6tip0SPfMbGa6Ss5m+KwpCnCoFFbB2sIoNkT1djSYJiIEdq20+2fu0tbXAxiBc2auQmxsLKuJOgDAY3wbHqj7H2FNB0Zk5v18yaoxz4hnAVk1u6DToUicxU1Q9RIqMI9oSNc56D8BAD3ZQUT8FucnjF6e0xYZjUWyaBE/tuOxE2kjuI++R+GMEzLbrD+zGAu6Lr3ObdMMhMOUIuEJVILeDpONnEts3BwZAgUc6je03VWmanp5jz28KGbG9GXduzmDBf4vyGw8hUvmKkeJXO0trIkLhqkVgYLjJ7FMug6PCjQD8ln9LjlLAui0LJVgTIHUPJNoTIjM8DFHPwM7YHIUgyk+Bxro3Jn9hB5FuMnlE312l0JcF40daXMGID5w6BYcJ3YoMlPysle1KxZZefkJCKxKSEtqpiwvNKLgbVWfphd1F4Ww9v+33YzfZJBWLn2sGncRvAZs3vfV1xxQhpQCN+w76udwYlSbt141229edehgGngF2pgcE1yBdEXeuUKPWWALS+Y+PW2H6F1hWu2eRihkkDaKuDzNDZ1ma90GG0PZMgs7OsSBxEBnya0l4O7kpMbmtXpG6BELXR055ItgLSIEldDJoNmbF6P0NmZVsUTbwGD3UjBSJdcaBEjmHc5k1mzrtoE4QhHAp28CDJJkngJkoKVGJZvEN3Dt1tJMGxuUXX3spFoq4/FZ87WGrgsKo5jGy/BTCrPKaWTiIA74MMgvKKNaJL3IUxuaTFUaPjYF4/8hvKYXHZj4AsqSLJ7GHwj2KQREvJ4GQLRskfM6Oqj2iITLko+eLrOrb53uW4xRikLAqJn3Cbzeap7Ce07Qk2FZRjhJCKjcm2Je1PiYmkU1CIIzPqakFTX7lQFNbasK35O5BEeu6GlBDK0mBpuLU9x4cNTTzH95Th0DR5IOFhvD/NY/EhMdCThFkqNEhRP3DuLWe+wxFYOSuDvHyfP1sWTxOjsI7W0oWACz0eSQx3ucjOiAmdpF+0no+6xlIBf1fb+HZXolJp+Gc1busvhwFfMmRWEsHrODdmLRTOGCmbwv6XhZqP3CBJjwoKrQtNYK051A3XdCwSKUWD/KW7ybYXmRPBStEUAxrbIMVYRZIh2RvIO7YTv7VfyeDpzYexbkXb3qZtj+M57zhQmuvVnAdVxYFSXKksVTUwguW3FMvYPdGF8XnhYgEhofRDyw5jmxONkkAdOgTKe6jHu44+eJSSeDL5D8bILIHGzKmqRuaHVDV21hAiAS9oA70DbdA+5JkjuYAMYgfsOWlI7GZzE2uX+ODYtLfpupNMGAnYHKOnwkgqF4cYC+nE/lcyb6OpD2IRXMgkSQomdQnLdsbrOxYv02ul/Fvyn3z+rtzzktyDtec4v6GKjPMDXfFgveCoaqiV5qqe8aBuOIj3n4VSLIDmEmJTF887hyT8bwfLbd9LPOB7PtyvuePa6BdKJ2IqGSV5nORPhQAudDiJhHF+QZLNUspRVYts20vpiNQRsGtQZNktUHYipSRwGjKLqiQJXO8PvkXuGHCxs+hk1C2Qu0V9H2OxgXySuiSiyFmUcNFRP/wjkAiepCE++siVeVIgPX4v/S9bn1wYmH9l083IqfU+TjOOCWAfmT0OjHVShXDJsW9J+jfJEBhE+3OuTAwsL0KNNIIVfdTt6RiCt13YbpO1IQnXk7cnVe5TGosikaUKKQgxeLsq3T7/T3/peXJ6lJJWaJnausKYGVi56Zv828jFm9qI/SZrRybJAdH1W8X20jYOgpOWwKzlsmM/5FaO9DMx8ZMmXUrr4yy3PW4Pa3mmKDXPynbvpFGV9HCrIBq/KeE7V4YDU+dkT62TrlzSRhsc8y6yOqvCGRemZ3TEYiA3mlAdkxQ+BGptaHzUsQWckuS9dZvMhCqPsw4OEwr9wrQPoxFPw21y8maHVlHWKAouOmNDcme7XSU9LwO5bT29xHJIyaGZMvjLJiI/A9SR4ScD43ZP7M37kcFOlMWX5ECTWKRbycM8yVerqHElwwy838S/NhcRUltiHZPgi5jsLnUGdcpqFrbBeRVtFhec+V3bUtoGH21DComSlleyEcQKeNK/ItuF3UnzPNCMoeIvT3y0fb1UXnWD9i3OnjPSmA3jRHCWFYgM9CQ/4pzoedkicPKpMyGkLQiD5ieMdD8v2LtY0Rct4IEFfHH7xLm7bPBL+bkyGPS+i4WiNu6LltQdYAI0KBYx+Wvi40NTU8cOgXKAYWZkBp+r+VoptFcjlneS88ysuCKRnJj2KEn+pCFFIHbM2TVWF4F8vyRUDuXNEHjEyqfaCuwuFsjkWCW7IXpcUjQqj9vAlhjbCbb+K5X0NON+3zoOGkVQ4zbLZ4uZMjTa5ERZYgCnJHBedhjbqRR0A0USuOgsUlUsMgxTjI11+NpgrBPGX2S0+ZgsSV02wYvevQyWkmRwsgvpbNTRM08DoXxQUefvom3wQdiJpbRFtgsMRebEsC6Lx0OLpx7sA5fbBRgYgaGwBen+qN0Mb5eYfg5mjgoW7We5NTS1eGadN9uO2jy928TBOetoHwZWbbIJ6b5RWschwIvSFkkSYuT/pMEmu3U+8767y0DFYR84tu+fNiaBJQE8BKOzGHzsxbbiQyPyJHMlXSxJcqBEStBtlBsNBU7H1qpkG+TYlkUVTdTri8OAku9oY3EmeJ8n1VduGKY1Zv2OXwvO5uAsYAfZmKLwn3Ua0wyNmAQu9T3z+RJskQQeZGOASx/vwv0kfkzhazXxb7ATu7uUUjJ4G8mOpyIMxX22RJZHAvAuJzldPMdd3DcVg73ftn/bGsFJNzzZhu310qmQlYpspd9Q+BGJbDHcX1Vm/cnTizq1I5ZdLg6u0EEGRnm7RPexc1AblBZW92iwdNIXT90BqWjsN3lOgHSgbPkJoRi8CmwPjw4xCZwkLaTwURXEmCbbg13Y1slNZIl8HIrvldqa2Y/OMY7YiSqQ/cB9U0tRKHa5XtEN13TNQpmcvFgkPyEmsdL/TgXxc5WiC55a6Xwck76zgpzAK/2OdFiJBBS5H4ivYF2LCQ6rG6xbYfw+KvptpjrIVbfLksCXIlhy+mCrUzQ48Z+dW0VZrVXs/pA4ZBx3+Jy4SptR+hYfqSRwWlaKxXQR0zUxxkhxhhyrwkdJuYe4HBffL329/OddcV4W52CwcUiqlX3jB98h+1g4KpI+8dBJNJoD7lX0G0KWkxpJwyR7kNd5HE8kn2FbemAXUoygIvkkEyXi/UXrGb5fSpI7fsdojdeKYLQU0WPXwtA1VHQPRbvps01IM5oG/egQf5Ot+8loPfPJEz2dqAM89hEui4nKwm95vXsS21de8JhiEKxPcXSaJxUsOoQ8C2SuDHtR4qNRmiNdcaQMB/G4LhTsa49RF49A0oDuvfiHDQqHwenAIkhR6dwIuaRL51zwEJLsz0W2NCExhkPs1hFfX+sGa9dUZo9gUsmw3D+7dcWT7vh2EjjLUQEXuouAUWc55FlS6dj7wrcYNIgvxh2JeELx/yOCSRrio4+5MuznVq3dchD5RomXqmmwLF3PeRzA5ZWmrvdzpRPECalauVEZ66na2NLpHGZzjtt8aKTtN6pAuBVHZsYNM+NIycW7UKLxp7X8UerhuEDXa5ZesQTW8YYQoiG2BCo1bue0hVFOFZ3M7KHQ9WM86TslQqTqddGBy1q3pX5d2d7kLHhJuAI52LN2mduHqup2Zpdtw0atvOTg7m6bLNu93VCVgq0pnsJYMsUUz6reF3mKqH8n2yXcuYsOXKrm350FnIx71y9FBzcGt85vaEKIAZ3mqJ5xzcw4NFLB29cVR5GJaqIxTm2+iZ2efrkjsA5e2nSCnKvn3rKJLX27WIL5hqyCZEs01FESRDQeN9iwARTWLul1Hc+DQTajZIKXieLtKaXlpHLyDS7pL4ac8CpZfiUTeJvl55GBROn81sjQJo1moQ3XqzkHpsbfhwG8qpvILFaXtmmJbVAjTay1dxy7ltY7TlxLp2Be7VHXV2Ryampv857K9lQtzGQ4dm7p7NtbOLei70/ZtMJek+rkiqu64oF6Pjj5W+ulzLhI1FrDSazgr4tCAcj1kM+FmCBMzJ+72wYg2oPM7FGJQTto6UJRFMra18P14lK1G5ULRja2h1fmFrPZKVWUJylv9LLcoUosbVtiS5N+V9efCZvUd6Tpw8LyKZIfZTxK3JbI9k1TfZMeuFSvdzP+gNEgSHfJwJP0vXLat7CVTyOzUzTH6hA40hV7ek6lNNfMjAerRW4dPNIVB+hsD8q/FLwnpbEuBJZ4lsHSRbZWquqXdqHsIim1YeOLNCS2V0fb3aLvhSGsTUNV7QkDMHaIGLPI+unlMRv2wcVOiXRupGKeBMg2Pu5zmnGQx1DxuI07BrYHSJZdE5US6QatFFZddC6fKa5X0i2QdPQWmBw4JV+iZPmB2OsOzzoWiM69MK5OfS8620qz1xxSV4dR+3AOwdIsl1RtjWlb1Oop+tUHYmLzlLa9KWw/J4ONFkHxYL1gT1diAwtGcB740kSJDq/YWM1JiC2eT2MbutQKmIqFJEbwUBga7q9DgiTJxKT7RDkQNReFgh9FhCF41iCacrqR69quaNpbpBZhbWZZG1ICDRsTR4MmvYuzF7rumLa7nQdDOrvJ7Z/p/pMLQqREdpoPoAcpiK0WT6NLzc+S0Ttm++xq+9yF1PpdSqH09gzje/aiH3Bo5jxYLbKfcE03XI/2wESWz0KBYRzgCdtU7MI6n4+Bk+A4CTZ31ay8+Lbp2KcBgLmLTAuzzaDifveyrxU4e07fnbKqPghKZxkZE22nMU0urMOYyZNQ2tjSvqeCUSr6D5rhIq8lxbShs0jBTnmpZDfyfIFiP9VKUxGKe9yzx1XT0BhhaUu3QGr3lsGNu/2IZLvjtYbn1FtOfcfGO45ty9JbTLVP0xzR1AcSOAcbhz6JDmpqhRc9/Ns5AWb7c5TvuWEa5rrioXoRJSoGSKfhoBS9cZqTEFhH37Jk/JYDL7f9BheEE1raBqfkiAxW2mSfoURJGElIXNk0WLDvz3BuRd2fUEoEqOqgWNBw3/V97BTym9z623V3ohSVF+mhqPuZ/YRstSXJk+4UA5u5zn7CthTEwPYbD3JLTQvlLIBxgVNso2O4BsouoRAcfdwWYlxzRRkeqPe5Yhpqrblh5jysRfKjQXGgFEc6MNex+0c76QxRIjPoI0kAoPeajW9Y+1m2Ebdrx23fZ5/hzHcsXZ+Tjl2UA/IhxIFxoEJK4AesO8evO0BjzB027W3q6r0kGZm6PsSYvZG+uOyHQRs0PRfb68bzB0pfsCAIpS7bJDGV9Ocl/rL4EAeyxqRT6kLMycRoK1K3gCqYwWHH9ftMsdCGJhburldzDnWNUYoDZSTWS9dV4deBSKk42dDo2w1a5ifB8qF+xYf6FWtvWQVPVR3S1Fdk38ZBzGr1JEpX2E7Yj8mWtt0JfX/KPHgaJbHT/o7YOxePPSy94iRI/uPcW3o/zGgpC8plZ2G6f3RhGCI7LhpvFYiCh+grZAkpkA6QaAsSe7bxG5QWGYZqdkQdJaTyuqfikO1EEsBKYci1N2nXT9D3p3jf0XUnrNtb+Z6SCo4p0tYxVI6qu0O3tIoybYUURJKLg8joz4QwsQtlDCDPXe4Wzsne1CkQ94XI5Yh9GXwY8Y2bELhqGq6ZGXVkdT9azbmuahoU15XimvHsVxatA7PKMatdLgDqrSmI3ivSQOHeyfypU1vhg2LpZ3yo2uMp3+dcw7FrOY3s7eQrtkGi4uEckGVbOrr2Ntauso56292+qxTldnFtNHugGDCb3su2wVtggyrZxXFAYvIV21Zkk1IsIgz5Vc5TJFm+lJtIXdtlrFH6zveD8AwIA89+mVMi+K44QLMfHeiGwvAy3Py7AGtCTgKnAG4VPD7q2tb1FaGix3YVbXuadYuxLg+EC+snRYg6DiTIxqc/Yb25Sd+d4INlHgKPNHs8Hmn8B0jlptYhB3NKa5RJrIrAqqu4HQP+89QGDJEhWbR4hkEDOLH8ZLr3wI5NzFhJlCqUrgeNqxToFzftsoqVBp6VAw6S9AEhZEOfamsuSmG05pQkM5FkGbZRtkOkRPOQ+E3qS0XlpggC5L3oxCV945j4nTVHI93fUYvBLm2/rQRw2eJdVvPKqqLzlr47w7pzUgvqkTI81Cy4Vs2Yq4qHzJzHdcN1pWgUXDGOw8Yyq/uo7ygaj1pIOdFQi7G2TrPqKhkI5jUbr7gdFCfBx/Ydz0mwnLqepPuTdJpAGG6L4PGxN6r1jk1wWRagDY7OWVyUjkhJwMShz2zQuLdHjddxGTltHcZt+cm4brd4E4+d6P0OWkZ5GEFumZEkcR1ZS0dmxgPVgofMHKvvvbp2LQ6SlBatcbdAgkOxLhKLjkAbon3wlpW3aNUwn11jMX8w2wkQzS7dx8EN3Ql4i+uP6TYfpm2fikz5ZW5PCr7HBMtDzRVeWu1zoAwH6FjhFc0irQOmHgZJyjAozUnwLKPT1sY2YJDrsJSOSdXdZBsu6IOThh/IUSulICDdsLeSwLko4CNzTFokhmm1cV3i9dJ3Z6ShSzI8ap6dquQk7GTO2XP6/jwPVSt1NBP3QDG0K42KQspQmX3q5jBqgutRoqe0B8O2FTpoRcvntqbfNhIDuLfrXHXu+hMq33OgDLWquFHPeVFzwAOmoUHzoKp4RMO+8dTas1f3LGaWpomsJTN25LxX2UZYq1i3FavexGBPc9srbsfixTI4TrzlzPeZJVgFTx0TlrXRLHSVCx1dtA19TB71fsPGnpLkg1TUjU/FvpwMvCToTwXDYZ/1xYCLpMk1DMbUkDsbhuSvYGADy/+kYZvYKo2CQ9NwVDV45/n5C0fnmeFF1T4zEwe6KM0irkHZsgnk4YzCuJLC/CbuvzPXceI6lviYaNxjMbtBM38I00iLHP05xjtZbr+kW38gt3RKAVmkkLzrcH7DVdPw0uYwt6EfbHUTaQ2qrrJjuHEm2ob/P3t/9iRJsqV3Yj9dbPElInKvre/tBb2gezDNASAECAEJGcqIjMhQZN74t/KJT3yhUMgHkqAQMlgEQKPv7arKqsyMxd3czXThw1FVU7PwyFqyLpoPV0uyYnEPX8zNjp7zne98n5eCLoZFbKilIRwz8yiS9JaZmym1RIxKGqCL2HDp8y+AcCz7BARimPD+xJT2ZSkU3tPYPVl/19rNI536vAQ4fhCzlOgXGsCzgdJsnFLnCEFVeYJuyohnzhPW2n7z+5kB4BoIqnOBS6sGvWL0jON9AjAkjl2h+bK94lXT0yvLl6bn17rhhY40KnLVOvbdib6XWNN2AdOAaSI5/IQwF/F+UiU+jKPmcGo4Tg1j0ByC5l2Et8ExIufF9/7ErRsLK1WjcGnfaJVmy9xsmWLg5B5kzJjkPaC/TpNVs+eCSc3QPDI7nyPL+JpjaD623p8WRIOil3xBCmJuKs/gStbyy8vFgE/XgknMPKv1JzWJvmj2tMbwzLS8UE0Zxc1Nu5Ylsy9/ldH6eUz/Lox8Ow0MwXHvJyZl2Pav2HQvsXaPsTuiP6EmAYCn8/c4d5dkFY6M422RO5imB66U4ddJbu5aN7xITSKjlk2i6APRwylobgkM0XPnp2LwRPq8Q4zFYNatGgaZ1zXHhroZpAXMU+uWXf7cExs3yr6dm4HTdCDLlJ3Hd7TNTWkuNAn0urS8Py4IJFlL2rukteuFHTmbqs06seumkFIakzTxL+l+Lt5Dtf+vm0Qz4O0Xk3K5BsorN60ymcb7A1donpsNjdJ83m75Q7vjtWpoleJzHXndj+z6E1pLLOg2IvshJqGSH5bX6XPuBdEr/ATOKaIH5zTHg+Hh3DB5w8H3fOOveBs9Q8oZvnZHvnenZNasUDGUCRKb9t0YU80RThzdh5InGNPTtNdFX9yajZzXhWBiFwCxCpagTtUxXpJu8mdcG2yKdEZIE2LHj8aKnNXC7DNgPjLB8nPWlWnpjOWZ6Xhjem5SfdEio/o1BlHv22P6R5r4GtKePUTPh3Dmm+nI934kKI02GzabV0WrHSiSaUAxRy0aqOM9TXR82ezYmYYXpucmxYYcn6RJJN+HRDjLMgH3QWqdmkgw5w2zdF/Ow+q8oUwIJNmlR2ZbMXPSNURQwUmN4o4oZcTgbrqnPb+lGBt3bzDNjeSdZMAwYyWnxAAVEHA8f8vx+JsiLzROD8WfoCaS5c9CpmXn1y1Eso5HptEVCaK8lehxCQ/IP5e9rH6/VTOsbpjnWJkb6cKKHmkjBfj9k+6GL20vNYO2vFaRZ43DKLjejOyvHE0XU50oOUI2CFV61odfLz9FwhhT7gDTWXG4sxwGyxQM92PHb/0VX6e84X2Y+M104F2JDXlCUfYHEyM+Sk7kFUyTZjy/T94YuuRbOcZbu8HaXTGYy42h/PkW6Zi1vnCKD8Gd0mdKIVHUe4IYR4rEWvBjuu1c9gMbl1KVmTG/lIG8PNXzU9fvpSH+HlavlgnaGgj2pKIuzjpZpyhi516JTo1JXSCte1CzZpF2UzFx4PQ94/E31TjSIY3DprFgd0qFQ5Cx3wQC3yhoVaTVQdjAKo926mp8LjJ5AaSG6BfmbyCd2ZrdkxnB80jnkgGMMsL8VIZL7E+9SlbkOXzqZPllIpfGTco4dsXOBUUsZhOuPJf354uPD6SCN3XRoowO526NPOLy6/xc0tlH6QJsG7uha2/Y9K/Rul115vxF0OdjILB8zYnyUhJBAKuJGCeaKODmlWl402x4aXr2yvCVbvmVCTzrRqwJ7DaO3bWn6WJJ4GoSRZgkkcvF3XgcOQ2GEBTD2bAbWvbOMAIPWU5C54CsKbPh6YB16ewPMdIpQxdnoPgUXBGHzwwxL1YSct7E9TDIemXm75xorzvwawAYZk3gDBJrlbRNIwWsNBGsns3jumTidKOle/lz1x5NzzwitV65Q5+lZbLG5pg6oufgOceQXOR3IoavO2oNRBU8jLf483dJ2kAcvvMIs/ODdKdTs2ODuI/LpICmJbG/0tvM3d2aETwGLawefNmM87RASbPSqO+sCzyPgK9jQzFGIRlAJaAP5kaKHBr/KLHJCXj6BWtA2IczKrM0EpNXm/Mi7uQmURkNTnFAxqcH1hrAdaN7MapEZiIIeJUNDGw2fUqO1z/G+E1+9xgEfupv8khzKPIwE1tluEn6fl80O/7IbnmtDBvglfW82p3ZbhzawGbnabcR3aoSD7RRKKMkJvggk1pekrjx6DgPGjcpTmfD7tiyd5YhptigKaaBWnkIlEJfzqv5OnI6LPTIjyk2OLLBqCO6iVDYPKacL2sG2CUgcOl0HiszuDkRqwEezZKxIyPsy+s+74UaVcblHotG/Ph1XTWJ8qgtLIs4D7RKMaa5uHybjOeLTt45ehTCcLXNViYGdF85Gzui/wCQNA/F8DBrhovLt5xDOkZ2puG5adgndtEmM4uUjHgqU7P+YIqiGz4yj5aWY5YatyUupNixkI9agCSzRALkBP2CHITS5XOXI5M/+wogIYrhSHAopQQICQ7nzzPr3C0Zufk586SQc4eioSd6kCdqBlhuLMjzLc+GxfWvLW2zp21usHbzqAG0/j6DwPm91A3hEMMjKa2wiJE+yaKcsWnM87nt+KLZ8Su7YaM0v1aGX2/PXG0nrA1s9oF+LyaAAKbVmI2dp8Z8KIVA9JHoI35MjfuT4/Qwx4bDYNkdOzZYRuBdygGOalmc5NHwvCdnlu0UA5s46z8OwXMKg4DgSqN9i9cd2gwF9MpMyvWqR2PXfhPZW6CW1sqxIhdssMxGFCw0geeGhywDWLWUVPk560pbNqaRRozSCQieJzbycz1VNOZr7BQ8Bz+JuVL0aLOhba7ouhelIAYKsOH9gXF8X/wZXGXIG6Njpy0vTc+1tuyVXWiQ1ksZTQiBMcWGIQYmfMkH5iX5fK4pynRJBfTMQG8FAifA56P2WyUeRFABr3xppJRpkTAWANH7MWl0Py4nBQg+LiaFpvFe2ONJjqCuIeBSFltJwaTaIZtISxOvL7Gnbk7DkiizHvfOUnlF71JpfAxo3cj9fI4dAp81EW5sy+tmQ68Nf2C3/LFu+cwEWu15vh15/nKk34umq+kVdmPKFIhqLMpolDHEPLWUY0MIJVZEHwlj4HzveH6c8BMcD5bdXcd+bBiU4a0yQopSc4MrVP83KLrUmM1M8XMMZGuxyR+IYywAeLAZIJunB2JirUccSmfihymxIMsbSNwcU/6XG+1HkU7K4/NPTBblXELiw5xH5KZyvT6V8dcp8X3JjdqbioTWstRrzRMdHrU4N+V3kSFKQ/nohZyWQWAxiNsV4CwzpPN0jJjSH+c9KZzZK8PLpp8nnFbxWOu42LbHND1yii6ZT68k5aimieqJ1HxbDaYmEPjSmmuDHC0Dzgd0kNxi9hKYMLrBuQGAJrqLAKHIC53SOZFY4+7AOEnDzGXjOHwhkq3JZFkST/AKmYbLE9JiGL3MSaBuEi8Z/vV+9vi9rxrlZXoqVdJRJKJ2SSLwpe350vb8Wre0wHMTeN2PbDqHtZHN3rO9ns2CdasTCKzB6EQu1IvasUgMek/0npB8bcIwsT9MnO8n/KQYHjS79xtuxoYhwtfKMCTjwnPwFInKGAiJuJSZwjGCIzCFgWwQGmPAaFsa74LFVJOhif2bP1dtpK7O4HCJp7Ws1KNpgfv0eYxlelSa9olomIgCMn0o8SxPHpqVp0pevwgj+PdmcX8/q75k51H79C+Nzz0kNuV9GEtipkjdoDTuBkgHwqWkM3jRr5qOs5t99EmLJJtp+bRhHTEx0KDYGrmwPcJGblMRN0tDpBcZHNE7YpCxHhn7jUzR1/BKWaH6TSQHtdohWpEBn7oz91SSLl99AWKAtDmPxKrrlbt6j5cwQmPwSMPPE0NA10yhBVsmkN2gY5zL0TXomzv55T1WjKXs4KtNW1jNIXiynmU90jkXeZfBnKe0vmawuNIsTkzpNsJOGZokX/DS9HyuWzZo6d51E7t+KoF7LvAUptUpeMvnkRM2gDAGmi7QdJEQFO0QMDrSDA1T0Gy8gWAxWlUSJxqTCuOsN+yJkgylw551d4MyODWDhy5GVMwpVSSq9fm23tjn3u96g10bwuXnrUqI8iiZiVL/vlGip9wlzc68MdaF/i+5alkOSciEbT1GYdzOsjGeSUGbtKbL6Fsa5zSA8ufUpT4XXb/8L7NVnB8IccRE6JMJSH4deeX4AJQRrui9sDzIUh8pNhQQWGLfOokrjRPWgGmli3cJ1OPx9ZrHuuRnJ4VdnK/OWiUsEiQeqPz3qkwWoLQkujGgS/LnShGVC8Mcb/Lj1/JXdSyQOFFpe1YJ3CX5h6caQPP95gLw0t8tf5e0NDNDJTqaKAY+L21Prw2vTMcLJY7NvRbW33bj6LYBayPtNtLsJB7kz1y1tcnSDP6EMWCagGk80UM7pKRsiCU2+NCAkf1uiJ4Djla5wgIu+m8xSrGqcpEirECvYtFxm2LEqcRwQsn7LtMCl4r/NTt83i9qB+86TqxB4PJznjhJILYm6R+n2zfa0mtDr8wnjX9L4/gxkLLeMYYYiqGKjHtPZbz2kCQhtBGGmTBJMu1mqX8di45dXfgOyXD0gRgDLRQDzRpwkn+xMMbLeREoMkJ1bMhNogwCZ7AnxqXm5wz05EIuScIsmkIXPu8M7BFYgiUywyS/SCO4SgoFHZDmZRUH8t89evgEphaQPGaz2lzCVffNn1c98YBO8aDWBjeIn8M80j0/32MN7CwJJcd5ngoC8DEsjkvxTSjxcizmkI3SXJuW56ZNEmGanQl0jaftAjaZfOlW8gNlFLo16L5dFHSxMtOLPhSj0rDxKOMxjcdPCtvIETFDyxgVrTeMuoNGJI8mBHg4hseslUCkQac8MxBQWCVGl5OS5k7wktvlxr9SGq8f6/gVsCc3DytQfW4wRgrRgHq8u8ojqsZyjgEZxCb/Lt3Zqll7f/qEzCH7etSmkTDHhLV8jy81huQRp+jL1OEh1RqjAqu7MrkG6TxzB7TpSmwICdj0YWJyR6bxXhqjOFrdzuZ/PK2RHn0gBGlgZSmhOu+qG4Q5UufYEBY7ekUOSPFhrW+8kIkpXzNDNu0FEUhxRykl15O3QkFQ+tFeu96/Mzs0pGtSxr7HeerkQg0RYWFsNwNKpjAN8+NngEepmcG+NnyqX9+68VOf3/mo5XoqFKBI/AI6pdnphivdstEmNfyg1YHOBqwRAFhr0G0GfAyqSYBJ24AxYjb+6HP3BfCJPqBbB0xoHQgBlHE4J/qwY9AYb3iwPYFYyFFDcAzZlK8iI8lekhpG6Tr1MRL8OX2OJuVxHmMEzJNarVmY7tXknPUUVi0xlf0WvDuVfSZm/XDmWLGuP+q8oq47ChFFaz6Fr7fVzez9ox77EgGVQeSs0T2wzCXehYl3/lTixCl6lG6LpKJOxzMkqZysq54B8xr8DGEUY/L6da3OjhBq0paaZaHiYxPB9cpgcB0bZhC4qivSkVZPxCViEAPaGAg4VBRdcJeZnkk/dxxnAsJTcnLBnwnRp8mhQ4qduZ5/XDfkr15JPKBMPl2St7nc4qu17PO+Vpqaa3xkAQA/ftzc/My1b6uN4Eboqqkw40X1tGDN+q1B4Do2AAufGQDlPapN109TBKaIPqK159l4xkeZMiPFhgkv5oDB8xAmTsGVJoGPAZdirEjLQFCOGBX4E+N4Xxrnzp/wfqRpRP5HcLfZkHotDVHnZKIRfiifuQDB90zuUHJF788lt5B9wT+KEbX8HCz3wRIvPlUrOPJ7jeC/j7XhMgt4iKKdNuAZY+Rrd+TvpiMPfuIcPQ8EuvYFff8CYzaJKeKKSzUjZFq6r6QgMouhPhHP5/fYMPKrNJrxzHQ8142MgChxBTUKNq10dkyTwb8zeIc7RQ5ecxvPHIJ0B7O7NyQdm8T2AoomZA7MdUGnEmN2weZZFS0+BqAyOvK5Yx3mCykF1JoBWq8C9iTJiOjnhHG2bYHHIEH2plwCi/XKp3xQoFSDrUY3cic/F3cmdd7rAm/t6FsnaR9j+a2Tvik5WGeAqo+BL5sdb5oNW93wR3bLn2rDm3aiMY6b/cj1S0e7Bd1As7eY3Q692YAx6LZFNS2YC5eMd4TTQBgG8B5/OjO+O3G6PRM9DAfD+w8t704tUzTcBsXb2HCrXQEzTxXjtzGhSDAATDqwCZZzer+1XiSwYJjnTw3mTbQOj5fkH/LvSZ98bVCTVz2mbJUqo3hbbXluOm5MV9y5X+iGDXrhXvtTV6NmE6hymElgWQJPPJHvwsj3/sTRSxL8rRu4J6B1jzVtGdOy9hqlrYyoDF/DyRKSE3oe6QzJCT0XLufzLdEdeKUbtsbyzHY8S4mxjxGvFK2KbJJ0jLUZ/BvlPJjg4DUPMRWVabwz6yL6GJIRYiyfYR7fepz4qMWkwKX4UMtA1ODskuk5AzJ5s4V0ZauqkZLZM+E8g0sZgI4SF2YJgSWAmB87l6JznMt6XkYmOZptYaWJNng9lnmWAigxfepRZbgEEk+Lnx8VpBWzbRrvcP6BJkKD4k2z5R90N/zKCOvvK6X5ajNyvRmxNrK79mxuIrZPQM+mwey2RQLkp8aGZ1VsONwZvrrr+P7cMAXFbVS8jZ53wRWG+yE4YYWlc75RunwvLBfPmCRHsiGVS/Famky+XIlPkfRzHM/JV/63du+uY4JKnXlbRZi6sWGV5kpZOi2melem4bXdcKMsLv78sc8NugDBdTGX44N8P+uvZjmIbyYZpT0Gx0TE65bN5g1d+wxrehp7RQgn/PSBGDzePZRiLvsJyLj3yHkUrUvR9tPc2A0v0lggkEZOYZMkBEwGgtMo/HTWPETFQ5RkPceGEjFjADQ29QWFN1e5ZJNYwJUURM4b5LPJ4wn6UVyIiPzDWif+ETiRi+JkhpJjgUIx5WkE5qZT/r7Ii+RrdDXiOfNrclywSeO6SXlCv8gTgAIkPcX2X7P+YAZ9MtCbj0c9ORGSwVp+vTqMvDEdnzVbem34yu74C9PxmQn0ZuJmM/Hs2Ui/l1yw2WnsTYfpOynk2hbdb6qCzgrwY2wZOyxswPFMexqIw0AYJ8Jp5Nn7E29uz4UF+OVtz3fTjgF4iJGv7ch7PxUw4BCmeQpNRWzUZf9vlaarpgdcDEx+IPhhAbTl3O9ys2g1NTBHksIAfqqhbFHLaQGlyqPl15fzkJ1uuLEtV7otGu8/Z9WSUu0K6FnXGA/IlOFI4Ds/8tYNBUx7584cFWjdY0xL3z9PEwPJvDicGc/fopRJjPdjGhcOnMcPnIZv8WHARnlNL61MnolWsS4MxFbNk4aZXOAmGf/OUnhFNibOsbUG1qdVbMh7bS35UYMmazZwLQWRGwXz1EDOJaUppdDCBk57tVYNxt6J2XRamXWfZQEysxZg7RVQ5wqP8wSZejJF9zNNJVUAdpa0qpsXa9bvo1picdscE1Wc86pMBIjxVMa/X9meP2yvZDoAxWuledNKTNAqst152u3M+jOb1BRqpTGUY0POE3JcWHwWOUaMZ5rTQJfyht1hYP9+5OWHkems+Ore8tndht/qmzI98LU/8yGcRSJmBQxbxCwxA0FtlOla7yQbPbk7zufM9JulhQrwno59PqfqWqv2IZHfZQA9a8AHFPGiFEQN8JhVrJDvoU0Noq22TJ8QG16bjq0VRv4+XYNQYRBxbhDVTaLb6IsUwyk6vp0GvnenpMMacMrStc+SV5EcI+ePaZ9yZQQ+Rsc43TEMbxMeIXXpG7vnTZpMbVWacmJJkoseoo9MTiYMc9wv02EX2MCxqidy1V5fX5DjxGNiyVz3B0pzOmZqgqwQFD6MuIxXaEs73WHP74rkUD09URroqS4ZpweZDshGrElKbq5JaikIwRNEMq4tz5fjQX58udZTI2dNZEuAc/5Z4lCsYh3zey3Pqaqm2Dz9somKF7Yr5JE3ZsMLZdirSKMjvQk0JhQ5SWtjIQmpND2oGjsDwB/JG9YrjGfsiyPtMBC9pz8c6Z+duHnn8BMlNvyxfs4QI++i57f+xPf+xBQDQ3Ac/FTwBoOiqRoGPp44jyfG8T2ghCxhNmUyPctL1ZKeT8mE1SbUOVZkedEyLZC0oHOsWOcVttILXxyHKFhEJmi5S8SHn7h+J9IQv9cI/viqNbvq4PtA4F2ciuHWt9PAd+4kRi8KrL1mu/2cTf8apUzR4slmDd49FBmIbGSUzYRyhzp35Lw78MZ0/DebF9yomc0oYvCwR6F1pG0DbWJ9AuAdcRpxJ8VDVJKwxazltWT2+Sg7YMxjGhkEJifjerUBz6ZPddECLIqabNKRGTeS0MhINvBIAiC/nhLXkSSwOArHGuKdv1uPd6vqsRaPC1WBITqfm/5lMZyqNT9nwNdRg79reYenijy5zzLQz9/71MWSrpmN8NL2/Hn/jD8yG/ZK80fW8wcv7rl+6TBNpLvSNM+3mP1OgN9+g9lfo5pOgnLTofudBGZj5wCdRIPjeCJM5wT8HOjef8v28EAcR9z7O66+PfL8+xE3Ke4PDftjx9vYipmUCtwiLNYyzqMi23TuBCKT9mXEJycAGZzN+oEZYFywAS6s9WZXL6O0BN6UiOcCMj927r5lzeBr0/J5s+VVckfN49q54/5zV06EapZfTsyGGNI/0VD8dho4pjGYewKNfUbb3WBNx6b/PGkD78nMPjd9kOMUzgXgqWNDNjVyTrT9/qS/5kq39MrwIhVA+XVpFemsaMdmRldmdjinGGCODXHW/4UE8MQgTLsy1rlstdRFnErSEE+x/RaFzYVkPBfvNdCXN1spMKvrGE/Ao54A7LLGZ9GH/chnmeOBNj1aCduvba/ou5cYs12BOutYMBWWz7rZ84jdk47BrCM6Fy0168/7gW1UPEtSEH/UXfOP7J4/sgLqP9+eeP5yZHsd0K2i2Rns9WZuCvUb9GYrMUBb9GaHajqJFVBihJwLjjCdiaNoxMXTge7uHdu7W+I4cn134ObbAy+/t7hJcfvQcjO0fE1bmGpGKQ5BFYZwqLpvk/YF/M2mc0NuRiLTA766fjMD4FKTCC5PBtSsX5gbTRkEtgnQyQ1QFzPQo7g27aMm0R7N9AnN+16J7MJ6FY1PhLlzG11pEp2j560b+BAcURmUaug3r9lv/4C2fYZWRnQ/gyuafm66K7lDloPwfihjjE30fNnsRE7KNGJUlVl/SWu+SdJS1lT70+gInhIbTtGV2DC3XhXiL1CzeihMajFNmo0is7TTAgBmZv3liZ6lWehSl7Mew6yPrsSlCZ+uTYVOMjKzel/NKM6xwVSPtXy8eTxV4kJH297Q2G0qKtpS7GXg95KxC8xg73o66BLYk4+H1rYELu/HNBkgmsA3yvAH3Z4/ba7YKMNXyvCH3cSLq3ORgqibQmbXYW6uSzNItSlPaJMpaYoLlwq66B1xOhNOh5RPnunu3rO7vSWME+7uxM3X93zxwTKOmruh5cW54zfKSt4QPd+huA9jxf6bH3+jbdGkDzEWl/HsPeCYZQVinAH6S82i2k8A8simolG6og3MKzeUrarjxvxVA22aItIoGbk3G17oBvcJan/XCWxdAylQAcGpxrhNk0O5SfStkzxijIFJGbr2OW17hdYNXfs8mWt1Se5k1kTNuUOWP/BuwIeBF0omIJ7ZjjdWDOIyQF1YY4k5loGeMAbGsWGIoZjVnUuTaJ4Y8ERU0iwtE1JVbMj1RGkiV02iRyvOUhC1hmv5LKvYkAVqQiJvBAzenxZM3XrNjFrJPxSUHGTxEsivXS/0wY3taey2Mo+ecwB5/OkR6HsJ8L30VZ63HgEXvrqExECMI32UBmarNF80W35lN/yxMrQq8qyZeL4d6XuPbSLdJmD7ajqgb9GblDdog95s0f1urh+0QbX90oCteM9IHRGrmqK5+8Dm9pboA8/eDzx/e8eX7xqcU3x/6PgP05bfBJvOnYl37lQaxvmA1zIyV8ykpHNIYnPhJDUroqt/SV6kXhkoKz40zIShmgxgWHoL1CuDwPW4d/0snTbc2JZnusPrnx8bPtMNu6TnnJmb9aonBR7i7O/yXRj51g08JKmYd/7MAwGlhDEtEoevsNmIWpkkkyDs6jxhGBL4mT0pGiQHfWU3vE7G02u/JPn71PRJ08dDFJA/y0nl2LAGgV1VTyxjQzV5V08YLq6LlC8WkseSEFa+DRO+kIqkKbYGajPBIzPF8xShT+zgpySjsu2oStNIxmzouuc0dpue/3E9MBNCHseAXA+tPRHq91veWGqMFqwkStyzKRbuUnPvy2ZHqzSvdcMLpdgZj1FiBmdtTCBwSCbiFQjcCgis2nZZUzS9gMEJcyh5g0lTEcaWemIRG15JbAiT49ntmZtv7vn8ncV5zTcPPXu15W+04RREV1qjuPcpb0gHPH/6ta50JHJ2B87+UJrGOk0KfAynmg/lSlIqT6Kl4x/xxDgtzOBq8omCi3rhebJII5NEW22ZPoFcUtbvghH8eyD4x606Qcuj1FMMi5GXMYHACivulKZPTFM7s8ZC1ok6F1fqGkyUnwNZIzIm7aeN7pNzqFm8JhKsalTENsvxzph1W4JavObMiMorRBn3j3E5gLCA4i4BZgsmsC8db/m5Snx4vAmragNeF2EXV5WYCZB72fCNC4+1hhTnn8X0zpieJhl05VGRxf2fMHiqx77q4/Ax8Lf+fe7e2SiBZKMt19ryQmk2wFXr2Ow93RWYJrF69sIAVk0r4E6/K8FY9+nnOjAn4IfgiE2HSvoy5ffGEkf5XTe8x50EHHROsTs3PDhxu/dRMSjFiFTHOun4+HTu+BT0AhGvAiZVavmrjkIb0ymxy2PFl8JPvh1YnKf1qvUHiTVQmEa+1axN2KQR2o3KLL3LI1efshaxARnzLrqaYdYEHmOQhkMpHtrilJ5XHoEr2kVpZCuEcxkdqiUPOm3YqoZr3SzGtjwzn2qWjZHfyR1ECiBLWIRUsNUjnmZRJNdjnXIdFkiuYvJ8bOQbmDfbuawv//SFuDCLBqgKgpK/lHbQ5U3sUpMJlvFgeXZljT/RPDemLzqgcrjGR9fwU7HgB8Gf9WsqiUco0xONEhO2jbbstOVGKa6tozFBZCA2wvZTRqE3jcSFwuzpJGFrJTaofoduugL+kBI2jAXvUNOZ2O8kaasAocwM7Ia7KjZM7EbLJhrEFR7aqDmhHhVzPkaaLEeQQAECBG3QUSXmWGCE0hyMMeI+siFcYv0WNl+M5T7l/qpm7ywfWCtFozWbBPhIASZAiL+0533Cmou4WTYmF0rn6AvAE5QSeSLdJWaD6MzlFaODkPcaX0DgPMY5O0v7sq9cmYatbgobuF6mYvzJC81N3BnEybEBHp+78pqWsSEzOC9KQTwalayu37gs6GoTxxrkqxsB6c7ESJEkKTIyc7QqQA/MBd2ltDxW//KzSVxoiolZbQonf/S4IXwR/LmQG9SMv/IC6tur9puO0BiJ9/vE3NyryKZ1RQqi6SK6Ad1qmQ5om8VEgMSFvjSQS1x4AuyJ0xnVdKKXejoURor2HnhPfzoSgqc9B0JU7CfL3mtGFYs0TJaHWS8dJUiHRETQUaGDF7O5JCdD+iwhgYtQit96XdozjJobRSCfeQYqa+NImHONHENsaphkILhJ72OjNNOF9/Jj1yWAR97bspmcmcCZ5Zf1FMco5s1KNTLBZnclXugEoESyzNxY8ldfGOuirS1SUoadadgkxlL2M1jrFeeVpcby682SEGVHX30wtdfAIjZUeUORk/oIWyqWxw4LoCfXAOsGQG4aSK3gIaona90sCbB+rJpMEqvvSa9XK5uAhswsbHlc/zxuBq/lTNZyWfI8l2OiQlU5RGKnpfOyU4Yua7+nKY/GJBPpVBvWpc2s/2lSPjDnBLmmUFXOsCCWACr4Avrg3WLaKOcN/XTEOYefFJPX3EyWWyV5w6gCjdboMNcU8vmlr1k7WM17uooek3L9MUpc8Ko6ZrGeF8rHNH+3zGDr5oEAwcvR7noV6YdHt8y1SK4z9CfEhj7lIE81ifLXOkYMMRS91SxLKXXGbFRmTFdiRF5rQkNuZAohwdOg6EoOahYTDGtNc5hjg+ANYZ4svhCsn8Yaqp1+PeUHj8Dg+e/XIHBMGEEijEV5pKgQo1lSQ2fVhC2+HLkhnWQA6tiQX+XcGMrNLGl8m5VPibysC42eC78rdVEFAs8TjaujFVc1GLHSrFWJiWrKntWiivHnjz5HE/tXZbmYVFMAJTaoqpbIMUIbS9SGWGEROSboUY7J5nTCTw7nNOdp4sZ37JURecoYaNSEVfP0UL0sCqeqvScmdrmSqjeEOQ+Uz0gvGoGPpbccIU7VZ+Kr4z7PoNf5Z52DlqmiqgbJSyfCWa41PnX9TjSCfw8Ef3x9FyN9lFFvceGUUa0P4cx7d+bBT4zRc+snJqWTBo8kaEuW7BkcBJU78gfySEZ2Mc0aks4dOA7fyn3w7BEduEtFHCQTCzNrwOpWEUMgJLbndFYMMTLhRbg9XTT5AtOo0pWDORFebIdRWLkSSTU+jEWHb71CDZyGLKUwb8JrZs9abymkZB8uJWHMcb16jPrnWH2tmT1yuxWWUtLzss1uAWDDcoOstfzWhV7+3aURr/mxVseobDhZEziy16K99KbZ8Llq04in52o70e8DtjfoVmP6TsCefotuOwF3djfoXNBlILgE6n71wYhmNN6jd9eotkf3O+J0Rm8EaNDtbdITFkCreeiYgubOG0wQIMGrWHQjx3TWGGYmuY6q7OVTmJM7rWewttaNWhdgWac18HRSVv4uUp3HEnTrMS2tlOilqZUeX4yMSnHZp/3HrbuYxzZj0ucK+EjR+Tykwu29P3PrRyYgKIU1Gxq7kVGW3In2B4DSJMp6RTLyPRSTC+cOnE7vku6np4meK71LuseXQeDeeAEKWnGLjz7iHw7EyXEaTNL/DIWJldl9+XF0FLH+uIoLKmbmZ4TghXmBe1Rw1azXWt+vloJQLIHbxSabH6f6F/P94jJGcOG+ea1TKRnpyqY04lJt7TaNgGtq3c9aa64e/V7GhsfgT/5evqlYf+vXE+R5ZGTdY2PkxrZFJua1brnRAvg0RiY/xNE3AcGNXYx16n5XrnGlDXqzL00jkKIux4kcE+IkjGA1HCTJS7FBtV2SnlnGBnPfMwbNnRcTjDY1hIpuZBUT5LMMYnCigSDsGx+F8WdzgzLK+HgDjxKq3GFfr9qwZS0XU+t15dVXCeFeN2xVQ5+K0xZd3sP0kamEH1qHKLI4BfhNMW+IgUN0RU/1vTvzzp0S20lYgMbsaOwOpW0BHrOjcW2IIwZQx5I7OD9wOr/HTQ9p7xq4Nm0BgfvK5Moj5nS9Dly1DmsCbSvnph8c0UfGsWFE8oYcG2pJKaVIum1PHIQY034nhVJOuNeAz8wGlnN/PTl0STMeHjd/NVQ1ksjI1Cs3mfL982PV8ED+55UAbQqD0ga7koXxadQbZnBtPfZ9aTR5/Z7lta6YQUryA61t+jsxkW2jFEA3tSZw+gyN/si5moGe3BTKucM6b6gZwbUJzHQqzeJwktgQdgfieE6jol9jmgN+CjSd7KjNQ88UFe9Cg0HxNhV0fhEbJB7kBlG5RjU0Ua5DW867JYusfrf1tb3W6cus38WqirZ1rNDV7bkJtzUWgypMvU9dp7jcX3NTSCSlfJGU+uBHiQ3RlzziEANRaVCGJumG56YEgPNHdG4aVyCw86eF4c003bFXmme2K+bTJfZBmpiKXFlxlO8auZb8GAgTTF6nhtacy818+3w8f9rKkzLr62KWk5NGTh7j/+jkECkUxFwDZImZxTOW51k3oOt7ZLaiZFRaWJaqSWPIs0xDPRFU1wW15qf87JIuMzPIW2LF8jWu9VBLLZQACh2h1QLWdcqUKbgxETAmL6QONylswwLIL8+RdT/rqcJmbiCrNjEAdZaLWDaJtJe6Qk9nfCMNaIKTXIRvMM2AOwVMc8Z5jRk6xihmckapIiOVtabn80k+lMz8y3lD9iKxac+s9WUDYXEO1pMDNWloDf5Cbho9bjLDWgpCvrcZ+EUMmntl2SjD+QJw9WNXbrhm1m9eQi6JBQS+jY67MHEMMj7/vTtx686cYxAZFqUxdismhVrAyRA9KjwGkXyYcGnKMAbHON5hY+CZ6Wi14dqIdviYrrnMVt6oiFHQmAwAg5+UyFesDkGe/Mrfy3Gc44V8Ttlj5Idj7GPz4Bwblk2iCiJOfyjnh/IyrRDihArJ4JqEXdQeQ1HEbOrtNce5iNRzWs2G2Nq0CUzPMjOz+Vv+ORN4LrJPK53q5fuof5OXQkVd0JKYcrpMdKpz5TyF9hABZ2nTNdTYkMhBmiYRg8qja40yppoW2JXJwtJAXkwgm4I55NhAjg05b2g7ondJsu57dHPCnxxaRyavac8tA/BWN2y0EamIIDMe9YSxV1GM5fIR0aATqSICHsl/5XxPV3uRlkp/sDiu8zkkP89RJJMGbG4UVTnGxcaQykKqMoWY84gr3TKu8KGfs+InSM88+Zi/B4I/vv5LOGOVGMHd+jPHNNJ6Hybu/cSZSFCgdUvbXGObHUY3lSOnfGjOOZSSIFwDwBlgyCOdMQZOp3d4d8dr3bLVXRltX4+x54u+VZFN5xNoqDCNIo4Od3dPHB3Hg+EB0WTK7KPl+LegKU+BqlLsZYaNIoYRhSGqmglbPVqsRzAjqgqk6277paKuBuye2lJDuWCfAIupCrrE9FNJ9zOP5Ofxk9pgo3b0zd3ROpCvx77W3cm6u/fx0XiHio4XpuWrds9ON/xZs+fPm8Dn1wNtG9g/9/TPDPa6RxmN3u8x189L8NXba8z1SwFqtEXvbp44Wmll05UGKQSvXhaGT7h/h7l+iX31LXE8071/R7u9Zf+ddOxu7xr6Y8c33s4GiQQG5ZNulYDCJp1IbdSMBILJGqBzogdy/zzekT/P7Ehfd/nKS6+SsLpD6GIojD+bwvJGW141Pc90l9hIik3qXeeiK30YnJ5oZvyY9U2Y6FTkEF0ZkQwxcudH3vtzYeCfFUnHr6c1LW17nfS6rub34cS5GvKYli/xwftBDOHCxDjeMU0f2MRIpzRXdsPn7Za9NuU9CkMbSInBtvFc30yYBpou4idQdyf8GDidO4kNcR7jyqBVegiUApsLqkdNoigFlgqC+8SIUn7u4C8KnBngyVeqjnOAXyfmsAT58tNVX+R4XYgST8WNZbwwCYyXRM7YTWFpy3Obhe5nMQuoAN61DMzFOFEVgOvx7/w6xdE6TYgQeKYtv+r2/Inds1eGr5TmdX/majdhGzGDM70q5pAZBM6Jmt7doHc3pWufwZ5Lq44JgMSF6ZRigyccbjHXv8W+eieaod+9pd0+LGLD5tCzD7OMTG6aepWmBlD4BDQ0KhnIpXefE73aRbq+/heF4Wqtm0lAkYzJ3fmQYg3IqPc+6WkbFFstTPp9AoLzHpsLr5+77qLnGMXA5RQ9Qxp/v/cjd14MZR2Rez8xqIhCmGWt3dN1N0WqKI9y+lTARX8szxFjMjNJ497n8Zbx/A4VRgxwoy1vmi2v7aY0wgyJlZ11T1PDUSSlAtErpkPAT5FhtAzMrOUcG1wuPWJKelfsnosrNZJjDKl4CTMIkm7PTsz50X5I33VZ4OXCMi5+V99nEVeqvEOjRIKgAnu0ammafdGcM5WkRQ361p/FehJoESdqfcr1e1+tbHYzm/aNbNL4d2kY65bXSesvA/kfW4XNYwx6d4O5elFYwXqzKyDPo1XFBQATHGGoxsEPt5jnb2jef0ucRjbv3tH/53uuv59ERua+ZX/suVGmNExvk64sGMkRkCmiEMVMroumXNf5vMufax4zhuW1n9/9pcJsfdulZhJQwJ3s/r3Rlmem40o3F/KInx8bbgn0hMLmy5NDh+C49yPnKHn6rRfTyDEDm8pimn0Bdxq7pW2uF5IEedy7ZgEDOHfgfPpe9hgCm6j4vN3xRSNNZKkjFGOMpVm0M4GbzYQ1gX6TCvBTFBf40Up+E+TzyJ9LPi7lmlUKYm7gXT5mkWQkmu6yBkckb5B9USFxQTMX5vmzm+OCmuUGSHEhimREfm3rr2sAeH5tyUNFNQK4kzSBbV+Ou+gB+6IbXU8DZQB4PXb82LugrmJmwCJGVdiGssLi7xqkmXltWjE5TWzdMcrjTEFzngzWRkKINF1cgME1CLwglyR5iI/mDetfBIe5fkEYDhA8/nCLuX5B8+EtYRzpv3tHtzly83ZkHDXvjy0344bfqIYxEa3u/MQ5uiIxVzOCuxiZlJljgZ4bkxlo9HEGgh9FWLWsOwu77wLwuNYAzr/Lq1PCpN8lskmvLNe6SQaeP3/WcCSimaWjcqPlIfqiwz1Fz21uEgWp5SXXMmjTg9K0ZlMkY2qZhRwP6rUklwR0dLw2HX/Q7dkqAeQ2am783GDYqMi19TRaJAYA3EkRgpxzPl1rQvPITaJUs6+nBsj7riKf+2oB2tV3ThPGuWGMgLU1maTGGNa4gLyWSV5ZukZAEZQu19W6PqmlIHJTKL9OozuZyLAbYCa9FOPJyrBafr+UmQxFdlJyqjwdnLOTOq7luqyA0Eize44NMTU+VWIE6/IZ+KgYCLxDZEJbpfCTpTHCDg5B/GPabSD6WKYFVCUnpfodenu9yBv07uZi7nApNui7d4Trl+Ad/tkt5vpbmlcfiONI/917+v0DL942jJPEhv807fiNbiU2BM+HcObeT4/qBIA2muJBEqDsST4xxGtpqfqciDzGpOqm4lNNorUUXb0silYbutToynnE9SdKSuX1e43gv4f1nT9houbWj3xw51LASeC1IlKtDNZu6bvnRWJA9ElmAXIBdobys3ytGGaVc7T3A3s0v2r3PDMdvTLcJHOJS8so0Xhptgq7Sc/pI3GYcIPnPPWF9Zd1Gi8FyPWIHNQJUu7EK8SxO4szkJKS+RFzUK6ZPOvNtE7gfs6qR4/XDJG8AeSUtDiD6oamvWLbv6ZprhbaafI2BOxZdvPcQrvz0jjXepVxhDiPxOa/yUVgCA4LvLA9XzU79srwa2V4tTvy/JWAdu0VmH2L3vSzUHu/Kx37AvYkIPjnLNXvJOjtbkqgj9MZv/8W+E/o5pYweawNOK+ZhpYRxQNqlkNQxWu3Sr5npg8YvIo0MZAtoSRI6wUDYGZzxJJA5JVlHmAGkQs4FCkaoALuWK51y2vdXnS4zY+R2Xo/d92HiaMK3IeRWzcW3dP7MHGMAa/k3LOmp+2e0zZ70Qu3O5rmqoxpCXsng8Bzc0h+Fqaf9ydCDDh3xMbAm2ZbAK1numOvJD7k9yXvUVZjA+02Fu3wGuw5T8IIzszMfOzruBBRi0Tu8YpyPSglzyqID8uiJT/akn2Tx5guFXSPn+VxvKijSXmWODeJ1sVAjgtBgVYNttmnz0X0vWySg6ilOGIFANcATw38whzX5fsVy69iAOQXEuPsRp51yFWU4u7atrwxG36tGzbAm3biajvRbcX1u+kipjWSrCU2cE7WMqtnBoK7x9MBP7BU05e/0btrdL/D7b4F75L28N9ie5GLaDqJDT7FhhZTGi4+qlLI5SaRyEXouQlkIlP0JXaUApDH4HD+fAsQo5KGdZz3sDymqZP8zDnOCWKL6Pk9010Z9d4rw34huRQ/GQh+iKLVdgiO+9QkcjFw50du/cg5FaxeGazd0aTY0DZ7aShXUhBAtSf5Rf7gkxxEjCGNNI48V0Y0C03HC9MXX4F8bH2KmUZBbwPbnSuxIQRwJ2H2nJxegD1Fq5V0LfJ03pBXjJE816/ytVAz/VYNotw0lriw1Gy8lHjn5zRKhEXqWL++91OfZs6HpChIzWHT07ZXxdvh0qRP3SCef385Biyv/ZkFWMsUlL9TugLG5LhskuFppw0vTc+N0iITkwrxtfN3vYpUjBG9T52KOIkVPy0urBvOJW/Y3Uhs2P0W+M+Y/oEwQfvdielbDaeWMSpu8x6lZ1mpMYYyRVRYgMxg7wIUYm7q1A2jp4DZfN7CDO6sp89qOZky3o1ipy1XuuFFAoLh8bj2z1mn6InJhDHrb08x8OAnPrgzp+jxMXKMHpcNsVKN0bbX2FRjmKSDOJuQzfUECGsdEkDsz3h/ooliHHltGl7ZnlemZa/sgqGcq+NGB/pOtGWzyex0VjLmHxQjvhTbma1djqWSnOGnHq+ih5uB1HydEBYajZYl661uAATStAJq0Uysx3rrIv/xa1jnDQL+WrORBq7pMElb9GMTAPJDHjt2FYhVm2WHAgDNrz8Si8RNCp+q4jfGOQq3StNpwy5NfGwK+CNg8BgVIQor2Fouy2NoIyDwqmmcGcE/emmLvnqJ3t0IC3B3LbFmJzWF2e3B/C22P+FO0H/vCd8rmCwjcJti551n0Ryq84IOs/hMazJJBn/qPMFdiAtPMdVrosPM6lMXa1SrdIoP7SKPaJVGqU8DVeSzE/C3bhJ98Oeiu3vnR+6DSz4GSrRpmyuaNOGqdVMmDtdEhvWS2DAQ4oiJsFdG6lK7W0xSjjGkhn7EaIrvSJ4WCEHhJyTnY5mv5Snk9Vru6VU75iMyMZJTh0VsqKeM8+e2bhiHFAN8FGJbfVv90upJg/pVLTAFZqM52+yKJvAMAE8pJzv/KO3ZjJFkiZd6WkVXxz9jOBEK7pFxGQGtZ+nD+rzNRK3bGGnRySjYcO00nZVMLoTH8jkFBG4kLpTJQmPQVy+f/ozWS1vMszcygexdaTbp3buUN+xR7d/Rbk/4KbL91sH3W8zUiNGk8ou9vs4HYG4S5c+56FLnHAGK74DcZxnj6wYR6bP4GNh7KSbUsaNLOXijNDstDaO9Mh+VvPvRK/xeI/i/+jp6h0ZzTNo751QMOYVoRCUX6XXn7ZIoNVwGgX0Y8f7ENB2KuVqjtHR40+aSAzBV/ydreWklgt/aVAnuGAg+4k9RivSqqH6KQfc00DPfK3dQQFXRcw6RRctqFUw/dV3SGYLHr7mGpMV9VBcQWPR7Vg64pTu3dPr+KND7xG2XRjwfDQ8UJpBsql1K3jbK0Co+zuxZmbnISMY8svWpS7p8e6KxhKZDtS12YwhGJEesCTQ6QoA2Zq2o+RNenPF550w3+8IKSR1TkoxE0vhdg775b5/63DNoXIo7NWv5rYu9ukictXzl3zH+/KB6jA4TAkc/a3O5GGatcGVRmGQsZEtBp9RTpiUzCDyDjV5igxtSUTHSM280vbIFcM9mC/XnUOKDBmWUNIh8LGNcUxUb5PnmAmTx2la/WbJq0m35i4ICQ5cmUZxjw+rfj111hz+v6hS7uOoIVcvEKHSSh3lsIlAD8Y8ebwUCP6UBnH9e63+V29fj8em/fE1lvVrRd/7IG6zWcrR7dvS9ZAL1U1bWBdP9jjiektFUi9mIVaK1ka7x9GcZHRyDKlrcMkaSmLbpOjfV9Q0UXe86KwuJRZw/dH8pPpAL/MexoF5FTxwBFo2amb+lyEnHPmvpewRA/rnrGBxGRY5hKvHBE4sOsCM3I0zS7muKttxap76ccxeaRDItIEYv3p8wUTRks0vxJTPMWiNdq1hMQgDRDPfgnAAIYsc4j7LXK6yuviXrr7RcckCQW6pJgUsGPnXecGlaaJYFqp9TXkv97B+7ZNZ7SoZVSq5QzHDXXgGPJaKWv18Bv4sm0CyJk9/BwnIvzu9OEWYwOL2vbFbUVIW5j4mNXYx68tcfyOOSgeSnxgVIjeTTYREb9GZDsz/hB0/TCVDd64AJigGRX2ljkphK4MKjqj1/0iqUWGGUkoIljZJrpWSKaAX65ZVjw1NyMrn5nG/OeUPNCs7XzwyUyvoU2ZghsfoOwXEMU5nUyzXGmMAtYaLOuas2XXKgN4/2rLzqPDY3iESK7kTEF73mVptFcz2v/HPedzIIrIycX5o4gz3pEOQCfR6s/TFrFRuUpswlZxA45kdcaoTXRfsaLlKrCYX6c845zMdA4Px+cr6wjAtLffOL2r4VC3iWvHFLAKg0heZaCVYp8yKXmnOnuuZaHod8ngpjcUQ+wxAlx7M+te2S4V/+V16/d7NvSF7mZ7Y98uSh9xIfprNoCbcdpu+w/RllIu1DoLOBvYMhwohomZ7StJCOikn5p4N6BJRGl5p2ZkBmzXEbl83Kp1YGCYtsDI9B4Fq7OANtdS6R98lPig0IuD3gOURXwL97P3LwUzHTPAUv8QGRiVG6KfFB3sZsRAxSR5TDtppoExk6h41z87XWC7+0tIo0OtDY+RoIAZzTC85jHZM/NrXxaEXZA+efl6+/jg35MdfgLdX3cnaokifoOF9rxYg+/X7991TPlGv62uxZr3L59UTAIvcvYGRYos/p8X2MTAnYhlWDODfc6vcWIaoal3m8fLoWxvT5euXxUTMqwxA0W59ZzIroFcFHVAnuT+TAn0A8YzpBcAufAtV26MZie4Uy0G0D3e0cGzYoemVolCFLzI2ERW2Q6+Dc0IVMPcrxYNYbzoSDwOPzsfYc+aG1kJaqppZLrpYeaynZ+Gnr99IQfw/rb8Z7lNaSoClSxaQwpsOaTdIC1kmvq78I8tRj3vXIVtaUmtzA+fQdPgypI6f5vNnxTHfcpAsum/J4Ii1KDAFSMbczjqYLxRzED47pEBiPiums+XBueIjjgv2weH3paz4V6oBa78Ez1FvDray+Z8H4q++hmDfl8vMTm+bjcunSM10ArNTM6tGIZo9Njr4ZsBeNtHuAxecA1eZYJXlKaXm9Si+6MY/AHVi82szqyelqlgTJ7KedtrywPZ+rlo1SXBth9nxsFQOHrPX3Uxk9H1l6d4MytmiFhpPo1oZhIPgHbg6TsIK9pnEG7yv2ARFDKJrBmQm4BGHnbl4en5oZxClYrk64Osma4jJYZRZwNtXqUwcug6Oi2Tvrlubnzx32U3Sc3M8Hgv/T+Q6ttRg1RC8OsgpILGBjemGaFkOXZbNoMSJUxYfMAs5MnvP5fdELb6OwyF81PTvVCGBI1jUlOfpmIE7GO/ve0+zANIrpEBmPivOgGc+aO2cY4jR3WVcxIicn+XNYJCGQdILryLG6U309wAV98CUb+IfWOi7V0w2wBKznEapcUGmUsqVpZ+12IQUB4PxpfuWVRIz8vDz/6pGvohFIXIHB1ftfvb8QKAYGMXh0jPRK05B0pTDFud0kDMRPChoZz5ViLkDVPMrAr8qmUD+F0fORpa9egrbFqMCm2GBSbLgeJianmYJGj5bRC28rGycaZva9ADRRGML58aNKetNIoqeTAWXNBE5f13GgloXJK5/PBkWnDXslBdJGW7aqQaOKPMVD9Jj0mEP0nNJo9sk/HqP8ses/T/dopzmEiSEZPHmiMHjSOZgnidr2OsWKpEVr5vNxDQIXlnpqEJ3PH5imhwSoTjzXljd2w9ZYeiXa8zlhzgBwjg0bBZtOTAdNE5nOiumsGM8a53JscIsG8vp6Kw2WkmCnIkuRXtPj62b+y2zgJn9n4rKgWwPC9Vpvk1LkLdc6d6ibXHnEco4NMlZrdJdYf2uzl+U0gA8rA9naYIY162+Wx6rjV/4+lBwh5QkoVFQJmhAmZNYB7fVs0HgKGh/FAKaZ5N1bGyQ2XAKDjSWbRH7KFNGjh332Rgq64FL+cAZjsMOAMve8PEvMcF7TnxvwBqMlbxji7Lshx2LZdPBoJmRKwldxId8nG04WJnG1h2WAeR0bYG4+5QJtnUcYdCkmhxgwiqJ9PsXA+AnjmX8zPqCN5uAnDmEq493nGBLDT8AdbToau0ObrqoxNmn/qoy5qryhNnwax7tkSO3x4cQexWd2I3qy2rBTTcobwqI5ZFBsQPTou5BkBSQ2hCB5w8FrhhQnLxlQz6+tivHMV31MMemp2JCB0jpneKzR+HhPzctW8SDfJa7iyHpyKH/vmSXlIElB6BZtkr6+0lIfLBo9SxmIOheQuJAjzjIHqoGrupGVX0s2Q8tg8cI8M+V7dbNPWH+OETH3Imi0k3zTmUA7yHSYbuVdh3HCBF+MxYFi+vTJDeR+h0nN6DzOXLTGxwk48sadMO8jJ6fZTxZCizFyjQ8xcAqaU5k3lOOX8wbRCY2lcSxTh7MW+TqX9Vyuf2H+/GtWnzynfG2UnjWBlUokLTsD8ERuUy44fgJj72/cEaMN90FkYYbgCEgDeUiayLJnabTu0+SxyJq1zX4hawbLfauedJ2mg+S6qYHcJJnCVhn2puHGLJsCpUGkRFZgZxy7jcNaYZK6SeEmg3OKg9eluRUQVravmNrlykqyMfO5L8xWaRBHVGkgV59Zbh5X14BlyQJeTxWugdP6EdOPj+qa+m8L5FzlCZkAaGxfjjNkPGHWAa5NyLIG8Doz8WpuMI7lGZcvLL/XtYfKnG/NEw8h5RouNQwOys06/IhUY4PB20hLizk3tDrQJJ8p0wRiCJjTSBhH0EeU9+iNsHl/uEr7+CrThqkZHUepueJ4Rhkzx4azxIbJazZjg6fFIHX9KXgOUZqoGeDPdUU5Bmn/r5nEl6TkLsWEjzF+13+fm8c5X+i0XENb1RSZjhzPzh8hGP64FUsM/SXXxXzx/8/W3ysQfJvScaV7KdKsgDvi5t1XLD+9cJjPa8kimUHgzOQJYWIa78APfG5aoZGbhq+aHa+TyVUGsnKynF1i90pAgm3j6TYRvWlQWhMfJo53mvsPlvNk+M7rSl9oKaYPS7CkZuQ8Cjb131Suk3VHG5bfXwrINRh8adVJ2eNAvHys/NpUup/oAG9ktFZpMeWyO6zpC1uiHpFZawDnz6q8jwTcFUO5SuZhfi05S6u6fSCd2gWDwJeNwEbY24bPTMfnWrHLpj2pw7po0PhE04KqkOt/URC4vN9+HhkNuZM/noG/5ep4T/DS9W2ODdPQIrqfUiQNCkz6kEYVEvt2TiCyhnAGZIHS3curDuS+/r5K7GqjBuCRlh9I4jImptlIWOhrHYLjgxO9b/8JnbBv/VgKeG02BUQwtqex2wLuaCXnZAaAa8kYeMwEdn4Q44YYmMZ7nLvjCk2nGva24YtmyxdmW2IDUAD4TUy6REoMHXbG0W0DttfoVjMdAsPBcHvXcHaG96mgqzVY6zZPKZKqi7W+pjUUw7bHbZnLxU4N7vzcpEKx1Mxar/weMktaXGM7mvaGttnLa08MzJw0Z1mYJxn/azZwcDJ+WxLtqSSpy1dKSnD1gnFSx5IYHS2w1TLGf2Ua9koX92+tY0m4AUIXCT4W9ncxc9Gz6csvBQLnlUfClTFiImcsYTigzFv86QNwZjxrmkNgOnaAln1LiS6ZUZldumwSaRRTbiARCyicY4NXEcJcyJUEL4M9sCiG6/Fxk4wjr0xDg1wb9ZRNHr3MLLxjnHjwkzB3PwHs+c14RGnFBMRKu69Jo4Q2gTtZjiSzgLU2q2aRNInke1dyhxgD4/TAON1iwkSL6B1/3mz5VbtnVwFFPsJAkMkTdDKCkj2nbQPNDpSWsc7xrLk/SGy4jYpTnEfylhycFBuqJpF8lum2FBPWhm151ft2/a8G5uo4cak/ugaBFg7m6fWum1qQ9xZEugcDSkZrm2ZfRjzzCklTMecIl9i/Gfipm7wmRroErimkUWG0LgxFH0MZ7ZxiwBHwSjIYAYFzRiPXeDH0SpMCPkYegnyOONBjhGTU2U5hYfryaGnzi+cOJTakx1VNl4wmf8v1+BZlzvhJ0d15/EOP8SIf84DigcADs6ZklpKRRs58jWeN8QL6EsSLIM7eA1O6nvPGUjN+18Ug8Ajc2SoZ46zP6SFKQ+MUPfdh5OjdJ4E9/2V6QDvFKQZOKkLJITpauyu61LnGyGZwEh9myblsBgekumI+B8fpgXG8I0aZErhSms+bLV81+/L+RC9ccrV5XFj+bfTsO6I1jEdwk+Y4SE2RY8M5TUG5mFm0qSEUlzG57Psx5/IZ0FmuAnAyAx6ZYWWqWKBWQF1dmOfb6snJuCjil8ysNQPYKyVmcLoFpUUuynRY0xWSyKNYkBsZweHDWUC3mMfWI5Y5ttWN70sTWHVU88QCBufm0XJqYrmmKOPfD8oLQUBbjJcj0XpNd/bsJk8YU+MoBMI4Ypp2QXL5pSYNVdNjXn5JnE6oNklNbXaE8Yxu/47ob7F2wDnN9kMLx442zl4D75hKOeXRhd0YEEPZHAdgvr6L5FQ1Ov6UxFQ+xqXZeCEhzXqre9Ow03MTOUtCgMSGIvPyCYy9TDw7Blf0wcs5qTu0aTHkGmNTaow8VZQbRJeNjUMhnk3ugPdHFJE2wmvb86t2z1aLuafECDk2dY5lgA3iO7LdOUwjcjGnwTBOokf9kI5HluVxCXNY1/9QMa8TkF/X0qDWkC25YVx7B9SxIT9mXqF8jeU9LKSBLrByczyoawhVxegmaQJnJrBgA3MNEPwochCE2XguMZgjvjSCJD8i5SCa7GGU9cdFS3w2lvNBJDyIobxHXb3wupnkUg58DI5Ga9m/gi+Ga1k/eNMYjDe0XtMMkf4oUzwmROzghOiRnicDtngH6+mBn7Fq4lmODartRCqifQvc0nSD5A3vOjj2GMTA+FY58BTyiNQI877foBfX8lNNoHxe1F5Fj+5T6szlnpFjik0N5C416Xtt2CY5iAwC+5iNYH8BNu/vgBHM74Hgjy9hiYh791zA5XHvzPCbi7iPrToYS7doKiYiPYoXtufGtMnAxqbCTTGSxn0Sq2iDTp17AQkaG1AmJpdHLZIQKSgPo+gvXRr/Xrw2NYOtTxlQL4De+PRtl34XVz8/Na4TVqG/gMGLu84/5K2jTjnFzEECtbXiwJ71WL0/MrnZ3Xdd4JXHjbPZ2wLMVZL0FXfjBTNg3kZyZ1OlomR2Qo5lI+uSNuVOB3rj6RpPfQqt8ShVj2pp8/NHt37EUv0Os7shng6gD+j9nmb7IBqlZ+gmGQVvfWaqZ8aZ/H02i6MUdSxGwmvWT2bmTNU5VRdwT3UM8vljEHBnr03Fjl0ygE/RFTO3ITiO6Z/7BCA4luu+XSQHxvSPmDvrBlF5jEoqRr4u40OIEzbCztjSJLrSbdIjU4VVlSd5vJLErUX0UBsjshDZVAzATYqzM5ydZoClrtrqkNfAj9w+J2T1dfcUoLsGguHTQeB6rV9f/fscM4ram25KYyiDvwv97pzIpQtvPfK1ePxHY6xiXqFS4VbuV7T+ssGWnn8uBWUGfFTRCGswaTw5YqoHzDpeP5hP/AJj30+trAkaTgcZoT880OzuaB4iWnvGUdNriQ0oARsEvMofSFx29ZQcOWA+qSIIMy5cjBWXjCRh1bVPRWOeEmiTdEwGgfMaU3wIMXIKngc/CSv4qbG4H7FGYgIkUu5woTGZcweTgJ9yOC6OfNcNZdm3QgKCeqUl/pmGG9tK7oApunBjVfACRXKk1QHbRJQG0wr71DldYsNIarZcANDqVceE+uuj7+Pyd2vvAMWSzfNjQeBLeUQN9KzjV44ZKk0IKC2FdGO3WLsr13MorN5lXJZfLPeNMj2QYoAFeqUxCWRsE6MM5Lwco4DFeVQ1lGI5M4gLpF4YJxl8kPeXXOWjyDSFoJjcPOL51Kb5SzD9PrZyI1nvbojTGb27o9m/pz9OuJOiP3t2g+fgdQLjNQOx6NsLOJm+V6qwfEK+jRns0RimDHhlJvHqbS/OjXRY6oIuj3DOjGDDRhkBQSKzmV2MnKIrMi/nTwCCh+BLkwjVYHRXAMem2T0Cd3LumptE5e0oswB8Fqz11FxsouhObrTl2rQ8N5I7zMcxywmk2EAeexc3eckdFBwp59jkJTZkv5F1Ezkf8XWOX+cC64Igg5v5fpmZXDeEzEeu+Vr64dLtqEoaIj5uHte1hkq5Qp7oUtouzCJFZ3RmA5fHyHt5+pdbZ9lx3qzA6/SyJFdZ7Wf1cQrER8en/KuALY+c/5LzkqRXDKOS6QF0YHIaP6VpJABfvf7U+MySUr/kEo1RX+KCak7EmyPt9QP9yeMnz3h27M4ND84k7fBkYJhHuutzZlErJG1QFSH6eYowM4apiSVh/lu1bCZ/bGXQt08GUOvzUSQhfALbPkFuLjgUSYqSmOQRFEa3xZQsE9Eau68kCmYMQogly9dQ9rR8boapNCi2ynBtWp6ZrjSQjeLRccnXpAG0jpgGTBPL+VRiQ5wNwmsgtkiArVZ9Pte79lKle44R+XrKj2WoGMarpWP1Ya9WYNnEXl+H+XcFcs7NuNQUmrXZH8eAPCmcpWBydMnNG8Vca2UQWGuLbbZ07Q1at4XFnWP6ON4zlmbz43e1fod5UmtKNa6LgSE4xuixSnOME0P0PKDZKNF9F53ndP2MaWKgbSkSEb+wUZnqd2AMKsnImKQnrvcDze6B/uTwk2I3OHanwD4mcgmGO+XKOeDzuZUOTC3rBCwmBy4try6zhfPjamIhqyxiNbNETFNytCTpik6TRPNE83qa8ees3400xO+B4I8uYzYYbWS823QYI+6QtVHDpbU2danHtrw/MY73OHdI+lETW91IV6EydqlHaXMxnHV7WqDXkd74oiubdT7CBKfB8HC2HLzhoToBA3Ji14nFDKak7rqaxy4urXhh33zqvuX2Cz8/pZeyBnceP9/y74LKDBolRg62TyC9roK1L4yqOnhrpRdJYX1bDI4Qx0Vwj3VxSISaAVy904hKSV6cHy+NimrmMd16+aAS41ahAzL6PTpiI3pbcTxD8JKwTWcZpfgdsILLEuHp4iysjSqmNBmgymd/mwCf8pkqVdjBkLSJciKezuH14HUe5cyFRTln4/x3WQO0U2Yu4HQN/kqzpNbaO0fHfRqzylp8h+A4M7OPft7haUuTKMeHDAzXBdx6CcNvBnbqce8QRs7jHW56KLftlC4gcK9NYVcTZ0ZwAeATY2yjZFqg0VLQiR6cjA2Po+Z+tJyCEtPLDALXMgbV6408vlafAoo/tnIe7xfRZl6zjvSPW541X2D92lTRaVbaJCO4poDAMBdyWUNNJGVIv1smeIuRr+iIaQxMrnJh/tQOw/WLCWRWjzAdJHSoOWkkJxxzguuJTEGBhsYrzlMqeEKk6QJhks9V+UAcR+J0Ik4iG/NLJ2z1quUnMC7FB4VpZExQ6zk2tAibZYyq7F2eyKjCIrD7VMjPBpPzMih8SvIu7Rnr5E5iqwElY1p1nA0pNuQ1BGH5DcFJ1z447pOZ26c1ieTdatNh7XbVJOp/IHcYy/fej4SQNIDDyDjd46aDsP/8iSZGtkaMgrbaYhILe2Zf17qfie1H0gLUsRiMRS8F3ThpjpPhFPRiZP/ie2R5/V+6Fi9g/ouvOSZk0KguFtfNqUVsWI38PjqGKWeK1X3q1xsy68+0CfjJTCq/+Lp4v2sWcC0FkeMHwmKaEMNAFX0qXi8DQfUxMHFuYAmgLE7m+d4ClMY0fSPxv1UKgqJJ498hKsazx50Ctk95xzgSxzOxOROzdENwv5g0xHpJXJAYpNoO1Vq0FgNciQ2yN43JZ6BFMVaxIZ809ee6BvouxQlgqTXOZYZPBtPreJs/mzEGND41pvMkkRhZHr0YNn3qJNHcJDIYLaxfpS0mMYCzKVkGeMp7qfIG+fmM86eS307uiHeDsFL9gIqOTfIS2CYWcG4O+dVhKbEhs/5ykyglFiFI3nCcDCdvUt6wkkqq2K0fywkWYHD1u/rfpTygNla89LkuXguPzalqUCrHhrz7unLaKLQyMvqdwN95OiPnCqsmUCLz1OCPRILUeFew2I0T8HPpoIiBlGPdUF7dbXFMphiY8ISoOVVgRZMmXzZRy77gNbvJyNTOST6lwvozkvfE04EwHEBb9Gb3y8aIDDCnqSWpLZSQmFLe0OhAm46NsNM1RoUE9kn8y1JldXwoUjF574izNEwGc0p+qbgYO9ar9hqpc7Kch5yqx6gNoz9lWuAhOFRUnImSQ6gmNSo7jN3Q2E2pMfIUcl6CLTyWicks4Gxc5sOZEEe2KLrMZlxJ9ZXxYFJsUPO0QKsijZkbRSCyPyU28JGm8WqCKK8a6F3X++sp5Y+Bn08taXNXr2MBOS9jVz35FBRJTq5FJUD+kj77Wk5y+QZUylek8RyURimF0g3b9oauvSk5YdPsaZprtO4I4UzwZ3w4E6PnfH7Hw/G3TOMtruQevkxW1Y110ns6B1/2u6xBPwXPqMSc9NY4NsYwRsWNM1wPVnThJ5GJCKcRZTTRe1R/VyZ/NEBlGvspSyU/E910BGPlMzYG3RpMI5iJtYFWBzZepipbhPw1JqNTozQTvjKmnq/bUMWLdfOmrAtNpqfkI3KOkWNClo1pEx4BlXxdlO+zjMWnTAuUl/oJBJWnH/P3QPBH16Z/hTG2MPzq0axaMmA5wjkH4zyW4f0pmbp43HTEuTv6GFO3vuWLZsfndlvYCJD009LrKG6QiD7wXkeedZOY9GxkfCuO4pF6vocPh5a/HRsG4G08c4ruUWLdKDHdGNNVUJLODHo+ykSeDruPgveFYufj66nHnnUE871UtVeRpCBqPdaspVYeIQYm9wCw6LDlZZLAvozXUcCeXGyHKGCPuHJCk4qH9ViXsCzmcXSihqCJWpXXYaJ0M3PwyAErRIXzmnFMRYqBpvM0Y0C1TpK0aUxJmkEFj55+ea2Yeqm2n8e5+g261ZjGEwJYK0mbyBMkkEYpMuNxJILSc7BNhetYMfw0wmi9lDRMMXAOvgRjq8QdOXfiO2Xoi+GJPOchJWAypjUVcOcQJg5+4hh9SfrRiYnzIxLCp1bXvUyxQbrzmQEsrvMt9Xh3HR9COJfYACwNn9zAON2i07h3qzSvbM/n7ZZd0hzSCIA7kLX95o2vRXEDPE+O8psuGUulUcDzoHh/bPnGa4YYeRsniQ0rEDh359dtjnx7Xj909H58BLn8F+u/X4BK+dSq7jtPDii0ksSqZlGYVGQDVVNojts1+58M/kbRAPV+SNp/iekToWEuXK3SomNYAT4lMQhiNCrj4BGnZIwbpUu8bTDFqAPEOOQ2alovxl0hKqagaaaAtYFu49GNx/iI7gfCcBRJFxC27unwi8tDyBurpCe0QfcbzMZiGolHbRvojSRtJTagyFIYYy6m0gc4Ropeb9b1fapJCDxyDK5X1gTOsbXR8/GsG0N5nPwYHLf+zBB80cscU/Iffkiw/SOrbV9gbIMxHW1zVRjAWT7qKSOyGfj18x4UxqQbfmYcb/H+gE7n3nPT8qbZstO2sBpzEyyPTOYYsVGaG6W4NoGNDmxahzIQQ2KOnBW3Q8M3zjAA7+IkAEOdEK+aLzVT+BIApNINawB48d6rx9Y8BvhqIPTS39Wv7anb1rqfRrc0zVUB6LPxy9w0Dovirp4AKMW0P/M4OoJCzNiitsXwxhWWZtYJFLZmiR1VrJjNBPMRVQW88siI4dsQhdkdFS+UxXvNKSgaLaaum8FjmoCeInpzRp+GMiUQhgfC4VaKut8BGCzGL52MlCYTGNPLjtJ2gc56GmcwUZrfIwpfrtFY5CGytFSRkcnF2hMNobxqY8paDiJfHzkeWKWLr0DOITJrxyM6hHdewB2X8pGH6JnUYzDwpyxtd2jTFAawtRKjMxhQTw+tJWLq2OD8gPcnQgx4f2aa7gleTOGaCDe64U0jmsAyaWKlGFVhMRkhwLxmrzQ3KtJokZuzlRGUn+BuaPk21RTv4viD7KacO9QTA3UciNX39W1PaX2WZ4uRj0Xm9Th4BnrqOFM3hcR0y0odoDSmku+Zn9KzBnvySLhIw5wXNUWupbRp2fQv2fRvaJorrNnStC9oupco0wuI7A6EcCIGxzS+4/7wnxlOb4nB4dwR7wd0aihRve4ITOTm5VSaF+ck9aWVktzORh6UTJi2U8P23qPNiD2LSIZuDxjvCcOQfEdE1iWedpiXX37kSP+0lUHgegxc9y22d2gtsaG3gY2LmChxYZPaMrm2Gglk+bgMCgPz9EDMDWWRjCigcQUM13HkUkMhA8A5VtTmcDkGn9OE4Tn6UmPcpgbypzSJjrkRoRvaigGca9pMRKsnkGv/gCJ/WNUUwZ/TeXQCAioGnivDq1ZiQ5OIJj5GTvhSY7WpljNKPocbJQS0a+voe49pQJlICJqHU8P3U8MQ4TaOMn2Zr79YT+FUxxklhrmoirm7LMnWzaE6LqwnhupGUfl7NcvCzBq684rMuvJzvKqmCVWDNTtss01TGrPHiDznHBdqk8jl88s70aZju3nD9dU/oG2f07QvaW7+nOH1V0ybyqcEUCFiJk83DJjzGeVG1OkdN3f/C8PwG5w7ch7fczx+i3MPRAKBgKoY7j4Gkehw8nrE0DwwJixDTwM25Yu9MkBPc+xwXtM1PpFcJprBYzazd4rZXUtt0XbiHfKpS1uZJGp7MZ2dzqh+i9ltaAaHHgPdNrC/dwxBswnSRB2TaHJm245RX27wpM9ywfRlKUnplUjN5HOh3tvWgLBWaoFFzHmEKQ3rQ5yKaW+WojzFXwgIHscfvtNPfczfA8EfX333kqbZlCJOX2DxhAL8DgsQ2PmhjBc6fy7aMd4faWPgy2bHtWnpteGF6Xmt2zLu/RAdD2mTaZW4qUp3tBJr7yfR+OtSF7iAPZp354avoySu7/1UxuJBAuLCuT3KKKLO+kL4hLh87OR4AtJJQfixL69e3a1GdJ5I68qYm3Tb665hetkErWnaa/ruRQrUM1M7b441a6KWg1BKp/tLYA9hTCYwWQN0IsSRLmYnVQkAO90UIHiKWQNJQIQheKaYdZ2CvPaCXom2j61GCerlo7D+QlBYG5nOgeYU0K2TzWkY0LsT8ZQ2odPhd8vsaeaCTrVd6tA5ohdTmsZEGi+AmIxzUj7/fOpkIXwTlbAExT1PPs0Lp5dJgVQCu8fFiFWzJnD+2iezk5zkjTFwSryLo3fc+ZFDmHBRGIAHAiibPvOWpr2msVtCCMC/+VnHZ9u/wtq5eKu783Wc8FWRkM/DWs9PYsO5MHl0mHhpWrbastWWV3bDS9MVTeAhbfBiuqfZIM2jFpGS2ejIvnU0VjRAlYHgIzHA+Wj4MFm+jmJwdxfcImkrn336WidFl27/MeunbzFVInex/y+xKailFINcZpmJozCmp+ue0bXPngTeak3gmYU1j3xlto/o/p2xMSTTmmWhINe1XoC/TfoZ4Kw9x+BKc+McA6NyxJAaPxGUVgsWSh7byqw/MPioaLRiM2qmsxg7QMBMThpFp0PR8xLtrV/OFKpeNdgjxaPFNCMQsY0wRho9x4a2MHrzAyybRGOFCjwVG+q1kDqq7myUgMBZE7jcP9330nTAfZgY83aoLNZusSU2/MefdXy2289oktabtVuMEe1ZrUximqVzLLjSEKolCerpIefPAgr4E94f2CPxr9eG13bD582WPo17Z71jkJjba5OkIDLjD66tp7OeTeexNhVrIekDO8vbGBhi4DbFhqdWLpxWRIqLYPBTQHBdHGZg+WPrEhjC6nf1cxYQOYE9OoE9jd3Rtte0zbXcXgHusGT41EzgnBsIa9sVFm8NMitlabtnbPpXC2+C/Pmex1vOp3dMnFJzOdIlSZj82kMMj2JyzjHyxAukBoqOQMOIZuMVu7Pl6jgVrb9mmATkMaY0iX5nrD8QM5i2FxZW06HatkiPmAYaK42IMejCNNuk6RajpMkJSee/nhy4AAKLh/jT56hHtBJDjFj0wl9A9MJtycOyhNQU5BgfvIA7xyAkigmIusGaTSqc/vZnHZ/N5jOsbUWX2u5LY0jy1w6lbTEhzbUFQIwjzp+KubHzZ7w/Qwzyez/QxiD1ghHTyC+bHTtt5ZxJppUh5Q0AGzWzL/fk2CBNIgF65DU7pzk4w9sYGQgCiIc8VTfH6xpsVRHUKpQ/tZtfMo1dgsA/vqVcQJ2qQSWiLfOqY5VK2p+ZiS06oDPo5pNxbwF7ViuSJoSijPUrJRNICkXb3vDs5q+4fv2/JexeMe32HF5usa8ibQvjCO6k4AjKRXbfH/jst/9vHm7/P0zTPcfhtzw8/C0kIHgdY7PMzBCcEAQq1p9JRB+DYjKdyAeheT5auoPHWo1pHPbO0fgBvXHouw/o3Dz2Dn394pebOtTibbJoErUNttc4Ak0Xhdg0BnRUjF407b1KEkVpymhtOhvqky+RInxiYGZJCFMRd3TJRebHqRmEIPVxl/ZYU9WuU4o1p+B5n6YDsinXoCLohvjoXP3xq21fYIxJ5m/LBrK14kMCy7iglMe5YWF87vwZ78RLwPsT3g+Y6DGIFMSbZssftKIXDix8Eky6IsfExAbYKMVN8qvYtw7biMGsMiIncPKad1GMNR+if7JJdKlZLDXfZbwhx4X1NM3HGkExxkdgcH1b/Vpm/VdZud7JcnJGdzTtFV1783QNUfKCp/wQFFGB0R3XV/+AZ1/9Hzi/+ILD9Yb2V/CrLyMvdjA6eDjD8SQTGOfRcjxe83BUhEmhD19x9c2veP7h74jugeH+3wL/Lw6HNJEQRcgoL0ckBM+U3tcpes4KFIZA5D5MfDcNhBjptEwP7H0P54ZNmj40TaQPAXOKwJ34g4xnzHRG725+GSCYlDM00oTCWHS/Q202mM2AMp5u49l0jt1kmJRmdIa9mptEI5pGLaUXnmL9l4ZRlq0klGk0o1LjOTxmteefTar9OmVKk6jOI7LEXK717vzIBz9y+sQmUV7Rf/pjPHrM3wPBH18ygjGDwKpKmnOyBnNQyJpddeIfEqBQj2q0ieGY3b3blJjWbKjZ5XHueopOD2gVsTbK9H5NYvPSoRujSqOdcWGmUd4XMsK44NqmE7kUWx/r+F8c71j2++a7ru5bAaDlb/LvcvFFTGy5jxeioq3TLDQXc8CuA/dCP+1HrPq9582o1uPKI0aa9Ls465i53JnM7+TCyH09+paZLyFp9AStCCEWLdAy/p2cfaP3qCQREb1bnJO/q3VJlyaPfweSplTMEhBL455LqzZtWPyey7836TjP7tbLVKBm/2RWT05sphiIShVNbxm/TCOZ6hOYPborEwLZFO5jq5YnyQBkdpnNxi8hOhooWrFZAqMeq8/HL48K5+MDWfNQxrasCUVzOqZzKQQZ0x9TbMjsysX7KqNM9VrCPZ+2bajVTx+DlWs4Z/1XEsOWRZ3cX8bm7COJjrV22g+tuCr+BPyKpWEhbsgqdYKTiUOk6IGumz05ws5Hc27OlViSniPrOI4RxiSvoKOwAJ3XhID4I0xAig94B8EJo8f7/2rxYb10FRugNu6Z//3Y3vgPgYOPxsZZxof6tjHFhmxyJOw/iKmBoHWD0S3GdOhPiA1FhkR3C0PCS5/FrPOZ48NYAcJuHj0OkzCBVaUlrXWJiwATLFhS8/HI/+qxznQtpw8ihGQeRSzaqD9mrcHYn7p+7t9cBILXqHS1ykin0qB0agDPhi8//rlzjjL/K3rDKVfs2mu69gVNc1U+X+9nJodMhY2pWZz2QzVL4ywyqTKWHNCYxd7pY6RXhkFFTBTkbQoa5zR+qggCKW9gPCdpCC8xwlhU//eXYmczuAyBl/HNOAM0Jf/l6UmBHzPqPT/n0/tNzhekWefT2H0CFpXCKIvR7Y++Ni4+fzGBa1IDWdhgtQxEBoPXsWHJWA+L2BAJpTmZ64ucO+Ql+0oQM53qeBgkh2uSrM+j2OBhikpiQ4w/+ng/1Rwq73P1c60h+hSAnN/Hx57zEgP40uuReJHB20wUsIt4IN9PH6+HqHMPAfS1trTNnq57jb96w/DshnHfYF7A9XWka+E8wtHCaBXBKc7nDW3/iuYoDSo77dDa4iPFlHcd80J6v2mOUwy6iIS0zwlI6UHLlNEQdJKZ8qLvOkZin2ToxlHiwnQmGPu7l5/Lx65KkzJhpM4VqKRgZvPIy3XCGvjNS6vLcjJrELjOw+qVdW9zjeFiYApejLkQ4FkrS3jKZOdHLG1ajG2lPtFtITVJs8gumkR5XYoNIUwJHEza4QgI3CpNo00B/rKnSpbpy2Z8DcuaImMOrV7nDpHgSTWFTBf/lFh88Risjr1egcA/Zq1lYfLKEwqX4tKcPwgQjpKmrtG2SELkpu7j57uQzar0ipVGxYCxPW37nOn6FYeXW9Q1PH8W+PwabjaaYYqYdFyn9BE7F3GJ6+WcYtpsMMM1Sltsc5MmUWX/8N6lplQsrOmQspP6PQuuIvuAkNfmSdoxJjk6NHun8VPWDI6EMUnQtSNhPM9kk18qPlzSJTca8KjkdWOUTEoJ3qCqc1Rihq/PkadOl9QwIuZaTktudSFm1Ku+vZaUWucTnlAwCJdwiCkGaWj9FAbVU+t3AAT/3izuB1Yu5EC6cNmxL48C5XFv748L5mndrfd+xPkDxAkTYYPiue15bjuu80VM5F2YykaWN7lc5GW2n0hDQG9Fwyuzgf2kGO88flI8PFjeRXgXJg7BcYzTwhBKxpjBKoOKgVMMkDTzgGSIJsHr4lqBG4+AnAIo12Dw5R7ebKI2A8AxpEGgmGEXkVSAzLwxhUHRNFc0dvtIK0m+VhthYf0Z0Y+s7ju5KX2mE246zuN3CFN6UEnDMwQ0Du1lBDqbO5VOEJEmgVBAYv15MvyTy7f8rqbEvDp4y5Q08zZB0bhY9JesnQAZAW/NEdV+AO9SAO7w7zvpzP0OmD3h/h3+/h1xPBEO9/jB4U4K55QUmjEnUNkAb1Y+y2CwLz9XBm75awqYufiqpSDk2BpaRRnFyOxLGWES7T6tZBwum7h4YnHcPROFSKk01myxzT41DbpkIrgv1+/PWcb0izHOJXtnloNYs9Jrll9I438hnlFEbIRnybhha2xhN9yFiUMGBOIyPogmsJ5jQzIetFbOIz8pzveR6OEwWN5FiTWn6DmGaSUZk1ySU/IgjD89U4PiJQimXpdB2+WPVbf+JyV3j9O4gvukuCDmnlKENc0usXyWY1w1Q2/9+LWed5aFiASJG3YPyMhVUJZge4LpMMnhN6QEHMC7E849EOIojIYokjJZ/z2Pw2Xn9Jy0naNcA6foeAieVsvnOqIZojDnWq/hCG0TAIe1EWVGVHMH3hNOQ5FviOMJvdn9Yp17AIIjHO7wh1vRFDzc4w9n3En2ITeJjAWk2KAUJlKmXXLDyJQPT77UTY7yVAl0yDIvueEjjz0DnTULG+AUXdlLT8kpGUQn7c7L6GJh+SmbGoli3Na211i7w/u1ivmPX6IZ3qZG8hyXvT8vYsRaCiKPe/uQpoqmh8VI505pbmzHPk2lANyHiZPyF52PW7TITSGsnl2ODQkMdk6hjnVsUCU2HIIY6OUcJLPVs5d3nhS4FAk+2tqJXPQZuLQ+Bgatb1ORYnRb9lmV836LMdsy4jmbvSylH9Ysn/y7ArzFgFYWba/KPm+bHVe7P+Tq+s+x7Ut0syduX3N69hxvDcZ5mmHAnE8oNxKHbxju/y2Hw9/g/Inh9Jbh9JYxTOjqtZuY3pdKbNU01l9Lo4jWvi/jnRulwbX09x0hiEyLFFL32HFCt00xg9Lba+Jmj3n25heVkAmHW4kN4wl/uCMMJ9wpEEbZi/xqxERigTQfs2kcqcASiRM5YQrAQ/lQi0FTnhDIEhr5GsjAaIixMIFrg5lDnK/xIeUN2fH+FHwybJLmgdUdttnTNvs0LfDzVtvcYExTctgcH2J0+OggxYMcG7KMVB73zlr1zh3x4ZzQ2sAezTPTstNNYTwfgiuxIYPA+dxptS6msxul6XWS7bABa4WIMB7lNR8Hy7ugeBdHyVlTrtUozRRDAWlm8FVyebWSjVlfs/NOLnv5TwGRPnbP9W35Z8Wa9aeKjnvbyP4+G8guyTzlsUqskN9Z02N0S0xgz/X+j7m++Uua/jPU5jPe/8mvufqjyOu9HBmjZ/KOD/K9NOoVrtO469dswl/Tuwea5poYPQ8Pf0uIU5pSFKOvfBW5BPgChfU9RuFY6pTiPISJjbZoFHu1JQwd/TkweQ2c8ZNoiitzC8ZghgN6sxNvhVdf/iIyMnE6Sb5wOgjQPJ4J4ySmVMlwrF5Z8qxN04ZGaQF7VI59WoDHkgun6z4+BolzzKyNDUEa9lmSKMuuwQz6SCMoMAU5xucUax7XGAZjd9Uk0c9bXXuNSbIxa5mYkKbSQCSkvD+WXNb7QXSAwwQxVLFBrvptVFybhj7pATdKp8khVyYqRWc60mExeq4p9mj2SqYFGhNojHhBTGc5VqeT4c5rbqNjIOUN5KZmyklSzMn7tFOzvI5nyaGe/5byt1qtNKF/wjGtwb26OZR/rjWBIyrpgyfSUJrqWhjGV7VDnRfkpdN1orSl757Td69pmis2218x/fn/QPPfWf6bl4HWwr6DfadIPt48nOD7DzCOCudgPCn8oCBEzDEdy7ZHa0O7+Yr9/h1KaZw/cTq/43R6yykZAWpEhjJvl7mWUxhQIj91CA4fA02qr6+1xYeWTdRwamnuAm5ytF1IR/0eczpjHh7QrfiR6OuXMj38CZrBOTbkJlScTsRhIAwTYRRvm/VllaeJfMkHAoal1vXinCkTiDwCg4GCReQ4UUtYaqUEiFQUmZjyuETGMJXz7Jh8RoYgk9xD9Ewq6Xl/gidROVa/N4v7r790YvqF6Bfgb52g1eBODsTej6Itm8CBJjpemJYr09Ipwwvbl3HvMUYO0fEhGVM0KVBnl/Ms1r5XmhbYGRnd6jYB00gRdx4U8UEAuvfHlq/DxNfuyDn4woCa35MqY3I6eB5wKCToAax1bp5aC3BXPQ36ftwFXfQ3Zf8OAgJH0eFUsBBCl2CmaZobuu5G2FvVeB3wSEetZmFnHcAM7GcQOBtshDwemtmB76kAAQAASURBVDSBSZuCMX1i/Mz/AEZ3YPAHtkH0GC1JOiLdfvApgcfDamPLI4sP0fOAxURF6xUHr4uZCogEQwjyOcMJ+EAcR1Sb3oN3mNOB0Pa/aEHnP3yLe/8N7rvfEqcR9+49453nPBjcJGBwqAq6mhFsyHrBq2Qsgd8Z+M1yJfn8PCfAJpvB7U0zd94QvU+QgJ7/NiCC+PeVJvBIxCvRjrbKYmxPl8aA12NW/hOAYGu2WNNW0jAfT9IKCOmTLASREEZ0mHiucpfe8NL2vLA9vTJpXNXzIZyZQiiapw1igmWUNIn2SUJgr0Tfr9+EovE3nRXnQRM8vB9a3kbHWz8sjn95T0rTqHkTdTEQE8MF5kbNzPV83OB5SvZlAfpeaBatVyRLw1RNohhKTKhZPRHQqqHrXtB3L4rOWq3p7txsygePu/iPxsFjKIZQxvRsNq/Zbj6nsVe0/RvaZ3/F8bNfMW4adIioIMx9HSKbd9/jvvt/cnf7/8X7Iw/H3zIMfyeMzFR0mBhx6ThqhMUwBk9QkQc/CYCRkuJsAthG2Rf8ZGnuO5xTCexxKH2kOY3ofi4e9PEO1e+w4xnz/M2nN4uCw9+9w999j//wLXE8429vU2xQxYzQV0hfzfqr2T0zS1iRjYdqICD/7hx8GcEEiv7vJS2/nIxlSYNzkLHZYypOZnDHCtiUwJ2uvU4AoYwEW7vBuZ+vxdU2z7C2W7B3cg5Rg78i93AqckUhTAQ/pu/P+DCwiYkBbFqem45XTU+fTDJE6kL0OrMG6mxakUAepKjbg8SGzmOblPyeNYkgmmKD51s/SAEcpFEnzGJNdrvO117aIatrWH6bWfpPNXmeBoHXNyguOYHLg0TUAkYKJU8AiU5ZrkEhMjF9/5yufb5g9tSyHJLPzdf/AvCpCj5jWjabN+x3f0jTXNPv/4Tbf/i/pv/LyGfPhcSyaWHTgNGKYTS8fWh5f3eDc3A8/prx23/G9fdHzHhGf/Ov+ebr/zO3d/+eyZ+JeEy6PvIkjIti7iLvbWakaRR3XvNen4tW3Wj3mHPHZ87QG89rdwYmutMR06gyVaQ3W3S/wx9usS+/lGLuExvK4XBb/sXxXJpE0yE1iZxOzPM6PtSmkhkMnhnBheXHY0ZwZt7U+W3dKFp7MdSj31MQaZisqXqK/jG4YzaLBnLbXGPt/iIr7Meurn2Bte2jx1g3hnJsyN4iMTiZHEJky3w40UaRjmswvGo2vGk27FTDGAPnKPrn+djV7x0oNcVGaW4QoGe3cVXeoPFTJATRDn8bPd+480JjXStFg2bN5F0z7Z5aj6/4y3/z6Gf18cetHytJSZYlIPCs9WnttuSHQJnYuuQnAst4oFLDuWmuMbphu/mS7R/+zzz8k9dcvYrst/DPX8MfvWq52Vpuj47ffnD85kNgGAX8PNlYXm3oFA+vnmGv9imP+BWv7I6u/bd4f+R4estw/AbiqTSPcz4MSB4dA5PgP/joOTqfckaJI0YpbmPL3mu+ClLzXZ0nbBPx05nN+Bazu0O3DWE4EFIOofsd5tmbnwf4BJeM6ESfPE4SG8JpJEzgp4if9KJJZIgz0AOMzFrAMkW5NEXNAHFtKgczCJxjRXn83Dxmnt7KLL9co0ze/WCNYZRenEOf0kDe9CIbs66ZQxjL1GCODc4dcImUFPw417rBE+IZm/aQVmleNj1fNFuudFvqsGOYuGd5jAC0URhaaRKhuFGK59ZxvRkLuSQExXiUGvDh3PAuRt6GUcglccKnxpuLoejkzmBrRIjHNRg7g8EzkzVPLj9uEH3MD6BeT9FW1Op2WJJJmirmN3ZfkUkysSzjC9OiRiFNIiplaJs9r17+c+xX/zvuP3vJw0vFf/uXgf/9P+x586zBh8j3d473B8cwRnwI3B7g/XeaMMiknz0H7ORTfRHQPuC7Ht/1WG3YmZ7N/s8I7sDh4d/x/ft/zen0Fh89DvEkINbvU6N0yixCZMBxwmMSuNhozYPZsNeGMbaYh55n04Q1gavzhDt5bD/QbE9E/x8Iw6EQ0ezLLzEvv/jpDOF1bPBe8obTGTd4wiQ1rPNarvOoSmzYJEZ7qwwjegEA14TKHB/ybRAWYPAUY8l3YS03N9cZwKN9tM4jXJTvH4JjTOxyrVva5pq2vUq6wf/2px2f1Yprp9dfYP0eCP6BpXSSg/C+JGrARQ1g704FOBBQwaUA4dlryxfNjhe2p1WanbLsVXY097wPIbmVezolkhGtkoJe9D9FqL0lOfpa0egxTcQjXaPxrHFOcecMt/EkSW2cAbOcuGlmsWs0KJ9kD5JpGjwGSR4dl8Xo1Jxm6QujlmtguE6ufHAFOJclDDwb56JTCrxcBGia9ort5ssimJ+ZFfK5VIBbFbDr1521hIWlOYP2udtuUjdtUhGlG9r2Bmu6tDHM2mHD6RseHv6WKZ4gUrRsd7opo0lH7xPYoxabT9HBJTCkDXvM0h8R2qjoJ8PpZNAG7CR6oHYzofQJ7T2hvZegG7yIrTcd5lM1QYMTh/HTIbH+HojjKMXcWSUQWBfGX2br1PIQ8FgaojCBc/c5ziDkI01gVJFF6PXjJkIGKHN3/pSAnlMUhaSoNMbuaNsbjLZYu6NtbmiafWL9dWXkCvfzDfe0adGmA3/GZ0mYigFcawDnZkMGN2WUMxLjxEZpXtiea9PSaM2VbrnWDRuleYhejO68bDRNFJdfo+fiNuuGt8hoZ2NFN1xrMXnJn5lzijtvuI2jxIbgFwWcViI9kIH3vBeK/EpungSizpzAfPvliQC5TV9oDK2aRvXtC+ZNSMdMLNaozq3C7GFO5PIo5qZ/vWAB11+BpO+5fD0z+2+eIAghO/PG1N1/zfWzv8b0n+OefcH7v3jOr34duNqkBCMofDSEAN989znnf/c/8vI//SHh/B3m+/874/k9wZ8KIzo3uvL3AudGQvScg+boXZE4KPIgStxy91pz5wzNaJm8TIfYXkyorI/o9gHfvCNOJ/R4Kq7lqt/9bLAnng5E72awZzgSTgP+dMZPkemcmkReL5pE+TMzi59VmhhYduyzJEYZfU/fj4npZEsSNps1ZM3wDARnBrAApQIiP9b5lJFbYzd07Q1tc1NGMIWJ06H1z3f/NmaLMR1BJf3v6jz0/lgKCO9PTO5YDEpDcKsGMlyZhm1i8rywHc90x0YZhug5e1eS0EZp0Hah/y+MYJ3yBjH4tE1MDUa1iA0Hr7kNI/d+KqB7GZNVMzOCio2GMmhlpeAggSOLku4jawXyrqWlCgh8aZooX6dE6imF9SOS4o8xPdbu6LoXgDTrnHvAp1iwZvk9/jnM0wHasulfs7/5R6irX/PwxRf8wT+O/E9/3fLVyxajl6/iNAb+7v3I17eeYYrcDpFv30TefdhwGjfof/+/4dnwW4bTW9x0TE3EsRjIaQTczGBnHjfMQLBWikOYpGGkDb2yvNCW1hs2QdEfA+2d5KGmCeh2QJl3yXz2WIpA3e8Ihw7z/M3PK+a8mxl/p4Mw/oYBN8gIunPLaQFYNpCBoiU+ZuBXzf4CPuamkZyPGRxYAzx55XNXdD4TC7iON8Q0Ou+Kl0BuEolWbE+bXN1FLmYj5qOf2EA2douxHTqPcyed8LWnhXMHYfmVmmMmNcTosTGyU0bM4LThue14aXpulOUher71vjTYc3O9SBVVsWGDxIbOetouLGPDlGOD4TZO3AdpOuWaolGaKUsiUQEvF4DaS9Hg0X3i3Ch6ujTN+6diftT60TPcFMpNMc5kEgClbGoS22QwvS867nBc6IWvpwPka451Mhm26V/TNNdsr/+Sd3/xGf/qH3n+4vOGXWd482yuq662BqMVt8MZH6BZb8NW4a8VwTREr/DNG66mv+JaWdx0C8D59L1IQqU/yRJVAC7GZH4nbTunRCZiTFOVnTvx1rQYq3hQmja07E7y+rrGp0lERzMGdCu5cd00widd2rb70TEiTiepn8fzLDsxnmXM3McEAl/eK3KDKH+s0iBK/xQQtbw3xdJnIM75Q73qOtigioTX2lgWAlOk1CfDoxrDPFlj+E8Y3W7b1EBOcQHSJDICAi9iw3SYG0NVTUGURmKfmsJ9Ipd8brfcKMuA57vkoZKv5XxsAPpomD0FNBsFXfIbyQ1kEN1wNymOk+GBwH2YmKJohxcgV82BoP4kMsGhZubmNbdFLkvAPNVouhQvLsWip7ISIZNorOlpm33CF9piAi4rewjMdcISXxDJKa00bXNNd/0XvPuHr3jzZeDz55F/9eddiQdGK948azhNgdGJUf15hHgHm7sRFcT7Q6eJ5ag1wTb4xhK1JmqN7jr09AbjJnbA4fgbpvEu1S5LgS9pbqpSG2ndEoMIuHmE4f7enTEoTrFhYww33sK5odXze+xcwE8RbQ4o8xZ1eMDs9vMxSFjEj2kYPRUbwjgSR1eaRPGCpsIsHaNmhnhpFM3GjjJhVG0sUHIIiSlLSclLq1GaRi9llmrQOdcZLopP1KhAqx6lDY3dJa+a58VA7lNWGH9+XfLkY/4eCP74EoBS2KLOHUtyUDv2Fq2ulNgVt3kcOsob6LXo+eXR4JHAABBFYF20CmMliq9LoduiZyBYRXSl4QXzOO44ivbTEFUphmsQGOYxC0jaP1GSZXGz9lWQmJOX9dKPgB2z+vnjbus18y5rGeXiNydXmX2UejcJECBp9jSlaL/0/PI+fblNqfx9Pd6RDEm0JZgWFTRRib1QhiF6u2W7+Yyr3R9i7E42hjRCDNAenxGj53j8miFMDDgmLyBlduMEAXuiigX0kcRtHnv2aeuru56tUmy8Zhit6L1aRdNF3OBRZiSGgGoHVH+Q9+ZdMmbpUiD+Gbo9ie0nI52J1TMMhLEez5ARDZ/0JLNJnHw/J2lZLyrLQYyZBRw9nrDq1s3dX10BDvJ3c2AOVeGXmX6OyJRAIpc7cEnHr3Z4XehFp5ENMQj8+UCwcwPwmOU3M0qmIhcQst4fMRV0DhBJjVYnE7xqoymmQInRXxI2RQG/smRM3STK8SEmRZIQBOgZzgbnNUOsndFncHUBCCOsyxo8XV7TlpkRvGT1PgX6XowJq9sWWryFgZe1zyKk2LBoqJSiR6ekLRvvWOoR/OVrWkrD5Ncg8W9uZIlOrPzcdy+5efbXhC//KcfrPeMzy8tXnjc3Mt7lAwwTDKMUKNZGHjaGuHmO1pbN5jOa9obhNDDWx5W50QXpHC/JTKyYsileRTHxuFWWO29pR0tvAt3g6Y4arWWqQrcDajPMz9P2xUguBPeTpSLidKqYPLcy8p2aRGGYRDImxYccG+qV44K8l1i9P9kLx/UemEeY07/aRK825JPHTnEixdSa5TdGAUOmtH8EBUZZYW1ou9CD1HoVI/zPZwRLTEgsvnAuzQcZ2VyauqyZfqWZjC9yIjWIk5NV0XQLi30espmFKePhOTas84YcG8ZJMznxFRir4w4UABgounN1Sq5QoLRguinR/miTqKzLOcKPN5FNvOMSM5YgcI4LOf5r85hldfn5lyOgJR6YFp3yjb57wW7/Dwhv/pKHV89Qnym+eB54eWUfgcAAk4sMY+ThHEqMOI3gXBqH1oquuaHvXjDqhvEMUxSjUxMl3jsiOs6mJuV9VrkdSEJ/CBO30bFHM6LYjZbdMGFtwDQK23v05gzGoLxHtQf06UDwLoHBd5hnPyF/CK5iAEve4B/uEtB8IiQQOOcPNRu4zhlgCfTI7THFB3mPdZzI00Xrtdbsm4LM39fMQKCAwEOSpBpjICjJH5Q2KY+Y9SGhAgI/AQiWaUJKbChycu64MIMr+uApHuQcIpMlmkToaLU0zbOM1IDkWXmfn2LSBFYUxmNb8ofZc+RSbHBOMXnNKeiSw7m4LJY/rt0579Y/ptR8PC2gqu/U6vfrBnQGDOPFZ5sBJIXSqX5QYhh98ZUnQ0+ttIB/McwxRNsEAnd07Qs2mz+g6T8j3vwRVy8Dr680r64a+vZxDPMhMjoxh5qcXBsxAG5+zTEoSBNGKIuxMunXNFcY0+P9kSmBu7qq6ZbAmSjf5/ftVWK2+omtnhiVkTzCGZox4rzG2ki7jaLJ6SVOqNOcR/jDLartU41x/sGmcm4M4R3+7vsSGwi+ahKpWVJqFR8+tvLUwCMWYFzKw+QJTFh6u+TbiuxACIU1OEXRTs1TimWvLTWGeVRj/BIr+BH56D217m8dG7J3QF1TxNRYjokaYaGAwJvUHPZEBnzBG3IdlRmPs6+FKeQzAdqWuuEheY1IjMieI54pHSOfQN4aBIY1ELyMCD8WhqpB4KcA4PXpc+mxa4PpRbaStMKLN9SiVngMwOUJ4RgDIkEosoNGt3TdK9yzL7h+Efj8OXx+rbjeXiA2hcjoIz57fqxAuagfxxB1QX4kg47WbtNUaiAwPt4jF8C1Qj7hiIvCeD+kBsStbriNhjZopqhoRjFzBIg+0G4j9jAUCUi9ucX3O7R3YvoGT4PBwREGkYKoY4P8biQOA37ws9yckxx1CqtpQ1Vrh/+wZEiOEXm/L+ST/BgXJtAyCVGn+ruW5soN+mNwZVpgIiITJ7boemeJuIxFfcr6XbB3f88I/oF1On2N0jqNZoh2X+niZzH2RwVcoI2Ra93QG0nSnqVufXb3PgTH99GVZPYcfClemygXfpvGtjZKs1eKaxNodaC3ou8XvXQ2zoPm9r7l3allioqvY+BDOHMIUkysQZ48MtcpA1qYrKcoha/SwpgU3d1qxPgjDN96ZTCnHnurNXXmTWyW0BAGjGxoOs6bGIjOrlMapVqUNomh8Yymuaoe/zLgI6/VFAZv/Vp8uq+1MtYFUuBdP/treP3XjPs9510HrxX7F4GuzUmb6PeEANOt5rO/PdB9+58I4weOd/+Gb7//f/DN8DVZ19gC2/RePDEZC1C6zKfoGZBRpiGG9E/MBG91w3DseJ46cqfzyLPzSL93mGaiGyaacURtNui2JRxuMffvJEnTRkY2djeoVoKyMnZO2jLzdzqlUYzbFIzviNMJf/eB6bvvGd+diAHO93AeDKezwQfF2RmmtEH4KGYBD5CAXxgI3EZXzAoPwXEfRs6pgCqMvxSAhc0Gtjpfa4AjS5zkAD4ExznKozgFrHQ+87helgioP/sgH0YCYn4+2HM+f8s0GXyJDbPWdB7vFmb6lBI14bCaGNgoTacsrdY8sx3PbUefGgynKMeq1k7OYyc6CeT3Krm8KsON0sXRt0/an/I6YDxrPhxaPoyWKSi+jp4P/iwgempYaFQZj9NKHFBDFI1q7b0Ux5VWmRzLsABN81rHhnXTqNbaqx+r3F4MLuS41aC5gjIpAAL2aCVjXCqxgWWMy6KVEb1FeKQD/dgIprotdfqb5pqb6z9n++yvidvXDC9eEv6q4R//aeTza0NrFfu+ZddpjFbcDZ6vbx1f38nI5/Uejm8i7/UX6PPnXG+e8ZXueP/hX+PcgdPpHeP0ni7OY7uSWHh0FJkZp+cOddbAPkePVZpjMzE2e95NDRtn+MwZvvQntg/i6Lw75RFPceYOh3vC4Vacedsevb2W2GAsGNETVsmsIfpkNjee5OfTAX//ThK1NO49ffc97laYwOd7ONx9PDaMyGinABUS6zLAc4iOu8Q0q5MsOV/k+s9FSj2iRXq8KToOcZbbOYZ5dHkiypisblAYrLZF51OkQ9piNCrnYmLswifFhtPpW7Q2j/TBZZLoTB4vXmsEg6ONsv9ZDDdNx/OkF56Py/dePpcpBg5+SlpkM8tpqxuJDdpwk/T9eh3YGV+M4mCODfejnfMGP/KQ9M7kOOsCwudjn4F8l64fm/bXPPFQFxpimPLxxvCPWY9lYjxZGxWomqx5zVMhSmkau8Wa/uKEAOSG8cxsrKOU0ZaufU7XvaBprtns/pgP/92/4s/+SeBfvoYXO81ffLV9BALfHz3DGPju3vHv3zr+5i0MJwF+hqPCDQoCdEDz7K94oyzePXB//+94/+HfME7vUER89MLYSHt3DfrHGMWLgCjs2QDufE+Ikfd2w05bbmPLeLvl2eDorOdmmLgZB5rdGd1q7MMD4XCP7jeotkN/+Bb9/W/RycG7xIZs5pJMaiHFhsMt4XAnjeSHO9x3b3F3A9FHxjvP4b3meLCEAMPZMnkBD0Dy1xr4HROQmRvIQwwckhRBLtqm6Avgs/YVqBtGULGFw5xz5dhwjp5TlDF6AQdl4sva7cJLwKx05p0/fmLe8D3TZJL0y1SaRLV3QJE1K3VFBBxNig0Gw5VteGF7dhUQ9y7FhjEG7vzIwU+kOSR2qmGnG3pluNYNN8qwV9I83hlfjIpCkOnC+2PDcTKMQfN1iLxPuodTnE3pJH+Q+KyVKprAMgNn5mZOrGGbutnzsamA9fpYHKmHy+V5ssZ2bhjnW7VqCktrbhzrQgrIgK9SvoA8GqrGdVdyyq59wcvP/nse/vSfcvzMcPMi8N//peKf/snTEm3vD563D3D7AKcTDA8KdRexU3wEAjXnidBu0Luv0O7MLjqm6Z77gyV4ISed4qnExbktlqcQTSHOxOi59QNqOvAQJjplOLWe0W55fW7YAJ9NhnE8s915rA1sjgObYUK3Bt23mLsP+A/fopo+sYI7YQpDyR/KJ5KaxvMk0T3+9hZ3dyixYbhVDA8yQXQ6G87OFHJJXmuvkQwAj6leGtO7rg2is89C7Q8A2fhsGSNyPM0AaW4gD0G01+XK40kvgVxj5GO8njj7Kes8vsP55kfFhuDHtA+mpnEUTVirNFdGYkP2GdFKcefFZ+QUHbdu5M6PjNHTJhm+rbY0SnOlG26UZa8UGwV9ZTytdcRNmvuDxIYpaL7xmnfhxCHVFLmm65TBEQrztx4SU9W1+UOrBnaX968nA+afL98r3xIWUjEi2qgTuUtjzCbVEbuFdnuODTPBLE06hgl0Q0y+A5v+M/b7P6bpXmKu/gEP/6tn/E//reIvv+y5ugACA9IkPkUezoItmClikltcZv6W9xICJoHAKnj0NBVQ2DTP2O//BK07vD9yGL7hNHyDi2M5KipGYQsjwLFMxmpUdIzR8c6dGWOgVVr0xpvA2yjTqa9Dw2fOsLOeznqcG9mfRprdiO3vCQ8P2Lv3qKaVPKLfCRZxwQSunh4CLsaGw3vF8GAJQXEYLA+j5RR0qSlyTKjBYJgNI9fSECNzbBiCX0gc1ZMDNfEhrxAjQ6onc5OoziOGGHBKpfOioW322GaH0U3KJfrUZLh4Cvyk9XtpiL+HdRi+wRi70OAByKOJkDpbqRunozhuvjAtv+6ueGn6ovGYxdcfopg0fTsNxbGxPulsFHBGQGCTxNpjuQBzV8Y5hQ5wGjTvTi2/9ZohRn4Tztw6Ad2ESVIJ4afnyXpyBAHhhIEwCjvAblJCvH8kvZBXHSTla621l8fXklt22ofrYti7E5GklxpHmrQxZAO23Jk5xYA2G/r+VdHr6bqXWLstj+n98nXksY3c0cujHRLQRdIjRp+0W27ou5cYu2Pz7K/58C/+in/1TwJ/+ubxWFdeHx4co4u8Pzj+43c9v/3wDzmN8P4//Ev+6P/2Z/zdb/9PnMdbzqd3EE5c6warNA9h4j44cY9EGF2nFIxAzP3e+RP3SR/0YDeMpuddNGyUZXgQDa3dIGDP9uzph1vs5gHdGszuFn/3QQKxMWL2UAdibZZgTxZn944wHPF3t/jDEXzAPUyc7wOnB030AhqcTobzJIlaLubGBPYMwJCKOA88RMddxba595J45PHWWucTJPh2SsbmcrDOoHFmEg9BvHnHGBgVqcOmMbot4E7WgLamx5jtkuUXs7HjWBKtT9HzOp6+wxiL9+d0Hs9SAllHN7PWYlI6MxGuteW13XBjWxlrV5adtrRohui5DyPfT6cSG2qWR2YwbJIx0F6J9ufOeDorZi86MYE1kXHUfBhtig2Br8PIbTbLigGnYqUpShmXM1pxDpr3fiRU4065aMqrjg0/hhWxNFqYr9VQxdOsnyzg+VRiQ2bO5gQyIuYa2+0XyYF9K9rPJjU+qqQ8P7ZWZgHy5AZXSPFAXpOm716w+fy/5+6ffcVnbyJ//hL+h7/asOsvv8dne4tW8HDO+uLAm8jDXkx3bl++ob/+n/ni7T+B8y3v3/5f+Pqb/ysNo2j+JtA/sylMYnRlYPTOj7z3Z4mHwCklIt8ZAQIeYku43/DsJGCPm0ai9zS7I0pDc3fA7N6h2hbVtuh+g95sSzxQCfQBwDsZ7x5T8nsaCA8P+MNA9IHpwTHew+lBEYJmPGsOg+XsDCEopjDHBc8MAtfgzkP0DFFiw12SI8jnez7P6yWyGOaRg7RLSdkpscYnIqfE3BHZEYtNI93ZJMzaXSnosrxQed5KY959gmzMcPoWY2wxjY1VgyPvi/I+3SJ32CnNc9uxN00p6K61xIlT8HzvT3xw59I0dgn8BrAxpEaOERBYWW6U4tp4YY1bXzWJFOMkseG7lDd8HSY++HMZle+1KQBPBoZbpYlKnvdMEPCs2aXHnMp0VJZ8WccK+VpLsVxmSNQ6nPLYuX1KmQ6AUGJDZJaJicje0HXP2W0+L5/zpZWLdzkPIKYmvKrikjE9u+0fsH/+j4n7L7j96nP+8b8I/B//2dXFx8zr9uj47t7z9Z3nP34D3/wXgxqylnikCQEVItFoHj7/Ev3mC8zkePnbr5jcA7e3Ij02KoeKAR38IygsQAKBLcZuiWHi+zAQxnve+zNbbTk0ezxbXvuWjYLPnSH4E5t9wDSe7vBAezihWovSGr3p0ZsNqkkTV8aUZjIgZiUZCJ5G/MMDYTgRQ8A/jJw++CpvsJxOhmG0JW84eUPI8SGu2cAxgcEeHylNoqyBWstJwczOKRrAqVmRz9ksjZAbyMfUQM4a0lq3NGaL1hZt2qqZqMl+AnnybM5tx0/KG07n71PesAR3CsMvxTIhR3hApsm2SnNtGjba0mnDTTKV3SnLED3v/IlbP5am+al679nAaKctO2W50QL07PRMLrFm3hmdU9yPlm+cYQTexpFbfxbfCyJBGRqjFzr2eY/OkVsK3yp/XjeBlZ5BnAyyVmd4rHbqdTOpbjhJjqVSY4hEKJklpDwZfk6NLdPTdc/Y9J+nZt3SVyS/9tpLJEZdmt+1L8l2+4cc/vgf89U/V/zlF5HPbxr+9Iun2fSnMfDuEHh/Bw8PivGk0ij4uYA/KvgF4893Hb6T66/Vlmt/wpgtIZyT98DXTHEqx14lrD0SUUrLftfsJJac4X0YOEyORmmZlomBt0Y0YR+mlvFec3V2NDpwcx6TLqjDNCPN+yNm/z1Ka5TRkk8YAybFdlPl2+NIGAbCaST6gB880yEUbdnprDkeDMPZEmJinntpIEMa32aWjcmAz5iaQCMCAufYUBue5Wm6ulFU64XXjWZYNlVdihVjIpiUmuJCA7n2oAgha3z/fCB4nG7RXl+MDUIoSXVFqilybOhRUkMoTatnKQjRehWz6Q/+XIgl2cxqIrLVsKdhqxo2WnKHjDn0WnCH3EDOBrMPo+W7yTIAXwcnxDM/lSZRNuY0SqHDzErPEeJjzP/Ht+TIkqJFkVbLf1PJSJHyg7JyDVY3ouICCCZN+mpladqrpOf6DKUs3h9xzi3IKnUuobXkCiCkst3u13Rv/gWnF684frbhX/5Dzz/701k24dIapsDtKXI4wziCnjzaTURtigxE0ArjPCYEtJtQSc5JhYAKXmja3Q19/BPa/g3Bn2nu/xe+dwPj+E5iQT720YFKTSLTYuymSJwe/YHRCw50SgSkt6ahV5Zb2zPElr1v2I+S7784n+k3nqaL9Hf3tO+P6DbFhsai26bEhsXyHn86E0dH9JEwBs73AXeS2HAeDA8PlodTg49w8oZD0IzVBJFnbhJ9jA1cSz9kacpjFLnFTLQxFdkhEyry9Ewxioyzl8Ayj1AYs6Gzu0KkbJur0kyoa4zwCxi9PZEyf9pj/nw1m/9q6+8VCA5hQjF354suHaTgIv9yIaeRorXXlivd8lw3s5Zn9bXok0VfTkC7CobFYEcpGh0WwTjXriFIUXcKiocYGJg1EpOypiRqMWnExPmxtRJdJKs0FG3jxLDRDcbMY9Y6jUw8Xl3ROJND4oCRenJBq1AYuHKnUBK5DJDl45YNsKwSp+eIdPDb5koAPysabTMQ/UNaxnpVCM4aPwDGtNjmGts8w1+94bPPA//kD3teXj8tjfFsL8/98tqy60Ze7BwP58hw8sRnf8b2/ecoZZimB2I40SZHzmPuxJH8bSvwB2Zn8CE4JqW5DyO3eawnKvZec3aGZgyEEGnOgeYkwhl6rA64Mai2JU4jajyX5KxmBMfpJKOcp0HMY8YRf/eAe5gIPuJPkfGomc5iMuacZvIylhGC6PyVYo56TCuNc8alE21m5oxxZl2R2KjlZZdmxTzOFaIAHVMQ/eD8HGXsVzdJv69bdOfXjru5iJPvXSXf8PP1dkQ2xhfzt/mx8nWUWFv5HE/FSas0e9PwTHdF5iE3iUZU0TbNsQGWjSI5VvI4LYpWRRot41tGxwXYk8c6HxJ7IktN+LSJZT3Poh+u5qbRYhy/AoHX4K9egcP59/m4z59BKJIcy98vxy/ll3IMc0ytSsb5ORDH71yUad2m2PD48S+tesqhBohlimDLePOC168if/Y5/PqFfRIEzmvTitEjiGHUtpNEUSYJIg8verT/Ajvc0N9/LqNDfiyjRzOYFYmxcq9NYN+Y2Gs6whDE2KhVYpBwoywPwdI4g4/QnQzdII9mmog2HjihJoceR9Hnm8a5cNMmFXQ2TQqk++TYcDgxPThiAHeKnB40p8GU8UDnNZPPMSF9pYoPuYCr/mVwJo8bP6XPtW4YrVce7SrJnkJ2U6UTy6+nsdtFk6gu4NaryLt8QsYl0lD+RzSJ5EhIE1SK1b1puDEtWil2qknsf7UYW81shJDPFeaiNo995/yh0VXekJtEOuITaP+QGnhDmjpwcZaTqrX+cjwwShdmv2I5Wh3CVPaYrJeXV+0fMAPhj/0DyvfM5aGAx7nIS88d5+ZQIM4NIkUa3W0SuzM3eHKjyXNpzHP92pQShW4BAa6J2zeMVzeE54pfv/jh8eXJR4YpMkzC/NOHQHNMjf+KgeEbg+ssoVGo0NC9/0zASN0IwzIGQpJTCmTt23S88+/SeR6UJSTg1CpHiJF7M3IbW1oaPKLpOI4ae5YmldYRpR2mDSijiCGA90twZ13MpYJGYsOAH6SgE6BHcz4Kyy/LlU3J6CWs2H7l4ciSMdlPYPYVqOPgGgiuV9m7UiFXn8OuijFO5XNLRjazM7w1nZg/JQbwZRJEJjj8/LxB5OWcmEv7kaV3QMpw4rwb5LyhQbHRlp1paJRmqxt2yrJRs0lOlszK79mXY5AlY2SPygZ9rQ40WuSkFq8xKk5BpwZ/KGxJlx6vXZ3+ayZ2uTLzsYuBWDeFUAvwtzZhzmutvbn4fQSU5NEqlihFiQ0sYwP59iT9oXVb6ptcr6ynGdd5RP6dSbWRMVuM3fPwvOHLZ4E/etXw6iN1A4hMzOgjzsE0KvxZYaalFqjyMxBc64IC2GZL072k90ecO9CM7zlhCEwLDeR5aZS2WNMRlMbpjhDGlJeH4nDfKI1Xkkccwv+PvX/5tSTL0vvA336Y2Xnch7tHREZkZmWVikWqWlT1Qw2pByTA5kjT/hc0LxLQWBNqJmiikQANxRGHJAQQDfVMFISeqQW12BQptlisLGZWZDzc7+s8zGw/NFh7bdt27nWPzPCgclI7cOPcl597jtm2ZWt96/u+ZXGzY+MM57PDd5mUchlYnchRlAQAxkkDCcBY/Z48pjmIbdQpkhOkSfKGeTSVdT4WVqk2kFX2/euS3hZrvcUmZxU3WDyB27UCg7XOQBrJGodorIWc29D5bZH9d8+aROXVrJoJ32fFOAJeVLPPYsNcn7sFgcXKrZDNSpNobzsBdIsn8AOSH4wNNqDvVRvJfQFve2QwcWdTtYS4tI2ZamyQpp3WFTrjYTCLNUR71evjh5n/z3//g+CvuagOqu+DRD1yFOA5L1D0+tGVmOALg3Oow7FTQxSB57VEe29wtsN3t4T9NadXG4bbxBe3300BbW1icnohv7WG7GxlbbbxoYLAIE2L/hXOX+Hime70y6LklChYDsrqobXGsaYj4QkmkLNYJ+mA2mgzD8lz6zxkMe7cR7EVk+GBukcitk8YC64PGDdi3PKejLPkmCr4K/6/4gMseIPEhvPJcpw854I5VHVheZ5fNzO/zCW07lDijQ6n12SzrbdVPaAtX1UoP8sjit98ywBWi44fyjJm9Z7mH569G/+CEfzhJd09VwuJlwKxQfx0NsbSWZFs37i+FunKcjjnSMyZQ565D1MNnlWa3QAxfWHfbLErH6+udO2nAtABZWqn4W2eOeUkEvwiadGbYEK8pJJZCkaHdPN7Y+kyZfjdhLWeoV8YD9Y4bBmw9XyCbpBIHxcGsHRGjwCFdXmqfqkxlkFa8YwOy1qksPI6q4dpzkRj6PyGzu/lYvNbTOPr+JypvFgBtKCV1UmZxuH9FTlH+v4VV7d/RPzi3+Z0c0X+meWv/R4fBIF1xZS5exLGz9eP4v0XAsTrW65v/m02m28BuLv7n7kPI87YKjNqmQ4xC0MO4JBnHuLEY5pX/IdDYYRNbiCeem4mz9YmbsaZ23Fm2Eqh3x9Guv2M7S22d9KR225WXfpa0CnAcy6sv9PMfIjMB2kuxNlyerJMkxWQJ1iOs+McnbCZk+U+SyIg3lOZpxw4lfOmbOdzWoBgWEA9yt6cm2OhhuVL4aZS0DIcB5X4qY9fJ4+lSEhpIhsn7M40E6Otyfx6eGCsNi8xfv+CLqeJmE1hmit7hxW4Y4pCQJIsQ2cd166vQ/DEzyxyKOO8jkn2QBsblm5lsXXBscUVEHhpEimjZ5qWYV1Po+c+w305N4dcBkSU41wLZvLqZjgUtYA3hnMcmecDGFuSYQHTgJoQv/cY5QvQpTkH6pFah7JUQL3YahDwCDhmyrFaOFJgzFAYntvasDIVhFriw8L686WD/5KlhWfTXUkzwQ5sb/8qd3+w46//LPNvftG/qAy4XN88Bt4eM/cnSeqOZ+nwpwSno8EUD8DsHL67Zdh8wuPhwCHNtRmmBSxQgc3qZ4UkrckI2+s+jiQyg9FYveU+O7axq6y7zRDxXWZ4SvS7GdcFbAeut7jtEzi7sHtKbMgxkuZALkMJ0pSYD6n4dck0+fOFTcwYLKckQySnbHjKayuIpxyLNAtOpckhTbDEnNZen5ds4Lo3WYo2/VyHPE0Ny0/ivPp8dgIYZJX5ysRtV5QkskebeJx0D84fFRvmcMZZI0yeRkm0MIDlTuCzADwyaNRwZbviByzn4pwjU1RP0yCxoTD99B5hjAC+qvJRJdFWm0ROhsSBMP1Skn8psUHyhgmx71EGVc6ZZNasqdZHEMCl5Z4PAvRaZeM37N+XrFj0+lc2TTs3oK7ChNLjtnikZjKxxgZ9jeLfqH7hA85tqjdbfcoK8hS/thxfzCFaf8BheMPm5g+5+9lP4TPDj79I/OzN+2Oerq8fI28PifuTSD7blaypYLCbo3iBjgUgzoHN8An73RfM4cQ0vmOOT/hcwO5iZeCMqZYYGAF8bHn9U2GtzES+CY7BeE4ucWUcMXTwsOX6HPAusd8GtieRghsH3RBwmzPWGczqo/jklv2oxVw4Z8JZ4tw8Cgh8Pkv8GWfHOVjOseznZDgVqxhQIEGaRPJ15KlRQxzyXJtF8FwdE5t4QIaRZQBqaBufJZZKpHQCRRj17ltASMkNThhjiXF9j2j9/z8uNhyx1haP4BIbclruiwUAXsUGDNeuZ++6agUx58RDErn3IYWqqtDZFLkwpV35950VkGeLk7rCrGuKEC1qB/t07rhPhrcltj40g6VqvlCWAu/OGHxeZLmwgLyYJc62x7sCvBdAsM4KWb6xjg1qyVeba7XRk2vu1aqHDFLDGONwflN8n12JDWsGpy05pLy+JY+oKsL+lXgCD59gbv4S208yX9xaPr152RNY13lKvDsEnsbFF9i4TOoM03bApr4OiDKNnZVJET82X9sN3t9g7UDffYv3O+Z5Iuj7zqI8S0Ayy/swJhXfSie6vQynFHgXRyKiABHwY+ApO/rg+DRaxnlm6KL4Bw+p1BsR4ygDywN6mbRYvjaN42zIUWLDNNqan85lBso5lrk5pfnQsv5USQSUZqV8qDVEm0ekvMwUaUHgFhiezfJzBYI0vzqnyITOEtCGQZHO24V4JOFvxuXY2InEZgDs91cLzOFIyhcK5Jye5Q0uFw/fcu3trefa9WLvUAD5hxQ4GXlfd3GsikxtihmopCudQaBWlFsoBBMBg1exYex4Fy1vy7l4KjG2WnAoGaKQehaYdokJ2pRZNkuT85lLoLiAvrVx1IK+L/jn5sUmRpQVUu3QvAb9LCPWTwLieVyR8H8XCeCSCAMy6K/b/ZS3n9+y+SLzyZvM7fbD8NXdU+D+lHgaZW5ATpA6RxgGsrXEzhF9uTc11lOqGjDRojONRQ2gjTfxFe+7K+bpoeRXuofK/SH551TQAopmZPCkktfUS7ozYke4xRGDIz5t2J+FMb4/zez2UYgnFhlMayXG6VKXC/EFhzpzaG5iQ8kbjrNbWUGcaIDgtmlcHjUuKPjbWkGoZYwS09JFvZHqXUMO5OKKLvdZ9QDONIpkvBCkSmOwtUFMaSYEwcDaAaMfExt0/QUj+LewUhwhq5RRJ9FKIB5qh93w2g180m24tn3tvIvkVzbkt/HMuzDWyYLHIpuPLMmaLUFZCzqRZxjx+HOx3oxTgmleBkB9fe74RZr503DgXJhiCsApGIyhgMFLMi0yOukeXlt5PXOOzPMjIZ7QUse6Ad/dYq2AP4sNQyiDbg71eKnHYmtsr5OPReKig3NiZTro5GNrjPg7psbzzu3Zbj5lu/m8JHK+JnD6OtQPdD1AbqHkq8RL5KI7fHeLMZ5u/3t8+3/6q/zlfzvxb3xq+N03/oOyLl1f3c0cxsjbQ+TnbxNf3evwF8PhJ3uG4W/SjTOf//xHTPMj7w5/im0Tu3IeMBJgD2Wi/bsw8jacOZQr/VCSNB0W9KUf+IXfcZs8W+P4Yt7yk1PProt0Vgq63T6UABxx3YTfHDEvNKVypEzsLR34GcaTBGNl+Z0mzzlIYD4ly0O0PCFB+IlYwUXxzIkc87yScLbyzSpfbgr3FtRpvb0ylOSucGIMpVDwhQksAI8O+9ACIsbzi0xUHdjWyo1jkrtu/AhGcAhHrDUsQ4tkSInNmR5qbNhbz6si99ZBTpuSeJ2zWEHchyVJOyYB0DU2WGwBimQf7K3nyrQTvwUE7lxijmKo/1TO41eTxIZ/FU6ccyixIdTjnAu4CgI6D8jrUqB6bz2HODFNd8JQM5ahf03fvwIQZmWjFsjN8UwlUZahegv4o0CvNInGJTbkuTSI4jJks7xnjQ0zGWOkiOuqX/jNM1A35/CM5auPLzFBO3/N7vqvkD/9q4w3N3z7+cDf+L9E/u9/9cPyb11f3c38/G3gF9/C4SixYDwvPqBmFgZ/chbjO/rdT3nz6o/wbiDEkXF8xxwe2OYihDOGkFOVbo45EoxMKCcnpjTyTZx4iDPOGO7iyNf+xHWRcf0sbfnp/Y7bIu+77gNXw0zfl6bRkHDdLGxAxyphy1GSM72EQjDMoyuxQQCD4+QZg3Trz8nylCRRi1CsH1KVd5+yxLgxh1qUtdOqXxpA1A56ae0PWuavcubEBsIVZogTmbcCPGWYCygTbybGc+3y12GvmqwV738BHr9/xhXDE8naBuDR+BDxeZl2vLOeW9ezLf58GyugXW9slbDdh6myEI4F6JlzwmEYSr7glS1oOq7MkjtsbJJGkU/EZKpEf4kNgV/Gc/UN1IEXlGOrUk9tSG3LdT7myGOaCVmGWhljF0ZlbcQ+v87WvnuzxGEkNpg0l2I6NXLYdlDWBI3yajCWriTv8iy+2Fl5+n6R5mkcqIC1dcS4WMUsL25RPHi/o/PXWDcwbH/Cwx/8ET/+P2f+0o8yv/vG8+M3a8/0y/Wvvhn5k28S3z5KPBiPRZZZwFTTTJZ3c6CfxuL3Jwyf7dXv47sbYjzy8Pi/cn//vzDFk7C/8qKe0YLXYLDFq9C6DTEnngi4DPN85JQCW+vZWs+v/I6v85bbuac3hjdPmVd3QWZPGBkIo3HCOsqQObjk4WiMmEZHCOvYoOqAKdmVpPMEPOVU5d3t8CKVbap3HyyxYdmTS86gSomgjc2cxe6oHBUd3KIDniRvLEo3bLWDUNsjkBxisRNKqzyinW0RPqKgC/OjsCdfiA2uiQ37F2KD+n+LzYXIvUMucu80yz2yxAb18bXlut2ZTiwhSmzYN5YQKZXie/JLbMiRX8YzpyRNR4kNC5DWLm8W25gZafAbK6ArvNQQsiuFgH5PV3vsU40H5Zg3zSM9hinPmIaYo0pKZUOLHcQbAX2K7/PyWlxtDFVFZAMGuWZWivdX7Pb/Bt1n/y7nV685frbhj36W+IMfbT4IAn91N0uj+BB5d5AGsd7y8mCYbCd5QsqYOOBCwsSEC5HudMKNZ0gRE0dM/4rBbUjxTEoj0/yADipP8YQlsTFiN3Us8VOtb6zrsbEnJ6lljzmSw5mHKBZVT3Hmzm+5th1b43iTPZ+FTQUG1SrAWgEJtSa9ZI0CK7UQUIc9tbFhzoZTWmL4icVCSodNT0UNoYq2qYC3OpysjQe6N5VAsjDixTKqjRNjiRUKE2Yj/p7GOHxhAVu3eEiD1hiCBwRY7dGU5lIPf/+8IcyPxGgb8FfgyjYntsDOCKFEY8POiQJ5YxzqgXoXxe91LJ8/FusGHfqqCuSNceyc2sU48Q63udaVAOO82AK+HTu+zImfxzNzTtUWQtUCam3ZWSszf4pCyebFEsIUBi7l3a0HmGkutzSL1hZTH1AR5UQiNGhZqh+tN7DqNQ0yM2K3+ey9StL3KQrFamyD9zuc2zEMnzF+/pf59C8n/uDH8NmV5cev308gmUPmf/1q5Jd38O5haRaHrSXZgewge0MWFiBpziTbETtXY4Mfx4UdDGQGxJrd0fWfsN18gc6lmKcHQjzQFaA3Mq/i7HJcDcnItUfJNx1GhqLFUBnnb93A22IV0QNXp4Gbh1iaBzD4SFdyCl2XalVVF0vdKjEhAnPTMK5Nobw0jKdKjskvxoY6bLrBIGC5b405VvY6FLZvUkCYmm9rHiF4lJE9aTt8IRq0NYbGiZwjc3iq71nnYond3F8Awd93/VaBYGG82NqJA0oQhZ317IoU40fdlr/kr3hj/IohOWWxargPE1/NJ8558fZTZptKgW2TvElnzrBFBr1sfKo33BBs7ZjEbPg6G34VR76Zz4w5MpUOnV5+FQzWF1+WK92fnfWFwSxg8EMBcNU7z5SptaYAwVRp3ECK46ormlIsAM+5Aj0xnInxDEXiYnKkg1rIqtwNKMzPQCqdtq67Zujf0G9+xKUvMQlh9bB4ObZgsH6txaB1A/3wOX77OXR7jp//jN/7w8T/49/5sBXE5dKE7u0x8+fv4N2dIZSXtH2dsJ945uAx6f/G64d/yji+K2CXjIpz5YZkjBFvqizDeZ7izCFH5hKQJxKnOFXbjMc08xRnrpwM/XjyG6YwcBscvcncTJ6rU2DoJFHzPuO75wkalE5cpDJHQ5BCIKgUIxoO0YlcC2H43ReAJyIMv3dx4jFN1YtPQHwtsBd7gXa1Uj1NHGJOzCWw19t26bhRvIwU3NHkoQV4dAmoG5biqoI8qfrOLhPnS6f9hemrv+7KeX5/bDCOoXhsvvEbftrteW27Z91KgKc4820419gQL2LDoMfTLA2mrRFv4G2xhahDoCKMwXEIjjkb3uYssSGcVib3uiPUHiJV7gx0VnyLnbXsbccQZ055wsRIitsC+uzKORgaZo3Gy7IHciAEcE680xaQPhVm1VyYD2M5FyKn78r1oQMtFZSW/qow+q3r2QwCSDu3WzWGlP2rcaEFftsBmLAAU767wbz6K7z7g8+4/izxb/4o8tf/yu4790BMmW8fAr98N/PlvcSC8WhIs8GcMv0pYGJaScGzteTdZ1zd/hF9/5oYj7y7+8c8PBwxxOqP3kr5ppzqMCOdUBzjyLG0S8Zw5hBnttbTW8exmzl1e26NZ5ssb2LP68lXKXDnpIizZrEMuJT/ySMVJBiDHMc5SWPoXJilp0yxF8g1NtyX6cOJzCHNdcjQZdH2vrVm/S5WCBEZUlaTMoxINW1XwZ0lMWs69BU8SM/iw8I0XRL/TP4oP6+YJmyuZgU1RvgszY2+ALiv3cDn3Y5X7jmwGFPmGEIBYWJlQGvxmsl0LANiBivXypaSO5QGsibjEVPZmRobvk4TX4fTesheW1DnMlG5MHu8LbYT2RRASsAxTYQ7f0XXfdgTT49zCKdaVMc0cTlRuZ6rauUgnsDaOO8QhYUcrIi1HZvNa5zbFF/o6+oXbhPkC9uHl5nA0kDu+9f0w48k77n5S9ifGf6d3zP80e+8f+hLu355F/jyHTw8GObJkEaDi5lsTR0IpaxgkxLudMCc30IK4Da43e/grn6vyj6Pxz/nnE7IqSiNfGMkbmeqxDPnKPMTFEg3kac8M4dzvXecUuCQZ24KcPDGdnw2dWwnAdC2VoaHWZNxhlWskH2x3NPrcEih4jMny5RNzRum3II7yxDZS+WQAsEt8Htp//Ai4JNzVQ7p81XlUMkhVMotx6hfgTtqebS8n0Z+nWNtDC37cVG9fd8V44jNKuRfx4a+qQFe+4Efd3uubVeZf7L3qcq/u0IuUWCrMhqRAcS1gWylgbzF1Lqit8t5nbEcR9fEBvg6TXxV8oZDnCU/0XPBMmkdKCpGGT5tcuKUUm1O6HG2TYPoUtFnzQIGX6q3bI61HlGf3soGLow/Q65+4a1fsVwjmd4ObIY3VfotKqLnpWXrX96+Jn2d3m/ptz/l4cefkz63vH6V+P1PbbWLe9/61f3Mlw+R+xM8HiEWRjCA6TKmsG5yMqQRUnSQHP0T9DFixkeJDdZDtycPN9g4MoQDm+FX1Yt+SjMmTwzGkYwMONLhd0D1t9VcOKWJA5FzSjioPto76xmM453fcO96UaAZw1WybAvw44C9S2xLTvFsn2cq4AsC5qhiSH+uzWMFetpBkRNp1SSqsSKtAd7137xg+uW8yiGUcBLJZUjk0kB2rijdCvBobVdih633Ih0IXRsTlzXGDxYbKlUDoA4e7wqoeu16Puu2vHJDbRptjTD+T8TSvJlqTfaYZs5ZyDVCVFlsIXVOiTaQFXMYijfwHC3j5KpM/+tk+DpNvI1nzilWtqQ26/WcKCO4egXnTMqQjREbBqfEMvU81uuugMSmBYKf28/V89zEbFJoSb8luiZ8qSnyxYcxMmR6GN7g3Y61xSWrc3kJCNuihuz71zi3o9/9lLdf7PijHyf+jz/tuNm6F+3kzlPi4Rh5dwj8/K34hR+PgiHkJI2h2BUrjMKuhUzuIDpDmh0mWfJosTHVgXHZOqpnqHW4/pbN5tOFmBcnQnyiKxlEID6zRtTImYFoMmeE2GSAGHMdJDcYx8HPnP2WvfESG4zjKll64+iB7dSxsYn3ZUtq9wDUXKG1ftCcoWX9qjpAY4Pmq6ckhKq2xmjvUe4Ch1j9Xl7igxKjRm30mLJfzYauAL/Wepzf4t1aFdaqjxdCQyzNoUmITh8RG3R9BGTxv+tz/tDrtwsEl7CmMm9NMNS6YbBOZBW46skHhphT9Umd6s1szXq8XIsH3+Lv58wLvwjEpqOqf0fZEeEDRfYKFG7+bmcswVg6I3YNAuIqMyKQU1ypMFrgpf5Ok7wp0IMmz8X3LBOrF6Iy3y79xRIlWSx+K+Ll5VlLPIOwENMoVhFNAL9kB7oiCbN2EOlqf0vqt0zbjutt/k7vz9VxT5mnMYkn8KT+n5LYGatBWxh2YehlUIPfEZEBADmHuofkvRbJYpJzd3nmopGmcEZAoZMJNag9pY57E8E4+mxw0WHnzJwsrjB7fEj1NbVLAR4t6uYg/sPq06UyrZMyeQrQoyy/c5apmxpQ54u9p51gfUOXkk5l+WngjXnpzAsIrF1gi7Fu6SAbyyW7RM57U7xdgMCSZKg3JxUEBmX4f7/VpqG2iQ0e8dFsJVe6v8UHeCl65xdig3ar29UOwamxgZfjw5xMiQumJNbL30lZmk56HoxZvMtfWrZI1l3ORBMLaLY+Zq0lQ3s4L5OpNjbU5LnEFu3atz7rrTesvl6MxTrxhNaJ3+3raGOSsR6T1uCP/p68t4XJ7PwVcdjgtpnNJrPtoPPf7WP2eIwcxshpzpyLPUyWljJ2zisQ2KSEVVm1Feae8wKaiS+lJeYgTL8s0vzLiFDltciEWvlxsVggSxxMMujhKUUZvmigx9GX+0WXMn25zp3JFQx2TTEXG6+yEC3nwuZRv65TWrr1wuRZpFmnXCSbxJXNT5V3N4lau+p06eY6UCCyvTY0PlRvuMIeEdnrc6/Jy6UDzernOVw0iXKND9975QRGGZu55g/q9alAsII+eg1WGWvzqN7o6T25Q/X2LtdMbzQ+PGdoifdnAelY+zOrTPaldx1zXg3RsLncs8uxbBm3AC+BLAAf8lZd4nVh+pFWscFkFfWv+tlV+aS2UNIw7FZgUy7WOy/5fur3FQQWv3HJFay/IvYb+h62nfm1YsJ5Spwm8QGt8QDIDlLlOVlMTCT7nuezjuwGjInSbLOihkkmkfPza0eOX/O+TJHTZkMu15UwZIUhdk6RjggWTtnyhCEasSGTYRJOgGBgk6mxAqg+nkD19lQmjwI9ygCekNxB/cFPJS9WxUu9BzbgTlukwbpp1MaOSqjIxRamiQ+Ssy+5gg6W/RCo0A4xlcclf5Cv20FuH1M5lee7iA3a/FTAvmXir+MDq5xRWdDxpdiAqZYuzhixk0LyhpapVZlZ9fwt50a9hr9rtXGh8N+XPVmO96LOWyTV8vUF4+/iGm1tY5bzkVFun9ZmdWigMUutYxAiQakBvsu38aV5BzU22AG6K2Jn6PqM9zIP4EPrPCVOc65eoG3RrX+q/ZPZy33DgHiDujXAs/xjsT9yri9NoETryNquZ96mtZ20DPJKLOq9MUlsOOfAKXswIs/GQMziIdsDqK3DC5eDxoNLsEdfyTJAlsoAPuVULaT0/lRl3Tkyp7VNzIcaRu09LTT7OZfXlksOZXDFRmpdX9j35BHtPaq1LlJC1w8TGxaWZ80bigLGNU3f3qznrNT4QFzVZBX8XPge1W5OGbt1Rg/UWA8SG1SeL4OAy6A+rSlYZhW0Q9uq9yrr5kwbpVbXWqYCbbwQq186H6k0OZ4d85LLUUDM5W8vH8kIQCh/U+6xNvFeW4jnjWPb5AobjNuAN6V5+v484XCWmuFpTDUeaEwwRZmXMRiX5ev2EFkDVn6erSFpfNDXdIHo6bwTeW7P0kZeH8P2Pne59PdjzswlLgBVCWytIWLr/plKoyFiiNGualTNSVfzQ1hyBQVu5euFsavNodZqteJqLJYPrXJwbSP3MhBc8witM1osQpVEJT7o3mxnZV1anS2fLwqWSjTJqWIQH7P+ghH8W1ibvLBfBucq+2ZrPbe+Z2M8FsPWuuqDOOXMuzRxF0fGMnnxPk5VigLLxSUdbOisq13YnRFZTo/IcXqTiVlkNtbCafK8HTu+LkH5S53om+ayoeXiaGJ+udFnKEWEbngow6uKN+GTmXmcZ87nbwBkyEASht1LnFmReIrdQwjSeZrmR8J8qB5HKZ6BWP1SlQXsWeww9GY+pkgyTmRcbmA7fFKk35L0AIUJXBiIVi6ymlQ24E419PdXAiT6Peb293n8/EfMe0f/aeaLW/NBSVe7Ysr8T3964p99mTiO4gH68GAYHy2EDNYyN9qTXUpsb/4tPk+BUCSeT08/pyPhjIA9j2XKs3S1QglXVdAOWJKV4TyPWYYPPaW5Mnse/ZZ9kQfdJs9tXLxje2BrngMCsA7EcFmwUZKyaenO57Ufl07k1UmaNemqgReCyqZoBhqxyDYXNzzKgCdh+GlyVhMCnicH6z34nOWnIKP8QkKnzJd/0Pzl7w/29Fk69Z2x9KW7boGN9XI9Fc+1jfHMOXFfGJIPaeIYQ5X9a2xoCzm9bTmE9bYaAtHEBi3m5mhxOXOaPO+C5+skydrXaeYxTbVjXxmFeYlDsRRUFlO/7wrAtrWea9thC1vwHJ4Yp3d1oM7Qv8J0DvOeMC2xYSzypBPT/EQMp3pzjGlEfT/Vbmdj3YpNrtLfmYxzGzbDa7zb4v0VXXcjSZiCwG2RpWqAck06BVQalYNT+fj2C+4+fcWrN4lPb+HN/rsN9L99mPkf/2zk/pR5d4C3dxDOhjwbTDPtpE78bQfCpAjdFZ31uPmJ7flLnvyfMc5vBZgDeS9WvLpAYm2Mxb3K2MKChZwikVGm2OZMNJmvix3HnfN0OL52HbfFcsCB+ETOfmko1P22xIT2UWMDNN34crDV/7714dKJvNroUmazvK2l/dIOPNO33IKhtUCtNUVJzMr9QL0+qwqkyZqfNYegFm8vgTs1OhVGcPX8/h7L5YjNtg6H9BiMFSuIvcaGstdjztUe6JxDPXYSG8Yad9topaBHV67Rocg7xb9N4r6ytOYgAz2Os1vHhjxzlxa7qmrPU0DfmJfmsl6LVS1QLG8OcRTbmAK09d0NIM0NbbS0yfLiyyyfLEM7Rb7YxgZhWEkZa3OW2GCsDKsre0bvnbOBjd/RdzcyxMnJ4Ej1LzdWlEiqcpKYsDA6akFXlEPD9ifYq98j7G84vrnl1UaPZabzGfcCgPtYWD5fPwZ+/jZzPhuSMv8spMFgYilKEphkMVF8gW3Y41OEHMB4Yffoa/N7tpvPiEFsC0I81txNi/lcLLiAxZ5Hm+051JzPZDimwF0YGW2kM5aD67kvlgO9MRIbyt51GPrYrWJEe1UszB0FdFIFCoD6uYI3pxSr9UM7CFN/rgXaZaxo40Qdgtz83aW4L96/qBWEW/sAG/UC1oIxYcyiFlDyArCyJqkMyouhyt9n2ZyqBYSCO8YaNsaxd121QtrXQcEC4LfHbs6JuzByKEoLff+6KxVUXvKGEhuKUqA3L8eGt1nO2dd55qHkDXNOTCV+V7UAC4nBFbB5MI7OWfpcrO/imTB3Ujx3e3wZ1NkCq+1aCumANYlQ6ocKyLe2PXEi51nPerGRkuGOgaZ5RmGFe8kX2gHY7XrfrAOxidnW2QG+uyVtX5H2lr5PdB6eRpkX8hIr+Dwl/sWvRr5+FK/wc1EGD5tMeCFlikGqtoQhW5i3Dj9ugTcr6xhTYoUxns5fsxk+IcQzYT4QpnNtjoCoU0IQ+74Yx4UYkdf5b4aF/W1iaRxLrr+xDodlUxRaPQLwtLHi2XtB4kHNIxowB1jVFtAMQWUt7a7+vheNiRbIaSXdmksowUSA3xKfKrhjy/2pSLor8aQciyxewG1s+LWURAoSf89lcqqWib6SP6i5/1ByY7UAUxD4kALvyrE758C7MEpdoffHcoy14TQYW9XMV67jxnZcmUVlCFRLjzE47mbP2zLo8+s8cxclNox1SJwet+dNO1UkpCTn48j6GBnrV8oMV3P0tjm0tvxb2XlVi5hyTtLcxO1YvdatMbK/ChNcgFwZDmrLvUIbxuumtsOWfVBBYyMWc33/WnKF/hV59xm2y0wRHk6J85yZQub1lafzhvOU+PYx8It3gdOceRozh1FIY31fAGGfi7r4hUZvKrHBSv4QsNjZ4XyHsbbGBxMmyII0df0nci7iyBwOzNM95yR5gsGR8sw8PaK2nRobaradFxA9UpiyKTMrUpEzj6XO3ZmObdmfbS7RsnHbHKId9Kjg7hIbFu9uYNXweV9s0HpaX9d31RttHtEq9JVoYo0YseiskZalvgC980ptCFSLmEVJtMwQ+pjYIE8m6u0fev26wzl/m+u3CgS/ch29E+uE137gxvYC/BoZyqLTR59y5CHNVb7SBmJlPqhkrb24tKDTiZ9723HjuiLhynQm1+7cHC1EeJw8XybDz9PIKRf/4SIfXQ3PYOmCLSBTkdI1vzMYT1e6SkNyHFPg63jgdJxFRpTTaiATFLad8aR4JoQD8/xITDMhHAjzgXl+QpnAvnSIqtm47bhyXWWAaRdaCuGI715xc/V7dN013u3o+jeVFQpg/GJRAWuWUeshbKwXb+P+FbgNebjm/qdf4H8Kn94I4PO7b77bEuKf/NmJ+1Pi7SHxp9/A198YQpn4a06ZbozF26tIWwqAZGNi/uKvsvn0r+DGM/7P/p8cDn9OzyxTenPiKQVSnlcFfp8LkGoMzm3x3RU5BUI8cYgnnnLAJXiIM1/NJzbFgmBnPVdlovRl0na5FlP1pXsugEPZr2lhkcLCwLn04UpN0nWZhGmQbRMxJRrmYvmgrD6ncsEC/NbOsGy2Z93hNVNH5BcrBvAFyw/a4k1AYJvBfEQAvHU9XbFPuHE9O+dfPO6HLDL5xzTJ4JU4rZI0HQSWWMcFAwVIdtUO5LokbFsDGyuxIWZJ2kKEh+D4MmV+kSZOOXKXxiofbdnX+rarf3jOeJZJymobc10sW65T5JBmvgxnzud3DfPOVTAVqImUnpcYJ+ZwKADGKIVKOMpuyDIsSm1ifCl+97bDFtuUcwGgYxawZ9vfsNt+gXM7vN9V73JjHTl5EucKBhsjMukUx2pjUTv/doMfPiHvfkTqN5yurrA/hh9/Aj99Zbjd2hflMndPgdOU+OYx8E/+PPIv/1xkXSmUeDBmiQUlBqgnKCFiw1y9/rCOtH0lrzNFdtO3bA8/l8GaOTDmGZtTfS8WkdbFdC7XR4dzG5zrSSkQo2FO5+KzGZmDFHDKPB1KM0Flehvj2dulkNBkTe9nrcTypQJNhzDBmpnTDnB6id0L1CL1fU2hZDQ+SGNo8f5tB3Q07N+LBtG6O59WzB2VINaErC3w6ruRYuyFXPzXXlfG4a14gesQFwF3uhoflCV9zrEOcbwP0tSV2KBWSUsi27JhDcgsAduxc54b24s8r3g51rwhWUjwGHyNDROJuzjVuQVq0RObc+KMKTK5iM2GwYm6YW89XRbLm3MW/+eQA/P0QNx8RmvFpGwZSYyLhVRhEKc01kGyMYXSPB7FCoJIznO1UfJIbNDjOKXIIYcqVze2o+9vGIZP8H7/DGyqDEQ7oKoha6nAsCh3bgpLX+wgnn70OdNNh72B26sCbIZEPGY6b+i9xVoBgP/l1xN/8q1Iv8cJ7h7gfDRUTNZlTFe3HDkaKexSZnQdJolnqU4Eb6eB++6W/e53cLZjDgeenv6MOTzJ3aUwuKZmOIkuKWyBwiQ2We7LaiUgqhXDt+HMtoCOOp9CQYaqTmuKuTY2rBjsTYE2l+CpQK/+m0sQBy5Yvjwv1jQ+SB6hYI68d4PaDAgD2j9j/y6DnvSY6LpsEAEfbhJljVptafmbr31RCQ127fO5sY6bMhhYj7OCOOcsPp9vg8ixNW8YGxCmjQuOBVjeW88rN3BrPFcG9mUAFFDtfh5Lg+gXpfn/rsSG1vtT8wZTztGcE11OpAKyXBULC5WLn+NEjEdS7kTFY3u67roC9K4BXqUhHJtm0SLBj2kmxZGo9mo5FhBYyCUepB4rIMQpBUZkoA8YvNvQd9cM/SusG2q+CML+UxXAJfijMaTrbuj6T3D9LaZ/xfHVK7p9YrMRBeD9Sbw+bx8DMWVOU2aKAgJNEd4epFE8N2zgvs8V/JF9V5reNhNKvyInaSKf00D0DpsyfpzoDo8wHyFJ06jr32DdQAhH5vmBeb5j1H1tSpNoViBYJMovUcAy0mwPxb7PlWP5GKdCcjBVAavqkM7aWm9cLjUSaS1dFLjRr1/y/34f+1yJJmu10MJ41bkiS1OIEiMWgomzHaoiWuUQ8KxJpLmDfr6yMKh5ww8bG3pksKPe17VOvnYd17avgyLbNWWxiXkbxkr4OKXAsdwb26OparvBOm5cz2CdxAbruUVsgVpyScyGh+D4Ohu+TDJU9l2c6/C5Vt2pfPRLxfFgHbssxK8pJ+Y0L/cQY3FOhj6rws++oNioIFuJEerjLiYaCsyVBnK1rhRySYdYUJrSVJuQWRvWdPhuL82pgmcYG9FudTtYdlH6iq2MK4qhtmE87fe4XpTCbw/a6AY1PJiiDJJuY0FMAgRvNnnFDG7jwvL5EhtAyFxh9tVeqksJcz7AdA9JmkR++ETqnHgmxCPjdM94btCgNBMau5MFDl3XoZTjPJEhZ2m4FauIltA3GFfnF3TG0tlF7QY8U3i2Hr6XtYM2hVvM4aV1WWfA0hDSq1IHjdfYwIJFSIwo598I4/59NcayHyMhNk2JFn/Q+iKrwrBRuH1EbKh/+18HI/gvgOAPr2vXMzgvfl1uxxvrqzRbwU1lPXxbkrWQE49x4inOTO3mazK1FgxeJ+ACIImHT6a3i9m2dujOyfKUEw/Fh/GxDIBSmrwW98sFrBDw+qaQyu+KZMzWC3hnPZs4c2Iix8Q0PxHCia4bMaZM2S5Rv+2EpjSJpURl8kRsznTlxqYDJXRoSW+sMEuJhKwFAPhux3bzOa504a0Vxh8NCC3LY0pX3DTTcZUhKCzgK+hvyb5n3l8Tbyyfvop8dgufXcPr/YdlYj//euSf/Hng3QGejnB3ZwhvDSZkXMz4MeBC8USNCRtm7DyTnSP2A+ebHfOVxY6Zm3e/LybuKeKNqRI/hc604HUFBAO5YfXdlRSss2VGgncicSQQyoAQZwxPxvFQkjb1VxVw8nkg1gm7rYxKO2qtr1b4NSPEJeu3Ld60gEs1KWPpxlegZ5F2l5O8Anfa4SIiB7KrhE0TAQDlEi4yDIWc5Kcqu9Mk4vuurXUMxV/7jd/w2vY4g1y/Rq7hiUxMmQcm2es5coji9Ty/EBsyVHsEkGu4a2KDKAUMfWkQrZpElNhA5F2aOOdlknjbfW3PqIL14qW3vtk6Y9jgSbZMlI6Gt2FkTCNzOOFdqvYxuoz15LgGgxUEjnFsWH6ScHRQWKqmvE9fB0eSAmeogJkxls7vqieXJGib2iTKFG9gK2BT9cVTsUATG6wbYLgl7K+Zt1vGq47bq8ybPbzZW7a9fcYI/vO3E3/2di5NIfj5r+D+Vw57Ko2F5sgq06/1BDWx6dbbHanriP2ADTO+/4TOXwkrKVtSTATiyuZHPM4ksai+2U6A7ZQDJs0kIyABOUMKjJqUJcvBzFLQGWFvKaim5xqeA8Eta68Fe9sBby1LTNdqKq/uu/c0iXQ36DVgcJWhoY2iS3CnTcwuG0SX8v9nBRwvNYj02lhiw8esjXX0panxxg8yRLY0ddTLL5rMfQ6cY6zMq0Oay2C9heWXoA5ZaS1obJM3dJT40OQNutS/dcqGJ5aGtapRLs9te94qYFf+fsdidTMUFVPOMohnTFMt0OS8eKzbYO2GbBb2lJ4zPTc6hEtsYtTvLzXDcczKiqsztrIThUEuvoLObcogqF39+8vfi7XIW39/kYw7f1XtIOb9NdNNh3sl7L1NJxLwKchZeTgJ0BNT5v6U+PnbxJ99DeezeP3Nk4DAuRx722U0bckJss0LIBwhDB1uDhhrxUJmLqoBwLgNff8aADc/cj5/W4eRFPMkAc7TXK+XZdhOAmPIedlLoex/izCEJyNAoxZ0g3GVeaaAD2W/vVSYpTZesLZ2WO2h8vffV9DBukkEXHhiU2cHrG2jFkbfS8qhyyFk8tg2gi7AniZO1EJOfoMfokk0WEdnLdeFXKIDppW1K0OmMycTeShKgYiAO+LVq025paA1vD82DMaXukKGR7axQZlAS2wI1W+x9QzPzTlsm8jqH96hdhYOZ01VnoSi0lFvX7021a6ttXOKpVH00sDftrkvHu6xNom0UdEXgHLK2ujT+RLCRNbGVFaALK0Hyupq54oYK8ohP3wCwy252zFtOzY9dF5jArw9pAIAC0P46QxTFEDnPElzKBXQB8B7+VzBn5QECPLFeiaQFwbgYJjxmIgAPiAgcDluzl9VIMv7PRhHzMtQopzzyuavvfdR7ne62mMheUAkJCEJGGM451jtCKwxuLjYjsQXruvUXCgt0KM/UwCx/R1dmps0IstVLNG8MOtz8bKyUJWkyuq7rDHatWL6r4glL+UPpcLRPIJUr8Pvu3whS+ncnmvX0RnHte14U9SAQFVkVc/UgjnoXIap1JXxhdig14qyjNU7vL8gnsVMIRgYnrJ4u88FdG4Vhhof9BxdLpkFJHHBZvErjs1v2sLM9U4HS67VAoIvFGunbAtTu236NwBcOTdK9LHl/bqS9wp8aotayBcAerj4e2EVe/Q1AVVppNiE614RN3um/Z5p29F7agwAeBoRC8kooO/xDOezALwyx4cyn2OJDS0YnFJeMUCtBbzEBtNlUmeIwWGizG8gB3I8S2xzG4y/Aj9gwihzD7qrQtJbz14Ammq0vOdmz1zWqSmD2oK5csU5YzmbUGODgsFyjvVaboDg98QGzRnaIdFyXprXdvF87XMpDqHPpzVGMMu7k3xBjcYUe1gGGJpqM/c+1cq6SfRcHdDkDRo7niFw32+lZL77l37T5/wLIPjDqzfSAXVY1ONs5amZqV2yx7hIqULDuqtyrSwF3SUjuHZPSpHVG2VgaMJtmKMAaTHDKRmecuAhTVWifwnYXW6V3DxqyIwkVNSjbN1oMoNxMmQiZ4IJxHBmmu/xXlgr2g2zeSisnolY5J061KGyLlmAbrXVUA809Tack4CQyozcuGHFJrJuwBQAZ/WeFAS2AggDK6BHQCFP9j3Jd8RO/n1KEqxPM7w7xPcOiptD5u1TrF7AGqBzp0c3k7qSZKQiQ0uO7JbgZVLGjhk358IuuOb+9GVlX+Z2f5Rj5ZAhMHUi+GWyUgJKG6AzFCnvAvRigciqmNN1ycppZVcLECwdd3g/YNoWBxp0a8ceql8fCubgMMbwkmSzHf72kodf6xPXDghQGUbLAlZpkEJnmhgoyCN70Szsou+xasFcbkoTqcSDjMsyOVXZNQrIKruyvVo1UdO9YFniQr1m3hMbYhavV037ZXBX4JjmGhtSPQPL33gp7mtcuFydcViSvF9jOaWJMB9Iacb7PfP88Kx4ExuDsSRVqd4429gg8lhTfc/UF1G9kE8IEKDTYTHtdFYBmYx1dYildUKiW/zD1++jxhLjxc+rSLCTLX5bKfM0wv0pMcVcvf82veU8Jd4dIvenxGmW4g+QZCyJ5LtduTB6jKBUmOhIXYcNPaRmeF2QQQ/Gevr+ln64LUNfYvUqs+WMGeTe0Vh0olNqy19dfu895zZksQDRKcA2LyAPLEDwJcijAA9Q7QJaUOelYuAyNtTPL9IiyWsWFzlNyFbgb7X7WcDf1fFeJYxrCadaFAGVbVqTOL1PXcQGZwwfk2/1Ojug7OWIXOBnRHHhkD39UPIGbcK95BNvyoHT16fgX6d5Q2HDXcYGoPo6AzyV2KDsY52cnC9yB20QLwW2DLK6fGXa1A05QRI/yTkcmaa7atVxCfboamW0i6JDGZqyQzwLyKM5ROu3HrMm9wZvOxkEZoeaJ6yYoJofXOwbta5oPYFxm2rNkAtQc54lLvReJMMxCesvJgQAKm9PBi8aXCnWsl18/kxFCNqNlWU6uDXkUgk+9/nzOH+FL0CZ81vORmy0jFmGrwoLJULLqNLrhXVzcX0uSmww4u1vMZAWz1dtEtm8KLh0nwDPwOEWpNfvtc2gFuiVI7Asfa62CbLIudu8QcGdl5UBLymH9Bi9ZBOzZvk1TJ+GIaV2DhIjv39wGIylV3WG7uUC3jwBPeKReig5vjaJVCXQ3s+fAcDlUVl/G+NrbOjfExsiGhtitZ+49Gm+zP8WfpPEtWjyakCwzE0xBATAjeFcbGBGadQlh3HvJ2Gkcp7qUNkaH4q9C8u50IF47WuTPEfzhMUOosYG42rD+HK1ILASUbCe1rIlBKkJAA4j9F5iQkySG8TmgDkroHG8PIjfsSReNCDQC9W6Kc1gADx4t8HZgSnPkisAEInxTOvfakpzqH5dHvMLjzHnUrcu/8Ajib03tt7bLtflLIBL1l7L/L/MGdoXocpRWNQImcYTHMmJclNjyLFZmkTAAgK/UFtcKgNespcTokkDBDdAuoKO/iNjw956uovcQd//qbw2ldEfcqhD9E4plIbZEp8/FBtacokSz5yhKAzNygf+KRtOWXzl1QKstYOgnAPNGxZ8YTmXXXPMO2OZciwDdROpGbqlILAt506IJHqOFqBNcYaYgtR/qhRIM5lUm0TaKFovU0kUomxc1ENLnJA4Y61be3oXpZMp8QHrVx69IUjT52mkxgIFgVOSWCBKgFzBX/cCCFyPa5KcogX/cvk8R4NNqc4hucwbgBq3sBHn9nT+Cu93MsCMMzG2erNfb2U5hKS8qFakSVzUIfWjuZ6baxnWMUG/vqwnWvJS+7ur5zNmVVvoahWGWmMYnTBRlUTaMG9rjufxYQX+6vca5dCy9yJLfIj1uBqowwp/CMD1B7AZfv6cfwEEf3h96jf0hVUptg9yFi79ug5x5jHNzCVZU3aurpqI5yUYa4Ktst0b1xVpp/j8VT+VLFPadRLzlznxy3jmq/lUO3NapGs53VLwc16SI/m68VYxkZ5uYSpZyxs/cEqBLs2SnIZ7DodfEMIBazs6v6frrrG2J4QT4/SWaX4kxlF87OKIyVLIdQjD+NaJ5M0bWySenRxT5CZ2H0U2n23H0L8WKZbfCwBculqAXAVJu4NyE7B26SQKQ26DdZK85c0bwnZHGAbC0GGcePAczxJk/5mZuT9FrgZbAvdS4D2NiS/v4e0jTNPizWIH8enJnRR6tk7/LjdgZfKkhB9n3FxYPv0r3rz6t7iznUjd5kdiOonXbElo9RjZBEci6mOU0gTGSrApnWhN6ytwYywpRZwRsGfKkQPmxW4cLGwd/TxcJGYrZiDrfmELQEMBc5puvEg1C+OwFGfO9rXT5utN+OXhIamR/+iNfzG1j6Q4PffgKXIgZYsom8wbI6wY52rTRb3z5hj5p3y/9Ynf0DlpEs058RDnApg1yVIW7+f3xYa2CaBfa2xQ1t2VE7uYW7N4gGrnfkqWczKcSkH3ZY78Kox8E86V7fddrG5N9g0Ly6f1D9+U89LhRA4+HznNbzGzWySWDZtHi60Yj8zhQIgjKY4yubYkf+qBtimsQgV5ttaLR7AxPEUBK08mY7B0/pqhf0PXf7K+zt0G7YTrccw5YNwCQKknsAI9+EE6+duBMAiL+Hw2fHUv0k5nM9s+cTXMOGuYgsi6DqMUgOfC8Ol3mbRpkrOmnkizVRoL2Xmsyr9Lwrby/HMb9ld/QOevCfHIu/t/xvH4ZzWhciXhyeWE5cLasMaSjaP1Q2u7+FrEkWHMAhzZbAhGGGYfig2wJF8qD9b4EJrYoIDhS7EhU4o0s+z21hJGuvHiwaWAjnU9vjLGWmaf4xlQk6MkoK28TRtDpKU4yALoaJHgyquR5oqjtxYdqqRS7ZjS944Nn/ltiQ3yns9lH85pPRjrlEL19lcmj7Kc9Ii1H89ig+145foX84YpWQ7J8pSFNftlChIb5jNjjtUX+KWVELZoVDiusBQTufiHw852vPaZrfWcUuA8HTifvpIGkRvYDJ+wgwoEpzSWoq1IwItSIMWJGCVvgFCLuHaWgJ6XoblHzGSMEcl539/S97eFqbN58T0pExCo4O/KQmr4FLo92feEoReANklxd/8Ef+IyXz8pe3F53imw8vrzxecvNdLv1bFNaxlowBBmi507kX9TYkMcJd+xIvF0fk8MB3bnX3E6/oqndMZkCTE2Q2JCANOMyw7remKaIC8S2dXr0OvXFD//LHFgMqn63cN78obmOS7BnLaR9FJsqAVaw9CpscEUiM8swK+3HZXxq4NCLxi/L6kA5Dw107tLc6gFfzU2LOCO5A4KNCrL1WLw1rApsSGkyP//+an9tdbn3a7Ghs64el2dc1h5H55S4CnOdeDTmGJh6C6rzRt8Exu2v2Fs+DpHfhVHvgrH6uk+XTSKMm1Dbxkq1hnLgORBe+uZs+XG9ZxSwJUaYgpPjNMdznaieumogAogbH21jim53xyOdeK6DFqeUEZ26xfuG4ajrmCgK57AQ39T6hUhlqR4LmzcEeMcJi/e5Tpc2rldJZW4/ha6PanfSjM3Zaaj5QFh9o5T5jwJ2AsLsONK0df5BeiBNakE1p9rI8nr7F1tODfFf7auNrqNv8K4jaiF4pn9/ncZpzuOp68EME/ipWyK/VwyRu61tkOR4FaBpsCqnm+FNkzJD0PO+FJfrPafMS+yQttrv+YvzfdfrCnM8nW7dEDsEitkToJFagxbQf/nSqGXVksmaT1mARYLkuexQcDF57FB9+DHxIbf6a9qbBiKFz8I4/dUro9E5pDmlUfvMQXx+m+OmgKhl3nDtthCfOI2S2wwpvrgRqiDwifgbY78Mp75MhzrNa+e4XKsKhe33ht0mKU1xT4EaXpNOXFIs9jGhAPJiLIt6/VpXb031/NuRkLxv5fzVvKG4sUaS12Raw6cJTZoNWqWGjiSBcPo9ni/pysKonaQtDWObBYg2jVAryiO9lU9RLcnW0sqGMB8cHzzNvF0XIBeWAZKdh52m3U8WN6X5BXaYJrDohpof6eSUQvRxIWIjQkTFzspBamxjux7sI5+91Ou4wHvr4jxyNPxl8TTud7vlLil1UM7WBDaa1VIAsHIfV4IKkL68xfEknXLu3kfTSyAD+MLNR6s0hBT6gfANBly/buumSFi8c2wefknz9m+bfNYHuMqb3hmPVnyDSGdCfBroOZaaqejM4T6Ehv+BR+3/oIR/FtYP3ID3jmeknjhHbP42zwVJs+50MDHLFPb25tge7q0M6UgrSZuIDcUlYXdmiLTgDrRXcAeSdomxKz963Di23B+Vsi1IHB7Ha9AOxavNjI4a9gay5VxTGReuYGpSwzRiaw8jJynO+ngGU/XX9PHM95tqi9wDCfxn0ojmUAPlfm7K8OzNtbRGVc9EgFcKp5iOcl0e38tg+K6W2x3JYHWDaS+sP7CLPLqOAprReUkhWVn/ZUAx9aDG4jbPfN2y7TtSJ3BWJgmkWWMkwDC/+ptovOpAjwq3dAL7tK3R2JsJgVI1iAWjKYwf21lDZgU8WNcOnXdntvX/1e2258S45G37/6/PD7+CZ5UGdkb4+it41z+Pcbi3aZxXk2rXaaFFUgAc5jqe6v7rC3k2oSvfcb6XCWZu+yoaVdt2WclzSgFm21kmkAFfZXl2wK/1rhi0t9XIBioAGLOgRBOxHgsXfnYADxzLebU60w9oUwBLy4HEm6LzOrWDYvnrnVsccwp8g/5futTt8E7J5LuPHNIMjjvKc1FwimxYS4Az0uQizaIWvmtduytkcJzbwUEvq2y8mUJm8fwNicmMl+miW/CiXdhrM0hXS2zQld77h3iCapAtQ6B2RphFG2N49jNjDnyGKXAO0932ML+E4l1VxO6EI4V4IlxKt36KD5oZu0XrpOLVcqqa8qpeBH3DMMtff9qAXStF1C3MArM7MUSwgZMLXnLz9Qmpsg7s3WlQeRJgzR1wgTv7uBwbJLp0r1bJJymSjytzex2pfhJ+cLPC0LIdVhUspaRbjU4zo1nzHyU5M1t6G/+kP7qD8jhiXl+5HT8c0AmMZusLM1yfebcJDPChDc8B3v0mtauPSVxmzVha/fiqnm4Zuno87TJ/mUjqAV1Fn/fEh8uvPna6bvWdgUg6GrDSIcRvrRiPBaAp4DC8Syvp8SImMpeK/IsjQ06hEVjg2UZ7HjtxJd6U2TUW+MYY+D/9eIr+O6lsUGGbIZaGB0L8Ks+n4v/8rIuQeA2b2hjw9523LqBN0Z9w8U7XPOGCNxnKeSmnPlaY0Oxr9LzDKiJwCo6aJNRvplWMj2VsvfGEm2W+BdnvownxnNmLiy8vn+FS3sBguNYYnkoucK0gMApkAkMmcqU3Bbpqi2xYjAiqdc1Gxi6G5zfshneiGVM41feLvUFrkzSxgrCGI8dPiVvXxOHTVEPNU3JYHh4gGnKFaBp2Tz1mDRfy+9pbFh/yPeWWJEThA7C4HEhYZLHn1ia3m6D6fayB8LI5vhn9P3POY8j0Ehgs7ZB1SZL20hSpCkrq2WNabNI7wO25A/OLOf6JSC4BXcW7svzBvEl2FszEmPLnn55NsBLsUG+1oFj7x9O2saGnCNBAZ+cFp9ZcpXGqq+9y2L3pgBjbyx713FV9mBvLENh2E4x8I9efAXfvT73W3rn69R1Vec9RrmGdADvubDwWoZ0e31e1hQfGxu+DifehnNtSsESH/Rc61eBjMsZS6o/64wtuYLl7HrmnOiT45wCX8WJeXpk9jusnRvFwMvnUZv9SyyfKrnEl9igDWSHqTEiZgGuDVKndH4rxJJmqGwLBuuecW4gp3VscH4PxmP8FWm4Jg6DgLApwxHGaJlcZjwbjr3EBu8z242APc4JGNw3gsNYWIHnafn6EuzR2JLSQk5ToonVDpSC3taB2cvriiPD9BOurx5wbkMIB46nryDMXBlHInPMiUQBcgsrWO8xicUmQkGXy3pW5rms7SQMsjEvgRx9rGCOWe/fJR6Y5esas6ig4EuMXlMUhG1sqGSTC0AHqM3H9VC3Vqm2yLvXsUEayDbDhmJ5UmLB3nbsXVe9knVY1sfEht/xewbnq0JAY/Uhz6sB04eiMFQvaOV1JpYmlsYGZ0xpEtkyh2OJDbclt78yVLu5VLAGrSnWsSFV/KAF/tvasR3sp5YxuzKMdMqJJzcXLCUSiYR4Xp1va4dqHaO2EHrfVvA+xVFqwGJHJedKmvybgjkovlJJDeV1GtuJ77e/Er9fNzS1ZywK48UfeEUmcTt8fys4g9uQ3dDU+xlzyhywnDpRAvWbTF9jA1z1cLuFbSfXfszlMS0MYnmfgH8JBF4sp8yccSFVS8pnjGDjBTvxHdDh0udsgX74nDDfMQdp3PflOCl+ZQrQe3m1KpnDNFVDNnpvypiyVyUePH+GVY1gLj95HgtqM1h2x0Iqa+qIpemzVgQ526pH3TOiWbteig1LDvFC87iSSxKacelAQsNSX6jFocz+EvLjFAP/7xdfxa+/4l8Mi/vff4kfsF4osQ7RGvMik1A/k6WjQgXjLhk9LThnVEqFMAP6YtQgUsj165gKCDxlkYVoJ3AlA2mlPxePQLWlaGU2rTekdA0XAHcwjmQy3iwedMkk8fp0A9G44gvcMrCagqI8qmm4dk/V/kBXIhcvI1du9m5h+hmxdlD5RU4JrMPkclFnD3FJKNUOghKgs7XEzpFlnsjyN5vCTDtwIQhIPJ4l2KpKwNi86uCpxNN6Q04i7QTIjiIztzUom5TqABiMx/av6IEYDuLnxeKn03ryaUGm631BDMrNjYV900pnDaULWjui69XKLfTf6+ctyKydQtPsZjVX1+DcWj0oCOxKkubcpkh3u3JD7YV18cL7SlAkOXpgn0+HzTlUKcYzT6iy59pBWTvn6xRuaXpIw+X8G8pi2tXGhqQM+5IAtbEh1nRSVhsPdGlcALn+ZU9Q94L66Ep8oPp4pWwkLiBxQX2IL1nHq2bAhZ9by9LQpbHBFUmpeJpGNkZYeZNNpFSAthRk6JNxTbAe1kl3uYHq+1aWn3oZLoNH1lNmE5K42bJ3XLGJWSRPbknECoDQ4t+10FSbmBIXUteRnBXWX7MFZWJv8/cvtkdtBhX2X1u0LUw/U38nL7Q6kX87SwScBh0Fe/wgsa7bCUPR76S7nRdG1uW+ufSza+85l4AeXFzrZmEB6FLlehsD9N9VUJAlLmiB1wI98v+SlDXyqzp1F5rYsIA97aAQOc+L/LtdwhZzwOKBqEoBVo/lVZbYsLD8lthgMdVHfTC+WpNclUGP3Qdi7nctZd/o8VMWsLJw51Lkhaq+ePmefZk3iEVCc6/Qa5TSPG7ORioqAfUTPDf2E+31f0lOucwJU4mtq/enr9JYOiOy6N46XISQZ1Kk+IIvA56Ai89LLC87Ss+Pspd8id/6+UsWR8Z6nPUyBEjVCC+AS4ssfFx9XX/f+povyIcBu1xJ0thZwFvvJScILDGga/5sK/V0dskx1kfZFLAng7Vkp76gL6wiSzeA9zsBsHFAIplFCpvRttAl5LKA/e0rgDWwqw3Ay4Fw7WyByzxh1TD+LrDnIi7oUJbL2KCMXwF8hPUtx7UrQIF83bKAUyrzK5rYsLzZtC7ksnr4yb4zpUnkjaGzDo+hL0o9Vah0uNr88B9Ri3UUj3DNw0mr/EHzhjmnlT/y+qgujx+KDf13xIYpZ05ILaMWczE/z4kuG8jt9y9/pjG2a2oIhzCnVLmRPqBvfW4nJftZVRwaD3RoWZvb1NzBmAIG9KwHSMt8E2XUqr1cHQxl/SqOGOvBDyUmuGrfoqhbRmoAiQ9yRnS2wGWTSNcc5WsFhV9SDby0zHu8JbJ1kgcxYP1eBmz7fTkMRc1lZDj1ZQyA5h7DmihweR1nMsW2mPdt/xXwy0u5wXOwZ/m+rSy+1dyQxhaqjQ0tsWSxhHluHwhUb9lL79cV0++F2EABx7Uu7xoGusYGZe9ui9WC+YgJ1FtjGYxlIhExK3B1LNeoxogxL4Pyahxukj+9VhRr0Nigs3r6Gh/WsQEEa6h5Q1ryBiWerRpEzb3AsI4VGuM0JgA1NricyJmlod+s1WD6Z+e0zCRS0F52Zt1ZjsVST61r0monytBAVy1j3OrvXi79+1qrrvOGJiYgYLDYopuqPu4b5o4z0Dvoyw1kCpn1lJUlVrx0ueckILDGHxNTGS6rA2YLoz2FZ9dotg7jr7ApiOpI1bj1uHz3Wl+/y78yBRBNZsG+WgZvrv/68q8t8Xp5fpBmscSB+v0C/sqvLxiDft3mDMY4vNteqAOWfbSaV/Ge2PCcCdwMoK9Z0DJTZBmsK+zfoczFEtWrqO679wsUfu31F4zg38L6eTjhsuEYRXpxaszY5xcKqsrGZLm5arK29Dap5uUW6gCUvoBUGjdiNlCk3/c58zZHTkTeRTVrFwBa2R6XRVK6uA0vPohLoqid9N5YtqW02Bbmw1SGSgzGcUozoUys17LBOZFniP9XmfadZ3xeTO83JZnema52Uy3LQKJzEl8ya3us2zAMr+i6GwGBi6whDtrVgmzV1RiMiWClkCCeK0MwdzsBj60tlhCWNEhh53zG+zWzR6Vcyv6DNeCjj5fduZSkcIslMOeLi1yGvizybzloG2z/CowXc3yzVE4xJ85JhrfMKZINxHDmdP6KlBMxnFlchVuQb70uE/MMtUO3+t7F42Uh17J+JZlYs3ec658xd5aEbN2drz6MCtoZJ8ywlcF6JCV5nMMTIRxQH6gwH4jx1ACLYeUDpfILtYLYFBmxFg0pZw7lJnk2lgcTxKvqBY+4X3f9eThisy17OFQ/3tYWQo/linnJ0q2HJVlTGZP6aVtjim2MDHrZmoXnek4WazJPyXCfE1+XAVB3SSYH6/Wlz734PErn99ddCsz0xkB2dRJ5LHHnHCem6YE6DMZv6wRgkXeeFsZfls7pYCyddVUtsCnxT5cy1MYcCQZ6t8V3e/ruRmRc2iSyrrJ7AUyxWFizXPVC91X2rcyeMHSkwWAGAWN8Lwxf/x5Ap2X0XQ54aJe1MuDBWkjF5884YfSon9ezlaJcauX5ndvh3Z7H+a65l1BZwbn4/k3zU/VXheXav2TxwZKU6zF+39JY0H7+nPHbyLe/o4BT0HdhY3arBLwt5EDOmQAF5T2VifIgUu8YT8yhxIIUxHIkTizTeRd5t0UlnKZeW5tGRuxM8ai3gTHLffqQJG5M8fvHhl+FE9bawvpbPDenUsy18nktNJfPTf28bRxbqOCoAiE6IK4vsWHKBpcsUzbcJ8PbHPkmie3SXRzr4EjdJzoECDQ/WBd4wg41BawW5mJb3GnzOBqRou+M45Ajgcg0vuPkt8+Lb5D4rsMjS8x3eSkS1X94uIgNWohOOWHwdH4r7J7uGuf2L84SAKCoRhT4Wc0eKKqC1HWEYSB6Rxgsdsh0m1yaPpnNZhkQ9V3efnNYs/0u84j2IycDKZdhUO9h/TXLd7fst59X1uQ8P5DyxFDuczPCaFMQnlq2LKBvC+ZeAo0tMxDW+UMbD3Sp1Yt8bqRgbr5Wr29YCrjWy1fzBvm5+2BskJcSq1RYYkOqrJ4Yz1U2TE6EeF7sH0psUOWQsOZkzxkj10JXwBzN10MWIERei9jBWWOY4/uBzO9av4onOlz1/dWm0JgixxTqwDzN9C5zB1jqijZ3EHDHLRZLZp03RAzni9jwqzTW2DDmWP825e+2sSE2oG9GvUDNqsGoqzcyDK+zFhcNmzjyFI6cz2+rgsi5nq6T4xjCobD71DZmXrwXi6KjK3lMh6kxXHM7ZU4mZP/bMjhNbOxkCKsOlcWCyeURX9jBgzSdG8BYB7AJs05JJZ4wWLiCbpOwFnY7YQEPvcSETQdXGyqZZ4oLqNM+qhR8XVfIsMkQJC6Ek8EdkwylngNuGkURGUYEcSq8x+Tla+vp+jcAdPHI6fwNY3i4qAlyA3i2DZ38QjPnkqmXiabNEC7BHVPzAmXx1Wu3Yfuu4oHG94bRdwnsALwE2tnm52ohp0tnA+i1rxZlyv5NeS4qNQV3Uo0NQsKg5uGu5OLaQO4KyDinRDSGiFi/HbBMHxEbvoojjlDIJKEOxBvLINm2SbScgSVOKMO7tYlRBvPGisWl5txbbAGBl7wBqLHh6ySK52U4XENKaMgaGhug3B+aplZXzrcOpMfAznmuYocqqU/xzDjdV+Cu666FEOCo17+cX7GVqsSzysxcasEOOU9719EZy5gipxxqgysCvetLLdqXoXHDMk8gLfvqcrXxAPUHtq4QSizRW9LW0l2nwgLO7HdwtRMGcO/l8Wow9N6UYbMQ57WfsNrOzUHs6s5niQVxAp6gPwVMTPSnke7wiBkfIQVyeCJM94T5To75fI8Pn+DGq+VN5CBKayjDqYWlalhIYm1MuKwDVLVTzvz6+OAqLL/EAPm91iKS5nlWjN71wV5d9/o7dhUL7LN48NLny5yA0oSsWINA8CnNsqeexYZijJM1cyrkPqj2ckBpBElNqzl6O8tiTokjM7NJhN/UKP6F9RdA8G9h/fPxDmdt9eG99EXU9RK4o0VW9VPSpApqZ66ljl9huUIT1Mxcuvb32fB1nvllPHPOgW/mM49xYkI6tOoLqcVtKkEvNa+t/dDOpg6o6xEQeFvYAyc8pzLwrDeBU+qJOXHMUgbO8UBOUbx9yDUYZzI2Z0k+C3Niaz3XxeN0aywxy1AtTdpOKXAymd32c/ruit32C/rhc+nCu4E4bAjDwLyV5NGPEnzdWAJCShg3YJLIo1rgODnLvO1JW4vpMtZnhk2m7xffrrawSwnmXobE6fX6kpdX9fYLpoDBhXg2Q3a2dudMjJgwNV5/AlwxXGNn8VnWFF1KFBhTWPaWgRAPnE6LXEnOp3B/TOnw+6Z8fx9TB56zdRY/X/lKAu0C1LYG6i3DV1k63m3QiavW6hAX/0H2suzPSOvBlVIkxqMUbSWZm+YnAb6L/2/KIy7nKg3cWM/OLd6yOrhNr712xSzg7Ll4bGnhNedE+Ajn9T+ZHtFhPXV6cW57hcvR9U1DaEnUlptfGxu0mNPYsDFO5J31/cCpaO3us9hB/CIcxKIizhwVeALI0JVEEMr01Mvuu/zai+ChQ5pTWyzOZG5sx9kNOAyj9Uw5cZ/OTNMEWGwYJKGzvoB0p+L9KTdTTdSUUXHlOq5tXyelTzmJ8iInzikAns3mDX13w2bzOd3wCXQi2ZRrfVObRK40iczcgL8KohhP6reE7Y7YeaJ3zFuH3YIr0q3dLnO1k4IOpHOvcu+XBj8AqzixLuryizdsHeqwag7pKmAwKdB1N+z3P+ZwkAQ4xBM+RwE0s3j1xXiucUHZ1vrnhUFl6rltDWUyz+MCfCA2FBafMniV0b+wp2zj6atNoK76vLXDP+rzXwA77aN4Qi62MCkV+4AsXsBhPlZwWP5NrMMYBESU2KAFm6oCoGGylhXLtTuW4k3vSynnj4oNP5+eat6gz6nx4XJI6PvyBl1t/rAp140zhp3zbI0r16e+H3gqswTeZpkl8Iv5wFiUAsfSJEqlSaTgeHv829WChspa1OUMbCmDqKzl4LecUmBIM2OK3McnDscvmcNpBfgZ4wSwmw9F1ikQs+QNrsY/sezoK1PtnINYahRFlHUbhv518Qd+je9vlybRxbpsDrWD4fADqd8yb7eEoSN6S94aNrvEZiOx4WoHr/dSyGlMcFbOS0wyLE4Bn6l4+7VeoC1gXMUACgYHitdfWrP+CmglJyLUJlG3+Zzb2z9iv/9d5vmBb9/9Y8bzl/RGmvRzjgRmUjLl2KayN5Yp2roHgapke7kWWECdcvBKLFjyBGf7xR7oO+TayzAebQotz/O+pTmCHLNR1CdNMVf9InMihOOzplCXl/y8L7GgzcH1Xkv5nuYPCsK0g9PiDxIbHvHWVf9+ZeCq77qCKqoSq+X0BZmkjRG+AD1ql3DtOm6tr3mDsH+XvOHr98QGZRg6Xo4Ndc/U15nA2GpDpeDnBkfnLHMWEsgxBcb5yDS/wwRfZnv0xLjMgVDAJ8SzDJrV4dNE+ky17NiUuQkyd8RxzmElm59zwrktfSdWUt7vcP4KYzeFCRxwRfKdU5TGY5GnqxrR2M0yULYMm56HjtQ50t6yv0nsdpnOw5tr+OwaroYCetmF1TcFOM2Zp1FihGviwCUIbG1RJZ4N8STNIXdMDIeR7nTCxIidzpjxgRye6r8zOaAqCOM29Luf0u9+SpzuOZ6+ZDx/tVKOZnSY8pIFPPfsbQBgY1cxoCpPy/dNw9L7kOWTHJu+/q4e77ZxdxkH7EUTrGWSr0HC0jyo4O8LwG8qDaKSDYmXJ4u1CAuY86HY0DKnxyze6m1z9WNiw5/Oj/johPWbYp3NELNYT14O6mxziMumscYHjQ1XVsDRa9eLBaUxq7zhPgne8DYn/iyc+OV8qCxkVROp4tSx5CULf3ppLOpAYXnuXFSNBofllR2YfWKwYj35VTgzTfeopD/nYgfnhmaIbGzqRRk6qd6sLmeGcm4G47i2HTdOaoqDkbgQU7HuNGDdQNdd0XU3S1O4zBVInDHJi2f5xVpig1+IKEVBFL2QzbrrxJs3mdsrqR8+u4bPrhxXm4boUlC305SJSap0zR/OE5zOlGaQ4XyUWGDmjD8ltnePdI93Yo05PxHGbwnznez/cGAOj4RwlPPud/Tj6+KB7PH9LW74FPpbrPElNu4Z05n13b8hAxSGrwxbU7VvubdfXPv6WD9v6gNrbGXw67FcqbheWJc5wvuWxoTLeCCPZQ9WCxFh/etsCmWWy+dqjpFrbNDI1xmLM76SKFtFq157K8JVuTa0STlHAYjmH2DSW/zXAAT/ptYQ/8l/8p/w9//+3+ef/tN/yna75a/9tb/Gf/qf/qf84R/+4Q/+2nT9VoHgd3HCZrvcJMuF8QxcpZFlQfXjaafZ6lpZABRQVjy8DNtGVhJzGRSXM/c58DacOaZQvIlTnaaswVm7lwGZ3tiyQNuuoSaYDvU7EgB4i0hCtgX8idbjsmHvJJiaJJLBY47MnMnRo7cBZRyrB+NmxUwQ/2ORl8vNbC5gsEy+7thtPqPvb9lsvsD1tyLhLglYGDrpwgPtdqhD2bpOjNKBOGwq0JOdJRQQ2PVUNnDn10CwAj4Ak4PYDHlRZg+8DPZ4XzxAA6SLeCW2EOPSvbcLI9FZh3c7ARKTFOWxsRipCVkOxHgpHF4CgcpoFWRYXpl8xPqrC3tPvvzw5ExjffX1BSrw69xOzoLf4v2+AsF6Q219futrKUP9FPy1OUjBlqbqKx3imWl+RAcAhHAkprEWc32GrXGVLfbKD7UQsAVAUFa8MnKVPTYSODSM3ZrYJLF6+b7rLk5Y28SGizOkIJz/DWODglfayVeVwNbIlSbNFFlPJN7FiXdB2H5TXjxH6+tp/lYiYS+nAKz+/no5o2CwwWW4Mo5T2RNdDtykvljlJGELxrg0iUrSlpGOs7KBdaiGTjXfW0+P5cQyZG9O8j6sGwrY84q+f431V2Q3gHXi5dkPxK6NCWn1Hqps0jriMBCGXqxirCEPBt+nOuBpu4HdIGwekLiw7YXxOMVcirrGzyvKhODV8bILE7DaRqxgP2SwQ+0qheXR+goOO79nM3wGQIxnjqevSOFQG3kuZ2ZC+fWSikvteBEhynG4+EgXcaE+Nmwe8wLYo8m6cxu8kzLC2g7vdw0QLAN3WiBYHtexobKYV0PEQmEyppq8hTgSw6k0hAIpnkl5xpSErccUAEQkm1dOfKclHtgaFzTGarMhlc9POVSW7lQGMsWyB7/vur/MG+rRXpbej1urJL3m26ZMZe8WEGsoctSN8TU29IYaFyZKYZcjd3HkLoxMWWTfwvpbmoWwXPOmUae00UFBY12x0I4cRcVU8ogb1/FJt8EHy8kEpnDmHA4Sh4143Vs34Kxf2MAFBFY2cI0NxtWp5p2xZVAvlWkkdgXdAgL7G4xdlALP7CFSwOSALYzgChh3+2oVE72Tgq4zuEG8/baFBfx6D59dGa42y3lSMHgKmacx8TTmKvdmWgDfS4l4m0/o8BeVeT6b/q3vIwf5AEz/isFfMeRAmu44nr7kfP5SYrwBH3V/K9jDi03KNhY8A3/K/msVPpdsf5Vqezfg3HblEb/Ibn31e5Tn08Lx5eKutRABqq+0MSM6Qb4t6trYkHMQZVqeq01Uj/jOq8qm9e5b7Ihs3efKuAMYiYSUqmevNFElb/2Ygu4+zpjS8G8BeT1P7Vcat2BhLLf3N90pHgFBlICxN5349SLen1OxkDoh1+99DtzFkbdlzoi+L90nxvAcdG5enO4jGVJYQPIm/9xWlqdcw/du4CFOPKVAyDJXZJ4fXiQNqNIj5QCFpanvXckl2+K52BsLCY6FRakepsI2FrBHhsQNdZ4IVq45AxjnkVEcHqOxQS0hGsuY2HlS54idwW8zV1eZ652wf7+4Nfz0lWM/6D5agz2QygDatdz75UGSEEeDPSXcnPFjoDudZJ6AzkaJZ3IBroEyF6GwFd0Gs/2cbB3eXzH0bwDLMxf6vGSIL+2/NQjsVrmAyrM1Drxk1wAU+f0O78uQ3EISUYBIv3cZC55LtBvVYMkT5FiNtX7Qnwu7T5pCsajRKoCYZ3zOhe1bcmvrKuir9502NmiNvjQ+qIPWtfFQbVyKVcPHqAXuwoSxpjah9G+WW0TNJDV3UOB3sa14XlNobNg5X/NtbR5vbYkNWWLDpLEhLbFB2fbLa8n1uMjXa6xB9Jp5NaOkMoKByWYmN7Cxjsc48xhnHuKZeXokuR7nNjU3eN8eEJtAaXJ6FpWhKhb3BfSesvhha5NNSQuVCVyv97Ifs1/ud81qbSpau7nsnNhBOsidYbPJtTG07Qxf3Do+v+243jlSgvOUeDrHEh8ST+NST2iTeJpEFTBPAgK7p4QLieHpRPfwDfHpT2XuSnhimt4xz49l74/M4VBZ8S4cCOEoVlK2ZwO44VNSvxUCmd/h/FaIM/mSLlKOOzQWD3Z1bKqlk1l7dpsaC/oV2NvOBHIak5uhgC+t99UMl1/HOK7IZW1cUDJJ2zCO4dyQSWTHdlkJW8LwHZrY0DVfK2Z3aXF6GR+0aaxEsY8lnukK8QUZ6keuDylEX1r/6B/9I/74j/+Yf+/f+/cIIfAf/Uf/Ef/+v//v80/+yT9hv9//4K8PfstAsK4Kw+Xl68tA3DKAFeh5iWUHChwvsonnTCVlJTSspSyd++LGW35zkfG1XrOXSyXFupH1d9V7tDcCePR57dPn8uJZuzyHrsVdTsFx7US23p/V39Qs3nNakIecBJIuSYMG50u/vlwGLsRkMMlhknBD7QXVfh46GQDVGZF+XUFXWMDey+NQGMHOSGHW+7VnV4xrSed3sfnzd+EFDSgK1EJPA+EUT9i8npqpwHoyi3yrlWPnnF6c6qmPefWjhtVzAfToMAadyG2V8Wsszm2qB9elN9/LCVx49nlupvDWwFu68xqsRe6tLJDCAE7LJE6re9Isexe005wAW8CbBVCXDrYEXZVg1oKuSdre5333m6xLcKf9+HVjQ5X0m+VGo5+rN7Cu2HxMOTOj/n6lEHpPUF+Eeevvta/dttd+87erd3mTdM65JJ+YAvUq2zGSsyk36XV8MI0aQeOKyss1BmrSKYlbGR5RJn4btymxwUkS5mRiLyDTe7uuNogU4FF/vzD0MjRykMTN78UKQhUCu42AwNsSa5xdYoR7ATy/ZAVfft5Kv3M02LgGecxlUqBgMHJ9eb+li3JTtaZb+Xu3O6ddet0bloS9/f46sXuZ9WOMqcmbsnwUwNNiz7st6vddhzGUpE6L+0v/Rfne80ROBrwtDF9pDJ1K0haJF16zwn5uPMGb+xmU/VMS2wpSIECGJGVxaRKlhUWmfpdayPwQsQFejg/6ud5r9b6pcaH1ZK2M4OZ6UQBruT5Lkwg4letnItV7bMs8bP/+Zb7QDhSsMcysf2eJC+v4IDMO5PoOpdmVETaWsU7Yf8owrHYmuXktTQ5jZG5CTbjLpm09jq1d9p76gysIrHYxWAcpYvwgQLC+d39FHm6k2dx1TPs9885X9dBmJ7LO3aZIvQdpCvWF8qhs4MvVDn+Bl4EfZfvEMkgyzwY3p2X6d4oSG9q84TJWFI9TjK8su2dxP6+zgJV899krvwCB2zyhFHWwgD+LAsDi3LYOcDPGlYJvHQsu10vsc/l+4yFdQB/NFRY22LSSc1YJeBJwQOOC7qd2VXuDGiQT0Sx5gwI7bfGmX6cijW49lb/Pahsrl7uo/bplIGoDWYkczRGT3zXLPfvSZ19XnTHCMk9Ac4bW8/NDdcTl0lwfFiVWbWo1j521FYzPZEIOhDji03TxfK4W6xTrAptZs7CamqJ9nUvclqZZvTcpSKr3VkkZgcJMdu3f91i/l4HTpUkUtjvmbU/YWvJg2O8Suw3sB9j2Avj03tB7S0yZVOhVEgeyfDRxYQ6LWqD1Hk9J2MDmlOmOARcifhxxp0MZKhsgnknhiRgO9fUaG4ANmSDATA7QZIzGWKLmRM2+UX9L/f6aNqSfLeoUJZK04I+SRVo7uDYv8H6L04awfbkJ9D7gt/1Z2yj+kHKotYWRhlEZ+JaloaAgsFxX65VyJpnL2GCqZ3oLBqtCuI0P2ij6mLwh5oTL9tlz6P2xbd6qkkivjZfye1hig8rVL20ktYEsnsCZU2mCC3iaqqVQfb42X/gN3pvGWMUEEo7ORDpjyXmW4d8Rie1xquCexn5lc+pcgRobMEtsrKqJpVZpHV31utCYUGMDWtPG+ijfa68jyYPprqr95LzdMl115K00jzebXGoII/mCNxfKocQcs3gDh1xVRHOUmCBzikpDaAJ7EkWAjYnu8Eg+f0uY7olRQN5pumMOT8/UMdDm2hFrB7ruQJqfsNNJGkogPuqmKLuLjdTLJCHJCRbLp8L8NYudizR+NrSzPtQOslpDNo2g9rhfAru63tcMAJ41hVprScUVtKEg8yrGkncmsX4oe4mCMSiep0o5XW2jU2coAOKz3+TpuloAODa5hGIPH7s+gp/y/uf8DUPWf/1f/9err//u3/27/OhHP+K//+//e/7G3/gbP+ArW9ZvFQj2JaBowIWlgGplIy1VHNZALyzSSt1IbfdxZzp6il+PMntKh06kGoFv45m34SyFawlsNktRrz5nCrxKp/6iuGMpOneNXUOP5co4roC9TczZcJUMTzi56VnYFBZSyIlgDH3KItMtIIReQAaq7+eV7cSrp5hkC3NJWAnqZXpOkcc00/Vv2G4+p+vfiPR78wlhK96f89AJq3eQGJS8Zdpa5rmADZ3BlAmdxsqUzle7zNCLt99uI1M6W5l378zCAI6arK2LN6XKX9pBtD6hIZji5QVpNpiYcXOUCZ4xvgD0ROx0kkIvTPjulle3f5nHw7+SCcnhiZwn+osWvdzEIJiEMz3ObUvQPxDJq+modcSBkRbBysvzgtnj/EaYewX0FT+16yapG1bd+5eW+i7CSA5N0G4SNzlui/9bzoE5HAT8LfK/MB9rUgcJkxObcoM3ZhlgqEnIsTB8Lws9WFhjqQnILRCiic0CGH2/5TD12F/GhlrAmbW3p/47LbbauKA/G4zj2smk8ptim6BnIGZ4Ap5K0vY2z7wLI49xEulTaSjo6/KFYah/2+ZF9K/5bss42hbLDWXpXjW2FA5RC/RYZmOJZXDctsgtA8I0mZjl3JcbrGeJDSptH6ww/pSd0GOZyIw58FQmp59yxPsdQ/+Krn+D726h2xOHTeP/vagFUuewc4fd70nWkDonxVuJEX6TubnKbIvv5/UW3uwX1m/vDduujQ25TvF15U45hSU+aEEXazxYYoMOnYwTMuH3JOweP47VO7wCPS3gE4NIV/2e7e5n9P2bIvk6cgh3cg5LHPc5E806Rc9Gzmwg0dXYUeTgKwDYrsBfq4lxAX6d39IVlq+zEnO83y7s/5LQ6dKGT30bJdGENbgjXy8JG1CTNgV553C8YABP5DyhA0F0Qu+l/3UqhdghyUTtl2IDsGqWaGxIKMizZkx+32VfiA2wsOxa2abmDvq7qyLNLHYMykq4dj2bwpjta1NM7q33OfE2B6ac+SaOPMSJQ7GKaYdK1RjVvLZL4KdtYrnKmJK4oPMM1FJKLWR2tquxbG89Y5yYOEuBhxcmt3FF9j1hciogsuREu+LtrmzgrZH3OBvxalWfxJHMpvgD++4W391i+lfVMzxbW309Aey8wQzX9Z487a8Zr7bMW0fuwF/D61eJ7SbSefj0ujCAB4uzsO0tm24Be86zsPykmMtF/r3Eh+O4BnwU/E1JmD7hIKw/E2EYZ4bDEX86CmidIswHYf6VZgrNtVY9Cv2AjZvCxu05lgIwlgI5meWaDIbV8NlLAKjeFYzBapPXyHAW5zclFiyg75In+OLn+H5mj3gZazwYV3nB5aCgNkdYJN7LbACJDefqH6sT45UQ4SurZ7mWcpZ4GICQcrEcennPt/LmdBEX9NjCC6D7b7DaZnZrC9MCOZezAurPm/jQ+oyr+u7aSmy4sq7O/Ghjw9dpZiJxFyce4sSpNMIqC1LBW21Es8jgtUkEsn80bvkGXGo/+qZhtDMd17arudlDnpmme7lvNGCCMbY0/k4CbJb8ofUM31oZ7rkvnqdnI+/hWBRR0Rg6vytDFTc4v5e5HMVSSmxWYn0fpNIgKhYLefua8fqWaTeIQuC14eZNYr9LdB5+dAtf3Fhut21ssMX3E85z4v6YSv6QeXvM3B8X/8/TWbw/Q4AYlljg5sxwGtncvcMcvyYX5u883xPDoV4TMY6V7WbtIMw+t5fBmemMSwHTXUE841yP91cc57f1/erdUvddNK0/aMMG1mz2PbHA2r7WDAryWKcsy/cwvZ81eo7PgN8lL1higf5M8wT5+QdYfgXY0oaxNF3Xs3SMMYTSLAsIeeSQ5qXx+p7aQo5erjFCv9Y48TE1hbB+Sy3QNGAvG0S1MWR0kssaf9DYBdQc/abEhm1TT0zZcILiCVzmjMSRd808gUpGuYhDHwKBa1P3sjlkRH28t54uSz334CYe55kxHkg4TmL/TozFB77G+cgcTjXm2ywDJDcFc2iVRMr01mMxZfEHFmbqpqgENhXcNUUtUNnuWb6u4K+CxtvPmW4/YbzaioXUJ4ZXbxL7HWx6+Mkr+Okrx+u9w1kBgWPKHM+J05R4OEXeHiKnSXKGtwe4O6gfMByeLPEOTMhsnia2b7+Fxz8jhSfG8VtOp19wPH0pNXNRw8SiDmj9sGneq9q4zeGJFEeG+V5q8PkB7/cMm09LDf5U7Ob0emwbQkU1XK8dUQ07N1T7l87v6ftXNRY4v8f5/Qrw1aW4wUIU04bv2Pz8w7FA32drE6XNAm0Spwb4TWlClRBam2rDWFW7vnnPGhvIMrdJ97VeA7COEZc5wUu5RPwBUNyYn8elj3/Oj/v39/f3ALx58+YHeDUvr98qECwDzhaZdvUIMbYOo7q0erhcmvyMiJ+Q/tud83S46p/bG7Amix0EDdiTZr6dz9zHeTXoySLJvYJk+npEdrAk15eMo5317E3HrREZ2a2x7F1i76OA0HPHVbbCNiFysB2DmZltwmvXlOWGpwUmyE1nbztufc/GqL+pGNO78lpOKXIfxID+lBO74RXD9id0m89huCXsb5i3W5I1zDsPO/AFvGHTvH8LfS9BWO0eqoSzFHBXG8t+cHVKp0q2xMsvcRgTT2MSj54gwOAUhBVcz18DELdAsLL90mwgZEwo/p8xCvPv0gc0nkWiGkdIgW7zOa/f/Lvc3PwfiPHIt2//Bx6f/iV9wwJRwGDOiUcS1g4Mw60M4SoySN1jAhaD9u5VxtUmctrNt7Zj6G/pir2D91uG4TP6zefLTa8pQDUp1YIupTMxHKqsO6axWj2AMoDnpmPXMHpykmS/eADrTcAVUMBhqt/dYNxqyJUG1GMKlcmSyvFpQa+WHS1HZL00zW2f+zddbWxoizZbQI1LQPiS9U/5+8ouSDnL9emkoBOfzKWgk9+Xzv3bPDPlzLfxzF0Yy4AmiQkdixWFNohU/hrMciNSUEh/R4HgvemqlYv6lu9dok+GUwGHIxlrDaPrGLMA8iEnbIqYHNWcpiaQhhIbXFclagr0iITV8JSNNIeiDKmYDNz2N/SbH+H7T7D9K+L2lnm7LYNbxOc3DyXh20Jlwljo9ombXapDnl7tRcZ5u5XXdLuz3Gwdm75p2CmQGyRp04LO2YXtp937S2ZPy+4JQTr6HMGkjB8T3TiX4ZFJZJ4t6y8F2oLI+iv64VORpk53HE+/5Hj4VzURcUbkiiLNLUCP8RjbkVMk5REZ+rQMitKSQRpDrg54U9mW89vaFBr6N2yGT0qyt8N3r4QpVbyf6/CtFEnpLHYNpQiTQv74YixY+71J0qbev9qtl+GC07OmkLLBOluaQiU2qhw4lc9jWqZpw9q/D54DvJdXpcLjHwP2eLMGUX0L/DbX42VD+fJvzjkRCgwlIHDHK9fX5oneV4EC9kR+FUfOOXAfxDJGvP3B5VwGSjV5zAXQpMx9WGKD/r5IsktT18jfVp9Bh9jG7K0X1o8zjIV5rWqNCbE5MljEo1E836X5JT6GOoldJaxXBQh+MsJePMSZMSeycQz9Ld4LEGwLCKwN5GytDHGxi2JAV3aW6cbR3WZudmIN8+kt/PS14c1OAJ3Xe8frK7+KDfWchMw3DzOnKZZ8IXOa4WlcxwVl9rRef6SMHTPbp4n+cFh8P+cjzE+oJ35O52UmQBlypcWq8VdgHdkNmO5KhmG5Dec01XOnoOjSAFqaRHXCeiESLE0hiQnWyER1jMW5gaF/Rd/dCqjkdkvDXgu8tiFUcoSUzlX5I4WZ5g2LHRSAWsC07CXNEeT35w96+WlTSBspct0t56wy2srznVOseQI85z+9lCfoakHjj6mb9L7YgjkgxWhfbF9az8H3MXPnnEilUSRzRjpe275en70CxoVU8jbP/Hk8ck6RhzgJ2NPEBmfcynriUonQHg9bjrOCwa3KR/92X8FgeO16Hv2ANUZseOLIUxSPcIPB2A5rRI2WivWHDuRRcsnedTU23DjJURyGByTWnApJxtoN3u9rg8gWdm8artfnIcWqHGgbR+ebK+bPHP0us/Hw6ZvE730Kb/aW3hk+vXZ8/qqn88t5kbkisrPeHRarmCnC/RHuDwvj73g0zGepG8wpc/31I/39tzAfSNMd4+kXjOPX9VqJ8UQooFgLgABlIJ7EAGO8DM5MEZcDuQzBG4bbpXESz5gcEVM/ySeTWSzjVjutMONqg9j19N1VHdrrXM8wfEbXf1LBMtt6tOdAmp9qLNOaoVUBhXBaJNwlR9AhTpc5QssIJSeJI6uhTqHOTVk1Kipj3a7qc827gcU2J/9mbP+XrszYnJ/fdMmANVdf/4caxu1AqhakbZmIKWfJG2zPjfVcGV8GSNrGNzzzdZr5RThwjIGnNHMfRka1WcmZzjjeZ1l1uS7jVVv3yDD6xSZyaxzHbuaQZh7iTCAyhwfOZ0toyAT1bxZLKVtyB20QXbmugsA7260aU6FAm8kYvCsWh34vALDdrPasyWHJcUEGq3X7akd3fPMJp096/LUMkP2kxIbPri3bTvKGNjacp8ThHHk6R85z5sv7wJcPueYKx7PEA/UGz28zV98ecOMZd3jLePf/4/HxnxPjiWl+4Hx+yxwe0eGGCoY3bZtaG4QcmPOZECTvl9kaE5vpDmsdKUX6TjCAlGYOpy9J56VR80wh1JDIWlsotY3cbD5ns/2xgL92U5tv2ffS4NZZSQDzE3G+I0z3FRQO4UAoQ6AXpbDGvXUckO8tsVBrh1yOi/rLKyJgc65+4NIkts01s2BjsGAMSiYDwY3a3f4h1v/lvbL9zR8CCP7XOSxuHEceHh5WPxuGgWF4f6M/pcR/+B/+h/z1v/7X+aM/+qMf/LXp+q0CwSq3aifyahAejKOza5Zfu+qACSNJgpWsuzJxOlxJmpakzSGzDSNUmca5WELMZIJhRWOvAaC8ptVrycsm1Jug3kw26reFqT5inRP/0D5kSeByI10tzz+T8MYQ8yWbSJYvv1ffW/mQhE5e00wsRWIkGqRr1d1WyUXy3eLj6Y2QX4qnr3wUANrCfifMvm0vFg+fXVk+u3bcbAX83fT2WTEXUxYZVkhAKIw+gUp69/IF/ny6rwLB5Z8CJlL9P6u8s/6DIvvOQVh/gHEbut1P6YwnTXcMT/+SJ/70mY1AvbHmJGw9tyEVS43MMiV3AT3rLeGZxFsZvt4NldkjspEb+s3n2O0XtB6LmiibOGLmA8xPFQSSlxRYJnZPL3Zx2y6dfn3p0WOyDBLrS4DelcJmsG7lwYWhSiwUYFAmdDSXBdo6FNciJv9mkqb3LY0NvuxxZeSr31gbE97nJ2SL5EwTuHaQoyZMNTYYlXGVuJAixygsGEl05K2KZ/gilbos6HRv6d9V9mJb0CnrT95jgVdtpo+NZYwRGepgHMnIcwXT2DqU96372Tfvrf6dwhBwzXFRn2CDMNCc39eETK0ekjXSkRdHf4zLqlqq6oDdLnN9JaqA3gkI/MWN42Zr6b3lZudeBHoAzpN4f578mjWuYDCsG0OXEs8UDHk22CCsP6tKgffFhrLU7w+3IQ83pF5Y+113LW+qFDoJic0CZJT9bQTEydaQ41yuigJ2lAbRog5Ypnkv1g/rzn7Xv5FBGm7Ada9guJUmUeNTmFPAJCeP5pLZFyqL532xQN9zqomcfh4qYNUhrI92Kq+qafQeq/YHCZkar40hBcHflzu1fv/UR9nLPwQj2JkFtFbQV6fdw3KvrrZJpskbyEXhs1yrDs0Xine4aWOKDGLV4UmnZmhkNAsjVAD1ltnz8sHRu4iyjVaSS9QOQnIHcgF+sGUwZWH2lj0m7EWZVJ9MmSnA0ihyNR60ucPCKgTKbAFhby2+1TLQqR3q1ALA2Ym1FLB4+VmD28PVVebmSppEn13DFzfC5Om94dWVf6/9Q+dN01h+WfIdaoNIirwUwIwZ2/p+ng6V/ZvDE6kMgFLQpBajbiPy9fK1DIfay33ainLH2V6aQVCn3q9fvVzvmSwAcLm2lAFYYwJm5f2pecLQv5I44PZ0m8+xm09ZaeoVtI5nmO4kP7DyWtesn6XIa4f/vA/sEZuoiWUopsQ1V67bHmkiXLLjQFl7Rp4Xqs9vYgGAnw/QLY9NXFiyiFyviY9ZtVA062aMxrXaJLogl1zKTztsZfNqfq5M/Z6FwQdy7Zxy4hgDx7SODdUpAVaNoQ81wrTmaD9WXudQ7u3CSO6NeDWPyYGFPll8SgQCYMgpl/1iipw/LfGhyU02xtf8ZLG0WzxcowFrdRBR4/Prhgr2Lks8oNQ6SprLnnkvIPDVVWbo4ZNrAXo+u/ZsOsvrK78CgUFiAsttnCnKx2mC89zKvsUSJo0yAKo7RbrDI+nwC3I6M4/fcj5/yen8dWW5reXeF1ZQOYo6x8hAVucGUjpj41BzdPHz39RryeRYlaMyfcRQk6fLc26Ura3gT199fyvYPnxSvNk9lNkuACZMkqvMYMzLNYMOcGtZffpea4P4Q2BPDpXlZ3Kqw6SlvjYvNjagZeuth7hqbODi8X1EknXewEfnDfpaVJ6u9+i+yXkuCSa6WqUApPrCtT7ZoqSS9buZChv6qQyaPqeAttpWsaEAwQowt2oBXW2tofnC5VKbOT1qG+PZlMHTc04yPyiNmLDYDwClSSR7QAlDtd4qILAC1q55nynn2vAUMlTrDVzITtrMTFKXG1XTuA3ZDaR+IxZS2w63h/2VNJA/uYYvbiU2dM48iw2dN4U8og1jAYGfjpIznM+NFcRoGI4z3eERMx9Jpy85n/+c8/g1czgRZhkGZ9K8YrJ2JZ9r94vWzCZHmRllEjEeGaf7ld2jzPbYEuOEdwOTdZjY7uqlZtDVDoYTH+C+KhNq481tyNvXtTFvUsTOG2yYBRQGTHgS0D22g+PHWjOEcKh+321OkJsPuWb0+5JfSlNIZk9ora9NgxZbaQe0t3s3GbFQ+nVjgx6pZS3Wapfrh7Cb+9fJCP7P//P/nP/sP/vPVj/7O3/n7/Af/8f/8Xv/7R//8R/zj//xP+a/++/+ux/8dbXrtwoEX7uOoUziVfACaDz6XvYBTmQwiwS1SiuybDiVL2wK40XTkzkbkWvkxFOOkrwVOaSmADqwTiVwXROg1/49C7ikg3Q6YyvT5qqAPVcms3GJoYvMwdKZvJZ5XYBYCiaR8yoAAXXYi763VoZSC9UUazIKTvzlir+fDmaI3krRVgY6bQojWAe86bC3/SDy7qtBirPbreX13nGzk21zmbCBdO/nIH4951m696dJJJ5PoyRwWtC95OelRV4oZu4q8fRjwE0jJkyLx19hAcumWMun0YEUF6s9nuplWTvXKVQ/XUWg1btmgTuXQmMxchewpyvy7s7v2Ww+Zxg+W+Rzw6fk4XoBfwujWR/T/EQqErUYnpjnB2I81uIuFCYfLMweaBI6lWm8NMGXJXDmIuWxSYYUwiLnVkmWetppYaYF7notv9NKMFumXiRd/qNfe127Dl+G1LWDGiqLTkHgC9g5liStgsH1+ipsQZQpq6CK+gGLxPMpRx7izJilqGuHMuh71YZVtQ1RkKk9JqWI2hRJlbKRr6zYQfQYroCNTWxcZE7K6hdQ+vKeVgvC0vAyUI+zFrr6/pYG0RocVy/nMSdM6TQbW6Z364C4ztUpvWYA12eMlfjgvXiBa5Pok2vx9+w9vNlZbraW250vceR5bDhPSaTfk6gF7k+J01ySuDIAapwkidPCrkq/J0McjSSTc6Y/BPpjsYIIswA/Y+m2Ftl3O/RFV06FmRBHbHDVz8vgOOe5AsDwcmLxEqelBXxU7mkbpk/nt/RlsE7XXQnTZ/O5AG3WL6wIwGSH2O4JMzgVqWoMB1KOhQ18rGCPsntjU8yqj5/Gg0UKlivjTyWdgNiOpIgxpkqtNOHVydoqz9RrQN939QTVfdomtawlmC07IJrvHxuunMcXwPdSOdQ113V9TUbaeq3cW19rZ6wAP03zZFuunZgzk5EBkqeceEiBxyjWGKcUaozRu4IyES9tq9q/p8fO8/7YIFYQht5AV2jpLhdPbc1zFCTKEp8dRl5Pfl7EeGMKCCax4bmPYa4M49lQ7UrqECg/yMC3zlcAOAwFBLaQHeANtpPYcHWTeHUjCqLeC9vvZivNIZV0Xq6Ycs0d3h0i9ydRE51meDpLXFDA53w2zJORIbKjob8LbB6esPMsDODjV4TxW2l8xHP1/LuUSatFk9PBrNbjc5BrFyCM8r1uzzw/kYkkAibni7uO3infz+PSDlo7KLbzV7Up5PyVHO/+Vc0T1Oaq/rFIfU86F0CZf4v/d5snpFrsAas8YdUYkidexQW9BaklUczr3Emef91kbUPBZVzQ/V9BHbO01MsRqs//MXnDzjp6JxPIL5VDg33u71uvG9bgrIBd65yjbRzHnHkqtcU9iYc481Rsc6YCjreA1qXXOmZhR+nrSE1sUDZeV4glMvDaVquXngYQznLf74z4n2ozSiJDaU6kmYxF3M6Ln6tZ/E031j2LnbG8z1Ca4WDlenG7JTa4TfUCV8BXV3KW6B1h8FJveIN7BTc3mdsr8Qd/szfcbmUYXO8tdn1hEVPm8Rg5TYnznHh7SNyfMk9nUQ89HRfWX5gM6Q62DyN+nMT38+6fczr8SRmg98R5/Jpxelg3QirIsV4hHAlxrHYNIRzZlZ9pA6bze/IQ64DOkOfvYL7m1YPKwGUYVL+AwP5GCDzDLbmTv9oeX5tilYNXKXhe5gGIMmCubOcPNYRWeUK53tuBYXLml5edci52OGm5fs3yOwJwNvlxuf9eHhO93lrrN12XVi76vY+JDXvr6ZxbETOAZ/jD+5THGifk+pLPl+tmubeLV7is+xx5SBNPcWbKy/yEllntzOIvvJ6nQD0ubVO7VT51BeNoCR+6ohG7uKHc9wFcEpVIxKwYqKoWyMRnsUHwGLeK/RElpYg2TqxLevGwL3YQdWisG+r9DEBtYlK/Zd5fMQ8dqXOk14ZXrxI3VzJrSLAHy36wL+YNj8fIu0OoGMP9SVjA4yS1w/kM88FCyPQPgf0335Dv/jnzfM90/orj6UvG8a6qaHIOOJYmuu6J1oLQluJryhGbqJaBRyam6V7Ore3ou2u835WBmmP1913RpC73WU4kAs7orCAFlLc4t1jwZDcQhw1hkAacmwMmJXJKq2solWGOMUqOEMrXKU3VNvISAAZqM0iY0Us8aMHh541cyRVsXnRRkhtQj58uzY9zzmDMSmHYLq1DLtdLDWML1VP4Y9acfgga23op2elv/a2/xd/5O39n9bMPsYH/1t/6W/zDf/gP+W//2/+W3/md3/nBX1e7fqtA8F/ub+mdf+ZH2HacoA06EiCnrB25AvqUgghD7Wy/tl2VRTsjkzvB8IT4Av8qjhzTzNswckyhSHgcmVBk3Ms05M7YyiiqABOyGXtjuXZ9Tdo+81s+Mx1fWENvMq+6wM12YrOJhGA5zo5ttJwQM+x2Q2uw94WXpqxVDUBXruPa9vW9aVKoCdtTjnwbzryLE7OBzr9is/m8+vvpYIa4M+AN3T5V5o6zZXBLGejUOwF+31wJA9hZw/Xu/X62IEnb4SxJ2xwzbw+Rrx+lmJsCHEYJ1AvwK+AvvAD2jJnhaRLJdxDZtzsfxN8PhDkbF2ZPu4z1MrSikynnNm4wxtIO9JuL1C0WsANjSHlmmh6LnFKaA8pySYaljCkgsNpBOL9l6F+x3XyGtQN9/5ph/3tw/bMCrnXMfimku3HGn47YqdwY45k43zNP35JzZJ4fmKa7JnDPNXADNXjr5+L3OdeAnfIsckTWSYQmFyEFTvKu67pkqCjQYJBBRW2hpnsS1knUJRgzx8j/+MEd8/71u90NW+9rs6SVaV3GBgVrZUiiYSxli7BZyrkiV9/cW+u5wtbu+Qk4ZfHy+iZOfBWOtXs/5VQHgGljaFcmo69eQ0q1k68J8MY4blzPlRM51Y/cli9Mz2dGmMB7K5Yxg4/MKbONjr4MkOxZjqcqEDyGZCw2pwqotdJy9SZXIGspcg3nLLYQh5zIxtJ3NwzDp5UNHLd7pt3AvHdkB3YLwy7XJtHQw9VOYoOzUsB9dmW52lg6Z7jd+Q/Gh8M58u4pcJ4zp0kKuq+fCgDc+PtpQ2iaJB7kJGBP9xDZPp0xKYm063QP430FfEM4VIDkcpkiq7RuKJLKkoinCPOTsPj9jnE+0w5KayHNXIASXZUNu/wRwIr82/Y4vylgz47d9gu225/i/JWATvufig1HJ6ypdsidO4GZD1XyKdOL3zLPT5Xt975uPrCwf1lYf7lMiFegR2Vcdf9qkZPBXtibtEv3tip1WgsEoDYk3mfN4Fimhc8x8j+8d7d8eP1uf03nHB2uKor078Ei5ZyLqkHzh5lINBIvWl8+DOyc58aKpdNWwR7E+1NmCcx8FU58NR9leGQTd3S/CKDi63XXNtj0dVksxogq45UbuHYdnXF84ga+MD1vCrjUm8zGZnqbhKmc5UPzJFVNJZMJRu6Z5FSZzpUdzeJNfq15g6FOGdf4eUyByRis6ej6G/r+VWWqp+FaBrdsO7KjaRKBsTIQcrNJbDcSGz65hi9uDG/2Dmfh02vPJzfde8/n4Rz59jHwdE6cCtjz9ePC9js2vp/zZAiP0D9E+nGmf3rC3f2c89P/ypxG5vmBcfyWaX5YWSW1ecIyWMnS+R19d4P3VzjX0/ev6eOIHz4hFfn3fvsFznbENDOevyXEJ1bipsIwy3mJGm2RpINjnZWm0NC/xrktXXfF/uqv4G/+UvVfnodhVeD501HynizU5xRHYjyQ4kiIxxfzhGfyziY2tMCXAD8CDII0G5QNBZRcW0ANtTa59OvXPNgYw1DBTlnt0NaX5NYrYoVZGLofkzf8G8MNnXM41g2Py7+ndYQWaSOBiVRjgzUCPIi1imdvvPj5l1rgROaUIpHMN0lyhm/m02qWgB5Lbcwq63A1JK99701saPOGT9yGN6bjtgLBS8PYZQQkto4xO0gU8MeWQl6a44kJhff7LL+jAPCV7arHqTKBgToY+JQCuXhidv01g8aG7oo8XBO2O6btUBUCsTO1ScQO+p0OlJYG0U9eFSsID59dez659uw3z3OHOWR+dTfxq4fA03nx/Xz7KGBPCOL7GQ7CAO4fZvZf/Yp0/78QpnsO01seD3/K8fjn1eogxTMQK7Nf/fAve+8pZ+Z05hQeOCOy7c5/wxwO7LZfVDXgbvsTdtufEOKROyAeTqSiFtKawaAmUijVosJ2rQy872/ZbH4seUJ/C/ufMN6+IXY6iK/cb6Kwc918hIYJHMJRGlY5EEpO9L48oWX+ZWX51dghQ4llkLQsjWdKiIpNPmQAm9d5uuQCbvV1+3nLxr+8b7ffa3OHj40NP+uv6Jw2Qx0fqik0LoiMPXIupBl9Hb2VvGZjfLGYEyunKWfuSdynUP3CfzEdeBdHIeCUKrI3ttYTm+LNravacZXXIEOjc40NV66rseHadlyV2PRs5STENNeRyHV47yHNxCx89WpbZAwpSd04mIUFvHcdO9NVX2BnlsbZnBLnnIpX7pahv6HvX2P9lVgs+YE0XK+GSgPVWmrcD8QbS7dPeA+fvUr89BOxn+y95A+f33a1rpiD4AspwWlK/PLdzC/uIvcnIZjdP8HDgzSJ4wT2Xeb67lHqhcevOL77/3B3/z+XptCBeX4kpjOUnL9nzXiXWSu+nvNWUdIOLZtz4j5O3IUDp3jA4EnbH7HbfsGw+QkpnZnnR8bpvjRY0sKuLf+JWkAG/KaSq7jCKu66G7rN56SrLwjbHbHzq/ktbvYMT2Di4s2eqoWcPM7haRUP1OMX1sAvyNVfLWEUCGZ5bndRH2UWMp3u7/axw0LTCBUw3b3IuIfnjZhndigXcUN/f46Rf/z8KviN1sf6+X7oOYdh4Obm5jt/P+fM3/7bf5t/8A/+Af/Nf/Pf8Pu///s//Iu6WL9VIPh3/Za9WwoEGb6wXrEmo+Lpq0FICjwqSKKPnRVW7m0THHuU9SeePfcp8DacOabAfQnQKmfIOVT5fJVsNokRLOwFEJbuthR1nbG8MR2fGcMn3UznMrs+sNtHuiHh58zuFOnnTgBcvXk+2/hUwE1ZwAr23Liuvjc9BnqczkkkKME4nNuw2bym71+Tux1x2JQAYjEDWJ/ZbATcudkKc+d2Kz5+Vxvx8rvZOl5d/fpbRAP0oXboEm8PMtwlJu3UiaSzen0WIDgFyE/gxoQLCTdH+sNhkXjmIDJPNW9vvDR11Q55DGuvP/XVIldPqwRV9p9LwpbT3Ex5FslLLMQWZf3V1M641ZTvzfCG7fZ3cP4Kv/2c8PpnPH36ijQs5zY7MBHSyQm4PZ0roB3me6bpXQGCHxmnO+ZwXMk4W+laBaUU/G08e3zOIvdmea/Un1LN/VXSfTnoxssfqCDPYF1lvKs1w6bYM3RForwpN/lqe4BhtM9BuV93/X63Y+PkfL4PXozlvUjqnYlG2HNzSVRhSUATufoC32K5Mqaw6KWDHxE28F0aV4Mj226lJm7a9JlzYsxxNa3UFkDQGlP9tV7ZgY11fGY73hjDax9xJjP4xK4PeJews2NjEy5pUpprgqpdaF8YP9a4UmAudjqDddWbfHuRFMZStJ5SINsOZweG4RVddyOWEP2W2A+SWOyKMmAj8s1d8QBe1AG2sPwcn15339kc0nWeEu8OkadRC7rMt49LY6gd+CQewIZ0kuulO0V2b+/xD19DPJPmJ6bpW8J8Xzvewm5bpqTX4Y2I15+v3/cYI/56NoUqGXd+gw0bMpFIgNJIeTkvMCJ7rqS3tSWEsIB3hRlww3b7UzY3fwj9LanfMu6vON1syQ7cnLFzpBulySM+x4s/cIxS3I3T23qdz+FUmX3QJHKwsHmgYQAvcm/1hfRIt34u4GFVxFw2hGgY/0ZskDYliVNGrlq1dHaRF7cNnMpGQa1QDMFe3ul//fUzv2NwfqWquVzC5k0yrTsXv8+UcSYxl7eoslAQCeXW2Dq8UdQBqcwSSLyLM3dh5CHOTM2u0L/syv1aGcpqt9Mye7yxUPCRrfXc+p5XdqA3dokNLuFMxplMZzPWZmzM9HE5pj2Nd7qyk4qnSSAXsN7V8zRYx850pWB9zoqccirDQYcyQPK2xIarkjsMSwPZGuyQGXaZvn9ZHfDZlePzW8/NztF7+6I6oJ6nlHn3FPjFu8DbQ5KC7iRFnco6p0mKu5wgHmD7rQx6MfORdPgFDw//lMenf0GM5yLzfCpDXhSskEIP9J6nvp2GyQ1M3RNDf4O1PTFORdbqyEkmgu92P6XvXxXPzZlwOmBWe0CtYCK5Ydo3P5Uobj3e7+n7W5zbMQyf4a9+j/HNj5l2wgyJ3pI6eYbu5KriQdW0KZ4J4UhKI/P8yFyGXVaw5zJPWAE/CgQvYI+/KOq0gJOydJFsGooks1Hh+RIPtCG0aXJVbQ5vrCvAj13FBf1buvRe97F5w4dig+YEEaknTgUIFhaeq2w9fT0ay+osjhIbTsYwZZklMOdUh00/5Sj2ckicrbYULNeqvp4W7KlxyMgx2duOW9fXWQa3xnNrLLcGXG0qgTUZkqXPerzFGmKwjiEV0AVtiFGIEAjQo/Z1OsD2PXnDXBREzu/x3VUdLrvEhg1h6CvrV5tEZVwG213m9iZzXWqMz65NGfjk6b1hv3HP4oMqCg/nxDePkZ+/TdyfpCn0dISnJ1NzhPwEw8OEC5HN3Tvmb/8H7u/+J+ZwYJzuGc/fkNIJlyWvlT3a1/ypHSzeTqMHOCVRhY3Fbuk4v8OefGnqdAzDJ/TbH9NtPidO94zjW07HXxXptC6FQ6reruz6kjmU+sG5LZ2/phtkXgP9LePtG46vt2QvjT47Z2zKmCTzUtypnONiFaWAj+REZ2Epx/EZ20/++iXwM9NaRqmHdLUAqEB2M/ujUQ6q6i4XwFIUL89BNGW1qsXhivz1AhCs16L+zsfEht/rriQ2mOdkM5r3pXiDNpJBBlrp5+Kr3dUBzVfGV6sWyRsCX8VznSVwH0aOOYlVY84MLDORWua/NYZUDEVXNQUGa23NG5QQ5jCiIkLi0rNlZObIte1JWeqfKUdCnKu9l7SyAiYbMqnYAbmqVlqGTi82VAqUy4yFLHu3v67+1qb4hmffl9xBXl1VG3YSJO0N3N5ErouF1E9ewe++cXx6vcSGS3u5h2Ms+ELiF3eRf/UWHp4kTzgeDeFsyCO4Y+bqmzv8uz8jTXecTr/k7bv/kcfHn6PDkbsMA4uqco3rWPa2Y1tIP1U18cKejVnmyfTzkcfC/J6nByGYbD8nxzPD+Ss6vyuze1Lx35YjKivJ5ZQj2RqssdiivnBuh918yunmhnE/VHVFLscxj1kGeYdOBmVDiQeiJgzhSAgHpvnpmQIAqGCvroX9W3AQUgV/YWkK6TXa5gmx3GOM2q0196yWKKYxtzZWGsJI90KOqqtt7Opz6tdT/P6xQVf612ANkfJ3/067/viP/5i/9/f+Hv/Vf/VfcX19zZdffgnA7e0t2+2LV/pHr98qEHyFZcPzAx9pB02ZKpWWx+feOAvzbwnwVWb9wvNqF6cdhNOu2sm4SIxe8uzRjV3lY8YUT+BMZ5OAPEVana0m0Soce74uuxwtk2Lx5ynvqwShWPo1KtVQP0tXJnfqyta2KkWszXReErTelY/i0dc5816Pz/etKaTq1yNTfZfhTyr3br0+YzCLs8Monp9+DLgQcXPAjWXQi4K+6p1Zu+AXYEJ5ufU9p1g3gBRq5hkoqj52ssVykUNpAKT+zovny9gKOAkL8Arr99Dtmbdb4k6SYoBcvIGylfet3VF5H83k3jg1Hn9r2UYL9tR/Sy7AT66vWAN1lVTl/GyPv7QMSxNCZcVdAYG3Vpj77dAAoCZDWkQoSNFj8M/9JH7ttcW8GBugbRblCi69r5PX3lAcSyH6UlyYsjB7Q2GJxwuJn4GayFbLCQUYmiYRJaloEwiVlYrcO+HKozUSG5z99Y5Va1PT+hd2pchsE1yNCyD7PSBMFGt7rO2wVoaQLMOf5N8Zu/iGq01M72HbGbbdEh8+BPC0aw7CAp5iXllBnKfF77O1hUnF58+OMu27O02404E83ZGjDEVpGydqn1IHMVTv7uUsG+PEMyurNyiVQawSLGs9OavvZRtbtPBJF9deee4X9qlOatcJyhVwH4YihTPkDrI1eAQQMymVGC2vM6fyUa0dEjGF2hhaXsdFUdewDRQEu0ze6n4yS9MENA4unxuojCmVLOvQJR2OqmBPh9gWrabcr+7Jy7V3/ojYsCnNp7ZQbVdEFB4uN2BQfplZoCBVe91c2i1NefHW1qTXNB96HFsZuq427mpsrdcsjV9viQ29lX+hILAzmZnnsk99rbURTlFsZFVuLMwr38aGFhirr1FyCGGz+xIfZIBLLh/Jmqr/ldxhHSN6D9verHKITW/f6wWsaw5ZVAJzrsohbRhrTFCGT54lJnSnE+b0jhyemMdvmaY7pvlJpnynSeTRhAporFiuueSARgetGmI4M9sOZ2ec7YnhQAyHmkeIR185h7bjOX9QswX9fHnUd794gZZcoUrrJR4ouydbiQsAcbZVCp7tstM1Hsjnizf4pb+f/HwBfir76DJPYLk26utlvb+5+F2NB2pDoA3ibQP+6PAx3XdtXNDlmj+gP7Mvsdt+zSX+3q4839rb05Xmr9q+KHNf40O7lFVfY5Zp8m6o8eCUYs0ZliMrSxVV5j2xoV31fl6PlWtqCp0Dos3t5cU6Fqu5xWZjsY3RXKG1rVJlRwXscTVO66qEG40NRu0Lumo1hw6OtKaCO1gjVlLFQqrvM5t+mTOy7QzbXogmnX85h5hC4jwlpiDWUadJYsK5xoXSKB4N3SnSn0ZployPhPmeORyY5kfCLAPzfF4m17cDOhWQUMuQmIXlF5vjm5D5M3MSVqgybbPb0OdYCUS22L0YY1Z7QJ+lXS9VfyKtH6qcPvue2PkF8EkFoi1qpmwt6t9uLsDR57HhPQ3jJq/R2CDNnhfub6wB4dVrb66RFYGpsW1ayCNLLas5K7wMzMISH5b73fePDVtjxfO8yUMqkWoVD/KSLzwP9RW4WuLZRc6QC4s4xWKrkmsDUo+5Hqe2ztfvXx7b1uu88HcXIBnLJc6hr0O/V21p8pILBK1XMiRTFAx5qXEsi7pLZ5lojdWypRPQWY/Ve5vancEqd8jOVhBYZo8YrBcv4E0PnZP8YdtbtiVvuIwNMWXmKLWEEEo0JgimECcBgc1crCTHM2m6K7XCWyFQZCFMaV5QbcW+a/M0x/LyfhZNZpPl3hdyggSjzulolUglBwAK8P7hpfWLDJZ3RO9qnM2dwXQyuyUFihrDkV2inS+g/sDL140K4DKHydrsWe5kNSbwPB60uQLN54bGyoS1lYk+asxVMlmr3mnjwrPjj1k9yjmh/Ltfj5T0ofWv0yP4113/xX/xXwDwN//m31x9/7/8L/9L/oP/4D/4YV7UxfqtAsF7I154C6t1eZxyCwaX72sSzyK3TCWAYy0dMJTOtnbvQbp0JySA3efIXRy5iyPn4pkpK5HzjMvCKtYunXaI2w5dnS6KMIfFrqGnN4Y3xnHjA1fDjPeZfkh0Q8Z1mZRMHcb2vqXWECnnWmjfup7OuMp0loEV8p4mMvdZ/AqVldAPn9D3N2yGz/D9Ldn3zYAXKd6MzXgvAViKt6aA6yzO8p1FHAjTT5K2zDePgS8fhPU3BXg4weNRAWAJ2NO5yL3LVN/uFHFzrJ5e5vROWH/hiXm+J8z3ImPIccX6axl/wDOvP5cDNgdh14UnMVv313wVHlb+mCrxFHlUagacGAx+AcegdsCF8elxbhBJV3fDZvNj/M1fIg3XjPsrjp9tGF6LJE6A70wo94QZSxh6/Kl4ARXgZz0EKnA5wKEFe1byktLJd00CF8vPdLXgzmDWEs3eyrBGBShkSrav4I52hJXpWwemaBJUuuH1XJTH00ckbftyDbeJGmiMWDPhNS5UiXuzaqFjTQGsXRnCJHYQU4kJE4mHNPMQJ87Fy0sT9q48pRZll8laa6uhclhrDFdW2MBvTFdig+W1D9xu5wIAqzd3xprcJJN59X50gASU+JCpLIud9XTWsjNdZfVsMWXoXeZEZMqZuzhyyomuv6LvrxmKL2XbkEAwSKzPeC8F3KZYQWw7TdREMtv7D5/bOeRiBSHd+68fI18/Ld5+j0cd5lD8/c4GnigDn2au7+5xj18V25Q7Dk9/wun8q+qBqcCPDr9pmbC1QYMkXs5vGPpb+u4Gmf59Rd+/wfk9OQVckX93fkeMZ07nbwnhocpHxaZ1JMdAU+YvQ9IuvL+cG+j8Fc5t2Ww+pd/+lOnV50zbgTB44pXF78V7OQXDfLDErsNEpAFWGnimKA6ABuxZe3U9jwn68wYIZokLqVwvrd2J7mlJjJfhjNbI/U2798qE2TRDQxbvSi2IFmkxrAuU9vPTRwDBt1g2F6l7bYSuvrdmr7R+nCrr3NtlQJJ6cMby8VSsYs4lZzimUJUUKptViad6/aqF1OXyGPoCklsMr/3Ap27gMyvqIFEKBK76UHMEnWCsia7aOEwFkL5crXJgY31VNe1LPL8yImHVgZgnIjHDXZQp5jLI8IbOX9VBcSLplJkCpstYD/1GLGO2RS1wsxU10e1WCiRRFL0/PlzaxHz5EPnyXpRDc4BD8f1UsKe/C+zvHqQxfHrH+PDP+PbpXxDjkWl+4Hj8ihDEw9eQ6fJyXvSe5ps9qYMPAc4pMKY7juEOg+Xkv2UOT2zGb3Gup/PX+O6GfvgRzj3Rd7/gZDwxL+oDsadpwR4jAwQxtfDTa9bZjr5/g+9u6TafM91+wvi6w5Zk1RagHSB4y5g2lRXs4y32XGKDaYu7501j0Jwm1hghw58a389mC6UCKLbevQOs2FK6pxRE2znPxvjFnqjOrVDmuqmeukDNFdrVNqF0nT+iFrsx7llsAG3q5Po3NTZUi4gmV5J7qy95j61gy1Q8DZ9y4j4Hvo3n/429P/uRJMvSPLHfXWTRxRY3d4+IzMjM6prqmpkeghgSBPhI8A8m+MwHPhIgyCHAQU9Pd1dWZ1VuERkR7m5ui6rKcjc+nHuviKpbZGZF1DDnISXgMF8szExFRY6c851v4RQ8h7gw7OTcLQvyNYjjsjR8vTS+VFZoFDe25bXpuKu1QfPGRK5tyD+/eBmGpGqccXkt9TXUX1ITMrYly/wM2JePm6wUkH4r14ashDgFiZxrmy1ts88ByH0OiMtAT2MquGM2iX6lFrjei1f4zUaWRPtOlshlthjniNEKraVneP/keP8csj944t0zvHuUXsF7xXBQ8JCwU6A9TXT3f8A9/hLvDxyndzwf/pnj6RtimPPSN5wx3iMyy5UeziYJ8XZpeS7UrJo8fxWbH+MGPronnsOAVhbvj3nR2xH8kZQCSjf4uM4mOF/MVMhpNb+UvkXrDtXeEje3uN2e8brF3IKxsS7Iw6QlSFdvMPM1NodhmjCdzUOXi6Ezz08KiWZdK6R2FhC4KIFKPVjnUdTFzyczQ1MBnV4Li74AvIuP7bJs/dSve7lXy316eYzfAxD9Oce1WgJWya+v9AyzWs0YidozyL/H+vmN1uxUw7W2Z+qaQxJLmccU+Bhm3vux+oWH7CkfVcIi89d2xQLWKKa45LUs9pBUS5nz2iBWMUYpbtDcKcW1kZ+x5CDJTLRawqsFSG4QP/JEsTiQ/tHkn60oO7q8yJOZwjArUUiV8zJFCaTv7UbsC3JtQJvqG36pFtAb6R+0FsXhmxu42VJrg9EC+IJ4AJej4AtfPXgeBwmKvH+GhweFG1W1j9s/PGOmCT08MD38zzw//yMuZ+7M00fWQa4BJC8lf49ifwQQVKqKuTJrxSRNn0HToM8Wm9e6hQb2uuEUPcf5mYenf5SFOjBN7+V7mDYzgos3v1h0pNorLA1ASgUPEE9l31nSRrIYbBvrIn5uYdaWpLdoF9iEgB1fY+cPaGWIMaDU0/nNUPuFco9dLoYWK4hLIskaDC8LjfXcW+bSMjNc6ZadthU/KL223FPlGs33pFrqA7zgEPBCTSjHUf04RnBCsoL+tY9/KSP4Jb/6/6WPvygQfGsiWxNxUREoPr4CcF5u6+pQVwGScz+vDpvlXPIAugF2JjJGzZDIEs/EffYFfghzBXvKfgsW+VABWMYYCCmcDV5V5oX49paBboPirU683k3c3LkK8pgGlEmkcM78qxB0WoAeg8qUXRkub0zLnelrk32jDHsEyJqTDKsfo2OIgXd+wCvLze5ndN0dff8FpnuDbxqibUhG102cXTP9MpNn0yh2nWzkSnjcS0eRbn08+OrfNQfx7/rwfO71WcDPNdijYqI7OfrnwyL3nh8Yh6+ZpnfCis1DnstyTKAOOsBZ8jaI/LttbuRhpAzG7mjagM6sv8ZecX31t4zTPTFMzPMTxLEOKoX1phHZ36CSJAI3e1IOkSuySqVUlX83dkfXvaG7+jtOn/+cad8Qd5qr15G7W0lGLiFYJezmOSb8kyU2DSYu2/sS8ibfyxGK1H0N9kCVghXZhk6JBqpXZ0Ikwn51Ta03vTttuTJt3dLf6o5XpmGDgL3lGrv0qtQqiSRRi7XBS0dISlhWCY4/QqrxSiW6vIWeoRrBz4i9y9n3ZPEPr6yOlPIwJgNdefgUGVWrxE94QCSex2wX8xhmkYxmsKdhAcrWMkKDqkHWZQCzalkgWaW5sz1fmI4vMvj8xgZe7yb2VwL2iEWKIgYq+FOYyWsAuARVFPZfqQ2yJOpqeOSNtlXa/phgoABZ8tqCMlxtv6Br7+j7N5iyJDKybU7NUhuszb7AvQBR+06xaZbghna1rS9BTyUMrjRt7w4S7FKWQk8H8fos9g/RLx7A3YeZ7f1H9PRMGj8wHv6Jw+Gf8GHEuSeG8YMMW4QKzts8YFyyrUqqb2F0T3NiHN9JAJayNO0Vu80X4pGcmThXV3+PNj3ePfLh/v/L8/OBEgiiKL6PXhQkSqFVhyog+sWgZ01H193RNNd0/U8Jt7/g8PketQfTJrb9EtA5z4lTq5hPihgUk9/QPEsYT1U+lNTf7xvszpZC8pSs7A7ON/mlNpAXqCJNXILXbm3HZ3ZTg1ZFlpyXJ8Am14Nz+4KX60HZrhdAMySRXoWkOKnLFu/PP14ped8LYFu+0pxgyC1s6RnWTN7AIu8svcI6S2ANWg0pch8d3/gTQ/Qcc+q3V2WYj7RKs89g61pBVGrQ5YJorxu2xla/8C91W7MErqzj1XZmu8sDoVPMs8aF5SFce5+01LsFVBKpfqQA9p8ukPeIj+Eh5YCr6Bli4MFPeKXZdrd07Sv67jWmWdWGxhI7hW3BWAGB91uq3PtmI2GRN1upDbtusYNY14bZJ0YXeffs+eYxVm+/w0nA35eWQtvjyObrX3J6+PdM03vm+ZHD8fdM80dS8ugstb3SBqsa1pJvoLL+inXRpQ3XmC1zSpDmvXvm6enE2N6jTcvV7ufc9J/R7P4G6w90x9+KhUQGggtPrjwFZPlUooa11AilK/jaNFe0/WeY7g1x/wXH1zs2r+WcwnnPdWoVAwaQAW/rnDAPlVlZucSXlUOp5AX4Vf/wqe+n/P1qMc4SSHSlG65Nm2XC9qzPNUrCTvc6SQCySlXpojOr3ahU2atFcrmuCet6IPdvBlX44cerFblkXRuGVGaKBewpjN71UWriTlve6pY9epGM52fzY/K88wPfzCfGFHBxCYEqy8NW6erjKa9/8RRf37PFQuratBVIe2PasyyBaxO46RybTp4HkzMMs2UM58ypwLIg0hm4A3l+2XwFFnDz2rR1gXytc41XEqT9mJfic4o8hZmoNF17Q9fe0bavat+wAD0avRFySb8VgOcqW0zd7eBuK3kjRqtqO6e1zAjHMdRl8ewT3zwFfne/EEjmWTGclmDI2ifMA2n4lsf7/w8fH/8zbn6WEKRwwiTx0F0z00pvn7LsH6AlQVx8b7u8qOuzEqAEgW2UIZB4ZTu+mU88R8cQJw6H32UA7JoYJXTWmj7bLJzbMkVFBnssxZNVr9SasrDeE3Z3TNfXTPsGcwc3t5GuFUXlPKfKfhwbxTjt2U2vUK7DZD/zdW0gA04v9wkF7EkV7FkD5mtGX7FK3OmmnqNb0/FKtzV0+U4Z7pSEHxugN4HGiBVTIT1cqt5CXK7dGNVZLXBBndWMkOSe/jG14c2KXLIQSRRDIZCoRR1VFq5rf3+gBsK/VQ17pZmT+IVXC6no+M6f+OBHxih3Y8wgq0kCtO5Mw63tFnu5FSGt5IwUy6qdbrixLVslVhSvTMMXquUmM5r3WnqHbROISTF6zTEYxqgxibqUL4Blpw1j9hJf0wWKdYQshmRJtNN2sb6gMKSEGe9S4BgdSjV07S19t6oNzVaycdqOedPUTCK7SVxdx7pAvt2JVYwsiYQN3DfyumefOE6Bx1NWBbjEN4+Jbz+KNUyMMJ+WPmEzzGy/+wP+8ZfM7oFpesfT8684nv5ADBMyK8vsoDIRIgDrCbUsQuT9D7gQcUpClHtl6rWgldj3ACtyVMsb3RKsZDVNKfDr428JYcpKAS1L4GaPDxPBj/m5XPoGIZMobeqyaE18i+2GsNd0VzKf9b1gC40Ve72DjYyNJjlDMq+4Gl7TTK8J/kCIl0uirAAo6udUULCMLxBrPZDzsiwVFeKrvsl9b6M016blzvZ1zr7RljtlZM4Grs2ShQMyLzTm+zXKMak/WhtK71A+d45yT59+BLmkHP9LeAT/S4Hgv8TxFwWCtyawMwqnNGOUx1BIVK+d9fHHWH+GLJ9SmZWAplWJViVivuvLhnvMBWxKkpBdCkMZnBsl0ldJytQElZgIZ4y89ea4V8K0uckAzJV19H2g2ySUOW/ulVlkXcv28dOr5Hwj3WSAR4bVkiZe7CWEyTgzxsApeozd0vdvJZm+ew3tzUpeqIT1p88lnWs5Z5FsvZTSGWLiNMaa4Pvu2fPVQ+TxJCy/x4MU6fkFSkf0wInKAG6GAfv0Dvf8K4I/4N0Tw/gt4/SheluJF958UazyucwSS69blNKE6ATU0YZYJRUGk/Zyjdgd280XtM0NIZx4ev418zxWkHQtGdPRMxAwpqdrr4nRZb9CCV0SxqHGmg3GiJl72r5lvG3R17DbRm6uE6+v5PzOHg5WwODS0J06XQ30S0MoTOAc5hJXDdz6qA3cIvMqzDTZ9FIXHGs+sMlMlCYPHm+avgaEfKFbvlC6DnVX7bx412oJ+bBN+l42+xrQjFHJAiBorP/hQHCvE1sdcUkk3nPdcMuxtkO5PNZ/1yqd/f3W908ZUCXc4Rg9z3Fe/OAUKCxReXRSme0ncrcz3/CUlzj5e63lhtWrHM1NBsyusl94v5f/IzgILuFZ0rIXixcBropse31UeXn+HmVJtEHVh69BauYpulobtOkrCNy0dyi7J+pFfryuDfbCLqawgVt7rhYIMclgMkeeBgmKHObEu0PgqwcBeZwXAPh0yGGQ9cKRD+YQ2Tw8oh5/jZ8fmadveXz6JcfjV4QwEuKEjo690jSZgdZnpmphVazlRC6Kd3MJ5XkMcx5sHQpNTB5ruuzB1dLZHe3mS3T/hmZ+oDv8M89oilZlvbH2SHiS0gZrNst2Pw9/AFq3WLOV5O/2hnG/x9yKX6K1wqTc9nKepxlKXQse3EbYFMCZrU+8AHxeHO7qYkje/3UVLiyI8yqaKtOvLBa+sFt+Yfq6UHhlIrftTKMjjY20TcTaKMrgbF+wVmSlsAC/MSq8U/XP3itc0KKMcT8cCJbaIIucUhcCeVhbPU9DWmwPLp+za9bSnmKdsCygA0ivEJz0C9kzfA2ry9eQcwelIi8LnfWx9uptlfh+FhZwoxP73rG/8nQbuSmmQUuQal4SLYzncwB4/fXJzXtZVHdK2H673KNslNSHOQ+8x+gZk2fMEue2kZA421yjTU9cSb/RCvO9SyLJFdh1Eg4nNUL6hxBT9geXMLg5JL56iPz+g4C/62DI6BH7hyHSnHz1/Ryf/oGPD/+BaX7EuQPeP7FHVCytPmc/rz3ngAqEv2RXAsLyHHKtGFPAqme+dhLCpnWD6+6EAbkRwEVYTy0+X75rACUiTCKNWGxcHtUWorkl9Xf4zZa402y3gf32pSs94eaEnzRaK0LXYXRfv9byaS8viFJKZ+yeUhd0/ernH2EZ+NoMWHzRbOv184W2/NREdtbTmMim9fR9+KQWrMHskoNZ6oJ3q9rg1TLkRekZXNCYH8Hs2a1qQ1kiw/k8sSaUnCkLVzLtTa4LkiWgsrpGshWGFDlGYQIXsGcdvVvA5HJNxiQzhMsnYw0olJ5hpxuu9FIb3irJEmh0ZNsErnaOtou1lk7eYOLSx5TlE6yk4PkaL9YQpU8sdj6V9ZwJAOKNXu6LyJQ8c64Njd3RNHvxADV97RtitjIxlhwcKbkC1xtREt30AgLfbA1aSW1YqwVGF7k/LAzg393Dt++lVyjKQXyqWQH98wF9+EaII6ff8vT8K06nryGrOTe5JpfzHi9qf4T6jPAkNMIINiiapFlbglxmzWyUqMue48whOH41PzNO9zgnbLuUoixqMhs5BL88ixN4lVCoGh5Z1AIxLwi06Qhdz7xpiBvNbhu53osqywUYrVhtFAstt7X4zRajDXraYzIpZmEaX/YJC/BTGMBFEVl6hfXHNQDUKVMByY02fK47vtCWPbDRibtu5nY303Yxk58STZe+l0wU41ITyu+9z+cj/74Eibug8UHnTJ0f3jdcmUivRRE1p9WySGUW7erZXcJl5f3JqmMl/qUlS+BGwVBrQ1jqQhBiiavnj7M5syguG2UYkywh16GyxZYBqD3DK1MUx+dZAn2uw10Tcm2wuKhxeeYDzupaBZk1Z98zkcQGsDCBtaFZzU0tSvqGKLYXcxI7HK0sjd3T2CuM2eXaYEjGEI1YQahOakPXJ3arBbIsiZYFslbnKuTDGHl3CJUB/N1HeLjXxCcggp3ESlLFSHs4EI9fcTr+M9P0nmn+yPH0B/BHehaH7uJlK695yQoonXFUy/kgJSF+JXkTbcyh6EmdZeIU9csmE1MOKfKu2fKdGximD2gl2QC6vRJyGeV5lLI1B/WnWtvMFds7gKQ1upOFsbWw6eU8mjyvxTyHBQ9uMsTuShSPSRSPZ/0CrOrCMhWchT9yCQQvZDKTMbLCVH9rN/zcbrjJRIO7XA8KhlBmXtMseJhaeUKlkFZ9gnqxNlxiDOXfYlRMzuCipvkReEM5fnh1+f7jz7Hl/Esff1EgWPwYV1KGVCRcyzB2yQT+xKdXferRe+b/mRbz9yFFxuSrNzDILVAu+rJBfsmr6PJ7lvTDxZuzyF3EouUSBL48ytBamrZS+NfMNpHenRfjAvCgVB5iRL51yjIUo9tsk7BH6X6Rb5nlB6kevVFAyjnImRjmxHEqEkZVfXrWA10Be2afeByy16db2K7eV9WB+OJGICaUg/5plgC4aURNz7jnXzGcfpcDkZ4Zpw9M02MFVgQEXrZ4sJZ4BULwsu1CZQA14sOA1i2N3VMj4jLbVt4PQwi5aUvQKFU93Mp+bn3jCtCTC6RaSmLZ8mktPqBJG1JXGJXZF62RB55Rcq5BzpMVbX9+b/TZ9/reo7B6Umnk8vVVN2OJqHLDX0DKzHQoIUZWSZP8uul5bfpqM/JWaV6ZWLf4+86dDXimWSwMYjy/N2J5uv4rH/X+T5yBPSXYbc36K+BIZfvlpq02Pujz+we5LsUyJlSwdDoL+Vi8kar0RS0em2sgZn2La1RdIpXgvEZHWpXO/MLLa1xAs+VrXNaf9Z+b/D93ylRZbtlKG86ZUEP2KSu1QXzDxf9TJFwX5T//DGf1odYGGJqE0RGtZGMvNUI+b729n33iMJ2z4Oc5L4PyUKd8wjgJPukOA+b5O6bTV3j/xDi+Z5of8GHILHxPCd8p7Mu13+naswtyMxkFEPMpsk1W2FgpCGvKn5jmJwFlsh9q44/osBcP4uiAVJlEhTGxPj7xBVZSQYoPaLF1UKYnWIPJdhsFRCuWGzFSwTVI+EaRtM4g8PRpA5eP8wXRuqn79ChVq/5+Jfe8Mi2vTJcDgxre6pY7pdlnds+1DdXmSOuEbRJNlwfXsj9YWRlEQPM9daJ8zmq7/0OO2iskzq73wqR/aVkMZWEsHpDNhWz1Uwah9ApTGXpW40MiVmnrmZ9Z4qw/EV8++XPpT4qHslhqSGCkWdUGZbJa8OzcrVh/aZGqlu9RWEQ1bEOVJHJTmd31/8/naU6JMXlOweNiQJleFiO6y5509uzZtPwsq/dB3mzJBMhs31IbZh9r33CcIo+nyGGSMLjDWOpCZgDPijAolEtoH+mfJtrDQcJUj6IScv6EdydSdGd3nrQXiwLArGS15ZiTzmsdUYmQ1OI9qZZhziSx89kog0+eGCNTXkxthy9J/kAIJ2HZrQ61+gW5T1AvN351uZOf/brJFl2rUlxOu/PCwPaNltdpG2yxi8n9zCfHCvg5H3vPj5fqQadMZbF2Sga8N7qVZYnS3Km8zGw9WiX6PtB2kZL3/NJSSIbUnM0Qyd7sy+fEM5bPMgf80GNdG87niKK2+R5blaIsIa08c9eLoSW0ekxBZNGrOlOGZ1j7Tkp9WdeEtb8/yLOrMKvKQnePZqMF5GlMpGtCBdrPX+vCmlz+bgGTzvqS/P0Wv0ZTyTOlfpXXOaTIKeWe6KI2FMuYl451uQhRnm9zELXgkC0gXAhnteHxFHgcLj0/pVdIQaGmhB0iKiba04Q93ONOX+HdI9P0HudPUMAa5GoPqeRmrLn61PPC6r1aE3v+1GFQbLTBITLxFoV3xyr7dv6wqBfzT3NZG8r8sH53zuxcsg0PRU2aVZsAtHJOg5VzNHWKaBuxjjH9Gbj8vceKUHMZEr1WDjach0Tf2o7Xpq/2Y8IATuxMlGVF6+k3IYO/ooItwM/lEaOchVCVcPL75d/V0i+sru/LnuJfelSG8UWfHP5E31C8R4s6sF29d8Vy5pA9pI85cBzO2dW2yuiXZ5FeKZTKUfNZ8ueXsLZ9vl/3uW/oTcAo6KywK+XeK+Qydf4av+d1VYUhUHJNCpay5I6U15DPYa6hQ/S4FJelRnkuXWYSQc0kujxkvpDeAWSeGF2QuuETh0nmiDJLzLMQSbRfskOaYUA7J1YQ47eiGspK4pIhVFJ/ZFFbvrtCXdyZizfusuBdv29rj9uSK1GOcws08b3tlOaUHDEFfNDo0GJMT4yurPPlfstgcOkb1nZSRQ2o4vmQLWScTDQLMlPMLXid8J0WtbHp0WGS9ybXhtrFpksQeLk+1h7hl1YQxa60zAwNhjem5S6r8EXdJtaobRvzvCAYgskhuJ+ONCrPDBk3e+E+/9554l/ZyuGvQPBf4DgGiTqYkxK/TgqAERlWTds6rAXIxu66buh22nKnmupdulEyvsvXVTwiEuljcnz0E0NcWH8JARl2ymDyAFVS0F86ysa4FIS+MgdkcO5sEMZU3nqcbzvy11AiE5GfVTxU1sbZvTJVunqnm0qzJ5+fA0CC+xT4xp/4yh0ZoudA4nbzln77C2z3GrobQttL6EBh9mSvKU9iHEWybXLDcZhkM9/aBeApR4gwuAX8DVEA4MNpCXwax5za6WSo655muuNJPHvmgfD8K8bT73DuCeeeOZy+ZpruM5suoFLIiaqLjKVVTW2c1w1bTIkpLZvUoz9wck/Zl1Zj7JZN/5q+e13Do4xpq7dwjDMdijvbE0jZK1BYXy5FkQllL9LCuFG6QSWDMb3YQjRX4iHY3uB2e5pdZL+XreerHdztdGUEb1p5sIUoA97TFnzXoqIwj+U1XUjA6yZ/YfyVbb5Oi6esIj/sst9RpzR7Y2vT/9oK8Fsaii90I8weE+itZ9cPbHfnTZztXyrYsr0LLtXNnc42R2dMn6BxXjO5H27efgoaj0g+ir93aboKu78MLWM8t27pcjPSqpVMZdXoH5KctfsUeR9mvnMDxyyFdCki/VGgSSIPvDJt9faEtbw01RAGyNt7I57hcu9abhTctp5GRzZdWPmFlyFZV9bk+iEk9UAG8qBSDeprtDQgRap7py0bdL0W5vzrMQXehYE/uCNDDByIXPWv6PsvaLrXwkprtsS1bQxIgKNOzLN4doI0GyLP8mzyw7zUhpCEFXyYBOAZndSC05jrQVkQZbl3k7f4m/sPqMMfCO4BN33g3fM/cjh9LYFPYSSEAZNCtTzplKkJvuW6LgzARuua8F7O3VUF2xOj9bwOvrKEP/iRh+Eb5ukepRuG6QMxTmzjiHePjNM9KgX6LP8q/rJLUNhyLSml0Vh52CuDNi1GN5L0qyUkzm0tN1upC31bPFUFsN5kL8XGJpyHj17hN1u6RpQMal411sX3r0q/c114ISyy3A2luV8Dv7e2Y6ctnbJ8bju+UC37zAj7rHW82h7rIqjbLB738hLVJ2CPfEzigz4qfG3s1ML8S0pqgje4qJh/BNozZgCkLI3nPEwNLN6WIckipHj0kc9D8QjstTxbi5InAI9p8Qv/GB3fuYGHMDOtFnRNEglh8fkrrAgBIkO1cYFP/cLvTM/bLKf9Qmlet47b3Yy1kbaLtFtpmmMEN8n5q+crv86X2MClH1kH87w2PW/y9zIIW6WcrwOR78LA1/ORMQaeUqBtb+i717T9Z9jmRlK/jTnzEC99jM9WRwdVQIpESIHNEGvfEKI860KCw5R4PEk9CVGso04nhSss4CfYPE3YacYOJ7j/z5ye/5FpfmB2j5xOf6hWECAewIEl2d0ROMVz/8pSG6zSjDp8EmgYMJUdfJNT3+eU0K30dx/8yJgC351+x4f7jhgmQpw4HH9HDHNdTq+tV5YZU5/JvsthtEUrA0YW9K5rMK3I6AuD0mhRYQDcGzmPD0T8rBimDd37W4zZkqKvoHIBkmINlQxL77ACKtfDncr3wD7LvTtleGM3/NTKgrhF8VYpPmsd22amsZHtxrO7DtXqzDQK3YDOaMEa4E0R4pwITsDV4L6/T4hJlAIuiszz9CNqg8s9f3kOluXQjEh2S61YA8IaRa+autTZZFbumlTymALfholjcjwHx2OY8tfIgEEBcJCA3c3FkvVscZyf5WXOuLM9PzU9b/P3fKsTn28mrnZutXxLeREPepDzN2cSTbkP5qyAWfcla9YxSI9yazpem676H7e1rxFrnYcwV9uL5xRomiv67jVN9rbGdp/UBnlPM1PVS89be4QYOYylZ1pqwxzg8QTPw2IndzoppmeNmmQptP040H18B+5InN7z9PSfeXr+R2Z3IIYZ54o3uDzzZoSxCBfLGQqoIdLm8j6sQ/ouweCFISpHqzRvdMu1thx04CnM/Hq+58PH//DJYjhlL24D1QIAyIGcbQ2OKgBwLMC10SQrPqBt7hU2DdCVc1dAdpnfhtMGOzXspleYJ8lIMSkSlPgUn2cHLP7g6wVR6Q222tZ8gFvbcWd6rk2TySINX2rNtRGW+r4bK0vdNNBuI7ZXmEahci95yfpLIRFDQufaUMGdAuqEch1J31DUQy5qXJCPU3gBUfwzj8IEFguphVRS+oah4g1FaZm9z7OqRnyOBYwVz3CxqbuPjq/dkacwM6XAMS5rYwP0WV1RMING6Zrhss4uALk/i4WUQXNrWr7UHW+VrjL7u35mt8mhx3lBpM1SW13GU+Q1Sl1w8bzeFRtBVtd8m7/3lW7rwrpdzxZJ1Mfv3CCgdwrYZk/X3or6ze6kNnyPWqASYFJWyU7y5h+mfJ/FVIlpIcLHIzw8LXOEO2qah4CdPHaaaR++JRx+wzx9wLsnng7/xPH4Nd6fKH1xUoV9q1CI+lYp9clMLezcVC1lioVO8XnfasveNGyzN3MJSC9YBZz72742HT/vrti4gTlFPvpjVaWk6IlhrBiQp1iTaIxuUdoSM6ktpoBzT/Srh2shk9xsSraT9AxdKzPEByLDwzVXh9dYZQn+gP1kUbQwuNZMYJXk528K8IsSK5MM/PbK8tp0fKHb2ju/MpE324FNJ9hXt410G5kZlJEewbQG3WpSfravP8p1uYDB8AIbeFUbLpVES3348aBw+B7c78ccfwWC/8RxjIqoVPX9HHKhKkEmpYmrASlnLDyFzk39jbK8zTIVEP9cABcVA/AYJdjhEBzPYWZYpb2mFGiVqp6pRbrxfRviAkQUacdeG/ZKsdPCqOyaDKi1qxYkFuBs2eCLTEuxxzKYSBulCd0py422lcG4V6pKy11UPCZV/Y7fRWnYPoSZoBRt84rd9kvs9kvS5hXRNvjNVvw/CyM4phxkKZLMw2kBpYxGfJ0y82AO0tQVduCwAncquJ1vvhQhTLLBV1FC4Lb3H+Hjf8HPH3DzvXj2HL+SAhcmbPK8ynK41nSrB+ACiC+Ma3XBfCxbXGnYPoaZ7/yJpzDjU+TePXEMI84dUdquPM5uUWogpcDeNHzWbJhT5J0bOOAZM1tcoUjR4f2JGjqVGzhjNyKVy0EyprnluO/ZbhPXe5Fs3G0Vb68MrVWy3RwjmyYRojCvv+0TvrOo2NHUQKjzMKjlOAd7ygOrPMzLxlOkbjKIvLEbrkzDVjf8G7vl32rDK+vpbOTu6pnr175ep83OoDctSutVE5flZSGQQiTlNzzNnjAE/CiNnVtJ/Uvxdl5Lcf4R5jiPIFLFJENcDXVIa7AnfeLltbb42CjDXZZg77IX+SEpDvlr3ifHOz9w70dOqfh5LRvR0hwXn0SXG6rL4Kkq41JZxpWDI2+UnPPCqKyMiVahAvicKVIl82kN4eXtvNZ0mCofLTJnYWU03K2ArAGq39l9cnxwI/dhZlZgzZ7t5qdigdDeQrMjtj3RNjJ8aFVrg7ZLbSjMHq3hcYDW5GVGEPaOWy2BxpHq+wssH7Pcuzu4Ggrp3/+PPD78T4zTO5wfGId3qOzZ3WRpd6vbem7Xsu+qxFgtiArIZ3KzXpr2euQnXSDxG3/i19MTH8PE7GdOpxlrRD7l3AE3P9Pl9z4iAOec1vy6ZXMvnuEao8TOwZhOQGDTo+1OwPaNZrcN3O4kPX3xTIR9l2hN5LHJ6ow5ctr3dPc7dPQSIHOxkVknAS/D3ZL4zeoqKqy0whL9st3xb5sr3irLXik+t4HP9ie2O2niNjeR7kpjNkZqgWnQjT2rB/JRakKaPXGWN9qPMTduufkpEtY80E3eMAaxgfoxYM+BP782hCQST4Mw7gpDdoPhBs0eyRI4Bl1rQvEL/+gnTimSlHi8tkmWbDaDrbuV5y8RvIpMWaJdlEpFRXBlWt7qli+0ZQN83njuriaubn1VXMjyTWoDkAEyAccq2zm3lSEzC2tGgja1J+mV4Y1ueatsXYCtGVCH5PnoJ+79xEQi6Z5N/5Zu81Ns9xpl96Rmu1hKGZ1rgwKb8F4xzvIzuyDX7TAnWiu1YZiX4LcQJeiphL/BuVpITYnNw8jm/bcwP+KHb/l4/z/w8PiPEgCXF8Q9hbmoPlGAiLvKysZlpQ5osypgSqaC5JFGGHeoKv2+UUIsuMnL98fWc4ye/3n4wLeH32SVAEzTR1KazwJUCsgkCdsqW0B82lpr3aBNB7aTBVxj6PtlMdSaYs8lQ2VrY7beScxz4nEwpO5KakucMGaJaC3soRIIBwvDaQ2GVZZaXk582e64NR07Zflb0/H3rePVdsDaxO7as72OmF6hjcJsDLrfottmeVG5LhACKQSiy77muU9QuU+AJS9i3SdM3tTwszFq5qQ4/QiwZ2BhvQ8ZAA4rRWABeVy68AvXpoa6FoKGZAmQM0aEdHEMTkgX0cvXlluCRmmuTHMWoKXVcq0CZz3KVtszRtWXuuFzE2lV5KZzvLqd2V6Hla1cBktctopJMt/MiVoD10uo0pcU0LkAUL023JqWO92wz8/HdTDPkAL3fuQ+B0gG3XCVraSa7jW6vSVlCwJgmStY3lvnE6MrjGBZEJeZ4jjJklis1qRvmE+KNCF1L4JxER0TdvJ0939guv/3TNM75vmBx+dfMY3foVesy8pWzATHBb5frJLkHs0eoFkFWA7Nwop+CQwOpLpM2yuLAQaTGLtr8RX3JwEQFYBkl6Qk1gsWYdeiNBMRheSLLCcw1nsXFkawsWIfte9KiFaeG/OirbWRwylxP2rmU0M7CCHFmJYYpwXwqSBw0ToufcL6lQp5ZPEE/9Lu+Lem523OBHiznXh9N9HvM7uvVzR7i2o7lNZSE4z5pE9Y14U0C+kqzhEXYvWJLtfNWvLtgtQGEL/gMRgCZAvJH3a4JEHLC94Q6zU/rOaINau+VZrrlScwnCsFZhIfwsQf3JFD9PUelOtQ7sOdaXhrN/TaLMrm3J+sQ+irBYfpqhXEW9XwC6143ToaE9n17sxeTiw1VC758vNJ9gkV3HaExZ+cdBZGt1YmFCLLtWlq0F9ZJAPMxLwEkwDdoAy79hrbXMu110htiE0jalejwYql1KIoXfrDMEmvsK4Nh9OSIzKeFOEIehL14GaaKgPYjEfmh//I0+N/qjPENL4nhYEG+fpi/WmyWk9IGtb0oPR57o8ShmwDbFYkvCvTsjcF+LXVM7lgEcWus5y/chileKsbTHvDl82OY/T8cvzIN+GId414/ybHBpWD2+X5pDKRpPT7NSsonFBeYOSC02yanNvSKjZNYtMkbjaLgvP3Hy3+4U6Cq/0hzxELNTutiCPAWT9Tlppllr6zPf+mveIL3bJB86WGn25lUWmbxGYX6G+h2eUchrZBNbZiCfACnuAkYFd6g7KkkBkUOAOBC1Gq1AYfNCEueFrxE/c/ojaUY04/fC75vuOSuPG/xuMvCgRXSSecDXRrgO8yHAUWeU9hwLR5W7Z5KbAGKWDFkH0uthClGcg3wFkQ1J+QCa0BieIf2dagDJHH1efwC1zz4uslX0ukiUGJbLF4fba52GyARhe/Y/l5S6M7ppALMiL7tj1Ncy2Dhm1k2DAv3xwpLlYO47yAPa56zsggV6TdpWlzoxLfrtUhQXhKZN9Z+m1cQE/PzBkEHsf31U8rJodJiStteW37CsCXdMkC/NbE5szMaFfnu5zWkN/zVokEzyot73UMfEwzPozoaAmr8CWQwi+WCRbwVWIbyTINZGuoUiQp2VeJxEKjla5pwUVGGxqFtWnxXS5+y3krvsmLgTlAmyXisxYZOCtmRZWIrRqEUrDXm7sy8CZkoelZxB0auZ7L+XyrDJ+1jtvdRNtG9q8C2zuF3YvWzPQdarOpxfrsOgmBNM+kOZvWA2qOeTBRn1iflOK8NnT/IUdhtoR1XcgD3Vk4XAEFiKISYCVnUcWvT+4fNBBUbeDmJGnQjlSvp+XOpEphxH/ZgAL3wn5Pr4aIYtUgTBu5d8USIOYNqXyHgu2tPY9eOl/r1N8Cdpb7onoC5+A7KEw5aTKnFPBIM2RMj7UbkXY2uxr2IiDw+ZuYSrOWa0Bc14T8sUg4S3iJmxV+kEUQIPLGfKiQsFPEOI/2DuVOuPkD4/SOaXoQL/A0cqV0tTBZp1LX87yu+0qdnfdyjgrLr9jprFNpjRIvxYPpeLAdPmWZb3I4P+DcgRAGqU/5fBfArZ4beUXy+2oZs5w/qQ2iQFDakrRBNVIXCttv7cceYsy/zyxSiyg3cl2p37cOjJd1QX63BoEvD82ywNzqhjtl+UKLguVNDjYVDy9Fe22x1xtUm32K2/asLqQQ6nBHCJkR50khiQTQrO+g1YBXZd8/Xv7tUsKsakNl+X1PbVjOg6ogcKtykrlalBWiDAnVEsKlmCV7prJGCvu2XYErBo1RhdmVFvk3CyDU5LqwgWoJ0XbCtlYmVQWR0kvPEOLCfC71bw32rF9XWZ4WsEd6CVWXRGvmdEhU9UtQYLXFml6eZ6bPthC5cf+kNqjqR1d+la9Z2GqnPNCV2jCN57UBhFUNoF3CTpMw/uYH3PyBaf6I88+o6Co7pcjYUz6/ywhzzrgQho/8rc5smykFYUciLMkaGpgv0zbXUfnBFAFTe7Er0/KNO+DdUVi3YaZIOuV1LAzbs0O93HdVFm9mTGmdMqNnAYE3jSyJNk4UA13GjVSTpJ5kEkN9zevF8co26oz1t7pkys9cMiiutWWvLG9V4vV+4uZOlhPdFbTXDbpvUUZLLbioB/XbhgDzXFdvl30C7vzz1zWhWMWsbaB+6HFpBXEZNH1pLVeOsjws6pris1++5pxkhhiyzVJI6UzBqqGyfOXPf3yGKOz0tj7LYaMjnY1sOl+VGIVVWZUXa/sF1CL9fmHYXD8Xy1K5Uab2DmeWMZUpnWrt84rsd9+L1VyxhbiwNLs8zupClP7BZZbfKS+FxlFqiR8U+hhppk/7KjvNMD3i5nvm+YFpvse5Z0yKEvqVlt6wvHqFrsBPIqASRBVffD6W52I5/pQloMwkS09xncMUJVBcAFenRKlTrdvynKnK+6POpd+fnLvsx650zGHeqio0jZKPIEv5rpUWIXSK0FisKhLw9TyxftEv9wkKkaV32U+9UzZ72MPr1tPZwM21Y/cq0r2ywvLrW/SmX/qEFQgMBfCRHoEQ0ECsEtP4otqwnoMVKAzUZ6D7kTPFJ7UBzupDVRxf1IgSNL1W5ZZjJlWf37JkWq7Fpe8qntziOxxrfoW8vuVaKTNE6fH3SrMzgU0rvuxtG2ttAAhOVWBVr4g3RUFZFkTAJ7XvUmVr85wjs8tCwFq+JjIvZSVE8bwXW5KLflVnckn5XnqxjinkkvJzX9aGaczhkAM0h8UH2DgvNhDeQZjEHma+Z5qfCH4kxokW6JWpi76kdWYBG7GBMwKIBpDCJEMh5d4oM59VunolG2TuKrNXnclWIPDl5dyihNCXFg/44h1eSF0K8dv1VcGgP7F3qT7BF3ZUJteG8rH+XRRbSt0lom3QtgVl0fqlG26ZZi5/yXlYSI9SD0SZfts4bq5m9q+CeIFvFe1dj+nzgvCiFpwduU9IsUZ7f/pTvdAArD2By5+BajH3Y6zmzn68f5Wvcn78lRH8J45jKtv6VIEZOC/EAsrqOsQDZyzR4qkl1gypbg2HVNgvkafgeApLGBQAWcapU6JbSTwvPUDXhurf10TKA0X8AGNUUpzdQn0vMnoAayIbHdlHnb1+DUYrhmRyErMMcOtG1EWFQ9iM71LgmxwO96078RhmjN3R2B2b/i1Ne1cl38WDNpmlKKsgDL3SUJ6ytQMUmcnyumIk0/Dz6yxsv/xn5VbArw90h4Hm+IxyJ5geOT39R56ff8U0f8SHiXn6SMxsGoM0KUP0RBI+F78yRIuhvRVZfMrsPiUN+hpoaHMzvFeW2yzhL5tW5weO/gmPoqRvphSY3RMpzVi9MBtiysNl/tKJvEUPM6DBbrF6hzUd1u6yzcSnvkjh4q4vXmjip7qEM5RDxQhRwuEuWX7icRTrcLcePmNeluhcsHs0KjcRP2l2/KLZ8zazPn5qIndXE9udsIC7K7D71dbu+4AeELBnnEizgD1xjrhjZD5l+dakGAfDMJkq4zo5k1l//OBjyBvLwugpzRos9aFcJ8IQXwI+ip9WYdSbVXL5ANwnzyEFPgYJ/XCVBU5t8hXSUKyXQ/mWrqyBy3rw0iBR002jbO1TUJ886Iq8q9GJTZRN84yi1QJCB50+UQsURYE0e1n5kCL3yTGkyHd+4DHMoMWXqutuadtX0OwFBLbNJ9JO5cogIn8+cV4b5ONSF8qCKEVFmAGfam1ohoh2ITN7ZtrHD8TDb/DukZN75PHplwzDe7w/kZKEqkhAh8j6vUp4Fc+kmwVUI4FVLMDvqmn9Po/3skwib/JvTUfM9WdwgWl8j9E2B1WOKM6b6HqOgIgnhIEUXZZzdRjbo3UjoRBaqlSKHhXDWf2vP48+l4IXObjW5yD6i0e1jVngsDLclda2LIv2puGV6dibhp1u+LnZ8KVeBrz93tPvI81WWH+6vWjiVrWgLIUuWX9rdcB80oyD1ILZaQ5jw5iDXlxSHGJRAP3wxm0moVcg8LpfWP++1AYyo35fWH91QSA/xxwUj8D9Sjl0jG75WpndVYKWZFkhIHBMCVR8EYwpC4uaX0AOelVgVAnXWp655zYbuvqmFhVRqwTIaZDnSvn+jV6WqOsl0XK+4LCyvfgujDyGGa80WrU0rYTEabsH04Mp8s7lOlABohd8c8phsN4vNaH8irF4gi/1odSG0ivYydNMMtCZaYKP/4Xj4R8Zx/fM7pFxvK9ygkQO4kriA5rye1zY+Qsjd1kAtitVSKslBHGTF8yfMHtKb7l630pPscFwbVq2s2KYP+afJ1Rf/jNGcAZ7EgIWe0Ari9YWbTqMllAdAGLATBPGR2LUIpVPIo01agnjbPPyqLFyHrX9FJgvR7GLYQWRr5l/GgHUl6Aww5ftnp+bTWWpv+1ntrtAu80hsb1BtdIjqDXzt3wsQA8QZ0dynjBIbfBjxB3BTXlROGnGQTNMtlpBHL1hjNnPMmUpM/Lxhx5j9j4s88RcGPQXfVdZ4sAqUDb33rCwBkliwfYQJ45R2MBF+N3k67H4qXbaVAVLTMuzo9SF8m9lWbPLUnwJcpTlkFjLldpQQOCUGVLSb82zZgymyr/P5qX8s5hcMzSKrbE1pLKoidaEimLFF1LiY5x5DDOTQmqD3UlAYlkS2e6iLkRUMIQZlFaMyAw0z0ttWB/zLGqjMMssoTLbzzjxwWyGATMcUWFaZojjbxine2KYxEYOmFLMtYAMyBfPz9VaJt+PJi32HX32TS9AzybfD8Vuq4TvFu/wYjf4EtizUZob0xIyeB79hE/SxYD0+koV9WrOG4hOrGUyO6/4d5rcMzSTww2W0AmzOsQVaUiX7BbYNIrGJmybRI1pDZfezZVUsq4J6bzPNUoYy69Mx+fNtlqGfKEtrxvHvne0jYCPulXZGqogeqESRDBmWT+t+4QQSSGe9QnBKaZB4SZdg+FmJ1ZyITP8XFYHxLog+tfoG+QYan0oi+PlHpXzca5Clfslv2TkWXogMidREB2Cw+dnUrnOirdsIZitDxdlPl3XhVIbdtpynZf1LYobBdsmsNt4WRquPNkhP19dPoeTZvSaQ6L+fOU1rkl0TVa/wMpWisWPuFgeyDkT+z2Aj3Hm3o8MKgHyPGubG4zd1d4h2bbWBxUT+CQZAKsMocF+iqPEKLXBzTJLpKDQ2UausoCHR+LxK5x7xLtHDod/Zpw+4t0hz86KWYFPQWqCajBmU5/DayKXEGdjJoeJaqDNRBurdK0LvbL13Eiug6n3zga1zBX5KL/fKA0p0uZ7cqMtDTCHkVIb1oRDBcIUjq7mjFA+AsRAHISMp3WqOENrVPU9LmqBxiRMm6r1ZJNtIerrvjgKR6r0UL2WvmevxS7prd3whW54m8Pk953PoZDL10izJ9a/ON/6piIpB+IciHPM9pJIWPqoKqvde4N38owDqqVcXAG+hQFc/lzqxPFHKInK8Vcg+C9wfEyBLq1k/gXoyXWiDPQlAZo8RG0w9QEtSZpU2fvkNcegeczSj3fR8Z0/8TFMjLl5SIDKiGafh2WRdYkU2KVwxib4Y8ciS1UQJfXYTYpmXPaCaxDA2sQ+h23EpLiOmjEq5mQzgzHJkJj/fch2EAEBen7tB37vDpyi54Mfcbrn9vrf0jY3bDaf0+7+BrfZ4jsZ5kJjzjZzqoA1GtIE06SZLu4fdYlW5iOF1ddxieYY6J8O2OEkLL/HX/J4+C9M0z3OHzievsH7J+yq+WhLu6YkQOQUJeiuVZpJByYd0FmqN6dYGcItiQ1F2pCW8K8CmifNRncE3TGTuNIN167lgx+ZU+DeHzgeZ5w74sOISbEC/2vv1/LKbZJwAKNgygW6sRv67i3GtLTtK3kA6tIcK0qzVYq0rgVaQOCyuWttHpxXG9ziDxyiI8WcuFe5T5HLhN8yIJsEV6bhje25MW21gvhvtM5gj+P13cTV60B7LXJvs+vOtvnynq8GvXkmjGLoGOeAHwLulOogMg2Wcchyb2c4OcMxmBr8eEjSdB1/RFV9Sp4p8UlNqNLHlaSpV6VOqLPNpYClci+FfC/dp8Dv/FCTn5/DjAOikkVOqzR7bWnzYmhvGmEDs3z/9Ta/HGufKHPRICx+wMKmK4NdXElZTGb9i/xMPCyDSohLrryWKldlxYhHPI8fU+SrOFW/8O/cwAHYbn9C196y6cU7PG5uCZ0Mc6GxMkAgTZt2i4NcnGBqLmrD9z3RogA8OgNDxiU2D880zw8wfiC4Bx6f/jOPT7+sYZAhDJSkb5Br2pPwSVyadIq1TpThNpLQSVVvxcLGXGRMyzVx/t6U2iPHnbIEu+E2s3kAfueOHA6/BRI2RRpt6xLwnFUqjVNKTmBrJVLwTbOnba4xZou1OwBSHNF+hriwJUNaD3RqxQ7O4ILlrF4DixVEZQWnCvpcLoiEmSb2BY02fNns+Lv2mi+0eP393ES+vDmyv/KYBjY3ifbaYnayFHtJ4lnVAM4TB4cfgihKxsR80kyDIQaYZwF6TjnFd87N2YGF0Togtkan+MMTfo8p4Fd9A3CmIFovE01h/qK5UYa3SrHJ0moZmMgDnecrf+Sr+VA9/uYkHo9RiS3E3ljubF8To2H5nsUu5tIyps9ql8Im6S+CI9dHcAmcsHy8EyuN4gMKiVbJoksOW59brRJP05tse7G+3gsb+F1yfBsmxuT5aj5yHx1t94a2vWLTf0bf/wTVv86WECYvkjXRaFSI6EkTUUQjyyI/KE5GWODVAiacX7dy0UivYKaE8RHjApv7D/D8O/z0gck98vT0Dzw+/RM+HPNyI8uYVQF+wX1PH2ZS8WE01RbpSjfsTFMHuK1uzmxjNhkoLv0InA8AiwUVfGG3PLUzH/yY+0GNY1kclkVVWbzYlPBMJO+JytK217TNfgHUdAfugNaG9rRnnjfZTzWBUSumj6I1ik0jwZIA2iZi02RGcL4/qx3EYh9F+dlWA55BcWtaPm+2cg0rw9+anv/awpvtQGMi1zeO/ZtEszPC+ts0wvJZL4pzLUghEMeZOAcBd+aIOy1DXXCa09FU4Hf0mmOQBXEJcivyZUoPne+l6UfUhgMRnxnfi0JguU/J71kJZiug6F6JTUyrhJX8LkW+iY4hBZ6j46v5WP3CFRk0WC3fr0zLJgO7c1bjrC2k9KrP3GjLtRZ7Brl3NdcrC6kC9hQMIDjx2HeTwnvNMFueguZQ7S9i/R4CZIHB5men5ko3eYG8sJ73uU6UBdH7ODPEwB/ckfsw07Z3NO0Vm+41m82X6O7NmZKokEx0TOgpLbVhUBkG+NOAnQpgh0gzzNhpwkwT6vHXnJ7+E+P4nhBOkiMy3hPTKhxRCSioUEKkUXYlwYwrFqz0x13ux0R237LLgYi9NuyU2G0VUpH0WLoqiABeAnoM4i3+pRVrlSEGGnUguBOn3MM0iMem+DVLrQrR4cOAUgZrtzR2mxfIsiSyw4musQxdi1vdBmIVo2pt2LSRbZfoe3mtvrOrwLgVM5NQAfFCwFFIj7DTlj4vNn/W7vmv7Y4vlISRve1n7q4mdtcSVNhdketC3l7D2SIorEDfFBLuWIBfRXAwDZp5WhbEZW4IWQ0wZs/rM5VwJYZBsUQaX2BR/7nHMQOjAynnB5zjDmUWFLtHK0AfpX+QYwa+SY7f+4Hn7An8nRuYMplEI57AN7arlixd9qcv/v4uqwsCqQZzlln0zvR8oRt5H3TitnHVQkoZluDuthBLYJ40p8HivObZWx5T5DF55pQ4Ri/+wBdAN0i92GnLVi9LotJHbJRmSJH75HnMwXB/cEc+hBnb3NK0V/TdHbvdLzClNlRbiPO+ISAsd49CbIEvyBUvzIkSIu3onp4w4xHckeHh3/Pw+B9lKRQd3h0IYUQ8wqUWaCXWClZZjO1pmz06Z31Ui5TcS8foSfjq1bvTtubBrBW1lXCYl4WFhNOyzBTLdXoBBgMbGr62G75xJz7msNvz2qBEuRB9XRKJfYxd2MHuQHOIDNYAMYd1k1WF5WMiRMXNNtD3cNzL6266G+k7OFcvlqMsiQvB8rXt+Umzq0uhL3XL3zWeV9sZayL9RvIsigcwiN1LClKj137gKVKzAordg5tUrQXeC4YwzLaqg+aocRXoLef28s/n5xx+3JKoHH8K7/shx/cRSP/XdPxFgeDH5Om+5xytmV1rb9g2s2b35UZUiWsb2DbizxtjI+AIkcfo+RhmHrLXX1S6boiLKXifGSNlWBDZQ2SOsW7116zgy6Mkl7soTDofJPwpuBc/XTxVOn+etL5KUV8o7+KbNkRT/ZOLp+k37sQYAyeV2G0/5/rq72i7z7Dda9L2LW6zITRF2pm/7ooRrFb0CD2cP1jVWl5iNbFZGIIVtcmhc+1ponn4lji+x80feHz4n3h8+hXOPZGSp02Rz0zHlWmzT19gjEHgzWzDMGYalEuSzO5SpFHi64cBkyTNWwKz8p9XDJ7CnN6sZOEhwd5s2GvDR7thTIFfT0987Qem+SOkyG7FCIEFcs2W5RjIHruWRz/xmAKN3dN3r4XhYwQEVvp8E/8S8w9U3eSL/9/FRZEHn7X8e/EKPmc1lKMsNMoQ/JNmx09Nz40y/J2Ff/PqyNWtMID7W0XzaofZC0BV5Z2rCO/KAEbYPXFwpJDwY2R6hvkkwO88aY6DZZhtDXc5RtlCF8uSso0+pR8H9rg/o7CX4aY8rO+U4fMchLdITheWz2P03IeRBz8xpsApBQHzMCTlaVDcmI6ttjWE7FIidSnPrlYx6twuZn1U+we32GlcXiu9ieyD8DkzPJsHkvzvGUQyKp2dd2H8RT6EkW/diVP0PEVP095xtfvwM1BDAAEAAElEQVQb+uzxpzdf4LoO30lTcOYBCnWoq8eKmqViksaueDhpRWxMrSvl/wdh/NnjM/7xl8zTt8zzR+4f/iPD8DVdkqajVwqDQSsBgOcUkSiocmSAM2XpfgbTbWFhQgWBC/Pzj0m1CjgG5CG4YVaWQS8pyB+DgBxtZgWUxr0MluWV2jxYKjKQkSKN3dN1r1HKorXY0KRoRdKVpfRrtYDRUkZrXTAC9umM3CT9slC1mB4UEPhS3rX2S95oyxfNlv/GdPxN6+it42Y/c/vW016BNmIPY673Z0uheuRBrzB74hxwx8D0XBo6zeloGSaDD7qCPU9B12HusGKbzYWlQmT+EbVhSJH4gozzE0lntoEoS+M7pXjTeLZNYPSaeW54lyKHFLiPjvd+5DE4RpXOmJSFLXJlWu5y6KZLkWNy8jxb9QmQ1USqLKkWT+/SrzQ60hiRx65rQWGOByeAT/EBXS/Gizd2eW0CbipulOZGSY0oC7mwqsmP0fPODxyDBOaiW7bbL+jaO6kP/eekZkvoehnk7LmtlI4JKhZzsQSLqbL/AUJjCFZXZrtxy783w4A6/IHj03/idPqK2T3xfPgt2h+5VeasFqw9PwX41ECxR4kUn7uyKLIoAdlMy43p6nBbBntgWSBzDvTMnIM8LWCU5q1uOTZ79rphShIQ9bgCBMsvi5L3PNeLqHytG43d0XWvMbqTIJgwop3FzBOj32bWX/7eWuykLpdEIYltTNLmRZlnWv1XmMCFnVZYf1em5eftni91xwbF3zWRX7w5cv06oEyWeN60VSlU+wRjKgN47fEXBo87CrsnOMV4MFkNAJMzHCbLs7c5uFFUK4csKw6sQl8vlrxD+p7m+c84xhRIZUm0XiS/UBvusoe2gWzNIIwnomZIifdh4jFMHKLj0U8SJlUWxgig22bG31Zbkf/mleZEENZfvj6LMgDIAKTNwMLC+uv7cJayrrSqftoyPGvmWRRXA2vW3wLyrPM1iiXEnWoyuLMsidZX0CEFPoSRUxBySVCW/fZzqQ3da9r+85wpsKlBUGtmuvEFAss9hAsYL/2kzg+9knrvu7bWh+IDXEBgPT0zHP6Jjw//gWF4T4wzIZxoUqRTYgUxkkjKoFQjlgu6qdkdKUVCnOXhlCIpLYvRJjOB17Whz/ky+8zyKwqyzerBW2qoXEPnC6O90hjdEGgYdGRKnscwM+cwSatE+q0R6wWTwOOJgQpOSfD0DmvFeEDPI83QME1NVWPBsjzumwwuNYpNC22b2ZSNAv19ljHSJ6xZf8WL9sa29Mryc7Ph3xrF55uRxkb2e8/+NtDsBGM3rRa1ULOadQpSnXuDwvSLc2I+KaZB2H3ey8xwcqYCPeuZoTyjyuIGlpDHy+PHzBQHIj36zBO4vpbV99pguFOGm4v/v/ycH6PjD+7IY5hxMTDmmhYzQ2eTLQ93uuHyKESSsiQqYce7zL6UcGvNm0aIbdebmd11oLsqiyF1Zjsp7HvNaba4oHiMisck/X/JR1ifx7WyrlWiJLrWTV2W75X8kiWyBKg+xIkxine4V4ab3U9WteEzaG/OasP6MEVGiTD/i83DZV0ACI3Fdw3BaozP6oDxCOMH/PSBw+GfeHr6FT4c5LWsFhuBBKqlaW9omz1KaRq7x5gNxrSEMOO8WL+VIyVPk7JSQGn6HAjXKl3VAWuv5KLWLv1Bm7ObIPdpiGc7yELRIP/eBs0b03Fj2op3SBibXt2TEAjEOFel8drmJYaR7jASmg1zp3AhnSkE5JDCte8ifZ947jRzaNg0W4w5zxpRqHpVKMjZWDL3XJuWn9ieL1XLRil+agNvr0aubr14FJfw0mx3mSKEeXUvOWqgfGGrr9n/w2QkBDkz/8eoOcTzJVCxNlmO7wdTy/X9Y5ZE5firR/Bf4Fj8L8//bv0RqOyN6sebQeCNFrafzrrYENeyrsCQAlPyK//U0ranytpbJ0yv5d/l+D4AOKZELN83JUJ+0Lug8V7jfd7SX1gt1NepU/15L4+SflhN33PTfIiBQ5ThcyahVENjtxizxdgdyvQEuzx80gsgzeWhvufv6//jFqmyqs/gXNSHk4DA47d4/8TsnmRDl60NqpQbqqQbqAPSS+f2Jc8uo9QnYFwZ5MzZn6U4i6xTsUmGWSeI4pnboAg1zde86ONWvb1QF8BrIsSZEGUaXjZs5yBwWAE+MZU/r8CKuGy1VEz1gbh4B60buOUoV+7l3xm1BAXtC8tF++o/aZqU5d751axl3ysQuDJ95pnkJAAqhpS3eSI7Kk1HCX1aNvlLQ7c0zT+u+DXZp6ocpUasJZ5Fvrdmd5XFgHy+MIEDedPI4hc+JxnU5MtJo6ySyBuLn95LUFwBgUsg1EtHyDvq8n190Fhi9gNe6kBp5NaHUdCm5fdFcLeukeU1ldTimcRA4BS81Ibs77ex4gtc6oN4+y3en1Grs7CXP1YLCghcGjeNJsWEyf/P+t/tNKGmJ7x7wLkn5vmB4McKVBYG3eWRoFqzvOR3WySWl6D7Ar5fsLJZ5I/r4bc8Q8jXbZulYMe8kCnp7/W1K1V/njX4U+SeAhgLa1epTx+pKiz3/bo+rI/yb4CwKGP45HNSKvLvpU6tz1WpBxK0l2Wvyohtko10Tchss4Q2Wrb5aw/5cNF6zbNIvle2MH6UehCcMFFmpz9p6maWoakwgT9ZnLx4Bfx5R/H3hfPBPOSFYQFf1tJe+X+Wz13qgTxbx8zgq6oQRQ3QMJm9URgT66PWg39hvYtJ1WC9czD4vEacveakaUmrupeX4/VaXz1n8oKoMC3HJP6mxeNUmw22+IbrDm164ksAY/7hVEzoT/5VjgLyltqggvw8JUi2pHyrGLDDieAemOePOH+UfiEK30Nl5hx8YnAAaJQ2cvkXj4jy/ZWqfp9ayWBdQODiwbruH+v9n4+Xlkblo1GSGj8lg06KU/RYVJUZr5meiwRcniVJpbPFLiBqH1iWv7kezF7sYUJMxPTpz3T2nqxqQyw14XuGoHL9msxyKhkUe6VodMRm33rTiDXM2RFqhMsncu84B/wY8WNZXKhaD0pY7BgMQ1R1uKv1gOXj+XmX799875X2p48zayB5E85ORiWUFGYX636B+lwVVq+o1Yp1lBxpqQn5GisWMJdHtRZSnF0jy8+6HPrigRcj6Lj+s/qkVzh7zUXSvlLIFAZ8UUWs5e3lKLXhFKQ2TCmgdYc1G+kd7A6UXdnMLT3EJ4sipE4YH86AnvWzzKxoripE7DRXRSHTI849iT1TnFdBqOXM57dTSS0QMwi9hCBVaUJhBRffT70EIK1rw6p3XDM/2zrXId4OF6V9zforNjJBCQBv8/VV+oN6fuozT36uwkqsry0FqYNRLDJUfg7M/rxnKDZzL/UQ8nX85V988jkK6mKiV7aqVRqVaGzEmoi14u+tLtVJa/NnqAxgPwSio1o/lMWF99L/ysxgKmlqSOeAz7n1mxwv9d/tj6oNy9ct9wz5Z1ira2q/qJZFQLWVyIvKKQZcDNkSQq4zASYXn98mLy9Khkn5XkAlGaC4IJDI99aZ8FFC1kru0GWpL76pxZbv+0SY6zDEMts0eVlU+ol1b1P6hpnIuPJGV8rU2qBNh9L9MlPk2hBXxJIUEybv9VTuEUoNKHVBXTQ7xmn5vGmqikLvHvAZW1hfFeXqjiozunWD1k312v00aPmcZFV6ZrOqmU22FlzIh/qsPpRrQ+az5fuHtL7GUn2mlM8VD2b5S7V6ZtT5IhVyxws3dyo+yRLWG2ptyPOhfvnZ8H1HuihqZUFUlHRCoCgZVTHbFZ3bh64tDte2ZsFle9S42EIJfkCtBZPXzPl6HbJdXMUQPgGBefHZtfzbp5jhDz3+ag3xFzj+xnRsjK0U+3oTXbyf6wHHKOh1yKyaXFSjeI65oHlwlncp8LUfeQwTT2EWH1qVpUSkKgMoAECfZRm1SKdF/h1WwA9Qt3k6N5jH5HnEYpKhTQqcRR/lZoXlxpHEzIUKX9iKZYAu4E7xNy5sqm/ixB+CMIAf/MTv3RGXDdq33Sv2u1/Q7f4G1d5WRk9l//4RYKcca7A4XhSTsrEvjZ2ZJ+zxCcJEmh8Ynn/J49Mvq1TDuWdiGCieO47IY/ZmTinhOfdRLIBNkXRuta2+NH2WZlzr5syva0PxdVNVJr9YapSGWrFJcJelsntlGJsdQ/Q8hBmFeHttjaV4jHaqAMXLwDtFeXx7Eik5jsevmd0zbXPFbvsltrlFGXkQapeqf4/RcH+M7LvAYGMFg0OEOSQOoySibk4TzfFAnB+IcSamSIxuNTiKRHYNAmtUDrmTUK1eW75s9vxCd3ypRXp83Tu6TQZ8ytYuxAXsXb//mfEXB3laFxuI+aQJTiQc42g4TA0xKsYg1iuHtYwrg5FQmmQ550r98BL497k2wPnAtGZnrCXQ5RrYmUBvxGtv8obnqHkXFUP28/om28SccsIviA0IBGGE6IatsfQZ0NP5mqiWEKwUAomaDE6SujGmwJAkHfiA5skbmrFB68Q2eGIMBJfZMXmALgOe1olexxxcuGrKUgZ2kuYpN6YD8C563kVJ8L33I7+envhIQKmG1t5ytfs5293fYrvXKLsndleExp5t7dX3TRRwBhIno0UQnZs+4wPtKW/3vcMen0jDt4T5kRhHPh5+xeH4O+b5iRg93ssW35E+GU5K63MZvlO2/WVbvZZt3ZpOagPFx+08HO6S/VQ29OR/Jy31541pObbb6tNWmFylUbfIkKRXd05ChhcFpOgYp3tSChK6pQy2uUGbDpRF+cTpJM+eGGHTRDaNsP0GFzmMiWFOzAGmGewUJTzLHQjhWO1i0pk3sPwUhRVR5N/XuuHzZsuN6dhpyy90xyvr2fUiO14HEAHi88sJNYzVy6sMdwX49SO5oVMMh4ZxMjgvDd3RnzOAi3oFFsBnvcTbZzBmTD98oPt73dJqe7Z8KuFfyxBJbWQ3OjOiskXM82w5Bs03KfBrf+Lej8KiD3Nt2nSSIX+rba2zm1UYyiWzp/7+e7b/EuJIlsYreheZJ405Lb3BekEE4vW2i5E+KQgatOUmb2Xbi+vbIIvjkIfsxyz5Hgi8DzO/mh751g1MJJJuuN79lP3+b2na15jmBrobCY+0i7Sz1AkdE5H4iYRzXR/EW3ypDXpyS214ekc4/R43fWAOJ06nrzicvsa7IzF5EoFZwVP0uQ4oYdZjJNBX5ZWL0sKWD74+F+XeFkZV8WPcviD33q/6hrWk8xPsM5X3S449mje6ZacsQ86VGKPH5d6qMnuUqs+Fcg14IiGMOH+QgBojeQ5yUi0qBMKkeM4kpTkkjI6VDXyYotSFVWhvN42EKME4Icy1JqxDoQp4qyGr3SydNuL1p1q+NNJD32xclRoDefGbg53GFUiVpZ4C/J7LvcfB4L3034fJcgxGlEJJcUDqwRr4PWdUCtsKVZ7jAs7MfxQG/+PHZ7pho23tScIKYF0GRqoVRLGJGZJYsM0JHhH7qD+4E4fgCPl5YCGrCXMWgWnOMgTG5KW2xVBrQbGpeemovUwS9Z/3mhjlaaiz1VhhA5dewWcfxBa5NmeVKpgzp+V5+NKiqHzPtUrjXZz5zfzMV/ORMQVmpdluPmO3/RlNe4dtb9D9G0LbZ6BH1/oA5MXveQ+hVz3FJUtQeyfAb4woP5Oef8tw/Cfm+SPeDwzjt0zTRwGCSSgMsxLmuFIarXvx/TQ5LWQF9hSVyAL0CJO4XP8bbWttqGoRxBak9JGb3IPV9ygt6sNLpQUsCyWTdLWkKaw/mwFoAXyihC+lRFBB5qEwEsKYQ7c6YhwhTJhppB0cp1PD/VGuh01b5lOD0Yk5SF0oPuwqJlIYZY6IU64L39/btUpzY1s+M31W0ml2VvyAi1o1BUXMIF6KET/OFYyM8+JbHRwr4FcAn0uLqPGCARxWM0M5ymxnyEzH1b+V3w8/gl+yQexchtyDzJfEgfxM3ZMZsfnnfZctEg4pcIye388HnsNcGYiN0vR5ju2yv2qnsk0MkSn6pSaQlpwiFjuXAhzXZWUuGTWPY4zVg79YMAUH00msYo7e4FbXqs51tcdijMalUAMqN1pIUCbPxqV3LkHT7/LPdx8dv56f+TrXhiORfvNT+v4tXfcW29yi21titYs57+n+dG0wZ0ui5vhM607gJwgj0/E3HA7/xOweCWFgmh7yc24hs4ABpbDKYJs9bbPHGmHXK2XEbjEEYpzw/sjsDqTo8f6ISoFNtuXYZiXRre6ygstwoy37vDDcKJVzqGJ+fxYLT0BC4VaWBnoVQmxIbBCbwWMUot46wE9nooHDE0NCKUNUlmQDSvXyebkuNIPFn3qeDvDusFhEbFqVVYUw+4T35OwmqbMhTDJHnNUFecaUJXzxTd9qUZDc5VrY21ivt2iKam15T4u/b1lIFI/fmPvRAvwWP98xalm25v9/bQNTlu+1P+McG3zpqNYQ30PM+pccf7WG+Asc/1Xj2dtEbyOb1tO2S5FY++ctKaILe6b8u/eK49jwPFvGqLmPiq/CxO/mZ5FupCgFu2xfEA+f17YXlmjeipajbCaLmbtfDXdrjx+dpPE/Ks+9ctm6QDEEzTy27GZbi0WjE42JEvwSz5OSx6jPWBP32d9nSJGnLEEpVhAjCd1cc3v1t/TdHW37iu31vyPd/Bt81xFtI0BPDocrcu56Ti+A4WIfEZoMFuagqGRyETlGuuNJZFvzQDz8hsPzPzJOH3D+wOHwO2Z3zyYJxG5Xe6YEeAQ4L4WnyG1h2UCJWb2izbKtW9NVafNNTqusbM9VgbiUZsB6kZDYaynON8kwKwN2SyBy7YXRW5pCo8Sjp/g5hugr08+RcFliY4HZ3ePcA5PZYnTLbv/3KLsXIDgmppPOG9rEfQebVgCfAgKXQJjnAcIR2udH1PTMPH/A+xMxOoqBfSnYZdNcGAZGyRByt/IE/ju75e8sfL7y+uv3kWanc7iDIsUo7L4M9hRvP/HzirhJ1U3e6dhwHBZvv2dvq3Sj+PoNxDNQvxxtlirLUPfDB7p/tx/Y2QwEr97jUGrB6oEr4PvFhlMlXJacfBUd99HxHB1fZ6+/WRVvJPFyKrLiW9txpVt6JZ60Qww4BABwMdYgwuUBvrDeCxg0pCBhb2g2ycIs/t+T12xdoJtC9QBfvy6jEr2JNKv6IP6g8vExiRfwTOKQPL/3J76ZTwzR8xwdBzTb7c/p2hu69o7rm/+O5va/I7YbQtMQ2q56Al8ea0YfZMYw8RzsyVYQOiaaydEcD+jpGfzE9PQPPD39J4bxO0L0TNM9IRxroA4Im8cVslYRRClFCT0rYqVERCPDikLu1SvTcme7Knu9rr6HWdqb5WxQasPiDw2Xy4SEyWBFC7xVDcbueW16QpbCffSyLKhMLg2+eNaliFsBPjE55ukjwQ/YRrxAe2XRuTbYKXI6mByWkWgMGB3YNIo5wGGSoW72EgZhJ0fyB4J7xPsTIQziH5aKd/jClyzy7zJI3Nmev2uv+VJnWZeJvN5N7K/EY06A4Px+hEQYAgwBZRRhjkRHBX4l1MUwDlo2+c5UELWoVSQ4JdRlyVrqXfz8y7C8QXOTpbenHwEE/9fXJ3rdVDsKF1/+WmUh1NiI87p6mY9Rc5/gd2HkV9Mjj36qlgQVCEZAtM+aTfX+bDJwVcIiizdwXRysmMFnlhVZvi2qHgFoWmfoBgt4XiDiAtBZaXFjVLQ6cn02aKykeLlODEnYjLJAdvwhnKrc+2s/gJVBqe9ecXvz79he/3fQ3ZCaLb7rCW1XAZ5PJJ4rll/9nJVNzLrn0JOTZ5s7gTtyevj3fHz4D4zjB2L0+Xqelr4A8faLmenXqEbCWLWtLPjCrC1gj0JAuRKAdm3amsz+yrQXgaG6DhMF7Glyb3Z5zElVIBPI16vYjQ257h+iq7Jiq5ZgOi8VMz8XEylBjDPT/CQZA42jj2/kG+WeU02JxycJhhqdPOuMjrQWWRA5GJ0AwdErtHfM/pj7han2DBAhSRJ5IpGUMGv3pqky5Z+bDb8w8JPdSGMi2104WwylKItgXdRAq1qQwqfA7zBbnrypWRYH5NoTiTdVgg2Ftbow+jZKPLuLl/9GJXYm0pvIEH+4NcTPTKQzMb+Hug6b62WgUdCoSG8CRsEYNI/e1D7hGD2/m5/F+zMPymJnJISRXhlubccr29Erm2cM8eIc8+wwZcUR5EEwP/cumcMFGHNBvFPXzOCYLYVcBth80ISo0CqxUUV1pNgDN2hCAdRXzLX194DFD/19mDkmsYn59fTMoC3G7th2r3h189+yvf536PYWbEfsrs58gddLIuM82ruz3iFmVWL5nPL5Kkaa44Q+fEOY3uP9kafH/8Tj86+YpwcubV8UCqVarOkxpgWlMaajsdsF/I3ziuUXwOffE2gSbIzUBlHNNbwyLTfK1j71RknuQlET7kygs58CqMK4VOioa4AZLIBdGxV3uuGV7XDfw84vDNGQktSKMOL8SZZEusG7R1p3QJkOO80cTi33zwkXYNelyv5rjeIwSb0oob3GCRDs/QkfRnyYPlEJLF0DdMrw2vS1T3hjogTDdbEyUGOU+19ePyuwB9xkKuO31IIx9wXC+JV6UNh9A0stKMfa+rEENZYavV/V6AK4GQXH8MOtIXZK5SB2I/NLqUWUv1//bHIMiL/+f5mf+eBHfIo8B8cpBbwSEslGGV6ZTgLBVPELF2xhTsKofcpYRA2eXxOi8hy8KR7/qxJR7OSCk/lLArVKsJZ4Az/PlmPxXs9ft+Qq9crUXmRZjC6BZ+uPgj8snsDv/MDvpmc+EtGqoW2uud7/Lbv932PaG5l9u+sKApf6UA4dYq0NKoTVIumCpas12jnU6R3T868Yxz/g/cDx9DtOw3eEcKJy7FX2wkZh7Za2vcYYAUuNbjMbWJ6tEr4m877LILBzzxLYmGb2SghhnTbsdcNr0/PGtJV0VmpDmSWurK+g6KWCw0VNE1NVc5cjJEWjYR81r02/eESnwBTlGaGV2Mi0KRHyfyXcfqlzI+3wKAsKa3h8aPjDNnLYJFoLN5vEzUbO/ZDrgoTzRkh+wRRq/tByKDgLz5SwQsXbfkKrRNfI08N7LaAOVUy8qITz0qfUySHqapdRQ01TyQKINQ8AFrY6yL24z8+0UpMblWh1XGa51SleY2mnl8ym/4XHX4Hgv8Bxu5m5agx9H9jsY25KPz1pwS0bBziXTbpJM0xJBqGoOKTEcwZ9jtELqKsK8CBgpNGyJRZGqICO9XulZciLpE8GvPL7whZzKTCmsGzeFbTJEPLmfqMTTUy01ft3+ShsSlXTkueUeMxN2pgCz2HmvR95ih6vQKue3fYLrq/+Trb1zQ3sforb7QmN/UTqXY41ALxu2FRQBGsXVrCGlD2Bq0WCcwL2uCPT8DXH0+85je/w7sjs7rlTltdNL81w9HLOVyyQVDUtiaQiddTOP5JebaJKamnxVCweau2qQSjy3uq/85KGHAGDm6ToESnSnbIc8qYQoMEsIYQs6anFxy2urgH5fmTZasSFE754DWmbN5uJ6BRew2xhdMLyK83bIu2CcQY9pTwoH4hhXDGB1wFxCwi8/tXm0Is707PXhrfK8LqbuNo5bJNot2mV8KvqN075V5wjYY51sz+fFMNxCXwqi5XS1D0mua/KxnhIUfzySHXAW9g2prJSfsxxe+PYN58GKpWN4/rQZsWqyw1SjHINzIgX+UOcePTCTncKFJaoPCRpitfqgD7/eU4RoxRTXEIllgAxgIXxU+qESwGXDBHFrGJmSIptjFa6BqqVh9r69WklC6MGqQ+T11XaWpq8Qx6un6IMcR+D+HcNKtE0t+y3P6Xr3tC2r2i2X+J31xXgEWnnp2zgdX2oYA9i/1DA4KRVri/lygTlZ2Guzg8Mw+95Pv6OefpITB4VHVdKszEWnyLH6JkorsdKmDy6WYCLGLKsUX4WYftl+54M0nfKssnvz16Zuq03K3UASPPQ62WIuDzmqIkKWmSYvslrrI3SzPn9PSnxeQwF8FcaXZ8FKsu4ypEIccrWEJqQvYbJDFLjAvNgmRFAeXQC8MACAM8e5kAe6jwpjLl587UunAfhsJwnVWyOFFem4a1u+FKLpOu2cyvAh+o9We+nHOhA9vZzk2I+LZv902Cr/9yY/X8fWVQAhxQ4rMJV5dqRjz0m1+eVv38GfDr1wwe6mxvH1iTmSbOZRQlUX8+KXd+YSNuK/H2eBDCOPjemKfIUZ57CzCGFOiRXaxLEy7Ms29ays/JciOseYeURXD8PkYSWzPEqMU0wRM3WmRwat9SBUsdAQMHOBmJUNEnRpXiWIVAOFzVzlt3OmZFd6sMhOB7DTFCGbf+aTfearruj3/6ctP/JmSdwWPs/XthKlaEOQMUMCLGAPaU+aLIc3J1I4weiP3A6fc3x+Ae8f6KEFkmglZJcABUxeoMxfQ5K6bCmq76fPkzEHERSwmKrbUdWxxQQeKPNKum9LCXFAxYWxl+j48ts4KiJWQ5emNbFM3RA8032fC7qAZtrQ7k+LAmjij+phF/GMOOVRuuBUF5Hrg3KJ+Z5ITgMG2H0gKqsv2IVEr3U3DLghro4LpLScixMn622NfTmThluG8/VzqENVTW0Np1KWb2UgoBA06BqeGFRBhUVW1EG1d6VyCH56s07plABcwlXM1KTSz0A9nmZv8lKpk0XOPgfXhv2jWdnZek6RF377tIrNpnt2ZgFYJKf19Q+4TnfMxOJqAyJgEmpWo1ssjqgyOoBXFKSQ0I6YwPDUg//GDPYRbHUaGzEe4XW6qKnUXUJDpxZSAWEsVaO9RJ0vSQqgPCQIg9x4hS8qCFUom9f0bbX9N1r+v4n6K14hkfbVKUAnNtBlENk3IIYRtugVmBP6TukNmhUDMT5gXn8juCPwgAe32OzpYF0voDcgmhtaNorGrvJzFkBhpWypOTxwWQWLPn/TwuBArnuCgjcq3VtWJbHbQYZpS4s18jZoUHHrJKDJQi6vIdKGO5b1bDVLl8TsVoHlR6iKItSJg2kKEHUwtaTHkiFCe0daYJxpLo3bVrpE6RvEHJJqQ0qpmovV0HxP3LYPF+VxezOhGoJAVKPUpD3oszexe8zBhhHCXhyQQCfYzAcYrFbKmSRRVG7+IGnalmyhPuaOt8tSyEB5Ms92lgBgvSPqA1n4V6517tkexaQP7Awv59yMPtHPxFITNl6LeWlsEZxbVquTItGVRC41Dn5f5bFUDkqyUCVYNuX5e1Ltogojdd+q5MrgbLnC5/FJg0My/OpqGpfskYqvszH6JmSKKSOKWBy0GnfvWKz+RzbvZYFsumIbf8iCAxSF7RztW9IMdaF0ktHdAfG8Q+chm/w/sgwvCP5I/u8QBmVByxaNWhta71qmiv5+qtrPtZ5YrGDiGEm5ftMJ2hUniu0YWsWT+C2AObIQkIreT4Ve7Uyu62JPDqmrNaQc7Duz0jSh/T5+7gUIYBTUewYUsLmpZ7KC+TL+zdFD17qQjM5pqHlcJJ/61rJHto0YhtTegYV8mwXw6ouvLykqtZnpU/XiU3rzxXtK/C3LIRiVAyzsP9LyFslJbA8b4qlSpmjFwZwwXbke4eC9aiysE3sbKikiNInF+JXiKKSCUmR/lWA4H/946/WEH/iuL1zXGcv02YHtl9JkfOdFIN4zPixyF8A5KFUhtUpy1OLHPIYXfXvSQj4G/NFYpHmoCTqFhCH3A+vB7yz8JfVUf2BEzloKKD1SmqCIuRBYYgZIF4Nq2tJqzCqxLh+SJH3YeI+jAzRc1wNcUa3NM0VXfsKa69FetzeVk+e9eBWgF35qAm57qqwSLtBpJ3GR/Rqi6WOqX7u9v4j6vHXzOO3xDByPP6WYfqAm5+JaWl2nrOktvgIBXJDp8SOQ6HIwefytVmAnnYFwK6DdTaUgrz29Vsa3CLPuGza1sVZXqQCncRfUSl2Koc0FF8mJb6SxWewML4S2eONRWZZZF6OyDQ/Mp5+Sw9Yd6DvOtzmhhAVs02cRngcpHkrHl/l1+mkaE4e3JHgHgjhlEMuFsAHzr0/14fOPkYi6ZFmVqv0CbOsMH4FDI7174JLK4mnykwf2eaVNN8xS7rmWtCz1DJ/bcm2Wlg+BVTfo7nLD5LxR5TA/V3gKndti2RaEWPxIFo+d+2dV8zofdA8z5Kg+xQcz8Ex5CWFWAfKsFB9JLNRfmX8VWC3JI+nT0Li6vdPcv1UVmSKGJQ8AFXkMYn3VAjCJnH5Ba2lRfJ1VPVNKiyrsiQqCb7fhokxeZ6DhFs9Z2Bbq5auu6Ftb2nbV9jmVpJ8VwyeS+uXlJN9y99rNCEzdyAPeBFYBb8Uz7/m6T3h8Bvm8TtinJime2m0UoCUiAqmPOhIaEWGA3Pok9JLEIJK653pCghWi99tsYeQ90vVX3VBRLEAoG6QG53OgLWFxVOuYwF0S/MTkgJF9RLskqnsnXI9+Ay8LN6w+f5MgZgi3p+Y3SNu/oDSMuDY6RblWoJeasOwofp8DU4sIUKEeVRcDSeCPxL8Ee+H6pV46etVjrLRt/W5ll8ny8IhRonBDE6hjLA5JXV6LfEUGbIEPokU+VSavML0YQGBZy68f1cWEEt4o60J9Tc6cdc59p3j9CNYf/11ZNcGmlOinWL1L5fXeQ4GS8ClsO1OzvAuKh5T5D45TkGuzfIKNMvirVN6kX2vQWAK43exgvhjYbKlVyjP9wHFrKQf2DhzthAyeqkHLuja4BYVUbGQku9/niVwnxL3KTAjIbnf+BPvvfQRQ4oYu6drb2nbG5rmunr7vcTQefF1mKKfWA6dH2g2RtQxVOaPOd7jD7/BzR8I/sjsHuudotBEFXEIwz4q8mDXoo0kfhttq+R7PbhU5h8izyzDS7cCgXtlsuR7Sfcu9iBaCRjYGwnru1RlFJWXzuouuLAly3WiLA6B2ruUoX7MS4Xlbs1LIif+is49E/0R7Xr0vMVOkeAXtcDgRCHQhsRhEjbwaZQFUZqADIqHXGsLgzKfIUqApErCMiqM5eJ9efaeZtZ/bcxWt2SpBdOpZF7IwFe8/VwS1l8BgS9l3oXlVliQl1LbG6V4YwM3naOxkbaJbHeedptowg8fx3adY28TjTY0OcsASq+4/IwuKKasSjgGw30KZ32CADwQCJIqnxVjXZYSl3NZ1QG5QoeLelDemfXMAMKKKuFzG6Tf6r2wqtZKABAQOKZzJZS8psWX8pz1WwgnQjYRiw5hYT0mz3dh4Ds3MEbPU3Bo3dK217k+3GLsfvEFNn+6NpRFUjmW/iFgZgGDVAwoPxOPXzEc/5lxfE8IJ5w/gVoYtrGSdhRaGbRqcj2QfkFnuTdQwY1YQdSY/caTqAXyM7Evyk9t6lxR1QGrpXFRkBQG3CeHg0YreEGBYiqAIc+NAv46IpqEI0Ja5staG8Is1jfK4P2R6A8Y08s5y8y+aRYwZphhcKn2DKcR5hnCrOgnJz1DdAupZFlv5nlrqZlnNgSre9d7Lc/NaVlOlb9fW5ldgj+lVy3LyMsz2OZ5mwx2FsBNfq+4UYlr62ny8nPTiUK4kDzqotT98NpwZSJbExdper6H23wOCghc2MxzxhOe4swcQ134aoQJnEgV4Gv0ck6Bs1lgURQXmPDTpZDMGDKLzqmExGqxGZtSBeQuyS6wzMYhyXneZzJOOdahqOufD6gzXchL/fdh5r0fcnjyxKwUfXNF117TNtdYew3NnmQ6km2rL/Ca/b8+kjGLrzRIf5Dru/auqoZSGBlPv2WaPjDND3INs8wRRVeita1qIZWfwVIDlpogH2XBElc1IpZFCQGL2FGWQM0Clq+XlFIbZBnRZRC4786vv3WNXh86234uWIUsPxrMMmMoCb62SjMrqQ/lThTrmEmWx7oRZnPykD3EyQsg5+U+lZogNhGzl7pgvHiwU3Kb1kSzrCzUuU7WTBFtqmonJpUfYIl5PidbuKDr86go7YptzprYWHGDCwb8pl6Tqi4nxLJJ1Am3ncPmPq1tY1UqXJ73ggF6r37Ukqgc6wDJf63jr2Fxf+J4+398y3XfoNsW1bSoVgK44nAiuVmCq0IgHE+Ew4wfo0jUnpOAPTmN9A9Tw3+Jjvdx5inO/GE+8pwCXkmTaxJ0SYpvrzQ709TmAJaiTSIz+uLiE8yaAShvqkNuRK0EmIopcUoOg+JJWT5ebAQvqexlM1qSx5+DY4qBKQUe/ZR/dgFO2u4Nt9svaJsbmmbPdve3NLu/EUmGbfGbLcGayvQrzBwgh7yplQ/w0tSpKIFvzTBjnK9BLmr4SPIHUhg5Pf8jT4d/Yhjfi69OGIhhqBt3BRxT5BhmUt6QKrUUaI0Wjz+AtASPFF/LsqkvYWe3puVONTXg5yYzyMpmaA3uFBCtFIdSlMqgHKNs2hpkgL5BJOCt0Z+AeUaL3UKvLRFwUQZqp0oLleiSMMRapVHRcxi+4dv3/2+69j+z6b/glT9wxX/PtNsyTw33iLSvsQLw+OrnpXj+VvH6m6+Znn+F908Mw7fM7jkPd+Vhlc5ahRKSZZFB9Eo33GnLBs1ei3xDawmHS0GYvouBe6xgT4wwn8T7dz3grZu6Q1xkXQXwuUzxbXNT16rzNNU7nfh8M3JzNXN6IfDqzz1u/g9/x/WmIbmZOAy1FsRxJgy+1gI/gpvEs8g7xXGwfDt0HKKAI7/0R349P/EU5izRFtuBmCIW2Bqxg+hUaeZMfmjJcsalwBjFGqJs9YtFAErhU8TmB7pBCbikBUhwSb7GRpkqk98kzWa1FFoP59XXMDeQhxR4io4xBcbk+eBGac5SzKwES9d/Rt/saJprrnZ/w/bq70XS2ewImxt8130SDJfOlkZLTVg/ArULtIP4UqkY0dMz8fQtwT0S/IHD8BWH4++yb1ckRAl4KRedQuOUEmxBZyaP7sTb7wLcidGjsm9eyvW6JHyXRPbXpueNbnOQgaoej8UeZrOqDY2ONfQEPm1cmpQwGdBo8o7EJGlIZmBWDaPuKpvDRZFyhXwNDNEzU5QmIlE3yHZ/DAcOh99jdEs3vaPr3rIxPe3mb3Fbi4uaJytNWGOlkRtHmGeRePIuYZ6+Zhi+xvlnAZULGByrziKf42xvkq10Om3oldhlNPpTNnSMijhBcEvNFB9wXYHftbdfSIqnoM8au4FQa8HlZr/6LmbG1Z3SfG4DrzYzXRPY7gLXn0W6V5aDV/D/+DMKwQvH9f/mc64bTTgc8U8j7ujPQmrKkngcTE0oPjnDr5zmH8KJ+zByjJ7v3IkxBZFUp8VmoCwfrk1bl5OXNjHF82/KvrFy/yx9gk8SKGMQZQCQ/U8jJikOyjA4y95LC1YkcOU9W4dcihpgYVstLIvzBfJ7PzClwDE43ocJpyzabGjsjqv9L7i+/m+xza3IOjef47KdFCwD3OWyqP6dNviuQYWI8QE7TRngiejhoQK/MU4Mw7echq+Z5+d8f8/E6KvXry5p2EpjlcXYnrbZo3V79n2Lx58Mcj5/nRmbEvv8Pu2yHPuN6aRvUJqbbEFiEAB4zS6zJocmtkttKOBGTNnOaAWInvlUJrhJlhvT1d6wPJcNiikFnqMTi6Dl7InPNxDCiDWdAG5xpEme7nDL8/OeFOX+l+UFNAZOEzw8wfGgiR42H2bC6ffVmsv7IyF7qYpCIaLycFf8KndZ6lkYTstiLFWlXVENFeYvnKd7F3+/Y9AV/JVrMGWJ9aqHprDQFHuaCpDdKMMXeRHU6MjVzvHqC8f2swbVWky/Re/36H5DNzj4v/yPf6IKvHx89rOZvRGrq2kQ8Kqwl4q1gg+a49TwbdCViPErt/QJJc+iQWEzCHxjWm6t+K4XEon0RxFHqLZR6zDZ9cwQVKo+5mMMjCrwqFUNGyMahqnJzzMrWQcri4J1XxtTBhgS2Rt4yWsoQFwBeGbEB/ghzByj4xAc37gTjwQUYgdxvf85tzf/jqa9w9gdZvszQr/7xA7ipSMaTTQddF1dFJtpFIZwDHD8mun4G6bpHTHODOM7huE7nD/KF0hRiCJZHWR1K8oAbdG6wZoOa3fosjRegT8hOkK2QYjRiV1KmtgklWuD5ZXpuM5WX8KAFRZsWRxfWc++8xgttaGADsrUVqYy4AogN3nzyXI55P7hWjfMpjDDpXcMJHQMjJSluFwbiYD3B0IYiWGmba7purcifx962sMrxlMj1272Ag1RpOAfnuHhQeHvFXpK9A8fOc33hDBkBUVmP+bv1CSqH2rxBxb7HOqCxAfNPJXXvJqp8j1TbJhCUhxXWTaLEiWeAcAF/FmHOYP4c9+pxG3jaUxi3zlu7hzb64huFbbXmH2L6bdgDIRAyuBhf5rh//bn1YLL46f7ga1pqk1UsZQKSYm/bn7OfpMivw0jD1HUdh/8yHO2AzKo2mtZFK02vLY9t1pqQ0B6gyEFIoljdBc9wgIGl8Nl+4igEoekeETTeotB7O1iUp8AjeuFUG/k3ATEokS8w18OjisgfZnrHpPnKXqGGHjO2In0DoBq2O1+we3132dP4Bua3d8QdneETuwY/lhtKAuiaiMzTZjxCEE8gN3pK07Hf2aaPhCiY5ofmKdHQhjr19CqJyhQ2tCajViv2a38m25JKeD9qQKdIVsqrBmwKQWcOxLDiE5BsAclqvC9aejVwgYuNlJ7BbeN1IYCRvabcGGttnoPM4Fi7Y0Lptp6bYIw8GfT4JJE1ZdlkU8x94iVnkJMDucOxDATo6PrXtO5A9r0mKlHTXvmWVjiIZJrA0Di/hncs+b66UnCeaf32RIjKwyjIxFoU35O5zr5md2IJacSgkLI1g7RqWr7ALKkKFhBSHDIiuGSsHGJF1wGRdcA5wwI3+lSCyK73vHqjWP3VqFbjW4NZrdDbTYoY2poreABkeQ8/uAILvE0hB88U5Tjr9YQf4Fj97//P7Pb9agcCoWxEDzx+Eh4vifNI8lNhKeP+OYefRyJc2Q+xQoCH2bLVynyT/7AezfmTdZMUBqtWlJyaALbMiiXQLK8NaubfOLZgHceDLWg+l6xABlJ6P0TAR0Lw3Q+kwpeHuVr+/zxFHMycW7c0C1t95pNs8PaHbvtl+eePJtXzLsl9GntzwdU+TYI4JMawH76s6SocmrvhD0+o8Ik2/rTb5mm93h/4unwG6bxO9okIMdGlXA3gyeJFE43GN3lIU+jV5u6ta9lkTSXIaWAF3vTsNMS4HCjbA14K7KMnQlZMi8AT9nWryULQA3SqPI5vXjHGBXZJcVd0EvK72oTalBsdcNWi4xdqCABWK4hCGy1ZacbWmVIYeIwfsM0vmMY3mNMy233BjO9oZn2HNnyMSqMTQSvCLMwelSAq28PhOdfMQy/x7lnZvdE8AMxuSyRl+atgO1nv5Si08KuucseezvjsTadBb8EpzKDXqREawb9pazryZsziefAYv1wluabB49LBvCNUtxkxtXbfuaLn4xcfQ7HBPzf/3QdeOnY/u/+T2z6lnh8lF/jkTRPUhueHrGHIylG5vuxsoRjVFIPgvh6PSbP792B937klJblRRHwlGagyL/LURjApUGT0MBUPZ0iJZxHPG5rkCQRnQIxWy2MKtQAmXVQw9qKZn0UKa3LAPRjEOl6SSk+pEDUDdpssGbD7fYL9ru/oW1fYeyeZvslcf8FPks5Q2M/WRKV43xZtPq3fP00MaG9q42bP/yGw/N/5jR8Q4wzp9N3OP9Al5ZzCsLoSQhD2Zgtxorc25ouJ/q2dUPvw1Q3+OLlJeyVdehGCY18Y1rulF1qwwtMnk0nG2FrE7ZJVebovWaelgDPyZn8+heArkmKTZY1zcowGAEx5hQZlUdHAfZjlOeBV6BUQ0oeTeJKy3LxGBwf/SOH4++Z3RPOPdP2n9E/v0XHHXNoGLTG+4i1eUE0KqkNDq7ff8SdvmIYv8WHEeeeCH5cQOALGXhJ+S1BWcXHUrwwU5V0rYPIJm/y34m/1zDbGlx6zPYPa4nn4ULSta4JawZwiz4btN80ni9fn3j1hUe3iu5NT/ezn2E/+zlpCsD/8OJ98KeO/u//e/rOEJ7uCQ/vaB8f88J4xB08YUw1YGl47njKiqHfxol/np/4zg2EJNkBrl51suh7bXv2pqFVmm2VE+vsH5zOlkJlMfQShyCmxSu0BMsGIkclIWYHbTkoc2ZhsPa5ls9fPhbQrZz/4nk+Jl8l3g9hrguKprnldv+z8wXy1d+Rmi3Jtviuw3eyeK9snu9Jnk5GE6zOtULDCZohoucRFSbc8694fPifOJx+T4yOeX4khCNdAUkUgJUlsZbU8ba9wtpdZgA3GLNF56VUCEvgUaxBUD6rDSTU89q0dZB7bXrusl/4RsnSd2diZf9uWs+mk0WpbRJNVqHBwnwtgGEJFGRFLqnedFGzj4ZXpsW9NGaH5UPMJASbSqCcYogj43jP0H0LgFKW5vkBc9rJwOUVBy0LZK3FL/z4pEhPoF2if3hgGr/L4TljXRAVj/XC8CnMv1bl4BdtxWIL6qKhMOXXi/RLr7+jNxxXwS4L8JvBhCz3Xh/V9zPXgqIGeGMiX96cePXGYfvE9rOG/u//Hc1P/hbd71BNh2p7dL8jHAbg//ritfinjv3Pt1x1lnCccMdQlU/TIOzmwmw6RgmL/CZM1RP4vR8Zcp9QmH6FUX1rO97ajYA9pTdIoRJH1mGRZ/ZxyDNxzQguBBAijErJ/aHFesQk2CQtDOFQbDXOg4lCyqoPnRnt5T7Lvw5IzsicROb9jT/x3gnLb0yRUVu2m5/StTe0zQ37/d/SX/830N7k2tCfhUYCZ7JvUQXF+vehMdUfvD1N1RoGd2Q4/BP3H/9Hjsc/kJL4g+t8D0cSkxKwR3x/NbbZ0bW32Oz7Wfw+y1HrQhIfzRAdMUwyawRZEu3ys3inG25Mx7W2dUFZetVGJXojgYnbjcc20j83Xaq1YQnmkuWMPV2oD+MCkFyCPSElxrSESALooOq9k98+khJwxvnANH/Euye06WlMT3c8MT/dMOUlkagLBPR5eILpUbN5mLDTjDq9w7knnB/y+ZjrHKET2V5LAnc7ZbjWbbbdW0KtnF/e48mZM+B3jOqTJVBRssq19ylR5CycEV1rwbWJ/HQ/cns703SJ/ha2P7uh+enPUE2P3uxQ/U7qgrGkeZT+30240wT8P7/v9v+jx6vXnn0jvcEue53HpDiMDU/eMCedQ5gd/zw/8T57AhfiReaa0mnDZ3bDlWloVFm2WVo0Q4qMBE7JVQLBGktYe4SX3xeCCuR+S0UJn0cxe5N7s0yuWpGgChgsNjfy07mo2OW5t1xn5fMkwLOAdmLX8TFIgPYxSD/xPszo5pq+2dO1N9xc/T272/8tqn9NMh1ud4XbbF7sFS5zRqLR2dfEirWUc2IlN70nhonD8z/w8fEfmMb3K2WLWEfFDES3zQ222aGVxtodjd2hdVdtVNa2KrIodqvQyFjBYB9GYprZZkb8JvsCb1XDRht2yq7IJXBtAvvOc3PthFzSJfp9xPQKbRRx5f2QIphjAsKiQpuzXy4ancReaq80AVuJAS5bik5Zxa6VqjhJIkiWQraZc+4gSqKwR3uHdsVSSsiIzwipBOBwUDRPgeb5AeZH3PRBXn8UjXxKAZtk/rUorkzLW7vhc93RKvFNb1WowaSj14zBMGYguCqB8rV7QGbTQgqpuEG2gVkTIg3qLCtkpyOf70devc614Aa2/+Yt7c/+FtXvUG2P2d2gd9dyXjIGEMejhAaPR5kDjgfC+MNVhvWa/V+AvftXRvCfOMzVHWaf3duKBCkEUvAoNy2fqA3KGJTRQMyeRUU+nYtvDLnREUsIMChtSNlc3qwsCEpSp1Gqbi3Xsu91I/e9ks/y95nmWo2vs7zDrIr8+v9xKTJnYMmnxCl6JpJsvTBYs6Xrbmmba/Hl6X+C3Xy+NGmbLb5rX2T4fVKcNdXMSplU00brP8eUJUgnCCPePTLPHxmnvFl2B3SKbJWkd5/JWYp9AaZ6+6E0OgNqKYkVfwqRpATAzISIBZBTS8hRkeiXxEiDsIA/YfnZ3FTlv1+rWmNMFZFavNTk7xaP4QwEJ7KccSlUmuU15u9ydg2VcDuvNA2KJoFXUrDn+YE4P6Bth9WaZuiYB0tsIDqFmhJmSuiYsMMJn2XfcSXlWpiSL19z5edby1eK/PtTL10gqnqvFGlXsX8oTd5cPH24YACXge+P1LBq2cHC2O6aQLuN2H2H+REqC729xuy3KGMgn/9kLERPHAd0OxNnhxaPivr/zVEz5CbnmJcsc4oU94hiQW5QK5mcgD1h9SCTj6sQqNVGv57jvNFdfyyKAbmOImOkAsFRJYicJZmXI1CGS1/ZRYfgOAaHywzhqDTGbLB2S2M3dO0dXfeWpnuNtntobwiZ5feSJ/C/5FClcQsTuAPePTDPD5m5PhHCiSbBVhlh0WfpqdhuAGiMaVfefln+rUyVa5WFUWX5rJiu5b3pc/rykoaerztFDRBoMsvP2qUmWBsxFduP2d9K5HS1dqzeBpMUqJTBEkWbdAVZQzI4Jf5x6xooY01EEbBZMj7riA4BH0aUt1i7w8+PtNOIaTusVsSpITRK/DjzgsicpDaYaWTyh1wXZkL0mdXzcm0QDGEl91xZQ7x0XEoLXdB1ITRHASCK/UMA8fbKACQsapb1D7AGg5c6m+V0WwmtNBuDvb7CXN9hrl9j5h/eHJntNbq3JDcRxyNqnlEhEJ1Hm0A0VBllSNTXdEyeQ3CV3e1JZ57AGlW96qtU8FJOn5Ym93JJXI464LGwAF0SJrAhElCYPASUY6M0JE1Yfb+lHlGXc+W9OEbPc5iZUuCUvflHElEptGpo2iupD+0ttrnGdq9J3dWZJzCcAzx/7qFjQoWAChP4SfoG94h3wlCNYaTNrH6piZGgEkqJTZQ2bR3qALTuRO6ZGcBFBn7mZ5cWL9wi5yz9nNgjLX7ArVr8YEttKNLCAvaIN25+T+Py0ftz0A2WcBLHIq9t8l32Un8oXYWukI9RigYZnsqw6sMJ6w80YcJOPrMvFW6WjAGtZdCLk6KZAtoFCezNyoviD3zZMyiW503tqaAOYvI61WqBXpb2uRZEXT2ABfxZsf5Kb5AK8ydWP+BL5VuVyiODdW8C/SbSXYkFnH11jbm+w95+JgOfsahergd1wX77lxyq76U2xIgNSfpPnbAOnFlevzCZ5L45JVcBm6AyQIfUg6LAqtkBiIzXrd72dZbEulf4Y0fMDCqx0JCA2eoRmplaRC2SdaVqfxVWIM86tOyMDZxSnYnGrGApIPBEwphNDZTt2lua7rX0Dv2OZMwnfuF/qkaoEM+URcrP4CdSXmTO7kAIp3w/CwjcKy3+4CmitBICibbCADY9NrP+5P06l33HFRWvyp0zkKShPosL+7WlzBWqzhUmk0vaZmEAVzJFDiLRiLIuRhlPTaOq93yx6ijzRVnAtLl3CKpYhRicOq/19ZmTFiuiQCBEL8qqMJLCKLOZT8RJo7QsjYtNhPcK5RJ2mjGTfP7aLqZaxLDYbNlsW7HuFS5DR0Nh/eVaMNYQsnPrh6JGKYug5TqUWhCyFzhQn6PSW8FGixVMv0/YHtpri3l1h7n9TJZBTYfe3dR6kNyEanvSPKI5/tFr8Y8dtksYk0F9J9zcosIor0FAbnmmDlGQBAk8X45CVCjZAX0OkS01cE0kWfcJLx1ra6n1sr0w+o0SEN4ELc+lJEvGy3mvAJBnzy2ykiCDxiY/meoiD1lIHbMdzhA9SWmaDAJ37R1t/xmqf10DI6U2mIo5XAbSw5Izcnlo7yCMBC/sXOee8e6UbSYXJYsCsVFR1Jqgsj1m6RWECezrLFGu+1jrQTibqUvtuOwdFovIpX8tJAqZKWSOaDqpC6aVAHbBNlY9xBykPuSFzeX7I+/HBdag8q88V3zy3EiCnYgaahLP4yj2EDomUtTEmLKnfMLlMu19tlAJU84aCdVSq1pCIDOWOcNfVLVoOL9GVfX+letGFkFVdZLKNVtqwcomCZVzHZDCp9ZYjCzj+i7QbcQetr1pMdc36OvX6LwMOq8FIxgr9SB4orFVLaAZ+bHHXxnBf4EjRS8gW/RVjpdCII3HygRM80R4esR9PDA/BfwIj/cN3zxt+OgN9ynxdRh55wYeczJnqF8/sG4OyhAf10UakfAUL59PN/tUX0igXth6ddMWxs/lcfn/F8CkCHZk62UxpqczPdq0bPq3bDdf0GaZVrv5krR9S8hbet+1zJumMvmAs6IMwjoFMC6ijkuhLsnfJcnTPr1jfvoHjsMfKD6fx+EbnDtkc/UJBZxSqP41pcQLi6GhbfYYu5GQlwrsyEC3Ts9NWbpYfLQ2mZm9zWzgEgxXNnK9juxsYNO+LNsCFhPzqLB5eCoAx1oODuTgqAUIRKn8+1SXAmV4mkujqVQeSjUxwZybapcijTZsoxSOUxh4fPontO6qR+vVw98R3/2M0HXVNF/5WcIyDr9hHP7A7B6JccaHSSSe2RKiBOqUh2Kb2dOFoXJl2iq/LsOX9yLzTloCsOo1GEX6PedQpRgXT5+Sjl78sNa2BGsQ+FLasT7ExzWDwDaHM/UKs9ugX/BS+3OPeHoixFFqQf6V5olweCI8PuKfBuIcOd0nHt41HAeRtP8uaH4bTrwLA6cgwE+gDObxDGRstMke4Stmw2qoW3uArhN/y72sy+eqDAbnmmDLNiKdny+99qUu9WUFPs95cCsy2zFFgpKkXGUa+vaGTf+Wxu6xdsNm8zO63d/U4Aaft/WhkRtkHfBWgwOQOmFdqPWg+P7W6zSGmuArks6JYXzHafgW7w55qyyBGc/5XhGbBGH9mcz6a7KqAajMP8iE+3xOquw7eXRKVba1Du7rM3OyegHnMJF9DjPomgwybJbE6zU73k0KZSJ64iLwoLANl+uueC6KhMkI2KESU1JnIB2ouiSSGp9qvWuAyT8T/AnvThjdcKstzeNrumZP3H/BdH1NsIY2y+zNNEkQ1PNvmaZ3+DBkyei08gJNSHDR8jNutT1LsL9TTU5Bz6yRqATsycES8yzes86LhG30utaCgOKQpMkr3l5zWlio9d5c1mTn234lqpFNZlx1VqR0ZmPRfYtqW1H9wPJG/IAjnJ6IwRCHI/H4TBoG4uzwjxOn+8R40MyT5tuHnn+aG96lIL657sQhOvGuzl/L5Odak0H/Sz/gIvOfy5Im1wG/qgeXh7D/MiuYKKuCUkfy4H1KmielK6DYroaSco7Xi6lTDr8tSqLnMHPIz6IABGWxzS1ds6WxW7abn7Lf/1fY9gZt92IFsdmeLYlKnQDOhjnjA8b5JRwuBOkZfJZdDt8yn77iuKoNw/heAlRTBBSzAp+CgB7KYu0eY3u0bmjspgY+FZ/wEGa0NsQYsmd+XoSEEe9OOYzRY1NiYxo2WuScu5WV1CarBa6t1Ia192y/lyBirZGBrsmyYCdDW7CrYK4QzqT4sPIXJwfuZOBrTstipCwAEohCKknHVJQ8JilcGHg+SNbCZrpHKcteWUK/w2+2TPue52sjYpMhsXma6J6e0N4RD79hnj9WKXwFfhC7GEmwl9pZWKzX2nKjTB285DUtcvcC/sQoWRtHb84kn8tSKL0Y+LKWf7ZJQw2DyyFMuRbsO89mF+heSS0w+z2q6fINI4BLOj4KA3AcXryv/pwjuZmYPHFwzE+B+ST17/hkuc/qgDFq/jkFfu9PfOeGqswDqQclZKz0qSUYcMzPusIGPkZXe4MphkrwKMuhBRwW+a9O2W8832qzkjDaMXlG1fBYiRA5JyN/3xpEjakqttKrhSR2PYesZJxT5DFMPIW5ZnY8RYdTRmTFumO//xnX+/9KFkTNLWb7M/zu+owFHOw5HLD0DrE+r0BA37IQInnC9J5h+Jp5/kgIM+MkwdJyQSdIhkEFBoqyr8faHcZuJEw3K4ZK4OqaAZwuQJ8QHcEPeH+UPiLNdNkuptSHXptaH/ZK8WrlP7nbeHbXgX4fBdxpwG4sus3900WwcgqJtov53pHzMbnlPJVnciGbzEl6vViYwRSjBjmKkkqA4Mg8P3I4/pZ5fqCbP3JlevZNg9ts8J3leG2YxoTSCfes2d4PtI8fwB2Zx2/x/pDD53xVEDX5ei5WW3e2p1E6e/Quh4saPJggwG9hABbwZ2AN/izAz7yag9c9Qrj4c6k/jU5smyB+4FdgNwZ7vUNvthUExljBBcZjvqcn4nAguYm0Joj9Cw8/KZwRZcDzsclKKPhubvgmRR6T45ACX7sjh+DqTKBZluud0vS5vpZjTCG/VrECOUVX50S5J8MKAyggoMwPOjNCdXTVTi7oxKHYySWxK9jkgX8dqleOGlhIWdjl36+IPWWuu4+O+zDmn1NC8B6jqwHaXf+Gq93P6bo3NM01Tf85sbvCb7a5Z7BnysL1oWKkGQbMcETFUEkk0R9IyTNNHxjHb8QnPzqG6YPMuqqRmUItc4FCYc22EssAQpwJ833FF9a2MPVYsYFjsUIgEcMk9ihmsZQqAXGiFLC8VYrPWlftSq5uPbtXCd2AacWuRDd2sSgIUfyPQ8TMETMlrJPMlbpgiOU9WnkF58yYBiGYrPuGdX1IRFRKgs3MDwyn3xH8gdYf2G52PHWvOO0VSsPcw2gFE5meNdfHE3F8T/RHURVeAMKdEotUqzR707DXEr5dyDYhzwYgwcZrD/BLS6iBbKW5mqHlepTmWrPOXFAVM2hUordiudHfKszGYK736M0O3XS1P0huFHKosfL78ShuAcFLPYhewOAfMVPUa+yvQPD//480HkkmZjBYmMAEj3/4jvDxO8LxQJpn5m8fOHwTGY6GcdB89bjllx7epYmPwfGr6ZFv/cCU1595X0NKLoOPqrKmSjhckWwXD8hyERe5Z5GCFtCnDr+JzFo5L4YFKPYs4RHyaCCzfXMAgukxZkNjWrRu6DK4Y8wWa7e03efY7Zek7ppkW+bNlmm/qdLMZBWpUZ8aDQHJg54SxkdUiDSTo31+RA0fIXmiO1SPz5QCj6eveDr8M/P0MQMyEzrF6uXkEJnpJDyemtqrdYtRGmM3NHaDMZvznyMXnBA9URWJkjTZxaJjpxturEi+i2zrTuk6OOxsYN+fy7a6jWyQ18p6pSFFCT8zJ3BTqhYIzODQEDMQzDKkzJQHqGxKy1ZM5825/ItCK0vSDT7NHKOvHk+t0mytyHyfo+PjfM937/5faN1gzIbt9nN22y+xZsVsKIOEe2ac3jG7zPwL8xK0lTf5Rd6poNoXXBvxSH1tuly018OdAL7l94Xl5IP+ROZ16e91mfC7ZvqUY7GHWLZ65Vz2ubnrmsBmH+hetbLhn384JTg8vCN0VkDg45M8AOaJ8PGe+f2R8UEkXh/ft/z+ecPHHBb5y3Dkv0yPfPQTLgnTZrn/ZClUvJ7bzI6ovt+IXGe90V9Lu8QfeJGCiyVTzKM+mRUcazrw5RKphFeuH5QiIy4sMrm/JEjN0nU3wtjJwG/XvaXb/FTYv6avNjFFIRAbg+/0WW0oCyMVgIlPa8P0DGEkugNu/JbJP5Gi5zR8zeH0NfP8mO1KPLJiyGC4tGrE/x97/9odSZJkCWJXH2bmDscjXvmoZ0/39Mxuk2e/7F/nH9hvPPxAnsNdcocz0z3dlVWZlRkZAQQAd7eXqgo/iIiqmrkDERlRw1qeU1onCwHA4W5ubiYqcuXeK5bjQmO7PN0bADOX3QbWymZOZYhDPjaSqdnECdtGwLit2EK8sB0uZcALy4z5et+5iOvNjJ3EhqZL2FwmdFdWVCPse6nel00fMT6ymiAlA9szy0glc5GYbaHgj4I9ETwMJBpi72hJaBIox0NjPKIAhNpAurINLuSa6ecPeH/7v+I4/Iy2uULjd7i4+A26za/RuY7lsuGASRK1cfwZx/5HjNO9+LIP2dNLwZ6NgBTeWLzxG/y2ueQ4ahxeGccx1CY4I6qZ0cHNbJujnp86lHBIFnsqMq9JAJ9FLKhAhxqgVMxU2RQtjFjVsCfrbhuYAXi9g2lb2M2WbaBi4M7+Z670eIs4ijXE/T3iYUDsIw4/E37+qcN93+AQHf4lAP8pPOLn0GMUr7+HFKCEw1q2r6BPY3lwCFBsnPjfXOTleEAlHtSrALncOEzaQa1+t3gvqyQxVbGibiBPwrhnUY+BNZ14em7RuQ6b7jW2m2/gm2u2idl8A7r4GqndIDQNQtdh3rYnljCANImsyYN43BzQHB5LbJg+YOh/wDTdnvh8arNdGxWANn0u87wAlnvfCPjL90zNAE6Jc48YVcYpTRBKiKFHjEeYNKMBF+I3rsUL1wkQrN5+XMBcu4TrzYyb6xneJ7QXLDdsb1rAWRjLMcKIAi0OI/xG509wKZZSzOBoMkWWC5TYcG0ZRGhMyj6gTmTgyQDOeBkKVcCE1lgkipimdxindxj6t5jDHi/DA5r2Fbzfobv4LeLuFcg5LqiPbxHG95jTgKH/M/rhZ7aRSoGtpKSBZuS4vvZbvPAdNtbha7fFb0yLVxI3NzJYV8Er9f1UC62nPIBrNUBtDVPHg8bYExbgFuyz2PmIm2v2/Wu+eQO72cJdv4JVlk+MwMQgD00DwvHzYwMNE5K3mB4iDncWx4PHNFv8tN/g34LBzxSwpwnfzXv8cdrjMS7lpF6OvbMOO9fkgZGRuBkzmJAt5I4yVI4tpBh0LYSReiVOVFOENSbbyui54gbxkBtBSkioi2d9XBIZeT3HpFd7OQHpe2JLFWMaWNuhu/g1bjZfoWmu0PgrdNtfo9n9HQ+T9S3m7QXG3cWJxRygcm+CZj3tGNhKbrhlxu/wE/rjHxc+n+N4x6xWyRIgd4CVhrazZdiTdx0PRxN/cCtKgBh7JIrZ81ZZfouzGieWTNMIA57jceUa8XIudnMKcNwYwqvNhNevRjQdob1I2LxwaF5ecTxwjveplo8l9T1S38PNAYgJxk6Ic8oNI0xsp6DxgYE7tpaKxLFa7w/OGyCkBI8sgwfb5IESpvCIx/13cLZD0/4IooCrOKDp3gDNDvPVC4y7C6TG4erhEe277zAf/oAY9hiGH9liLk4SF+as2HLG4Ma1+Npf4Nd+k21btigg4kQGg/jV68C0WhmkVgLZB5S0TihMeF1RIW6Tco3twHY9G/EB3d4kdG92sNsN3PUNq4R2NzBNlwEeUvl3ihn8Sf307P3/3Bp7hnQfDw1uhxZ3YoH1XZqzteRIEQ9xKkOYCdgA4iXL9cJOLCH0vU0p4QFTvjf3ccYhzblWWA6uJ3iYDAgnRKTItnMcByZ8sC6rOlpRLOo8I1XQtlWSXysxpio+rBvIY4q4iyP2KSCAmcXe7dBd/BqXVW663f39Ys7IeH19Qi7RpdOAss3kw89I/Y+IccQ0/oTD4TsMEhu4aXNEEh9fYxyMbeD9JT+La+FclwkjqhQEuH6Yw5HVsylkP+AUJ6lLTH4+Ayu2EdooTXBE7BGuc0ecxwvb5ZlEr4zFr7oZX7/s0XbMVr/42qF5eQnTMomhnmNF07iYY9XEB6Q5ACCZV5OAcdlMYxCYm+Q8vN4iwWeFaMz5naimibEAnrvwDsZYNP4Sm/FnXBmPK/t/xvzAxJ9p6zB2jAu1twHNh58w9N8jxiPG8R3bSIntpCdg5zxe+Q021uErt8VXpsErI8PfZZj2ELnxeIgW94DYRSpeUGaFaANyoRTUZQC3ynFbLGPB7mVC980LnhGwu4K9egXTFsvY1B8yyEvTgDSPXEPEwN9Po+CHXw4E/21Y3F9hUYwc8OUDpRT563Bgz4/7B9AcMHyIODz43MX7IVp8l3r8HHo8xhnvwoDRGDi7EeYpe8kRxDPNFBo+IIzgxBN7axYwgOzfW4PAEYW5p4MUlfmfWYJQBhBl8BfgTd9LomOtR9Ps0LUvmSHj2gLutC8At0HcvUJ/eYnQsVQwdHbh82sbZrBI7rBYEQYYqQx06Y8w+z9j6r9HigPC/MCG7MJEHYb3GMd3aEhN8C22rsNWTO/fhwGPSHCWCzjvL9C213l4gzEW1nbVUBfx8UODmGY46xGNlfowZUnNzjbYuQbXtsWlYf86ZkAgewJ3niUD28sEp/5dFwbNJV+yppK8U0xwDRekLP+m/DX7c60YwdqdAyk4bLJsZKyTV+sZqIJBIN6wG2OxE7CqsRa7xJ6Sj3FGTCOG2OMh7DEM72Fdd8KW5iEXMtCBUi7olC+gbGD112mNxbVr8dpxN//GePFrXk6Zt0FAhIrxF2Wq55BtIEp3v0iECtMHQAaBP6U75oBiCdGw9yIzfq5hxy8Agh/vkGLHrD9hA9M8IR56DB8Ixwdm/b0/dPghWvycAu4p4Pv5gLdzjwPFzLo3cIAxABkYkEwA9xn4jyBYpJzIqfw7VIBPPQgKqBNfvoYA4WsScpMoy8PWTSHDTSFtrDS2zYBJ21xlAHXTvUa3/TVccwPrNsDmNRcDMgAudD4Dv8QeIWcbRHps5AAELu7cNML0dwjH75HSgHm6xfH4PcbpDinNGIa77AFcF6IQdmNviNl9zRWM9WibS3TtSzTNFZ8VAXzy+UpjZvksp35zgcefC3soa7deQeBLw4OOtIvc+YRtx00H7wl+Q9i8cPDXmwoIrtiOrgcww1rx+E2AHy18TCLvZEFKqoDgFmoLwdeLsl8zmGesNIlivl8CEbwx2FiPrfVwxuAhTvg5DDgevscgTaJxusN28y5L3GpP1BB7jNM9+wJniRuDwEaObSMD9DrrZFBWi29NI8UuqykaVxo3MQjzORkM0eIQLSJKLNgLyAhUBZ5cy8ok0Wt+MRSqAn0UCM6WEJ7l+H5jYbZbBoE1iY7hi5K2eHhEmg3SYY80TNkX+PDgcXds8dPscU+Ef409vpse8T4MDORQlNkBPjMpVUaswLp+xjo3IOcFiQsp9QtXuSdVSV7dHE7ESoE6sawTwkgpN40B5BhRK264OXS+gbzpXrE6oLmGcxdoN9/A7n4Dapj1O24vMF10iF6ag9I8XjSGZJHlBjKgwE+EmQujZBp/wuPjv+A4/IwUR2H09Nhm72OSwlIk9aZF016ja2+4SeR3aJqr3BRdSrsDUhKLJPX9FKZP8fab0QF5ANTWelzZBlsZAHUpuYNKDXfbgIvrmHOG7s0F3M11jgmL2ND2AB5h3CwDByPm0WCamNmjvpl53gAgDQ/HBRyJ1c8iGVMlUdStQTziGdy7kGvnEHscDj/A2jZ7OW+mezTDN3Bugzh/wDS8zQD8NN1zbNChskmJDhz2t6IO+NZfYGscvrINbozBTiafN2ItYIUJvFYD9BIP1gzgGvxZA8A5R6AkwGXVTLOEbRu4QbyL8Dcb+Jcs+VQ7CL6AGPiJh3vO/Y+fz/pLEw/GDQMw9A6PxwZDsPhJPML/HI84xoCf5iPu4oRZvJwd8eeqNh6tyOgvnM/36EQJIGQGsA6BUuJILSFftHwk/+WkXXI0OoGK8+IZBudZdwA3iWpwaaQkjD7ec31zid3mFdrmGs5tsd1+g83F7+CaF4sGss4QSI1jq6IzTD9KgJv1qMCxYXxA6H9CSgOOh3/Dw+O/oB/eg9KMlEZ4SrgStkZPEbOxMKYFjIX3F9hu3qBtbs5/fmnMnp9EkdVyoUeM0wIY4sdOIJrhRUm0MQzeKwisTaKtNIl2jocU7l5G+I1Bs/No3tzAXd/AtJ3YD3rASo2xOcC0jzB9D8QIP0X4TUATEg9WXA2pd9IMaol9n1uwry7XGXI+Jf8juSby3mksiBLmeECKPWIasfffwfsd/Pgevr1BM38L379E8g3c4Rbz4Q/oj3/Mas45HCUuMPjlpaGh9cMb1/HAbFFOKIkEkIZxKkMHuUZIlfy7zA2BfL9oCgOLvIBVb4ZZ4BCrPyt5QZvQXBi4m2u43SXs7gb24lpiggMmZCVgBoWnETQPSMPnA8HDYGAtD4p7Fy1uhQDzx9DjD+MjPshAaSZAGRg4JMNq2Avrud4zNg+aV2XfSGExW+iQZp4lIBjCXJ0n6eOK/YxqFDke6D1/SIVYooNIFbto1N5DB7CdaRJpjjJTyrYPs3w/GgPfXKP1F3Cuw277LXa738M3NzwocvMt4tXXmMUGYu4ahM4jNSYrjnWZVQpn5xk0fcDY/4AYDjgc/4SHx3/DPD9kEoknoJNj7s0Ebxx8u4MxFm1zxZ7AQiYJoccc9sX7N83ZSqKQU0L2FDbkYIhYqSe/N8T7YwODreQOO+txYYUFK8qLG0N4sRtx/Tqi2QHNzqH95hX8m69zTOAYUcDJNBxA7giKEW6a4PsD4syR3DcElwezIt8DpbZgrKEml7CWykJtXXSWTaCEEA8YhltMbo+YJrTtK2wfvoEb2bLDj1vMW25gbT88IPU/iirjiDkcMmAOyRd2tsEL12FjHF7ZBjfGYuf4d2o7lCBNIXCNoPd/LwQrzY0nSnmIcu2B7cDYDwPctDgPi1iws3A3N3DXL4s3eNPBtJ3c92wBp+BvJo2C1QKQeuIvAQT/zSP4r7BoHkEuIgkTQAN+3D8g7bnIi33EdLR5wNUhOOyJ/T8P4mszU8q+cjAEpJR70WSKn98sgKcu9WVZDIarCryaCawfpV7s535eKP26DANQKN0tkwFUVx1z+RhMSizXjgxq2lk2i8hATgoogM8CmSLYMaHbz2j6Hnae4fp7hPE9puEtYhoxz3v28gsHRGWbVU/CYZUyKzoQLbpsOsm3dOyqgsq4FdsvZr8eEHtWsUVH5dUM9eQp3n55MJxnGwie0knwGwO/dTCth1l7lrkEM6VqeFzxULKGtyD3dF79ScuALQTUP3qR9MCU90QsJY7E59dRgjFWJP7MIqy7mnyyTn3+8seqr6PskBPPSpP9ylTqOQv7V73w1AdYh77UNhD10JcaAD4r8wAwG3YX0vfegwdMXcwOMRnsxoA0TEj94cST+pesNByRiLt96fCI1PegaULYzxh7mdA6cyG7Jx6OUseDNZDC0cBAOVoq3QyUEIlvJo0T2vjRQjdLPEmbQ1UCvQDLJSmrWBK8pfNaxIUMFnhY6wFjeWhS5YNlXceNBMuJSO3DB7DFg50F4JVJ8CdAsFxadia0/cyDRVKEPzwgje8wT+8RwwFz4KGFs/pWU2FKEQoIqO+H40GTY0IN/GpcWMeD0ixKi/9ACYYAZ02JD3C5oFDmufokNjbB+5S9Pv3GsP3AdrMAefJ5mmYYF8TbqwyZXCdq66VJ0XotP/HSXIxIebq5srs0LowIWU46zXs4dw8Xmyx7VZYES7jk3KD2AF1+Fvqa6yQjEoO/9ftSWXvKPl+nsaBm/fV676N0+/l5ymBV/t7l683BoDcJPTHjGACm0SIMAe3EUJJxjvf5pvsiiWd8/IDYWISHR0z3E6ZHIM4Gx97jITjcEw+yqeNBIN3p9LzUcrwy4GmiBKuDVyqWQx0HoH9zJsGrbTNKE9KczBtIcj41rib9Tw6P8xcneQM3XJ3f5KGLjb/MILDzlzBuAxiOEaSAZ0ywCu7MDAIbuSW1iFPGnx9n+JEHPbn+gHT8CfPwE1IaMU13XJDFMdsR6Dlh0LyonpSZU2JCuR9TbgAF1M2glMZ8D9R5A6UA9bRjL9Wlt5/akbDdVJEaevEBti3nDHa7ETb6mdgQI2zjgZiQppjtZGpZZ72K367BOQbM2k1SZ3nlawGGGcPgpvScJkzzYz4PPFDPw9oNYthjnh9klkBtH3W+wfpJ3rQywAZAnkh/Lh5oA6geGqv3wwIMlgZqYxxiIkRhILaw2CePfuI9YewjUj8j9Uc5D0BqN8BwgHGepd/DgQvs4/Gj7+OpNR8jJrA9zKH3eJw8hmRxT2yR8BhnjGLBpIW3QjJJrrOi+GHCSL00N6hniDztE70691WhnFY/19d7bmnTSUEdbRwFw80XI/ccN5Sv4UVJ5P11VhHBd9kCgqwVr0mCmwF18tKYACCTStwcJG94zHlDStwUCtm+qNREOYfiZxSVkzsBc/l9lXjAJIk+N0EZAGKSBFGSz0vPsdioodyTWlcU38/iU93YJM1JA7+xsNsGdrtlW4JGhtM5l+2LbAqg4cj7FpAVRkDxlV0vBXvi4mfl70pOyv6f9S1rIAChSdz4mfeYpjupFQLnigCc70DTB8TA3ssxThIbNOMsrwQ8HxfyQFJa2grUeYEqg5QBrLmggsH8PCm/lsaC2Vi2Q7EGvXEYIsff7WQRh8CWTnK+03CAHQ5A0yENh9wUYrLYUBFBPl8tMIwexnk8Bm4U31NETwmPaSose9T3pgByZgm6puqcaDysh8BrXCBaRmqdJZIxAyzt5TSzrD8vSwICE+8ds0lsJ5DO14OLBhUIfQoYKeVGrbMbNM0lWzq6Ldr2BXxzA9+whRSa4hOugyJtImAucUFtpGyibCHFeQMPJtPGZZD7GOA8WWuvmK9SA1TxQPfAGNUuql8oAmIYJFcIgBD+tPVYZ3PsR8WRWZuk3pjljCgUC54WrGplUJI97N2ug91uYZpNAYCty0CwiQFmHkCWr4o6t/iMsQvVMtV7qRZRrg2CY7uHzfAeNkWYwA12GxOSs3DjwESztMzX1kttCs8tjgcmx4WsAqpyAa0LZsSSKy8OOwrI7UWVzed9T2xNCXAsCENE6nuYhnnutNkVgqiAwKoO0KZxmrh+oOGYlRtpXHXmPmP9zRrir7DC7Y8InUU8PCA+fEDa70ExYb5j1t+wZ3+v93cdvu873BNwTwn/Eo74bnrEfZwwpsjsNNfB+wuWzBnHbAkBH0ZEPKQZTQowIrdoRfK1TurU61ETGS0UCwACgChv7euPOAF5GEC9SADB7G8VtfA/Is73AAUYt4FNAW2Y0Hju7vDAp9rLLy4mc6pvn0mRJ3JOHxDne4Q44DD+jP3hD+iHd6AU8iAX9c3Ro58Ne1wOIOwFkCBAmCrXeWqnc5s8tRNYAsGlsKsm+saRvf0SS5U2plhCXJhGGH82e/vtZIpv27BvzNVr8ZRrHeymZenAprKhEDkAxQjb7AEcYVySrpxFmBNSsnBrsET/k0T1KfarMSYz/6JxzOKQBDxUBRLAHWOVCjUp8LUZHhCV3yET07NUTjdAUjnh8vVJjk/lphmQIO6ucdHGRbBNFpg8RmH+zYmHKOowkT2VSbEq7dirBQJY5pg7/Ei5u10XKHkYojDoWEJt8MJ12GOD22OHLZiN3HRHXOM7fIEzBKbv/hvGxiAeBox3AdORwZ7HD+z192H26JPBv1LEv4Vjln+/m3v0hgDTKNxagEkBfo8pYEaEMxYbcpirbvw5395QJXY1i08/p3y9KAhUMYJjdaeRKcC0+k8r4OssDxbT4s3ZDs7tRF4tyUeK7CVbTexWcFg9fo10RbPvr8SHOjakOGA/3eJw/BOz/KQxEWIvLDOSGGcxGk3ZXNUUMmjdBm17Be932f+3AMAxS771+5rpk9KEORw5sSPu9G9gcGkbXFb+n1vxDd8ag2vx9uuaiIttwPXriIuvHWzr4HZbuJsb2N1VTtQWrNPMBByFMZYw9hZ24obTnOx5xFeWgoCaACWSwVfGAobbWTMiQMxG8yqrlXvl0nqYFBApYYo9hp4lrVak80BpFNbeZvy97jpGCl+xcBDbgSHFPGm6JR7+0MpwEb4GedAD/3vp+6lyzz3FXNQMFDFQyMXOULFggVIEccFn0YlvuYPBW9fi3m9wO7VoZ4/fTR7W7gHccnJ9+QH+5R7u+gXC9Pnd+/v/7S2Ccxj2Fg8PHY6Txxgs/jh7/HMa8S5OOKYZf56PeB9GDIbk3nMLcDKCwV4j59nKoIIxuZPkTVmAtTpgrRLAIi6Uf2cgHiUp1GF1aqiQ7WsM7xHOtiyZFguFtrlE21znJlHbvkTbfQPrdyyzbl+AfAuyNnv6tikxnQMlPgACfk4De3umCMQBcXyHMN2DKOA43WEYfsI4fcjqlRCOMsFasyGHyfC1aYzjAU9uAxjLHsB+l60gAGb36MGsWX88PK14YWefSzAg4qlIcy9dgyvLHvlbsK/djSkWBFe7GTdfBVz8lmXHdruFf/kGdneDPFlW41IMMId7PiduD9PMcD37WvuRZIDaaV6QmT3GYkJRkERpFBrd702U5otYY0EHYPI9Y2FwnyYcD3/K6pC2+wnd4Q9wts15lHogMjuSLWS0uQ6Y6ppKGZBwxjCjz1j2/AUwRSdKKLbBGZLBXieAEzOA9wKOsH1aRJ9iZvvUdghKoFBmq8Y6LyD9jWvRNzvcDy22Y4Nf9y2APV5N/wZ/2XDMfvkK7voVjHOLGmD8goLu+//aYmMbvDt2+GO0uKWInmb8KbA64D6MCFD/fZOtCJJJSCSNb8PN8WMKeehXvfR9q/Q7KEC+yjML6MsFsjIAafW4WnVYGlMKQxWmfW5oGwfrZAir8dj6jVivbGFtg7Z9ga77Cs5fcm7RvAA2ryU+cKNIwRuArZMA5PzBTgMPkE4BFPaI0z3C/AFEEcfpFsPwM8bpjq3f4ij2RaLIMw4RFgcQ742GFZHOb7IVBMu89/ze5frWBlDUaxyFQEKV96Pm5AYGKU1wRNiJ3ZwqcbbCgmVLKYs3PmLjEl5djbj+OuHitzcw2y3c7hLu5ddwV68KO71iqUeJDbAONE+w/QDXBB5ECuShs0BRE+mqVYY6WFDzSmMdkIBEgQebyz3kwaYRIGCiGX3/I1Ic4fwW3nXYdF9h072GsR4hHDBNH9ieR2XzsWbLmkx0gLEyzLcofSbDTWHdwPpqVoiqAfYU8veHFLJHfrZNq9QxtYJuHQsuXYO9v8A9ddgGj29nj5QMvp7v0ezu0V57tIdHpMMDjHNIwwHh7n3GA2rVz+MX5A3/+biBcx4/phl/CEfcBraCuAuj+OTWVT23MxwVsFXrhESEaAlOYvsog+r1HGiNoBH6pAksMYbhSqC2l1tby9TPoYtWv6v/06Hzmpdaf8ksfNfBuw5d+zJbSFm3gW9fw27egJoLkHV5FlFylucJxQTTM+hmw8x2RVVsCON7hPkeKY3Yzw/oh58xTh8K2QkJ1nX5Gucaipe3nve5NMMYi3G6xzTv5XERMQyCH0ilKjZINWil58ISEE2qXidmz3zdcy9dI3NHPK5tg6+Mx7eWLZO+vhzw8tuAi98WiwL/8mseYLgCgQEgHe4RnYdpNsxUnybYdg/X8L2QiWiWEKMQ0QiVVYpYRYFy8yoBUKl3jv3Q6yQgxANMPCJGzqNiPKLxV3B+B9/coO1ewxhf2fXcIkqtpeB5vWpVTwTjBslgQRqLYMxN8wKelRHxmCZW1YNy8yFbIuYGqdpougzAb63HodnhHhtcBo9v5wbAHt/iZ7TXt3C7Ds1Xd3AvvmJG8HBgYuhhD4oRqR8QHgax8gLiTIgzz0faz3/zCP7c9VcHgmdHCLd3GN4eMXzgoVf9nn18jjN3EX+IFt+nGbfid/PH6RE/hZ4TVgNYwwCl81tYSkhxRDIi6aeIFAccSSA5gkwCZp/fdeCNqyBe35BPrToFWEJ62iGnzPJKApRaCogRXGTNXICZcIANe5jpA7MAASCFAjqnMnFT2XVJwFaAi60Q9giRWX3T9IBxvIWjwDckDDpj0chzH1PAkRLIOGYH2BbebfPwN+86NP5S2D1eihW3AHxSlaSxL/BUOvlxEpZPqHxpuixJuBSLgxYsI7xsA66vZzQdYXOZsP2mQ/PNV9mbx+2us6SQKhY5AMS2BcWUwR4gsVdPYNbDuQ6+2iJkUJiWnz0qkIZlQiyxgQREZZNaY7A1nIQCwEUK8GDvYC74AwIFRFJmagGGka++3CPNV44WEGv2GbN1CL3hgXcxWsypsJ77JMWdvMd9BfZMdL7AG4mHlAViX1y1SEir+0GTW5UtXdkGD+0FvnZbtMagP3bwf0oABhzp8wu6w7/dA97hcOdw92GD/egxJ4u74PCjvJ89RXwfDvh+OuAxTphBOCDBGJ46rd3o7NOYgGRkQwPgKOXOpj/h7yAzBBeswArc1aX/zs9QMWOoeozAJgwCi4zTug6N37JFhL9kH7/mmsFVZfpZz6qBOMJOyEMHQSyTQQpQD3BKXJRFjRVpFJD3KPLBvcSGR0zzPUya88ASV72HyQAwDbztsqSza6/R+MvMbLe2g12xlDUmKPhbN4ZSmgUAWnb3CSEPM7nxLXamwY0t3n6X4AFQN5cT2i7h4jrh8rctmm++gt1sebjAFXtOGhk0oh1lpFh16x9gtwlxHtB0Ce1sEIJBYxOW4zdOV6zYMJLiSVzgc6H3UqSIDjrYg6WZb8wWNwIg9tIk6ueHzNJQgBL5eZeaAEAZFcJSowQn0q2RIg4pCLPB5gIUAgRPledniQWlKNwn/ns9/iWLNi2khlqQ1Ne7M4a9zA0PrvsQR/zkNthah3vawL3bATiI79qAi/5nNH2Pef785Oi//ssOW9vgITj8TCbL1n6Ie/xhesR9HNmrL4U8JEnPYb0MWeigyAgDJC7MvcQ2jXGQ981DX5bNsbSKBboiTvOC+typhZQygA189sosvrov5H5zaJortO1LjgnGw7U3MO0LwHUM7lhm8ZBzMDHm4YMAyjAnbQLHAdP4HkH8wOfwiGG8xTh9YMbJfEAIeySazkRFAOBz6h3nCbXd1bnFzJQ+5wbZ+iGt1AEV+KMNUqKAjbG4sg2uXYuNdbh2TZ4rcGkMXvqAV1cj2i7h8kXExW936P7d32cLAnf9midP65CXacjywqgDywCYaUIzTGge2Xs8RUITDEZLiLVPsOHBb3Wmt5wOz00iYxuYNCOA36cOKd2KrUtnHdpo0Seefj6EPY5xj6H/SZRi4kMuLEhmRcaqeczXdDJ8XQUpyiZKQAIm59jnN50yf4rkswx+2VPAg3jdqsRZYwHHhhm9+CEr40wzF90/VMZ8YT3u44Sf/AW21uFH2iD+cIW/Gw/YbGdsLifsfnWAf3nPQPD+gPHdEfOR8Dh8fgf5//lwAWcdfhTwV8Ee9QePYssE23C0tI73ULn+NOcaJa+dqg5hXdAFIkQtfIGTnECvCci5yZhblRsAJSbU55L3BC85t4EXNYBzHayx8H6Hxu/g/QXnDc11lnYb49lmrr1BakVi3TRnm8Y8GDbBTj0wH3IOMQ0/YZ5us4pwGH/GOD1kMgkzdlUxZKSBZaWBxYSc2hLN2iZ7AOc8QD3AxSKNgQpu/LAaadlizzw54n2XYAGK6GBw5Vpcip/zlW2xMY7tD4zFK0t4sxux6SKuXwdc/PYS7d/9I+zuGlZjw/WrnDfwB8exwWx2GbRK0wjb97DNEa4hYDZnawq9B9aAgsNytgAsYKJDlCtHrS220lidKOExzhjGt6CRr4eD/xFNw/VYsY1Kct7YE7VWEGnTGEgVm7/kAjwXgM/rHsUiSpUABwroZe9/jBOOKWS26UTcIFZKUc2mVUm7xoKNcbj3E943G2yMx4+uw/Rhh3F22HYBl1cB1/vvsfnmHqZtER/2GN5NGB9ZwTD2Fvs9N3wPaz+OX7D+H/MeLjn8NB95IJzMfAmGSU/etuDBYgMMxewXrmScmdgaxhmDUUgGbA1RBkXWRLK1f7Lmb7VaCBCCSM2mp6VSKBoll1V1g6gIrfHwMoT1qdjQtK/h/A4wHnbzBmn7AkliwuwbxMYvPMHzigm+P3JjKEVgusd8/B7T+JY9gKcP6IefMI4fimd9mosS0Di2s/I72ctsVjQByIPetPGbPX+JvXYJDObqPeWNQWc9vPht6163tNVKYGJqRAtuSG6t59jgGuxMk4clfmUNfrXr0TURL9/M2P3dFbp/+B/YqmSzg71+DXf9KlvF1Mtsdtw0su9BcwfbH2G3DcwhwkbAOGTbRl2u+qp5emPKTAolK+j1kAwPjTcAWtL6jDDFHvvDnzBNj7CuZZymuUbb3MC5FiH0mOZ7URrxnAVKs5zTcziIMP+NEX/wYg3DeQHX2ocUEInwmCbsxXJEySgjFcKUxgHNC2z+j8HvhzjhfbPFxnj8ym8Qby+R0gEXu4jt7ojd3R/RSSxIfY/w0GN6iKDISp/7W4+Hfos5am4uFpjxyxnBM31+7vHU+ps1xEdWOhyQGoPwMGD4ADx+4E7h47HBh7HJQ61uKeJdmvAhjjikgMc0Y6CEJIW4FVadd91ygmSSjopxSJLk8d5NsCAYWt4W6448P/KU5btMUeSClx+esIHPXATKhDHGC1gSkOIgvwswZswswPp3KY1Zxl2DLUumXc83PiWEsIejgCvjmClmllOQEzEjDMKS8m6LrnuBrn2Rpd461AVYMoDLqoHg0o1jwLuWdrItRGd8TtR4EjKy7LtrmI3TdAS3MXC7LZuHt132jrESgGkakKzIuGKA2VzAbjegWaY/N8TB2NJZqUY91fasybl+vsby52sdTLRQYXTt8aaSh9ofZ7QxD/yZJVkLRCCjwdjA0FIas17PhQ/u4vHrTQAg7GAt8JTlUzx92NeHwaiII82Lzv7a726kmMGLWoxqwNd6/X63YYIDd11vTYP96HF8cBjt5wfV8WBhYbF/9LjrW9wFhwnALSX8TDP2Iu+8jxMnqRT5SjRO4oEw6iuwgacMWiSTMkPHUBKAWGRQK5/P2gqiBoHPAcFrQHj9c+Tf8yOMsXDW8/BF28LJsAQj4JWxZ+43CjACcCIOoDjwexTgN4ZDbhDN4REhHIUxcsA07xHmAxIFxNjDphkXxp6A4Cxbj0jGwLkNjPXo2mtsuq/Qti+y/UE5T2r5oH62gFpA1I2hKD5fJLFBQQ1LQOOE1WN8HoZRZJ2UPWebjgdGut0W7vpFAXt2N8z6AypfOQbF7TTAto+gtmE/r8ZUEnD+6qqk7am+8rkNXaX7EEAmUSUDFzARBujAkukm8nBCaJOICLNRWa1yRPQ5T68ajR56XWojYyICTMIE9f8tsaHEAvEDR1qw/kYq4E8vQLBaA+WmkF5+wCIW8ORrljASUd5bNuSwMx53ocOb3iOEBOMCmkOEbXuk8Pmx4d3UoHUet0S4pRn3wlT6OfS4l2EoMyVMBnDS3ASwBBwlBivjAmAvP6SIlOXFgEfZK2tGby2Drtf6GqmB5Nzck78rxZ2R4q4V5pxD4y/EN/YK1jj45hpN9xpWgGA0l8zieUo5FKYF4zfNeySJDTGw5HiaPrC8OxwwjHcI8z7fq5YCLiTG13sAgT1xrWngmx2cbdA21+i6V7mBpc3pwvgFF3kiX1Zmq+YHOQurWEN6lbG802FrPTbWoTMerTSINHfoso0USzvdzTXc9eucM7jrV6WBHEO2JjE6bKTZwDR8HnmQHDeO0zPWRmv5d94jQLno5UtMrjFp6Oow2s44vsacQWsdEhE6igz+YEKiwhC3xhemUL6+FjtyjgtqVVBknKp+Wh6/AkG1/LunlBvEOS8QddAkzeNB9lm+DiqFCwgBPJTHECHFmRsq0gxrjMW7uMWrQ4NpskgpoNkFmPYIYy3Cw4DpERj2Fv3nu8bgbQowJuGnOOKn+Yj7OCIQYZ8Cou6r6/aGMSAyeV/Xc6hsSmB5X9ey7zVjrwaLbY4sWNhC6PPpI/XequeKWNfBmgbWeji/Rdtc5sZL277gppBjNYBvbmC7N4DvAOOR2i3C9gJkbZZ318uPMSsLTZiyWggUEOZ7jOPPGMd33DCeHzAMtwhhL7EzwhHlgdIBvH9xLsv5rPNbdFWeUKtdAGRrOqIoINCElAIAnpdhiTJowuelABis3gBgmF/tRJXSGZeHANee9RubsOkiNtuI9gKwl5c8qDCDPa+KLYQCPo28zjzy0KKm46vcOVih9j1lDaGrzpCWTRgBzsHXVkKEWI2DBxkzaGVTQLLESiIwmSSGA0BpMXtB17mWZAYeqVzTgJKdgFgdVx4OK03iCRwLRuLXHymWvAB0AsJxU5P3sih3ksaCSAQfR1ET8pD2n02D66HFTlSM7cUMv+1h2wnTPYPAhweHECz60eFh4Mbv8Qvs5m7jCJDBbRiwTwGT4c/CmoYHldlWFMUTDMUF6QWoYnwdC6iwgGurmDULeIEzCBgMSMa3YvvWey03irUhaDhHcJsTspYThUDXvpAhspcw1mU1QGq3IGsxbi+y729+zWpugE0EO8cMCJuUmAEsQ2Pn6T36ni2jxukD+v4dQnjMR2ypXPvKdlf7OB4MyUOkAcCGA8bpHonE1iTNIGLVkSGggQzHE6JBPeB7pgRYIFZzgAwByRAMWLGtfspbmQfTaW1hOH/YWJ41stlGdFdgVaEOLZS84RwIDAB2u0M6dDBtsZQx1sJYLCxknlpqaeWomjsiS0kfej1wk5VnOBljYCnhQDPm+QEmNgimYXVGmmBtWxSXccxNorUK5dzSHKG2huE8oSiNdG4G1wUxk1FGAY2BZV5AGTHh7wJFuDjBgdnBFgbfNi1+1besDo2A3wS47QGmHZH6GdNDxPjIpL7Dg8f7fYf3c4OpOl4A6M+ot37JKo2zv+z6lHP/115/VSC4/+4dnHeYD8A8lpuBB3sRTy+kMqRHp+l6ARCDBB+SiZQAquSi8mDNZR13WQKh+t1y5WTQlO95mepfZvU3tACA1Y8UAHf1hSHCx8dd7yiSNH6Mg1O7hXjMIKyCKzEKWJwmzPMjm38L+BuqoWP8nwIyxEUYgIESDCUMxuCQQoYYDhSRjGMmkvEMoEm3Thczfs9DIykVOSewLPa408fT7j0hy4jzADRYNk0HsJUhL5tNxOYywW0M2ptWDMRfZfNwu72EaToGglUCLsWdnUfx97Iw7vxnG6mwZNfetwvPt9WNW3zNqqJL2cPyWH5fOj04ccEHToyJ2MqhcIiq55dCmGTzqpuI5SpCTtIiCFtiWe5UvfYkT6tBXKd9R1D2z+Vgzp09lTlrkacTrxNE+lgBnvk/w8cnDmeckaeA2zBgppQn226xw/DjJQJ9/mCHOANJNlRXDfrLPl0oDO7l4uQDCv6uljFimWEoM3RI7g/14qqB3FgldLkpVP0eONP8OT0ifm1hztSsz5gCrIClZuaEL8YR1jge3uAPsFYLFS2svAA6RR3Afn0PmMVvMqYZIRyK5DqFPFFaAZdouOu7FsTxZ+2yNF39PokCYjyy9Y4AvqoI0FgQpRG3lnxqTMiJiUrDwcwLD5MLOU3UWlELbCxh2wVsLhkIbq+9xAYBe5qOGX9ZLTAUmCQGUCtAj1M/LwNrE4M9EugjqR+WfJ9BlHKf1/6Qy2uKmzo1GFPHBmsKI0/3MS8AMVGxeymfA+H0kqpihLxmLT2ekACy6JHQQ4py8FBIBn8ps/72GdxJONKMfZxzojdobJD3MkmCd7ofQl4bubmaKMLECYESOsMez5fGAfcX2FrCq8OMN8cBl48TDl8w2MGa2ouxgOHKSogVM5Pjb2WlJM3jukHMDSEgEfu7O3l8Vj7I+1yDPjWwe+7c8A+XEb+G8TjJL1E+++JaCGtO/FSrhpCL3CS2YQ87XxbwogYH4oAU9gi5KTTw0JD5gXOGwANEQjis5NikJwkRBj2kWW70WGVwnQy+zS8neYnaXaU0SuPnPAM4pinf/6tPtpxlKoVlY1ne2RhXYoMAPVsDXLQB211Ee0HoXnZw1y9Y7r3ZsVpgd1MGQNWFnXMyndpx7pA4f+BzTgL6VKf1zL/Zg78USPVSz2Q60ySKoOxV2MBm4NEbA6cgo0k5rhgoCFy9BpWIXR9pRIIlw8WcIdS87lh9VW99HRD5EGc8pimDv30KbI8g+cAk90dhsRcrE72HeCgM5waPaQYC0Mr1e2kc3GGDrSG87gPC3OP6MMA1hHk0mEe2gkvp7J30SeueAjw5HIXNrLFMZbcGy+a7sq2NcdAZEBoLAhHME7nvSVMHy/vfYBkbOLdbxoo6FhRL91VtIczPlGb2X7YtYpwQAscGk/h69gBsZEa+jZdop56bRLWtgqqI5kNWD6kikWNDyGyyeX4ojF0K4JyFDzqayLEBfOUZ43OzwsCy1Us4VO9BcoSaAZwm3tGqPADQHK8waBUIKfGT7wWQqDulJmyszfVha9T/0+Ci4aGym8uE7mUD//L1okmkIPC5ZZqOcy7ngXnMFlMAznrwA8v7S3OHSfYnbfYqozmrfAywxpXZD50VnAqojYiIaYRBEGsqV67lnPPqEfDnYwVEU7BpAoP42gjShtbaFqaOBQmEfZyxT3P2puYaAdm2JO+Uxsh1TizVl1ppnwIQBrTGIYKwsx4udLiMDPCm1CPOM1zDwzrHo5WGkUGIlvMzmJyffc66jyMMWRxSQEBVm1uXbbqs9bDJI5oZUwVkR0o4pvNkEY2PmhvUQK6uUgPI38lPzOrnGuHrxru0ipEHNj5DHiqkjMBEuDjAzgdYCoDxbO8wbZB6mfNzzjJKrB8QB4TxPUbxA1c7knG6A1Hi4YTg+UxaBJHhcwE5vzCWaw/J/20cZc4MMIceYd6LDRQft5MmkAK5Wg8AWHj8WhjoMHiNpdp2y0ximTmiNgytsdgKCe0SFtc+YHcdqtjwBu6Km0Sm7Z4EgfkiYL/pHB+cB6XEt2EsR1OvYkOpCuQydFGvH2udlGeWryIJfprzt4IneAJmzDAxggzXjgDgrGcSXk2I5CsDuusoiasGoGuUJxNGqgYxz+Sa8wBCrRkUl5iN7AXcrqgIMvK6ks/NhhtM3swYJVZ951pcjhtcTg1eHgNCGCQWzIgz5wVx5rkn08zzj4p3cSG6DH8BwPW/h43Dec3g/7HWXxUI/v/8rzvsnEfnI7ZdQNtyQGp8wiYzhiy20WBrHA5wSIaYHSId5QRCSANoZjPtc8tYxx1rCDpvEtZTe0//qHTsCvBbJZBPmGzLC1aPK5uMegSrJMIYBxt5Mua6e24EbAlxWDBp5ukRMR6luGUASyUsNZNZuWXJAEN1/HqDGmNgbYdNc4HGX8gmyF3RethTSoWeUfv68e9jTlQBZMBH/X1SmtAS0AkTuXh/2izrvHYJW5tws51x+TJi++st3O4C7voG7W//Ef7r33NC5vwiONM8wBweiol4irDbO9i+Z3BCvLyYESxBhAx6KgBPtoVANRiMqEpAK/BfB10QEE3IbN8IyruQmq9HcCdytomtSgzBSbJgSPZMOi/T0M+uHoABsAzmaGc4Uu8xIErxH6vCqTCAC9ijUg718RmU2UPKHkIeriZvVlot9RHxIqPgOT96RkIfR7yLIwyAH+YD/uC3eOU7xPSRe+yZFYJFkOF31rCPk0tihUHIbAX16asLBQYfzoDQIte1qQAOAQlztUme/s3pD5aNIHPuQcu/yLGkJO8GhsHROGKiKADwgDkcso+psw2cuzixXwDAA0Jin21gYppZ0h37haeWqa65GswBDKwRz0C1eqglZ7bJlhUaD9hS4p7/TWW4E4M7c5Z58WNDxb5cLlUvWIrM6DMWV44tIXaG48MlLC7BljFXbcDNq4Cr33i43Qb+1Ss0v/n3aH71D1zMrZI2IyzhPGwkBtjtPcxhD5omGGdYLeCKFC7mQWrLZpH6A6sVjBZC+TM1Au4b3mOiKRYrszQX2FimNDI74xBsEu9yAS+roheyRwGaRGQeMLNvK4ASAAYKOCSLAQZRKsot7EINoB7Aj2nGIc0Z7DmkmT2zKWXfWi3w8vuTAg/AInnU49PHckMp4CGwndG7MODt3ON/F0no1/MGf99f49c/J4STRPXT184mNJYzwYlImlzsXzoQD4sq13pZugfDWFjyiLAw0hhh77q4ANfW4+XKE50e06elestmcj4+w8U6e+LypOsZfJ84x/FgsvdwbgsnSgfeq7sMbJLYCwCQAW8fcsM4SqM8hCPUc5MQAYoCrAhkkFURHsZ2Ik0XCxSr/3ZZ8l38fw9ZhgigGioXVmDP0gLpNC7p4K6YJZEd2GPywnlc2QZb43BpeNp3C+ClD3jxYsL17z389Q7+zVdof/OP8L/6+ydBHtNs+HcpgKaRZZ6HB0AGx7lG4oNYSvHQVW0Q1ey55aAgvYfUPzyfL3nvnGdwHFH7GB2Oqf9O4OYqq3WYbckJg04TR24uKM8vN5ANioTZcJG5lxibj132e/3dQ5qz9+d9YHXNIESCgVgqnpmqsi9ZbWRW10Bt6QHw/vBIMw5xhIkcC96HAf8sktCvwwb/OF7jd+8iGpuw8QldE9E2CdOXqAXiAJDB+3nAY5yY7AAgGAMnrHt+LwVUIRIbhioWRGiNsG7h6Hfni/36EetlnvxNaRrkYyOFByxsCssGq+TgUUgjdn6An++h9m06cBCQuJDGbBEVJTZM88MyNsTKe1riAu9DKkc3gGlE4cKS9HzsK2AqhgFhZqCaawgxwiG9t6mSC0Pk0Xwd2XytmexZnzRnBiSfYZDTA1n2zT6gHpfW4cZ4tDB4ZQhvbga8+K2Bv96h+eYbtL/5D/Df/v0zn1v1mbSdNIo8IBYyRs0+ZS0ayRlgXQ5Vyv+Bh29by8OTyDgYcjk2sEGVycMwrbAWk5wHzuFnJDMjUVGRcC4ZK1IOnx+Xo6qAwFRskCZjeKYAOC7cU8CdWC/Ookx4kFigNcOYY4GBzq7Q3FQbLEYBrCoeEEXsacYxTrDgWHAbBnzXXGBjHV7YDv8YLvD7h3ogMKERQs8QLAYBf77AUQpvwwAYgxEEsg2zaMHgr+5voATntgJgztLUT+iRANlfDcl/UNJEXTvl/1teSxVMuY4AOX6vn0tzhJo8kgllTzSotGYPKGSyNBQWuQwctAAgZBJm+0foYNhpus91RZnlIbJ7/VzrI3Sb6vtlLCAkhKx2jpILSIMA7MHs5Ry0xmbrBx203Fm3yDm1Hl4248t5bOTQGrAlSWd5nk0nvsCvrMcWFt9a4OuXPV7+nZXY8C3a3/8T/Ne/P3tezy0dIld7mFMEklwqeYg7laFrgGIPXKPrTI5ACQYO1jQga5ASEzvYrgjZYqWV82HIYEgRERGBIuZ55iaRWEnlXFeuCYI61Jf6QYdrqpWNNox7omwHEUF4HwfchRH7OCMIKHykiKC5mykKFgBV7mORZ55oTKCIIY0YJRZ8iBMe4oTv2wtcmAYvQ4t/nC/xu7uEjYtwBmhcgpdY0MvwV1U6cjObj7X/gppC198YwX+F9X8bLK6dw29Mg9/TiLYdGbgzvAlop7VNDs5AzLVd9ldLqQzoiBBPSKNSy9It5eSoMF3XiUvNGFoAF1SkYfWqg139XE916uqfa3csQm+Y85N09bjqoop9eAZ0VBKGK7/BzrLvjcp3BuniHlLABMtDI4Txqz6felz14Lf15lLbTvD3Uwax83mrz131b+74xwwCXwgIzLJOiy0sLg0PiNv4hIttwMUrg/abr2F3V3Avvob/+vdwL74+f06bDdy1RxLfvzQcYDYXMO2eQdTWwlbWBMoG7lEYOXVRp0b/6nW1TvOztxcAlREqcKybk7KdHZTBpAUeA0JLK5JqCxPwQZMLTeJqWVKghGMMHMSNQZMsS2MI+fgV2M2DHRK/n31advAGSghGr0sp7GUI2JNWFavGyQLEluuZiHBHAXfzI/z0CPoCIHiaDFrPx9I4wpZEMp9405pRpGmrA4X6ZwPIyamC+MYsJdRLTzVNXOvnfO49VH6uz3TpT6Wo5bEpBe6+A4jGwpgDYAqI4Kxf3JtJC+0052EKILVhmcVLSjd5ZtBZmOwLPSEJcOfg3AU2m5fZw0+9xfT11sPetCkFyOAiYfkBqFh+fF3nQlLfcpXMclLJHl7emBwfNtblJtHWGOxcQmsIl92M7Q2h/fU3eYhD86t/eDI2AAL2OM/TpkVJYNuWk6rWydCXYhtzDgDmn1O2TVDf3PUVxzuOkyngMReAHaomkSgGGmvR5QGFKYPMXFQovFA1iSpgkl+L/9NkWT2+HWZmqsht0ss1pxYqqgZ4FGbPJEw5Bk9T9qHjor+BWxV4T57nai+skz0C8JAmPM4H/DAf4YzBC9fiz90V/s7vEOLnx4bWJnhDcIaHdQ3Ee94k4HYpVosKpwY01WPRWL9UDeRGZrGQUHCEn2flBFpf34uTsgR8P74KqyshwJDN7OAQZVCLbWQgY8lpFNQClgz8mIL4/B4z4GsooUFRVJS9hQfeDCaAyAnI49B2L9G1N9IY5jyhNIRGAZlLgzrMR1EFkBQeIYO5Dsz4532yOh+G77UZhGAqxooUhw6sEriwHjvDIHDdJGoNzxXYvUzofvc7uOuXcC84NjzH9Cun3XPTqN3Ath2zxJ0TSymAKppeBBd2a31UZgOnOjYUkDEPJySDJA1kzRsKg7FMMq8HkFmSmRImyaV2DozEIm8o3pQ81KUnlz9zbQxpTHtMc/b+DPL9Ps6YoVYF3Cx0khvUjQF9f/wPe5ofrArAQxpxnI94O/dwxuCl6/Cuu8GP6QJb4/DV1ODXTcDLiwnhC+Tf78MAay03vCiy1z0MrGm4CZwZ9NVnBBQrKX0ftFQUUfX9Guji39eQhOYSTzf6T39YmsV6/ah1VUoBiGOOY/x6ES62+Rqb5+LXv57bMYc9ogA7IbLvb4y9NIISK/ZQvFB1BwcYeCNDsHYDtYprmh2a5jo/v8aeROxHGaPmJQr2UAZ7GmPR2pKXqFVKfY0qGWOihJhoQdqxEhvUb7IVoKeBY49dlCbRi2bG9euI7nffwl2/QPP17+B/9WkgMFByCAjrz7jThjyAPCgu0rJJNAkbWIGeRMSkJMtgXErL2JCjRwWEXcp5OYqSc69NIhAiIoNQxkjcLboVjb21cigS3/+tYY/zKJ95FODnIU14FLDnIfK/B2mkzAawhn10tRHAg0yXpCe9Jtb3kQ7AJRD6NOGHMOCDSMRvXIvbdocfm50M+HP41rL3uzWEIbo86+DzNYbAAQnWOH4f7iIPMCzWhyUmWGoXMaD+qqpboMTdBTMbT4M/5iQ3FkDT1LlEvUfaqhFzmoeV49LhwhEpKnmLG0Am1Ez2SiEoHuDTfJ9VO9N0j6h5Ayh79LYCFqo6jPNUttppxD6urlcAYA5HhPkoBD22ffHEjHRrDBo4NM7lmQydALfaGHUwaCpfR7UyTFQsyJRqonlGrn3Alktah7dSV9wYhy2A1+2Mm68DNv/u7+CuX8J/9btPbhDlZZkJbGLg2BATKBIoMgAck6nsFqpGMpjAUFR4UZq33CRKCTCG7yEDgAx/bSUXaoyFT2zFWKweI+Z4zI0DJQoApa414PhZA8C1bY3uGjpEehCl8GOc8SGwLaviB1HzT2PZF77Zwbsyb0FXrQjNpKE8H4ZwoBl96HEbRzRgv/f33TV+9Be4DBzLXxksYkGegUQ81FJtY4e/gEfwfw8/378BwR9Zd2lGsMCl6XCcHXaTSAaixRxZwq1ehxkYE08VHbxhwQN6lN9XsydMbiPzTVa6aem0gK3XqjjMS/8e5e+XyZlaPZwCzYvf5YRylUyvXrP22KTE4JatgB4t5lQu0cBiRPH1kyfOTD8nHj3qJ/TUKvYSevOq19+S9Ve/r5PngHbtjVh5GJFIl8c4EBpH8C7BNwTbWvb6rf2An1vWS8E3cIKlEs8nEraFLzCW9hB1J+gkGCw+z/OgSC0XKo8stibPr9MOsf59/WpJgCVl/UzEv1V5iQ42myliqK0fUiyMpbxxFmaqsQ0XSmeaGvnzlYPK1/G5A4bKgpnJlD72tp9Z82wxkcU4O8yRGVk54a7Ol7IenEBpBqUI5fdhAOOeqsmWwM6XrCeaRvVr5ASvKiipbirRssDmpGBefhYZCGarGLZfIYDiIjZ4KSQy2wwWS5mrYRmcgMDebWT4Wwv1LrcWFRhcJKoqPcoWPKjjRC1qUzsDo+QiEFmAStND44MCIeU/SewMs/JsA5imzZ7AH40NgCRqgQu5j6wa5Kk798vHPHGtaAEBkYGfeZzw6HLBm1m92SNs9Td6wmpQWN/WmXiiyoQJCY02TcASzvW070n9/eRnrAYoDVRTDQRdswv40Jb7XH19rveElEaMlGCJcIgz7sOEO9sipGXT8ZesSAb+TGzRc5qBdEqgFJEsWGJPSXzUz+/vT+5nec+2OG+TVLUNfzEIDACJ7wvDwE+OCwkwVS6gKiJl5Nbyv9p/W4s8Lg75+TwYhOHsaLmvKCMpW9zI560gcGaCZqBJjlpiAcmgGJ1MrYxelXjqoBf1Il+cYQGD6ztAj7FYc2i+U+c+gDOs+HEbwwNlVe7dnhYkf4lVijpa5BIqB+b3RvkcLnNHrp7PRRBtEmmTV1l8S9i8/ssCIuhj6iutbk5rkxhA9v6MuQgt075nSpilOaTFvoFb5AbaSOG3cwoA1YsocqNFc0WwdYzGgn2acR9H3LoGW1g4NLiJDt3kMX1BA1nf/zIGU7V/aV5QGEv8gzOED3NqK6O1wzmly2cvU3/KYn0Ax/HLWCQKsOTzHhvAhRuJksgYB1vlCUCJ0YlitojKA5yFWGKk6cLzO/j+TIYBn+JbSyf7oH7e1riTs5AVgqTMVMqNIKsAjWGvT0AtEGwGJC2IFVqkzvvV66LEBoXLc75gqv/AswUaR3ANwbZttpf7pAZRvZ7JHZTtByArBuqlaiL+/ZlM85kGa50nOGPQUMkfkua59bWy+iRq5t/6VerPU4HrutFdf03yzAasptNmkFqGubPyeZ/BH0CvU2beZxtB4ga0A+DSjMc4487O6IW8c0kem8RzIoZkMNEyN/u8Vd9n2swpNXxRumpDe3nvl7+1+fwvn92AzjTFTo/ClL32pMG3vuKrJWBhXQfogHY9vhinVTweT1RD2cYtTnmo2CI2SBOX7y+Upk2Oo3zEyXw8BmYndYkHqgCwAJyxuU4pe1/JkRtrM26QiAuGRGYh31/fU85wbHBVc8mB40srDSKODQm+yhvU6/dzF1VWZymtrWNKI2Zx74GVJ9p8UwvRrDKsVo0lKOYDcL7RGIIlBu4JbCel12+5bkvNpT9Zg8A1EFwTYNQDOyunDZAH2UpDqB4CuFw8MJfvLY+YAuBK/ZsiW1mNxCo4k2Z8iCNeuFYGWnu0cGijgzWEOS2HX6s95ETcjP/SNT/BtP+S9Tcg+CPr/z3conUe3/kN/jle4NW0zV2deu2J/XoawyzIN36LC+cz43GkmL2MimE7isxfElxAAli1KddCh/rrOu3WwH36kZ4mAAbLxO6pv3x6mdV3Jj8XGWAgkUcR0/TfBZZe5AJFO3bGw/mLPICGi8cJc9iX46usHlQqlpNIAXtKUhmqJO/cYRd5W0oTPAGdc9jJRN+N8RnkUbP2y25G2yZcXCc0b17Bv/4V3O4G7uXXLNn82HIOiOzXUy+KhBAMpskiRMudJOmIL/48F6eUg14kZk06CXZPgd1PLWU6AAUgXm/vJMkuwJLgRYCWQF/7IWmyZsGSEGtmRGHE63CXOTHQqwOfJiqyMjVz5+u4YioZHpbgXJsBAO3sAiXpf461vvCBjS1COHLBZT6/Q/e/3HfYOF9t5nx978XSYmM8GuvgGmaU6rC7UUDwKFOtEy3vcf7Zmll1us4lG0tupiZDnxYTPmetoYDzz10lFgY4SvFlCDwQRn6XAB7mYZjdZQXkycPb0gQTDjCTgj0y3bsa6nIiH6XCQFFQwq7BDsPHSIKC8O3ABcDGCotH2MD6Wav351Ub0PmIy6uA7s0F/JtfwV29gnv5zafFBuAkLgAAxZS79ikZzMmiTwb7rA5A9t8GsLB6yIPTNFmrgUQ5D7a6V2p/4PwzLfLOXifVFUZqT1AYPsqs9BWjSo8RBhgpICWZTA3CofLKjGAGsFpBEJjpsx5Gkj1gjV0UewpCPtdETKkoSGaxI0hxQkLCHU0I0yNuw4AnOzOfsP4QHFprcA8e6PLCdoiW84Ot9ThElnTyBO9ZihtJGudP35Hru++pO/okT6Dq32djwzMr6l6hIF51BGZtSVOpEfT1qY5ZmtCyvHQ2bIGz2Ifk4Rn0Mw0/JyWE+YCDAM/L16higSgAlAHsqkJDhzZZcDNOi0kA2VZJT1QBolXSLENijOUBccLsYa8/gy2AaxexcQlXuxntqw38m19LbPj6eW+/s+c9sJosBrGSKcUc5w4Wh2jBXppL1YAyevLAVXm/J4u0Gbhc69igS/3q+RSpfUfdFJJzVQFmeo40Jmi80mxvoLhQC+2FEaw+uiPxgEUuOQ2s6+Bsl5l/OvBHcwfOKZeKtjpX0pkRgPpBHhBjj0gRtzRhHu/xPgxojMUL3+Ff/QW+jR3meK6g/LR17VpYy5LiTXRZHTdTwhQOSGDvWuWf5+NG1QipfrZe5+6fc6t+3Eefd90DhAForu53KwOjtfG2UjxWDPSTp5bG0kKqjwidmRJNuY5rbKqudwwMW9aYiEQzQhyyNQQPfi2WGms1gEXZs7ihY0/y49zwMSb7Rtb+y/WyKKC1KkPrJvIlLL6ybCV2vZ3QvfTwr7+Fe/E13MtvTs7PxxbNowyeHUHThDilRXyYo0WfbAYoars5bcIeY8AoSqEM8Kw+q9ygq+LBOneof1dVhICSdoTFqTE0N+AEaE9gSTqzgVMmvyQU+fchzghgT+ABJAPgCsNQAWAe/LWBq6xWFBji66KwZpXQpNaNczhinh1711PCRAGT5AXeWFy7Fv/mt3jjOrSqtpTPd0yfX1NcynNMaUJME8bw8Av258UdffZ32oI+/9ervfrkcU9EGwKACMo3ZECKU2YIz8bBmvusdFBmrjaL12sN0OvsEI0RAFsUkKEM/gVSxVqpefLzxRFTmrG2zSRpCKvqQPcqA22Q8LEkECyxYrY1FskQZm0MJcqDoyMo4z1ap6892Nlvn2NMKw0m9RduDCuJ3riEnYu4uZzQvWxL3nD96uzn9uxKkjPMo+QOCXE2HB8iECL72U60bGToQEZVso1S02pNsY7javuU1cCr1k4wCcWpnwBoTT4zASKxxsfLp+RMUSsDZaaQgtT3KeAuTtkj/EFUQ4PWPnB56J+xHo2/gPe7PARQLYp01UpzIs4dY+yxtjsNEgvm8QEPcUJnHC5dg9dugzeuRXuGhLeX595Y9xT/7xetv3kE/xXWv4YeNhn8t2nPwz+kU7S1HleuZRq8tbgwjXjLOmytxUvboMVFYT2sisrTrksZrKUb9CTBUJkRCppFUB6kpY9XWc8aYNb1HOJvqgKoZnssNvxqk6jB7PXUdpXrkRWhlXGIxiFVkj1vPVpbvFpqOSkgYK9syDEFpDhmlkTx/Kw8wiqgB1iyh/QnBbAyuWAlCtn789q1GfSpgb2dgDyby4SLrx2ab37Fku9npnWenF+RbyX18tL3GQlxZkbpGBwOyWKPmAOHFpW6dNjLRMX4v06wyzl8HhR2UsApOwF0ni3M4aEEyCzlQpFubISNoBLwkSJ3RxNfw0cT8vWp8s5EDAQP8j74mtHgLP1EYfwp268MBOPrRYO6BnTn2mwhko/XuDyYIIQ+DzYKccA0P/IAoi8YCPV/efwTGsdSmGvXYmd9lhNtrcNOro+XaNE2dff1zP1fJbzrIYHFJ7nc/9pZ1KRD70k91yrf1UERekXUgPNT7NH1tbCCdk62OgUVdJBffZwBKDJ4WFizyQBe9j5bFR7rJEOl58ruVS8wSsrw45KZkBYTgZWNY0XuLSMC8hvKViX5uAnJRIC4CdLAiF1Mw0W78SxZNHxf7qSQ22wTdi8Tmm++QfPt3+dBL5+8bGkSUYxAjKBIPIwwAiEYjMFiD+BeYsOSMQPMiDIlO5YmkSb/TzRIzt/zZSmz59zjititgOvKrvSSMHfGlaEZxCwq9c9LNOdrva+A3yhgz2z0uM0C1IGxzAx3XZb41bGA40AL73eo7UqyL3TFNkkpZgsBlgqzF+UxHLCPI3ugfeb6T+GA1nn2TDMGlyJJ+8Z12bcVOH/vT1UBUd9LABZDAfn9LBldGgf0uTXe6vMHbTxT5sFAG8/8uX7q0uFfVP/ozKOQX5t36qpZZcTnXZqztvqMAeTYDxTwLrMcKfGguXmPwuZJ+fd6PToU5q6Dg7MqaV6qERiQKKy/kWK2JgF4sFnOJggC6DtsxP9zZxu0ECAYBjeW8HI7YdtFXL+OaL/5DfxXv+Pm8S9l/AEgBYDnSZpERd45BwaB78HXQBm8WFgzS0suPBlrda2JDmXIbGH8MCd8TSkoDTeAC+tGzrdK5X31mhFMFBjkvB+JGfm95Ap9CjgIw5QMAMMehbqH1LGAPeMv4f0lnGuhA46dPx+LeUjhKMz0KAPO9gvvyX56wF6sjcx8wM58wJVtsv3R56w3boPW+Xy/671c5/m66nv53L2uw//qe7z+N38tz5XBy+r+B5BjQH2/6s8X52z1L5Mfl569/9ffnwDcwGIYXbE5E3MY3YOksVk3wBTQYWCvNCYd6bOVvQlQtm6pb+pmUB0bMuMVy+/rgYvrq8AQP18nlletyMgbyUpY+m3w1WbEtg14+WZG++tvs8Wc3d2cnsTnlgA9DPYMHCMS5wxx5sFF6ybRJDFhAtcSQ9LYEBChrD9XxdxSW+mq7XvyYKc1ICwqCgb2DRjAowy2qWK2Ff9kJpPw8Thj0Ke4IJDcxRH3YWTZNwiTWVpBeLdB0+zy4ODG79A0V1lB5v0FK8rcplKMFruCGA4I8Yh6WGkUYsEcegzzHoc4AJhhQo+L6REX1sODiR7XrsWVa7/IUuof2ms0zi3yeuA0V69zfqDsfOmZ/b3cqcvnyvsx6OS+XDxOb8HFL87c0RQBzAswNp55vk9bq9odWus2GczlY0v5PfB1V+cLgQXXKI2fBYtXXqd+R5qTGVDOWa0xmGEQbMokh631cJYHe9eN1zyrY/W5ecPNoY3YJ2iTyIKHR74yBt9cDNhtA15+O6P99d9x3vBLawp9L9OIpI2ieUKaEpLEh2myGILGBnMSG4YUc2xQkgbX5Us2MIEEvC1MYK0bGrJ5n3ImwBIJMSnxdSLbBlFY2P9s5LzoUoIVpHa+ixPehR4PMvj5Mc04UgJJ/ujcFk1ziba5PBsLnOsWVmJrz/oYD4w7EfvcT9M95rCXvKDHcbrHY+gBEJoJuJL7X+er3HieJ1Nbcu7QYPpIzfUp628ewX+F1XVfwzmHFCfMFDCJBcJdGnCZ5rwRvGm22NpdngZ7aSxujMUWELkgobGUQYo1/DSnMm00km7YvCYi7MHG3QoYq5+mAkQ121I3g7hKCJ9atcQRQGZ51pu8q+CfWY4jEgPSH+KIR53qDu6tOZFwW9eibS7RNteZll93Y9TbUwdNxNifSkjjIECwyHoRMtirgV1vrzrZqwEeMpX4nSxUuNTA5kJOfXpqILjzEd02ob0A3K7jrv0zvp9Pn2Tx8arAY0pAmA3GwNYCPSH73gDAxpT0NVKRExYwr8g0njLmXxd0J4clwNia+acdvvp7Pc/6X50w19ddTk6IO6cJfJ3oUAcdsDEZLhkZICx+Pmupt3pmKvDj3AaNv0TTXOZhRM5dwAoYtF4pDgjhQSbUR9jQgwef9Qjh8x29binBJoKLE67jhEu5hl74Dq3ZYGd4OvSlYU+xFgWcQPV1PQ118T2tBgYC6ClmMEmlMQPFHAfUcqMuFusiUBtIT6WrS5ORihmTY8HyZwAygBIEdEgCaB1SwEiEJBeUtR5Ne51ZW85tBMRzIiErwx7VLzCJ92BMRTKqTQqVjQKlsHDVsfkqrq0XT5hPOZZRTpK50FT2pnoDa2zQz3DjIto2cXy4dnDXrz47YcMZVjCAzAiekmW1QLVz1Pd2aQKU6b7IseHpwuTcuamLupr1d7oKMKbJtRZ4WUqHwhjSuLCUdYoHcIoQAxEEKfDy0MLVcAnruizzYt/oEgus6+DcDr69QRlEEquCLyBJcadAUBOPCKHn79OMOezFXzoA+Lcnz91z66e5R0ceL1yHX7sNbqTB6AC0djnmsv537QHN3/P9DxSmRvFbR5bR1yDyjLhoGOl5rlnjgALDpWGkPzuXFJrV/Q6UpnH+HubJ5oLGAwX7IxGGsovB2Cb7uK3Z3QCqWDAJw0/8hsGfq3r2qrWEN8y60fvfVl/roYh1A3xRHCYgGbYKWFsg6L9b49CZ4omnthAtWEm07SIudgHtFdgb+Pr1Z4HAeSkYnFKxvojIjJ5eFDV1c0GbRNxAXjaJPhYbgGWMed4+ShMGOsnNXHWuFWyvY8JsImbJb/ZxzsPg2C80Zgaw+n46t81AsJNYoH7U3l9is3mTizznLxkI1ryACluPZBBREtIBT52/OpElKxg0TY/Yz/d4TOMXzRa4th6dzKJwxiy8Lc9Jc3Xpnl8Dx1oD8Pdx8dnrvg8UNVkNHCtjLQNIpgBI+jfrSKDPt1aRFQUJr+fiRQ1MA2yDM2ueIq/L+YItqg+R9+ZVsQY5LxiQuF0AR6zY2Ribwd06Vq1fv34/axJMXQc11iISZfLEU430LPG2Lg+Jc9XzXBrCtg1MMHkBuOsXcNevfjkIrKdCGH8UI2iaQFEwFvEAVe9aVRGVGMHXiCoFgoCFT86RIeRBeYtztgDUywMKIadAkLU6gFVDJltvZOUQiorwMc5ZSXuUAVAzRCFiGljJH2EsGr+FcxthBjdomiu07cscC3zzAtbv8uAwqmNBHBDme7hwAFFA40e0aZS8QIaUzQ/ZviTMRxziAfs0wRKwidy8GimC0vnr4lPWr5oLtJIL1nX7GvzRfV7v53P7vObhACtczjWC9HVq8HNJq6q+VodQ74d44t+WSow4pzpdxIbq55mUIddjQMpDv/SVuRY8o6RDWtQIAFj1q7m7KbYv1hhheKZCqiPKOUr93vUEJBjODazEChJLFCr7WW1dUqs6jLxnzRtUUVtsIQwuLWG3DdhdR2xeOLgXX31+TQGJDdNQGsmRFvFBcweNDbmBTDiZO8LUD2kSIeCcrVi9t2uzOIJZ0/7kLwh1g18tOVRNWGNSWusCHLOOxHNEjjLPaiS2KNLB4d5t0DaXaPwljLFomis4dyHzZTys7eD8pQDbHjB+ERcoDlJ3cr3Qtg+YpjukxMDw2FximvesPAsH3KYehznAgclDMyUkTwti2MY62L8A4Po3RvBfYbXNDs55BDtmZiqZBAosX0MKaGDwIYzYWIeJElpjsTceexkc4qRL3JLFU8zwpR9sPdWVf94jZssATQDPFXxASfrqRKVOKNcJTF3sOxiMK/DErb6vmQhjipnNpexO7qNRAXLTjBB7mFRANwV+FPApE4fFB6jy9UxpepL1Z1AAiPxeUEoSlRcnqVNOmMNm6fuTvbykaLeW4BrAbwzsdvP5Pj0pcNWWOCCnaUaaCNNkMQaLSaZMahLkjMlJv1udexJA+CMYb141sPMcMHwODC6TkJ9e50DggJTZGxzEi88fQ21aOmpaaBcgsLU85VPlQwwYbqFDgZrmEk1znZsK1m14WIh1iwmpAKohAR0SRXjPwd4aB2D4tJN47ny5DgZAAJvUE/FwKL3XBopojMXeaizgqzYPDMBpQ6gwBeX7qvh7CvzhQVsxxwFmAZfPo04AS2GI1ffnNwKLEhusMdDZRDWAUi9mIxcAmlm2gF5BBJKmWpKBWHx/l+FvbPUA1LFg4niSIohmKEtdPcI0warVDAAWIFB9zPp+6/e2vr6z1Emf9wyg7AzQdkk8/pxM8P48709O1mIu5tKUMI/ctR9nh5lM/vz1tXWt2aFPb+kpZ/P1O9G4p6DtL516vS4K8qtpjFo1lZaJcmFSLGOCxgNuFKktjEo+vd/B2QbWdvB+mxnAyvjJx2Z8vl7qn+V/2whLHZyLAFrEOMljHOwX2MbcxgEtfL6/epGntkbygOq+qXOCE1/46r7Xn03VPp/jg8YDaQYpc7guDjUp17+tG3b6s7pAXKzqmLRoi1Qx9WTZMz6U+tx6XIQ6HxEeUopIJiCGHqlinGRGsMhDi8Sbz0wt716yU5UlJcxVkuEtBa/k97JmsT2xdJAqsIw3uWl+EhtIYgMPhTVN9+RcgI8tqhg9HB8Cs/1GixAs5lh70tVNw2XOp4qtZ15pWah/Qs6w/OvyemeBgZrhU11PeQiXXK9hFRMAU2KBWr+oGkBnSlSxgH3kO3nMKQCcj3edJwhTCCggUUNFWRBTgIsDYsJJTPkl620csUVaDMTRc1Gfm3qt2cOlyRs/XS2wut91WX7zBeRFuU40fJ8czwoQjlDOpywiqF2YPmdcPVENREUq8Z//Y1YfCWrBwwhri6PiQZqSSvyf8KOWWKf797lml5pOcLMC2cP6qTz7KRBYXztbQVTACKD+4UDbct7gGgPbdr/cKkbPwySxIQb+d0yIMyEEhzAbkX4L0INVk0j2i6wmo3RiEVJspSrQ/Jl4cC6PpCqu5PODoixY/H2+7wuzsvYHZ/swfiZmdfscCzg3KPNlnLtYxgIZgrd8e8u4kBmCNsJQ5LwDQAgQUMlVg8gDYmSS0SiWNtyL+HxQ5TEFtEY/n/PRuq7563u9ZhAvYv+Zzy4ZVKBU8XRePAaqOsXJV+DsbbE8znzvL2dS1DFDn6d+p4TCYM7HkGtRAihlG5j1UusX/Us9xkQEI28gSAYCAoJc90qeWO47p0trVx2k+tR7rlcdkyyW+2CNrXAjmvOGppOa4ku8BFI4tY2Z2Y5SLWMi1bFhuS8rUWCmWoFcn4sSret7Wt/Xeh9bn1P+fMpj8oytVZ0GOs11F4OXS0WIbF1hvdjHNQL8tlkRYAT0ta7LDeIcF6yHWYlbSnxpwQPyIpPRJCdgYkLAhJnvqRTg44gEyk2uDTHwH9eb4Ges8BcAk9frb4zgj6zrq/8A71v2BwnH7EE5jLeYpwccRDb2Ifb46dhnn7l60vKiaKhulBqkWDAvzBObY1WwnZOBruVh5+Qi/Ptlt79OHkt5Vtb6Elk/hruzUrxDmCaJk7dEbPMw4n0GBrMPGEmop1KiZC/aCqBZThK3J12np1h/CTytUhm2RBLIxUDeE9Bam9l+jTA4lfG3NcC2i9i8MGhebuFfvoK7+jyfHg7EA1J/QOoHpGHCsLf4cOjww+wxAbilmCdmx5xII3ukaeeSeVDE8M0T3fvMta0T0qrv6gxP5dUmgIJoulnlFOEJoIzP7xJEUBBQXh7WFPaJMg50QwkGcvws/7PWQwcGGuvRtTfo2ldZ6t22r+CbG5FwOBi7WQA+QCneKIVc+BEFWGzgG4Bc+VnXfSWWESM+d13ufgdrDaZ5j3l6wAeZQv0uHPH9fESj9z0MGusWbJOF9PBM4wU4ZdPk814F7XOxYC0pK4Jp5ISf/7bEgXXitb7Hz8UFXc/6CxqDmjeY0oS5GiDFj9drRkvAUnwswd4C+ACFVVLHVJZsLc9z7TVVJ7kpzphRQHdN1gjsD6wd+411aFAzgg1aANs2YHuT0F1Z+JfXHBs+o6Cj4QAaDkjDAWm/RxomjI8JD/cd3u43mMjgNhnsKWKSc+PIoDUlLk51wUTp5LzXBZ0mbdnfu2oUPbUMcKISWP9eh2AAhXWuwGD9/JPE5DK9nLlcucCrhsFZ4+E8d/cV8GnbF2jbl3Bul8EebhrJua+ZIhS4OVRN6zWWx/8BgE0dnAsAXi5YwjzA6PPVAn+KIyxN+NN8xEZzAb0mYRZ5AfD8/v/UemrPy/8+kzcsmkJYgkVUxWf9+zomAFjEBv6b6t+rYzkbFxY/Y884CKgbw7SA187ZPRWP+tIEzufDlLJiBs8oUM96C2AyKZ/z1iz3Qj2XrbHsUWlMyZ+qY9B41BiLC+tF5ln8gZXZc9FEXFxHdFdA83IHu7v5PEuIeUA63CMd7hH3e6R+wPQQcHxwuH9sMSeLx+CxpzJboAaBVao6UsQshRNbLCzzBh2UY0gaaCu2X7bXoCp+nhQPcp6oxFKHMhRU4/JMiRvjKIAmwNfbo7B81GosGAZorVEG8AZte5WZf21zg83mDZy7WBR4qgbg91Yx/1bqgBoIUvDIuYscC9o2Ioo1Udc+YmxvEMIBc5jwuWqB//vx55wPuFwjlLVusj7PxP70tY4Na9DCwmQ5N4NE9dCvEg/0uQjLAvKpOuHJ71fdguXvCYmmxQ8XD6/w2VJ5LM/VDAKIFnFMj2NR6ENjC+9fjbFItjSLPVlEQ1BXaL1max9xC46F6jfsRfbtc11R6oudi9hdR2xvCM3LC9jdDez2Mxh/KSA+vEd8uEW4ew+aJsx3Pfp7i+PBYZwdHiePPRnci1qgtozR2MA2barIUVuOZe6gOZGR2qtmSgNY1BYaG+orQ1MHjZ05d6tiTRA12yR1g6oD+hSQwEq42YD3bmNg3QbOb7I6qGtfouveCEFE1ADNzUmdAJR7n9Igb5F3Hs0h6jgAAG27tJEJoc9qgZhmhPmAx3mP+zTm4cWfs/7r+AHOPmHl9Que5xyQWTPya4s0gM+9r+MDlvFC7//6++XrneYI+n0N+ALnQaezdcX6+PMP1NcXi+ddN4Dqn9cNkL5Sz6otYX4uU0eT8m6KJRXBgf9LK4B7bckVqvetijkdEKe1RVYhG4Otsbj2ERfXCdvXXFOYLxgsG+/eIn54i3j3FjRPCHf3GB+Bfu8QgkE/eTxEi3sSpSnULoZz8oFCntcxpohogOaEhV29R1Pwhnj2Ey0EMP1bhXC95B0bYWp30pCpWcCHNOfm0EOc8JBmDEosE6UgK9G9qNBv0LYvYI2Db67RdK9h/SUfr/GntVpiYmedL5R4sMs5RdNco2kuZUZNRAh7jNMd5vmAlALGNOKn2ONtnCQHKmrV+BcYFvdUE/JL1t+A4I+sqxf/E3yzRQp7hOkeMbK8fDvdYRhvEcVPLCZmswx5AnFagp4pgTCvwI7TAqPumNaFtRYz9To38GMN9gKly1UH6GXwK4CcDnnQQU2AdkTswnOxvF7KHToASBRkQEsUj0W+2TXZ0htDWbwKlJlcKPsF2LNOhtfS9KYqsPn1S9HLrOUJMRUJQpLjIOgk4mVAbmHZCxoGrSFc7AKal1s0X72Be/k13PXrs9fJc4u79gMDPUOPNEyY9wH93uHt1OB78YXriaX0WrwmU7HCUXyjJ0nqzhVz7JFG+Zw9J9cFig8oS0WZ8VncP8taP0NdEACFCbrwo6UCMs6ghbyHQWCfrzdTgcCNv8Cm+wqXl/8A397A+kuYzWuEy1dIXuxFkl5fgJ1nmDDBzOwBbOIAJJZ0MHAMWKo208wi8Jjn/mMf35Prxc0/sVogHDBNH3KTKMYBswyji/J5qZdtiQcCuWgzpHCfTmKBAgxAiQMqeXxqLZK4BXC8bBpp9zuzcYy2EOTVjXDl1QtawLkcG/QalCYPv16q/gtLWxeaF7JhHdJSxzwLfyLVfOq91dtqDQAr0FkDwXXsUMB0oLhk+pGwJVD8vFTaU38OLbRJ5NC8vIB/85mxQQHg4YB0eEQ8DIh9RH9vcXds8VNwmADcU8KeihQQhrv5MAXsmzIbG2d2iwKsqcQzqyAUjMxKiDLQiRtSygYnqOqxLuLzZ1d9TnwcpUjWjywBmFPM/uC6F+Ur2wjLR64zTeq2m29F3tWh2/wafvsN0JwpnlME5P7nYg+LppAmdvmrL9IwflBJAkP4fLXA9dW/59gQWV46yrATEmupfK9IPED+rsSB9QTlOh4A1fWMkgt8LN6vm0hriWg9OV73HgWHuJiviiSj0InmCbKrV/uSXoc5H8pN2ZhZvQCyykebZ1o0KYCo723xXjR2ZXakqn+WwI/+LV/3/DUZB2urRiiI/YNX7N76fNW5i3pgn7OU0ibR5gYyJO6rz4oN6XAPmkcBgh8RD0ekfsbwAbh/aPDz0GJOBvdksEdc2MZAjlOZY5PIJ7mBvMwmNS7UYE8dG9YDodafQWmgLdlP+b+q+QEUX3sAmfGnn+NAEhv0EoMX1l8Dazx8s+NCTHyAt9vfoN3+BrZ9cXpwcWDLAJF7A0vwl2jNBvTZXkr3u8XThQMuwgExHDDNPYD/69lz8rE1+ivM1kGHVeV7IseCpddy3Yxfx4J8B1Z7aG6WVHJ7VH+7Xss9VMBfifcKBvPxLRvFOti3vkNKxaL5g/7MntQrNTBEiDDVezcgeCrxTi0Ech1gS36wbmgps7xWn8Wzx2lW55obz5EibAKs5fMRKKFbaTlVaUV17gAp+MUSojMOjWV/YL2ftrC4bEdsbwibNy38q5ewF9e/uIGssSE+3iI+3CLeP+QG8v6xxUPfYogWd8Hhngh7SgsAOBIKs04A2ABa2PEAp8049UZ9yjYQOAXa9acc47XeWw7nVObfKEzNSIRHAXtG+Ry5KdTk/MC7DRp/ke3Fuu4NLnZ/Dye2UGguQc0FyDogRa4P4gCKQwaBVf5dL/ULVYXhoqmUdGi5xBYBhuf5AeN4y7ZSYQLwp1/0eer6Oc2wCyoO8rkHTmOB/ryup+tcGqhIESj3zDpH8FJv6qpjQlGanQeKC2mpxh6WOeLp9WCqf9W7hT5aYw7/ez3Y0Vfvp26mJWBhi0dQYkyNe+hsAv5a20ys65qYpmoWCSGakG3kWPW6jAtqy6FWHPrZaCxXckoBTW1WhmxhcbkZsX1t0b65YuLZ7uazY0P48Bbh7i3C3S1omjDeMfns0HuEaPEQHO4B3COJBWHKRDS1GDxWQ92Xc4iQG0Rar9bey6DVHBPI52H0sy8xxUju1xmH1hbLDFa78n13jAF7GSodBCfJnsAwYhe3hXUtvOvQNtfYdK/RtK9grIdvX8Nu3oCaCzlJkivpvR9G2Uxqwgiri0uDuTSUamw+hj3C/IA5PGbriDkcMIcjs4XjiCkOGNOMeEaZ9EvXU+rdL1l/s4b42Nq8gnEdnAQKGzfZUwwA5vkRAHjQjO9RT7sEAB0qkdLMm48AJEknlgp4l0xEogLXsqn+MsmomXC1VPHc0oIIWII9AMSsWxljJoNwVuSr1rVwroMTT1813z83ZVGBryA+niZZBFLWxdLKQd9DndQpO6ce2vIcE6Jm79TATj2Ur0jcDHrpPteFii4FSjUYl+62Pj/BOLAlRNPCNF8g/Y5R5Fss+6YEhGAxUfF8VQ9ooBTlesCxSjx1m2Sp5Kf1idf+XfV6Cjh4Ck7IIHB1fHrMT7FMi+xbzdlL0yFPIZVmgzGW5d7tDVz3Bmh2CJevMFxdIjUOJhHcHGFSgo0JZNlyxaTIgT15AKvkbiUXh9sAvgPs50//btpXcE78hmyXB03EOKGNPScRCnhUIEhMYREPSvOEz5b+ryRBHAvq4m9hh3Lmk1r74ennU38u+nuV29UgvRZwzM7U5FslN0227ODzyZ+Zvked+pvSjBgGkdOU49BYwENV7IItXXvF1bEA+DjDsQaBc6JVdanrOJHILO4JjadLAG4p7aztGJwBvE9wWw+73cJ+pi0EzQNQe/xFQoos7RyiY694YfstbGNW954mWoWZcSY2PLNfKPj7sZXjKJ2CwUB93dEC/K0bdTrpuZYCFxbS0iKG7SBasX+4gHM7uPYGtHnFwzelGWSU0aMs3rRfvfVll1+BHmM8zDlvcethzOc3ibabr+GcKIniUA0/Lf73yPdJaR5noBiJfe0piUS0blbodUol+UYFBNH5JvF6nfMJrAHU+vPh15a7dHHfl+FuOUZU1g6L15NhjwwKW1CsQG9wgdcZmwu7euDgeqkUNhB73gaq2Kar98PnlpudKunUe+Wc9Fvvg7WSqs4hrGHP0FraXy/vCa61cBuOC6b5jLwhib/fPCJNE2gKSFNCCEXyzd7APDeiVh06c2oHVkM6p3nDEjTXuMnno+Rmn7Lqkn4Rj6vzWh9X3UCeKVXDRXUGQvEIt4aHxTrXMmvPX8K2L0DdNb92zgEigA03hfQdKgvwiWKsVhfwD0rDWJtI6i8Ic/ikc3Fudd0LOOdzHqBxYFEXgEGnWqjMcGnZ0a00MDQWcE5AGQxKlBZ7XB2HP3dR9bUGgXODSGODRiNjSsPInKOzSNxLMxIYbDFIeS/WZkRjLDbGLQYNLveU4ndcgHWNZ8vcswaoCawcUKpMNOw3rnnRuew6x47qnllc88Ai76j9gQHAWoJtANN4riuemA/w5FLJ9zRIfJhAM8eGKHYQQ7TZG5h95iu1QN6XKZ8/PU/nYoNK7H/JlVMzROuVG0MrAk8+nurYikUMX2u5PWW0ecsxwYkvqHMdrN/BtC8A60CuQ2o3IOeYLKJN4vq9VY0hY8vAqFp5yAoi3r/01FjqQH6XFQbZk3zeIrjPzxusacGWdaszqAQyA/AdkzKpSc+XheYEbD+ieYAy2/n568bQKoGrXs6iApwkdpe8gBZNIiUMrNdT4O+J435uFunfUX7PBoU1qn+l8UCbxPXQ10Qk1zzHvpIPVLmmKEw0d3G2rT730zs+EscjmIREpZ7VT+lTgbla+VHbIOSmKxhzsK2F2W65nviFsYHmYRkbxBIiDRPSRMUuJucPleUCCrCf7R6p2PY8FQFy3rn6fbbW0WM783d1rbVWzQNLDEuJcNl+0EDuFckRcm0qakLXZYWQlaZQEmtPG3gSt9Ht1EYgPg3SrpvDNXlEFUjWdVL/j3DzIxrPQHCIPaZ5jxRHGDs/9RKfvP7GCP4rLOrfIrkGOlhCE0mVkdVDz9RfsHT6VRrPPpgxDgUkUb9hYc0RGWQRlgBCwazZQVXiQfTEbSnHvfp3AXr4GZfBWACcpMfPhutRO1GrTlD26qoKWSLmd9U+nly0Fmq8FlDrgKHyKoDhu6d8BoEyyE6DZ0KREQBYMFcyIzZvQFh81Q2lXkt2HMFawDjx/3Rn5ASfsNLhnhl/j7cId/fo3yeMvcGHQ4tbItyngARm9K03VE7cSuGqLDpOjM6+mmygJSFdeJQ9UwiUc7UsoutVg8ARCUE+q1BtKMApC732ic2hv2ICt+0VuvYlnNvC+y22F7+D23wL6q5BvgVZC5sImCMPaJsDbJgZDJ5n2KkH5oMUgQEpcODNx30GCDLGg76A9ZfiCB2eYazPrGOODS1SUhC4Ku6Ih57pAJpECVGGIGXWMEUkCtLoIbZYAS3iQG06/0sS9CU4cvrZnNj5EwFynDAWJgUkM50ygvPjUxX3wqKbDqT87PraM4g3ZG3+UFqwgRfnG0vmT61+AMQaQvgUoIr1B8qJbmZJVPeBng9Ndmtmce2fCyyH/VkHwFn2/rS/PDaw7PsBqd8jPrxHuPuA/n1AGAz2e5Zt3erQJMQFsAMI0EMmA2KasCUAWN3nhfVHmUFaF6u6nDFn46/uFlR9XT6/Fg76Oa6GHlWgcD5OU0BgPl4GDnRoGPt/bnCx/Rabza94AJzdwPhLZvkAHBdyUicgkDABARTWTwUArUHfhZdo9fv4BbHB2jb7Cyp7iYEejQmlQRQVGAaWeYEAJKQNYrmHolmCQVHADKB8Ts/tofWq2X76tf5vGbf1MVqoRRBRvnejiRnw0XXCCAbl5nd5Pv4vgDBSYnCLgBkGw8oHcG1jsfS7XDKR6mvU0rJYdmCm38I3+JmlxQpAJz52rooTQDW/wBnAfZ7PXzrcIz7cIg2HHBuGdzPm0eDw0ODD2OCWuJDrQaexQb5VZmSURtK6oMsNCZScIedXq9gA4BS4+ZT3gmXDrl71AEH1Mc4xAUWdpuSErn2JzeYbHgLlNvDda6DZgXzL93+KzO6RPAAkuWkFAqdU5wXl+orxmHOSp6aJ69/Xz/FLV9e+gHNNrgsyaUSUhblxvGicpJxf645H4CZRTR4xVGoDzb8BnOTAT636E1pbKdS5Q904LstwjDICsCIJfsU/A0XQOeLCKh4AJjd3EijnlpNJZ4+fsByyly1FMmdSVCaqWFj/PUUkMlCGW4bfiVVsi+bzmYL5XGxYN1N0ccpAsM7AuF8i9i8rPtwiPbxHmkfED28Rbu8wvGP/z/2dx33f4CE6JpkAZ/MGbSrXHqB13qBxQRnqyuZVZv+6Sa/rYyDFoiEEWtR+6+eZhaVcW0YpYUmVQl37Ek1zBe8u0HZfc1OouZDkDDAp8X9hAuLIbOA4IFtASR7OLzoucgQT3GmDeLVqpYExHt5vPzEqnl9N+wJO94sql84KO40Fmj8YzgsihKEqd6kl3ev4qTSnzc0KU+LBU8e7/izXseGpnIFWseH0nlt9TyT17Ornwiw1sDy4VfYoVVnqfVe/p/W8iWTA+Yjhe9/ZBtY0cF4AQRlCbs8QgogSgnHlMwDBxIiIKCxjU/Lu/LrLc5bZ1xXgua7Hc/5gDKwG7DwvZADNwyfZStE8IN69LWqBD28R3v2M6d0BcSYcHyweDw0eJ4+JDPZkeN5MjgeFUFKrKkpsWNd6JWfI2I4qBMwplnFumeo/vUb1/NRzrvoUMIhFRQIrjFmp2sDAiDpgm2cJte0LNO1r+O51IX5VMQEpwsQROrcp1wySK5TYoPf3ep7AkhSZ0pgtpLgx5EAZD2CsI6UJ/hmw+VPX3xjBf4V1fPgv8L7NhtEAMiugbYsv4dqEvpaNUAoIMpk8pZHZw7HPE0gVeD2Rj0vhB4DZQfrkZ2+w5z7IJ5JA3fQhBusZLBs/4TVqqciSSVezf7WDV3MBall7kiQxD8Cp2H7rpWzi3AEklhM0tGL01mDwSSJWNo4GpTOtQxyAAvY4Q3ANwbQtTLP5LFZPenyP8P4HpOGA+acfsP/ThLfftxhnh+/7Ft+nET/HPjP96gQrworfZ1UwEWV5i13JUgofMPFnYQtgXrMhz3aHKwYl6DxAoF8NuGi3oCyxqAe8AAL4YJkUlOKOPYGd24gVxBa7i9/h6vo/soSjuQRtXmG8eYXYyP0lCV0z81c3DrDTIF3+EZj3SGEvBV9E1H9XQGyMp8Xbl/iAhvAAY1hqkodSmGXXsN5I9DhCOORYQBQR4oAQDkjCotXBSOukD5A48ERR/XlL7oczSb0I94H09KudbCC0jBElTvDPLZVrSeVTEebJ8PVUwlmOviwdyqnxJlnk2KAXrvqNn/OwMhCJHCjHmeyFtwZMQcLs8bCb7WexgePdW44N/QHzT3/G4U893v/QYpot/vS4xXcU8aMMHcivqywolKFh/WpoAltbnII9uUhAkXjWPvZPNYkWShScfgYKAlN1XtcueRrXFfArEr2cHrNCwDZo2ivstt+ibV/A+x02F7+Du/w7pO6Kn9takBRLJjL4Y+ZjBn7SvAelgX3qVxJOSkHA2Mo3tEry6j3+S2JD01zB+w7Nqr5Q9lHK4M8oiWSUGNUjxD6DQSGOiKEvhWCOaXLWjYKh5S75ZUnd09BQ4enUjyk3cNZ7/OJQtN5NIIUeXxu10snU7L5FmJD9xHATYTFILL9MAZgIAQExg2WWEhqymRGsxU9jln6CupRlZaj4vSkb+Kwiw+oASW4G0C8oAGg4IL7/oeQNP/wJhz/1uPuxwTRZvN1v8Mdo8WOaF0UcsAR5AI4No/h/qg+3PSnoeNCWxs/l+6vzo/IBrOEb9Q83+drgT5bZhoRQy46rHE9ZPlH+JhqAFSn8qs5t0XU38H4H7zbY7X6P7eV/gL34BjAe5FtE3wjrDzDSCKonf2tBt/YAZ1B3yvdeOR8VGGQcbFYPFFXcl8SG3e738L47GwtinBa5AisIJvn9nJtGOZbVTaNKYZhzwUVswOrf+pOnbuCPxQZz/nH5ntPXrhVBz0DRxlTgjweZAmKqZmJ5bKbc+1avGW5EdSuWn7XN4rpXQg4AxNAzSScFGCRETJLLMidYmxhPARt1bNBcu26wOizri/VK8wgaDjCbZ3yCUwDFgPRwi/D+B8QPb5GmEfMPf8L+uwPu33pME88c+dPU4OcqH9A8oQZ79L4bJXdQ27Z6nLleZ0rm0RkMHBuebm4t/YHLOvf2QwX2KNNSn2OgxJ7AhsEeHfhkrId3HTbda1xe/gOa9jWz/rbfIu5eIWwvztYINH1AnO6R0iD3Djd09D5U/19+7/EkLtS5vbVqn+hzHeZcB+c6GPN5qlEAePXin+B9WzWHSmxQ67l6wHodCxaWbFI7aO4YFw0kDdLPx4VSE6wB4bJvA+eB3nMNl9NVPa/sEyd1iDGyI1VENLPWe6IooAR0WysYvQwe18aiy8zRZYyvyTsAMIcDjLGIQiYIlBBSD5AMoE0RwZZGpi4rx55g4ORtrWdDlHkjFltj0QJY2EOLUjAdHmA3kZvKK0CYhgOzgGNEeniP8OEt4sMtaBoR3v2Mwx8e8fjeIcwW948tfuo7/CzDI3sqVhC1Z3gkwgzOGya5B9lQSpWf0qhEhKvyIW9s1SS3mHF6XhafGVUgcFWDKCFnTmWQ5SHNOKSwsIlxts2ewE2zYyuI5grWtthe/A7NxW9AF1/xLlSzeRUEHu8z+JviuMAMYjjkeHAuFtR1/bp5bGW+SdNcnjSSOG/4X86ej09dfxsW91dY/fBneL/JE4md7WBshPfXhaGkjCK3YVZY1WHQgjTMHxDmB8Q08sCk+RHGHAQIjoi2Eb+iZQewXk/Psjyzqr8tgV+fu5Tu8oPl9yiePEABALD4vgIHMjuQf+9hUHsWAk9L0pJ0pZ8aZLdeDTHAoxJPZfQufRPL0bpqC1kD0411Z6b6KsOHgWBrwfKttoNpf/mwl3R4yMyecHePh/cOb/cbHKLF95TwLo64l6KiMTxgooVddDeBMgQq5m3YLDp0pYPPG6r6Hy+6dNWqz5cmuNrZc4Z9FOPqc6iBOO7MUv7M19NWFZBa8LFN9UkYn/18muYaFxe/Qfvi/4TpxTcgazFddJi3TjVKaPqI9jjChlkYwAPM+MAdvDgghf2CsZ/SuCj4FHjlc8UbWaKIGD9fqhHjxBu8TCNVDyHruhwX8rmr2EkxHBDm+3x88/wIZ9tsJRHjAGN9/kzX8nF5wuXBPGcRchJH6OnfnYkNtZ/5miuuDaDnlln9u364+l8DZwDGs8wCg/KM5S9U3OmI/7MwsAmYjYMnCwg4qg0XXTXImlkSVXKzAELq/wyDPUYYf8b5XyTxpHlAfLxFuHsLGo6Y393j8b3H7WOHQ3D4MRn8nGbcxgERJNJYn4dc1U2XWRgKkahicAoTMxcHxaZH/bxUXaHWOMCpLDyfm4+k9iTHVH++9bmtoT+d7143hrI3vfFomyuOB93XcH4He/l3GF9+hemig4kJLkT4cVzaQix8gYv3n4LAIRyrhtCUAViA7Rr4XEU5Bk7oviQ28LCZMqH4KWaRAtWU49QRMR6RUszFX3CHXPStLaa04Cvn+RckdIt8IB/R08+VQaVVQbmKB0++3MlP1sok/lkmM5v6dzYn2PwobibWNhRa6PGhLovjlCbENAIUkQyJhzVlObKyes4y/kzxSzWmeBLW980a5LGWAGdzbPikJWBPlIIu3P2MNPSY3j3i8b3Hu/sN5mTwU3D4Mc34SRqbqmxqqz1eG0UzYgZ7dD8+iQ0oQznzwE15f2t7nF+69GoJlHKBp5YkyvYMUJ9wZHBffemta+H9Dm1zg6a5xObid8DLf0R/zVYQNgrjL0WQ1ffFiiBtBK1BYC3wNA7UAIuCLIACv7Yq8Fp4x7VAonWr69PX5uK38MJIU89RAAuAir9nlpEWnawq1NjFyiIGsvl4s9UEP/FJDVGYbWfqCFrf0/ocp7Hh2RhDdUygszFiuXRvV2a+WhPYJYPXWNjKx7OeW2LELqR8z/+ptV3d3ONDDAKkcd4drMc823wdmBgQIMOeRG2ja91A1tiQoHVFbmsCwCJGQB9jCMYZVgqkKIDPIOqBU2WRzhGgSXKG9z/k4XDTu0OJDdHgrYDAP0uTSHMVPZ412KOMvzIkzsg5ivn6ycOOUIagq4cncEraee4TL6BP2Wn0/K5jg7L+rG1hYHhApOuyUqjr3qDb/hp29xuQ6xC2O0y7HULnYeeILkW44ZCVghQHxLCX+6fEAn2/dV6gkm6tz2vvZAUTNRYoKNw4JoMAnw8EX9380yI26L0fwx4xHjOZhXOavoptKdcP9een/0753+nk9zj53bomWOYZ5/GEj61VXkFLMDlfLfpUpmpDC2hbW08pMe/cve9smxm+xvg8cLwM/jol7JT3umwU6u+CsRJfOXYEE2CJFY3KXFXQsl4WJlfseeZBpcYrA+oN6tYKKSNYbB4SAOMcaDjk+EDSQEq97HWHe4R3f0Z8uAdNE4af9nh87/D+tsOcLG7HBj8mk1WGEZVlDJUGeFZDkA68E42DXTaJQElIJcvG+NoSAlgSQepVV3Q1SD6nJAPm+dyOKWLMoDQ3h6zt4PwG1jZommtmATfXcO4Cvn0NuvgK09UNfw6CG2jNgDBm1TDX5Hx/UQqIcm/VsUD32vU9RZTghNTm3VaA8g5Nc4mmkRzFdmxh5bovmjuSz+UvyfE/cf2NEfyRpcUXs/vYx9cmQJmHxvBAGuM8WI52/nlUYmYo8hAC28FaLUBrQK9IyE/AnmeO8amfESUpzhPU2NxI8m800TPM6lHrCUJCMsV6ogZ69GcR5fdUgcbWGGaL5riuycKykFgPsKoZqLW3bM22MRDJFyUGnwlZkvG56xyb52RJsvach8yTf9rvuWM3HBH2M4ahwSFa9GR4Cq6I+9IKoAKEpSSFKlB32tfFc73WcNqnrQzY4+mJn+tXKYLSJUgMoDKFX7JGjDQJlKWhgx6c34GaC4SuRbIG0VvAAuQA82m3AW/aFifsq2Unr4DANdP2cxYnYZYtImxXuoTJw5gADV31ZPL6WI3VoSQuJy56XLYq4lKa4Uwp3uuv/Fwflxg+WRDWzA5KUPNXA5TYkBM3jRGlwCMQPlGFXo73qWM888jlcKrCIOVVzpF6iRWoqhQUCvb4TzxOa0oj66kVz9wiFMOnRBN+7HCQ/45IfY/QRwx9g0NwGJJBTzzITtk8Tt/d6gUyA79iiT8H2RZY7Zd9aFrgxioCnYs0NQi8biLp13K9VEcjfm3Weu70u4s88Zt8i9h4RG/Z6iMRyLqS1AFgv67z9xkwwhrH7YzV/b729CcqLpxfAvZobKn9RZ9a9e+scSDbApgAdLBpzrGhqALsokl0rnD7pGNU66k1kJzvKX0++fTM8lNV6xrUseDZvWPNFFJLkPLb+nfn/EWtXYJBtaTTVqBdTDN/jpQkz0kwGfLg96Hg7y/xTa33yV+0PmGSPE0jzxGQ2JAOe9A0YT4kDH2DIVoMybJvuEo6idDCoqkOJ4qUPoPbn5Dmr1tsy+b454HAupIAUmugZ9VyzEeQcwQYYXNtxCN8B2M3IGsRvYNNAsCdmcStuYAhv7r3iirIWof1ny73yXWsqCxdPuHzfGpROv/3xngQQgVcsu8pJYdEEcZIo8p2q79zGayKpgb54zIWnMkB1t8v3r9JZ2PDuauhxAggf6pEMIvIX+qB5b1e3ecoTcHaK772HlfQx+VYwPlTnnEi35cBUIWppQxLYyKcbeW8ugw087u1mjXka7WePcKPWPqm6r9N1UR9Lq5QJFCUeB4DKEaYGJHhsQz28JBpGg45NqT+COp7xGGU2OAxBoteYkNPKQM8wFIBVX+tY0NuyJ3JJZ96F3lWgaxz0viPrZoNvI4N5Uox+XNXGT/nCB2M24Bcl+3jPra4BldP4AizUgeV4yr5QP1V17JxxNdTeezny7/Vh5woMPCWys/1vqcUQNl+zuUmV33c62NeqAolNvDj08nP9PvyzTLPyF9X+cP5e1t/XgGvVKL/+nH15BN+34UgUIPAyvA3+V53uYmv974yfdfM7dPzvfy51mUJwLKxBERpQBHxcL0MAOOciuhJOAgATshZ+TxEAkTpRsIK5j+QfczJ5yggcBoOgADB6bBHPBxBU8B8JAy9wxgc5mTQiyfwJIQyXVlNRHQCBudsv4pl5VpQa4iSEz0330meKb/yx7IKbcyrNUVdb+j8AL0OnBVg2F3kwW7pzMDXc+up+/UUKzgFgfnfFlaxQSguoPm/y69B6S8DZf4NCP4rrJimjIRyQcdG8D4eYae73F3SQL32E9OlXX4tSJvmkv2EKgnIOVDq3EW6AIv1+Z8I+vXj6795biOoi8zyuwypgKhK3zNroNoMJEgs2IOnGEY5pvUPzPK3NevQS3BSZp8lg44cJkpZuuhMCUrrwJS7TsATYVgCojGIZBBn8KCWeUSaR2Z7f6IXaHj7Habv/xnTH79DPIz48Cfgu4cL/OeU0FPET3HEXRhxEOaZNQYdLU+UDoWapTtWJ226adYeRgT1ThKGDwqz52Or2HcYwCBvbGuQV3+WUGRn+n2d9i+kg4aHkKn8u+tucHX579B1b+CbG7TX/wOOr15jvGxAthxrbRGZnAWL+yEg0LXIPDZwxsNYkXnYDWLY8z1JASku/XxIGja80f8Clv1qzfM9UuINKIi/IACWq7hiG5PfiylJWy1TZ8lbkYGRv8yPqdenADznwKtzseApAHwdH/g5n2ETAItY8dyxnjCSzr2flb9oDXKf8yOuh24mCohgv21LyPJHTwmNKTJwoAxzeYrpuvYXByrZNdi2JSWDNM2geULquVjD7ubMs1XHLFKu+c//iulP/4Lxjz9iPkTcfe/w3f0F/i0Y9GBGz0Oa0GsTwXp0dVzQ4hQ8+TtQQoHvToHs7NmOtXy1MJ7PnQN9rBGVwDlbjTr66/+fixf1vwvTy8BaD99cZo+v3cVvsbn896DLXyH6BmF7gdicJnWZAehbfjbfwYRxGQviCGM9khVP7jSClTgu77kmjSAqz/8lALCuYfwJPrQZuKmLkNpmanFvSjzg0+LEK/ASzm0X8aCePbA4Hx+5989/f3q/60rP3MPr51uziz5pre7n9f1ds7CsJP01SKaF39kBLyKp11g1h6O8p5kVWhg4Z6AID+I8QorVrJAxxS87GWTm37kVCYiGG07R8CBYmgJS3yNtDoiHe7gn5N80D0gPt4gP73na9/sfMP7bv2J4e0QYCHc/Nvju/gJ/DAYTCLc04y7OOCr7Ex4NWX59cKEwUMRMEUPiZlICctaTY4PGbWH21LYQannxtF2Mfi2tuTUxrG4W1+zBWDX6a+UQx61SuDvXomtvsNv9Ht3m1yz/vvgG4/YC5CwSElwC5wCK6MrwR0AioSlAcEoDXzfC/FnfPynNiHmPLvfh4nMWZv6XqAXG4c+IvswTWK9z96I1DhD7Ka0J1vWD/u3a13AdL56uDZ7PN35J07wulBfP9VR8MOu9fnlf102eNfNXY4ACZQoA1bGCv3o4xzVVSmWGg8bmYMecS4R4QE/MhrUJGG1EQ2UgFR8T1xuJu+afdF4iEeZoEWdCGibE/R7u8RZpdwOaCltMVQTqEZ4OD6B5QLh7j/GPb9G/T5hHg/vbFt/dX+CHaDER4Z4Cboll1ACwMQ4OLisWIhEOKWCmiEMKGFIUG6fSlMv+1BQApKwUUEZjY9wKXD7/ma6bS4DEBCJAWIMKAAPFXo4g+Y2BAIA8R8T5Lbr2Jdr2Bta2aLuvYTavEbY7kLW5OezHwDNEZrlHrQdzHjZwFGDtBsoC1Jy8+Hvy2ajtm5/aVxfe/qlBjBOca7/INmbsS2wASs3Ar1mG2jmU61l/99z9+bE4oYDXub8pj3kCKH5i6f17Lo7U1izn8Iz186xzgXV8ODfIHgBiZFm/tQ5J40Aq3s9Whoydi8NWwPaGLhm3keNOKcCkEYkCRppxTGExrA6o8QYhwVXxwT2Rb0cA02wxH2bYlnEmHSaptpSZ5JQiUn/gWQKHPRAjwsMjhp8G9PeMWzzcd/jT4xbvosUEYE8J9xTQV+d5rRQYiGNCnwIGiqzUEYUOAKQUCtiJlBnAqhJo4NAay40o4vPBfsqfFh+VtKNo0yR/W6uNmZ3cwDc7tM0VnG3Rda+x2f6KrSXdBui4DrNBsBVhA+c5AgDnCjbAoii9yUaYpMoRYYWTFVA3nlyjJY9PiLFHMg5G8s4Q+rwXOXcBa5xYtHzZ+u/h4vD/B84Qf10gmNnAlH26dJmpJCIAckcCWCYiyySEgWJvutyJykzhKmGtJ5oDZQNYy8j4ZyobG5ePFaDp5P18QjK3Bp/X4FENWtdeZrW0brlJlsnI/DenwNHi9VYyFEpzNsWfEGQaMuCIi5XORHTGMatWzp0zBjNJoZJ9x5CLltqnWFeUIo6BHmAigxAMT93sD7ADB1579frZ85ce37Pv5/f/FeN/+294+G7CdDT4w593+N9CxH+eHzCkiH2a8RgnjDIsyyeLrfWVRzB7583EgGs2bVeArJLFgpJcH5XXn8hQdH2M2WMl2UMGlU5B+noQTx08lv6NwCINVBBYpH7ebXCx/TVuXv7PMNf/APIt9q9eYnzZwG4BJIBmAzMTJ3CJQNYgegeyFslx0mdDAxMjTNpykRgZqLdxgLEuW0UY4xdFUIzcwbcAIj6/oJvmR7iqy1cXHjVAod7B57wG9b5vfGkinRtYA+DEhzyf++o+P2duf/ZnZ2JDfh+f0Oio/z6tEtUFu/JMrFg3sOrjOpeQlfexfGxKc/ZZ5+KtyOyjSZhV3kT5rkEHl+1QcrPoDKW59tSuVwRP4Y4EhNnwtO6+h9lwbHAvv36yURTf/8BF3XDA/Od/w+G/fI8P31sMfYMfPmzxnwLhX8IBMyUc0ox9nDFSzPdynUzV0k4FvBnscVzQndjG0JN+Xmvv8PV5sBJnG2OzQmFh+yB5bh0z0kk80LW0A1DJ53bzBl37Ck1zhYvrf8L0zX/E8cUznon6WtYi+absmc0FzHyEDRuAAqwOjrSc7CkYtLSNWTZoLL4cDO77t3DOYw1GnGOrrUGLOhfw7mJxP+aJ6atVF4yL81MDyKt7fn3fnlsfG5bz1HpqyMb6+5Se/n3N5OOvS2bPOk7V7y9m6Sx/rs5tMNkGMfRIKSCEhIkmmBThDIMdF9ZncEPvDW+MMIu5WMrDX84s/dsJQAgGsQ9wuwlp6Llg+/B2CQRLUZcO9+ztd/cWNE+YfnqL+38e8P4tzxL4qe/wn2PCH2OPqSrWxhT5WCywVRBbiqf6MXPSgs5BvZTzOZP27RrssVLc5UM9Uymo7FXZvplBjnLva9O+VnzlgbdQT2BpW0uTmCXgbBt1sf0WF9f/BFz9Dsk3mLoN5q5B9OJmGhgE5jwgMRjU7BgMTgHGbWCFlGHTDnG+hzLuUhpln1YrmAk2jdleod6bagZgpIj4BUNfjsc/wTluaH9qzWCMk7z147FA1zkf9JM9+sw+/txas+qey0mW5JRzeUm9l5/3YHxqnfNkXMxwEYCHvz+tp+pGfEpbWNtw/qADsydCigMiEgxFdCnkodQRrCLwAgJP5+6NM3uq1hdjcJgPgGtmwB0RH+5gNrsyg0TBuhg4Nty9R7x/AM0Bw7sJt987vLvfYQwW72aPf6WIH+Mx5wGaFzhwbHDGYAuLKM3xgQKOMaBPIVvGWLXjgIFakRHFDPbUlhA5Z6CVIimrxlafFWEx3LoGe2oWcKzYf9q44lki7PfctS+w3f4KXfcVrNugufgNwuUrTDuOqW5mAFgbQ7k5pLmBv4TTplAcuC4QayZrO8zzA5yLmWVrTAEPzykIY+wXsxBKHPn82ND3P4iVwfPXtHUdN7yfYLkCz+fxNVFtTU5Zr/VMhfXrAJ8WF2pP9OVrn68T+N+p+ptPy8nWADMP6loedx07atuIDAzL8XtcwBiXm27WOFhjMYcelAKm6Q59ivBGmnNSU2i+blexoSZhnOAPAMbZYXwEgAnNFKFIv2k7tooYjkiTeMbv95jvjpgPCXEm9PcW7283eBgaTMniXbT4niJu01AA1UpB3RorjSI+jokSjjFgn2aMiZvI2ZJHFBsEtUlga4xOnqO17knbGFU8FyLO+cogiYoJBtmaIkpds7a2craTYZGv4FyLzeZXaHd/h3T57aIt5UbGxRQANlW+ad0GZD1jBMnlBlEeNE3FLub5ujRlezldIRwWjUv2pW6/qIGcz9PfGMH/v1/FY7H47KyXNRbBFD+x2qdGg473WwCFPez8Ds7vOACJj2D2GAZ486qTvDoQV56IfIwyETmVjnLtL1TeS/n+fDH5qUllyEH9nB+repmdG3ihQNA5xiH/vpK0yblXlgYoISUgmADOJShPw1Y/rAiCikVr6cVCiFYF4QK6yt9LIMps2AjQNJUJnvH5zUinfdM0ID7cYrybsL9zOPYeb6cGP6UD3s69JG1SqAl4Ww9OKOeGv88+RExzwXk+c8oQy3qy+cdW/Xj2PSu/eypEpJOnL+BODQKX34rEy3q07QvY3W9wfPM1YuMw7xzcDvAtIQZhG8wMAufjcBbRASZWz2lt8QoNjgO9ZSYwpQiSDdq5wqTRe5QonZULfeqKcQDgT+LCOfaKte2CueJcWzWRmEGsRaH6CeWEbu0xan2JDcTT0Rf3ZwqLeKE2NvX359a6EbX++VNr3ajSKe0AFlOZ1wVY/bOnn/u0WKzjijEWKZXPYKYo1HSDhLCQR5+7HZ5TBuh6ChBmRjB7eSEGHvoyjTCb0/PFceE94oe3PNH37hb9LXD3ocUYnPh+9rgNAw93opQn5ObpxCvmjSZOQZI8jQ2LQT5U4Nm6EfYUK6F+z+r1lRNXAgBzNhGpf6IgsHnyzNava2Vg5A5d+wK+uYa9+AbD9QXSSwOKBmYkmEALdcDiPDRNiQHRwqaOXyF5wDCDAcbne8I5iQPSFHKuFb9vlxuq+EIgeA5HJKoLJW0KNTkeANxAJiqedRwXStGnTaS6YWydgkfy/E/dnxTyvb/ev/O/n2gInSvkaoD6U1cdC+qcgb+eAtHrWFAn4Hwuni5y6+LWplEK/XrgB+cgJs2IaUSkCYEoNzGeAju5i8yDX5S9tm6eqFJAVyKDFAlpDrDTxLYPFeOPKqup+HiLePcW8eEeqe8xvhtwf9vg/aFDnyx+TAY/pglvQ5+tsHRaueY8kUp8i1VcUJ8/AmBFkVPOdWm2W2EDe6ODMT8us87nyJg84I/v+yUQXFt8KbOHgMo+Stmgkj+r/Ntt0DTXMJvX6F+85KaPNUiiDlgoh5TtA/D94Dzn0BIDDABTTQVHQh7M44FsERCq28GQRUzIoJCSHPjr54M92kDm+3pYNI6du1g0hrRmAAQMUuDYeli74eb6c3HgE/KA5+LBsgnlF1/5988UyM+81joW1J7t9UDP53KDNUhWH++6mV4fN5HUE7bLijH+jL0MEJsRwyDHHxFpXtjXrden2qkBcv0nZuzFmeCmwIrD4cBewTFCvcIpRqTDI8LdB0y3A9IM7N8ZvLvf4MehRU/Az5TwYywDp7Ve0HpmPdQtgrL/pjaRUVlx6NL6q64l6oHSFibf6BqT1I7r7GdV1xNSx5yzglAQOIM+QnZhOwj2AvXtDay/BNobxLZD6DxMImYDV16gNeijYDDsJZNF9LrOBMsBznXcHLLIwKG1KM3h6v3Udew6//8SIHiaH+BSk4llpUEUYR0Ppl4rkNf3ZY4Jxj8NyK7ux1R5kefHLN5vuRfrfETXx2LDOhbUcUAxhPr+rwf3rWc61HL9pwC6c1Z45Vhryb4AwHLpJwAOVdywgBewMFGE97HsFXGEmfcINGAWMpeVRomqBT626toiApijxTwauCaxRcXhCNO2sPPEcaLvWYWYEsL9iOEDYdgbhOCw33u8O3aZAXxLPGz6QxqXKgaIdzkMoqFcByQQRsEkJooS09zyHOecIQorvXgdN9bmodr6vhb1F06bQk8tzRPqprHWFGoR4t02W0b59ga0eYV5dwmTUvEErtj5OR7odW49205aANjAmABVBpp4yPceEe8vegVrUzahbjqsMK3qd7WFRUqftk987Nz8pdffgOCPrIVBPM7LJctjl0FpCWJMCGGZtFAKOZBTGmDCMnizz5nPgG953gLE1gH9qWB7bp23nHjm8SvW4RrcOccmyObsFllawX+z/LowSZdkW89zZmekIJ5lBFBCFF/jGaXgSRB23yrKrG0hNBEBcAK8Asz4a2EwJ4MQLNIcmNUjXl1PrhSQHm8Z7JkGhHc/43hrcPfQ4Tg7/EyU5d4BxYy9lqyfW+sbfyFmrwIRgMUkzk9ZOXGsNoqnpnzWqzxiBfSePJCLaGMdnOMBaq0YqafuCqHziI0BNQZG0GdjCcYapGa5SSoAbKUAJAGBbUwga2HlewaEmQ2IChhwNiyuQU4IPr3gXa/C8lNZ0DrhsIvHlVMSkJLLyUc9sEK/2lgKPhMOkngtmS3r51x8/wzw+7QnkgJk6+cfTx9cPf45gKdmGTwF/p5jAWrhvQSCIH5s7iSGGEpIdoY1DZIFkCIiQsWWJTRkP+naXkd4taEpgAtP3Q2BgeDUD0jbPg910Suq9qpOj7cyHO5nZv29e8TjB4+7vsWQLG4p4SHO2Kd5Iad6Ljaoj1ekIq+UM7V4nEIvBnjW/3jtyf5lq25W0eorctFpjEHjt2iaKzTtK07omgukCuQhB9XfIsGITUS78Ai2UeJfSiDnYOe2sABmXwq/eV+el8IC/OFrqUOMR/bq/QLbmHxcZ+SL5+KB/pz3vxFkHCAxK0sXo4CxoYA/i1zhzFrkCmd+99Ra+6w/9xrnnu8su2cVB546hvV9rzmT/twYD5xhaaxBI/4MRT5uO2ZlqDrANEhwiDISdU4RyS29QDNrp2LA6xVxDjTWNRFhDhZxIKR+RmqEEXy4hhG/P5qGzPyLD+8R7m4xv7tHmhKOtwYfDi3ezR49uKB7iDP6FE4HNNH5Y9G4ED+W4pPGho/7ousqwNATXulnvtaMYABnFES8rLBgG3+Bxu/g/TWouWA1kLMga5CskZiArAjQXMBIo34xSFKZQNbDggsKzZeXFlIjyC33FWvSYj8wRsGQLyuc1tYG+jNdBQQZK5CzauhEwNrhBJDh51kOP6rXL40FGgeyf7H1y8euQuTH6oT6cet84Jx8/alVK6yAiSW5EjNLI60AV/z1aQWEWcSJBta1QiaYEc2MOUWMZh1f9CKuyAoLCXg12NUoQAupKwzCkGBsgNvtETdbmLaTwXFTZv3F+weM7wYMHzjfeLhvcDs2uCX2Ar6lGY9pxpDiCdija90kUlLJ0mquLN5lLYgIhiAMR/OkhdTinOj5xPL+zqohIiRTBuxlt9jKr7geFmpN8YN17oIJVM0LwG2Q2q3YxQFkTbaHSI00huJywFUtCzdxLPY21GXFEFCASB7EWHnwJpyNBW6lxqEvqClsFQ/WK88nQsixQGXs59SDp9Z0S4Vx/e+1lWW9zjVsgdPY8Nxa22Su64Ia6K0JH/r6qjg+d1z1+1+vc/XdU3Y8nH8FUHI51gElplmJOc42IB0Mbj0CAYMy8IHSJKnW+ijWsYGVPIQ5GcyjhfcMfbp2grEPoLZBmmbEw4jQR1ACxkfg+MAA8Bws7scG76LFz0KOuye2dxiSXqccr2rymy5uZKeqgXw+b8jWn8T1hFcF0Zrd/Au9BjRHyGqBKj6dehUXn2jvd3DugmcH+JbjgcQEEyPgmXDBw2T1cxcGOAXODQAYxQpSgLHVgNnUwVoZ0FipAlKSz9TYj2KCxtiKHPb5TaL6XP2l1//xYeC/OhDsYK0vieETj1kHnGIcnQDMC3q5MR5m+nAiFX/Ot+acqbn+/Jesp20fzrNyPqV4O8fica6V71qs1/OA+SnrL4QyNT2GXqa5Tkhgr91G6Pbq07OxDo18Uq7qYq/XuQ6/ettMxmBPDseDw3Q7APjAz3f9A0zTFYmngmAxIt79hOn7f0b46c+Iw4iHfx3wz3+4wv9rsthTwh/jHn8c9/gQpxyE9QgcQSZ0lk1ilq6cBueYE7fK50/OnzLXPVieohIVQD28bGYJ5PevReUqaCvDYc10qFUdVEs6P7LYDmKL7fYrdO0rtO0LbK/+Ix6/eo3w2sJYwFnKQDCgxHgCCb07xUqmmgAkCyMqC5MIbt7AzhE2Edwc4PsN7HTNCd98gB07hOkeRAFR/HxZEv75UzyNKcOLiBLc4n61TyQcvGnEeERKz8i6KulS/X1mA5xhwKyfY/m8T3XOzxdbT1nMrJk6zxVvH5N36rHWx+acq947g+F1YpwWsWKEE7YA/+2p/HukCUghgxfbqmh2IuEKWqRVlihZpiSL70OD3kQ4MtjD4jA0GD7MANjPy24kNqifl04EjwHxw1tMf/wDhp/2iAPh/Q8N/vefr/DPKaKnGT+EAX+cHnEXRy7AKoa+hzlJrFTmNecmGIT1t2T8ZWWFMoRwahlzbv3iRK6q/DhGlf2MELkKVL5gJTdztsOme43Lq/8R/vofQM0FhhcvkTojWDF7jJJ8NRFIncOc6gKvilERcCHBxAQrLCE3B7iR73M7DfDjA+z0AaCAKE2WGA7C9OBriWPE5xd0zjbVMKO19+VpsaeNW8W2z7FdznmOAzjJI9aP/VQ597n13P5fyzrL90v7l7W8/qn3Vr+fxXtbyOtqhtRpzrR+b8b6zOZRmVBymyzjI5KCnyKOxL54Wf4tbFuIxDNQ5AYy6GwziQs5bmpPhnCcHY4PFikFdNMBwI88EGoN9sSIcHeP/Z8mPLx3mCaPnx83+C+Tw3dpRE8RH9KIt3OP+8jgkAXQGpZiZoAHZdCLSsNHipgSTwjnITs10FiUbsr6q4s6lX+vY6AuK2AO227RCQt4oRBAqYuV7ae/N4vizsG6FtvuNbruFU8Cv/gNpqsbTJdlKKDe77ExSLbJjMD1qmOAjSwVd+MAOw2wKQJxhJ/3SGHP914c4eZ7zPNDvo5D6GFyo1Zk4mn6otiwHmxWP5cWmbxYmlqv5xnz63hxej89FxcWf/uJ9lDPgbn11PW1tL6OEflvqoJ63UBb51N1rLOr36+l3+vHr2X2/1/2/iXWljU7CwW//xERc6619iPPOZlpbGNfLqVyqYQMAmQKOoCEBEg06NECZCEeDYuGGwhoYCQkhGTJMgIk06GFkOjRQUJCFiqJEhIFVy6he4v0zXttp/Nx9tn77LPXWvMVEf8//mqMMf5HzJhrr733SdIq5Z+5z1prPmPGjBgxxje+7xsAW/DU/ssAMLsBRDPGU8SOJiBOMGKZoucKge0M5P8X15wIETwE9i443L/xiHPEcCIk2mE4TTCdR5oD4jEgnAgpAsdbgy9e9Vkd8CpafItmvIgjpkS4pwl3kckllBJ663Blfa6FVEUUE9c2GhuOFKqhUeesP9VZOpTY0C3yBrV8yQ3y/N0ZpKRX7qIcTJAYkigTThQAymzgSk1kjYd1vcwO2GLon6Pf/hjo6Y+Duk7YwF1uGofBNw3k/HGchZFGsZU44eYAN42cF1CEjyPc6XO2kYoj24LEPUI4lFq0YqampKrC82tbetfpydUqgxFdvtbp6xKNqELDWSyobZaWdcP575fP7+U8g/Pm0ZjvA3BWH/D2lniwBHbZOnLK979NcX3O6K2BtTJM1wjZrI6pdY6wth/KexSGcZ730jSVhNTm2CpC645IM07HiCOdABC2lOCdbVCPXE9XM4vy/hIAOIJwNBwbbu86TKNFPxCmA6F/s4e1wDwanHYWh30HIoPd2OHlqcPLxEPgdiC8pCPu4pzP80MMGOU7GYzDlfMLuxoBolNqvIHnRAiyr5W0wbVglK2O8OBYOEguUvsN10v/1pyhvjsrAVJCSCnbXU0p5vqG4wbXFNZ4GNuxLcTwSTM7YNpeYd7ynuemkM0ewcm6ZpjkUjFQN5FtmNEfn8OPz0BxRAw7eH8HP29F6R4RI+NQAGCrY7hdtTrFSrz4cKLN7yQg+J/9s3+GX/zFX8Snn36K3//7fz/+yT/5J/iZn/mZL3XbdP1AgWCWcj4+6SuSA/YSq9eljtYaU6iWi/F2FInYRV+blWTv0loyddZ8e4DL3fmlzUS9bbX0tQ6ky0RNvdqW+4RorPy7RszzBkEk5sF6mOBZuiWg3ikRHEV4cz4UKksel11vYQU3vptSzMUK7DlOHtP9BIDBYHfNYI8VIJjmMYM94fPvYfyt38Txu0dMB4PvfmeL/89k8b/O97iPEz4PJ7wMJxwrNolN2j1P2cu0XhoM5wqkKtPU2+nxkMEOnbFwVWB+aGWPL6RVYHy52k6/le9SJbOVHAepAn8A57e4vvoxbLc/jm74GOHj34PpI4/rp8r8Rv5pLe+Y9rSrWBdksuKdP77BHC0QLEwETOjQDR364waGIvzxKg9XSCnATMUM/kO8QC/FhuX5vAR+ip9Q8dVuAdTz46BNbM6HpNRJ42NAkuVaY+0CaGxe+O/5waKufIY1IKskuLqdrhoAVfwSz+NaVhc07xEaSxrdD1EKuJQIIUWMKcKmhC7FMyCn9gHVoQ6XzoUJBCeI51HAntPOwDgCcITtXwLOc2ygAJo0NkTML17g/jcOeP2iwzRbfPt+i/8WJ3xzvseJIu4kPpwk8XGJPby8MGuX2xNBOS4oCASYs31eBnsmjgnymstkUBtll+Wvl5fAu4XJA53oK358wmKp7s3XCOc3GIaP4Z/+z9j9rp9Achbz1iENBlZiQLI6AhNIHjBuGRvkPpJic/aAFHxmBuyc4MIWJhK68Qrdvof1A7MBpjflM1Yy4ZQGEK0XJo9ZdUFXbmvP27z/qnN/aaPEP2n1sfqa9XuqF1nZhlYi3crOz1+jXg8BvfW26vnPf5fZAGzlVDeYH4prxfe+jXWl6Ls0HRxAttqxqTSPsr2OHWCoTGPX/Us0w8wHUJoxxT176toIK/YnygieQbAJudmyFh+ypRQSjkjYR4f9necm0JwA7JEiwQqzh04TaCKkmLB/mfDp9zb43n6DIxl8mgi/Hvb47rzHKAD1fZzzYNbeWMAWRuKyaUWJJZ5B1BAZ7NFz3lioiFtZf96oNcR6k6j2Aq3XkgmkV/x6loCqlIAaBC5e4bpdBqwO2Gy+iu3V74bz18CT343j0y1wI683G2BGTjWSB6IzwAoAJBvMljIya8CPW/hxho0sH/XHJ7DzAQgjbGjVAhS1KVSY+hq3PqSgc5VNFHCZGFE3VSifi9PFeLCMBXrbpXOmZdUu8hYBv8/mlFTX/Fg1Yfn8n0psiCdEClnRlyiwqg8lNjScszo2iB9l2U6+lrS2D2VwFFAsd+rPzPeXRlIdC53rYVMZ4qmeq6wS4cd0/oAQT4jhhGl+jUPiugAWGRjV2AAgD0EDWqu1KCgxx4aIXfK4O/YgmjGNhBAiaBph3IRwAsajwXhwIDK43fX4jcOA7yQe+viSTvg0HPAmjNlebpI8QOOWzgDQVYO1uUFU1xQ6U0C/kyp+c9OJwZ7Buiz9vrRsPqvRPCoDPvJXUTaUzF5/rwdHdn6LzvPA1H7zNaSb34XDR1/J6oBYqwadQewqNrxnpWHj65Dzgh5+3MCP1zJgboTvruDGe7h4QoonxOkW1r7J1of5dZUU1hAi6mbHhwDBbe5eL20KaSyqWbLLGuLS6+rvb2ue5NtXyCp5LewbynaEDPYCEGb1jKg1RhxBeRghpH6ttl1jV3W9ymPMJRZQrgvW8qzzz7VskjUfo5lT0O5D5/psycF/D6xY6VitQZLzzPMOiWaM8YhtKhaPai1VE7fcopkyycF5TBa3yeHpqUOIFvaYMOwj+p5gbcLp5PDFoceb2WNKBq9TwnfShFdxyt7ft0GaQmvXawcMyWFTMXh1IJvWEsogjmB8xBnHOAOUUBKhKiJthnX5X1Xjogyzzt8L1uNCeTzHM5tME5+0QaQgsLM9vL/GMHwVfvt1oLtGuPkI480WYdC4x00hJ+zg6B2oc02jyF6wafBjQL/fwO8G2DDChR3suIG1bB0T44h5lqbw4vx7G8nhQ4bT6/qd4hH8r//1v8bP//zP41d+5VfwR/7IH8Ev//Iv40//6T+Nb3zjG/ja1772pW/jOwPB/+E//Af8yT/5J1fv++f//J/jr//1v/5Or1eDu++76u5XfRuvuXkf/t2WKZfGwSVC6Sp4EMXMuk3GMUBiy+suQeE1wHUpzdDbl8btlz57km2qFxFk2nl57xrMyT81qVt8vVlmbpgXGwJg7QQnXdjkIiIFJKvsKYuIgJiY9ap+VctVwErZzrNHlBWleomATPgFaAbSxEyeNI8g54XZM2a/v3Q6IO4mnHbs87ObPG5TwJs45k5bQMqJTgKBTIJdsAnq4oqabVbI5XypsEovmXUxRynlqcH5M2L5uo9fBe8xFShNSGnppFU+kbMe3l1lf6+5H2C7JBIYgMg0/nwA4OXQOMNjbCrMOQGFFSxK6vXUOcTgYSNLR53b8ACZeIJ1m+wBZPBAovOYfWGKZPkxUiVdywSu7ihqZ7z2GMofvQJFCCU2WNuJbYIvcUG2K0pxgxixxgJasv3qpLKwIIRZQlNTjNad/HOgJzQFG28PoWrMInsyGVfti9AkwssBOfWyDjApIpED2Uk8VyVRt8w6JURwXyJdZLrWUaxlsylbuNhDFF9Oto6Jc0I4JXTTjDQJa2Mh8aTThPFocBwdjpPHLRncUuCBcBRxoICQis/oUlqpwxa02Ku3rx3EgNLBF3WDev2pNQSABvj9UFnXchlUthCG1QsJtRa8AH4q70rdFTN6OoPUMdjbvGb1t3ytqyvHglnAYasRyQLesmKg62DCAGMiD5NyA0wo8ut3aahe3AemBVzfFg8A5BiwZMstz6+HwB+nLM8M/hCWnnhLttzl7YlVgdeCUkBd4Kl90wyKJTZQCg3As0w2efiIFHhJjwfPz6++4JgoJ9Dq2ZjyZ5DHRC7acp5zAYAneY6zHbwbON+IXP5FLeAW18ol8JEW1+QM+GiMSAkzWZZ/Bws3E8Ipwc8BkQhpCojHiHBKSDFhPDrsRo4JRwC3KeKeJuxoRkiEEylDR5qqAqdRFZPq7cm/V769ZWdokpiREY4N7zBUVlcuclfuK4xfnKkF+HZTPaK8PzcHB1i7gfU3bPvgqs2uz3sLtojw8twqRgiuhRRLToAZiNEC6LgpBIB8lz3FTQoydHbga6mNGQipz6clweNdV256YHn+LnLhFRC4tk1bu97W78G5AisSjbFIuUFUCCjqkck5RXnftZqnaVhVjDgATUOIlXwhAz4Ax4KUYj7ulsSBxQfPgCp/kfJZpd4oBJoiyzUX2IR666VGJqUIJ57r/JpMXCmKRsC6HmYuNjL19fGx50orwwbmyOQFGxLibDCPJrP+xoPF6eRAyeB+8rhNLPM+JsK9DJHd04wgQMucWNKdDPi2t1y/1YZBofgacFNvfI1xwtWvvEXXP++yua5WEMtarFBDcH5789JSV1SApTEe5LsM6Ejq2HiFVxvBdnNdakJeiiUviGRgyInl3AA7z3BhACx/SmPFNkaeb/N5iOoY1PzfZrz5Q8GetbzjfJga5ZjAt719jlHJaxhbYLLWLKBwzESMGGMGT5dkNV11LFiqeFMihHjMv+cGscSCen4Qv1bNCwdM4iZAAvgYSFSOjcXBYxeJoA7/XDa76nxsiWWw5dzbY/paXujcNucRAUCkI9IjagxdXE8U9W0EMJFFFxOsTahnmR8nj/vgcZsMJgC3INxRwD1N2fdbcYalTQzbmj4cG/T+ByIzn9TVNb8efpc/01viz4WvMoO+AFvdtbGCsQb1CHa2Ywypu0ZygzCATd7JsTMwZJEo5bkCsTNNrKAqlrWKIg8/dkjdVambwi7bNSYKQsbs8o4itNfN/LpneeiXAQR/+et9Kr5f+qVfwl/9q38VP/uzPwsA+JVf+RX823/7b/Ev/sW/wN/+23/7y91AvAcQ/Gf+zJ/B3/ybfxP/8B/+Q3QdywZevXqFn/3Zn8V//I//8Z2AYFsVEPWXusZuWa6HOgNLSYn+TokyaMIJHMsfWI62SErDZQnE2nu377XezdTHXWL5rb1+24FzUKZfvV2aWNUdz4fk7fp+1vCgPWsdiGJOBHlI1CxsngCTIlwieGNwTR02pgxX8sbCgws8HbISUQauaOAqzDrAJYOjIeyDw/7OgYiQ4gy7eQXT9WWK5zQyOBwj5hev8ObbCZ+92GAMDr85e3w73OJ1OOFEEXsKmA1gTQ9jDF8cEZEMD6xJaZ2NeBbATZngmRIBpAV3Yf0tweAIynYZ5ba3XBgWpftaCpiP5wUYbCQZBNgf2PtrDNsfhXvye0H9FsenW7g+wXsFehO8f4BpUNlGEBkQlecRATEIr5r4MhXIwlAnkrAr2DBzUJeJoDrELJ1PvHv0eii5uNQZBISlYkpHUZO5fD9amWQNEie5mNQJ2llsCK5hwujta2uNiVwzfpfSrWaYY/NCLXhT9hHHBn300k8tyrZbKVgZBC6fp2EnLOLG+Xuxx58HEI2D766FmQQQWP69pxlDxXJQuaP6Ys0gSYbKeahgTx0npsSsv8NepOQzwXYHAC9gtxukaRLWX0SKCbtPCZ+92OK3DxscE/AtCvg0HPA68ETfKREmsH+efBkZWDIPAD3NIAYpnurvhAuy4vVngYYtlL8HYS0t2QrlPTRRe1zKYExhdCUp5qEMQOvg3QZddw3vr9H1H2F68gzxRpiOXRKwV4CsxTnqfIK1msCX2/X3GNhvXLADJBjxjQYCeRja8jZGkb5SGagWw640Ix/1SR+3WsbL5WRR2bz6nJQsIOAPX/va845orl6H7zc05wKpLqSX7/WYZlXL/G+LTZ4uP1fgDuV/AJCH/cgq21SxgBcsv5I3nG9zzWRa234u5gozyaa28VU3vKwd4D2reoz1iPGAPU1wcYI1BhvDDLjO2GyTZFH4QpSKp15ExahPCZMhHJPHbuTPEmYDICLFEbY3CKeE6WAxjxZh5hkC3546fIsCjoh4EcQKIowySyBhRkI0gEnlvFxekOv4pMCx2knBVLGhYmOmRHBQZQQze5ZLc6JLBV5a/Fy9r9pWbYRDtivns8L06fqPCtNnewUaDLznw8x2og7gvj+MS7DSTNZNr+NGopRHbCTLyg+WilskYQs58RS3xsPpuS/+wflzpAhrHUI4AMAHqQXqc2S51nJ4Z2xumAIF9KyvyfV26k9ulqiPp4WlGdGcFjXDu8UDXdoMXsaD/P4Umu2yxnPTJ3/ttfVDUQPkbZXhYPWw3bqmWNtXb2tsLT+rNpwThYZEU79eSgM6v0VwW5YDI8KkiG1yDenEgq+d2tCIKWE2kW3equvqlBKOkjtgBMbgMjPY2oRpYsup+4lZf6+ixXfSiO+FU2b8fRFHHMQKQiE0fc9e4lW9VP5N4EFxdd3DQ9nOv2fNgPKQuIWKaLkeMxwr+wTXt6GNHzk2iD8wD4x8gs4/geueIQybAujod6Zfq9ymDSHnk8yaa+MB/y7kE5RYYKMMYyPi9wYfY9zQOOXcczkUXZUmj8EE3raYYVqufXWYqY9fa5fPK7ZBAM7iAhOlqlgg9bP+za+9z+/zLrFgrXkdqcUX6hyBm70ll2kbYxwHVG25pgZytmuGavLw7Xao5jJGXFJDqjfyUoWh9y0tOvUxupzr0XVP2e4nHEHxhANN+ToC4Oz8UfsmawxcBW9FSGwgixggtiwJnbBP74PHp2TwUvKEOwr4dD7gThjB9fB5bRL7xDHJr8QF3RauZ0RdmCgPalsOe04CAicwec2r7eZbFAIO5fNfAoGTfH5VRYcFDqK1jSpDrB3gO5kn4juEYWjniliDMFhEb5EcWB3gcK4ckrogQ9uU5Lk9bNgw4Gs8XHzOd8exGtKoSiGxbTHnc7Da/fcwa/+x68vnA7/7a07ThP/6X/8r/s7f+Tv5Nmst/tSf+lP4T//pP325GyfrvRjBf+kv/SX8+3//7/Gv/tW/wm/8xm/gr/yVv4Kf+qmfwq/92q+902vlgARkFooCkQ8Ffmf7pphZY9PoWiZ0oSruLq3zzsNl8e4aoLsMzmtTNi/PgG2DRJFnFBaYrQq6ZTdSEzsAWa6m3Ujn+hzY+aXY58+Yp0gpIgRmcrp4KskoRYwYYZDgKOBIAZsqKRysA6iw56aqgFuTeBISTilhayxexR5Pbje4Oc24OkYAe6T5W7CbnofIHWeEYwTNwN1nFr/16Q3+j9ljlwi/Gff4P8dbfBZOzDgyBs5dwzsGImI8IcYj1jnMBZhWaZd27+vhDvXF14A7dF4C/xrTLwogXg+daQCfBVuAjwOFcErSKJAOsmwnheozKAtUWAR2wHbzVXTP/q+4/7EfZ/nGc4PNJjWs33qiZu7Crx7WCSGUJCkEg2ATgrKBPRCtwWwdQC5PGfe+42mibqOWkU2B9a7L2S43iZaJ0ZIhjArAAKpiRuhKLfB6DioXr1fpqucXanfQ24Df+jXL79V5vgBz2FqgxIrVVX8unCd1sGWfRAGpeP8wW1E/jzEOiMeL265JYAGJhxwv9H7vt0iph6s6/DEcEeOEMbzBPs7wxuZOtjcWgzHZa3cUdn5Qpo3EwHnx+Xcp4nXyeLofcJwitvuAOM+4Pu1h+0MF9hiE2eDV7TW+cezxGzTimAifhgN+e1K/cDDIYzx754JAmHMssgtmjZ6vKucKSeXf5XvIZy8xuO6ALBnNQ7BWlr5nDTAv7TSWser8lUrSBgCJpDHEXxKcHTAMzzH0X0HfP0d//ZP44itbbL9y6RhLTTywtsQN4BwM1tiQ/3mAOiBFg7mzIDsgegdLCV3XoQNPhgYF2Hmo3vbLcaVaNlB1fgB/nlqqrdJkjQmU5ZVGmXY1G3Bx/b6UA5zdvmgWXN7uNhYAi5xg+Vw97xcyTr3Pim9yDU7bSiavRd2aXP1822JjWaMeyzEWIMeYY358to6QWOH9FsY4dP46s5XG8RXe0AwHgGyHrfXYWi+emudN1DkR28UIC1gLoikl3KaE12OHw+ywcYTTOGNzF+G7hNORwZ7D7DCRxYto8Y044lthhxNFvAkjXscRB23kaEMVFsmkXLDpdjTblQrYM1OEivGNPl+u7Or1B5A0h3jyd83+W77uQ6u+94zZl39rswcYw2Wi7bIfaN89Q3/1Y4hPfxRx2GC82cAMkAGy/Oy6pq+bQsAyX+A8IYQKFHYAzRagBJodkt3Aj17k4QO87+HGG1YOzdcwk28kococc/b9C7pIEyP6KMd3adzWIMZSZWQRTa2ckSYRCgjbxAVcBqfqXP3iWqkJ6r9zbqCvifVcBEAu4OuGz0PgjndX2dolN4DdpgV/LwC/2tRbDsLKiiv5LnPMSEwkabfdwzkPa3ts6GMAwDzvEeIJY7jDSBEb6/N10RgDm4qab05sI6UWM5T43JoSYQfCF9HhRBZ9SLifPDYuwhlgHxxeRR4eOyHhJZ3wm9M9XoYjpkSsHkoRc5WMq72cQZun1EOhdGiuNoj0p4Kvrfw7oSaWqF/4msfpcmmzGUwLWfD+gbqnex5RNC4wfOT8Bn33DJvNj8D5a9jNJwhDDxpMBn3zM6Uh5PtlrlAeo/WF5gXBGkTbxoLYVbHg2MO6DQ+djifE+U2eM0I0Vk0hveZE4AOBnkgTENNZrluTqQAHolJPA0x8iLFc71DHA/kbKOfxgznBpXVGTln8fQEv0Jog1wXW5xrAGAvvBji3zZ+Xm7Rb+cwD5/n+GtZuYKyDsRtYtxFpmOefFas/PdAQMkvmrwwMy93CeGKSEJ1ackAFFNer80/EKihinu9BccRp/AyWAgw45x6My7ZLQDlHWY9KbPUEViIfDeE2ORxlJo5cbQAAt4nwLTrhZTjiJCpCbQppbR8h55gBfEroYIQA1tpVaM6i+cMMttCbpcLkBpFdHBf8HRskaZKYnC+4lZrCye2Um0nIasryiuVnHbvKgLjqu4OphsRtYfvnGJ88Q+w8YudQl/KpA5K3uSlkLOBk7lA9iyg/vrKbjKPBSB2Aa/hxgu06OOvgxg1cCkjxlK0i1EIqxEP2D15ao1ystd9zfT+B4HEccXd319w3DAOGYWhue/XqFWKM+PrXv97c/vWvfx3//b//9+/DFr4HEPzH9jLtVgABAABJREFU/tgfw6/92q/hb/yNv4E/+Af/IIgI/+Af/AP8rb/1t/DYyci6jEwtVX+wGuS5BAY3DBY7NAeCk+ekJVAEnAXuNXB2+fultVawLT25ioRh7f4HDjeV8eUTX4aX5UKw/n1xERAWkF4EeBrsJheERB26rvUHZe/PxRCtcOQujMhRQ+AgPabAXbF6ojwMBusk0MTcyVdGbN1Rz56bKWGXIm5TwpvJi5QrwHuCcRNsN4FmYDqwnCvOBi8/3+D/mD2+GU/YU8C35x1ehxGzsYBxcLZH56/h/DZ/j1lSZ9Yp/+r/V+TfbQKvrOCUGDBytgx9WRuQV68GDL4QXlSypT5/Dq003eaBUJYfnRkVmtAZLvD6r2B++gnmrzpYD/SbhL5POuATzgKx2gHOqoS33KZJHREwy+PZU1iTP/68CknH/LeFIfGODDM8ADvv4OKICzZBj1r5GAbOzudLkqryvNJRBNrPbkwN8ggjV5lKi4Quvx8qFt7KugTg5HM+v24r05Iblx+g/AoRD2YppwqdbO7+LwEjIXPlz1dWaYAtGdEA4KxHbIrHGcDNggmgnqHlVYPtEOLIfuI0Y6DAADAK68/C4KgJGRjU0XOuUQzI7xMIu0T4IngcyeJauhBEAa5LmEdmCx8njzlafG/s8Bs04lvzHnsKeB1OuI0TxwZIs0wT/0RIkVDE4OdLG0SafhdOsEgfM9jDf6lCYG3oCyGVbg9YPZBZgE3StpacVb+nAgKxx2MNDHIyamBgrUfnedhD1z1Fuvoq6Nri6oq3l4FckwFea5EtZLS463zLCNbzR+NBCKa8lk2ItgBBEQbJeegQeEM8ZBMCmFMcpTl7Yec/YhUbp7crBZR9xoqXegBN7dlP8rzQgD0kzLvaBuSxa3nut9v5QG5Qb3sN9Ml5qYNEl9d674bsYaze5grQ8vlcmBblNYu1FSs4pBFG6t9a3Vc12utYYoX95/0VigeoF1D4CWI8oJ/vMIc9YjwigvKAFS3SOiMxroqFzKgrli3KDJ7AYM8tOUyJAZ+ZDK7mCCve4m/mIvH8Dk34Vtjhu9MeUyIcKAgI7HkfLr4zSuqdV2wp6mtyyWuQJePn14UC5DkUb2BX/Vuuh/KEsn31qvPEBSRkpKUtjBvrevFefALTP8f49Cli5xC2Ftajafzou2gsKNf/FhDWeQPWGhCJcsgakKoFvEGwFiSkheilYQwAdAVrPLycgyYqQ29cPYffZRHNsIsOd0yxUQPwZ3BQEICoSLdTcllJpLlCtkxYNnFrgKaqAwwu54brOcHZp1i5reQBpsoDNA4w4LORc71n8Mf1mQnu/dMM9lp/3YI9fgCMvwjyNABPCkAYgVr9Rafi+SxM7xDOh97WqiNmEQ6ZtOP9Nab5HjEeMYv8Ws87C6bW6nU15w0sVIMzyNfrYyLsYDHBwCWDHga9NJpuE/AyRbwkZvl9Hk94MR/ygGkGaWTYKiyDDiYCKBZzVDWl6lpHm7zaOM45QzN4OgkYzN7HrmoQvc0GI7P+JE5aHSQpecFabGhvYTawkdewtkPX3cB3z+D8NdLwBGHwgDdncwKMBXyf0PdtrlCveg4JUaUgJDALUGKBpYToHZJ18NbBUISZD9lETtUCCvoYcz7U8X0X0QxjUtUgUktImZshoCN/No0Hcu3LpLO2WVw3dB8idz3YFL5QJ+T7GsVqHfctg7dwsPAZC6hjQeev0ffP4f01xwZ3Dd8/g7Ebzgf8DdLwFMn3SNYidh1m34GkOEzWilVIRUipCir1gjUrKg4dImooMhN8nmHHe44fKYDmnYDB+3Z/SLywboDvngLggZOn8XNM0xuMaRKlTcoqPCVgkCgPIQqJKOeKKg13ck0GgKm65r6kGZ+GAz6bjwiSJ+wpYGqaxbzPAVYkmCTWE9XX45a5PxiEVXIJyWvpNVq/dzVr0MaTYgxv8w0HHwUwxjTzAprmsfyrvc5T8zgll3Ri63UF9M8wXQ2F9Vuzfb2BG7g5dKkxtGwSaYPIWCGXzeIzHKSmtA6QWOBRiBtL5VCM0hSqP98DTOHfSeuf/tN/il/6pV9qbvuFX/gF/P2///d/MBtUrfei5fz6r/86/st/+S/48R//cXz3u9/FN77xDRwOB1xfX3/Z23e2UopADsqaYJxPrmySyToIrzFxchL3iEJvDfhdvMdactckh8YsEsaazajJfAv81kyghhVYP1YK5DJRfd3CglKElVi5dvJwkjwIm9jDWs8ncgqYUszdJZLiDKn42dSrlj2uyZ4jEmYyOMGhCwnTaBFOES4Wb6/xYEFkcAoWx0TYi0/PKKbr2vszhs3ulhLZ91qJzrp1j11xUcyWVxC+0Eo3rl7qDfjg0o4v1PtxQBgGWA/u3Ps2MBOdg76uCuBn27AAjkmoBsU7OH+oZvH0UGky2PWhDO+ylNn6P2ItQeD1Zs/yuGjv58ek1dvrtYwFZemxW2JABmLzd11MXJUFyM+p/d4etq5xKAlu2YzyXH0tfV4t9ayXKg6cPCZgwiRAioXBFueyxhq2qO1ilisCmBLgyGA2FnO0IgMHptFinB0Os0NM7P15TOz3OVLM24DMoLbIrL1FTvVeR1dzAqScHr7LUgYBXYiN7700oXPM9EjWsR1Ec74XZFptYQrw08aHSyrtuvC7dIqqnCxZB0MArEfNQvuyVs3YTYl55rZi912SgJb5AbZ5DX1NoIoDl677Fzfq4XygXuvA0aIBLABPLe/0bsjnrXc8/V2BbwaFB9QzBBTsAtDIOZXVB8f7z6YBIRwycK4+hfbCTIP6uzz3IBdVkumQzCwswZSHrSmYotJGU4M9+exsFThqUsGEFIOu8v2byeKYDI4pYZLi70RR7GkoS7at0QZK/T3QWXzQdeYdfuk4qIq6ei3l35dYwHUD+XGrjqjI15OEijEoeZE1DnADYue4wOtMw+BZFnIKAl8q8JYrES7mBkCVHwAMPk4aD/zi2vNhsWGpGirKwZB/Z/C3WCSpdyeASqHICpulN+gaCFyDOalR8ZiLOcHluLBk/5qc3wJMENA8QIEf769zfHDuCt5v8/nv/VM4fwPrGPC1bgN0N4B8/uTYu3UNCDYU+XZlZhIAGwFs8pYSkIfBaePI2TIjZcn0az+by7HNuwHWeMw0Y1KGcd4jbbtFr58KvGRpOPi8R6pAGdnNnFOQqBB4cFPAgu2HknNxgSQsf1Pe89KKKeXv9F2u6G9jAgNviTnNWlMJ6A1m8ac096UJQLYFgeufl5pCQGkK1T8fs5LVa5vPuQETJc8tA4ycjx+yzmxepL5glqFrACZtHvN727PtOXvts2JoSSZ54Lt7ICYUG8DydxsLOm74yvW881dwbgOvQHD3BF33FM5dw1jP7F9/wzNdDPvAUr9Bco5BX9/loYA1AKxAoKGUbzORQNbAUirf5cqXr3ElWYvkBm4sEYSBukGymle4TAoESl6hc4+c28DYDjHNSEjwqd3reo4oIBxBcNW1RM9zyE/9OzN+JS/JeQIKUJpBYCPX2xTzVV4bx2tLc5h3yfHfjU758FKiWaEelOyk3qIGX7JertXmDARODjlGLNVCbZ4geUwlU7BWWNgLCwn2IJa8wOqcK1aas2pghMkDVltFT+0K8OWsL3Pvt+vnfu7n8Au/8AvNbUs2MAB88skncM7hxYsXze0vXrzAj/zIj3xftu2dM65/9I/+EX7hF34Bf+2v/TX84i/+Ir75zW/iL/7Fv4if/umfxr/8l/8Sf/SP/tFHv5Z1XR5CYk3L5H2IpUspZtl3Eyxy8UeV1cQjOniLRG653lbILVfDjDZdBnOBAug0Ug6xyAC4QCnWD+1UYr6tBo0vX5wu+aiEcBDvpbZgLK+psq2AnrgbN4ctYjhiHAPuIl+MvSnTbgfr2PeXQu5UA5w4nVJAl9rEVhO0XSK8TB59NDid+DMTjfBdQpgN9kePMTjM0eDbU4fviHTjQAG3ccJkuGuoF0OWuhTbDGS/vMcmUeUxDQMVLNeoJ3muyb8z2xGpBXoWx49KM+pOfsPrqRiExliJ2ny54cd6no7tegz9M3T9x9hdD7i64WK474GhR8MIBhjcrdnAa0UdERCnFuipJaAUwMOiAk8MVyN4lX250QJuwxIj//4A10PFYH1OM2hdfG+drWNCkSsDHVIiBBSwCFAQpGL6VFYNqzHhfS44Gczh766OBdb6DO6of1/t3VXLu5csP5V36Wd9+35rPbqiMLCKrLO1zlCJOACRlZYC21oHLxOnYzxiDkeMpxlviJmfT0T6PcA1bNkEwMvBfaIIhxnWGHRop2YfE+E1mNFzDA7xMCBEC+8IY3B4M3ncRSusv4CX4YjPwwlTitjFGbNBkf8Jy0cBPzIWKSF7fV0agrl27iZosScFIjI360F2T1yJB0tLiEugsCidG1Yw37A8gS2cGzAMn2DY/Cj88DGOT5/C9Qk68NtaZQUXkGfZGKofO4eWEcxDuooENE6mDIohwMRFrPMdTL9hH/HIw+MsbWDjl9u9XxZ5ScCFGoTQa55+Fmu7PKRG/8Xlay5BnrNc4LGtBLvICyzyMFdp9OZYAGSWX5Z7u60Ud5znKNCjEm+WeN6UBpwCPtk+wqPR/S8XBUD3FYUzCSfL9IQFKNJdHYLL+6r4sWuc0G3tu6eg7Yw5HBDDCYf5Nb6IY8Pw64XV4+X8mRPhEDmf2FigM76KDRG3MNgB2MJiihYnMnAG2JHBy0S4TRHHRPgsnvAmjNhRYLsXAMZ0zI6sJNv5M6QF6Fs3drGMBfzPGpNji7wQxG03yzqX/uA6iE6b5OqJ3Hwli/czqGNAkyS032VK+TYr+aVzG/juKcL1U8zXDqkzsEOC88UKZgn0LIu7taX5geYGaTYAJZiYYII0mdQ71FrEYeA8gSJsdwNUjQOKI5KLjd/0+641BVH9O1tSIMcD5/osCa8ZRkQF7GxqhyTi/zVmb2NbZVZiht61jAfK+C3sPi3Ma19fa3t4txE1H8cC9tKUWOA2cP4aEADF+BvADwz4AiBh/yVXAJqHVg3umBhhaCtgTgTwFJYiVAbu4omZfhI7iE6IYd/GCgpZfWDtgL7nnMK5LcbpDuNpxOdxggWyn3hf5dyjkFE6Y+GcwQCT78+sP2PgEtDDYGuUERzxmma8iSNOFHEXJxwoYMyMP5frCf5OAyIJ61bORmXut42p9rp9Oest8m8LZEsIYB0M1piwBkA/BEo3BKMzhRkAY8UuZIDrn8H4G8zDABoM1CHBLJpAvTCCu5VLiKoHgfMGsQ6QA3EcMFUsoK7Lx5ZNgaEoKt7SqlIxxmGeIw8r/iD/8CisYLZNW6oP9O86JrRgk877Yf9+bR6TzJF5GwkkpYQ11XQdHwoJROrYBRHMWlZ4aJ3g3Aa9nPvWOvZ79tdw/prrA38N2z8H3IabPW5A8j1Izn8FfpX5CwDJ2Qb8M9X3BiAzgvn7rNjBsf3Mep8qCpJzSL7nBhRFGD9wHJuZQEhhjxh2OVYY47KKwaWAof8IV9s9pukeMZ5wijtsKKJ3XCPPkovFlBo//t6wXR0rDctQxpqIciIZBifDY6dEmA3nCjr0vG7MUyQQYlYmrJ2PUSwjZqJc8+fvFG2zFklUAhALyqpxvIwNdX2xhkNkgFpPPYFk6kfqfZy/8ADPrCpzV6B+g7C1jSWEArjWJ3S9Es5aIslyEbGCkKoYAUCaTjxwLlnHsSBaWFzBUBSyUoCNQ6XYjbBWjw2tXYvFWz3Q9f3XBxAILy7eR8Mw4OnTp299dN/3+EN/6A/hV3/1V/Hn//yfBwAQEX71V38VP/dzP/d92L73AIL/8T/+x/g3/+bf4M/+2T8LAPh9v+/34T//5/+Mv/t3/y7+xJ/4ExjH8S2vUBYP9nKSlJ13+86ln0Wm1Qx4EI+fAgSHnEzmLl+VxFEFiJTibgn+PBLEWrFyWCZ1zvUN0FMKPB7s49xV9ihiD5+rnBwX8+wLhuxVoZsoiKWDSjtZsl1PEg0yyIu3zeWEEmBvP++vof4sWmD23YgQTyAKOMyvkeIMZwyeitfftfU4Ucz+oLondCp3DfYUz56EHSIiMXi6Mw7x1GOOBp1LGIPFPjrsyGSw5zthjxfzAacUsaMA2A6dvy7eNuKHlFKUfWZgUmFkrLFwlsXWqkwnidcfWq+/eogNmZQ9epZdwCwxr7qMpdtYfurrGblotAy1xIWmXIyc36LvbjDI8Jf41OLJTWxAXreIabYCgvsLPYRahJX9vkIF+MwGZuYir1ZokDWw4OTOuQG2u1lMC333xQXReQzgnwpe1sCDw9KXmOVQVzkuGAWNF40mbQoVCeiyh/rIbW4utyrdKrGg+PkVCZeCvc5tZXjjwH9LQtf4d3U3BdSxDmeSziWrp5J1mjiWv1cKtjDf8vCOFAXsOSJG9Wo7H0zpfc9Je7rJ8TbMO0SasKcJX0kkQKvJHropsTcewPFhT4GTNgv06HICt0vM+HfJYGcY7JlPPaxJOJHF6wS8Tsz+fRF5ANQXcURICSMSrNmIHM5WQLwwP6PLydGqUuFC8VWOA20ccMrl5LNlMHjh93dJDaH3pVQmCl860opOQFHhuiFo8uXKuwHD8FX4m59EGp7g9HTA9aYCd6m1iul8CwLXDSIigCzzcGpf4FljAXFTyIwJBomB4OqcT85Kg6hDco7Bn/kGNo6w7stI2hScKcCNTg6u40YdH8o/cYiTXIJSRBSgM7+unvtVjvBoiyd+4/Ir8+aqY9E1zD5rO3R+C2v7fF3uuifw7krYMFfw3fPC6utugO46n//Ub0BdB7IuAzu1vPPiJq4UcoZIgHvxxg8zTJgy2IN5hzB+jjC/YfA87DGH+9w00lyMP6cXaeoViCJC2OHN7YRd2MEL2OONRW8dtlXsHBP76nXGciEnMmqAfYJfY4aDQZ8sjsbiBhYusdffyzTjlQx5eRWOuI0TDiLLNPASZ684HkgjkCjwd0OnB5sy1FzDV2JEKld3m5BjQc4ZFoWbgsDNDIG3MsjlveQvLVSXx6f6/rHccwvfPcd0fQ37FLCe4MUWopZ7+5V4oKtuCPFPcwYCm5FBAz39MggssYCczceZjyP7PbqNvB5fe6x5fyC49eCPi9sLqOMBOCcDrPQ23+fnlVxh+RolLhQv6EXd0NgBnG9jkRgjv7/mBgBgc1HeQdn+3t9kb8+ue9qAPdbfMMPXDczk8j2o6zLTKlkLcrbEheVQH1m2BnsWgFsN8qyx/hTssfPMsyI0Xsx7xPFV9n9NiYddab7A5I2nMMZJrXIUO7odQmJf2Gt4XNsunxsqtSbrMCQHZ6vYAMJtYgpcbwx6WGYIA7hNAW9oxOswYkwMBB8TZR9tzhU3sJLjUJyQkNgmJBm0bUJeBM37qeT50DZNtZ8rpYACPtpA1pjg5JhYxpXaNmvZVGhtIeoZJ5UaaqUZocxx4/k6EoYBqTNwnhbqoJTjQk0uqZclbhivYrQErhdI44KAdVUs0OOSgWD2+HfqM20jEAByXMMq0ed9FiWCkVqOY8NciA0p5oGJwNViPsaYGcJqXxNpZi/5mjTSNIXWAev10L5UAGgTtR7gxcCv99fo/DW8v4K1PEyt6z+G656tWj3wAECfrXkU5C2gr2xXxfhttiUKnUotICI1dhBq/9A8Z+kVrJ9dGoH6XBM3sN0VbHgGpAA73vIDJTVU3IMB7Rtst1+HDhWd5jvc3f0GRhqxrWxi5mq/q61UBn4TcFSweHGOnRL7Ao8pIoiaSHOF5WwWnZ0UFQhe1BGKAzQ2mfkKwZSvAgaXuKAgcF1D5NhQNZRnAbPVMmt1X5dvg1/drD1OrWK4AaZMcudvELZXSIOB7VIulZlEz5YQfV+Ux8DlhnGZTySfd3FakDVSI8QqDjyRuhkw8x4dADN7aQrtkVJAUM6C5AwfailV7ZLfEevnf/7n8Zf/8l/GH/7Dfxg/8zM/g1/+5V/Gfr/Hz/7sz35f3u+dgeD/9t/+Gz755JPmtq7r8Iu/+Iv4c3/uz73Ta2mw499LgfQQzbtM043iCRxzZ7wuPnTQ1OrBUQdwLfCaI3R50qyfRPVdxb+xfsh5IOeTbQsdZOP9thne0AA/NbPn4v4oQxsgfjsUT1AZHA95aYfnacFrbQeqKPYpFZCHgR5+DlEv27aBmT1m8FTdAPbf6YxDtGm1q02Jp2Y6mAwA5Sm/oLz/nDG4TQ6b6NATgz23ZLCToHybAg6RbSEmYXay/x3LY13Fnszf+5qMv962S7DL2QU95UJuye6plzJ9gMoWQwEfKSDP37NAPOrf09y78hkMLJz10r3rge4abkgYpJu/lqzp7dayp9ryMXE9b8nSDgWBhTLFCcIC9CFQkX++jYH2lvXwgMZ1tvvaKsORnPgLqT+YzUOByouoamDRGLpYmJ9/l+wZuXJ8LNg9RmJB56/zIBfnrgqzx3r47hkXecLsS90VYiXjSiugz+o+0A5+mCUBi1yszdfAvGcGoHr74RamknMqC6JYBShbwmVGIsURnb9B37HXVwgHBJrK1O8s32TQ0ho+zusBBhu0cZqn/Jb7dzDoyaA3BrvEaoJdCphSwj7NOFLAlEgkngZOLUrWZH2LY+tSHKAmgWsbRFru1d/023zD9XPVDaK3rdX8bfWB4hMmLIo0POFkzhtYS6uJ2lrTSOMD/3H+nMz00UtoOAeAAS4wEpnqOHXsA/Yl2cZcWkv2Xz08DihFFqDyT62EWuZPeZEFCNzEgrd8OZkC0h4XalNSD3nSJqayfrvuBn3/UWH2dM+Y2SN+ntRvEYcBJH5+0fPgzmWB97ZVY26lwEswcch/uzlIvOBmvTs62HiCE5YwCUtDY4bKbLOnuGXpOgBMk4P3V5jDDjNFGZgkU7iVbVPFhrrYqfMGl/i6GaUB6xIXUkck7CjilEIe+sLefML4sx2raSQGEwBQANtfBRiYMyA2Xijq1xcfJ6rwsUAF9KzHh7cBv/VSMnBhBcvtVTMIQD5OVVnC1x6H2Lk89ElBYI0NCgLr33Vs0Pwgkkg821NEBEsFBK6Ppfw5tVkMwKpM2HoYgsQEJ+qXD48NuVGcj6O2aVwaSEVq2lqaFLuKs4GO5QPjnDiSHg4Ly2tEpQaqbV/qBrH3Nxj65/Dd0wyKKJNT8wJtBGlOEDufpd018LO2MlhfgT11Q9lS4sFf9WZX4E/daHIyNNjQBiYys8vMO1jHwJ76gRY/cRliKXHP+xv47pqZXvGUAePOWBCSADUMBNtUzqucd1fqnggDGEisYJXRnNijfBLmXzRsa5HBYMnPeH8EhUogrc515t9D52+da6Q6LrTN4mXuUNcNuh4fJyow2Kq1WMtcz8e7HzJoaLpWJVTHBm0Yd369ViB7zsdjlZAeU+fPSdYiWgtDVGwDDA8Xq3OE2t7oQ+0hgBITAAgobAXcRbaUqlW4kIGWzmmsOK28ag3SP548wrWCbo89iwdL/2/1/O0kFnT9x/DDx8DwDMkNiP0GYXuVz3/qHGJnGOiV7/LB3CBWxyGhUXgtQeDmc1wAf5er2EQ4GLWTUK9oirBhByLev9k2SGwCnLtG38fcwLOuR5THUgUGAwCZkjM4wyDww1Z0xRIigu2jdMC0XdSxei1FLA3hSxnCMjas1oaphYmlfXPWIHrbai7/WeVgzu5rt8OgthW0UtMFZ2G7pIejlD2tJYTiQ0ubyeWA6bXfz7Y92xQRs/5V6UoRxm1g44hkWJnm7IDkVMXHWB87APzOZgS/y/oLf+Ev4OXLl/h7f+/v4dNPP8Uf+AN/AP/u3/27swFyX9Z654xrCQLX64//8T/+zhvAnXAGaYCSwHERJ0mcAL78+OL9Vwfu88EEZdCUNRaxHM1yZC8CV/aTKt2L6s7mcXVHf9W/y/X5xNIgfsm/y7mr7N9ljIdxm+LfA2A5tbNZiadngmR0VzzBuA2SAL0x7IVhfJ2l4E4GwdX7X/crwMkPGS3sIl8M7QDnIvruBvN0hxiPCGApxZECNtblAXLO8CRNDWJjYj+gzlh0jllRtZxhAoPExxQxwWIfLWaTMMmwFzZ0P5dfZVZM0sGCMRf++XhIpSjL03kfaPmsdXVV/q3Pyp25C68TH0jcNNy3YZ9XloHI0XUeOoRrIHcwA5rZ5MkNsD5dtHuol4LAF8FiOr8vkckSLxMBOye4IOyxlcEBEMAHSwDuHVftB7RcdYHX3h5haMzd/Fr+qckdD6gEDFegizfV2GAB8ACuS76RrWtd8fSs5Vy1GmDJAPb+Bl33BE4UAmuDHNCxzyusyLiGTQP+PkbWqSCxUemrdl5pyPHDWt+Y9KvMNMY+e6WtrUZdIGCPMRansMNdnDAYl4EdZc2eD3bgc8VZc9ZIAThGTLA4wmBKyP6fmtzV59la2vMh3eKi7aheT0DgJOweYyqw+1KTaJEqZnsIFHWAxrdlQvcQGLxsmFjbw/lrBgh9xxLwC+f7mk1M0ySic5DYNomhbMMKAzDfLkVeIy/W5P49VwFoHj4utcAjKBA0gsjB2vq4LWqbKCCMgoPtYSRturbTu759DSurxARr+4r1NyxYfxv0/fOsBvDdU2YAi+LF9M8z4AMAUZg+9TAXEk+3Zj9Ys8ryAc6/q3I/NbLP5rsjKs3pFJihDGQJr55r6x6PEBbTNcbR4z4FuBRxZRx66zAY07DxVWmzBrSU+QMs+ZwUJK4OzHbQipyzqqyptitVA0S1mnyXZs35qrg/F+PBEmxOTSzTrbkE/jTDI0053nQWOvS4EysBbi5uEL3FJs8QKK9dM3vW4oLaxOiaoWxBg6QxATgDgWsZMd+2qAbVFzQX/b4AMO+xats1zl/bwKffPSX2vNbmMNuktfkw576q1OtAZoJJtoDwKRWALX/NkidVNQK/Xl1DSNGtDSmxNXO5QcwNIWatO3Td0+zza6yD655n4KfOC9TbM3rXyLvX4sISmFt+V5eUAm9bhiLsPOchUfxxmbCRyAO+NIzqpfYzTuzOjLEIs8c4jThSwE4Uo2s2azVjdrliAuLiApoHONbX9kSAkbpRVYsZlHN8tU/IrGSSJlQHZJbe6pLXzfsnXbpqnK/HAL9qI/fWR8pF25iaBbhBcoPYAziYCtxZ+oMvZwisHQp1Kpoqb1C1hXCz+kw/4jiSWAAq1/sP9Q93MlPjISIJAbApZJujsj3FT9wal9nDWSUQA9c9iZCSzXGhrJVYoOQ3qReAgh9o8867AZ1YsKkNTN9/BN8946ZQ/wwYnoGGJ8K45TgQBokFFQi8JvPnD71y9Ehz31KCneNZUxhAJpXU5zo/t+4uV9Ybtq0/mufpT8O+wfVKVRxh0gwrlr2/winc4Y5mGACDcdjYgi9EqTvqWr3+fXkN1gFtKQEhJcAsr1UWWVUozXyq6hdtXtdYxTI26GyojCnUuQgu1w+PWWvP1Pdbn0OhbSnkGQJ6jkXPg+eNTc25XAPBl5RDutQz/PyOlI8nS0lY5TEfT3yH+NJr7S7NAI0LWstqo5tS/CC1QNkjv0MowWBP4e+XFcRyfX9oOY9cVpKtt/WSqJJ7GUNNcpdsAV31oKvl4OzhM8GYsYA+uYm/EgDN8qQ5H9qifpN1x04LOmt7Cdwq8byC78rEXjVrV5Yf1LPHd0gAonT1+bOts/2WMq2ccFVsPwDowoQulgm/KZ5AYZe78jHs+Z/IXQCeGB6zRw97kHb2Gs4NGRCawxFh3uN+fo0hjOiMzYnYxjhJsngdKeCIgME4dNbCWfbzqv3xTikhWofXsIhwcALwHEGYJNE7UWyGMej3lygwkGIcjJlLQ4DU/kMlmgUM1m2tQWEOwPXr1yzxxLKcCshaLoUbFOBaegRnEFgl4BVzNImbu+6zs1dPCkhTZpJ1/oa9QIevIlw/wWYDbKo4WHft68NHQeDet4+tfYTbBFAyTWX8BAaB/Tg3x6HKvPKFXcHg91xcvCpjr0i4gLajTxW731YFoJPbnNsCMkyQPxf7gmoXlD3DxN9RQOAipdNErawmFlSA75qMS9n/dRLnhQEMIAM92e7BDwz2+A608O8CsDq8QW+3K8kcF3dyoaeEMPRZzpWsQ3IOJm5yDLH9M1iZ/o15h35+gxj23ESKe/EXP1T7PkI7eF33BN6zLcs834PihC+mV5jmPRwMttbh2nYYnMtDGcYUQZRYFi7HSu3fxUPfJKFCzB7cExKzgUENA6hh1Cu7G8iNIj42qEm+6rUsJtvBjQmZHZpSBoMtkH1N1RrnnN1DOR7MRDnuNXLw3CRq3jGnajWcpQlp+aItTOJj0dkOtn+Ow9OnCIOH27YSrvzZaqaPOY8R9e+dByyVxM7YBGPZHsJEwM3pIuhTx4isFKjA1/dZmjekyuIBaJvHAIDax884eDBb3Vr1CXX5Oh0Cxwq1qCIAhgIPfsqFo14xFFpuAZ66IdwyfosllHPbbAPTdTdn07ytv+F9090gDU+aWBCGHrFzmeFXF3bpAcYfcA7+PgTS1XLPOrfI7+V7mM3HsPGGH+9vWE44v+G9Ix7CGfDJ0nduLl1tfxSUCGHeI8Qj7sMeW4q4sR1gmGSuQ1tsMg+CPZMhOAA7uUtZf7rUwsnk6+f6uZ8HcUJknUBmCC2XBXJz2dTgcsXssXI9z40vc543cOyikgul1BSR9eAp3YqL37Jeu1BUKdZwbso2Izew/XPQYND3hCXAA/B5rv+AdeUQEecInQcmBYU0R4CCiHxsuRDzsbTasLSOGe4kBAhl/n1Ak4h99buqEaSN/XOySM384zwBuUmkHvgpFTm4xoaUpPw3DPoAiwJ+0Qzm133Y/7vL1g8u5whOYoFVn09pCsd+c9YIUjVAI/WuGnr14oFP8rvMeahBOjeHXJjzY94C9izWkh1o/A2c2zTKo2j2+f6UAgNpAPr+K/DuCpQixvEV3twS7qbXoDCKr66FrwgdS7CnEzAHKBJtVRZpXFDlQWcsLMU2N9BtNjrk0oMM2wlEMyNUgI/lE03e6/z4LlqiIv/W9gATStaZwEuwamlTc7k5pedhS2bKAws1ZzAWzvZw3TOE6ycIw4B5y0oBtYnRnMEtYkO2lHOlxlBgOOYcodQMenzZOWYQcTmUUOtVWMdbbv0DLMALH/0Ry/srONdB/ezrWSOcJ7S5hCqNdZYOX8MA7/m6F2nKgLFaTnI3oerS4TwvKNca/i4U9NX5QJ2/Qa0Y7vuvNMPe3PBJtoWifot5e4Uw9DkOhMG2wG+dG6zyRuR+rSGULxcBO0d0Y2nsuHGEnY7INlEUCr6Qivd3fuWqBrRLlajUPHlRYJzE+qxwpjiC6CT7fgPfPQMER3k6vQHFCftwj5QCJprhjcFG3mMmwt4ETIbQG55R0sNmxduUiu2KA8882lqPmSJiipjFg1ZzSM3jeDZNz1gJCClxbNF/S7LZOWms1CjJWLnOF7WAWeQKEYQOrIjQpy6JcWffaBJcIb93XUUstiPjZzJ40G1AnUMnyiGilG3hipJovWlMVGoFZwGEZYOoveZoTHDjeM4qt67kBhRgjKpUiwre2gExSn5pPlwt8JAS+f3XBwSt/0HrBwoEmyzfXU/8zqZ8ys9UPZ5PUgdrY2b/FQZgjxBKR7Flfiy2ZQ385Y1su/fS3daJ3ZrEaUG57N5bfwPTP8/+XdRvMFVJXJ7gfKmoWx6XGqQryc2l4m7p4cMn3AlO/LvS6XNMh+8A0+s83ZdoysPk2K+U/cgsDdhu+bYQjpjmW9zejTiEA3YyQM4ag9469IBYQkRMRIiJQJZN061jefeU2M/nSJEDGgG31uRESBkyUZh/NSjE35ckWIn4YmSBSDMPFEgRJN5/Gv6csTm48iCJ9f5ZtgRICsmUAO1QfHsude50mIT+1NuWPqAcotvXyMdc3UHMBj3lmcZYeH+Dvv8KuuFjnLZbXPUJvS8yTv0HlGROf/YL8CcaZk7ofaeZ72sa98L6Y+Anwo9jU+DlDp0+yTzAZH/EehsDYDU2NHEh5osbUDwrrR2yLyj/XTF9lAGMFuApG2WFTVFiQW0/oIxfndjr/ZUkcVd4SNI5S/OHO/kdohewVye21jHgApmClIlUxwUI+EYJ0SFLPqN3HB86f8b20YuxG5/Djc/gAjeSwvg5UvpuLop5Hwf5rrhh5P1XYaxHmG8xBwZ5dnEPl1ie+ZF1eOZ6TIlwFydMRJhJwX0FfMsQpTnRGTNY759SNWhJ5Y5oU53iKa9NxLdf5Jd2Fvq6/Ho1VHueuNXx4aHXbr3DWwC4BoEfs4xROEpZpwPQXWPadohXBkM1KA5ogR+A40DdFFoCP11V8DH4I5GrAhmUMbLmGVcDQMlaQM6ZD1ELZGsV20MHRtQrs/4AIGnjWIacNq9zlQs87xnAjBWrgMwEpLVYoChKxSkz9szz12UbGPb57PtnzGgx7P/d9R8Xxq94++kEb/Idpu2QAR7qDFKHtqgDIMKFcwnuGmOrAulq1t+lGFADQfXfyTrQ5hrANX/nAjZafw2kkL3GgzaULYPAWuRdXf1oziPG6TVub//3bDOlB75aKYVFDKiXFkZHEKbcJCqPVx89C5MLI2b2tTvHGFugE2EEMRu5bEtuHq/EheZMTnQOAqPEhGXeoK9dgz1Uff46X9D3PIsumaTQ2kPk/LR7wmqN7hppME1jqD7fl2DPmnJIeXK0ZAjWfSk5vmr2GAAmOzTxwAEiBzduA2s3MGZ/sR54zOKZF0587gtIA+DBJpFewxUM4uYMb0eMbIWiIIBJhBS5iDegBvgFqiZQZpRqPOiqXGF7xvK7OOCpu8K8vWpsYMLgQZ0cCQr6PDI2JLQqASMxW2O32sDoQDhTDYPjfVeBPSvs3mYwpXUMWukmTTz4KX8NMrNErSJ89wxuew1jNxhOLzDNd7id73CQYWI9Ejc4qvkcEYQpGVEAiFVMdZZMEgwZ8DEZLPbEYGxI3NhTgXeRSvP3WAYJg2sZlEaugjS8uyUHQ5szFOZfUSea6vEaE/S1osSEGgQuDeNqN+v7SPBai5J5PoWSTpDk+OxguxuctluEwUtcqAdHtiCPsxwXNFdYkkfmqrFUvtyUwWAXItw0yrVEGipqtSCNhiS+oNABqG5ASmxvaGkUAsf7+4ezgrKrGjox5w/q+7skk3DOeMUD1I0DjENyEcANXG4SEQ+6jEIm4TZy+Q4qe4Ey+FFrCLY0XCqGtUHsu2fw/cccD6RmCNvrHEvnoSuxQOOANzCuti1rj4w6DU4kRyWB40csWILVf2IpZ+cZdrwHxtsM+lLYZzY/k68WQLAyu+u/RRFm7AY2bgopDgDcho/rFHiGSWIiCiw4LgoI3nc3uJY6Y5xuMU/3mMIbhJQaMskpBURYxORgrUFvTa4hHFpWsM4jsBaYKWHSMz0DwYUJTnHkJlEikGEAmHMVjiWqAHQwrJ5ZVvtJlcYETdY0V3lItayfS9caGNw+u9BJmplDCiobU+KBHbj54TYIg8XGc2OoHvamljFKEAGELOIEezBo1EO1XURmFhMyCKzHlQmT+ASz+jU3i4Q8Yt2G4wAAS8wYT5ZVPfw+PYDjg/vtceuHQPD/8PUhCZ8mdS5bQ7A0kYi7+bWsXC/s/PfaF63Bm39fsv60i6cM4LrAc9JFyQWeWj3UBZ4APukCs0eDOIC3evvlBMMarXQzCARrYEUKysCPOZflRvFMJMfJt+NJ7iZFhFCC+FI+w3R8z5YWnQfRCGs6BDDgyzPQbQFCDHfMScQTNUC6thT0VbAn37Z4OA+A0057VdRJ5y5WrA0gNVIsTRAvFZbnq8i/HyPZiKAzZkBd3CX5e3FZvvjODy1rZaKq2yB24tu6cmgvQeDlz/y4Cgx+mwE8d4eLjIOPsfdP0L6sxYxAC7MCEtfrrXHnTPteYkHNxqy7xFZ+dyrD1ViwYPbUdg/J9w2zR5tCZwVevWmXtvkCQPzYgX1Lxlb2bKMIQGLEA1YdzOTirr1zgQty04HgEU1ogZTFJtVNk0uLYwGzLbIlBM5ZglocKUsvHwsKCAur9yG7hZql89B5X7/GpeRN2cBrnuG6lhLQS1YkZ++//B4kWYXRwkDZQbzqczzfthIPzmLD4u/aI9Qs2KR5UySpu8QG/FAfUPXuVPBmCe7ViwQMVusgk2yVK5y/Lg+cCxXIvrYBF8AfLfg0LlgdiCsFn9rA+OtWDdBdNz6fYegbf7/UIRd4y5VbEtQckE1MqEFgAA1be6kqAgr4W9+2ttQDWpN1iqdS/MX2GK0H4Hp3Jd/BCGM8QgpZXrmWJ+h07notz7lLrGGLGjS5fOKvHUOX8pWHBrXoettpTI+IBe+/6uuUECGs42EvKwBvbQ0DnMeDNV/Qt9lQ6TIxsvrk4hChtnX24bGh2MKpKhCQU2KlabT0AS6vU+Tg5donTQNRYaRFPVEPFipeny6z/fj1+sK+MuK1b4cMBBvH4EjqrqDWD6oOyuxfbQwBwLJZXC/LWwVhAV/C0RQENhQZmAsMohuKQBwZ/FWQZ8H6q8EfI1YfTT7ivFwLWjseBX/rHI1jB9clzt/AOx6QFxDg0lnqwJsjFjKKeVxqxObPakweJKXwKEC5huDPVLODLVK1g/P1/JHX6Xqg2Goj50tcKgUHqgZmlc/Wg4th5HiS4+eSPUx9m661IZJn5JGVVZqJtrnGnC0ryiGU4yVv93uuDEKac6uwtTpB5wsovoAq/2W1YmkaNCqthALZm4Id8HNLTCjgolpB8DBmZ4dMHrFyLuhsAFUPZzXAMhYoCLyIB7Ur5jvts6rWM2ECwgiKJyaSpQCiE/9d7afaLg4YYajY7dSWH84DyXqYFIAY0Nhhrh1H0mDK+YYd0PlrEE0gmjEHk2sJVeZy8ydlz2AAqxiANm29sSBt3iDxZ4I9vz7Id44qggBy/RZLiRxn3oIdLGcK6Da+z9K8pCHENH9XwVmH0+v1UcHXnKel/JMqe4iaTLJsFgEsEl3mDNZm06pmZUsIaTYakn3ZDED3zZPreJBSeHge2DuuS1Ze//++fqBAsK7aA6jcRtAJ4OeMn3JURJF2E/WZBQgM1UT7yDIY7eTQDEse0US0MsGK5WNcA/6qZ88lufdqN7+SbiyHuoTBN2y/ppt/wc+P75PbFp6M9URPvY0ft17s5cS7u4YfPs5JmXM7hPkOVoa/OPHiiWGfvx/fPeX3MA6n7efYxQM+ixMcgCvDjL9BvJL4u+KiLogc/EixKeB6CUJ5EExKeWzUEjzpjM3WE4kCdmlGCDuo9MaaLgc1lrBH9vCCwcaKNcUCiFrKrgoAW+TfGqDX2H7KYNaAH1HkpEu/v/NVLiINQ4B3HA+vMSprZ7hfJV7qBWr8DaK3uUvnDBDtOSO4Ttx6p7cJ4E6JO/xyv5uk2yeyDlNJvbKnT5YL6qCH0t1/SDb4LkuPueLHdS7vpHycFXmfdvaN4d9NJQcHGIjQpUmEMkdJCh4t8C6BPbXcW8EeluA+YZBD/Ky64WP29LMM9qTuKvv8ku8wDx1IgPzYGSRvziVd1bU7IZ2x/vT8X0r0VZqb9+eC8Vff1uz3WGSh2aPJbZjBaIcsl40y2fns+dZjGD7Gzc0J03yPMO9xN73CNoh3uQA+Fir15ORrTyH7+TnDzB314ANKY2gJ+PTGYms9D4tLBKSIESOrQfKwFJMLopRmeABe3qOxdKixNGMAKRi1e68WLYX1V6SmujQRXa5lXFiuSxCQqf5FYR1eAj6tNBhSB5iOGT4Ny0+3hc5tYtYaSXqfyr6UTUhqDyG2JMuBhADOQODHeAM+ZjGQ0pfXNWVOgK0YwrVVhE4Mj/EIognW9vBA4xnMACWBhJ2jypJ6FXd3g3rYrSqFnNUBSN3DeUL3DHbzSQZ74rBB7AfMA8c6ZflkFrDFaoFXtoqPkLx9c8kT1OevlnjaeS5szZr1J38//AW0BUN+nvWw2CDRKdvf8L7RPGInfqEb9DIA19kBu8138cXxu5ine1hh7PWGJeAaGw5pxkwRHRy21jGrrzrH6sLOwaCDA5mEwToM1mFLHHNmBIS4B6ZSABXGH8cOZfZnho5Zt5Sy0pRmayfKrD+NC7aSf2sx2IBWOM9xlquIyguAtPy5+HJgQJnM4ARgYICOfUCXswTqZlCdK6jCqH6M7GAAHFd4oBRnJvHINgXG2XxMKbM0EYG6wrZf8wrWgXEfUtA5t4VzWgtYJIkTyhC2KzYAzAacgLADke6vYhvDn79D569AxPZjc34NBdiqOCeEkaJc6HI84LxhyEOiNU/w/bMmT6DhCeLAeUoYhkYpRJ1BGgr4ezkuVIy/GgymUle4QOjGGW4a83dlxntg3gnQE5DoBIrtQMilBDx/duuhbE7+e5MJC7zxDPjw/TxotiiL1NeCQSZjHYbhI2yvvo5pvAXRiEM8oqMIb8vA2RNFRJs4biR7NiAqHxuGB1tvbMJMBlvrMdCMmCIbTy2ByUSIcWJw64Gmj7L+gCUer1ofNPJvawx8FWPK67wdpVti7GurAX6M2JOYwni2qsK1nr2kHXKDaE3urXXFpdkiyg7UU5oIcD4heMv5kuapWVkSV5tCedB0fWMGbx3bEz4EHr9ldd0zOGeR0la+1wJcRpqzgiDPy9H5AikghKMwgZEfo4oBVgXPiGpJQ+w9rlZ+bWPI5XigILBz22wL4+wA3z3N5JE1D+AzpdBQ5wdlwNfbVuZQ5XoiicKLmcB+DPDjCHfcw8SRQeDxFebxc4kNbAFVrHNi3qfNV1j5rtcx1ftreF9sM61jNupyaKfejxSAeQcjdhS+e47r65/AMHyC0+kFwrzDLuyYlGYMyHbN7A4FicvwWaBPFtEkzMZiYx1C8uiMRUDCGCfM8QjCmNUgijGxdUXdXKleWwlVet0XIlnh5EPoBcVayOhjDG97bSf12GFxy9XSQDJUXW0zoA3j3PTUGLx4S+8ZDFbv8JoRrEqBZqisKTlGtpHwSQZIL7azbjbaCFOxn3KccBtuGIDPx5QCDEpzyND4UI//8etdOyWPWj9kBD96sceHyxc5Y2KR+UNBoDp5UxmPBRmLEI85sGbmiXFIGmhThBXQR/18+IQ059th2bAdQCX35iTOuSuR2nHHznfPykRvkW6oh5dO7w2DRxSWX/IGqWIAAxCWT5KBXIXZYxj/49+rou7SYIe1oQ5roA+zeCws5DNsPgYowk9v4MbPEebbkvClCIpjSVjF19R3z/EsRTi3wWl8jTAfcD+/wXUidFocm7rfnjBSxD2x4MKCfUM31p35gi6XArWDcXjiepFyATHOOGGS3WVAcLnLldKMbTLYGAsnQFFn2CfI4i1duqR+gswcdBBriYusvwIG59se8AFVKEG3tb5wAFpokiQpcuyDmclJgDIvXlFpeIp4ZbDpUwP2RAGEgdYGQgFgvS0S4JzJjwXYYmKOaCQeunQAlA0s5+Dpr44nfaI63lLFIHmPpcWrtQ4pyUCixJLPGvgBzQz+6dbL7TFRZuAAgMtWEUNORqx1iDTD04xoigdxJGGSGtskcktbGGv7PLCP/UbFCqJK4kz/HGl4wtYPw4AwDHmYi7J/l8yewvqTI0UIHTyFGZnZs4wJtdxmbWgLgHcC6Q1FBnscD6vqjIdPH3OiO99inj7HPN+VfU8ByTDLZ3v1uzEMX0VKEeP4Ei9f/S94Pb3mjynnkTcW3vDfcyK8iWMGgZ7YHhvr0BuTCzqNDUuWXmccrh3vxDkRDM1IFDDhBMRquKcAu9wgMhiMgzf8MxdlpkjKeVvzp0MZJlnAHod1rz+gZQNn+XflA8rXtTomnKcMSmSw+b6yHQnnTVJjmEFmBsD1QC/WEFrELZtDKvnU23QtO/qRAPLFHwxAnqeWWSPS3bdzJQfvutUGxIcsZtayh3iUJmRd0OUmEU0AzRkMVrUIAFhzkqTey2OjALbi/5cTfxLJo4LvDPhpnvCuTaHsATw8Q9w+Q9hencu9LZA6k6e4AwXoWco69bYyFrXNHxQE7o8j/PHA31GYgHkPxFMj6VSwZ7lyM0ULNB3YUTN4jGeJp6saivGmfX0aYVKA755nixzfPcOz6Q0SBeynN0gpYEMBGz/gWpv3SNjFGRYGg3VwZsC18dgay4Pi5Lobq6auDorbWM4ZLAwCEg4UcKAZIe2AZh6EQiwk13pkAFiXKooU4CV5Fs8ukCIYlONCPZRKt0kXF6VyXKJs/9pKAKsEUmkINY+UaxV/R4aLy4p55hwzTpMAwUumH9DKO5t/VZ5wVuxJszkELhKnjoHGZriMSD5huZxVMJibjWtqHWbsve/y/gm87yUesO9vShExTkXGrTlCtiUo8nBIHdH568wEVnWP5h05jmjj+OwzlHiwlifwwMSn576f/bNiH3dzgzB0SNaUBnGlFNKJ7gCqn3KFqPZ/IiDZBJoN5xdBmhl1zjCN8Ps7LsbjCTS94RqA+JyNYY8gswFqwIc/aynadX9xjsU5myqinAySzbHD3pRtTCErCcp2Sx6x/XGwD+QBp/E13rz5BuY0YQsIwYRwoACXGNjdOM8ADxjgiWAvUACI0mQCPDrHyoNnKcLGWWTkETEeUbNqa+KBTYDRAXxoVUzZFsKYRoWow6a1kNO4oA1wjTG5BhLlQ612ejAurN5afjb5azWc0Pst4Aa2JbQG1jPzbw0Etrac+33Vo6nt5DQ/0Hhy8sDcSRU1o7KQW9iNyDGhkvC8KksBI+rHlCLcByAWff8c3g8NAKxD1EM1RJ1oRqQpf/chnuBSRIwHqOWbWkppTLDGZc/gORzldUImky2VQjWeUFtBrM0KoOEJwvYqW0HMVx40mFwvaCzgf8riLJ97qdyoAXsKVayODAL7MQgQPMHv72FOr/N8oen0GabpdbaQnMOOz5lsrxFyPD0fZNza43T+WoZlF7ss3z0rsQLI9iB528MOEJ9x1z/D1fAxYD02+9/CNN/h7u6buKc5YxDeWJBJTSMXKIxbZ5hsGq3DEzDmo48LibCjAAIhUIB69htj5fhIUlOI8lktpEzL6NUB82XmiOA92rARBnKdL1wkkhgU65jUDsq28hkzcUTiELOhUxPXUCnfWeXOeauxCx9nlONHQeClhVTvi90kJIeYQskThp5zBGsNiBKiYxWCg9QOYcqNRyN5pOYMchDI74OAvoHZ5BQzidFE1xwn77vaAfBf1vohEPzW1bKAbU6wmwQDEJmXtrAqprCxiIYHhWkC6UROZKyHSRHO9SDqYI1DkPcpqTya6mqNAdzJ8IaLYM/mY6TuqgF73pbErS8JDUuyxArgw7fT6mCX8rwFSLDoppLvAN+V1wLgquKQaARFHh5nUuTunTCerdtgKxfyof8Ip/Elbm93IHBnful3p0Md5kQ4pYDOWGzhsnm7gj3zAtioV2ctBjh0iYfNqam7As3RlEnvXWKmYGcdPJRd6LJtxcUuW+3FK6w/7eLrWh8WV7yJWr+/h4PAmvRYmb9l2ERhEwCaTAxZTgxvVuWedVgsQLCpuvtGCruUjzllCB51foM9TyQymFBJOfIeudDtf99VqwWMcTDJFll6lodTwwhWxiQBiMbCSqe/FL9cqITAvmE8THJmEIkCDKwM3GkHO+iQFycewM52K4nM82IL0z8HbZ8jDkOWe4fB8zAH4EzurUncRXZPBCd/lWqgGc4zh+zDphfYd2L6AWfJuHo1GfCEcgPAhBHqBbom1cuMx46HYna738Ju/y3czq9xpMj+fMZiU1nJaKNoRMSV9biyCb0xuaA7LvyAgQKsKItwaz0GAVnnfAwIh9dQRlO6BGEC83Ywu/ByApCP7YUXsbKIl15/AM4kYUUd8PakYC0etNshvmVnjxPLg67LRUHN8llj9KzdrkoBoDSXFPThwpCTuuVxmv2+pNiDdTCxqAXy474EW4jCKtnKud9nb/sG2EGxCqpjRLKdNIbH/Jo18AMAzp1g48hsYmOz73wB3Yrc24n1Q+0ProNisz949xzobgDrcnE3XQ05T6DBAF6Opa5l9mhsWOyJ8psAxqUMSCVfCBFuPPGQFwV75l3j77f06jzf37XtReXzJ1J2428AN3CscRvYdJOT9Bj2oDCynZQd+HkSG631uL7+CUzzLawb2OtPhs4N1mW7iNorOGpsMBZIEI/QarBkxezfGI+tqEHmRDK7gDAhSDzQf9LgSW3hxv6+57HBGIPylcjAuNLizWDxakFXWUh9kEqgagzzjVaaFDInXL83KfCStWeM4OXvdSxYsgCXDeYpFlaQ9wnWi8xc98NC8gmKMNHm+/Jm15YB1gNYb0g8ZrFNG7NNa9aqMQfEyFYkFh1CPKEdIhoRJT+2tgNRqzjQxhMAmHBAjEdm/cpjmoZcBuFFuWX7DPion74CPmwZdSO53BbJWoTtFeZt3w598ibXDUvQh7e52gk2VRJ9ASidEE3q70dyBjvPuTFE8cQe/9PrDJLNM4M9VM9paewcqpgpXpNOiDSdb4FyBnl8ZgjzEKCxBYGrGNQNH8P3z5Aoojt8C/v9dzCPr/JjtV4IqShzao/gJSO4l2/MJoONJWytB6WEgARQwB7MHF8ShJIomPQ1187rOh9pGMSpadM16sKln/H7LLWSOmsQVcchgOonx4Xiwyk/qljQgMHmQv6gx5gtjSR9rsaDRKllF9YgcJDz3EbAFgVJyrODin1IjmMfoBbw3TN4v8nXPG1QWrEnUlVxCIfcLCpgsA6WJBBFOMfncSKH5Nu4kRJhEpWhqS7iahGjiiG1gtDhkJonWH/TzBFhTIGHwYWBQWAzILN/rW/B3yUIXP+tPq8ZDF7sI/UFVn93E0f26qUTwnSLeb7DNL3JYHkIewa+Nd9e8QnOAKRh6zxtnsd4QqQZnee8rcsD+nzTfDZWPGHphESco1jHMwfS1VcRtlfojcfm9v+Lnf1tZvEmQkcRo+V6YyZCtGI1KedLBoNhEAHMxuLKdCDDOceV9dmr+5QIEcIar64b5TMiE794w5Fzh7nay805mm0kKtUxSh1RN45jSqtkE2C9plhtGFffRQaBYRZxoT2/1hoKnT9vGqvKOBKgV06t00erx6Gqh5YbJedjPCEZvaZuhCHMSqZiGxLZggyAMQEpOSTi+PBIF8QH14cMqr24vjS7r+/f+oEDwcrKqT24FPjlv9WLpzD8tJNXB9lmmFwO9DXIfO4ZXPs+aSegdE9t9dhSJLrKyD77eRnP5u3iARx9NdlbJ/lqQedKMpf3QYVHL62KLrH++L7C/CuPX4C/C/BnObG1WXLCWbvJ01oVTM+SgYrpaYxHJ1YRRCOsG7CPR9zFKRdvFmWSr3bwT0KlmRJhY9JZ92xtOfCAt85wYM1ddWHGRQFu9dN7AWl66bx7Yy+w9spJeg6syG55z0StBn/qUKBM9GWy2ZabqRwYFQCVt83wd7UEWZw1DOw2txVw5xwE1vukiBawzJ33IzLgmI8xkolk+PKDp63OV2YFl1DlLDI7uGb9AtzNb4BpWakaEAcgF4klwYywxiJq8qbX86ZJtAS06pjgMshhdfiBG7IFBDmWzcZaDWDP/bzeqkxphryU78SFeD7kReRctbffmpWD7ofGi8l4LGU6/BqtxYYyf2rPpvKifBG3buBJyKbHnia4xDYyvStsOao8QJVBGxOE1SOJrjRx6qVsmt5YzNKVUHA3SBKXwKAJmdLc6aq4kAc6rfgXn6/zczHvmgt+YJcYPToQSl/1obcug2hSZiZkxupaIrjSwFmumvHHf5cYwW9q4GyCEtRdTugWCWK8zDpvrkcyZfrSMfjYVXuENZ/H9ah7nVaGyYFmwFhQOvd6432o23POblM2Tx4Ykqo8YbXAbsG33JC2Lie1SeOCs02eoPEgf84F2MPbVYo4Y1PL/hPFACixvFOG+OWhXQICM7tnjxh2mRmlVi/Ne9VNeuvbz1axgh2q+AE0TC+DOsYu4qccJ9Zt0HfPcuF9DLeYEmHUQbL52ymflS2kqsFwEgdiVYgBDPh0xiLId9QbCy+PS0gyQE6fkBorhyztBJ9/TRxC/TbnOcSHQTvtSgar17R8f9KhM9Vtj2g4rcm8l/fVP/OAKGpjhw6O02tX9h3VpXkCORhyq57hX9ZqjjN5G50uzjXCkBl8ZNQWZp18wCqBFvDknx7q86tqJIP117k0o6AeoKSMerXYotyx1vvNat2Qn14BQGvuO7WayMwps/7yYLjpiBR2HBeiMIDDPjOpYzwixGP+PHVTLX8e2TCiie11aCz7q2ogAYAzXor4qpZYsNBqNZkxHsZvmDnttziNwJ4CnDHYiJpHGYAx8SBZ9ekE2rgRFXw1BjNszgOQCB0MXALbRJxnkLmxo4ohd6FJlLebd1hpECVk+fdDq84XHtM4Xr5nAZoKYUqtz4odTrhI2Gh8gR/Y1Bw/NB7I39FrPGD7KHJo40G9UgDgc876YH36fV7N+W1cg0Esl+IL2hzJPuxiSWMYoZX77Opr8OswlnGxhHrk/lgLqZfCrA7+4gFeAIIMAg+cM/hxyoPlMd4izregeEKMe8R4QIinbKkX4tgopmqP4OZzyn8jTbByHAYA1nJc4QaSQ4x7AIDOG2Ehn8/xoFjTLHJM6+E9W3HNNGNGwCzAbEyJ64ikM4h41Y0YZ8CDGg03ijtjMRiHk4mwiRBhEBCF5W2gKt3lEEhUr738vTRvS8t+9bvUWmRlXaolHrWUwXzx7rj63a1vh/yk82HT9SBJrRm8WMd4D4zeIDnOfy8e3anyjH7k+lCCCb/G9yM3+SEQ/ODig06NqYsEnP+ufUEpSzW4aGml3AAQKUA9hUn8fkpHkRk6+bFOPK9WkqYy5KV4+Hh/hc4/YUagf8oSz/45dMhLuH6K2A8gZxGGDmGwzO4BOInr0hnbz+Qktf29WcRgj0o1DBF79ozjg2DP6tKLkkwiLh+4HeRgu5s8obH16uHnUByB6Q0/1g0Yrn4CA4DN9DnmsMft7a/jN+c9LICNsPT66uTaRQatt9bDeYNr63kIFFjO1Rvb+OZp4HMwGIyHNRF9ZTLTC/s4pISYiKePgyWkT2yHrfWwxuCJ67AxrgnQa8NaFJKpO3TOtIKB7Ae8YCfW262s4JAYuKGFBFy+lPJbxSx0hnnClJNh9iTVLh/v+w37T/cDbJdasFdA3rJtC0awBfo8FUakJgIoREqlu5ek0JPjsEiNC6gA4mIfVIUS9fsJ78/s4X3CVjEMPPXN+Z5tHKRQoRwbJk5O5GSyxooHsBzfNCKlLXTwg3M9unSNlDYIMvRA2aTAOeDD8qYe2etPBsIZ44vP3/AMMB5xc30m8axZf8YlrgEbILgcITXIo49PAdkyxgWCH+cM9LjjHmY+yPcSQGGHqKy/Sp69tnT4ghZkPKRiKMwdBXpMiSO+f5ZjRX79wAWgyruSG2CHT/D06U+BUsRpfI15useb8AaOLJ7pZHYUqZOFwWgDjslDM2QHg22VTNdeXwAQjYd17XCG3gRwnku5s28MW8zcuA5X1sMbi2uJUTpEYg3MVcBHLVoM+DxVrz9dVHXulyy/elAci9CLZQyAi0PiNAYBgE0JZDQhLb5/9aol4DXbr/kp78WST9MMiXJV0caxI2VGcOdLd5+PW5OtIfL0XwUUyQO+MOt449anS7/LssblCd56vGpjx7nK9y9OILfhfEBiAzNZynTwSBM3lKSQ09kCxkR4t0HqnuScI8QRRmJLGfpSxQYBSJk9OJRBkdZxXOifXWb9qRWEui9YwPl0scDTQk7B4GVB58eAYX/IXsDm8BJxfAWKPOwlhDvM813ZTzQ2thpAibG5GS6Aj3qcqtd61z1lSadINlXWmyc9p/J955xi3sl1I6DbfB3PLD/2ePhtfPZywhfjK4RE3KyBQV9ZSM2IOKZYQGAYbHNiVdRFEdz1IXRZGqrX2CMFqPNnbSlxZRyurMe17XgmgfgRAwUgXi55FWbjJhSgSJtMl5g8K0VdrSRqraQ4Pujr62M4wkUJHnXT8vz9knNZJdAwgZtzvwV5NTZoLqDLhZQZP7NIw51PCJ1pPUE1FwD4Glwrhr4PA2Z18jlQgbB2gNWhMkIUca6Hi9t8PdRjvz7+1ftSm9EqB+eilu/zbpCYEkBiGcGxoOwsql5TY4S1myL/1lxO7eS8DInU2SGSgpTYkLBsxvFn1+3mnxoXaDYwY4IJCW5OGHYndPsdx+r5ADp+iun0AjEeEOOIaXqDab5t4h7RnFl/qcqPdDVxUKy3jLHo/BXm+T4rKjv/BF08wfliDaF+wbzNEYkiKDGxJLMj/YAhBTy5/gnM0z3upIl1kwgfyXkGAGMKuCObZwxs5Z9e2481yEIAuQRvLMeaaIE44SAqw/qfAdczV9bnmqKzNoM2es7rALoC+jBXEKLgUcDIAm2jaXHCqq1U+VvjwuWl4gADgAwPxa1BYECaFSuMRs0XaksIXZd8gZe/17Yx2w0wTUCwCRPxgMPkROKtiiHJt4GT1KR96x9sPSsOs8fsh9nGXFrK0ldg13u+5rlMLmvPba0z6uuj92xDwzhGwSEAgBbni55XOrSOqriT8yJlQoLzObIm+zk/tNZYwTULOAQgBpMt7dMO6I6UZwh0+x3s/hWrA8IOp+N3MY4vpc46YJrvMM27DP4Wex3lxFYEpvKJdU8DMIiqWIkdYjhJvLDouxuEcEDXPYExDl33lOeS6KtQ2UfGeIACTJhYqWEdrq7/J3wlHDHNtzieXmF3+hRXKWKAYwuZNAMR2EsD6cY6bI3jCiM5wPD1boOSw2ts2NMME2eM6YRFWQaTRH1sitULADgUooveZxLXD9muoQKSjVm3hNCVLSgrfEGxBmA9nyjM4HPguZ5/Q5IHWqt1/cXNaKyh1pSEvTDUIzFTuLajAxJOQ0IYLEx0sP0AX5GIjP4kAAgAGK/KytTkCmFJiAZpdQzd+60fWkP8gFZh5rksJ+K/t/n3GCc4Ya2kRNKdPjUehnUSF8W/pmYB1wOiQjzBuhEqpVvKulTmydu0FW/cpxnssf3z7OcVt9eYrq9ZsmEZ6ElDLeNSief5wZDInIHADdgDBntciAXsGU88zEEM0yns8sCFtCiya9aO/p1l6xWwk7vx1vGQOwjQgZbhpwNfYtjBug26zdeRrr6GuL1Gv7/DR3JROJ0YFD6GPZ4Zi+duwCzB9ECBAVuRXsyJMlDcm1bSNWknDwmADIFgzX5mAWzJZ8l4LR/VhO3adlA/4t5Y9MZgSqV7txwWdwb2wOTkzS0Anzp5a7r4Wc5avECb793wHs7MgOrtdZCEMhP4bu5ianKpjKw4DIidF38vOV6WjEkt5qpkzRmD3hdGcCSWfALczXezAMv1hhNyM8JIEpdqXzeNJML6Y+b4+wdoI/IwBw8tEtZWjCOIyvCHGNWfq7Dk1dPPJWJwJ0XxGvbseSSaNhuOUJ+rOvHTtZR1eb8VlspNLlqw+Rhxc43kHA9/WgV7SlNIi7q1lQHCZeYBZHVAdzwWAG68A42voHLsMN8ihIMkslMGfNaWyjm12GX56lUzyMH6mwIMuw2c8XAdx4Ug3uIx7GEdD4GxlqccA0+xff7T6DdfA8URh/1v4NMX/y/M8ZjPoZk4JhASbDKYxEYGQD5ve5SCTuMDICCpLYMfNDYoo1AtaVihwE2iG9thY5lNtDE+D59a68Q3Q6GUNShMgprdo4laLeNaDoNS0CkkKdSgovT1dCHHHigzkeMLD7CxKEOqOE4YoxLwyhai+khrfuHc+DH5Nm0ScUyrGkaUsPOlu6/HYT0UKjcmAbDks7TeWv/w948N1vVZkQNIk1IFK3XxJrZGmhvM832WhOvSATHJ9rA0AtgyyGwHeF88yDge3GFOMe/vMmCjTAFX/3HnBpF5XrNCoLsB9dvs9TddDQiDzYNebKdNofK9vQ3oqX9P0cDEJCAwsSfw/p6/j3mPcHyBaXwBiiNCPGCe7zEJEJyBrKqBVoM9DehtLJwb0Pmr7HM4z/cY+n1rg9E/gw74MBSgwzqN8Qz0hB3fZzzM5mOYr/zPSF2Hp6+/g3F8hZef3+KeZni9dsOVWJEIewo41QUdXAZ7o2HmD/S8sWA7qZRywXakkIuoKUWEVPKGG8cNZCexoVdFU+3HB1MVV4nZNsoalGLwoTkEscoKlrYx+ncbE7jkyWBSbkRz4Z3AKHFWGSVhLa0wtNwiLrTxYAEMKyCcn6vNat1CoJccYueB0fIwmKQvKnkqRNFzcY98oEpAl0qGm5emAGCoWMFohp2yHPzY2B9QilIMz0IMuYKTRqk1Dqkrswp4IO0eAcjAMYAVsLTEK2NdVhOq/Dt2HLupc0jeNDYxdWwAzuPDEvgpnx1ASPAV2NPf38IcXiJFlnuPp+/idHrFQDDNmOc7zOGYwR7KJJwa7LlQ3BoDM8vng0Fwe0x+h06GYfUdy+470obxDazhhjN/T6fcrAIA1z1HGp6Ces43noyfg2jEOL3B6fQah+k1niPlZs2UCPcS069sh9722FqLHgaTXJ8nySH0WB4M1xCDcVJTcJNI83g9L6+lpmCfcpOVjs3xJ+c9C5wSCMWSiokl7SBKfU7+7laygNpm79JSP1B9JYJ+V3SeWCijOzHBiCS/PBsWdzl8AWgbyEBqgODTDGw2CSHw8Rg7I7NpXG4Aar1qsSng8AUG7JdhG7Mm+87zhOyAZJjfndIAHZiuuTPn0SW3UOWRgsDq8Vv77Nde5PV8Ah1OyTkDE1POGuOizuUBepZB4Dw8WqC9ikTWPHXlttYXmJtDCAndkbC5OxRsYfc9TMfvIIY9YtjjeHqBcfoiN4NiOHFORcxG0bkJi+k37T4+O/74lKA48fyhwPlTDCcQzZjDHk6IP2oVofs9YxyG7axsYjAYxqO//kl81D0DxRH73f+OT1/sMMYjyCbMIBxiwGwI1hhc2w5b46SuMHBGYwPl2KAzBigl3EcPC4Mjaes1FXIJIPNGbGkKVSrDPHBWYMbSYOJhgppH5NjwACDMtQ8VsllWB66DwO2tSbpaRovPDHyS2KTF6C6TCatFghm0uIL87greMEUlmhUbqUOfMA4GIXpYSnyMU8X4FosIYz1MPAFe6n/rMuHMWF+wQ+seDo7vsH7ICP4BrFQF/nXZtc/de+5WDMIw0Y7aedHSegHGqlhjYEklS80kT5SkrZZ5KktI7SAygOo2PJndshWESr7VBkLl3uUt0moRt5R2Ci59tngAVGTvzzAVxl+WchWJZ534G+NgqNhuWLeBIQdgg4QAk8Taon5PN2SGsHEbAXVOsj8LyJwS+7dQv8G8ZdC+u/8YQ/9Rfv8p7LN/pyYzMRFmJLgK6Kn9dVubCJaHq68vpPMWU8pTwWG5cIomoUsWcyI4wwOglM1TS7keu+qC61JQviQFr1dKhdnztlW/lnbx9Pf6J8AJDEmn2Ni0CgAvl4LAje+fLe+2lHTUrKG8jZGKxJsCjE5vWEviHnFBecw6jw3rYUslznx+U76NfxLWZY21F1klB68uCK2P+UIebVxjE5MsMx90UCTZehgcVuPCpcRNu/jcRKq+YGVoE+WhOwrOUxxBdCqxIR5AxPtlOQSj+Uw0I6UNrI3CaghVI032EQUYEwo1SRtJ0hBIKTDAvvTPEjDYWQ9HAZt4gvdXIBlAs+xk10PVnDL7UCSdejI5ozEFUgiSALFtbLDV+W8lNnTWojOuSDwv+m9Vn6M6i2sP0HUf0PTWeNO89uNDE/IOuGALcWmtsnhMe1vjA0hiDbGS7Olx23zTNcOvknxmuWcKX0pMqK0h6gav3lcfuwCEDSz+tDRnAAdAlTesS7h5voAMhBGV0NogFH18+883NjHUdRnsScL0g63zhfOm0EOSzzMZeFZuUPb3QxhZ8k2nPOE7xgkhnhDjCZSIGdNxYn8/Ya81zB5jM3vEaPNh8ZkjjeK1GGFTBcRV1himsvfRhJ8HzA3ZL9mNn6Dvn8PaHiHNQDUUJU/+TonP78yskeYmDKLh4VAln+DYoM0ZgsNghbElTSIQYOVsVKl4b+zqtX8ZJ8pf6ex6rQ2jL3tpnlADP7wJSbztL7/n8nhaKgWWt5e/TXN77w2m2MYGK8dzQ6qRnNEQhFlwWfL5oZYxl5YWjXXekFnDwgJ0jmNE3aDKsu9KgWaM48aN7WFtGTT3rgWkMaKuUbsYAXzUVkOZf/X8gDUQ+FJ8UNYfgGwhpfZRJkx5+FMMO4SwRwg7IdCcEOKIGE45FnBciLnZUR/rvArjzyTxxyUS6JMbb0FY0sH26GjMeZrGCiamSF8ztYqR5HtQ18GGHr5/hr5/DgAIccQ0v27yB0raBAI62QHatO0h4EVqYwPA1+uNdZiTR0SCT8q255rFGFOAnuzv29YWy1pgLTbkU+QtdcMlz/DlWuYN5+DP4vEotfLaesgupn3cYuC0gJO1krBuaIZKZaRgcBLCiDIBAZyrBGq7MqyDuR+y6uOszh2YIaxHgKqLC65QnnNONjPxwIpmvrRAFQK02O9lUGVEPbi2ecyXaKPDVhASFyRXsHMsIPB8yCrCeb5DjAfM4gGsOQKDwHNmsqZMYyhEpbxvFj/bD8b7hgzHFY6hDnM45vzMx/NapQEMAVaYKGuu46a7pYBhfgPnNk2NoV69bPNUSGMAxwL+JxZTJmEyFhtwPJjET1wbRDZRPtkUJ6hB4Noy5iH7GN0Zl6JB/dxLPsF18+hdrWSarViy0h+x4kooadTJxNhE73mAXCdEktEaJJfYMubCOZ3xBYqlEw1czB++DGuIpdXkl7HWQPrfaesHzggGkCXgTaJmcibUDCkgYslGcpucfNXsv9oDKUZkhk7xqeIhTy5bT3Ah1IJsK0We+v2JtYJ6AjcdfICHOviWBXwJ7AH4RMpWsASk2WQfLxcIw+7I075FcptOnyNOtyA6IVFACHfZz2ttoq96HfJ2DDLxlC9Y1rHvlpqxW8cG3cYP+YKsDB/ez6cyVIbY3NuGGX4cWYLaPcfNze9B3z/H0X8PX8z3+EI6pMqCM1KweSnq7mjCZNQ+wufOHCduFur1FZPJ7OBOkjmXDLpEWUalXTrt1l+bLnft1QdIV80iJqDxKEVO2pQNfDlxuyTvLP/erR9khWXIF1S5wKbzi6mpOsXrEs8KULeF5cfD4EzjEQwF2qxcbOT1IpXkQT0nlRGs/m4pBRgBfRo28AcCPrXX32MCfHOMO0JUKxOaYAT8rYP8Uqrs7IDkIpztc2zgx7Wgx/n7ql5TCzuXmQ+5oJPvogZ8eFsvxwXeduSpvhSANALukLIlRL/bwR1vgXnP7J7xc8zT55kJOc87zGGXGT3K/FvffxbRDbCWVRk6RC/LYeMenniirxaxDHLJ861OC48FnJt30AE7ynyCdeimr2O7/Rq+GF8iTntY8fLeGIdeWDkRCQeaMcvfznboF37iPfhxW2PYM1RllpZjg5XveBZriDkxUNxZHgqhTL+1JlE9+GF5jisAs+b1Vw+Sqa0g9Ke+brrw2qvfDQoAZZMWczF3DpWpBTwuiasl3xoP8u1mGRvkcxHgVgeWIceEPCROz38TpIu/7rH3ZaxWsdI2QnXYUV1MMNu3z9fL/Bkyiy9m+XgZGqfefyc4GXRSXq/8Xr9mPavAoHjcNdteNY3r9VBzSH+GwLFBpd92Txh2cx4Y6XevQYcX2Qt4HF9iHF+J1PuIORwQwxH1gJfC+gMKywcC7miD3GQwgQRUL/FFh/Ux6GY11ixirRbzSY4TG0cuRme+fxi+ipvrH8Px+AohHLCnE7Yi8URCHjjrYAACNsZxsVadjhobegMgWTgr1k0EQI7zmBK8+AHOlVrg2noMxjeSb1YivA3UrZg97wgALwu47APOewxsFtXygwFU8nNpFgrbSotrzdUonuBiXPWQXTZ6SkPILH7K44ywK61B7xIm6DGbGo/r/FlyQaey54f3xYeAPWwtUB/PoeyDRaHbDopjFmnti11bOhDF3ORUMIKvbXy881C4GZTsIiZQblAT9cw6lCHMVpjSJgwM0HYeFpZZmtGg6pswYWQl/tYxQX+GySCOfG6YMaHfzdjc7wrYc3jBrL94QAh7jOPnmOY7RJpZYRUnUJrztYX3Vw0Anx+HspWZ3abXJCJWYBY7HYdp6iQf41zjfDilz0qklALseJ8HFBu7wWbzI3k2yXh6hXsaYSMDtYNxzNgVsGcC4ZgIsbpWa32h3QmNBbC1BQPnC70oiQC2s9taj41s7yoj+Gy/PD77r4dI5tsu5An1t5DkDWv7uGX0ybrEpLE7AmEURU9LSKoHxAHrSoFyexk4rfs4UkLnCgNQr2WN/29VP4BYNdIohjRWVKw/k9ZnAzx2hemOPbhpzE1RQHGFy/nAmqpCSWY1kNtayQg5JCuSeF5O/braVFZJPjer2FbNzHvOsa2D7Tq4WRTH1sPMCUl8wxO1sWEZ3+u4kMggHDlX8DMrBLZvbuH2r4F5Bwo7jMfv4nT6FCGwF/A03yOGY8kR8n4qsUAB4Pq4exAErvcjEjeZYFi1GE5yPZHhu9M2fx9LhTNSAOYdN5SNZ+aoG5C6K3TDxxiG57ibXiGFIzoYXLsOT10PC5OHxp7FBrWVSxZbuZlMAqHDKKqmKFjGVMWGjXGiKJA6dEEuUe7t+nUbzePqpTGBpK6o40F8RGzR74ZnIRDnEQkwiYB8LFKxTIsTH4eLOUOrQyRr0shilfsM+piwlebQHHmQpOkS0ix2J6L+zThY1Rg6axJVvvLfj/VDRvAPcKkEvGXeVaBwCkhpyMmcc73IuEXWFU8yAXzOAFLjC2r7HEicDTLBd87PicbyoBTpSgGo/PCc+I5tspyLpVzs5zWLJ3CSIVBWpN/Lrr2y+5ZsHhJWMAWwvFMSN7WD6O7fwBw+405dHDFPn2OaXmep9xx4om9OOLOHV2yYz9aIv6nbwgmzSb2PVdJp3QauewYbC6PHyhTTlAJMYAo/X/AcKOzgjl/Aq3fP1dcwXH0NA4Cb+2+BUsQXX/yvGMORZRbGYrAuD2maE+E2TLg3MzbWAW6D3nSZoZfBYAAwyFIMAJgMsXUEio9wXUypP1g7KCLlf3OKCIk9hUM676NZIHuAOmNXAvTlk1sZTLq95/YT8oEAZP9ZFGmI+iKqr3BzAdGfxoOcRfQW/SIorxVuagUBMPDTOQZ8IiVQ4p9sE1FuBwQMDkA3BnSjDBAQ4JHiKMmNbzt2UngmOuF9l3rW6u+1FGTJeq/9vbpOWXwqyzpmFqye22yREKVJ5MuwtxTh3BY+RdgKPF128te21Vhm95DvynA4bRAJ648fkuAXCXIdE1pZp8QFaQ71+4hhd4QbT9n3cz58Jw9yGMdXmKZb9j2liTv5cZQkTgY51Ey/5jM4TMZnNrR1PTp/lVmQffcMfX9A1z2FSjp52/mnsRuxyNjk7yiMn8PMb2DsBvbq6wjXzxGGAYN1+Pj0h6E2MuN8jzEeceVZlg2wr++tFOdb69kH1BVmHxdzvCKAXs6viIRoLPpksRFalTZ99JxV0FmbQ3FxaiojuQaD+byrJ38z2ONFysX+o8JarCwr6hiQXx/FI/hyFMmpEMchiROdsRgVCK6Kk0vfK9AWcr3nplAdC2qlwHmTSPaxTehDYQgH8LHqZvYMN/MB6vuXREFiUgCo8vWjAo5+yKoHs9TFnAK/avegiyqWkXPb3CCoGfJ1bKjfR2OQ9wVAynYSC/WRFtjWFuYKP6H9vGfDtIAzT2eg/b0e8EIExMmAjoCZATcTrt7s0d9+zrE57DCdXuB0/J6APeztN063cv0OIgUMyEdhZvg08EL1m8l/GJpA5gQTHGAswjxgDkd08x0zecVix/uneeiLdQOM3+TiX+2srI2w8x5ufJLfb/P0p/A1t0EMe+z338Krz/8XHGnCxnIjhyhlm5fJsrVU7wz6ZKvcgbd5GRu2zuKYhPmXNBegbNXQwWFb+wI/AtBlYhDVe6lhEzfXf9MWe0s2Y4471X3FdbRdVuBhytoCw+VmApLR82FGiAfe/9XFpQZ8gVYNoI2h3p3Hh5oZzPlCyo/14ndPDgxUEHEsSCLj5W+3PR+sAMTUNgvedzHgCma1hXuxjBLP8MoDu/a81lU3n1OKLbE5Az1lO50r5BIFg+xCgVSeOwvg44pqJ+xg3AYmbmBihI38TdZFeIrmzFZOv8baK7z2/aQj0O1isYK4fY10/y2Re+9wOn0P4/h5VgVM844ZwBk8Pwd7ALnuLQAfLH7nKELZRzOliBQCxwvjQHJMdmEPYxyG/th8NrWhAhhISxSA0+cw4y1/5u4Gm83vBwD0w9cwTm9wd/9NhDDCG4MntoMzAyD1xYkidmIN4WCyzRQA9HCYkBBhAQMcE9vHXRm1lIrZokpl4oPx2NoC9qytcxCsAGZrS8/zc5/g9UZyHaHrI6MB4jLQVBbnDARKATHyLAk3R55fUdlDtM0gfu7y7zo26LvX+cK2TzgJP8t7ZFVcsmWvKbBojKhD1Be3aiY3NodmnTX72HU6fQrve/HAvsMchC2qDFfxWjDGwktNoM0La/t2eGrls8x1xlgNuPbZM5iob2KK/qybxkZYq9a6bFnnU+C8GYCvvIIBYOqYbZxQYsMatgBwXIgTxxGEhP4uYHO3gxtH2OkI2n8Hp+N3EOY7hHjAOL7OVhCJAg+GixNKnhCba92y+aC5cb6/Uq8klGOZ25Y8vFlbTBETUmDfYWNdJviFcORZLt1T9MPXJD6UGgMAWwLZH0G8foY4bNDHn8Szpz+Fad7hON9jH48IcWJrF2kcn1LE6zRz3mCALZxgBoAT7KA3RshnjAEcEm/TiSJGYgzBGoOt9bhynusKUwBbACg0xfPYUJQCRVHwViXhopbgn+2qX8HKDmcwWBt1PAg8GeQ8wcQj2x7RCW5myxiiVolS28bU8SASEPPtJtcY3DyycDZhkibx/QY4bBICDGZyoK47GxqnFitWFadilaIExTq/VjXJl6EWuDTU8cPWD4HgR61aZl1uq2WEIuWUoQ8UXZN8saSg/RJJCuWlrNs69sL0tEGynXSrI8hYDk6mTPhsZJ7WMXPWMNijEs8weKQOsIOc0EJ9b0HgwgCs/ZjKUIcSqP1IDLhNI3fwT68xn16wN2884HR6hWm+hQ6+YWYPd9yzrLPuXqqsU/ap8xsBd3iQw9BP4tflc5dd5XvqbQi1iqAA4Fa+k8hAoHj9obvG/PQTHJ8/QdhaXL/8CF85fgeHw/cwjq8xIcAkwrXpcG27DLLcSVF94zpcmQ5fqdiYvYA92Re08t1Uxs8EWm079uopLH9PIhnL4DEKQJOqQq2GZpyAwAr2XGL6LVfDCE4PgD0Xuk8KQtvq9csFVgtKnTJdAjTQgsB18Vb/7JxB760UcwX0dRaYQsucBvj4VFmhDbMUduqvJ3uYxDJAgZ4P9QG1CzsWAMYxQyTFFlhRuaaDRyJp+DjpJhoHhF013dfm5FLtZhTwcS7Ce/brSrbLvl6179dymWqAGsQWQi0h2Bai9gu/HBvk1fj91hQCY0J/GNHt7xl0m/eYD9/BePwuQjwghCPG6TWmeceJLQWWfi/AnrXhYvzOfIThwiAHZv2FLLHvwckXaJP3g/PXFWsgIMxvGBDqnsHi65i3W4w3HaL/Cm7Gn8YnAMbxJXb738KbN/8bAAZ950Q4UsgevzElXNvuTMrV1ye+MVlBqPFhUjXB4gxURlD2IxdP0TNAGOtSK9lTD9rGAKUhVF6v/fsccivvYKpU0YIbUrrtygrGBZVCA/ishJgly6+XphDfx00jaxTsEYXAwiaieb8wFTWAWMYA4AJPWcFAc9+HrGLnEhu2HzN9jg3QvBx4amUoTQ0O67A4fT0FbDJYlAcoTnC2WEvQis0K347MKm7sc4BW6im2PmuM4OVqgOBgQKOBO1BWB3T3b0D77yDOtwL2fIrj6SViPCLEEWHeI8Qjn5sy2KwesvEQqwdor4tkouRXwlSlGSTXBGN9zsmGPki+FbJ3a0oBSa2sKIDAjQM7FUAoPv1RuKc/CgdgePW/4X7/LUz7b4t6h885BWcAYLJ87ka1iUDbKKrPkwkWPQiTKef7VMVELf7qWQX6uMzKXzB91D+8FMLrpFcdJPk2S6maDVwgOJNvq5feU7IXKmBw5e/KXoyTMP8W8bBpFLVKgfOmkezzAIkHBr1PuUA0HBjLZxHvaavX42UTKC6kvvgwMJivUcg+2LOo5VQNo+erFVWgqoTY79qh9hHm16Pq99ZSShvIIQDOXfH+zuzAEhtUZcA2TWI3F/bcIAFgRFlnSFiDkRhNF/a6rhrs0b8VBM6+n8Qg8LA7cQ1x3CPdfwun/f+Jeb5DCEecxpcYp9tsB0M08mDiSu6dGxrpPB7UxATk2yR3kQzDVgAPmQB2lVDfamLgLBNStrnxb92m9QxOAXHigbfOX8Ne/xim519HGHpcuQE399/A4fApjnEHlxI8BVynLrPnTimiSxYTyoyBenhcX+UNvbHoE/uOA8gg8CTHQG94eKSSU7SGAIA5XQZwasuYpYqoVSKer3p45Nrt5ZspsQ8AD8Ks65OktWEShRyxSmAOIGsQSBpfCxB4yQYGNHdoY4O8eV7bjucJEDEDENa21z7iPJGIQR62j6lYwCsDZbkGf3+gZp5vEaPFOL3BOL7hWUPKelfrE2NgjUewA6yof5zf8pBcV+YW1XGBKMKYEUntoIyDybGBrdlYLVBbQZA8dxL14iH7DodwJ3WPgGF+gLMCmAUPO3vEDgCK/cva4oYxkEbAzIwtbO526O5eAeMtD4M7fAuHw3ezcnCcbjHPO7F/UDVA6wGsJcvyWqdIQ75OQliw8ndKCSRK4AQ+VrU+5tkgQDABlAJMtAgwGB3HY+82Rcnsb/i6Eva5xnD+Gv3wCeKwwbQdYMNHuH7yf8E832OcXnOMGF81+XeeNSBNnl5BYLCNjKvygB4E5wy2Uu8eTcRoQ44NG+twbXjuCH/2lGsXZQebytauXm9rNS9ZwUCpJXTwtC4LcxYr9HtKEpPJlKZ/jgU0g4xFiEwe4mZkledUIDCwzgaOlLI/sOYPdXOolzkjVxtg13NICp00h2q8TxXHAJPJSDzE9f1WaojaLu5D1g8ZwT+glQeVLdaa5FN/X30do/LN9kKxlIDqY7WQrFkAj1rV9mZWj/gj1bJvYL2gy8+tZPdrnj06AIrmXQaBQ9iLx9+xJLYUchKXwZ7680qg1WBMwnhicGdGjEeoF2IMe0nGBgb0rOeLc3XxNQvPpuwbSmwboHL42Hl0/gZdd40QDog0IqT5bBJu8Q4uUzAv+Ws68Fs7TXwMs4DiIgkCkEHgclsFAC+l2ivfT83sede1DM7vs1SOqvunBpzWgtWSraMgcH3f0jJC74vEh7ASUWL1k7RJAQGYFPCpViPf+D6sOhZQPGUJFlA6g9QUbyVW8DluAQF7HrM0NljjQMZlf68PuUi8M9gjTGwzy7TvIL6fAgJrXFAQWGOCMoBJ2T2Vt99DRiV82Scg8fACUASZAETAWs+vLawm3tZxccGuGF0WGazPDFCJD/n93ADfP0NKAf30BjA82VfB37UmS0ysBOAO/np8kL3NBU32AjQLELn1BdZ4UA+AWLJ48ytXN10CezQ8XRoCcwlgfmit+oc3teDjzsCl12e9H7Mv+FnRB1w6bjJ7TS1hqvVQXEj0/k0ibUCx/dP5wKdIeo1zzTlvbYeUfNNErodDuQuWUOX5ohLCOQPjbdubwRSi5noKZCLS2ap9wmvWn8YFBYH9OMLMh8z4ixITtFnM/0IFAifUrB4AZ/ZDNfjTlgSQqddaSiCDDESB9w3NnKcIW1tnO1xigicKMlROYrq1oK5Dsg69v0Hnt9gj4USRbWRgM0Me4HNpktjVv+U0qJtAzkjTaJFD1E0iAO+UNwDnYM+7rHeNCwrgo6kxhW+VwYbL59q7eILWz6kBonjhdQyVqJsl4LXH/PdhcX4bV32wlQ3PzWAugA3N2cpBt6oAuAzsWijA7BjsXuQRNluw2YvNb37Nc/9B3S+A7K9HeoIuB8Lp8Cczcw2RiSQSF0LQPOHQ7As+L1MFAgtoWYE9y+ZQISWU2/K+QLEwMeA42TYqUtUEAsogOgbwl/XgpZhB1iD5Hs5dwbkNIo2ImLOHJwxEPq2zSGxuFC2Xq35mFmBCHmKtS+eNXFprKsHztss5k/gx8wTW1lpT6Oz3RGc+wgmpECPWvGJkPSY21HEhLuTkzlQqlwdeq8kFvqS5ImuLaEaCZQ9sUc3JBpTcOBVFl1oc6QB53bIaM+DYsMAY6pyjig0WQKwsIXTx81t1wrKB/NDS/KEQSEy+PUUDO5Iot3ioL+Z99gIO4SC1A/uDJyoWUdwoPlcF1P/4qxUaiTFNbFAQOIOXBkJuKmCmKuicxI2SW6ilzpzBclVk1N7S+j3lXU8RlpR4s0HXPUFKEVN3j2l6JeqfBJsSZkTeNiM1wMopWGKDsoPL0FmqKo5OLGbqBvLaslKLlAZu2a+PWcv8wBoj9d3b10Pvwdc6gq2wNs07L80VWP7ePkabxql6HJNJAG0aa4PoHfC3lfiwdhy87/ohI/gHsKyrZRPlxNbJ1hpcddhRvda69jWTV1fr9VNLRPW9D4gVC3jp+be21Bs4OSseoGiGQAHLzn05BXWKqjJ74tHA7QguRPhxxubNFzCHl6DpDeawxzR+huPxhTB72NsvzHvoYBdl48gGo/ThqwnSAFLi0EMUYOIRMBYx8GAI7+5gbYfOX2OgEV3cszylG+EowKabfAJmj1D9bGEPCnvYeILrrtAfrzGKvLt78nvx1fn/gXF8icPxU9ze/jr2FM7AVS2sTingjgI6kXbfGJZq1CdSnwOt4NHm4cCbrSTEK+xELPc6xIApxQz8LPvr2tn0YDZwt0gKl3YPcQlwV9YQyN/KYmUEwOSuKBJyB7GXLmCS91s+nywPKLTC1HuICVxYfib/rRYQOZhnO4iEKQBz4OPVjAndkS0JjEx0LhNcFyFEvKN58vOHT/iN0vxQ1l8Upk8t86yVAfrvktdf3vXCFq7lkAByU8RI4mHE99Iunqs/UwbAimzl8meqwEC1hqliwzQJ20/sINyOMOxH+HFkKdfuU8yH7yDMt4hhj9P4OcbptUwlDgjz/myib2H9rSccWhupbCiXbimBIiEZh0hWwGVCF4+wthfJbURHp9yNtW6Q4ZOV3xs4qU3TGwx3z+HmKy54fQ/35PfCXf04rNtgd/g2Ptv9Fo7EhfdgHTbWoxNm/5wi7miGM8zYuQHL0mvmX9304UnAytx5eEUkTMIemhJhJvb+iuIfvlbIqV2MTgNeAtNRzuU6Fujtei7HKobUYM6aFFyTaVYKAFF81fJjk0T9lWOdWb8FuCngbunc12oBjRFsF9NOAwf4d/Wo7efIQ8kE0CCRgvMSb1yNEblp8P4gMACWtaYRc7jHNN1iDjukRDLkqADBAKBTkdnmiY9RV80LUEYgxwLXJMFq8WCsz00hZv7F7P0HcP5hDMs6bRUbsj1O8jBBfPR7ZrVQ5xBpffL3mu9nbQVh54Tt3RH9/S3MeA/MO0zH7+B4+G3MM1tFTfMdpukuN4UoTkhpRl3Y1cyex/zUleQ/CRo3YvZijlT2N9EMazsMKnfV51Mscj4jx8h4y76IbgOLJ4jDBrHzwOZjPLn5PTgeX+Hz+Q4pzXgCi6/5LbbWi79vxF0ssYE9gF3e8mVDeGtYKq5H4bSAdC/ZSRESZiK+JmcwuEi+TVIWVJkUbqv8xMGUoXWpfd06VwAuA8KaC+gy8vlSkgaTBhJwMV2D8iaOmUHGQ3jl81a5Q/m7torh22tGcMkzEs9ruOAfvtocWsGeaqXAhxR0p/EzWHvO+iNRKJUGiPJajcSGHs5thIlnM2PYGAsyDh58rOa4kAIS8bFGqfYFLZLm5VCuejAlW1icYJKH9YH9b2nDJJDuvCyrwR4lj+g/HIDuGOHHADcH9Levgf138yyR4+G3cTq9FNbfjHneZyWkNnPrJrFNqPZOC/wq4FOfI3X4IrTXOD62S/5LCCBi0MeQw2Q7+PE11DO4E/DNrRwHKQUgjPDHQx56t9n+Ljx/9lOY5lscj59hf/oMY4rYypCnORH2mOGSxbX16GVGSV+9bmH9ATA2qw0jEiZjMMmwQG0eZSWCXN8VXMrbKT+1SZNMkn1axYUVWIYB7NYnWBl+l5VHmgPIdydgnBGPZrX4aGYJCDObwh5uPKGzFuPcN82FB33DzXnMKJ+YlQK95/s6UcAZl0DOIrmSlzdkLwowag9RsYFr0O9Da4rd/ruw1iCEPSId0Qn25yV/8+CRoXOKCFEaFQBCsJinWxjbwcDCuR7Ob0t8SBHATaU4kthqS+1Rg8eRJhgTc97wVvBJ1Z/6r5o7wvsI7SyRmVk9JgL9nq0gdM4Q7b+D4+FbeRjcaXyNcXrDDXVREa4Ng9NjWeCODP7WPtnZKk2BYFOOd10hUb5+FVtGURHIuUR6LaOJ2cmJYC3bFnh3dWYL4JwoxAKznf3xilVq3Q1unv7fkFKA91ucTq9wH0+5nt9ajyjXL9hiDbMaGwwAuT8arhd4OD1/d2xF6SrmvMUpxeb6nrdZf3LfgfMGY7LKsF6qHlr6h+t+5WHYD/ZZ5PGlKcXMYFEIGMsMbLKIYPwrhj38OCOEAYBpFO1Lf+A6PvQVG3gJFuvoAI0J3id4bxC6xM1PW4a211hgIhngWM2byHFDfo9hj0QB87x/y154+3I/HBb3P36x9+6QEyMFe+b5HtN823jfqqxLfXs0CPPrMHDjbH/xvRIFpMwa9tLZjzkB0UEPl1bxAS3TfZP8W079fmjQSwhS1EkHv/HsGe+bQK0yrtP4hRRyJAkkF3QaqOvAAtSFW3sAaiKmN1PkSeLWctez624Q4gl9txNp5x59CnAC9sB4WH8D1z3nE3C6RZjfgGiEC9cYuhv0+2sA1wCA8ZMfh/voR3FNEc8++wZi/NfY3X0TjsoFQiXPs4CzDiM646qCzmQZuHbl6k9ZAmwBiPlnErCYf04psQwkhSw9V+mXwl/1Pst+YjJ4YnlB0/deK9gURCplx9uXyjxg+GKwgROTen49lq5XFxPrkZwFLDIQXALxZSsIAOi9lWBuIAPUcZxSLvIisan7OAHTZGDHxCCwgA6JTgUEbaqACgShE2L48MBMNOJ0eoUYD+x3GPaYpjsE8SGtmfAwFtZ0DORaZv55N3CB95Zkq/Yi09gAgOPCwnO0BaAXAy9iXGX9rX+28rvGhbQDTEjoxngm4zpUMq4YjxinO4RwaGRc2sUHpGg7iwkXOsNVsQYkJKPDcaRRIQ2nMO9hrJfYXLzRuv6jDAQbE5A0ZmDMscLffRv9fgN01wjXT3H46CsIg8eTFx/hq9NrfBqOuJ/egNKEJ5TwxPXYCmjHDRz+zq9tB7hBzlH+RNlGRtg8AJrhTnWhVscFve+UIo4UMSNiFEBYHJXzc5vCWHx7a7Anf6+p7HRKktzKawT5XWPHeopgMjqoXpXaiKr9wyl7fmmaV32dlQS8KeIWzaLem+wZDiDHCQaC1ToG1W0JIQBBGhZu5uI8CZukSdSUAWgqyeci0XufNc/3CAYYp9c4Hj/DHPYM9hCzAet5VQqLRQCTMbCmy8WXcxv47lpyCcktkgKZrpzneTjUkF83Rj6/g3xHGl90NgFRzwCcSMBN2MGEpyIBd4jewUT5jgXQqeNBDfhQALADht2M/siD1fyb72He/1ZuCh1PL3A8fbbw9jtJbCzsnnz8VgSYs+aQPuYC+KDgJ8kOZkB0RkwBBgYTcZE7+yOcLeqKMrDXN1I+LfCz/Fs8AKN3CNdP8eT5H4AxHtP0Bvf7b2G//21YY3AljKkpEU5CFLhyPjdRe1MzfHm56lPn839hK5O/Y/l8CvZMck0PVWxY7jONDQ/ZxtSgMNA2kRV80P3MbL4WZIoVMFQDcgrn5UcmEo/gE2w48nlKVVNHdkoD9lSbvPQN10ayrt4b9JHjjBaIrG7jAVTZzy8FsJNN4GMdYVUJWCtM3nftjy9grcU03SKEe/jEx+oAg8FYOMOFnoL5QEJIAWOYMMYdHynGwtkBvruBc0Mmh6htnKoKKMWcP2kDGeizaqZuUAPI7OIYJ75uigIvxRMz4mNhaRpSN8cCAivTjwJAo4A9M7C5m7B58wZ2vAfCiHn/W9IUukeMB4zTG0zTHTdvhTxS5Okt2KMgcA32uBrcAbgJasrfdW4cEiEIExdQsKciW6QEwiSf1WCS/RppgpMhnvVsCF36ewo72D3L5UER/fVP4uPN15Eo4P7Nr+G73/t/YtLrbQIOMWTgOoIHQ27Bwc9VeQNQ/uY3BCYkTLCYFlfp7P1vIscHafSuKQHruOCquGBN2zyuWcFx8Sr2gqScX59fva6C9HvLQ2UVFNZHpSRqkRP6E+foZr7iz7ZsCJnq9wUIrLkDgJwjRErZaqr3/H6deIdntnuVG3Ndzvlisj5bxeh9vLkKAp8+CAieptew1sAnwjPL8yisMXnAoOZYc1IiQMKYInZxxr0QsaIBQuzg45TrjE4aPM52IHJ5BoiR+qCeNQCUxtFDK18rrefB06KQUdyB9yNErZmKRYQ0hewc4ULE5s0XwP1vI4yfg+IJx+O3cTh+KmB4QAzHbBml5BG9AnEESo0PcAcjfrkcB7RGBvj88aYMYNbzTmODNj+VRDWLAlBz4ikxlhGliTSmyESgODFGAVZ1RRrh7ADnr9l2TvIFCjtgt+PH+RuY7dcRP/5JhGHA828/x/3uN3F/900gjOisk+/ZZ3WRWsNEIZ/0dTyAwdZUxDKTMCV3ZitVzuFCdliez8CyyVbO23p/1U3jNWWykzrhbQOnjW5btuggzBCbGCH+ELF15wwmXw3jiHHaiEewQd8ndH6lMWTauSMcIwqxBJDbCYDl2NC7hL4HiBImb7jhL/gSb+EIHfhqjOfro/FAqgbOVqTRGPaCl0340PVDRvAPYDVef5XPn9ogTDOf1FnGJP5nzvUgy2wTTdJc5d+zXDVwA7Bcg6DdpAgTpCuX6NEHQtKrpfwwVddkuZaTO2sZlx9n7taN90jTG0ynFzgeXyCEHUI84jR+gTDv5PPHzGpQgKfu3KP6ubrN4M6MHpbRyHC5yHK5GcgMKWd7WOvgwjXUqN96z4w/txED7x2IRszzHX++eQc78+Ty2Hkcn24RrwzgDZ7Y/zuuPvtR3N1/E3MiAYAty0UE2NDhDlE+3DV8DoY89KWwWHS1yVS5X7v1AIrcO7G8dBYAeI0NDNQduhKYl4w/ZQPlv1P7u/IrWph67UspF4m6878cNvPQ99qat6+Bwe3vtvodAGakDPLkfUmF+ecCsSWBMoGbydznrI1EMbOGP3Rxl5qHHaVEmKY7zPP9ohmiQJ1BMjN0incefCZedKuvL7FHz+M6NqitxFJpUDN7MgNz8VlttS8fcpSo5Vw0G7iRmNkTIvz+HnR4kX0/x/EVTuPLPASOZV0nlCT/Mstv+fva0vtL1xhIhkoBJywiQ9KME19F53o4upYXqZh++nqJveDi/AYmeB7++eQ5pqcdzA2wp49w8+r3YLv9dQBgoJ9GWEk6NYFUNp4zBqfkcWOcgL0M9+k5mn9Wn62Aw8iPhzaLpJibUWKDsnjXLuGXuvfLVasGGm/ghQdojhHCEODvwpxFJm2cOcO+pLVEv/meF4zbtohrff2cNQ0LuI4TdTyon5NtjSIPhELDjK/WWmz4EmRcMZ4ys2cOe1A8IoHgUgF88r6okupjipgwMdhrGPCx1OccopZvZzXSwlJGCzo+ps8VSHwfD43LeQ1OsHQNu7BHge5Dd36U5UGRBFYHzIT+KGy46QgaX2EaP8M0fYEQDjiNn2Oa7pnRAy70l4NdavuHh3KGGkyoV2GgKEutek5CbkwgzVxcJgK5Ht6feIifJvQSH6wbmiJfjwkrxX5yFrEf4K9/DDfK/EgBh8O3AQAb4zEnPmdHUfdYYzBbQjRpNTYAi7gAOf/rv6HATPW4BdiTUM7pet8WgOy8QVSvpYJp2VC+2CBC5akI07xnXMkTlEjBgFDIDYca7Lm0mpzBtDmDKgWK3dT6FrcWb2KRYsrg1wwIN+zA91cMhHBgBlU8widmf3sYdNbhSgYF6dJ9PifCXZywp4Co/yPARs4hknGwtvh6Fn/y0PozVkQUonE151DVQGE+8fC4s9hwYakNRLaMmlmtZcd7pNPnoLDDNH6G0+kF5rBHjCdmAIcDLg+HTGe+n5r3GjBj0lTgjgUyeLI8zjlnFVstsZxIcnjkYzwBZBgITjQzGGUskotw4QiiETaVgdWtf2QAwo7Zo24D9M9Amx9Fcg7XYQ/v/9+gcN98v5QSAgBLbWyov521nMHBwKUEJwyb5pwVcLYeVL1mabWMu3q6NaoDqXHeZXFu1t5WN+9KLpdQXFnBiZ0pHsFIQSzf2tdak38XULgGe8o7MRgsjaEKLMre4cCq9QnHiKFheq49RmdUvO+yKcIliyvj8NT1eOp6dOL7fG26BgjWenFMAa/NCBsNjhQQUsIRc94OmwjRdrBCFnEW4hm8yMFcLzHDVzXG420pky0qZH7j6j6x7gMBNnD94MeJyTvHLzCdXmA6fYZII46nlziNr/NcoUIsK+CvvCqAcuzmuCC1sBISeuswGJfB306aRGqTUAagWURQUcKkBK+1L7XXPwuxh5ScHAkgIsRwxKzNMxeZeGI8z26S/EDziA6A9b8b+4+eIl4Z9LufwGb4GHfmmxgTsXe1bG9MKf+MYJupPlnAVE2iBQFN48LS0qXYV6KJD6ierfY5y9iwti7Zxmizefn6a0ubUK6JDZxFAE6uBwEJFjZ5blQQsQWZns9Lhu+yabwgmvBt5bnOAvWcEWdlXo5PbLFqZSD8YmZAUyco5lA1iDQmsOqpHTz6PuuHQPAPYKkvlE745WRl5gnX45tc1NTedjCGkyyRabDcs0eXqJF5qjy8Luh4mNT5xUYLvdL5bw8GZcPm7ZYO2HLyN9CyevTv2g84HA3snuBHgpsjhru7bAUR5lsp7HaYww4hjnmgQxnwUkkRq39Y+fm2VSbLEgM/wvCLtgPRBGs7zPMd1FMZ4MTdALkzwxNSr7PE005HeGthQ8cDs4YOyXMCsNl8Au+f4j7cwSVgi4SnpoM3tr0IEwOTU+KhLur9NwFAwsWkqcivtZufMovnlCJGYQMH7fjmNLg9VfOFr+7gX9irS89joCSF9WsW6Gl9aVjW7l8j/bjACMhDRVaWBua6gFsDgeulUvBJ2MAhsC9lN0eAIrP+hIlrrBeWT1XInTE43j9pi+EAOMdslvkO07xj+UfYZ+YfgCxXMhAZIiakyOxA9eJKiWQKsEhArQ5AG/OkXvv2Gqz6bLaxoeAbPWB9to1Rr+x6JZnCClRxQX0/Z44LtRWEOb3GPH2OMN8ihAOznIQ9R3nwTSnm1uLCGshTr3r4ANAep8r4MwAPGEjELC9DoDixH6vtwMMc9ohhn4e8pCSS+jQUNo8a/lNgmfyYEB0fX9bf4Gr7I3l/TiLxHJKyqVo/8ZjUF5Q7+RMYub50GVdwR3+fUF5jAuEkgNJM2iRSpUA5j9ukuCRWqzLPalvz7yhA0hob+LywM/m2pUewRQXYG/miUusP30g9my7+uzaL2gaRHrsgAZ2JGT1Aae7yH+cgT/4MHzDYYQ47GJMwzxwLTOIhSz3K0I+6oQYwU40RvIgI4n8RMGC/UFNd+60hWMvMPSNFm66zATZVjmFN8fnLw+bcRkDPTS7myHdZzaEgsMo7VZRUhrwAbiZs747o7t/AjHdIYYd5/BzT9AWzoyNbPGlMYM/P1BxhbFsgv6OwRFDdVu8vPcbPynZjGvk39HcAcgqCDHEzUDzGGYzawdmBh0q6KwHTFrMHMhU2wI0n9NbChhnJOtj+OYzbYBg+gTUD7uPUgHpAyQvq2MBMmEVsOLNxaWNDVhMlloAqG1gbRWsDH+t4W++zOjaoXUy9rWcN5Asqo/r99F5Cyr6lytJWQF4bSWU40WWQ5eEmMhY5hDznQu6bCDCRcxNTM4IBht4W5/3SEuJDh0lSPDFgkgI6MNvPimXIEggG+DvpJB9MKWEURuuEOSsSdWgUM/t6LK3oeNurwXALIFvVihobvL+C99dw7hrWbeD6Z4AbQF3HsaHxleO8QQdJgSBWXWwl5+bAgyIPLxCmzxHDnuNC2GOWeio2NUR9VeMjyVbnhoLAyvozqnxBAX0V8AFawgLAx55NRbESkgEoCm5qpLmaBAxObFtDAUGaPzEeRaUog6EkfuYhYdLMgMXZ4EHrBvjuGvfTa9jATdOt9Risg9qtAcixQdHJHgaoCCe6L5Z2LXy8VPcJuM01RlHsLW3clrnYY+aOXLK609dfW3WDSN8XSVQFi+fk5lAYebAZpbPadW1daiBpbNDa7dw2AsJ05xyyloCbCoYwdlGjV8QT9Yh93+XkX2csBuNwbb3EBo+NZRtC9YaeEoEM2wacbMRRyCLj/4+9P3uSLLnS/MCfqt7FzNzDPTIyE4kCCqiuXqqnZ0ZI4QNlnuZp/tT5O2ZehiJsEXJE2EMKm6yupQFUAhkZmy9mdjdd5uHo0avX3CMykZnV4AMUiPTdlrscPec73/edGFhSKIOkExETGlRSXudftmI+1zFB6xCQnMG5fVYTQNu8oO1e0bS3YBpM95LQ7cpwejmOqaRURoi8mKhNoZn+4aGoA/z5a8bhD8zzHTJM95QxhbnsD5fxoNQROS7U6oCGKh5Utmi1FVINAjuqXCyrXFsgGMnHonFYK/vXlI/RnIluIceLqMz77GPs/ZGU9mITkS5UaHmlGDB+phsWJteKiqo54OyecxxoUsAlwz41tPm4zknsIzssmJjto/LRyPfPdzVsNG9Q4kkZ6lbVV/X649o/33/VeYI2rV2V25XfU1ZwRXJKSeqztBiiXeOCNnV0hbQFgz+26jkj8nl6ljB5ufc/sbmzDSYriuq/CUGGRAf/ZyD4h64/KRDsl0didIzja87jG5b5kZg8IQyQluLhUwebmCI+epYwEIDFgDEti9uXZMs1exrXkzLoI1PAuzWZematBVyLegfqJFuTuxXG7Uiuz149AvQkt705avZv8QGejDCAA/QPM/u7e9x4guXEcvoNxwsZ1zTdic9h0qnPq+hPpVvwTILB0xsd1sSj9u0q7zvlwo1IDFL0CKuiycXlQghn8e9qb+gA26w3YtPeCtPHipdLPH2NHRpc9xL4Ct/fEBwsfcv1q/+WvwTG8S2n8+94PP4jL43hxnVFKnLMG6xPkTZ3GjvE83NvnCRqVVKzme7NmkANKXJUz88UeYwz7/2Uu7qrNUQdegqrh3XD60uTwDzpzMUqUdyw/1jlLZpbfSpeGgyRyBIDMXuUNTaD4wZ8iJmFtZ65FD02SzAvEzgt2la5t6FtnoLBcqDlw+zFm2kOieMIpzOMo8E/wtXpRBzfEpZ7eb2mwdqdJOOa7EQPrIWcyX6cP3Sdz/+EtYZh/JZheCNFGRGXElfG0plGkg+7+jjHVPu8CltnjkOxPxHf6wNde10AYY0Nlznwdor5yvyTSeO5SMlTro3dYd0OcmyI1hBbJxKuunMfwc8myzwhDAYzyTTfdgkSFx6/JU5viWHifP4tQ2b2xDgzL8fsmfXU28/ARsKlcVMbGvA0Tsjn+fSVjxXYWqWHJkEw2Z4nWbyHaZLBGyKJk0Iu5kaBdTus3eGaq/zehRWcvCT2zemaq/cty7DHLZ50/Re8dP8Pbv2R093/zNd/+H9z74cVbL1gyI8pcIwWl4fHXRtHqO7Ry+18ZrWC0IQv5CLuMS7chanI1M7RCyBwkbzVIHBj1oFV7rIYJm2YQgoeRVKWb28VA0/TBI1CFxJRVr/yla2scSf7lmZmWW01cGkNob6fGiNE4qn7H+VziMzZey5EmH1iXCQuzGfxsG6GM2G5Wy0QXJZ41dLvC083sWH44anH6fwHDAnvj7TJc2UcLjN7bio7kbogWVLkGBaOYWFMcp6PcWFO9/hwwuAIzUjbLTSux9qOxoUM6D5NHJTxu76vPBAm+4Q6d6Bpb3HtrRyL/hZ/9YLp6kByFt+L159eNdoMyt1A3Fl8gMvQp+MfmE6/wfsHvD8xTe8Yp3cXVhD5Kk9yhRnSZk+rC7pLb7/apuk5b796aSNVG5chRRZWuxORgk+kIM52Y3bxCWEQz+D+C3plBMfqWshM4eSPuEdwQw+mITUd4UZYf9fRc/3wv/Ptw99xjJ7OWK5tW9hdzkgD+RiDxAbE73Nf+Ym7XODK7yoLqGoSKSOMxCl5HuLMOayWUqomKv7eeg2wxgZlRpXrJanXXwbBVCZLKk3puoH8MTWCOr5IUU45l8i3s695jiopZgBFBgZKI3d7Ti+9/kpsMBIXdq0t8m9nJY+QzxPjEnHz2iiKUZoXbkq00wJZthnDKPsjWfJvtTG4qgjUGuTH2sb4cMYmQ5/g1nXcup7WWA6u4aXty1R3XXoe78LEfZiZooA+D3HhFIWdinF5uNSSG8oOl/PyrfKlBrVX/0/NGZpGFDRte0PXf0XTfw5uR+pvmF+8ZLrek6xZ5d869GiBZooZ7Al0pxPN8b1YRoWRcfiaYfi6zE5YlgdRB2xqCG3XSK7QVLmCqkwULG2y5Lvebwrwi9lc25fMv1q9AyLvPuecW/dtl3PylGBmwfsjMc54s8q/9di27Q2mbVBuXgF+IpjoJf+Ke5Jz2OaaF1e/5t30gTfZbuNVivzcHjg48RMfMthkEeu3Wx0GxhoXnjaKno8NQwqr3VxUVcLaQIbnY8NG/l01h7QDXx/LSyDp6VorQM0lFAy2KRGMh1TNEig5lLBBkz9Kc27JQFfN6DNbdt9l7lBbSunvyMfIcYrCmMyPlyLYEGUIerF5GDNzviFFUZxCBQYXxt9ICD9e/n1lG3rXcOs6vmh3vLQ9zhiujZN5NEi9pfuBnu+dcbTWcg6eKQXe+ZHH6Fmih5g9daMvM49iM+PiUghm9RA4tYlw7oC1rtTVTXsrCuXmCrv/Oal/QbKOpe9Z9nt83xTimVsE9DUx0UwL3fGInfP8lvNr5uFr5vkDMU5M03uG6R1+OZFSFGVOjgtCIokbTEHzBPlcPH9rRUCX816th3vrNtd0Zyyt1szo18/LTqJNDHk4dEDUwMew4HN8cNluT/KJQPBnxvE9oY7DmYR2uW+k5GG+Z3e3pzu1mOXM4fBXvPrskcWfOJ9f8zi/5zPXlzx+Sp67IPfO3jqCTYTsV15sYy4aKqVpRE1Ey/EhNw3mHPtSVRPA09jwnMWcyznDxz3C9boyJY6scWB9fD23el4MSRqalQxR+kUR70Vh4o5fEhfD3En+XyuPN8egzB1SksnaQGbTFDJAZN+KXcyS/cNT9YBrDhA+3hjW34mBEE7M8x3T/B7vfzjxTI+U+R6Wjn/0Spfowv/x1p8WCA5nTIRxesc4fEuIAzbBDsML13GwTfGd0eQjZt+e4vEaA6e4sKRANDoRPG6GvtnCcF2fe+s/ZZ+APSY/lkz93IklghGP4Ojss2xgXSEXzwr22GFlAO/fvyPd/yNz7t6fz19zHn5fGI8+DNkHaSv3tjwFfjWA1K9E5Vzl6+orjRWO1WQ8sMrCRBI3YOJMwJQhdJf+XQ0rAOiaK1xztUo853tS8jTzPa3raa4OxLbF9w3HX/0bui9+Te8Xbr7+95z/4f9JYxK3TSeWDWFm1GnCKdEb8W1ajGXOYUz9e0CDcMXkUdkJiSFFHuJSPIHF52lmzIypMUUCubDSY5nWjdDla67exGoJpj7XpfxbCzsNxNFoZ349JwlyIK7YQIifGikSdZPN1+T0DBChkq76R3UnfpV7a9Jmy/Vfs3n0ezEJ0DN7tmDPOdGcHliWe/xyX8BPBfiU4bMBTq3DpOZHgT3D+K0AwcMbQjiyT1Kk7F3LC9typQMJMwCk0qNz8BzjIiyuKAPGznHEJ4PBCUBiHI0T9qQwg7tnO5SXazOMzjrxDywgsDD+YtMSW5flLjyRfReLoyBxYfcwlUF8PP6O4fgPzPP7jT948CNlMOQz/uCX8i2NC6VIg420U5cCQ6As9pVtEhAgtE5uhFgnHXqxhCED6Wqj4Yp/V9u9ot19hW2vIXrCckfynhDEk86Ob2kfHM1wIDYt48vPWP7iK0Jr+OwfvuLq4X/jdP+39HGRhDJ7uFkE1BuTx0Z5j0u+R/fY0jSsB0TpMLgyACYJwDNnQOcxzJzCIk0ihJmw9dvcJlPq9XcJAOtxDFUBpzHC52SgtpzYME2f3U7sk/JPAejWrM9hCwswX9MhiI9kvv1qgKdz5qKYs3SNLQBPWw2EAsupepUhyQDJZTRwhmbymOVcpP0grCwBffL7StvuPeT48CMSrmW+x1poUuSl67jNIOC1awvYU7xhDdkfMvHgBNQbY2CKgbd+4CEszGkhmAXvhRmcUsRZaUgqsHu5LtkKthR4Ugw2zUGKuu4l2IbYv8D3Pb5vpIHcGGgMxqZi/1DLvXcPZ7q716TxHSmMDOffcjr9lnl5yKqpY7GMWo/zmjPUjSFl+ekgF2eqgu4jYM9zjc9y/NU+JV9/Uwqyf2urMkVIicBCwm+aRk2Wc7btzcYCYOMZ7I/gxRbMtS9JN3/J+fPP8L3lJvwNN3f/ivPwLSd/Yogei+Fl09Nauf8XAo9xLeigqa4FtZgylRRUYgIIG6mAwylyip7HHBsUyNI4Ak+bRBoT6iaRAjO1dzhQ7LDqGJEqVvAFh698pjlFSgLidfm5QopFg5NyfqFDFJ2bnxRVG/D3IkYo0FM3iTQ2yF4ZCwikdZz3Clp63DzBctyAPUD27m+eMLm06NN5IT90dUmG+LxwLV80e26bjhbHjWt5ZVquL0AJJQ/c2IYPtmNMgTF5vl0GjB+ZsjokaPwOc/YF1RkCH59LUpSGtqdtr2maK8mf21uawy9J+8+ITYvfH5iud/i9LSoiYVXL580U6Y/jOiQtN4WW+T0hTozjG87jG4IfCtizHfgUNvFA7ojV+qE3WUWRr92+2mutEZWFxgZl+K05uNk0lUqDxMnnY5L6bMqAzzl6jmEpLHZSZGYmhQDGMk0Wl/cPa3sZEJVBsmI7FsWP3jUBG64z87yF/pbr67+W3MSfOJ6+5rw8SiPAtKXR8pBl/FempdgcoLFhBXtC9Q8EFJRZHRSVob43zTd9FRtg25S/ZFXXS2ODeoJur9H16+/iltV+onrOdRBwPUtAAJ8T0R9xpsEuNRd6C/ZcNok0h6g9w13VQF59gtfHEeA+qwQyiSHmAaNb0sU2NqjNnPdnvB/wfvyOI/Dx9dJ1dK7hs6bnc7fjlWkFCMZya8QDFiAk8a6WuQJ5gJixnKxn1H3fj4z5fM9xBA8mzthsG9PEpTSH67pBJPEH2uZFUcd0u6+w/ReiKOxfMF+9YN73Yo3UWGJrSHmGlZ0SdhL/X1UDpMffssziATyO33A6f828yGBI788Ef6aeHXJJGKkJDpc1w2VTyFV7m+YMNQu4NWusUBC4w662IphNXn5jm3I/nYw0dtW+URnGen8NeJmJkiLBdTi3p/cvK7LJqlIGiPMd9gg2q5W7wy/5ov+clDwf3v2PfPvmvy/vA2QOyZjv9gUhGjlryrwgoPIMfro0L9DcQdUCmi89t+q6rV41IUdjgjPPqw+fUwwnKmxD044qZtuUssrTkIyVmGdSsQthuqcbFnxsiN4CaR04/UytvFUarnFBY4TmCiHCvou0TcpD42AByvyQje1kNYPHqipfh8jJPhDDxOKPTPM93i8fPTffd31qP/+h63Jo7P8R158UCBb5diJk1kKTgbidsRxsw7VtS5GiiUpMCZuv8CZFZgxTiFnuk20g8oR7vV5r2db3pX4r2LNhNmXjdp3cmSpALUUt6kxpACRl9yzSyW+mGbOcReqd5d5iA3HOnj1eEjiqwS6fYADX61LSWb6/fVelwNBj6ervoRBTwGDFvytMRB3eEuZVnhMrNmhl8q1+LdbtIEyFtZoc0tVs5W9u3n2Fsz0x+7qsskiKrEyHtJDf00xaZZ6VjOsSBA4XAVjl3gpsxfw7chmtjJYV/niarP0xfqApfaqD//yqu3gaNuwzSeGzz10NhoJtcrYWbs/LOS+X2ENIMyMtBufFW1C9l2o576XM86dcIS5yTKMX709jhfVnHHvbcJXvSx0sqAM8NJedUsBhVoZwLohWqWwgJYv6eSrr76ktzGr/sBZ2F95etsn/pEn0sZWyJyhVXBAbiBGznAn+yLI8sCwyDC6EkeDHfM/pwKcLGVfaNobq5pACE1Bf02t82LBstalh9PqzxBQh5xhJQWAkkQxGQMeYFlKMJYbrYL2maNeqzXtT9I8iS8yyz2Qty7XF9OCvbmiba45I8dUYi01x05QJKbGYQEwC/gRTFWCJzOqpC7oqNmQZ56KSzhxnfAXe1kxdc/ERtLD7+P20kXxro4jvHxeMMXxs2uzK2tDXsP29T3lNbppAZiv3ei4+XF7OKv8mIrGhyDzDFmiy1WAHeAJC/ZglZ8gUEEwbhirxvDbr8JIus73mlAgGgkk4K8DFLjYMMRBSICUExkx6XduSiH7nYJdnCr4CbNqmKAVC40reoGG05IhxBYHtEqQxtJwI8z0xjhIXarm3Hz8p966bQ3VcKGAEW3Zam4FhLdIUVK2X3l82SZCI1T1lTZTfT6w5RW5QJIIMI4kLIVvyFFlw3ZC3LhcCKzhgrBT+yRpSY4htKwyq5iD5SRwKSLfx3SRm9ZBhp7Ehx4Ua3KH6/LlCTn0Ny9DH/Hl9x9V5A6y5wnfJSJ+LBaoUqJeAOObie+squZ8xpegrz5C2HsFPpC8XqwB8F/e9rXKJ2lrKCZugLBOT5HyV/O67rCm0IfBj2cBAvo5XJtrONHTGsq/+1UvyRsOMY7BRJshHSkyRRqhcBzpgzaQoszVSIGQLqs2xumACajzQppJ1PTQ9od9JXGgbQptjQsUEVsm3XQJunlbWnz/i/QNTlnsv/kjwQ2Wlt2wYwMBGGWBYCSMKCNeWD5exQcCbFQCuBw9tvpf3YcgEk3wvdcaWfF7PT6xihYISJpGtIrThDfHi2vnY9aHXm2uu6fvPsbbP81UetuebFZSZWb1gyWBw7clZN3zWwY5VnKjjAp8a/ppf40fiwXM+oLXNhK7vyh0uf1pqxZX0t/39tI2138saonoPl3UGUMWHpzFEQWCxkloHsSb73Z7gK3D8w+ODEsoUnOyMgnyGDujKtQuktb7c598J1hGiEJRkKFrMPQNpupmsxEnRE2271u3P1BTqb+uaa2xzDU1Pcj2xaQltU8gkSb0Z9G+D5F3NNAm7OuMJy/yeECbm+U6Ug/MjovIdSfgn4C9s84Lt1ytxpOH5wW/f19NaG7Dl8woI1gY9Jt9T1jEmYeLaJISPmYDP8cKlRMAT04KJVgYeXuadeRX/2OVYiAnG7TDNNQBd9xKM2yh6a7srrec393/1nj9l3QI8yR3ke9v1NHP/Yev7YATPrWIzmhIUUDiW/VpmPbmfhNC6yRd+glViVgqieIk/PneAp/fqT7O+373yp1x/UiD4PHwDJjFN77HJs89B+tq2fOZ6XrhuIy/ojMj8DtFzjotIfKOXDTgszMJphWAJvivMHmMcNk/5VFBYgR/17lk7dh3OHWjbF9KNbm5w3S1p9wqsI/S93BzNmrilmHLNux0EZ2Li8DCtnj3LieX8NefTPzLPd/gwMs13+OW8gj3pKQhcB/B6iAM8P8jhYwBmkRrlr3Uyqga1JYl3VgSSiaWjCKxD5LKXkcpYVJqha+ObGkb6hwfcciA6KYR9n3939znX17/idx/+A+/Pk/i5WceLCvwHOMUls/6asiG6KoLqZhKSJHYq2zylhcewFLm3du7nkrTpWrukNXNKjeRbuwWf9DnLMb0I5fq4iTX5SnwsFGSzM8R3Uaem2gjBNpsAX8dPGfQw4RaP8y0xireVDHeSIU/tM+Y96t+1eQURhjlyHCOzTxynxPEM/iTS7/44wHKqOnRZylvJv5/19PqRRd0832UgfORgLHsr011vXMerZif+Xjk2aEIXSLTR4rDsUmA06/Avo0BfmPCLdJWt9QXEuZR5y3FW1k9LSuLlpcweYxxt9znN/ivS4UuSdfj9Ad+3+N6WE5aW7O+n3n7TOtG3f3jAHr8hZCuIafg94/i6sP6W5SRAa8rQZFqvXINIGS8ZwG0VD6Qg3lqbNFUhXDNaayYrrJOTVQKuci2vv5MgsGBiwuDwy4nZ9cQUaLKvn8tJl1wjofL7WyeAmzBi0y3t0OOPDX6R13d9/S94PP6Wu+WBGGducVzZlkPVmBuz/DuQC3ioksynsUHf3xAD57QwxkBMiWNcOKvkO4PCev9eFtB6DLWoeJIQplpKmja+nxEyoL+ND8BmUJwmnCr3UpayDs6zyPAjTV6tMghzN9/4Wfy9mtzYuXiJtWJg/d7z8UJUAolhiQxzYhiBM3THhWaaIIxVEpatYLR7b4FQybtUNRKlwfFDV5NSBvgsV7blhWtpjewdt6bZ2ACAFiMZ4LOuBOkC9uR7ayIQ4gQekvVYY1mMK+zgFexVCbNIPAGaZk/b3uDcFcY2Ms366peE/S3JOULXbyRwdkqYc957onj7XUo8h/Nvmef3xDgzTu+fDHm5ZAHXxZ5e/7WPX1eBPK2xxTtT99uPeftdrmhSycVA7sPW2ML6G2MoDbiUYGHJIJUUybPrmecP+ZgKQOaaa3SQXA0Mkjx2emT3cMBPHXZZ6PqveHnzN8zLPafT1xyntwzRV6zF6rpG/L8LIzgZZlaGj7L8lBGsr3tMwgA+RVGYqFJJY8RzTSIDBUD7mBwWKOqAMnyuig81oFTftk+fMWVce43pBbxLSViAuUgywWaywQkzJcZZmDm7zDJTuWfX6MfVWuqJldTF0qGys4d5NmJzNAxYv5ThovUqzZGwzQ1iGMuQ6GX54V5/LbLn9cZxcA27zOjb4/IU+Py61xcEmXXlkpGByawWCc7EAgYX3+sINqmiKDedsqWcDKDusvXU6ondtC+xjcQG070k9i+yxZzDxEh79qQpn8dpWYGeGLHDHXH4hnl6R0qecfyGYXzDsjwQosfnYXASD1QplDaKgE/JvesrVQFcn8Q2rSlKvFSanw6LwlxOn8Gs+96qxjD6pLTGyT6NkBuabM9DhJCC5BUmEMNchoTbbKnRtjdP1GUlhwgyEMs1PfgJ196yP/yKXRSLwXfjt7zz4/r6zfq6lLE3mLCJC2oTM6dUgcWSQ4wxlBzhlPOGKb+XIgHX18g2PtSxVs/F5aqBqUJYqcAk4ElsqL8ftAGXa0hb/TAaqS9SIg8bHvDLHQDdMOH9VRkQGyK4wgDMyoCNmkgetraOqEFgXYURnAfLmjDxnKfrc0vrCFGfHZmXB0L44TVFuac3DFVZYgORGwCJlREMDIjCVPa19XyvtbNIyq3tsLahba/EA1ytKt0h28I04g/e3hYPYNtey8DDbp8JZk7u/ZDz/MyilmMXcMM9aXxHmO8JcWQYv+U8/J5pviOlwDw/Zvu4OQN9iTZRbJ/g00QyyOlREhb5SKLJ+X4dQ/RvapWhguxlD7TSiGurPVHrtXJO2H6+M5KTLEaHwEq+ZjH4lPB4IT6lyOLPLMujzGbIcVZrDMjXTzyRogyptd1LaK9I1tH3X9I2L3i73DFGT5NrTPWU12bwkOJKNEmpUt+sTWO5firVYc4bxhjKEFtfNYvqpXFhi+FsbfD02g0FL+BpTPhofMizAvJrtvlvTf5NBYMTJrN9xP86+iNunmicZV6y1drH2MBm/dnl/KHVNkI+zj7SOehcZQ3xPQhqZI/u2j5KfcNDGPFhJIQfbhtTjtY/C7ntz4zgT67z+fdS88aZl7bhM9fTW8et6/iy2XNtXGH17FnBnsF2HJMXiW++iS0DQ/Z2PDOyLAYXPdGuFg+fHJiRKeEC9ryg6z7Duh1N9zlc/YLlxUuStcyHnmXvSP168aZgyJ7r2CHSHxdJhpcF9/gty+k3DNO3hDAVP+TgB2L0lWePzrPfyr0VnNQufovBFRkXdJUUo2b2lPdVBdqQEzwFNKcUipxJ2cHKjEsJvNFJnDPGutKlFzm4o+s+k8TX5o5bZkEVu4H5DvcA7iT+qfPt55kVbJg++5Ivv/y/Y41jmj/wMHzLIQz8un/BC9sxJi8y/7AQSfTGE5pItJ0Mo7gIqEOUYXCajJ2j31hBTJkVGtgCtLAe567esKwrEjnIATn/3WUHbrWEkO/7TSEnYVZBJf3OGoQjYIhGGM8C8MVSLNZLvX2EMTHippGmbZjnXgqxkHKhs/oBXxZwmujpGufIuETuh8iwJN6f4OHBsH8ziRfd6YEwvSWEMyGsk7Ct2xXWX+JCypWlez9u+vcRaw2HZHjZCPjbGstL1/OF67jO3k2dFh1I4nZ0kWvrSuIGFEninCLn5AlBiiZrdZJvKMMb6o6gzV7hyuRpmr0kEP3n4gvcvSS8+BnTzQ3RGrm2e0NqjVxQPmGmhF2EJdUfR7rHe8z0CGFkOX/N8fy7MshhXh6Y5gfx+sxgT0ye5/y8lM0j4A44TbKyLN4asRbp1cKlkm7V19MTSScra2bMTRSAc/SM+Rjq/SSJz0JEZPXjCE074dSj1fW0OeaqX3At8fTTO/k9f6TV894LmHj12X/Dr5obQjjx/sN/4PH+b/mVsbxwHUuWop8zwKjvMWSp3+Uk3XrQE1DsQ+YMXE0xMGrcIzPzTb5/c9NJC9uWtTHZWoutGASliMsJYrGDUJAnKx5UjfAETHqWuWPy0KpQzo812a/MQIyp+C0GE/BhxEwP2CESsMwXudF2ONynY0SI4gOqIPBxgvPZsLubS2yI+drdsP4U7ImyJ2h8kCZMZrEt58s3+r3XLrOAb5ue26bjZfYBvTUNr0zDtVlBYF0zK8vLWQF9DrZhyK9TrAJkWGqKQdipSZjuLucQzu1ycReK3FtBiqa9pek/x+w+B9MQuz3DzQ3LXuJKPTzSxER79nTDRDOcpdA7v2E5f800vyOlwDC8ZpzesPihYgBPxa6JzPgz1E3MFfxtc7PAstqJXE73VtavAr81kFp7hn5s6X02WimQ68bKY/ZbVbujhVE8g8OMDsvxfsC5jr7/QppGqiyylOnRMUyY8R3d+0DnemG1Xv8Vnx9+CcDDm/+Or3///+IUlo2ff1kWUZDZzGQms5nyzaeD4DT+6ftQUHuIvjSJtJhaRbZrc8jkx9XZAnosa2AHnlrHLNVev85wuCzm1mdbtR5kzvMqbW0yyCcAM3gjjY1EwhjLMr+jHQLns6XrErsObvdVTDCrHUSZM/Cx2QJQZgqopdQyG/bHQa7p6VHygI8xOE1DypJdQPa/+QPzfM/yI5pEB9fQ2YYr13JjO25tQ4fl2liujWGff6+W/c/GZH/YrU9ug5zPZKycfxPEnskinsupL2BwTR5xzRVt9zmuuxVLObcj9S8KA7gMjcxVtVt8qRdMDJjhA2H8Bj/fZ5/PNwzjG7w/EeKSgd9TyQ0kL0gl5tXN4fq6lOO+JY0AxSJGVz0QcTERX/1crSKWtMaNgDTmNGZ0ZgXaOuPYJ1dAk53xxW81kngIMwRpwMQECxPL8kgMMzYD6u3yIr92V2YP6ArzPSbbyGhO1r74NVjHZ7bh8fhb3k7vmFOQ12IbDnlIWDDSJCJWTPi0MhZrYkkN/urxGaIvFoU6C+CyMbw5B2ZlXF8qDFWxUI57brzXswVK4+iiRSTLoIotBYE1LulPfQUGhzAzL/dM0xtinNgNZ47zFeMCrQLArcYFaRKtsWHbSNbYoPZzXWOfNo4ionLxk3iV/xEkkRgm5uU+26T9cPm37nEKTBbmd0rMeU9Q8FeaAPLvmHzxgj4HX6wKcuWTa+Ae1+xoXE/ffUbfv8qNYrFJa7rPpQnUXJP6G2K3kwZxFQ8AGWo2nDF+ltg43bOMr1kWsVycprcM4xvm5TGTRY7Z+sGj5JAetYHKtYFdPb3rfQjI6lU236uZsfKtbR1XX331WXYV/qDYRG/dOrDTOg6mzfHBbJjZcn4MV7ZhRyKkBpcj1GA8nSp0omdhIabAPN0zNm9IKeQ8wuGa62JVqf70KQVpzHcvCbsrQr+jO/2S6+tf8eHukVOcaZNYh3zR7LA555b73YuyVJvl2ixgOwdEcnSpM0BqDG0SxfyzUB3rjzWJNjUZW3WC9BxipVZ6Gg/KeTXyyDJwurKyrJ7TJa11YrH9IyIDO+d7+tMDJgSGabcdPJ03Dm0Wrd9/PlesZxTtO8u+M+w7UR53XeKc/24D8l4OistLcQUln3g/sCwngj8Xm7Qfs6y5rBx+/Eo8f1z+j7T+xNYQI85YrozlM9fzeStgz+dux5e24xabh4WRpRvi33MErrHMJnHM9H6fIk2wtEm8Zn1cwIj0Wz3SVKp16dkhTJ+clLkud+1eit9h9xK/v2Le98TWiYSrN9g233DZ348ow+DasxcW7HAPfmI+/j2n498zTsLsmeZ7lvlBmEewKeiA0sWHit2TGcDKBKs9exTs0YKuNmuHbddZkpVQglgbLQOGKQUwq+STXPSQEt4EYgqYYPEY5mwT0bidJGndOvAD2Ez/lkAs79N1t7jdFXBFamG63nH95X/Nl80VYbnn7dv/nuP7/8AL2/ELt+N9XDgHzymKeXy0LW2wG6ZSHQB1k1aZ1iksnKokzQPBgKa/l5wbBdy1a6lFc4uT55FxlR+VhNSbaf3IAt0CH/m7RAJjMMmh5d9CLB3EjcczKvUSyU/rF2yIMlVaLR2MBOhPLQ3qwvhTkCcyLPA4wHw23FQDSYI/iUVInICDWIIoEMyIqJNXJjCsQf2HLvX6u3YtL11fwJ7PbMcr03KbJd/1vwB0mfkzEBmcZczDSizZJiLMLMmLxJ0k17WdsNnTC1jjhO2wti2+n217Q9t/jtv9HGxD3L9kurlhvOkEvHBAs8aG6MEuSTwTfaA9HTHHP7CMr7Of1x84nb9mmu9FZurH1d+PxCr5zmYNSd6nJvldZvWpvHNvG/bZV10Tr51pVrl3xfrTddkoqtUBg5HmCqxss5rJQ2EIg6+mrEfX4dwD7fJilcm3DdbKlPSUvDAa/LEAiN10TTMciq2B/+xXuM9+hQO+sD0PD/+ANZIoniKcWJOsmBMm52y5zQKVJy+pgNohbcGd1RZC7p3nlsZgl5twTV1MZPZAbbOjz6sfVxC4so/5PjeBkTIyoMc5boCmQCrnpSSGcYYw0kyRpTHE+DQeqG+Xs0+Ttzrh078d5sSwJIZF/IGvh4Hm9ADz/TrkKfqVXpNtUrhIzJTdI5ZIPxwIvrINrXVc25YXtuMmX/O3xnFrDNeVPl6nPrskYPBc7Y0H13CMrgBxLgU8PlOmYvnbaJuiiIEMSNieJgM+1vXiZXv4GXNuGC99y3JoiHvtiq4qIROgnRbaxzvM+J4URqbz15zPv2Gc3pNSYJrvmed7YpgpEv8KglQAWPeEli3Tb2fcxldbGcB1Q+hS6q17jX7vY8yd8nX+1pAcQ3IsRu4nG1ZLoxZJ3mOKBBYg4P2ZeXmUAs3txSexJw8JouQTKXoiI8xgw1gYVOHmF5w//4zQWF4mz5u3/wPz/KE0eurXukTDZP0G7KmboZoTzflvNTZok2jOQHFRCbA2iurGroJt2owvQE/OGdTmSdlBcm1uY4KCw/XzPF0GtNGfQmEP1eClR4fBCFic4oLPPpv9eWKe91ibC7nC+FuBnrbyCIZPsYFzzpFgFsW32BxNj9kfeCrncRMbKrsgXVLUnVn88Ucxgnvj2GXrqJ1x7I3Lg4btRv49p/ra1uZH/pgqZryxxWYu6D2YLLVe1hpX6gbxAH5Jc/gl8eoLQtuKD3DflYFPapdmQsyfB9xwwozvIXrm4WuG8++YpneEuDDNd8zTvTSwSdLETqkMC9R84NIeToFel+0YPqYU3NQIF0CRelvr72szpTWy13blJhAbjV1ly+OqeAJrE07/XsHOOUViTGX2RgyT5LjJZ4b4Iy4Ph1LVgHX9CvYsAva03efYq18yfPEz5n3Ly+nfst9/yf38Fhs9nRHf0R5X3teimXt6GuM0N1CJtzafdbjjnJUP9ZDM+r6tbTj0PtVYrI9/+XzlPFQgT60a0N94LjYkKUPLNWGoBknmekJeXyQmUWnM8x0Ah3mQweYxVVZRVB7ia5PoMn+4bBTZih0IEiOISWwhwkjK8wQ+BvZs3lMSslTI8SuGHw4E1/mvkkdWoK1iAafEgHrHCytUG4RyvYaS90qP0WFdR+N6nNvRNNd03Wc4d4VrrotqUOaHtJvhb5exwHqxe0jjO1HP5EGQw/gm4wcPLLlBlIg0Ca6MZWfaMvC1HuZ2eY3V1xSAN6s3PZiCDdR5an1Nl6+f2RJsSrgUyz7oCPRJrPvE69cRXOLKtthksk2XKTCz5Bv5fOQZGEu+RtokHtyzEW8yT5TrdzkKSSfuxHfZNNJ8y0q1msDUmobQ7/B9R7f/iqvDX3IeXuOXI0s4M0W5l/scr/S5FyTuzWp/xTNAMKsNZUDIJUq0E6B4zR/qQ1cA4CoPu1yb2QIXN/6aOzyNCdoGKjlLjuP6Gqz+TWkQGRIBHyaZ5bKcxAbRyyM/xwhWtWFtKfXcMDmdQ7J48Q/vnDSXPjWbR21jFFcwGqorsDjGCZ/tT8wz5Lk/dv2YAfcfW3/2CP6OZZMUpXVx2+LWIG1WE/8ap/8YZq+m2eVWSpFk1pNQn5BL/64i8XIHnLvCNgJa0PRZslFdsTGJBQRkG4iV9dcNE248yURffyxewCEIs0fYfurrp6T9bVFR/9NNS3179FjV3n6FyWO23rZPgkoiF4ARh/jwxiyVVTBD/XhK4EjKjsveidkH1ANtnKXjpoPDoCRqcry3HpHWLzgfiYsT32Brca3Ix9vmGg+c48LRtmUoSz14BRTgsdXn8jqXmAHfVPkB89Tv83KZ6tgLe2qVj2nQtzlsKgOnyMs+EpS3j/49l26CSfr6Eaou3ur2tnmGLBlKcZVoBptygXa55WwB4FoCpoyeYZZhUGkCuyzSvc8gjzWO9D27ZTog5scMfVEmhWVNpNdi7dNr9XWqXlOV/Dy3nh/s0F4Mdrja+nm1LdEauZbz600kkS7FhJ0S3bCqA+xwh5/e4Zf7IncLYRR2UfREBdOfAYH1WNRMD5V8XsqJoCq+MpNdwcI6OXwuUayXNkJU0tlk8NFiiBZ8TMUjDVIBdWO0wmIMMzFMWEeReQNPPL20u2u8KA0AObZNtqNprrG25RQWHtxcQF0Fo/R9Lyk8YT4EJDZoXNChTCGtQ5o+FR/02CvYUw/Rqj28i3/9M3Hhcq0/fiazKz+y5XdUku4yCKSbtu4L8pw5cU9RjmWIGG+JuUn0x6yaETz7xBxE+r14iIuR2BAmUQMUL9fvTiU0eQvhTEw/XMalxfWT113+Vc2NdMH+y0z22kNeE3XRZqwxwNous9LaHAuuiu1J215LrtBcCbDldgJ+52Uz4GumfH0sCedlYKyJUZpC43v88Fo8gOf3LMtjYf0FP2Svz1XurdyC5/x/Ffyh+ljYIkYBz0jM8vdgt1Jvm9YixCWTGw35a7YMa2e2bBX5XuX7aXTIjCv3qUWLleytGiacbQnG5b1ixMarp03lvEr8iLssk43QWDANrtlzHt/QhVmYzxUArkvtbMrneSkIrCByscTJsUHBqcuCeDOgM8ffmm1Z516XCgW5Vrf7UW0pVX98bmWYl3WHWN+b0fiUqH4rCbAWJ0yMBG/wXtQECgZ/bH0nCJxjRIwSG0yMm7gAF7EhSzwvlypzYlwIP4LZU8cFLdaDyQw/IyBviQX6MSWOKTBkBtiYfFbAhCwDT3gD1rQSD/I1J/LvVqTfWje4nRST+T2bEDDWisXDEiRex4RbJB8GaE6PmPO3hOVOht/M77PXp1hE+eUk1ipJNCsGYf82rEpBfddrDMjHXvdDtte9/UQutFlpBStAGsIxpsISXkxkZ1NhCIeU8pMLsaGA6xe5hlQh2TOYzFg24FLC5xhBsoTsdxzChMvg76dfrwxRdl7uqMbtAZcZx4mD3RblgVjA7ct0XfaHtUmksWHKAJGydOv39dxRrfPYjccu22tV1yYuPGEAb2OEqb5zmccU8J4tA1F+OZZjm1KAMBHzHu/s2jz+WGz41LyRWOoRiRExInthZRmXYvbetzzry1kTSVaP8/i9wOOPvq60nq+ZmAeQyz42pzU3FiuIUKxB7sJcBoZOMXCKnolENKbYPXTZMq5xO9r2RQGBreslN6iP3ZJVEBkI1lhgYsQNJ9L4Dj/J8Ld5/sA4vS8MYO/PYveTm1OqUFPLAsVR6kYkVMoUtlZESo7QJkFIqSjj9M/L58+mttU1nOf3JBImJQGEc7muA41LjmEMESGNBbttHjmT87a01imRCixFiQ8rHhGMK37iH/WLTRmDsBaSx7meLuMPMc4scSmECpK8H1t2ZluaurqU/atkE51FpDiEL5+nPHx6vU8/hQw8pxgox7jKS36IN7D+jVYe27hQ1xDStDGhx4T1noZtTHjGgVLeg9Hf/SMwkItlbPNsbCivNnnB9FL85PH8o57zzx7B/+VXhxQcV67l2rVcmVY8go1jjy0yLgGF17+TJE46diXZywX+enPkjylmUGIsEnBXyb2d6/LwkZvV22//c+L+JcFaQr9j3veERgbEmQDunLAZVVNvPzeeZDMdvmEYfv/E288vp1XuHRdq7uilt19rFHoU31xlACurpwaClQGsCaDKLupVCkM1w8/gUG9WyXTNlHsimdbuZ5xYsnTdZq9gldfXsi3r+tXfqZIBtcMHDu9aQi8bY3KOcPMLTIy8GF/z7sP/zH8a73nbjIXlcu3aTUEncv81GdDzfY7CHp5zAJ5TZEoRX21e69Tc7XG3+ZjLsZYiUvwj3cZLsIA81eG1OYFdgZg62OtZXHv5+qe6WWJEvqHgQyLhs6xEn3uspEjRAEYG7pjljJt2hOEFpwmOU6Tz4oe57xLOJ5yVrmuMEWs1oEvxFmLiYQi8OQZ+fwfnEe7uDPt388a7NiUvww2sDjzJks68MUiht8MYzzIdhZ21PP6oCb9l2IuVAVD69TZ5ln+1z9cxRY45iRt0qnNV7AcA4zDZ08+6jrY5lLggSdxhI/Fs+s+lsGuviP0Llv1hI+1spsxEW8ImqWtOD6ThdfHzGuf3DMNr5kUYwDrUIaalMGBUIQBbBrCB4ltdSzBrK4j6vl9iBMuGVd4mJx31vJ6w/C7ACwUeWyzOiZRcO95D9FgokidSyNO/IzF65llYlDFONI34qFq7ox4waN1OCgLbEP0RO4CdRUpr4gti05Kspe0/5+rql/zD49/xh+VMny0iXjZ98c0FihVIvbQ7LxJOaR2pV/hSkmOqwZFQA262Ou5dBrd662SSOo5YksVYjttz3n/i4ftx0PmjqYKxLAROKWCS2CI0Vtjfem5rMNCHCT+9Y/d4xMYrxrEV2xif6BrzrFqgBopDTCVGHMfA/RB5fxJbiLsHcA8Rd3pPHN+SsvTbWpFI61AOwghxlX0r0zNFzzx/yDLnH9EkqgA3yA0fozJOGf6kA0QlR5Dr4D55PoSFMYmVwbtl5N5PxTbIGysMngzm9N0tffcqe36KV6VOsLfNFbZ7SepvwDqidcS2zX5+AesXutNJgKAYsfMA4zuiF6bkNL/jfP6aebknxnmNBWVWgBgZ1bnBpeT7kgFYs3o9CZ8Cc1U4P8cILLGh2E1V/qhsm6K1d3BXxaH68a0xHEwLDfSZbW2DgZBjBTJl3SwOUsS6KRfP78vjrB7MOU9InhTW4XJ2eqQ/9bSTNIquD3/Ju+kDf/BnbJr43HX8sr1ip5YxJMJFYahFv9pArBJO+XrRgotU3d3rWvM1ZVgL61JB6BKXjByZ8nlaizktGFUxUBfkzzGu5IltOWvRiEx9itIAi6TSNFdPeXke8VVclkfaxzseH69J0TBeV8Ccecrwu1wxCngMsPjEMEfuB1EKPJ7BDEn8bOe7EhvULqz4NmZmz6YxmDwhTCz+xDw//qjYoMd1TmJtdLSiHBqwHLFFOTSXPEGK9bswcR/mkv8+xIUTUc6wbejbG/b7L2mbK6zt2fWf03avCvBrm2sZRKSgt+sxXgxp7DzSPt6tTY7lJHZb/kSKnrN/YBhes/hjiQXzfE8IQyYG+OLzKQ3JbEv0zP1cHwM5tqlcy3JdsLnO6pWe+dxUHzXOqPKA/Fo6s9rR9VbsFzRPqQf2wQruaKNmbyPByXUrSqOFc4oEZkwILPMjU/O+7DO73RfiA5oHS+oyav033bN735OaDpYj+/1f8OLFA/NyZJzecx9mXjW78npiSkzKTk/b4zjmvGHKvsBaVyxxBYJ9fc9eHDet2QpbX9VEdnssVE1U20nVTUoF8RN8J7El5nJE9w2N6zFCSAGXcr6TPMEPzMuD1KXjWzj/DdMs93nxD8/M31otIN9frSDKc+f4MPv4hFxipwTLqex/cs6azcekPqBhXOeMRE8IMz5MZTjYD10LEZsij3mg8dGEYiWm8v5A4jHOHPN8mSkFTmHhmEKuJQ3OHdj1r2ibPc7t2e++ZLf7eQF+XfsS2mvI7MKU9yHrlzIDAJ+9ksNY1HExTpyXhydzQpblUQZiEXEpscewq2ekZPuFZ68HqmGGVQO8EL9yfrRaoRmMVh0XOIIaEz3bycvPFo3GGgHRBwI2hIJt3Ie5XJOdkRkPau2mCkZVFWjNvbMOmwxXqZXGcjK4FDmmBb8cIUVco3nEzeYVOXcoNWuc72g+iJqZ5UjbveLVZ/8V3p94ePx7Hh7/Ltc1WekXUxl+6cxWbTTnfbe2etpYuaSt5ZRiKPV9u+ZUK8GvHti7ObIV6KvksPWoP7/qIbMaO2qygDTnMyakv5/EenKeP9CNr3FhpD/9knHsGZZU2cR8dwP50i+8JqDVy8YEYSxYA3yiORTHlWgWJkLMXth/PCb+7PqzR/CfYF27ltbKACiReLZ0xnBtHNdGLCGe6zhoYaeyjYWw6XQVKDglMEk2k7hKShq3o2n2pbjr97/A7n8Orifsrhiur5mu+nWyd21+vUTaYS7DHNzpPf74G87T6+LtN4yvZeBBivgwXgzNUHaPLPX30yKvM3kwFk/l3q1dJyGDytmeMoCfCySb71c/1iFKAKfoeYxz8UAajEz61oA2pyhsrjhjvA7J6IhxxtqOrnuF2wlrMkVPyMxH9ZC04ze45HFuR2oPLC9eMr28EYnn9F/x8u7/x7v3/4G7+cjOWL5odvxFe6A1rviCDs+wRRTEPoWFKW9yAfAG1pT16dLjrjJ79RATAFIkLTvrVkZP7mqqJLOWgtdrHRiRN9O0FuzAEy9QlRrrIL4UF6Y4cwoLxpgCWukYwTLcbDnixh4zfcF5hOMEnUt0jQC91sRKwpVlOFEKuHGRoPz+FPnmHt6+NwxnQ3gPn71/x3z6DX65z69vBYAL2KPMnuirIT8SrOf5jmF8/aMKut6u/lI7I2Dwxter+l0d9CNAUOCYr5UxyfUyRs+Sr2lJlJXxKyBw21yVgQ59/yXd7iuZMNu9JFy9Yri+JjSO5GxpCCVriu1DM4lFR3s6Yk9viRlAHzLYM83vC/Drl5PYwuSu6+V079oDeJWsmk1T6FIRcAk8lq51jNRCOpsTX1hjQV34uGQ3saQz61CYnXFc0QjjPCfLFlOGddoApMBihNm8LCY3LBacP+Wm29VGeiMyLollwZ8I/gQgzTjrMPFAaBvM/iteffZfyTlejtyNb3HR8yt3zY3tJG7lIr4GvjXJH/LAJ/UPV283BX/XBFeQmvRMk2iXY8M6VKJhn2PDmFiZlxcITpF7azOtig0ftY2pkj5rGhJ5GnuKDCmwJ23AuQIGJ7IP7z37owBr4/gZc1D2XgZ6q6cTKejKGl782iQ6TeId/u4Rjmd4fLAc7o7E4RuW7O9czqOCPaZ5wvrT+BDjxDi9Zxjf/qjYUFtzQL7ek2FACvZjlawPCj6myGNcuAtTKfDu/cQxBZYcE5rmBfv9F2L50FxzOPxCcoPmGuN2pN0rwv6KZC3eOkLbEJpc5MVEM83SBApBCr7zt8LsSZ5xfsf5/PsL4PdhjQWE7FMqS21I9PbUxF0Zfpc+n3WqKQqZsAEQ6iFGl/YkNZC8PrfZsIwuY87eCrhjs2rgyq5gD7ahS5ZgpThSD9IxBZYoMc+HszSQw4jLg17kWnEbNlVKnui3OVQ77sRyIseSm9t/R9te4/3A3f3/xnF8w653vLBd9oVfiidpYexm4EXzhiEPg9NrZc3WNE5Ux6pu3JttXO5z8/hjTaJyjkq+SpHmlnNlthFBW9fyuQwmAsTWKCXGFGjSSgToFISOnpgCSwYT5+UBc/6W7uEvWIJjvJEmSj3o5TnZtzaQYS3mhjnKYNkJHgbxDu+OC2m+w88SG1IU8A5WVnDSmQJoYadDmye5J5bjJlf/oWtJkVNantRgLudT5yjWYTpM+DEuHMNS8ixsR9+9xDV72ubA1eGXHK7+hTSC3A6z/wp/dUNsWrbUBAF83DRilrPI4ZdjVgLdZSXQA+P4RoZfZfa/gj2QMCnSY7gy4rXZ2m6z78NT4Lf2ovasPpJ6LHyVZYQc70pGanQHVJWkQRUpSU5aRXAIJV4BmBRwUeKWreKGkle0flFbGgV6WmMzMUXe2xgbltw0SmHOeXzA+yPjJGQT5/Y4J8O8twOq1yaDn95h/RFMQ0ye/eFX9P2XpOR59/7/y+PdfyzKnRoYK9cHa4NxiJ6HnFckzRuqY30J/pbXU33U46GxQcGukFWZ9Xmrm0GbAZKaPzyjTFifUyLSqgGQWKfNsJiHpaoq1mcrlmKfOL+jPYl/+G4nKiDIgK+TeFDHBpV6a8PoicowSINoDjDP0Eye5I+l+SHnLavvtHmSfKkh6mFQAvrMRXH2Q9ecAkQj6rAYy3nWfECBvcewcM55ARn47bpbDu01zu057H/O4eqvce2tkBkOP8NfvSjzLZK1RPVP9oF2GMT6JQaY72UWwPB7QlYFTvN75uVYZgH4cCKlBQM0CfY5/7R5b1Hw9LJRq6S4LSBJxVBN8j7z/hZzk1Lqu1b2FtNgbVMU08ATafv3/VmMvijUEoklLszJy3tL8t5aJnpjMUZmNty4TvAOs1pYtcbQmvWeECKHWIDOOY8IYaZxPd38vrq2tgOr/XJPynmrdTva3Vd0L//PYBrab/8/nM5/4BwnibPZuiJWCGMdcy/JJXLvxrLdFIKi3t/5Xz0rqLaD0Jy2NK8vVAFAiVO+Or8fYwULxvCU2V2TR/T5lxSL8huSDOyc75mG39OGkf7hgcfxZ0zzahvTNWyGxNWrHhAHq/1DvNiL9XsmJgF3w0oce7ZJBBXBcCrztVKsNYA/bv3ZI/hPsBxiKC7FtaMzho7V+7OrbsLLU61gMKyb6HbJZU8yORiJFEYDlRq5Wys+wHH/ktD3+L5nuuoJ15aiZ8wyT/JF6xaPm/J09vmOeXrNNL0lhJlxesM03eHDUFh+Ku+8XDWTC3K3Pf9Tpp8mD1L42pJEXQI6HwN/YQumb8G0RIfLEzEpDEKANkmHvjF2lZcn8cIhB3bZtAasb2kaNgwQrVDLho6APerhI6/gJb63xN7gr1+x232Ja64I/lQYOq1xxRd0ZPXjqpfKvaXEyAOZCuBXMWTkBT17/MsAHWVG1fYQBpaL06e/o15j8tCVhUMFMn2fZpW1TS58A8a2hDjnQTuVNNVowscqp08euyS8F/k2rElZVNOw8m4F5FnCCvYMS+I8wXA2+JOhGzxmeiR4mUQtzNgM9NgK7AFqD9D6nIcwsPgz/kcNdmADdKpn5RMft7Qy/vSj+s4tZWLrKndKqJTSFm9wBeGb5kq8wfsvoOmJ/YunHsD1sByAicICtvNAnN4yj6/zkJe3DOM3TPPDRVMob2qsw570DNX/lGlmEeZNk+OBsm82ErBnVl3gqGxTgcpQSccKEzgnhqC2AysYVJZZk5zFVkwDG2lCLOBGTJ4YZrwVwC+EeSP3A8rgOFivZ1EXNNiK7ZOajn73C66vhGke/MjiH0tRGUziEYp3XynmqiRYE2TpjFMaAps3drFWBmYFhmlc0AacAZvW5wufOB/5cF885zYebX8qg4pMVoiIN/iQX9u2s18eLatO8BNuGkmLYfFZaveMXQxIMlarBfTf7KWYG2eYZ0OYwU1j9gw/rQ0iu03a5EGfFmxiGzLL4LPww4Hgy6V5wJwAE7P8OxVVgMaDU1zlnXMuiHzZJ1pcs6Nrb2iaa9r2hQx82v1clADdHr8/MF3vSdZshr8la2imWCSfJkbMciYsdyzzOwHAx7fSIJ4fZEhsGAhxxCUd7EMBty9l3fAU+L2UD9YswMtiRD+v7YVqmac0EVKRi1ugSSL7FnAnFv9ZawyLsumy95+zIvPW2KxsYZ2yvaTAZAMx+09OIbIgSi0Lme014f0JZ/t8TTnZZzby4KwwCiPGT1JYA033OVdWvMen+T3H8dvCJCp7YVWYtdjctKn2Cj7CkCpre6+W44Y2lKvGjKoz0goQOmNK7L3MVWsV0XMgjz7X+t8VahL/8Ah6fvJriCScsbgcE30+3jGMNNNCaCw+e4Ju5OoVi+fSv68cyypOqGWM9wJ6CONPCrpSzNmVEUzym/O6HoOQB7CJKubHrOKpmoSVBqA+jiT5+WNYOMaFMXp8kmGyI1nujaNtrun7l7TNNU1zzW73c7r9L6G/JbUH5qsXTNd7QpPriez1CdCdbRn8RhizRdxdHswlRfZ5fMMyP6IeqCkttGklgxyyx3Ft/1ZbpG3sA0wFIOZ/mpfqPa85sewAEu9KQ8GsUUdzokuwRwGfmPdoAfDl+954AhJDnAKaJm0YZ5CBByv+5Xp/SH7RYJ0AEkP0tJhc74mqIUWPD3Uesb0+RHGiQwdHYpTrz9odrr2lzYMlD8PX3N3/R0CtKUKpHaBW913mkTlvSGt9AXWen19H2u6ul97Atd2cw4KRvMSZtYbQfOrSOkafr/743FpjQypxyRpDkwdCrXC/WHlpjhbDiFsC3ttsGyOPorFgHQz38eeuLaW08bx4iFEsEFIF9tQqge2bfDpjRGJD3cr4YUvPdcSU4x4yOKrez4s2jzNRxNiWvv+Mq/3PadsXNO7A/vqvcdd/Rexf4NuW+eqK6bolZeCrbj41kxO8IL+3FEaW+R3D+FqYl8uD4AX+VPY4lyJdPm+dlViwzwzg1lgOrilkMKgUvyQhxVXqE33f2hQu9VKuT20m91gj4K9aYdnCmF/v/e+zjLGbv5WYnmNHmDczUBZ8BlBDsWfRprHu332uQQKJ1lr65Aou0xrLlPc1JZ3EOIta1jic07rVEYNc4yGcSdHTdq8wzTXLzRfEpqW7/wpne/GizteILt0f6/tRGL+hDM/WJnJtSVdfrZexYj13VW5XAfrPDb2+fA3fb6Unn6kljxLZbEEpcgspRcEfwhkbejo/F9uY9nsihpdxQ9enbOq2teGnLCFCtgGpFCHf72V95/o+Fnd/9Poj7p8/1frTegSbtZhR775gAg6zlXiydkhmEvcp8F47+snz1o98CNM62MOY7Nm1E1lXd0PX3hTAp+s+E1mX3eG6W+huiW1bJBzORzgK8ON02NMi3lPNcF5Zf8kzDb/nfP490/w+B3b1/Zwz6Cjh4BLs0c+VcVbASOu2CR8iX1yQDuZofPEEhpxQsJV91uvSk+pSzqm/o0AJSHIWTGKfpEuPXQNQTBGfk4oYZxZ/zrKsgHMH/HJPw7qRF0ZI3rhimDDJ40xDM5xpzz0+NJgQ6LpXHPY/Y54fmPKkX02C9T1/rAt2Kc+ShNesASWFzW/U4HsBdWtG1IX8pSRxiU+Cb5tl9AzLcX0Kw6T8/0SMXiRD+n6MYUiyHWkSL+9IPCxjCqUgdj4yz5bTJAnYcUrsu7gZBqMfZ584jpFhEaDnfkgcz+BPhvYh0B8HWI5rIqZ+mdkbU4uHzbuoh/tEkWvEMJN+AmaPJjdjCszJiN8fkS5lyw5y3EDYHXdx4t7PpcN/H2ZOWdZljKNpruj7z2ibA43b0/ev6HtpQFi7ExuI9qpM8nWLpzsakrPiS4kWfZFmmkTyOd9DFDbKeP4t0yzMn2n+wDTdsfjTpilkSMV2QMFGWBsS+rkzKwsw5ibHEP0nr79PJQr24t6/9Lut5eXandbBk7UcXItOHVYZjSTTbWaXyLmQAtd4Ya97f8QvD6vsO19PaiNjbEMKFTgQRom1yyLewa6n77+Q6ezZXmNMnl1yxcOv9ufdAmMV2w4FgfORN6ZqDj1tEhXvT7OVzF/6o9aNIvUSjknZyWsirs+ycpBNaVJtzlyKpBzzSvPHWKIRNsIx31tzCtIw0j9LkRAm8ffyM2ZKTLMMfAsNdE1in9UCwKZzL37hq1rgOCWOIxyPhvFs4CgyZ59lXBIK+pUR/JHYkKLIwGOYCtjzVJj8/VfxZMvMvueWFHiex7AUb8ea9SfXQUPTXOOaHc71XO1/zuHwy+z9e027+4rU35CajmQtJkp8TNnz02SPdhCA3AwfiPMdJM80vWMc/8A835WCbxzf5yF5MqynSakUfDUz5JPvPX/0KZZGh77fcPG5jpZbQd8aSFx58JBIJlXXkTTPCjCc1twBxJdwtJ4uA1WD9Yyu5WSaJ4CHviZlEU8x0BsB4r3x4lPrR2GrmoboZvFjD9e4ihWyerc3kkP4Y2kkGStWHQBtc8Vi4N7POASELvdhqdNTlc9kJk9a5wlsQeCnsVZ3dcN2vsUaG2xpIMdkKb6Dz53PAgB990pccktMsTkIKRELQ1vl6Dmvyc2GEBeiP9FME6FxeN+IbUxIuARdaQJJvqCALwhgvPi1STQuEh8eBzidYTobXgxDvsenJ3G+gD4VgFHbh8UYcsGUflRsWFIkJYNNAQKMJpTvK7lgSZFjXBjUAgRIpsE1B7ps9bDrX3HY/5y2vcG5K9rdVwUETtZhYqA7T0RnsSHi5qmAv2Y5E8+vmed3BXwYx7cbNcBq/SBXR5dBUW3+7rIF0aXlC6wNDKBIkmuWmNZBRZYMZVBysSGzrrr/q2vsI0VrIdDQEAFjZd8ySXzHSRJDFlQ9KFDuFISJOERPYyyTDcwuskvbvaL22u/z3JIpqz19GLIKLtJmVuk62DcTFOyWOQaQTJVPmAZrO4xpuavybFvt6fWg3Pq4KhGj2MRUh61upunHTXww2/igwL7Us2ts+K7ZAt9H/l3HqpLr5BoDJFal/Nw2JWImkoh14plm8Sy+Y57J9/r2uVYw+Ol1UzeIliAEk9ME0wzjCLtpfjY2AGvuUDWLhBgQsppUudE/PC4A2QJxfRi9X4YYGFIoKjFrd/T9S7pWZlMc9j9nv/+lkESaK+zhK/z1K0LXE52wf5spkhaZF9JMS8YLAs1wxpzflFkAfrnndPotYx4EGfyAz/OD9Iw5KCxZHVxeD30F8bbW91AGvOW4MOXmd0ypqHDUz3ohVUPTNcNdGz+FNJfjgIDT8ZNglsYMY6wAsh/JYQQkbovCOkZDxDMhU4liZt7PNhQ19GLjE5asqglaDE1C8ogAy3Jinu+LwtaYBpt2bAkf1QqjEPqisJZds+M8vyeGRG8c165ln+9ZvVZqGwhfMfjrGAHr/VdfsZdzoFxdW7AOmS3ksuo221hDpG0+8WlwWOqPusFcnj8/byJKPEAqFR0k6f2AMY7DciZmQom1q4pI7CFMhS+sqqInh/pCLaBzR7wXS0WxksoqkwoEltjuyuewYkvl2nxCDfzhS/Gqn3L9eVjcdz15JXVasuyVBLNJHI0MdgAYqs7snCL3YeJDmEo3/zEuTAYMAizsulsO+69yN1/l3j8rEk+6W2K3J1lLcE7kXW1TgJ/+OBSJpxtPoObtcWRc7i98Ph9Z5kdCGBBvP+GlCstmmxTAWlAV4NdsPbY0KGjwmWLgXE1Y/j4doUug6FNgj9pNqPefJqEhd41aY5kys/IxzJgo9gsRsYmYJkvwQ2azZiA5d32t24nnonlZEv7FizTD+ROdbTgAoe+xfmH/4m/4KjOC37z99xyPv6EzltvMNr3Lx0ST4How1BqUV6BHEoxsdhUVsEyloKr/aWdOj0np4peC9ukxXe0htCOrzFQJvAoiJQykCvB5EihjTng8GEnWnTsIu6+wtATK0s6tTkzGNPTHgdPDNR+6RNOIHCvEyHUvf1uDwQr+3g/yex8e4N0fHC/+6ZH29IiZHlnG1yzLg1iA5CJOZVBw0a3PII/KPJflgVmHHgV/+Ub/6LWkKLLeJMnyXTn+loD87BiXjcRzKEw/myfSf8ZV9vM67H/O/vArXHOFsTvs7gvi/mUeCOnwQMpUKB3q1D3mDWo5w3RPWO5IMeCXO87TmwL2LP7IND8Q/FjYjzHNuBwHWiQZd0YYaR8b7LIp+qotboqBQcEKZY2w7TrHZzZhXTVj5en1r/6DuTOPKX7kakuxz9PYde2yV64CLRZTuuTH6EW2FRdMaNFhfK1/LDYy3e5nGCve0rAWcSl5wvQWG8YCBtnuJYfuJQAhnPn9+XcC9jQC9qj/lbLhtvI4lXTWTSJbgRM16yFt4kGxyMgxWmKiK3Fbk3Bl+Ghc0PNYg9GJy5RlpW1sm0TC1iGlXCBZsYhIkWhaTlEGOVrWgTXa1Y9JJiX76R2NbeiOC4/HhjeHxL6VuABw3Wfm90VsGOZUmkTvz4lv3sHpjaE9Rq7uHuH0e7x/wIczDWQZ/5Xsq6wNPz2PqfL+8uGc2Z8+Fz4/bImXZOCIxIdHI4+lBZAO6jhF/zQWXH3FVXuNtV3x9mval+Lz2X9B2n9WPOwXa0tDyPpFirqPyL29P+cBT5IXLP58kRcsmBRoWZsqvVv9/2v1w3OsMPWcU6/pKT0n99bmRmb12cpf39Tc8ZX599zSYjAhBWAg4aNCy0hTNdZxzbC3jkNmLe1tw7VrSwEHcHANfXIsdmUHzRnoWZYHhsESwohzO2IMxSpCVy3xjHEkjivrr+k/x1x9BcDV1a9xH/4Xfr+cOMal+P2rD2EZ+JR9P+ckYOCS709hTapPIhSWjELpabWTEmXA+viNWS2lJKdSdpCA9kGVBBUDsF61fUc5T6wFpEg9NX8Ri6iI5YRIO/skRXP9XlsCIReWwQ/45Y7+9AjA4/mW05S4H6LIv43YSjmrIFAEssVHtowZl5gtpQJvHuHde8N0Nph3ieb4nvP8jnn+QOMONO0N1oqfqyqJSjEXvJzH7Pcn091n1gj9w5bEfZhD4FGPKyLzH9MqibZmR7f/Isu9d+x3X65gzzOxIGQ7GG0CuWmUIW9hguWEH14zZfb/sjwwTe+L9YMMfDtv/L9NCnRoLHDsneMq56p6LdWEjwL8Zgaj5juXwG9RRhkFby06+Nbk2CDX1fber+3qSBID1oHadvO5Nd32oFeFbtSht0mgiiHOnNOCi5ntjEjAd/k99kbiRmsFoOyNA9exs5E5BlKYGcJJ8gjbZgVXS5cBxba9wdkGmxUBMcn1pKsM87Tyu117y7fTW+7DzJVteNXs+KzpcVgZEhh8aRiM0RdbDQF56iYyrHdrKvu3xgYDOUdwG99w9UtW4sJzc0f0POvHOmd4emfoc+dMzmi9siph9Ey31glj2wjoNqWFEOT8zfMHDo/3HB8PxL3hPKZcRwD2qbdnrRbQJpH4Akfuz0FqjKNYxiyPlhenR6blDu/PONdv7D1k/siuAvMp9U2IU1HX8vQw/VFriAHDiiNkkS/JNHT9F+zbKxrXs9/9nOvrf0m7+6pYP8y3rxgOAhKFxhJbAxaMT7RnwQwK8Hv8A8v4muCPzOHMMLxmnN5IHAgTfjnLzKLKZqWp9tKDbWQvzUQLvT9q8oHmB7WPtcaCIfoCTNYKF0pdnKkMxpR7quQCKRa1lqjLfMkD1quN54Fho4+tqusm5yH5PDf73AyxK1s4+mIhsYSRuzRzFydsEkuMa9twZduSH2nMsBheuK7KI8SS8Ox6fBho3L4Q0Z5jnsc4EZY73LHBmoYpjPTdLfP0ITcJFxpj+Mz17KxjjMIaL7EhrYNEVx/vtf762D5ex4iNbYxdLaWAYkGpf1xULhcA8HNkF23+13dLXEsNtIGtuac+FoqfhIlpupNrPQy8GL7Bnv4Nc57vfNhB56SGWK1jnnoCw9pI1tkCs48MsxBMHgcYR0NXNYnkuuk3BMKNJSXkBtGM9+eNjdRPAQb/2SP4T7BqP6YlBcbM8hsryndIqXi8aaF3DAuPcVl9Hm1L17zANTsa13PY/4LD4Rc07a34TV79kuXmC+a+JzSO2Dp8r2CP2D7olFm3eAHEhg+QPH54zXj+7VMpRxhWQ3t8CeT1P1gBFshSd4T1q3LjuoiAdYonyM2tg67qjtRzsqHLVYPB9WtREPjSrN1hOLiGjrWA65IkLjo91xlD9Amb/VanFAlewR71+pMA7GxPaxqaXjzVVBYU/AkfzrRxkiLONNipB9MQb/4S+/lfY4GXywPfPP4jO+O4NY4hRWEjUgW/TZcsG+CXvMpirMPmGzuYUEWKtAHFFMRSEHgt8ky5TsvHzPJRhqBOStfztfEHRjqkJskVkUx6JlqlXHQnTAqAxdpGhpJkD8QYJkKYiWmRbqcRlmXIrKj29Eg6XvPQGbpOHhMQc3ft1OVqcg7w4QT3R/HuOh0t/ZuZ7v3viaMMMBE580wIs5jtux22vQa3g+gxOsG6YvopOOz9QPCDePf8BBJPYf35JwwYTYSOQZQBhdljW7ruFX1O6nb9lyUWuOYKd/hLlpdfMfc9yVrmfUvsTRkE2QyRZvKF8VuGPAXp5k/D7xmnXPD5E+P0Ab8cEVb3TErLBvjtzDocREDVp7LuetUg8HZ6vSSwK5sx/7Zp8kdh+jSf2MguE7qo8k6p/NbPMxjahFBe7946blxX7GJEtrX65CqjXv3WxNMu4PPQl3m+x9kGH0ba5oomM/is2xWLE2NlinCKHj/fC9MaaPvPsVe/ZH75Fclark6/wdl/zzEu9NGVJKmWcK0ywLQOx6hjQ/ZCAyletX9f+wMXH15WeW4ZWljLPI3J0jZbYlPtH17Hq6dJ2pbFs36eMIi1kTEt1goQbFOHT16Gx7EF8uUPoyRI/oide7phYji3HM+JKV8aXaN8BY0NuXhMieOYuB9F8v3hBA93lsMb8Qmzwx1zbhIpW6Cz2eqnnowdK4VAmArg4/2wDoT4EbEh5CMUo2fOX6l33FgBpDHHgn33Aud2XB1+ydX1vxbgsLkmXn3BdHPD0AtLxfeW1Jsi4jBTopkiJia6Mxg/E09fyx5WmD1vchNowC/HHAPU8zeR784M/HYl+Vb/80t7l1qdo7mAXsfqIRkycKnexhiLs122VWikcaCgianB3y0zZgV33LM/1/itsn2ViYrFwJwH2CTGMDFFzzF6HIarPMgwprbkGTsjxWzdoNEhqMfkc+PR5xxuTwjnkvzXYGIME8EfNxLPpvJr7R9/Qd+/4vH0O5YU2duGL/JwqNY4GR6qfvGsHqEaUyU+XFhKpbXddsmmqf0/pVj9dJPoufVDOC2JVM5XQllK0jDVwUGLjYzJ4WO+bsKMXx7YTQ801sH5lvMIwyIFm6oFWqfsHcPsY1ESjUvkOMbcTI7cn2C4t7iHyOHuRDyvsQGgaW/kvOWhf7VFRII8COpMCBNecwp+3ATwOUVslPt/tQJKzEZAwdbtsa7jav9zXrz4V3T9V9jmCvPi14yvvuC87witEZn3QXDTFIEz2ClhY6IdZtrTAqffE/wRP99zPv+G8/ANIYwlFqz+38J4c7mJ0ORmiVo/9MZx5drSZFXf7RILCBC3TFVl+kWkXlrQnEB8PhurSg1bYkLN+iNVdg/Kok1iMaKgcEqRmi2oj9G4HptBa2Xqb65NnX2QIos/E/yY7S8iQ5yY40IXPc5IrFj3TwHB21wHTjYzGcPMwkwKnnm6py3DZ8XerzG3MjwuEw9imIjZYqrIja2jaW/p+5c8LvfMaSGEhReuW4fZRTiz+kbPyvpjbbJrvAVk2PNG57PGBsM68FhjQz302BZADZZcmxR7qYu84WPrSRvZrA2shEeHzxV7CAzW2mLdEVLA50GS83yPGT7QHr/CB8v8Uhh7qirU9TE2sKgEYraTEqLJ8ShNovYhiN1cOBPCuZw7OS39yurWHCIPTvO5OSQqokzF+RFoz5QCNllpCJmVKLTffcHti3+ZB75d0V3/K6af/QsebvYC+F5Dd0jsd4kYTbbOEAa0Hw1psqJemx5J4zvOj3/L8fiPLP7E4s9M04fM/pfqtZ4DUoOCmmdeu5brCvxUX2mg1OK6t0wx8BjmDAQ/EwvIMSDXCArWyk/tGh/yUvBXDnXMNjBL/lrrhI+cBLMqDvTvne1kzzQOZxux33O7oiIWslOeG+BPLMup2Mgdw4kQFnxKNMYIVuGEfOIy4aMGvx/TzDx9IMaFthlxbk/fP09GSklqDFEjOmKc6LtXhMOIDxPj+AafktQ5RmajECkkA/VcLk2i0kDWRlvdvMl1Bet5X73UXUUy2Q6nb40rTeSaNvHEQ3yF55+eEtY5JIUklMhsc5cHSUo8UDVnwIsKYxacYZne0UwR7y02S9u7xrBvTfm8a7ZzBepVN5FULTAuohbws2E/jSz+SAiTePRWcwWKFaXaz1lXBkjWtiM/FSP4z9YQf8JVSz11BVawR1l/c5Y4nKPPwU42Puf2NO1VmeLZttcrCNxck9oDvu/xueALuZsHcvO6JWKCJJDWL5jlTPJHUhjF22u+K1M85+UoUo4wIbe4dPM0FaqBX3gKyJos937OyuE5nygxtl8Hv4Qq+HxsyYa5Jia6RP6UwQ2hrNIkSTJbI0VaMNtH1r9pcxdOfDLFQ0fkBDGz1yyhmPt3myTMmKa8Xp36qp6gqEF4I0zM0EkQaJpDkT3K5PdU5BN6rJ4DhLfHwazF7kfKi++yeXAmSyEu5N+XjxGf8b5ZPR4v2Rf1Z5fPL8m4FPcqhQiY6DFptYZ48lw+kaLBe/ELXjzMrvbqkX/DrJ6fq+/nblpgORL9SabXPuffaRpQhldq4ILtW/wbi1xjOxTxhy4dfqJLfbwUJB1TkOsjJ+nO7em6F7TtDY3b5enenwujub0m9S9KLNDOfsrxoED4MWJDxC6LTPhe7soQrsU/Fonn4ofclZwgJXTgk4I/OjVbN/fV5/O7S93i91dt+MoADkry0+6+WVmj34fpVz53rkqw9T7WjTXgTcpTpjPrKIYia3QYols9SGFNaEWabLFJnf7ksX2YsLYlxk7sCz6xar+olH0lk7WEtqGzkkiOcS7DIzU2AQWY/niQXFmSIPfp+jaeWvvXSoqfdFW2FPUQiY+9cKOJNpZgQmEnmmf+RhszJgZS9uqzVu0fEnO+lSVxS5kRTGYDy+fTLJhuk/3wCWORbF56PdeyTmxD7RFc/80aG3546hZTnm5cve+o4CgJn4ugxvZ03Qv67jOa5pq+/1LsHg4/IzYdy5UMhdVGENZg2oSxEGVSTG4UR6zPsSDHyGV5YPFHlgxuhwyMxrRABn0aKMCvxoEVMLSl8Xi51E/Wc9FESHVMyMw0k3UpxgkDx6qNghUW4EdigZw3t/nc5IE0T493kJ/lvduHlR2ooFKIYSObFAuIVdreVo+nhU9T8ggdgLJggiXEmRAmXBgldzC+ABy6Uh6Edjk8yJgGZxsGI7lDk1/Xc/dwnTesnymrTo/b04aF5nj6G6VhXMX22uvPJlMe5VOx/4++I4xdcz0jTFiVmju2rGMDRKToJozCao86QFL2FPX21FRm9RRfPcNnn0TameMDPuF8vj8qf8+nL1VnR6yxQZvJP2YA1OVKSXx+VZmlIJ6hwdmeJjeI+/4VXf8Vzf4raK9Yrl5sZoPYNiH4aSL6XDNM4gNsQ8T4WRoS/oT3DyzLo4CeYRIP9DgXBZpNOkxtbQqp57xaIWhDSJV59aobmyoBj1UdcGl3pGBlAXhUIaAAzacK04ufietDfDaOrHYt27hRcvwKEJbve4w2h3NTq835XF9dq5qT22QKUBZSIpiYlVbCsjamqa6fp5LezXWV/cSd22FtRwyrR2mt4rlcT8HY1VInGfmPArI1+FNUQRWZRO3mLueOqF/xT70Sej9sc0/1mte8IZEIcYbksUuA3hIrCmFtERGiDJ2OGSCuJd/rfAEEJPWyjzYxQdThbwFr17rwk6+/XD8/zbEJZQ8FjMPaDpsHRnfdZ0U1nPafMV3vSixod5HdLtF15DrPbHyUTY4HLCdiyQ1OuQkyiCduFQvkmpZVLKHy2WiMqWKB2ixt771AYomx4AMKSG4VsTIMUu/7stdXyqDnaoUVWMukkZoJvAGB6/tCSQgp3xO5jqpqDVlbiyd5DQ6TLNBKwzk3o2KYMWHEk1m4WLoMVNbLss5Vsik3rcNMsC2rfcC6xxjjNuW4qNbkZzonxhjHbBq5Jz6ynvP1L6z87W9S27/p0Xpiz8man1z6hv9zraI+Z40HTl9tFF/ukOOr+oc3DZVl1Mc9wyVmPH39W+/w3HuMep2IFeX3WT9lzlCvPzOC/wRrSVEuOJN9u1TiGZV2H8sgh6kGe5ordv1nBfjd9a+yf+QV1mWp4O5zUnsgWkfI0zxNiLgl0R998fizy4Ib7mG6FznKfM9p/D3z/IEQZvGinN6zLMfSHavl3jrkpc039qfk3fo9n5L4qKR1mjmsDEhl/Goiu/GlKl1fU76G54HONXjLVwrOGQR0cCFwDEsZSLW3DVeulamdmI1tRCAWn7/GWOYYsFGYaZesvxAXGqeDxkTSqV5+bXtDjBPW9sISm94Jc7cRT8Dksvwug/j/w/lb/s719Nbx0vX86/4WgIc483YZeQzzZoCDTMvULy7YDCVVM3p0BFQw63nSIKwrVB36dQBMxayujvuTTUGTbyO+dUmfej07yEZRm4fYsgFHlUMZJz6WCADWtTc0malrrIMYcEtiOVliD2cL1qbNlE5N5qZZOvXDvcVMifYU6D+8wU/vWOZ35Tw5dxA/1vamMJM1mUYH/hlP9EdhxfgHQpiks5eZYj9mLSkRMyujXmPaTr21pqPrX3Jor3BulxnAv5QmkOtx/Rek3StS0+HbltCJKgBkkjET2IcLz9/MAA7LPeP0bYkFYv1wh19OWd6ePc9SLLGgL4wPU/zhPub7WbNWI6saQDu89XCSmpFiMlhhs3dmndzVRd5lkmdsk5tRT19PzRKSLr0MexMmvRRNc5h4jEthCB/jwv6ig6rvdWcdIasGPIklDCyLK4xC5/a047c0GRAWhu5OLv/iGzkViaAb39HdO1LTEYHD4ed88/j3vJlmro3jV901v2yvaI3lLsy89QNzNXBOY94aNtfufTI2g7Lym5fX7neqLxRgyqyeepCkZWU7lWONlpPZNqaUkpsTUpJqAdI1FojXYUqBZBSIV9aZo8usGpm0PdEMZ+LDLcedYWwoDas5aExLJZmbA7w/wfG8xonmXaR9eEsa30mTKE5Y29E04J6T3enXFggi49fY4MOY2SafYJV8j6X+bAkKm1NYGRbXXLNrDljXc7X/iuvrvxbWn+sLq3ze9yRnpRFUqQFYEvYorL9+8vQPD7jTewgjYXrL6fw7zuevVxuYSaSuUsD4jRrAATvj2Nu1gbq3zRMGsAI7WtTp/S/s5rAZdPicGkDvfznnvhRfxliCqZotVVG2uf+1SVUxiBVIrgtIa7sC9ji3L4oPZf0ty1F84Yncp5nZy95sjOHatuK3Z1dWU28czhqarPI6JU8MkRQXxuk9TVYKCHh3I+/VrZ7B1vVZQQNxvqO5E5DRh4n97mcsywkfRu78A7cpcGM7GVIVDaOV/FLvTQVtY84dDGb1u458r4bmJasbpKhaUGD/Ui1gngGZLgDp5+6RlFDmphwLl0NXIiRRx7z3I2rTUxiBGHxcmOc7sY0Bdg8/43hsebtL7Fr1YAzMfmX9rP7hmQU8RGYPb47w8GDYv5vlPhnuxQs/n5/aw/XpwVob3CFOohT4CXIGgDFFXCI3h4Uda3D0/UteXP0lff85TXPF7vAr7O3fML94SWibAgK7fSpYaJghBQs+0X+Y2T0eixf4fPx7hvPvWJYjIQwM0zvmXENEHeTLOgugyflAbb+2z2xY3TPlHo+bmKBWEDKhPq7WEJu4twI/GLEjo2L2meqe39i+gOz5pCcA8LokD4u58LamEZBGZd/GFYawnnNnu9wkctCQm7+iKPDLCR8GfJxzA8kTloGTXQo7ulZIdsaxt5Em5xJLGJimu1xj9Dk3vspvJQM6zRU2y8JjmGD8JqsJRva7L+W6CyPH0z/xGJc8QHK1huutwyaDj2njHSwH83LuyHqcYNskKvt/lQ/okCaQujGQSt6wtZtbG5ylAcjW63N7lrYNbIPFEzjnQVw7k2isYe8aUQ1YxxQiKSU8i9i5Da/ZPf4KG68Yzh0PQ+J2n21jbMyxwAIpqwTWuSOnKXB/jswhx4kjLI8Wd4ziq++PpUHwfZacIxn8pXVQgmcHbn3ftZAkuzMNXXtLl5VC11e/Zn/9bzAvfk1qOsaXL1luHM1Vwlix24MV3B5HeW9mSrRD4Orb18T7v2WZ3uGXB87DN4zTh6KaiR8BrWpLKG0Yd5WNCMASIyNTyUHVFmZOQg4reQJ1jZBnNlQM4Br83R7nuKkZYvKbmJDS9toHJS88cyLKHqi5RiDEGXsBCIvloKNY1uT7qXF7YQo3h9zosczLPY9pwUZl6MdigwHrwOxIog+RIXvNxjgzup62fbEhpKlVhILDwR/Ly++6z3DukNWeZ47n33MfZvZWmlXOiJJDG/FTuGSjrsSzp9gLJdPXaq32Dm+t3aoFUsx2lNIk+i4P8efXs9NHSoOoHorXWodJJivQAp5FCE4LjOM33Nzdcff2Z8wHQ9NEbvawb0UttG8VEJacZSUEr7mDAsfDHDlOMIxiGxMHZMh6nNAhcPYjjT1A8MLcHKoHxqUfcnieWRtl40+1/swI/vRSP68x+64ARTK4TvC1uPYFh93n9N1n4vN5+AW7w6+x/RfQ9MT+BcvVNUsvvJMxF3mAsHyXgI0J50MBe9LwOjN+7zkNf2Ca3n6ywGuSbu7kjr4kXDpNu/b4BTYJRP3eVHK0xFWaqBYXEl4dq3l+TrQy0w8oCRhoEbDKP9fku076QtlIV0mnwEsxBYY4MyRxtb0PE32Yy1Cog2146XpeODmuO+sKg2mMgcZPEGbGFAgEgj8xjhYfJhq3Sn/qQNy0t/m1CcDjxwcAmuaG3jS4ppOhfe0tn738P/H+/m954weuUuD/dvUV/21zxbVJ/F3c8T8l8YtWMA1yoK3A4DLRPqzCDGnkSwKmwUNBYFinrYeUnt3v6uWqAF37tmpKaLB56NOzvL2Lj7Y0EnTok0rxnLsuxXjfv6LtXhWfW4B2mIm2J06GMXcN5lke1/u1gx1mA3eJF+8ecdOIG0+Ex79nPP9WpoRmuV3XfYZ68+hzlGUboBG0wx8J4cQ4vi3+eCIlesqs/GPWlERa/RQMdTTtS/r2UGxgrq//mm73lXTzs5/XeOgL+z9ZU+TedhEGkwkR50ORvLMcCcsdp/PvGIbXxfphXo4C/CYvTaC4kLJnt0uwR4oXHeygnnCXNiywBXqV6SzefgKWitdVLfFcY4FBislLr8/N1fQM2FPHDWtbXJZ0WtuW62kjGc3Lh0EGBgSRdKq885jP7THMHKMv8taDbbiubGZuXFcaRnOKPMSFxYvXX/BjSQT77oR1fVFw6ER56dTLJOXgTyzja2EIWknibm/+LX33UsCeu/8NgH/nDlwbw29Ny5ICD2GWphuafCVSQvy3KsZUesbL+rkm0eVymREEW9sYmWYsCf5HQWRlHdZxSIkVuWCRDSHH8OhRGZ9rdus5yzKplDzGNHTdC2oJfTt8YHf3OYPrML0UMiHKIBdYO/rWCvh79wDHB0uYDO4hcvuH1/iHf8Avd+jwFmd7+ddcrSw/XeXzRu4pf2JZHkSW7k/82EFxIExPkwRkS8ZhTIuxjn3/ihdXv2a//wrnDuyu/xX+879mfHEtdlB7i7kG14l6QrovZDpkojsu7O/usfOImR6Yj3/P4+k/4/3A4o+M03vm+T4zfDJbSdP1JOGw0eIOU5qqagWhMk/IoE+MxSphSoFTWEo8mFQJo3mBsdKAyzBCGfZUFXYxrTSlSy+/VBoGuk/W0dlm6wUpGOUa22egJQjw73Y0zaFiFa5FvfdnFn8S38MUZGjL8siYweKj97xMQbwOc7HTW8e1aZm0WaNef2lmGt9jbYsPo6g6UlibnuRYltZCYZnewfQuvy7P9fW/5Orq18Qw8frNv2dc7vjMttwaaXCf7VKUBI2JZaAa6H0uQ20AYm7i1isbOT2Bh+uBehobFNgJNSBUN5H1NG0eSZtETwEePZeGmFngXbGNSTFwiiPBT1izzqGQR5TrY17umUaxNNi//wvef/gF75tA08CYLSKOU6i8/1aw535MvD+tcSJ8Cy/efos5f1sawiDMqnpA3IYNXAHDki+oDHz6SQom2Z0V7Lmh7V7QuJ7rq1/z4vb/gjv8Jak9MN++4vT5Aa7lFrIN9E2kaSRGzmcDZ3BTpBsW9m+/JT38A8tyzzK/53T6LafhdbbB8vnaX1CyRS3/Vj/GPlvCdTqIKAPBNcs35CbQKS5PgN+NRUFVE9gC8tSkhJRfT/6j6tiu4M5FrLhYBnMBdrLmtkpAsS2xOeBcjzUWV+xcMkh7Af6JBHjIXvEL83zPfThxCgEHHIzjtuk55H2kt654ao8p8CGTc0IY8Znd2zR72rz/XQLDfrknzcIMNMax3/+Sq+t/RYoe8+a/4/jw9ywpSpPICPmlTxKrfYr5Yyj3ujSJ6rkjq20MrEBPPWBWgb7VTkaHoOc5ODlvKExos40N5RTqvyogmPLzDDwZuQ6SZDtlEBcpsgexjTHkxmPCZuvBZX5kGn/P1cMb7LIw3v2Mxy/gfq9WUtC5WAglq9Iwx4ZBfIFnn3jzKE2i7s6zezjSPt6JDP9jLD6NFWobEwMhe4ZK83jZMDB/6PLG4IyjbW+4uvolh/3PaZorDjf/Dv+zf8vp1U2xgthfR7pu+2zei4pyuTcc3gy0w0BzemC5+195uP9f83UpjYplecygquy7+srTRX9P7YVqH9y+sgh4jAsPucZWNeSUMYNUcgMlg8j7M7ZFbR8u6wDY5vlK+sgHXuJGIVBs40PJGTaKmQsFAavaKyWPCYlklOgmrHDrprWB1N4Um5Cm6eldl/820LU3TPOHrLqaOS33LGFiiB6Xc6m9bdibJt+nSXyY04xPC+P4nqa5yhaHHX3/ZfGAV3uv4E/EFGiaA13/M1zGJ0KYeT18y3s/lnPTG8e1bddBxcZXsbQifskbIGUSTf5pJgisswXUG3idPWLpsAQjNeJmOP0feeGvhLj6D1cCnNabykTvcnPSp0iMiXMKovCNgWF8w82Hv+NF3zNdHbhrWm6uI/s25dggXsH7zmyYwAr+LiEVxcBxSjxk25j5bOgegjDps6pODt2nB7apsnDNQe2PbhKVI/RnRvB/+eWzVCNktkthwxiwZkfrdjjXcTj8BS+u/op+/wvp9l7/FcMXX4msszWk3uD2CZs3LC3yUoRlsdiToT8uMt13mkjDa6bTbwjhzDx/kA7e+C4ndNKdsJnl1/HU57MGfrUjVQ92uGQD1+CPSjwVbJRiNhtiW5cL7J0ANTmwPOfHpQBOAYsKc8dtirUYQzHhFrP6oXguhezhGDKTJ4aZIU3MKWSZRWJvGw40xc+5R5LXnZEkdU4BGyUBPyGddjkHnrYd8f5cunDGNWV4Q/QnfLovIEHfeZruFrfcQnvANNe8ePFvMMax+BMf7v4XHIa/3s9c9wvz3RV/a1rZYtM6rKFOjGobBTlWphR1dWd9k+heMoI1qNUSeCMJnCao2uHfxOrSjc0ewcY8yQK2r3W7UoqYtMJPjdvLhHvXZZauALTW7TIj2NNMjhgd3lrmRuRbCv7GxYBP2Clx9e5Ed/capnuiPzKP37L4R7w/0zSyKbrmeuPfRfISz2y2iMiAHYgnm89MYAEOf7yfV0iS2K5emALnte0Nh8NX7PovaZo9V9f/BvfZv2O+fUVoG8abDvsSmm4d+lU2Jm/wjwZ7NOILvnjscIc//kbk3vN7Tud/4jy+KfdFCOci9zYI+CsyT2H47G1TpJ71YKL6GtKm0BINE0E7PuLNVMU+BbasaaWQsL0U1RceXusXK4O3/lnKvlKX3X9rbGHuONuV62krEW/QQXfL8kjQWBFGFn8ujaQQzpzjLJ3yfHYOubB1RuKvtYbFuFzIBhZCSern5UjXCnDQNHuck7hg22visnbpUxRjkOCPm4bS4eqvOVz9NSl5huFbYhr5uYXPu4V5avnPpnkiv6rvPinoGpRdt6oF/vj1nG2MSrsU+LkEfGog7lI6Vv+mxgY9p9Z1dHnAEQi7QotqYxwu+6/FDNomf6QdBvyxIUyGyRrOFTPYloJOuvTHB0t6n+imIANQjn9gmd8xz+9ljzKu2A9Y26/MSVhjQ7ViYfxN5Vr6sb37gMjtojE4tyt+6teHX3Bz++/orv4K2iumV3/B8ecH2tuEtXDdJbpOPo8xMY6G8byyr9ppwZ3ek+Y7lukdp+Pfczz9jjmzXb0/EtMs+0yJA/n4aYKf7wUdrqhef7JnNlWe4AkmlYbwpENfcsyfSUSTWb+o3/3HrR50QNPK4tG4oNfRFrB4AjwGbQhZUmoyo9jmmNFhbU/bvFgbq1XMaJuJNvs5phSYm/tcbA2EODP7R45hwQI+x6Br54o3p1r9NNnjeUwzy/woRWozC6sn+lKg1sNDxHtaGOcpedr2RvLE3c8BeDz9hvnuPdfG8cpYBuOKzVXNwKtLW4m92T881e58T9dzlhO1F7DGBmUFf8wnGFaYfpWYfsd9khtD0mwP2NgR0syUIialjVrNZpao9yfm+QMA/fSIPUXOV4amERVR25CZfgIAdQ6cFSuI95ezBY4z5vwty/haFDTZ/3NjFVAXVlXTSG0h1rhQgROfftefXMFkdqXr6ftb9ruf0TQHDlf/Anv7NwyvvsD3LfONo71N7HYU38PVpcUwA3ZKdMNCOwyY87cM598yzx+Y5ztOw2um8W3FoAslLqyUg1z85/pA6wb1B9fhcAvC6lMP4CF6zpkBHNJqd2NowBgs2Qam+C1fSLihigPwxEVy05z82NGu96T6owFCeQiTElEHGBuHtQFjLC4DOtbuy74B0LbXZT/QPWuaEGCXgE2RfbaV0eOmntdt9NkLdCmApPen7FffiF9wsw4oDP5ECnK9pxSy/P8r7NUvwTRcn3/Dtw9/RyCWnF4BmUAqMx3qumLl85EJHjVQpr9RsYFZB0TmEV2bmSO1yhDWvKFen4IR1kGSl2fPZcBOQGCfrSd0/+mNYzYrs3IIA/P8gf34VtiKwxeMIxwn2EfoXMozR6o6yMq71yGzx0nixHmCZTRcHQea0yPM98Q4Pv/6PwK8pORLvrDGhh+H9Eid3NK0V+x3X3K4+mupR1/8itOrG9LnBtdA26XKCqKyucj+wO6cCoEkjm8Zzr9jGL+p8oST5F6fOHM1c1zJI01mi7fWltoyIg2QYxDmupDG1rzAKkM9E0RqT/D1fW9BYFN9XpSAmifUc0PqY1dd3XXDaTW50AZT2MSXhM8EYoMJqdQsClLHJA0gYxxNs6dprrBWyGOiSt3nxtHA6RSZ/B2kgEuxKCx66yBK/aH11JgiIQwsixDN2nRN13lRhjXXUkss4IMQ/pzrce0t5sWvwToO59/i3I4hiN/9zjb0xpVG/mC9qMhgVRFR+6UHLm7jEkcMlQVIjgfqCV83kNcjnOV1zyzFk+RY1/VFjS9sX4VC9THJvqL7UmssbbLMudkQcq26LA8s42v6x19il4W7z75YZwskiQ2hNcU2Rl7X+oxqRxdi9geeJT5whmZailrgkzYwUSzntAZcf/+nyRvK+rNH8H/5FZIUt0vuTkTI3ncNTXMo3fxdLxPmdchL2F2x7LtV1pl9/UBA4Ji9iYhgpkR/XCRw+wUzfGCZ3mW595l5vs++v+PKACZuPFP0RtENvp7oe+n5qcNcgAL+aoKnsoZ64nfMHVyRKmdAMQfLkCLOVl5ERgshJ8epklfo96WIc1jr8jCodbO1FvHtNNkb1MjAPZ2I4YEUAiEPGhhT5BSWImkSRlOiJZuYI8C4NyIfcwkCXoqnIBMnZUBAn0EDuZH1aCmAbXNwTTGAn6QESh5jHG37Qn6XRjrXwbAES2A1XBe2Z56O/Qykslkf6a5FVn89m2SybjmnF39Qn2P9+Ua6pY1TPu7X+lxKo1IeyJ3azAIM0RPijMmbltpqmAzG2nCNm0aZvBwT0baEwRI9pKAAcJRhaJPHTWPuwo3r8KYnr2Xt0m+StehXsMdosRwy8DRvgcofsSSlEGsUHe6lFhlde0PfvZThb90tYX/F0rfE1pHazPDJh10TOY0LdpJhL80ksvk037HM74S56B9ZskeyDuerwZTV32sdvqGxoXgt5SSpDHzMAG+o7v/NoCIS9bAibVhwkbytX2y7+RsgmHpTXK8fk+/vED3GLGscKYM7nh8WpZ36lNbGUjAOkz3PQvJV8SpTdS+bYFpgNRhcAm88JCRhDkOWjcqwhhRHUlgbDNKEWONVueatgkE9MYjqYJpP3CdD6x1DbuaoxPMMLFEYMJv77sm1+nG1gJ7T52xjyvergg6e+oBdLpObQx+PV2tRX7yzcid8HeS12sdoY9BalxuFGbSLMXvdGsJimOfEpTWttTLBN0yGbgp05wk3jZVFh9rCuHWir4IR0YNr1thQNYnkNfoLsOfHFXQRTXSlcWpdT5NlgK65gvaK1B5EIdQYrH36fktx5yFN4KZU4kGY7/HLPd6fpbEVfc4LcsGftkm9vqPaw74xT70+lxRY8nEcs/3VFEPea8PKZmRVBWwM7T6yPhpzq72uHhpyefwvbaWETZinehuHjdIQW/zqCVqDO+oh7JxYljRxR2yE3WGiSLLnNHOKvhQ/bbDgRPoKaq9iaUg5ds3E0OCNFR/2cHp2kEfdBH9uWeMYU+R99GBhQCwhDrYpNlxDjlsbobfeV0gT16SVoVuvy0nezy2NDQsVcIzYQ3yK7fPxBlEkJSuN4ooZo83SYHKxn4Ak8s9AgpwnxhhERh9GGQIzO0BmC0yzsJnF/xNCQ/EPny5mC+ynOecQ4yaHMNos+o6iKuZC7qf0AdWSXJtiMoG8wzVXpKYjNC4rhDQurMdX8+wYJW9yXhrsbpqI/ijxwA+ErAwCLkDV+lWsDQGDnHf1BNa4UMeCc/SF8aegsA67k3gn9kXy3laSgbyGKudM35kBU/7o2a+fzUzZxo2LeJGiNGpMxAeLtQL6mQwMO9ehA4BA8w0hGTSux9tecv9kWPCMKdBEv/FS12OmeUTIQ84WLzWG5jDWTti0o/YUr+NDSj5bnGW/cwP3fusFesj2CVMMeY/+xI71TGyQ8/XHwxLfdwbB0wj+sWWlIsqAmycVS5xaRQkC4nl/Jiz3YuE3zIxjz3kUi7mugQPOiiMAAQAASURBVGFOOBufvNY5D4Ca/TqDJE5GbFSWMynPFgAlKmWvWPvxuL2+rp/OO1nvnZpAJbMnnOAIz+QI+jHGTKzxEhfEE1jmqmhTQ/yq6xynPktbApDGBHNxzgMJYraIIdtiRskNEmoDUxOc9HiuDGBt1F+ujx3LrTVMfDafKDFl4734PdeFUkG8wq34qYehkNqsdaTYk6rXrg0l/dz7Rry9kfvT221N5YwVLAKY8xBfIdU5GSIZJjnnGRuxthd7P+MgeUyYMpYtCoMhhdKJKU19svVfzpxMEpXhU40QfNedWogiF0vrpo0t5fdcJVpfnKqCL6HEo0ziqUiN0gCT9ya+7DLbJYQTLCds02EnyRWGWXKEfStzA5xfZxHpPwWBh0XUBMOcZPbIZHBTxC3PzwnQ2qLEiH8OgPa59Ylc8kc86D/DY/60608KBI+ZuVCYcCp9333Oi6u/yhLPK7rDL0m3/4L56lr8vK5b0o2hihGAgD1hBvOQODyMwpIcztiHf8oMYJGpiofP+2KVIDYQwoq1CVqEBWxg4+dVsz+UEayFgAI/UwplqJ3KuhTk1kAuO47L3X2VgGtR5Uk+Eo0kJ+EZIPFyim9tEaHDENbg2pdgasy+AKuQgZ3swyRef0fm5SjDLpJnDAOvw8SHMBeriBe25cq1pWt9ZVuubCsJhp94TB4fPJGGcRQ/yxBmmmZPl4Ora1ZWkUg3pGgI/gjnr/NkyIBrrjlc/QtiGLl/+Hv+sJz4w3zDF9EyADe25av2wBQDx7gQvUwLlqQsombxesyMbbHJ5qQzIv8THzcF7Nu8CUrRXg3AID0BgHWKe/kIWb4nrI0Cwj3DODRVcqkD+i4T1pgy8y0zt4Wha+nz1HSxb3B0YaIJI268JVlH3+0IdzvxWo4yyMVNMiDGhIl4fs08vysgj/fK5JHz5dwVtrkqrCt5sx7QQVCNAD/6ozgJMyNM4hP5E0k8DYZkGprmujSFDvtf8OLmb4T153b4my85v7plubbQGFyfcI2y/jILeBAw3J0T12/vaD78jjjfsSz3DOffcR6+Ka9/mR9F5kkoTB/1/bRsPYA7I76f6n2pG7rKvUXGFfIgpJQ7rUEkTBnk9kbvZ5Pv4TWJS8QilynXxWWysemIpu3Xxq5AUHRY0xD8UJJFa9vVwiXLv1XSaa106I1Rj+9QGH8xTszLQ7HQiSlwH0fG5cwh22RozFRp5942cj5ITMmzLA+MY0MIYxnQYG2Pq5pXrrnCcVWuUwGLvahCuh3G7bCmoe9ueX3+mv85DLyKLQOBnXH8unvBkiJv/cC3y5CBHwW6tt3kepCOjMDU3rmkdzrQZkZihCRJ6UmTCNahUbU1kHbrpYhT73D7BEgw+vryb2phb1IkGYjRS/GbQX657iS2iY1Mjv+uXydzLwvdeSK0DTMtU7Qso3hhpmBKomumxOFuYHf3AbOcYbpnGl+zLA94P5RhGmoJYV1fmkGEEep4kb+v3sAhK1F+ihUMOGNxzYHd7hX73VdZHfCvsbd/w3T7iqVvmW9amr0we4CNb7r3Ik1r3kXaYaY7HjHv/pbTw38UH3B/5Dy+yVOofY4HYZPSSUwwJU/YW8cu++sr809jwjnI0JMlrUoaLfB08JNaREnKXllEoaBgXHsDn4gDonzJ0ImBLOXgOcSxZvro34Iw9EKcMViCH5iXY1EpKQvbuYM0HWxXAHkge8u/KLnF2fWM41uOGTA8eWE8HkJTmHJ723BlDEP0BD9xDkdCGLFeJOdNcyh7oHNXuOa6sP5qsow0jGTQHEDTXHMk8T8Ob7i2LQfX8MJ2/KqTuPaNPzPHwFTF2ZTSNjYgUmtDIhph+qhtzHNNImkOrfe/xYAhD9E0eeL5Vv5d2Dt60nLz7unKr80kUjKbRqDJ50a8YWXwb8i2XzpI1RiXJddnwvSW3cORU3OD7w0P3hBjZMy3cZtBYLWNuX8wnB+EydM9LHR3rxmHr5nnD6Up0GRZvn3OPxykURS1iSUN7m0D+adh/bXtNX33isPhl7KP7H7OcHPDfN2SWrC95AiaJ8AK9ngP9hQ5vPuAG+5J4zvOp3/kdP4niYVhKtZxWx4WZeinsr6URHGwDQe7qlSmFJiCHIdjWDjGhTHKFZOjTZkLUjfCVX5sTbNaGz1pBudWmVGWHzxPkXgOrEzkTut6TD/RkDLGSMPcezBWLKT8UGqTtjnQtTfl2nOuK8qCFD2qeFz8Wawipg98iAMn73G5YXPruid5xJIic5qZpztOtqXzJ9rmipS9gevrwWnj0uR4cf6n8nPnrvhP0z272XHrOn7VX/MX7oAzks89hpkRqecy122NveWateX45jYNNj1vJwVKcNjGBkdWGbI2ivRaUT5gTTJ5HgyumkQVU5QUCSnwGJbyeBG2wzLTwjB+S3v8O9rpW65ev+TDzb/hdRS1wONN4vgicb2TmQLOCDjsrGGYxTLm/rTOFujfzbjHb4nTWxmwGk4X101FNLHNE6BHfV6VsfpTLGlOtbSNzD5x3S2muca3MkRej6fEAMnE9HPvpZYIk2F/nooSQtRSdzI4Oozra1UlaDkvenWkUkeonZzmCM/5gY8pcCJKPlWpAaxVxr3kYTpYvCYErMdRrRlsVuTF6p8qbSpf4GpDvbzGUrqMGiuB7elfmNK8ykeWFGWsrzyWgICzO2KMow8jsQv03Ut5b8bhus8AySNjClAawzP3cQQ/FmwGxL5yh8wC8NEz5xqlba9lf2yucHEssadtb0rM8Ms99kHU096f6fpbxjjxEBfGMHPrem5sh8Vwci33wXEOkhOud//2yKgIuM7/9bf0PtdVlAL5b1Rhpn+gLPGaYGCNITwTZkrLLpFtR1fqQjSJKSWWrPy+yuqUy3kvQ7b1m6cPnM+/p+0+p/FHDh9ueXjY03eiINJzO3uTh09nINgImKxqgRBltsDdncSH3eOR5vQgWESUXFEVqtbuSn1R4xB1TnHZ2Pgp4Nbval7/oPVnRvCnVwF7bEvX3tL3L3Fux831v+T6s/+GePOXxLbl9OKa6fMOtxfmb9uoxDMRo2GeJUgru2f/MLF/8zVM9/jpHY/H/8Tx9Nsy1XdZHoXFkOHZJq1yb5lwLewUa1b/nkMVbOrgPcaV1RNJzDFw0kBOYjZA9uMEcFmWrUV8zF3EOrmIMmWnHKeULu/0KgHRDR8y82Fahyi4HV1mRKh0yuUhY/JUvoClKYMzy3Jk8TIYb5rvxTsqA2NDmFly9019QW+bjtZYxpzcRz9l8/oM9kwdMc44L4lg095SS7yFsSFSEO8f8F6kHM4dRMbVfwHJc/jwP/Hu/n/nmxQJmfV3bRy/bK9YUuSb5cwYPXNYRyqI35EvSak1DQlLco7gPcrlSQg7XcE7EB/KelDZBgDWjlrF9C6D/bRja12R6FjTZI65rNIRLo+dk+0s7ykDR1Cmz0wIY2GChDxcxfsz6gfaxZFmvi3Htc0dNfFaHVd/zqjH+US8mIqq3n7W7bDttQA7mTmkf2vZgUN8nCGft6GyDZj5KMXpj1gh+yi55sDV1V9srSA+/78yvPyM0Djm6xZzA/1OzqRIXAX08V4aQ/YUaSYZWtG8+0fOD/8r8/yBZXnkNHzDNH2ofD/lutBOb1OdJ5Up7rIHsMq/d9kXd84sHvUCPsXleYmn0Ym+Da6ycpFzrXLDuMaC9HwsuGQTqCR8/XrbZY0oi8Dk67Jl0XsjWw60zXVuIL2QZNkdyuarjyc+oA9M3VuWfB2N43vxn0wLNsIhe282SUDzK9fSWVeS2/dhZp4fiNHjwyRWFe5QOvHW7QrgGExDnKfVRgZo2lsZWOig717xgcR/HD9w4zqubMvP3I6fZ2CqNZaHIIxEveNTSoUxLcckF01RGwByHNXOpzSKkMGZOjxC12VBd7m0YZhbPqWg5xkPUu3or2njCgZHpFGY8uRt6zqa9jqDcR3OHQSsdWsjx/gZN0+iiIkR71tCY3ExiUJgkeGpbhpxwz3x/FqKN39kmt6wLI9S5HCNejDaPAS0vi5MHvKgsYGUpd/ZE1L2m6Q8iifH6PsuY9oC9hz2v+Dq6te45pr29m84f/EzxpcdqRW7qH6XaJptPBKvP+AIh/f3NKcH0vCa08N/5P7xPzHN94WxXucJIKoAPUcGSXYVCL6yLTeue5bhMaXAh7w3qu+51wTdgMoKXZHU27In1OtZGXj5YQVebthWCiZfHMfqOxtP4RRzQzVfrcHAskpCndvTdi/o2hc429F1t7TtDW33uew9nS/7RYwTbfuCtjlk6ezEPN9xF2emFGgwvHAdL5tePP+isPFsXKRhFDzD+E4axq00lPu+obG3Yo1kA8YIyCDDfOW5oz+CaeT3u8/5zfyWJsGXrue/PnzBv7a7Umi9W0Ye4oJJz4A9aLy2aHPwcmhTaQabdbZAqBRFyghWWfgW7FmBGfJjmtI4lqssmVTAxdU/PJEQBZuJqyTY2rpQWgt+KYJ3ZXCX9wN+vqd/eMsV4Pue0fccsWW2gAKlIPfL9MHQf1johon29Eg4/ibHhyPOSexpbW7qud06ZPZy2RqkmAWoKAxsAdx/6LK2LXvZfv8V/f4X2Oaa8OJnTFc9XMt7ct06BMpaAXtqK63+KEBWGL9hmd5xPn/NML7BL+c1P9sUeFv2tqoDGiP+sAfbcO1aHIYxExemKE3iU/QcUyCadeAbrIqSQhT5iPxb7MfW16IzQNBYYcxFv7EGprbr0rLossZYH2GNFylq9SPf8xn0Mxi8OxDiQt+9xBqHtbe45qrMCnHNFW37olgIDc2B8/Atcxgg3887657NI87R8z6O0qwLE6EdxcKmXUFH3a80r5B9bf35Yf8zhvEdj0EGXP6qv+bXtqMzhtklvnXDGhuSEkxCOU4r2GOJRvI8Yfs/v0IF4dbWEAoCaWPMf+QWuPz2RQZIaV2bPAPCdaiKaIjitaqKNo0/ElcC4/gBY/5zzh8O3P7TS47LF4y9ZR4N8xy5OgjI0zawa8U2Zljgw0P2/RwN8QFevv+AP39dBlDHMhTYFXspBYGfaxgVD/6fkBFsTZvzTLEiM801tFeErt/0OWorCP08zEZupSHRno4s42um4fcs/pFpvhPyVNVMFGsOqBm2ysdUj3xVDamKSG1h7sPMmMljwRic3edGylPGr8yP2W0wBWUJS5wSO8iUwqogwa97Aynva5pnirK32CRxeY2t16BGEW14rE3sutZdY8c6VyHnL0Hiv/ES21IKOYftCkjbtLdYmwfHup62uWbxR7w/cTp9zWMY8DHRIE2iF64rdVpIicc44pMQlBrX03UvaTMDWBvKkC2mlnu8/0Opaff957TNQQZLHn+LT5Eb29BhOdmOnW3oosfnPT+V+29trgsjnwIGq/dvQXCMKc1hWG0Eda5AZywzsdQUl8olOd/mWUJJaUNIUrHmlHmvEquRiMt4zpVtCwbmjOEcPWP0fBMHhvE1u+FzYhjp7n/B8f4vedyxya2ve7kitEHkTMpqATiOMoz6wwMs94bP3n/Ant4Sp7fi1ZwJZDGGQjKRgfTVbIGq/ixxIWnj86dYhvTPMCzup4xh/1zrTwoEa4fTGRlOop3jtntFOvyM8eVLQutYrmSCp4A9cvGtkzwF8PGa8wRopqmAwMv8jml6xzTfS7COImcz6k1Dlhvlgq5BjbzNxgaitfZis5Zg50wGDEgrO5hV4gk2s+32AIWJJ1N1Ixi7YVFemrWvCVd9o6fq5wZTg0PBinzbRKxtn0j2FGABJIFLz9DyM2tEbzjx8vH45LONR6DR9494H2LFd6o1Mh07pciSghTUVgJvKdSU9WebDB7kdxMmmVSJAjMNtPJaG7djTpFjClxnCYPDcG0cM5aDa7DLpch1u2opHSaXG1XnXs9huDiXutZhcnEdAFh9LGwe1i5obQ3xvNSzen05yS+ns3j/aKdfHk+8a0d8Zn77cMb50yahqsG7S0alTupe2dKrPUeRlJvK7zM1pOV5jy99jjqx+CmWFiGauKkVRNN/znz1YvUH3xuaLhYAGFbPP11uSTSTsKKjPxafv8WfZBBctoXRtEYZwCtgL6+mWEJkKwiVLWoi5zBMcesJvuSGQkJlXetE33rYjxzHqnDHFtDncrjLetxhy9R5zgtQvzYkfCkKTXJES/avzn5dcZGprZA3ZIkXxWLgCSAsxZUO+xEWIUR8YT7qspgyqCRG8a8M2YvYBEuIMyFO2DiV81hbk2wYycWmQF6PMJcbHnMirl5bt/nY7Mw6hfwpw2HL/JPjo1LPp4WXxgbM1jdc3+On1nfdGbWUa+WSpO3nFTN4E1sqed1l0W5iwC4LyVpcvqfdImoBkT6PAhL7GaZ7wnKfPT8r2WOVzNSDoD46AEZfc1Jf6Oclhz9kaaNN7SCa9iW2ETsI3zek3mDbRNMJCHxpE6Of2yWJUmIWr/TFP66KGGUqlmbcx5dawlhjNnmC2oaUQVA5FkiBl/9SJZ64JwPg6oLqkoW2vc+fP66f3A0vAOYiKTc2Azupeq78btYJrLi4K43EOnnX96JTn6VJKVY7xjjZt/wZn2Q4XMr5Qp1H7G3DED0RYcCkuEhssV3OI3LjwTZlyF29FAw2gLM9TXslTW4WxnwdXxtDB+wzWLf5e33vm/vLUNu4FCXRx4/wZj3nI/7pZdFBktulUUmpgfkcpVgGCV8O9FMguKmA2ZSbNCwn3CQqsWZqmaeGpQjO1nvHzyZ75oqlkpkeZdBOZvKANO8BngN2PrXiTxQXQDOv1dfaNtLQjm1LbA2Kn2qzePM6otpIyfyA5I+ZzXiWoVXZLmplzT23Q8haBwLmuSJVniDvWfJoVZuIt3G7Nncv8sYaBC4qM1PHB/0krrXFjzyO6xf22XgBZNVRbfuzHpOEsIVjXCRWWFUmulU9kCS/j3HC2p7FH2magzRc4pwHP63vpc4jfJLWdsgDU41tNjZGK+HErfWHEl+yVYFzO9r2mmhnlkly3L0x7JHY8LE9fY2/Kxv4Y+vSF/wSyCkKgbqx/EwzsaryuLzuzOb3cgtpc61ItRsyWOWSYEOl2QDEtLBkdaBfHthNj7TDDSa2zH3DfDBlP1WP5tbB4nNzNVtLuSli/EyMY6k5YlVr1Ky754ZI1iv+lHmDWe8f63bQSNM6uuo+ymF/YxMTTVFP2ZjfW5DhyZqTyrW2JWgBpKRxPDdVc+jWZmAdEzRX8EnmooApZCkZELwdBq8zPwQ8zfhCTSopFpCfkLtX961eN9ocqGufJ3/G2i5VrZFNZEvFan/a/M02q1aFk+5PMcxSB+ThbvIeGsnt4piVRtfl/Ti3Z44DPufjQLGEixlwb7ICM+FzjTJj7YTTXCWrrlLyxHnKVpaS11jb0tmW6PaczB8K5tDl5p42dbVlmzbv8+Pr0gP8U3MDfsq1jo+V5iAAyRDz8PM2v6eFPMjOOKIRdYMPoiKyoceECbNIczhGwzgn5h7m6hZ2NhVLqWGWQbRLJmDYKWHnQbyBs13HJU5VLClrhu4/yyC3i/U97Gr+6PXTQCL/rOtPCwQbi82Stb67pe9f0bgD7e4rwv4K3zcEHQbXxE3yFuPaydcupJ0S/WmivZNhcMpmmuY7/CJDn1JcUMYfrAFPu6Mu3+RdZvmpr1eoiv8YV7BwiL5M+E0pPZ32zcr8NcZCHn5UjkHNLCgSP5PBH1t6R2m70+cXv5VlJBIhzqQlZsBQwJl5eUCmdO6kI9beACrfW70kpZt+g7O9AEL556EZyxCwUzgRwoIzpiRoKmOJJGFLJoONMhzKZ7P1lCLtfFeeW1c99MXYBupELoqXLVY2w3MK/MafObqea+P40jTcmib7BbPp3svfh41PqnZTU/SY4BAnJtnIPMLsXf3bBMjWNK9eCvCpp5uvtrjiC1wlYNtBdSo4Z3MNlnOYMxGTDfDzM6JetSrNn6Z7fJiQ6eoD3g+07XW+LNahTpqErczvdYCgJglNs6dxB4xtMmP8KZOnyDOseIGaRRLG4E+sQ4pqthp/tJVUvSQBamV6fXNN095I97YVexj1B7ftKvHUJbKulfW3ezjTnh4xwweG4ffM853EhDDJ/VISk/U8ayojMWBN2nbGlUEmwOpP9Yysa0oy/Mib7bXxMQ/g75vwrrxSw4YBzJpwVkeyPqjV96OcKiMpjM9SarUcaDOLoOvOwuTJkuzCMs22LoV1ns+/XwQcmMKRuzDjSaUY7s3KgpBOtw7n9EzzfZZ2BpoMKOiwwvX59sQ4Z7+vkTi9zcct4GzPe3/klP0+u9by83yI36eOa9vyzoyQwCaZ6JuSX0E3TTKMhaRWAPKtkO9zmwIttqgFVPpUL7WPUc9wBQCVXxkNa1zA5oEzuWhQDKDG+Eyq4kUd63PDIMwsRmwXvHGELAN07oxz4iXeRo+dr8E0uKEnub5ItE2YwE/ynsNYmqcxS/FkkMZebETyUD/jdiVBM5eXbAyoB3VMXmJNigUMXq/KHx4cFPyztpVp9dnGJjQtoTUYly5xC3k9tcxzNvTDjBk+4IfX+CVP+o5L8QPWxHlleuhrlz1Dp8Er689iWGIkGCO2MNkHWNlr5xRY6rzAZI5o8fwUyXd5nxcxIuUmAGTgtgAeNTypjePvOsZrsfrsMcaUYUj5SfRFQYoEPzKzFp42F1Orl/v1Jq/oupfZ4098l+PgmZiYkWu4MbYobAKJ1jppUsXAECfm+UGaQVFYwcooVKaZc32JUyl5/HwvP09BWD3dS3wYOS0PzCnmIcCJvXEcbMPOSL4nXprKOJFrYJVYW0xQ7U8+4imVPIAIiwssyT4bGz62lG++tuxMAZ6fA31KtpHy4Be9r7L6KZnVKkKOf1s+NuVePqzAgp9xQDP9/9n7lx3JsiQ7FFz7dY6qmpqZu3l4ZGRGPiqTeXnJ7ttAo4mecMSa1Q9wxkFNasYZJwQ4IAGOCBQ4IQGCnPBDCPALutFAN5vPqmKxqiIzIiPCw81MX+fsh/RARPbeR03N4+GRNy+B3glP83AzUz16HrJFlixZa0Ta27p/MmIhQNFEuPrqiPD4FmZ6QJnfChDcAB7nRp4WELMuNZp9UtABQkLI6Jufbb1HbBDJhF5u7Tl9wVJMlYtpmuGGNcNn0QWO93V6ahm/WNqt7bmtYcTCb6bGBm4Qt3vmWBIeZVqoEGECwcAvWb6aRwI1b9XrqP9mjV0AZf1XZa4uNeU7AKY7y0uKid5bIi8BZvz2mrv8/gp0dXGhvpjes/IzJSGmA6w5CSt4eMKS4skjhyHcsm6oDSxJM3+FhxyRiI1XV4aNtZRtHWAQaQIyf+Y5PmAQg6hqaLoYJ04LYDKILFXOJzzMX+KQE3ZEyPJ5NtZja9mfZF8SJmQ+H0aJHpwlAlbYjlRlY1SHl+ON7aSkTPUXeNeyxsDSUwbgc4sbxVRjdCmpga6GZxCS4QZZIkKkDsASCQ1lmHItxhrZABAnh+lk2rSdZ2DH2SYHUR4ANxWsH44wpzfIaY/UEVRUooOnQFdPx7CltmjXaplcvO8kUf+6RIn9aIznz1hq+AQV00Z/gIWElsmAkfqJY0LnZ2EynkzyEE/3ag6h2Z42jtlEuuAIjgV8j3E8UMDahw2GWtu1uKb+QCrRpMCvLiVz8GfOi/hQTS6JJa80JtiOBFM//zPn0crd08O7lTUveQ6RganHtJxCqPmJSmOUhDk+AgCcxIhzwoH3VyxDZZ1MCB5xLCdYKkCJGAp/3qnkOtHtiHBCQow7nKbPUcpU9z/XTbadG+EqM5mB6RUe8g6f5Qkr43CijLXI1iQqeCgROySA+hgtsYEyIMQePU+Kl+gk0btWz+CHaf/93QHGvsENJAIe84zP05GBYGqTrUXy3pyOmKY3IMpY7T/B+u3HOIxrzIHkehFilmkbo7IxDATvJ2B34P1VTWYx3yPP9ywHCt2321QyH6bGLr+IDb2M3/e6DH47QPD/8ZUhfrdAsJUxgNXqDturn2Fz9XNYfwVz+3PW/XzhYBwhrAqGARdHPFMCygOw/WzHSerpDQ5v/994fPxTTPNXrPsZd8jpAO1hnXe9lAqvBd2VDTzGdZbMZwF+d5mZJTrmfKRSEwfV+4RRjScZ9SZ1z7Qw/Wb3RG8K8jpdRxFn29+i+u67mRmEWBMHA4N5agWftSPCcI3g15J03WAcPxCtWS+bzos6Vprme6zSBzURPhw/xeHwGabE43GnzKyeJqLO4wU3MlaQ0wm7vGdtv8zapFwUTrDGMbhnt/X9lFkCCDs47WElUDg3INmA/3h8g60L+Jurl/i/BI//848eYC1h/Ve3+Au/wqcCUPIWlaswvXND1VIqVBgATDOKnP8sGq6AanwZhGLr6e2TsVhY61X1X6NoPep4b9NwCx0ILXIAOmKK1gnMxOZ0fG92zA8/8qat7Gz5vVyYsRbjA2AMnB1xdJ/DysblrOdk7qw73C/qEmHvNhhWH9ZRfKOgb5Lr4VbNHLYkgBIQWS4ipz2zZarMyBJM/a6LgccR43CLzeZjjFc/Yz2vm9eYrsbK+tMRT5WJ0ZhAhbWBt1/uMXz+Z0hH1vPa7f4Mu8Ovqg52ybM8e7xF98+ZAev8rS3z3wfjsHUBo2G9uqkw8HsszbzgJI0gBf2qkUMPvFwAgc//3g5CWhELdjgAujza2cMJ/OVcw0vTMS5ee9JwyScoQDTbEdN8j0E68EO4wXr1A4ThjhsGfltjRckTQrjBMNxWGYHD4VMc57c4lhmOmF1zK2PzqvVHJSFTwUQnTKcvYIytWn9rAM5vmW0gGl7eX4EKm07mvEc5TnIqMtbr1zieLPaS0KyNxc9vD/CeMH+xxZ/7NX6TjoglI1PGTAmlMAhnbOAExHouEkpEpqhnCAnM3kIBoikCZKeLG3xEZjCwsjtK03yUO8zCiRa0BRVlcC0bRHqH6FvU4kKaLQpU5nxCzicoY8z5HWJ8qFrxwW8xTJ9L4qsASTNy6uWBVOs7xh3UQMP7DQYZ63X+Cn5gSY6qB2wkHgCcsOneVpIARZ2RSvdp3qeg04I1+C27xA8vgHCFtN6A/JL1p6sUNrmaTywhhR2wfvMl5t2f4nT8dW0Y53QC9VrGxkljkYfpNG9gBivHgzoRIAAwCNiViIc84yiyUQnc+IZxNS/oGcBV87MDf/qlDeM2eaFFnXBzFixF+Z13nkXTaRiaVsCiGy/V1yECTAOZibLo9LEWaE5HpLTHaXrDHg/jHcbxdQVrfbitklAln+D9Bnu/ruzrXXyLHI84uFSbRteSU+xzRMoTpukNosQGbUJRaUW49zdybElYPVO9rzfrjzAOdyhlwhdf/r9wooTBEK5cwW2xuPOrOqpf8oQdiuQNTgA4HrGmkhBLRpG4SYDEL40NVljh3MQ9N3i5BOjwYCNVHXEsgGcGjSq29uTKMkhXjEqzLO+dXj+SgVppqvo1nABklNnQyeQJ4wPg4gZZhP9sLmI0meGmCXb/BdLhE+TE8SF2gJtKQ1TJnnexdwQUzXmuxmvfm0awmNQ5G/gY3AqwrklZLYneUCOoeQbSyYCigTsU+P0DjqffYJq+YB18iQn8vLpFT7UUBlUMSdMTzEq7cqESCSbK2KdYySM7aQoxaYBBOM7ZmECguaOy/lT6B0AFMVtjPwpRowOCVeoKJEBEuWhyqYsWXyVDUGyXANb1NPUc0CJ2mBY7zjuDVKqmZ298PM9vYYzHMLzAMLzkvZ5W2IicC+e3j3jcexynL3GgCF+Aa+MQzApWmH8bySMSzYgUcTx6BL9tviTDXW1KlXISdvehkiDG8RVWMtV0OP4Gn6cjPqeILRwyCLdCiohU8Jt0xJd5FgadNHNtgE5vUUooYrQNQmV725JRDCHIuDpb1T2NBQ62mUg++xyY9n7P5X8kV1DzW1k8Iap0/z59YS3ncWSJH6+1Qz6xx04KSGPAvPc4FDkGizoxEE8GeEvYfrmr8lLx8Anm+U2VjQn+Gj7c1DqzNvmVDWyX4E8p7d7+vgGfQmw8jHxiklGK8FNBHB349LRGsk4IoAAmspQW4h7qraJxwVYQsRGOAPBErE7YoMUHlQaaKC/k4yYQYFecd1uP4Ncsu+R7Jmxj1vekHwB14pNNxRuzuX72Ern2pVybcXhmChJo07KXlrKaL96puj+CUKRuLeDeZpt0WkaiUibM0z1SZGPYlZDIBslFGb+4g7UrBMEFrA2Y4w4pHvCY3sKnCcnxh/Yw2Mp58SXhMT3icPgMc9hhEDm1MLxaNLn4fVB9D1RWZrV6ifvHt/jT6R4b6zEah2sX8IFfo4Dw59MDpnREorRoHmt+R7mgmFK1w/uJURTUJlEfF1Q2BgZwxFPpKGz+2jTEhRhJS7mqd2XYPfFA9cPf5BlTyVUSVfOwmVjUMqU9dodfYYgPCP4a288+gos/QhoHHA4D5hlYrbgO9x4YB86/Y+Im0ekg0wIPBesvfoNYZWN4wtP7dSUBLYxmNTZYB9jnDCat3nLvvei3AAT/T0AI/t0Cwc5fwfsR4/AC681P4G9+AQobHO9eId44hCtmAQ8DRBOYf4/1eziBi7NB2GcMb36FcvwU0+kz7Hb/HY+7v2BtnJJBNAMoT/T9gBbMvLGcwElxd22HCgRP1LH8RN9LC7zZANauMHhmsS30foFatLdOHaFnlPDxnD2yi7GwS5ugw1PdYAY+tbtn+B8WKxZ22J3FZCmPJwFYNtyNsVv48RUg3UcXXiAofV9GM6wdeMwyHTFPb/BYZmTiMYytC7ixHhvnMWaHuWTEPLHLZy6I8yPmwEwd79cMPFq30Pqrya1s1iXtoCZmQ7jFF/MXeIgRH4Y1Xl0N+Oh/czDB4xcPB7yIYxt10mSoRMA4EHk46+H9FY+c2QEZzJ4p0p1XfeACwHcsH10apCsTmAqS6D0WuW6aHFoZ07TGokiBfz6yp51hQ8IqUTawYQ24CkxJV77dvwRWEOJfSxSR8xGqZWisk0JvqSmlx6N/BwAiTsrC6gcww4sG5PTgjuVRDbKOmcCRr4uC9TkzqKpJxfexnF3B+RFDuOXNev0DkB8wX10hb9gUzlh0msCA7ppF9MLNkTA83mN6/FOcTr9GjDvsj58izg8y9k3A+fPaLYNmFmkNx4amCcwMNp4ISGKCVhCNgTUDWNaiNQX4XMt79eCvjEe9c1UwWH9pWba1dfbfZ+COXpsqUaIs867805fRkd8UD7DWo5QI7zfM+AJg/arGClcSnIA9qsGn91hMe+Qy41Qi1lQY4BUQzVsukvcl4bEcEedHqIu89xuEfEJjBDNbnSwzeTkJn6AM99X4CiHcIOcjdvf/FQMMXn04Y9gQPt7PeJkHrIwDLOCzgvUZIAa8OOlmPcNkA1BO9Xz0TSJLBpOxGMnBmqfaT303XZnBaiTZ64fX57JIUYnmPN5fMcvEv7OrrPctg3RN442T6ZxOXCwYi+AfeNy2MrmXrId+scQHG7sRFTi3gvcbvu7CBtdRa7ixxYjzx0fY5awRG+VrahXVe4M90tRza/jhFghXKMMaOXhQMDCWFmPt/NlE628yMBNh2EWYw+c4HX+N4/HXSJkN0Qr1Mhiym5i2t1bGnzFYWYetDdVtWfeFAmYA70pCNMIPrOCOzh4twV6N9z3rD0Bl/RVgyZaCFSC06fwZ0LNgzznDp3KUtNYgBqqNzsjU5iUa+7iTGgCY6W1gEEuEmhhaGzixd5vaWKya0m4F5BPfR3ZAjDvM8R67XcEhvUXOM4KxuLEBa8d5RDAWJ8q4Lwk5c/EaROqBzxsXayp3ldMe8/wVpukLEGWEcI1heIkw3KHkE766/684lYxgCStXsE0ON6LtPJnMjf08I0PZ1x7WDQh+jVyS6Ea3c1iAOhmVQQjFYmUza/zJM9k3fC8BQAtGFboizbSYr/xKI9cK0DFcke+C6ZoD4NcgW+87NQP1fg3vr5gpqdNRcceASMkY5iPIDxenBebTZ5hPv6lAmoI12mCybsVNGW0Sla5JpKszilMNyzpNBIAR1vdgBNepGz4eBZrItqZ+JVDLVGEd/44SG44RmO8R4wPm+V5ki6Q5dMbY5Wf4xEAnIAU0M9FUKu1QEmZpGifJE5KxrPsJU+WhqlyCxAFrtbEfEMJ1ZdKemzwnAMiNRNGmv2qbAZ4a+QVoI99dS6H9fveXpwAxhLTQzjfQy7Nc2lcSgBmAlSmRiNk9Vi8TBoL5+VX9YKKEFO/ra6S4Qy4TDiXiFswODrDVuyVRwa5wXjDNXzXGb0gMOtpVzaP13vV+wDDc1fcbH/4b9vu/wn1JgAUyATcuYG1dNfq9zzPmKtPGsdy5gQkb5sRgl5w33Q+CTDtktImH51Y1JO/AYNUArfEBXQ63WA0KIhlkL5RQySULE72mM62mft5fSYzY1CaRnY8wJWM4jEijRS5PdxU7Ea6+3GN4+xkwiczS/CUTsKQuMVYAYDGB6qeK2odvRpJAk4X4viaJFmdK6ktrPWyMMIVgIoEc+E/HCiYBgU0i2EIAJSFHMagKcP7oTJNsUWPVCMDkI0DU2LamSUmVwrnlgYoQRwKGsMVqdQdjHIJoaAd/Xd9HJ3UvrWI4DjSJxc58up8QKLHmDRob+Pw2ELieq7P36L+rkpoqg2OEUAegeqVoy2Kmgrm+goF20/Saclw7IGWq4GwzxRtqc9kOL+DybZ1g5Sb+Gzw8TDjkI0xZkvoU45nyhJgeobr043AnTOOxI0ko29q3KVQAq/EVdvu/wpfphJ1xeOVXeO3X+JFbIYP9YN7kCYmKyOVwjOJ8W6QvqNvru8lB/dqvqhVsmkGcgwGsRS7U7p8zHEjzhPPrtfipfvrM8HmfywmZMgxlBBisjEWxfA0NII3fR5Q8Yx/+CuPjn2IAEMIGLt5hXzbYbQFjDdxAlbg5zwannYF5IAxTxrg7whx+g3n6zaKRXI2tnUwL9I1kwR/0uui98vxd+d0X+eF7eZ3Fa5andeL/0dbvFAhuxgfsOE1ONHusAWwP8PC65PBLBfBTBOJORKcPjaFYtMdCF0Hgnn3l0YJzv3S0Zyq5dvZjLfL5VWphL0BfkYLtIsB0TkkAnm7o7+iAXgKA9UiVJXi+VS+LQJEXgGprHZDSAc6Jzp9v49/8Ah7GskmYcyO8a9qAMQbkMlcAVcEPXcoSLiBEYdkowJRz0/rr11O9v1x3KWVWZvAGYy3BBA87BHgXEWRk35ERuYYzgOv8PdREwzRsjbqRjT446+fiUW/9fhvG5U6nade2MrvONuw68nkZxFNWcF+IQ1jm6kgNnDUzCCimoP5AAYpJrRAE6jksYMNCs/jTGTacjWfVo9NOmYwA10JOA/KTe/Y9A3MFrLkLSNaheAFJbAN7ACy0/jQmUDRwUbXKpnrfNYMEqhf9UlLdkps2lqObMl/7XNmefTxQ+x8jLJne3ZvBsKfA3qX1pJnUblAs7513oMg6JqgAQf+z5wxj6Lnoij5iljqzvfviM0mTIjGQeWb+SC7BC+vD5hkwBRkRSeIoIKx76Xh7SQVZv90jWy8gQ7vPeFRRD31Z0PF7O3jnWmzrToMzhEG1wwonV1YZ1WcMJlsL/cbQ5fciFNNB6nIfnK9+gkRjhMaH/qntx35xduafrEsxX9nB9ftUzwkDLLYysKwwK/jzLXXmlm+jY8RNdoB/9nlTl8UoVQ/8lBYfLjN63j9xqwWOdSBrOW8AnoDAi1XQCjoxM1MJDD4qA1qMzmmR0o76OagqUzMO5a8AOmCqbwqdX38Fge2F66KfldDFZeqe6U5/8F0A8MW/SzwiFBhlpRtA9XCZ/ZfxZCLhbNWRa/BznMvEck+ddjCfDg9rV8zolXvV+RVSskjSJGs2rtAzCAfZa6lp/XmXQMYtmMHPnTtrOaexxnOzphhEATUGAfX577xf5u68Ll6rO4s9GNwv9RkAxDkbdFEHsOqNn73Du/57OUX6rtjfsUOpyBjzCqqPWgDYMoIKg1eGPL9TSezbUDKbxOaT+DqcuMknupj1eLrCueUQS0CHf+CpPEQ91O97xPM7LMZMiQGhUs7iF8cwI+A6gA4EbutdEHYBEwaUEYrF5JjG18sM4F7CTTX5+RiegkG914hk+4uY1WvC9l/PwR99/ur+13/tAOJiNG605hkfm8bNC7VNvSdjm3ZbaER6ySWYfOLcKBMRGRkRc8lIttS9VtlrHgYRGbkkuJrvqZTDu7XsAd77E3jK05Gp5o5OpjhUQ3MhEyTgH99A9skTqfVCD9p8U6mHesouxoizfPVSXkkFMK7VFN0x9zrTjSTiFjGUJfQmvm9ShJ9GxG6/N4WPwU9sNAvx2yh5WuQPzYvEP2X0PROzLxssvX/O0FjzLU8BAJMLLjUxqJzFX4kNQGPmA1iQfBbPZZe7n8eH6kMjuSXvLg7WDfX5t2r23hnEmbPr1D7bhbpt0RSSzy81UJWixDIO9Md4Lo3Yf39hOFg9lVoDQ5+nXBulnHcXww1klT66XA8VIRDMdb/pJ4b5PHiODZSQ8wrWjkj5iCjn3Es+6ATXMXI9GBuS3C+foGZ0/bLdNWTJK44GM0VYcOPJGYO1kAAGo59a8gajx2gXj2prvLXY4A37Dn3T9Zym8Luiiu4Heg7Q36OCqxSTYYhlMiMIKLnWL+fPnjLqjXViQk0o0YIkHKZuQpcmIEyl+fRoTkGtdgPwJP4sjl/jxm9ZJ5ieLRze4zW/Zbz/XazfMSN4JaMPW7jwAml9heID0ugX2p/2rLBLyeB4MMiqAfrmC5x2f4rT6VPE+Ig5PnIA7JhSPfZmwOADwIy/tfW4khFPC96wHwXsPJaEt2mq3fxEVDWAAe74cLFUuo2ANwXWgAQbKxjXboieEUh9aOhumm+oL7dc1P3/JcBJOsslgpAxz/coJeI0fcnC6OEGq+lzhHDTGB7SwYUFvL/BepUQwjVSOqJQwelYcCwTjsjImer5U3B4Y7nwOlHGnPaYprfCLjxVrT8rLL9+5JOBplw1ZIiyjBMNKJixyxFTsnWMdxgK7swKL92Io0l4KBH7Kg3hQHa5SVs3wCYvRiWEjNJE56np//ZLE8+k3y/N7IOMBrI29u2qNAT/Gxkn13U5wsu3JhdrxrCJl8UAZz0AX4NmKZyE8mgqwxUNZBJWGPHGWpnQEGaQvJc1Ft5fYQi3cG6Al3HOuhTMUTDYMaOmDFxIuxMXkmm+r13CrN1l6j/T+zF7+NhGeL+G9VuQH1BCQA7Pj26UYpBmA9o1rTI6foZp+hzH0+e1E8zHJ4wrSYgYAMqwxEFRdWwH0wzhMhF2xCPfGYRdjngsEVNN4pQRziPfpivy9NwDeFKk6+oZw5X1Wcc7tbA7TxieixOmxqXzwuHSxtSPa/HHUcY4s7zn+RHArzDNbyo7fx3veRS4Z+16Hmlbr34AoowYtojpgOPhMzyUE2vrSlG1EufkYB1Czoj5gCLGL2zico0gyYIy2Ezdsg6VkabfB9jNOhngDUU8vvVYTRkxW9wZh58O1ziUCDvvMaUjlBNxvqzxyLDIpghIQnAgieO2sn7thQw2UpONUWmIDBVy6GRiahHGDGHKzNyhBh/KV2llnmmWcrMIonvf7XNUGIQrzMDK+YQU9+weDizYKvXan4HDzFxdwbsVF+LCuKxgj8YGnRQIYryRJyAmlLgDZERftTUXo6zv0Kb9JstaL6w5SRztefOQi5fe8KUUgzwb2GNBOCSE4xE5vkUSWYO+WLWuA9mhYGvLG5wxLVeQ63MsCY8iBVFA7PptHJxboUo/uOGs8LaVAdw35viY1YRGRvNkRLaIxEZvUMN3V9MfrNf17LzR2fc0KlhSyCjVnytLCkkXz5nJo7w1bXoBQC4zLBVM8z2Av8A0fVn1gVfrHy72Ge9vWErAbZCkMEhpj7nMuM8zPEwF1r0xWBuHAYQjJcT5YaH1N46AK9vapekLisaG4uLPugFv4lv8SSm4jR4zEW6Nx9pfY5bYyqw/1c+kxb2gRVOGXBciRGlWFyJEw+xBazIcbGXzqGhXLGUxGqr64wViINjlC8UUsPRKi99KXKjXUyaJej1nLdXVLyInluWK6Yg5PrDmt3HwfosQruFcAxp7pnADERKKsKlifKygKE+TscyY01HvHgzmK40nq39tlTxB1+x8z/jw7Oou4zmhpCRmNvqpwE+iD5yO9TnUCQ7XneeFwTPYADUIIKkeAZEK9iViVxKOwvqD+KIMwy3UxM+5teSLCvh2Br6WdRMVnCCjeqBLF3WdvOCGc5sMdNTilq53nWFl9/XrHNjVU8mTdCy3ROCpFzawbmQLs2AMoznEGwtrv4I9fIIYH5r8ULjliQ+/xTi84Dwz7DHHRxwPv8aXecKJcgWe1Hcg2YIjRczTVzytlnni0bkNHG2lMeVksrEZ3eqIMgAcqODPpwesrccHfo2f+DVeiw/J3if8Jh5xJK6fiHrwT+IgaXbffEQmeW31Frgk+9A3kB0MNLJro6mBhUo4AhSu70H9Sk+SmK45S5838p7ixSC0/VshNlBXD5GS9jAzS8WFRwZBh8PIYCgAI80eN02wu08RRTYm5wNifKj3Z22CCjP7SVNZR7+NR3/j9Z4j38dqYKjkjUoy+BrGHmUDmwoD3lHNt+f6OupXQAvwsCDrfk0JnhhmdmD/n5N4WexLwskQrBlgbEDwV+yXNNyxnKFlibxzFnAPXJ6D7ioNwcQNNlpNeap/L1L/A2waKJz+SoLrG0ZAxxY2bXK6mmGaZnhnJcb0shKaKwPAWJL4JhTJNkqVTOP3VRINf1XvEH6OA9SU1qd9PQeaRxjjsZ7fYl8m7MoEICMKc7aY1uTNlJGRMceMw+lzrjGEmQo0HWsAIjF1qJNtzq0w04wZGaPUkVv57Nd2wNp6HPKMbHTKs9/7hMyFRiBTHMFRw0x6kFdZwYvzSkA8uz6A4ADg+NuTHhc/QQQyMgVJpYHVUlMQAWQYBI6ydxAAYwO8u4LzTAZ0bs05gjT63TQhHBKifN4yGUzOMGFrIqwfZowPD7DzCWZ6wHT6DDE9IqUDdNpbcxDOPy40i+Tf+thxuVn0fut/NmmIP//zP8c//af/FP/+3/97fPrpp/jRj36Ev/f3/h7+0T/6RxiGb85u/p0CwUPYYghXGIY7YPUKcb1GGgPKaOC6kW/944QRPM9AegTCrmD1cAA9/BkeH/8bjqffsLth5AJUwROgAWY6nuGkm6VaXi/9CAdT2b9T4UL+Ps+4FyMeGHarNWhmUQ0w6cZXerYAP0k1KTs3eGlgdevgt1/8NqtP8s40eKqRQ2ONARk5ReS0h/AL4PwGw/EzjMMtnB0wjndYr3/Mus3GI4wefrgFFQZovV9j58aq0bNLb2FkPEI3iq0LcDDYl4gvM2uD5TzDhwnerdiczjVGj3Mb1lcn1ZFrchEMDG6Qi8O+RByLZZOInDGMBa+tx8fDFvsSYeMBczqxYrJp18cax2wYGyp4xEyDGYmourrOVOC7Ag9YSkPMVBDRGB6a7CrDw3YgsLMexXoUCpyg52ViJn1RqOmW7caLelZwkQQ65xMKpgsgljBACBXAMsagoJeHYEOOzebjmnAbu2pMYAGBa+FsPcgPyOMKZC1siuDRqAckcdTOeYKOfesA2/I+/PYryEi691esDTyOKD4ge4t3vWyeDIZ9wrhjY5v58AmOp89xmt5wsptnLpSt44BAuRXRVGDB3V0P1npcix6UNQaREu7zzPrX0hAqxvPY/QUmn4LAvVv74li70XlAgWEd39KR/6YvBpxv7k8XLf52AfDVXodpr1iHu3oWur5K4bueiI0/AE7sfdhijve1oTCOr1lnOrwAa/qu4PwVctojpkdYY7Hf/xo7mmBQcEWEgSzWjpm+V8ZhTxmZTkg043QaMIQbECWWOQmu6om388UFixXzCOc2yNnBwOOLPOOL+xW2U0Qm4CNj4fwVjvKpv8oTd71VkqU/R/LslcLnMKHAkfD/iDDDIBpXgeCe1acmYSolFIUZyvHBi2zLUOMDG76ZBaNErzOPvFIF/kDEzFEBFQEACdDhMr7qDRQGgJQBkx1EkBIGDpdMiRToGMKWJRdkRDSEmzraX4s3avrIFMbaJLIzYKZ7lLQXlgYXH1U2ZgGovUeTqMbXNjJG7plRySLlcQFKNBgPEeP+AL9/xDzfI6ZddUo3xsJ5mYapRRzHNQMDQ6iNIa9mL3Jf7HPEQ444yAbCutNrGbNVd+/Q5CEMm7da+0xsqJNNc90LSwegcTHHxj9WirkeCO6f/EuZxDkLSEc8+6W/F2WvK1ULlOWPtGiqxjMlIiOKvueu7oWr1SsQJYzjqTaLwuoHsG6FknaiYxsQ0x7TfI/T8TM8lLgwmnzp+To/5Blv8g6n05fI+YQQblj2INzC2at2j7gBpTwtnINf483xM/x/4wNu7IAP7ICf2oAPfEEsDsewxV/OOyECtNhQKnvKAsZVkMZQY8/AOkyUMZKDI4OIZWGn82nfRD/ciiwUQ0K5Zoc9ENxc2p8uAgElIlGTuLHGY7ahNqpZ8mLDzQoAKkPQmw4pQASoXBBLpzi3wjiMVVqMpWPO7uXz/85TzTFYy1KaG9TYQd/nWrBMz8Uy0YPBAEWDMGUMhwn+eOhyG5a5scbWz1P36RofOH8Lhs3LnLFQzwAA2OfIILANXDu4FVarlxiHlxxz3KZKdjw38t0+U+7Ml/TfSgWBdYIGIgehzStvTCW/XFrVR+QMXK2sv+77QNO/VkPMJM2MY0k4UUGsutVcN/Wfq1BEyRHaqE55QvAsO7devRbJuFs44zGufwQfblg/dP4KAHA4/AoTRXhizeArHzBKAX9KGYe8E/DrVBvKvmMTqmG1auLzfS33uA34y7jHIPvj3wxb/I0xoZDBPW3wl+4R9zFKc7ftu/xhlVnHQJBKSmmeEIpFtGdgz9fsgzpCrlmg7XM0EmNICQHdYByyUYMqAX2ARb1Q5P+s9ZLfNckWAMh5QopvoQagNu7g53v4LgcgeTZK2ome9ucC8utUUtParyzv3nT6EruvMwcrIjmk0Jn8wDvP17uWGuy2BhTXOl8HBCNpg0gYjWKS2UwYAWcD78sd251ziBmEhAEGo9xT/Jzw752owNgBw3gHawN7oqw/wji+bk2hbpKib9Dpearfoyw511zB/JSPiOmAkmdpEvHx9LFBsRAAC3avlZihtbyS5jbOdwZm9klM0NeaqQgYLJ9VYoWaa2uDbJKGRDLKXOemCj/zERFGmja897Dx7AjvbxDGVzDibcR1B2sGx/kRu/QWg8i8FCKsrYcX8ta+RJxOX1SvCW7MvagkOG1mcOOTTe/DcA1rPXKZsRNTuzsDOBA+cANu3YCdGFvORgyH68SXg8nMugVxA3mmAk8FKMDJZMy2VFBdz2M1iCM+1zDlydQ631OtSiyGm3+6Wk7YEcXgWr1hLGudU8MalGyiObHWBSxTxHIZ+vzbacS4H+HS01zWTxPC41vQ8TOUtGO8afq8esmwZN1WargRVvwFuEEDwPnFNLB7buprkdF+91Xcb4ER/DVmgO+z/vN//s8opeBf/+t/jV/+8pf4D//hP+CP/uiPsN/v8cd//Mff+HV+p0AwM45YK5b8gDQy0MM6f+UJG1i/5mTgDoRwnOGPB8ynzzDNX2Ga7tHMtfrNY7mklKmSEKNxWBnWo0OJOII7V0mYrNEY1lXrtD51tQK8KxT69+rZwVDmoa4iRXv/GH+725me/K1/IMwC3CHRk2sDy6gi8QCQ046Dd4nShQxYrSShsx7GtE3cxitJpI6wdkByI/L+gLnMOFGGB+t3bayvmkHs/puQ8wnGWC5081SL4T5RoJLYEErc60vJXEz7FZCAOe8QiwFlOe8O2AJ44QYEY/GQZwb2pVgjlMbEAsRtdeBzQRYmc8JRjR4M1Y4msAR7lMmjoz31qnUjV02L1zUGoLD4oJIU/RUjGbPjD8+nuY4GBjhX6r1ElEA5QRlcpnsNDvLymaX7twCdDWuaheEVa7zK9eyTMgWBe30/srYGyQbyiHYedWye72kpcGKMA6xsBvL+xjVZiH4VeeT9FOGPB5jpoQHWSZJWZSnAiCYmULUv0ZKjYF11/Q6GBfSPAKIYwhUAZCzrqIZtuzbKyEEDFHtN5mWhd+KETn9X2cASE3r9Yr2+72L51R+Un+3+88nfi9wr7ZvCNFWNUi12+adRigL9GssIJ/lZlwO8Y410uJXEV05+Sp7g4j3m+R7z/IgYAaJYk0NNMIN1GAuDJCcqSFLI2XQEPG9UvRM9gNo40fNqjQMJe+pQIh7SFXACChlsLcEViyOAv7QcI1hb8+lqY5NOmEs8hsoyN62b77oT2E8L9Gy/yuQxBkbPsTZ6jEWR9wJse4BBC3ZGbfDovdAxSYtpY9oK/ivLQ/+l1GYYAGTkkjvwX+IWDCwNIJ8FsBxFu1JYPL1cECCxgTv15FxrEsl1YdbMckT0+16qPfhcF7/HfkoBkAhhinDTBBMPvL+UmWNd13zjz8DGcCrnArQGsgIlAOq1TuDGkDECtNnAQLowJvm127g3g8TrJ0Bwz/IzOr0g92FjAvN1VhBYwcGeyXPJSug8Q9AxT9bbNNUo5HwdSxKd4tbmY4aXNCMykGlCM65TmEQaINZjHHZVm9ZhCxu2QGAZqiFP2Ajj1NoB83yPKe0RxLxkMKbmEYkKHhJrgeozqlJV9b7oCuea+0gBbYzDDMIX8YSTy7gKHlsDvF7NKGRwtw8VBNIzdtm9nvO5KiMlOqUqGVMZft3pbJJST9t1rB/eZMbaxAAbc3FUoJq78mm/3OyrkljKFFWzHmHBFYhJptz7xh7aPVrj3lKrs752jbd8b1a22jmwY/xCTsqk7hot2MbfL+vv65a+FRXlO+kxEVzMcPPEclL5JCC1Egh4wgsQwKWg5l9sFKem0+0ZUu3oCJ4g9BJTnWdpFO+3lfWnDbflsWosaDFBl7VuEd9qXigTPNocqjELpoK97Xeogj78Gbl6GYzDaN2CiVZZf2YJHM2WG5+qjW4B5BybeVFNRDj/JW0aUZaf5rws5wlOQBn93BB9cTVssnbEenqDeRIJQMzcLBL/hmgLRmMxU0YyvAfFxKw+AAtmpYINanzZJosGRAG2jyVhDYOXG7537+aNnBe+c84lHhSM0OdZ9VH1PlBQrJqLghuJKh+TUar8GN+S5/Nf50aS/XeWlV/hC8zXuT/O+qyZCowaQADMnlnKo/Mmd7lWObXzVjJKOdUR+3l+wySf3mj1fPXyMOeAjnqQXAJlv2dWsHrQ9JIhtjyNo4vDy8wGtolr2B4EXsg8lchSCNRAZ0s8KaANIgi4X4iQDOAsa9A7txJN4JvFpF2/Ck6gfDku6B7Xg9SLSQHxP3BnseFc3kHjADeFbI0Fo2WDtCuzNMjVWHAuWZDBYGcUgHE0hadiJC+22VTCBJ8PTn/76QMiJvQZ4xHjHjHsoNMQ3t+wMenwAt54rNIOpcwI/hEn65F2uwo6A9IQk/svF8I+T5jjDkQFAwCiLXQSmpuAM2I6I6K5ETExSGxhsLIFDsC6uKoJD2mcg0ojBPIdwp/LNFkQJc1pg7j6ClzIw6zkHc6Ui9/v6znNDBoSpFUExJOogEwzp+fgwXcC69UPdXLQ+ysEzd3cAC/7VMkT3zdpgptao82UApMzf00zcPoS8fQZSj4JwP7YSA62GR8qCHxpVaLHM/JS39f6n00a4g/+4A/wB3/wB/W/f/GLX+C//Jf/gn/1r/7V/zxAsN5YRjYBsgb0joY4j3gyqWA8Rgy7Hez02AG/skw/PgM0lRthRkiC4yVp41HOhAyLfUnY5SisP2Z+svzDU00wfu2nwG+/2vhYN0ambL/2L/XY6uu84955DijWxKu9Nlf/S7mJvhxkkKLXlyIQO81SwRwfME2fA8BSJsJ4oEo5rGtCZe2AWGY2YzFUQXYvr+2MGJpQFK25E1I+VLaqtYB5xy3Z9Cu7wiQTKBd4T3jpCj6iATvj8NZN8OawOK/6+1XbyfDIrqT6KOCgzh1yCdJdYa2rv5u+ySNeGXeG9YIMHMhEDvrUArZckXacIhUBCCPFBhAVWDsIQKHv3ox/RJm2sg+VeaaJhndrceY8C6yULiZnF6+DdJt59Gju7vH+bLxfh05lNuoYiLX8p4sPGrN71h87+06w0yMo7cQ9vtPyAhfZrInZjcY1OJ+LOfn3OtpHDIiw0Yu8UtWya+xOEmYlH1+QhsMZiIZlUbf8d2UCt7vrkr55+zxnfz/72XNNL12adKhicgYXvcw20k9/xuAkoykjf7dEZtTYgJgeEeb7dr2kWOBfddLwW4v0A5AoVwMWLZQ8uPttRb4m5yOyFN8hTAu98HZYlzfuDFrogF65jCsHHIvFTRawR0frK0OkxQU1a+LPImANsX5qkddf6AH38YHaSKdeRSuNokvLKCBLXRQgWoJyVEAwT+4bNX0pRSQCtKFEelzo2N/9sovPqixjJ3IQ1VTKrRrIc6arh0pMshX0aSZQU2XINF1Ifcber3PfSyh83WKwhMe/TQZsirDzkfVPu+vdXrcb/UY3to6mC6nyRwmtyJhKRjaoILCTcTcnDuzKtlTgVwGgXotO9yW69LU7h8pEq+Yz3XHp3x3Mk2isS4HfXtfPS9PrnMHKrwtmThGfh4iInFELdALJs94z2qWRYZj1F9MObh6gBlhWG+v5xCCPG+Eow7sDvFtjynscKCOA4Mkgk4c3bWw9lYScTkg28D4kY4oKIvH75GU8khH/AmCijFCs6PcSrtYJKRls9zzi6RJYGkaaTVrUa2O9PWsZRPz8nzuC8zVtz3GNCzIpkCqIXK8M799P4sQZaNkt9XwAUZUkqlNqlWt8Hkf4brYFSABs8TU/yeaZPLeTj1FJk3oPS25YAfgap10d6STrYDKg49g94/i3ukp6ykzWbxVU3xGTwUBPjECe0DPt+mWkgcis/NTuCwgrv4LAHPmVTMDTbnyOgt9U4z7VuXw6ibN8f2VZ6ldlXuYSkZU5WYH/pgusMaEHfKHHaXSSoDF+vWkmd8oGDtZ24KVdvE4wDGTGUhq4RQRLPFE5U0HCBMoZl+I+37+Si1FBzkek9AAbm7mp5qqaa/mw4TObCXOJmEquhmzGGFhigksBMyR5BLnpq9bGRbeVLvRdjUNBqdM86kExCOA8GCufq01wtRvEds9Yk3TQ5lCW+8FKriMnoS7NKXLNIZrZbG8UB2kQEVDDw6Wz+8STZrG/8dSLMRbIE5I2x41Dq+kOsCLrwCB6A9BVs5XP8VHuw1n2uiaDpHHCXAKBu/qjt2tok3HfY3w4e61qFKbgs0zLU17GW5MBlzJroaa55jjPLZZgmPn8UmJJCGkgJwKi3FvazuXReKnN/GZR9+hx6vsVyVsWMbTTLNYJolImNj7OUwOBSycXU9sWSxawX4DBDP6qDBZPPPB/a7N06IDg85UBuG56OpBFJIsZBcXwc7AVM7dMBQfKmJBwYXgDQIsPWdjXIexR0g7OeNasBXiiGGASiQ2Y8hG2pIr3KMOZ86NcCULGWAzlttYCfN57DeiWc3o3YgJwooxTsXByJUfrsLYOtgCzxL82McLPrCELbQWz7wh1vjNdk5jePS3Q1x6kTTd5p0tz5Q3j4Z8kUumry89X9RaATgI1mQFrJ9i0r+ihSTvYqT1HJs1cK4jPQJq+rCbiuSOHnPsLnGuIE6Xnsa7fEsEk++8fEj3XGf9tr/v7e9zd3X2r3/ndagR3GoQlBBRrQAujOEmmS2P3zLMBPQDrL34DevwLxHiP4/EzpKxGUCJEbgPf6EW19JSBxuOdW9vGiSIV3Atj4THPeJtnHMUZVxM4K2YOAKqxgy4tIHsNIv5a2viYfq8eTwOIDZbA76XbphV7Twu/HjDQAkS4OciQ7mcHBpxLR7ROkhGGFKvQsBP4AcH/BawdsBrvMI4fLLT+huElQrhBiNfI+YTDIeNQTjDIKIUwWFeZc6NxSIWQwHqg0/QW4/CWu5RugxA6Z0gLmOIBEa7o2SMavDIMylxg1wXjNfCzV3tcP454nD0yrvHJ2Yinun7r9RrCFuSz3DsZOSdkghS7rK9V0I1iVlBY/1yC8Ltr1jGC/WKsMCFnW12E9bpaAZwypMh1Yy26dGyQKMtotK/JBr+wghXiQi0dPWc9QrjBarwTgGeDMLxqLu66aGn61W6RM8adyIKkdORNWYwZK7vd8IYnL/TMmfn6ZSsrcazFZD2vtoHAgMYHgzgbhH1GePgCefc/kOZ7djrtOrP9WDyzzk+1kAaY9TkYi8E6FBLtz8IMl0NJOBiCs2spKAaE4bq6X/fFBsBgNoPESzBCmxHM+mvMbr6GLAcBoII9Z0Iv9e/AMgaooZ0mcupcDqAmdppcqISBMlhnKjiVjEgM/7AGeveZYACjeqZS7MrImTFWQOEDhuEFjPGV4aRsnmF4gasyYfZrxHTE8fgpHoU9Ybqkc5Trsi8TpuktUp4whGs4N8j48aomfdaOtXABULVxjTE45IQ3ZIDk8CIkvL6ZcHWTECeLLz65wX/0K3wxzUhGTSwTcsfk9m4FkoYLZUKmCCtdm1gyZq2iz5bKxmjRp2Aaj1pJ88D6qh9uqcgYOLNSKZcaFYoka04BJzC7mfr7WXRnSxHncjkHyTyXKBkBmxgwcnaE8yuOMW7EanyN9foHot2+YlkgvxXpGFQgBwAbBQLVrK0+U5L0MdNKiuInDKbvHhuazu4yfSGdGDgzjwR4isgfC/z+EXT8DHm+76ROmoSP7g2lRDG9UVmLXGUK1KX+VHK9zkcqMHaFYXwJawOC32AINwjhuh6rFQZz+xztM5QygdFV+SydBETutD+JIrh8pIUchI5qKvhzacRzsK7+3CisvyqRZXzHhG2NDm2SH3LCsSRkSBwsCVPacVPEcHOzgVkKrPM9ltMJx9PnzKKxATHucEUZQSREAMCHW5Z3cCPm+IBcZsz5iIkiUBJW1iOQFp8WM51AaUahiOBlrJOa6ZTKVrTpgeZDQMbiqzRhthmnYYsbn3H3g4hSgJ8+bPCBX+HX8cAxEty0trmZ/Fk7wkBGgfMRwrFFAaq0WBaADECTkAHVUfpeGoJ37WYGVo2BqKAUByNgszZ8AYnnpEWdAL4FMK6xzgGg5FL3NpKskE8IkCnBlAlZdpZevxzQmM93k7Uezq/rCH/wW879hlccI1S7jxKQE4AVS3xJbLCzSCmIAZ3GqTpTRc9P8H3XVaeaRAfUFELJzOdUTIjNZQ3sRAj7Hez+C5T5LeubU27moXWSwwGIKJkNEalEECUEAME6eLBR8SSNTgIwG4Pgt1ivX9dztxpfwYeb+vyfj38DqPdyMz1j87qUjojCfislIsW95DEcGyxR1SPVZ99Lc1tZfr3kQ+iaQMHaOh2p+UQwFgMsXBeys4RY3uOGCkycfMajkEEKEXYl4j5NOJXEDDgA2ai3SgGIa45CCbYkTNbD7C1ifIAxDsNwx3FBmpLVe6DKyHyKr/LEwIsc21qkWw6UEeMjTtOXSPmE4LesjS1sy/NpDCtTHAYWpUxMBgLVWnQL4LVf48t0wkwZb/KMWGYQrSEXEew9AYAKEnI1DoVMM5ykSSKD13CwXMeg6anW2CCgeoJ60pzte8bKtCOBDC1yRZWNqU0iYxbPtkr5FPleLgKYC+GJZWPWCykjBXf53mw5LN+jzX+Dc4kVhuFFlY65yPY7Z/dRu+9r8+3JbMv7s+sae561z22epAkUUILRYTw9TTCJEI5H+P0DMN/X/LNfVdufJuTEzEeVYFwZno4dDUsaHgphlnrc2RXGkeUgrGW2pXPMuNSJOtVd5uPpDLrRYoQ2gVI6IFa5E44NnIdFEFjiLHSA7zlAWicg5XujcQjW1hzhynpsreN4AIPBGAxnuVyfeWYBNjKwyIkzCNc24IUbcaKEWAq+yhPu04QDJRC4SUmGpZgA1ryf5gekPNXpDAAIuRlYj+NrANwIVk3xe5rhCrAxFrduqJ8xlIwYH5DzESXPcG6N4K9Bjide++vayyYlO4CMw5t0wud+i0Ekwq7tgA/DhuuquMeO4qKRoUbEBkAB7/0BqH5EkTKOhc/7YLRJfTlPbhrDBBVP4Xfg/U3lafp60SmhxWSOU12TqCc0amOunLH7ubneGhG+THxe0g5uvq/SUDwt/HRaQF9P71/V1rbCBq7SUl1D3+jerblx6ZoiXaPo3UjMN1/0W5SGmKYJDw8Pi++N44hxvNyo/i7rT/7kT/Av/sW/+FZsYOB3DASHcM0br1uh+MBsPwsY91QOQsHglIDVwwx6/Ascd/8NKe0xzW+4aKujs74mcMUklNzGXgyA0TrcuAGjdZhKxrEk7EWTbpcjDobNTFRLrTrDQguBsEgQdbNsTIHYtIL6G1WBHjQw85zV069L7L/e9IH/busohy4NPRpgMhGIxA2yA301cTHWoY5rUUKRV4gxIqUdTvL5YnxAKRkrUoH8sQIGzm2kK5wQ50fkfMKpnDCXXMGowVgU60BE2FNmcxgRai8lM4MKV7XrfGkpGGzByWjJBOSCcGXxwU8SXpwSpqPBZ3/2Av8PGwAZG1XmTCkRzBRiliIAODcjJ3azVK/3SKrp3MbnpEdxJgkhnbZnQE9rHEjuEQ8JXiUxIxrM3LNoRgIAcERBochsVtGVVOMmQCVVVlW/LpcGMKr5iPdXVYt0vfoBhtWHDOCr/IZbtUSsPD3XzQF8GSJMZQMfkTJf78XZEDBY//ddF3fJh8pGLM7WRlH/qn2TqCRgdZhQ9p9gOv4KqRsL7Js4+vymPLGhTu3Ncxd2sDzmc6SEE2UcCyf0swGcXSMMDFgo29cLoK4TDrYrxPvkV6VUSuGRmj5hUsCsb3RYEokFfS20ZoQeq4I+zrD52tr62r3fOI+NCRXs6Y0c1MAxEn+2Q054EP3jAsKxZBxFZ64alOlIpTBhSp6RcYSBQS4za/3NX8HaAZv1R1gLg8T5KwzDS1jjMAwveIQwHTHNX3BjgwzW1mGQArQAOOaZQXxppAV/hXGcqokkg+xOWF1tlFm1/ibKuKcCB4tXBri9i7j95QrlGPGzzyNeziPCZADSZlmS2CAMWc/3SC4JZYrIFEHEhW+SP+jGGPtx4EylA9IkyTL9uHcDFawwyLnpJfIvQDWZAuQe0CQOLfmxxsK6EcUGnmSgghRl3ysMCnDkOwdYmvRFrxMa/BVWqw8wrn8EF16gSsb4sbF4cpON6eUiqmxMOTEInA+i8Rc7Js5vh/3HTIRQPxrwNG8oCRinBHN6g/n0GbIUS/yzoTbclLHas0ALcYzTEUrbgX5NJsZjHLjhprF6HF4gDHcV5Dln+fD5apIF/O/Lsc7SHwOpoiwWJi+XYoE3BoNxFehZWy7igrD9rqzHWgGes4KOy1fCLODOERlHz7nETAWHEvEmTZwzUcGuJOzQYgWAxk4FUCiyNAwAa4I8Zw4r0fdWgygjzNKtjGNO8wNS3OGUdphLRrG+NrjWhRnZKR8xzazlB6CC7daNizyilIllEIyDMQMO5YRcOM5tQsbVDz0oE37wFxPu5hW21jOgq/mcMOd6HWkqCXOZUSTHgmkTJBkER0ttVf2eFnCX9MNttz9xk8sDSJxekM4YyH0PBXyyXPmy0A/nCRUxKSYurfux4L544piDZoKsu43hO55IgeAradpfIwx3LC8Vtjj3F6gNjqDPpdzfIgemJnHn0wLvvSpQ1QpHFBlTlX+ibADfzCSpAH5KsMe3yKdPpYnV9PD5a5P6AsCNmTyBDWapmsSxfEkWnUjOKpxlTWAFe3T0W/MxKqfWdCo9GNYmAri4VsLCQfKvZgBFYmCmOUO/3zuzNHgarVuwfleWpfGc5A1r47DugOABS7AnV2ASi3/jr8BMqwr2fJUjPndHPOQZkRjs2QlpgFWQcs2xi2FT2kKlmhoCqJIZ1o0Iwx22bkTJE46nz5DiAYf4lp9t8Ah+lW8oCft8wjw/VMkCbVRbN1bzuF4WYghbnjJIHtP8pjKCrSVcuYKXJeB1WONYEo7SOK+sWkA0dx1PzYEbhWqMNVGGL00WIlgZyYZFJDGSpMYi16mBDH4+2wSa57zHZGkWtynQlh/qvq+SUgwCW8Pa4wX9PqNXsVGFkCxiHDpSg1+QKM7Zun2NHDw/N+z/wiBwlT05ryvOZZ0qUQrt9ekcDP5ui9D8Fjh/5SkS1gkuLA8RgRyWv+ciwU0nBoGlSXTOauz/Xiii0AxHwACDjfPVa0T3BsDBGib4rMZXGMcP4NyV1Ceryoxk0pCa711u7mvOy1q2J6S0Z3KTEJ8KTbAkevtA1Qs3speqHrg+OwqUOmMWTaFgLG6tx9Y40a+F5BAcc/TonqMgZNMx3gHMjjC7kU0UUfBZmvBrs8djnjFTwb4kHFHknQAqESnukNKhNiWcGyoZxIfb6j1g3Qox7gQMPyDlPWaJAaNxSJbrn0JMAKFIiPEBKR+4Ti/LqRCu9XhSzooc5ld5wueUMIBB25duwNo6HEvGY57xKJPqvdQc76WMsagZ7nmTKMDJ+e7uQdOYfHoOezLaos7QaRQjkyHdns/PQas31UyS79+GIvXyhll+3tnY4VxJZEEdrH1gHxcxmc1S5yozPaY9opBCFJ9QmTSeKOI/Wk8sZCm11ihKsuz9dDQGfY/SMfb7Z+/qLOG//Jf/Ev/8n//zxff+8T/+x/gn/+SfPPmdf/gP/yH+2T/7Z+983f/0n/4T/sbf+Bv1vz/55BP8wR/8Af7u3/27+KM/+qNvdYy/UyC4iqGfdQrNWTEHdGBPAVwpKJKsqbPv8nXbeJuhM+kGtBEuZ0zVZ0loDA1jGHgz5x1LOeam/7rUgVW9OmOKpOXdh+lWP4auX5+7/fp/d10y1xd8Gsj7VUDVHEKHEQpR7RTzlAAXL6qXqsZULWDwSDwVgoFDTMdqDmZ1xEqSKlt41M27EcUzSyIXQGFCyDkfYJFAcFSQKuMpwto2knFp9WzKPinQXMEOFgGAXxGMK9gaVB3H9hqlfrV2EPkBLris9QBM1dLUEqmAR9WLweIcn49e9O9Rr2vXTeQ/RZhaXDAXvcC0HM8zJKO2tNTtUhfpUlwFG9soF4MG1rBurYLA3I0fq+ETgCUIfGmpcVy3TOFjR+3GdWYJ9P0DPP044HMaoDrWqYsKj36XPPEfGY/qXvTs+T1jGtOSWQtwI6CpLKoJ1FiNn5wARzw5MMgGt+zwVRf2Lk7wZzv7XF2hb87+AMvR757h2493K7snGIuNCVjLaBeABatnJgtHBjNZTiwcqs5fIUI0hSUaoAUb1V4HawTLWaEmWVDyhAjAuyKJQGfWI3HCA8huZvATzIpHFx8qOwEQEGYWtmteFMp6/vo9otdtK8Sarfr0+BXBXW1gw4xNyAjSdqmASJ026Lv/ltnkctap/jwWI90qFdCvcy1QPW/nq9cM5h+3F0seq+97/prGwXUgYrEeuYg0kn6uetTK/NNiseni1qRMNIFrjFA373esc10tjQ1lERu+vxjxbaQh+uViEiCK5QhKea5kaYtIQTRe/R6QiQGRWqRbXw3gvF9XFluf39QCr3iUcuIcowA6+bJ87y7Z7WJD3zzWaQA+NnDTsmf2CBC8sg4bG2pBtzUOa+MwSJk1CBgMKJhDcMJk4KIvY4bFSv7tZHMFLKaSZZpF5YnOP4gCfQXs75qkmTjJ618Bht3prTsxS92tETwzL0XApRZAdbKBeMxWmSelDIAd4dByygUYXIt33nvr6xmCGThbCr7weTEOyfCIe0Y34tk1czg2OBCU6SJQgz77urcbs3hun0wT1efxkiwEHy/R038H+uKu5W09eMmsQaPS4/U+6X8X7Vu1daQ85XNt8jrqbRys7WIEIEzgp6vGhyoLsWS1/dZXn8vIiBed5w2FAAV3e5mgSy9Xm7V8trTItvLsQRqGMp8lOcOqMv44zna66+TBrO8lE7hfraGRF3GBSqoAVx8X+jpBl+aYoYsNg+Fx75VxAvqyJvdgbAWU12exIdMlsEe/TxiMqznTbAl75xGJjZF4moBHw0GQeFHk/s4y+RB1RgpVw10/g1vVRgObFA6IiXMXBU+W498ifyCyBe8a6Qf4Hldz536ntQ4YDGENh5VMi7HPgPDxSPIijX9G2M5ypzi0ac0idRcztwm9JkIf5wC5w0w7vwsjcv6Hp0UIumebnsZkIzFBxQn4fZaMOkPEtazoiWfDoNmCOVh5iJpHdCa0RuT+pLm30AfuT2r94B3jr2e9LmqL76lZBDx5vp8zjKMCmEIsCSF5w7tfV4hK2pAR0FWfN0BjvuXGn2t5l+YKi/F4OR8Mql2qBRsIXKeIFvGB2wiLySE0Waj6xyxN4XQSwIJjgX5VAzPNGfgrLwWD+6/nKxtTY4eTczQYhxkWO5uxsR4TZVgyOJG2QPTckrwy1TiR84yU9lW31lgPSOPBywRLzQ/QakGhwElNy83U1nQ/l19z9ZxrnWeMQ6KEI+l0MolMBk/TDtbVx3phygapl+R9SXKFfnqQW0jL/T5fqC/0nLTaw3R7dpOI6HGmb7uabA/r4hvDYG4pLOmac7v/THHSqJylWVKQhZmupujs6RHOGihPMcB3H9NvL3co7rucpXcvkuf+7//9v49//I//8eJ7z7GB/8E/+Af4wz/8w3e+7i9+8Yv691/96lf4/d//ffztv/238W/+zb/51sf4OwaCZTzHetEZZI1gawHvGxA8zwYpMRs47i1ePjxgmr9c0M2N9XA0XEykdZPjwKMsFd5wp5KxyxH7kipj1tlhwRy8BPraPtnW9xEGBtAYwdXlUzX0JLipq+M52HOJ9acB2RqDlYx06r+NYmrVy0M4CSKR8kKM/VgSHvPMowsgzJQQKSHRkr1J9f2NfjDAFJQ8Y5rf1s7OkA8Yx9dQcyAANSADwJSPOJTUxpWgWoTKSEyI6VjPZy5Pi+F+pcxM1FIirvyIG1cQrhzclYxmiaC4f9jh1X+OVfqDPwNv0LnEOlaiY54eEA2sgFIKcuf6awzXDp4EhDEayrtrRw1MUsMvPm1tXE1BKyIr99YAYqFFZAHd9N5kECwipn23CYnOloCOPLqu5iX8LkWYkr0RkXPM2ja2A391fPOS7qeyAMNqAQI1Ha3cxs+1aIKCJQTdjJhN9M7L+c6lo8YsU+FEH9gqmXHJ+EuGD/8A+OMBU3yLmB6RszD+jAU5NSRsjCF1oeUGSKmJSyQes52JjeFmw8musyNC2LJUQQe0K1NbtdTOpSD61VgYpY6fs95fasxDag0r1z2ZPetPu/kry0web3j87NoNNWlT1l9v5uBqQUfYSsEGAEcacG0HnCihEOE+z3iTTtiXhFxYFzSSjnSa1owxDZ7mz6FmkyucTp9WHbl6XS0nUsGvEd2aDQTAcSpRc831MIgUQYWAtDSW7IGE2gQpOo3BrKnRBi5gAayHhNULh/CDH6IcD7i9/gu8fBiwsg6WOq0/PcaOHQoA0Q7s+CulkyVCREG1WjBYMEWfW8/pcSkzlwGzBOpkY873Bi5sJ+R0ZIak6FBbG0Bk4fy6XQso266xrlS/Vve3cbjFONxVTWAfbpuzN4Cm99mWFuOXZGNqA6bTD7/M9vvuwaGyryQ+FI0P1iymiXTsmwpQJgM3TyhphxQfmjSLabI9/DscM3ivOYGIz6Mnfv50WDWWzIYg8LACSozD7WIcloHg9tpUcpWG0qbGcrQz1USazRLlOhd1+87V7duC2W+aLwRpCuseO8p0gDLPru2AK/nvwRhm/WGp71cZPWfXi4s924BhazAEi2NhMPgL6xHSCbvMrPkZEYXs5eSeCkqeMM1foZTI92CesALghBnJOqrbmmPF+ICd6iDKywzS6EiUkfNJ9koP55Td9/XjdppfjSHDXXGTdLu9x0dvV3gd1tjliBhLNbbkX7L1mUtgYD9rrgC0aQEqEg9MLTp1TDzJM1GUFQmO56j3tTQsbRCGIRdjuWQuEmXCSz+DJbA3BKmmMd/XnBOPKEZlJgwyIppW9/Ip7NuQDO4EBiqEZTwOL6qzOsv0dJMCgPy9sYHrvm0dawSDnwE1kswlosnGnE0VvcdaNIqsr/UF/zdgJPkuyYAsUKKBn2Zm+8kYdmOJhsV+DQBZZLEsZXgIC9W4mrcnYXpbM8JaLznDTT1vVa5EcmYd/9a98twESn0O9I9O3/SxwYDq9JDHcgJIpa5qzWAYzNTpgJU2hQQ8XRuLNWwFsnqwJ4OlLhqzr12rCvBAjNAAzjHcCivDYLAzBojgvAKERJAGOefGXEvovlEwz/dw7vN6bnryEDPTrzDPAybMcESwVCpwxeAXIeejkD8CE4fkvCugrDlFO+etsTODkNgUAsEWvLYBs7/CzmXsSsRXs+SQkiOqoXixgCkzMtRIj+PyJNe0j7sOfD7PpSFyB8+eG0mqnJSR2gzUzCv7+hEiv0HIMAitXlV2sAJHi+YGun/jWMON5VybyDXv05jlhkqQ8P4KIWyrpEdv8FtX32A+Y/8tjCSxbMa+DzO4+acs/UeqGXXnUURF8wfAxQzEPfJ8j1JOT2QDah0BiQ3lhK1hHV199qqsIHGDhJudK9YL92s4v4V1o8THNh2Q814kz3pzOrcAhfvJgVJm5MzyFJpnKOCqDdRLuUL/vcFYBIlnaytNIskbtsZhK02iQf8YgjPaIDJVNgb4epaw7ApwALbW4c6vsLKO2bEAcppwQmyMV6G3ERg7mOY3ddLSGMc5F1BrhSHc1Hv+VBiPACD+P0AQUPZILKPB8aYRC/tpTyWP8YTvgFOa8FAiZuuwNQ53JmBtDI4I+I0/4lfxwJiGNkdgAONqfa8EREhOoKxgluJQjXJTgWL+2vAcJS5miNeTaXU31T40M4N7b3XWC5YmgciJ6bQi30dNlgUAKBdAJAABILtpIc/RY2OXpuJV1khJciq9p4QJazmPaM8jUKFJwSMUf+j1m+t9f9bEep/122QEj+OIm5ubb/Q7r1+/xuvXr7/Rz37yySf4/d//ffytv/W38G//7b+F/Q6Gd79bjWC/gfPsHp2DBwUA3sDIKI73TQ7ieG9hjoRxN8M+/BVOp08xzV/VzcK7EXDj4uYDAGR2nfQSDDUAKtizLxGPJWKWG9nbAT5sMQRxkLSDGDsw2HPORtLCrcoq0DJAn2v7KdCjr3DO9qvaXWDG78bKWIkkctd2wI0LtXN/XtDp67pFssZrh4I3JeKhREQqeJNO+CIdsSuJExEQkmG9uhpN6mdhofbD8TeYprcw1mMlI5zBX9dzM4RbBL+FcyukdMA+PSDnCGfY+fva8GdJVLDLM1LcVeB0GG6FOdmx/qyHLbzZ5nRCLic4IrzwN3gxRoSXW7iXdzDDCHd1AzOskB++xOv/53/F9S50RRJ3Ea2CwV0gytkh+DWSjKIRZWTMbPhB2uHnpLKPN7aGWu7itfF0Hil31PRL+0Dp3YjiVhU8LmVGQa7GMiw/wSOARugr3o11HIZdpq+71xZzMh2LlXFbHTEylkdlKvDbARDny4BHwSlsmgGUtWyiggjEHVLaizawmJQU7dxq/5G73e9DFGZWJo+M1CRNG0WeKhu4JIO8B+xEGHcR5vA55vkrnKY39VrytdZrc9akKRFQoEfeeyZ1jc44GuKi17BJyXr1GuvVa44VMibrlGktqx/7riNGFqB8ADPlOXFMeRKAcwbAIKDvkjYFKi5NACjwu3WhmjjcuICtEf0uI0yeDvztlzNasPHiUa2V6HgB95TxhiIeckRExhfxhE/jAYfCSRknHg0s5SbLCTmjSs2UMmOY34LHBK8Rwg0/c26DcXjJmt1xj5yPOOUjZmENARynA4lEChHm+IiUD3w/nIHAfF15TDZlZiKvrcfWWNxawu1NxPijVxh++jdRTnu8/OjP8NGvt7hxAw4lYc4zIrVExRoL79ZscGcD5rhDSh6iDAxDqh/eQJ5eX/XibS/M3HPzEx2VyoY15p2ctyTvZQkVbChE8ETIpTWJvN+ImzHHLmsHFDfW9+F7rSxAz35iYBw/wDi+hvNbZqioHnC/eraM8YCTWZNwtWADGwF5LumHExVJOhXG/O5dfWVsW8dN5BJCjRHLU254+48G9ljgjnucTr+RZibv105G1Ji5MLdx63RCzic4KgjyDImqJUsugZCNFS3sFcbhFlebj7Fe/7gyexZAGSUUagVeb/wEqK7aLAC6GKlGMdcombVwiQuXd+mBe2HzbF3AxrApojMGV0ZGOrtR7+EsLvT5Qg/wOBhsu5+9NQ4OA+D45974Nb7IM96WCbEUfJ6O+DydMIELqqYfzPdKyieU4xeY7FtYNyIJ02oY7ur1Xa9/wO99XGOeH7Gbv0DMMxyMsJs9vLEoacJDPmKa72VvXWMc2exINcS1EAG0gKA6FbYyDqtVgru5hXEO16++xM9/bfD5cI2HkjBRxkM6yHXy9XkNfgtrj0hxj5KPLPMENgmbSkYRhv9gLDx4BJz12JdaiQTJIzqARokH1nBjx2QxIgUh5ySQqbKjZVqAgGiWAIoxFj5cQf0rNNaqbIwySRtZuJmBGmPFT+BazM3WWK1eY735SZOYCl2ssI6BHJ0mUnDFBxRn4Y8AShKgdV+bhqoN/P2BwKp17FvOI0A0uQYC61sbC5iJ4I8HpPlLTNPnNad3tdHOMmYxHeu4tSkRN4abLUDTDuefJxRjMQ43cH6NcXjB8lzjD2T/4pwpxXsAqMB4ydNFpnSThOCGcY0N+SjXO2KQe02B4CDyCGr+tra+shKvbMBKQGBXwR0Be2CwNgZr9LVEO5aZAIVJlPV7Hiv0qwNwZzxujUO2IzIIn7sRt27AY46YKOOLeMQ9ZZ5IRGbwDUeYzE3nAzgXVuBgtfoAYbir3gPr1YecR0WWATuVGZt63KwDOpdTBfHn4R4pPcBJ/LXGIYStXOMjcjddShDN78gcx03I+L1i8VEJuC8DHkLEJ/MepxIBU2AsA/9csySRzmKZEKKlt4Ajw/qpFijETaIqB0HNZ6BUNrBIdKk/jfWwNEDN6XJhGLj258G5Q660RAGH5X51AIrMimquBtJJAI0OfS0rr0odoGUHGCrS3B8xDi9qrazaznUKsSehyHNJfuAGUZph0gMg0zpVE7uPCzXmvUd8qGxlWxtlnEM4xh+cAEFWWu7JgLomUZy/lDyzAcHcmInIiZsNMe4wEuGDsGYjtLM9lvWeDdbDDYawxTi8xDC8ZMDcrbhRPb3tmtWpysk9t/pxec1d2jlM8ABWAkAGIY6pJrgCwdow5sbQU5mYwVgMMLg1FrcGcGDwd2ULnCFYQyhkMBeWEihkKjA801I6QperGAPXKs4EbL1HJsIRGRvH98x9npm0x4IK9fdzOuGErzDHXW3mG+MRhoxSTvB+g9XqNYZyC2sHxPiIXT5Ws0ZnDDbVoyEixgccpy8lR14j+K0YeioTuJl6WjfgMCd8no7YOI+tv8LHxuLj9YxDdPi8XOO/Tw/4qkxgcNbDSFO1EE8oZKQqKaXeArBALhwXbGlawaohrH+fS66yn8rLbzKfyjw3oiG+nPS2ABIKN11kx7dCDuGTkWpDme+rKPeSZAnJLaS/+meLf+GsAjJtNkVJcCFcw4s/GDdBGlHNVBe6C1MEZ6z3QqnmDN8HhFvC9/Eqy/XbNIv75JNP8Hf+zt/Bz372M/zxH/8xPv/88/q9jz766Bu/zu8UCK5aOMZzESeMHucZBA4eiMIENkfC6mHGsN8jTV+y5lzcQU1eVKfXVrkBSPHLQ7XKoFG5BB1rnIXx5/wVJxturIFA2ZUhbBECI/lt5FCZaBOMUXF2BysJx1LsPtdua6/hpas+oMZI0dnGtm7cgFs/YGU8VsbhzgbcGY+1EbabBmPwKKcGZV3OANYSSjHYJ4cv8gr3dsQMwiduYOAxHqsmD0tj6IOoGizCoCgRoMRsCPkZ79YLsDOEa2FqOZzCG+R0wMkkBCKsiCpTaWU9vJgtpGxhkhdR++XotzFOkqWMXCY4IgwwuLYD1kOC3b6E297AXt3CvfgQ9uoWdnOD6xf/Eatf89VmZt1Zg0Bev7m4r+H8CtVIIPOAhnbYCZrgS4caLT3TwoyIAGHm9AyOprPlAONALsN5HfXTwNaOS7ukRYJ4LhNiOlbdXz3udk+6yuJTTVbjutHDXperAEDT+WwnQ+9rZvrlcVVBHhsja+xVNs/M472ZTT56LlG7p82iYfJtl2oOwTDQU4KrMQJorD8qDAKHQ0I4Hjlhi49IaV8Tvl5Go7H024ilO3smExGsbM7GeNZFlDGjIdxiGF7W86ySG9VNuRsfa2ZTlxzAGyNZzSOV1dMcupemTz2zJxg2PnjhRqyEzbM1HrfSIAJQtbsuXQVN4oZFrBAgiAxOxeFN8djZFWYQ/twOSFTwRTpBzbEYDFZZAtE/pwzKtg5h9Z1jBYLJJQzDLXKZ4azHPFtM5chAiTxbwTSt3APYvCHnGSWfMYyNq424JCAHgVlBa/BnHNcF/oMP4T/8Cei0x+qDgDvDhqEAcCgJkcS9vGPjaZPIu5EbhWShaZURpowzELkd4Lki5VJs6I8f4EamJvLGBjFHWJo+OMMGUQkJpXDiR3JvqymhtQHA1eJ+X7JfuVBTCZNh9SHC6gdsCNevC/Iw9d9rg8iBZArD5qbhVcp0WT98cd2+e3Kk+4sxHB+YdWgZ6JFpAWXzUDQwkeCnAjM9iP7nTo7ByvnilTOzfVTnjJCwMhYBbZQS4GgXic3hxvEW3l9hCLcYx9dVo+58FXnPxkZrDGAFhktRRnsRQHqWAp0nRgJ0Oqg1hRQIVrBHR783JlxsGKvW52DMogmUF3+n7r/pCXA8ANgaQhCayes84LUJuKcVjmBGy6lwgcxNI9YPrkBZiUik+swKrrb9iwHIO46pJWEcXyDGB0yY4YmwAqrm4skm3JcZOR0RJW4O32B0UNmwzhgMY4Hb3gDWY/XC4fVqxk8PI94Yj0/cAB8PjZ0vOaHql1o3AMnxfADpuVNGMJAMC+mAsGD6lVrAAQqQ64h1i0HteIkyg0uwdXC0fgbJT5RdpBI3rstlay48o4JHhRLLRnQj3sr0MzZIg+NFLYj1/jY9uHNJtsm2KZ7ibHs+JTbo1ADvf53HeQWB34P1Z5r0Uz0WndCxCobJacoGlAGbCkyakdMeMe7kUNR0MCAXloPQfKfkCSsYXLsBW8fxI3Z7VwIBxmEYbjCEGwzDLYOXA+tgl7hDyc10qohR15PpmY5hpSCwAk9qsKZj6B6mximVV1JwerRuMTm4Mm4xHbA1DmuVhACwBrC2yzqiCLiQyTzJJ1gugn92MKgxB1DWoMEgjMGttVgHi3uXsC8JkQp28cBamTAgk4GiEk0ZKVqcgOp74f0aw/ghjF3B+S2G4QVWaY/kRkyTRYxvGqFCmncMqAqAnvbIeWo1i/Ui25BhzPwkZ80gpGwRXEHwBR94vkYvTgE/Ksxe5PFwBlVZHmhENqz3nbIRGKZ5C1htIhsjzSGuIZQVqAa+Cr1UyZguNgASO8nWnCITz6ioDI1BM4ii7loqkOyM/m7zh6m1qBJgFkvqQKYUSifF1ebYEG6Xk0V+2/TDgUW9oVMCZJvYUsmnCvTUHIl6DdD3Z/1VyUhhIC5zCFOnnyqWVVgfuKS96PSmOmnYMIDYPZ8zNsbhlV/hhRsZwKTE+6HEfQPXgcAv2rmyHpDJgJQP9X3apIDKALapi37qkGtkzSWY4OIIT6Rg+oaxNywbpbKTK+MXUhBrY6VJxHrAWwBXAv46yQGCE9IBGdhMAgIbzGSA0qYDnlv6xG2N6A0b4AiP2RHu3czMfCFwTTxrAej0X2ST5eJW8P4KY3pRGf7WjrW5XEqG959iKkcmVsEgGI+N5EyRCiZhBWsjNfgtvNvUqa5m7Ml+RhMID3nm/d4DL33Gh3cnzJPFx59fYWsDvspHAWEZDLVugCkWxZxYk19yA/VzssTxysEgOpbmZKyqTXerhJ82lJUtXcFZjWGVFrzUEG8yVTxJoA9gZQTrhaEi+7PWqMrKj0B+6gGkkhTyavWr6porWOzsAO828OGmmcR1+/QC/NX8okqgXJJ0U6nTy/fXt1m/TUbwb2P9u3/37/Anf/In+JM/+RP8+Mc/Xr7vt2iq/26lIURzhQvKp3RmNXqhYuCnAj/NcNMJsVx27WybuAIsZWH04iRRUhDYwSAW7mc3N3cvjKkA1UNzooX7RFP0HUDXYiOrY/PLzbUHgPW/deRbizvt0LXxLVuLOP4jDsHm3RfdWg7cDB4bOOKxrWsXmpM1CHNJoqWjR3f2uv2IDrEGjG5YrJ0j7FSrxbpFoaaLp0u1iqqkAjU5hXMt0PrWhUfxBmPZXGoosKs1zOqK/4SR/wwr/rw1LHXFxnPnR+4faz1ykaRUPn0BwRBQjDp1t9WuJ/8kyIA6za9LpgL8363og2iL9SOfAOckhT+4sEsZ8OJxxXUtVnpmcK+N2A5CZCC60aunJ/c8SbMoPsAmkV4pmYOxBOJLOj3adaxjrt+gIH9uGb1/uk1BzSR1KdjjI8GlDBvjIjFiYK+B8LkDYCsLAqVKMOhzmCU5zyAGi3TkTSQ3dJywP9/n96yOgD85R90YF1/XDL0/2fV5ub2aDuzp9f28jG8FowWcrezfFhtUpwyLca16/ogTtB4A7lcfK1bG4coFHEvCTGoclZlRbSza+F73RAiwqcZHPROSP5sabcoQp+hl9YWMNSJEoaPhCxDVL95Li2RLwGg81oawcgVhJJiwggkrIGeYwVfAXUH3S1nEUyMQSaNMe05ZK9jU4vNcK/jbrBoToM9Pr+J3tqiAjDaSzsHlpT4q6+QzYKEjbsq2f1afq4+/eh/XBuEzRi9nI516nG3/k33OGLzHaaqMP24SCvPwQv5ABTCRYBLxeKdM7KiEzpOfl3s0lxkkurfOMLuu13fUoTk292KpDSdaf4t41U0G9A2hcxC4/dsSuK8xQmRrdFpEdYBrXDiLD3UkFZorNBbwpfiQISw/+V4mVH3ti9IRAGbiuKBxRQtFELAxASvrMMj4dyQ82xDgzy4yOWUGa6WOrCfnfGXAmdqIWUqNaLzU1zjXUuSP5UDozjNy1W1cGwsXABNGwHnYwWIMmcEw+RkAT4oeft32vBb+IZAAvsZItJD75ZwZ9m1WAy902J3zAgWD688RoFNoxtgqHaXngA0R2SyKTOFJKzAY3D4Pd1OsaSa1Or55qcGB86Ksk5vSJtE5Ux8AnuQPi4DwfueK95U2+q35DFBrUTaMK2CgJxLMM01bPVaeJOIJIkJmSRExXVOGWZSxXY50TiaRwpJtdeEcPKd5eDHHqgQTehIbmu4najzQPFv9UAJcNY/VvEH/3ucL1tCiUaSgsJN8QDJOQOoPmD5OUI0Lqgna6woPYKYhLBs3BRhEZACGn3HTsqDFvi6NsZJPlVkNMLBQ7CwyKqg5RAWEZbKvmLyIvf1S81llm4Ga14d+du8KrOVaKheD4RikOdiDlVqLltpU0eoj01I/XLWCgTYl0Gt/nq/KqlPAxshxCkgMmCcxtlVxVNHNhWapsTzdVDi/qePgRurR8/LP6E5u5Pf94plz6jOgOcK7fF+s5RjRa+LWiZkmsfd9rdZoc1VWio9Dm0Zo0hCZ722TAVN42q1N8fSyFUookclfFAQ7iAGjwwkM5ukof5aaxLn14jwRpV4q+uKz/268oTseyRprPYaWO2iuAPm74iIcK+wiXvR6wPVrF5rt12AO33Q9pyc8SIxdWw9LGSfKmMH5pPqWwIiEidRzuUywWY0+G2ZjrdaSphI5dF+uknkyNWxKBJGAvxeMfi8tB4OVY9IJwHXTaB1sArK5hD/YpR8RLWOWLpWD6GMD/zuvJ1dAu5ymCdURXchdoPU6XYw1+lpMoEONY/16+pnav5j+/wUPsDVWWMnr/DJOWDytLVR+zjqg5O55+f7jA7/v9/+Sv831h3/4h1+rJfxN1u+WEeyuYIcXyMMK2VvYkRaMnlyAeQbS3uDm7SPC289A89s6UtW7ffej9zxyrGPYE7NIDHfFC4SGnyYUAAfKsHaFMFxX9sQQbjEOL+RmdVXXq7L+LozWKziWy8zjuFUSgguPc91PHdfuWX913NuGavDywo14aUM1dlmjjW01TVODePaw18Tt7JyvLWEgTtDWNOA2eOz8FjMK/iod8JfTDl/lCZkK62MZoFH1l+9RSlq4KwfaIgQHIx0070ZhtxUkw2MQvf6gM0Y2UMOmMMKm7ItjXTkfUeiEOzfg1o34PbfGy4/eIvzw53A3r2BWV7BXNwz2lIRhQ8J6AAotg9ZlQxaL4NccpLIHlYhcEnLN1ahLkyDNA9lQScapZBO2BcwecRHGlMbs6ZjTzgaQYwYBUUFKCREJBlTHPZXpk5HFATUxUJ1P3XGzLiJr6cqxkeNkGasFGPHc6u9lljFwSOOI7B0ChBGcZiBPSGkPdWCv9zeVs/Pr4OyA9xn/dm5TneTzMCIHA/Km6ftJkwgHYPVwQHh8CzM9yIhwczw9l3GJ6YgYH7mgowRHbA7E9yIzNqIA8rMBBr/FaryDdyuEcI1huMOw+nAJQur9Wk4LDdDzkU/V/sz5xONkeQZLxuQqAXBJCkK1vNYiBcFdfY8bF3BnghR0qu23BIABbhbps1sLNAKOZHB8R9HtwOygwRh8bAe44RYf+Q1OlPHruMev4wH7cpTCQNLMCpiyDIKaPcW0xzS/reNupeTKFHZ+gpnYUdmV1rlWEGYq2nA6VKMGHdUCgJwPSPmIaX5AyTM2xuInfo0fb0+4vYnY/niAf/VDvidWV3BXG9zagms3IIOZlnV1sUHjj+ukgXQKRHy3Jaaz6Uui1uxS06CWlGdpwBt5dmKNC/09qrIx7b3aeKkeJeuViyt5PmCeH/g9pVnhXDO06F9fz5lzG+jotOs03flNl5rhffywbgX42zrSqUw/U51cs+y5nUFEhbKlUSBA03vgYsLIHFirOGyQg0f2DuTNgkVZJoNhnzDujvDHA8r8trJrCjU7DmMccpkR4x5z5PhhiXBlLK5dqGDPQaQCMrGXwMpfYb36qMqeOJkMgPVsSpd2C72/fqy0b2woyyjnY2W183jnDCPHGcCMPx35tjAYOibP2npcWY9RGD03VmRiJDZsu9gAqDTMZW2/bDguzJ1UxIy2dzsAOxi4jJrH9O+TRaf6jT9hKhmfpyPeFh5DhMiDKODIt82E4/QlYtpV9moPqls7VAZuLidmXKIDu4jzAwCIxmG8MEZrrAeyNgEjXroR127Ax2bA5u4Ae/MKxjr4lze4uXmLH+wzhsT5lwqZaBHTGOk8LRDdCshcnCQjup3S99CCU1l+l4uuZQN50cC0gZ29wRNZNrOPgYJdQV5Oc8tEESntJBcuQmxYy3OzqjlyUeBcQRc5R9qY827EOLzEevUD+HCDOmnU+wpcMocThp2y7LJnkgc5V5+BLKz3yvZ7TzmIfqleurUDM43cCPJDlZ6r8aEAblfgp4ThOAHTvUykZVSnd/3RMrP0QNrBUMEI4IUf8dKP2JiAiRK+SCccSmJJKSoIwxbr1WsEf13PG0tR7VDSniUyJHcuym57hjSgkwKVCSzTApC6IsDU5o/mCtosdsZg43yViQnGYmsdtsbX5tDaGGzRYsLKEgZ7uch2AFzh3+O4wHGiN2bNAI7yjM4ywdfLU90ah1vjcETBadhiooyv0sSsPIivhlFZDq7ljLFsUm0HOLdpklvg/YANjCKmyeNUcmW+GSx1QDn/04kQ2Q9FZgLpUa41S59dCxtyDBGrVcYwFgwbQhgJ64eMjx7X2FiPL/IJVXpBmtt8Lw4oxkNmeGCJkKnwlADxpKElU49VNT91WqC1w9u5a3s5170k9ylPCzgkk6oeqDaKuIZg07ycTlBjN24EL2uhovs+pAlZwb6e4WfEh2RTpw7G4Q7j+IFoh6+aNv5ZPsEvwTWGSjqZnOEsxxWWQeolKXoQ7f2YdUZlO6QxY6zjqUnrkEYP0rHwQjBMqMWwi7BHxhz0vumZ+0RFZKQOMFSwgcFLN+KVW+HOBNxTwmOZ8ZBnzCVjTxk+3GI18vlSMJjyia+TyC3qREgR8KvVNJcaSkViyFzl7lgTGnWKyHdxocYGsMzSaHwFflfWVV8RbtjYOg3EE4YdGKkOpNnWqeN+OaBOBl4CenUSaZbXdEQ4QhnEhAEWH/kNru2AiRLszPI8k0nycBSZHrAATpjjDofjpwhxxwQ+t6lTiNaKL4ldoZQZkVgiSvXdjyXBlyS+ENxIXVFCPzVcG3fdngk53rWxeHF1xM2PDOI+40efFnzgV/g0Hhhv4icbysY31qGcTQsUIpaLEaLNqWQMhhtEsZTKBJ4oLzTEiwGaEbqXhnSp+YShrD3P2pQy8n/8nBsUYtlMvses1O8CuIonkIaCd0u0KOGjNZetHeHDpk51DMMLOLdZGCnXRogFYEf29OkbRNZdfvp1kgQ1BL/f+u5DzM+v3x4h+Htbv1MgGMMt6wOPK5TRwHnA2Ab0sEGcQXjICG8+wfTwX1DKhHn+SnSj+AG1ovPHycAsBkwnEHFAXBmLKxewth7HkvgPsV4bGY9xuMEQrivYs1p99ATs0UWUOIErXZFMy06zaqcWGdGwRGxIhqb7CflvpwxgKexeupEF04UBfGdZY2utpwwtYcswywKOeuhNgeYGCA2GsLIFKxnl+BDAL8Ad7pgt/mx+if+PHfGruMehJHyZTnhTYhupO7ujCyXEuEfKk4DyDl6KQE2InATRkpvguXa9mLErOqASbFTkvX4KuQYpTxgJ+Ol4jVduhb/ugeufXyN8/L/AXt0ujstev8Jw46QQ5vGnqOOPwozpryfAwOMAwLnIoHNmMCN3iRWERQ4oUxFyjg0cEZLJ7LYLAcnlvPDrtwROg+yi2KDIhFsUFBQM1CQCCmXMOCGlGYAVQLgx/PjrxMkUACoZxjQDvx6gVFdaHYnSRE1H7tlUziGNgZszhRD2BZjvQfmEnHas8bgwQew2Bu3+uQHKwvouS40mMNxyEecNKBjYTvW+FMAfC4b7L1F2/wM5T4jzG+gYbM8GNsJK1aTNyTO5ljFJbyxmyoglYQJLgFgzYBxvsVl/JGOJNwjjK9jhRT13Je4W57f00hACAueq8XcQY6NDLYqBjCDNhiAJmKvgr8EgrF9vLG79gBd2rNpdt7ZJQTiocUNL1hYGqKSpIa9Z/vRjnT1sr8XhVkZEt8XgIzMiuxFHAP/FjbAw+E08IEKlIiw3fuR9eHSVk4loA6y9XyTR6pac8xHWBsTMQJsHy+NoXDwiYy4RKZ9g01HM5sZFnGDdxB1KmfGBDfi5Dfjhj3fY3BkMP/4p/Ic/bffWyztc+09xbQMyCoLoWy6Zdy3xY00rbgaWPCNGQsYJRq6bsnkWzRBoo4sbRYQiDAAje0MBSqyAUi9f4qQhxQ0iIJdjBYINOKYHMNtwwoyY9pXdgwHwfsuJlnFigtkcqa0bYexqyXTo2Wr1uW7jnO05ByxuWfczNLYhAJkYSBWkqEaSHeNdpwV6EPC7LNZvY4CF/IA0hqof3jeSzURYPewQHt8C8z2m6csqI8IH3bK+Uvg8uhJZDsJYXLsBLzw/b7scBQhWI6gBq9UrbDYfIwyvnugrU0lIM+tRnoO+50ubCykfEdNBRk2PMJQxSjwIYIaJl/N2Pt55ZT2uhYk0wC5iw1JCqk0AnE8R6UTATAYuWzaFAnAkwlGecdUD1a+ODG6Nx2tjsZXXW9uA18HjGLbYUcZ/mN5inu6xQ2YpAonHGp8ZBJ8xA3B+xbqd/ro+396tmtZtJCSJIapxGGBwKjPYENFC9UCBJahmjUPKE1Zk8MPhCq/cCh87YPxgBXd9BzOs4D/4EDcfvsFH+yNW+xEv8/DsaCsDSdwkyrAC6B+RkaHSMVaKPG96zqD8vl5/tCZPz+xqYDDHhkBZ9ORR882CUhvSjhhozpiF0mdRqFT2OwOSrhEaOga6NWpON8JajkfDcIcwvIL1zeAMwKJJpPe2EiXg1JxN9IGD6vtbudaihV1mYdBp7mD0pD4hHHyb5VybeDBuhTKsUUJADg7wBtYXUGG5mPUDN4jcieXmcj4g673TTQ3w83jAQAUbwwy1136N126NrXX4IhsApzotU4zDanWH9fpj+PBCzo+reYIa0qXOlK5f/bWv0hACAud8EsIE6wI7GKwMG75pY0gBn14mho1jVUKKgVg1e1obBn97aTmVlDtfoRBctljJNNGpWBzBjaMsgPAMqk0kQLVAed/awuLOGKwNYSaH7DfIRNjaI44l4TfpiEcUWNs+v+rMmxJwEqPGnA/1HIWwBbBl1rAbEdMeJ+Jsh/WSRZu8JKR0QBSZHpYx2EicGWHMV+LbcETJEzfeYTEMBcNYsL4tWL/yCC+3GL/a4Uf/o2DrAkw+ggvCIsCHyDW5ATYPKMUClJCQEMEMRm728yi4Al9FGMO5A3naahOEtX4xFlrCcz7ZzK4NIDKEmosRCmL1cOA6xMP7K845RHNf64CcZxSKjXXXsbRZh/Ua43BbtZvXa9HAlsZyrzfK17GT/AMDO2kcpZGcn+Avjdn6XNT89kuls5zEOWM5J8o+IAcDOxJ/3APXFX4SubnTF5jnr+p9AwiDXIln+YQghJJrF/DDcIWP7YhbY4ECfAKWHzuWhNkANxIbwvhKrl1uTaF8ekLaucQEXhhzCQjcS1Q4gmiEsxRMLxu1tg341cZxrxe+FimId5FLgJYvFOJ7rTyDxGmzuf8UGvU0XvDrtdxCfTd+6lZwDtjJfXgQEgUBSCZLE9GilII4PzLZxz3AuRVW42uEcMNyLf4KIdwgBNanT+kRCQIEC+t4yDMONIFygk1DbUhbt+rkBDuj6novGG5u3SWsfu9HGI5H/PBPd/ho3uAv3Y6l54rI+NjA8m+GOdbZJBDxZ09gDxCYZlheTDOGU/mhueSqDawNIwtXTaB7pqw2XClzrlCPGRCiCpBNmz6DsHVbzVxgkkUCpMGgJpL5yZNYFWO6xg0b+K2wXr3u9MNfwvntgoTCpvMJFkKC8cPCf6S9yXIK9Htfvw1E9LdwmN/3+t0CwdaB3FiF2tkkrnXtFQy2MYtY+xtkcSQH+u7oMlCqXqUycV0nszBJ94CZruIO70Z4t2LjJxGwtn7L3cLzjSyfOJF+BuTqJSn4gaTK7gQ6Fqlw6NT4SRlwK8vAlJo+bcG6POuzos3JaMQCCO7+1J8D60Tp34MtCK7AuwJnCUMo8J4dpU9fOnxOI06UsSoR+xJhSx3auvBhucusjJXeaKEBHCyODsMGav14gwXE0IC4E1xiHYt9el5Z9/PaDnhpA258ht1un4DA9bWHBiTpGAQf15Lx178Xd2edbACeCxLijpvREY7z94GOmshrglignXRkuzx5Hz0/1upmE2BNABlRGKyJol43BpqzYR5QoYiUJwQpWkoZ6uv2+lF1RLN3qicOtsb1jNanAAVZgxIMyqRdcta/rSYElQX8NMqpM699D70dNblbuPk+kYUwsKWwo6+ybJRt9MxiHTSqBlzBNN3dlIuM+gMEIzqxVxUEdn4rumdXvCHF/eL8tT9t5LMf8273QrsvVN+PzxsW41s9s0ePVTv2AyxrftZOvejzPTOudUkegkGesogXNQmDgTNAkOJw7fmcWkM4ZYd7GvCJH/CYZzhirfWCLhZrAgJtjAibqWe6dUAHj2+j3lEOqHFR2dpNT1kbKS3u55qoZazdCreWsLoFwss13M3dIk6YYcTKczwJYIbleXxYxAUBSTyABMBkB+TlqJRqieud12tx1fjTsVtIzpfrmhUAQHaAs7EmZsYGGGEgK8NHmwUE1jajElGyjMYqeG1648htk4FQ7fBLo2799EDXIKqxoRv5Lj5UJrA6+qr0Qn+f41wSwEhke4+xQnUh5/jA2n7VY6BjsplCcNMEzPesy9mx7p58dDmPA4xoblvRspe8QT5jAe8Hyr724RZuuK3H1Z9LBgbb+XvXCHjTDG8a5lrIWWmM8JlrMhAKArOxi8jEVPC3xQZ19h4MIXTnx52F56DXKVtEQwupGGbuFGk2S3ZFxKaUcu+urILDwFo0AnfG4i/dKKz70kN+MFCpBwEEqQAJDMR050qZt0QZJjuUshyT5OerAGjA5nOLqGCUPOLGBlz7BLcaYddXgPWwqyuEK4vVumAdE4aje6esQ2UAuoKcAUjDUY9OYwAzcp6/54mo5lHnr9/nudZ6HuM2FpTPxtvR6RFLTtUbx1k7ioTJsNyjSq7gr2rzM4uH723jt7g0KaBxgu/vZU6hbB7du6lj9yykpRa6wO9PndFpqzrBB9QYYRzXF1kqaJsi3Gkv+cNucVz93qLGNBoTrlxggyDrsAaPgAPaEJRjcGsudtUA+WxaiOPCUsbE2qeAD5+ijmAisbXfB1yXIyxkIATcUbKJSkGsweCOkkqCMIBV81sB4L5RpBOGRZ6FWFgHtBjixhGfNGbn1+qrUsj49cATA4MBrlxBIIPbZPHSDYjICNniqzxhIVMmuTTf1LwfpXyqTD2Vo7N63Y2rz5rKZaiRKzPmn8pD9E0OZskzgWiwAwZj4APBBcCvDPzNGu72FpQzrnyGN1Zk45bPtj63vFcRUEo9LhKigZJiYHrJITnPVWJkyQg+vzcrWGN1DN528bCPtfxvBoVTM9uIMdWnAKimtQB4ykHrXGOrL4wVHWStmb1fC8NvKR/zpKbQphFQp4m4SdTkIeo0XT/6/T1NDDQjyU5G0nqeVrBtmojAmANLUU6gchIT1w53WEwapipXeGWl6QImUgz1ecniOcKSMc5v4cILAX73NZ5qzaDLWndR6qhfrb5QqlWbKvVdvqDTAgoCaw6hcaLKxOBMDgJPQWBdmQycGMVdWs/J0i1A4Q4A1j8OBlu4Osk0wGBjg5ivcs1t5blT8ZVCPEnVN1P7c+bdCk6Iajk7gBJUC1nPi1ERy7pvSoPTAujyx/NczgEYNgX26hrGOWyu7rF9M2A0DsmUheIAg8BW8AWOoVU2xrT9WyVMAVQjSaBJ3zQ8wnT3tpUcpO37KE1Sin+6/SGoTjF/ZgNUUomzge9H62GKUg97gc9vlsarxFQI15X8c26kfO5XVGVjAPFLWa7L0pTvv96Dn/I/9frdAsEytkXWcrdegOBSgNNJAujJ4Oo4oaR97aCTdusloSXKSBKkYzqIc3yEpzYaoYFQRbars7AdEfwaIVzLpraBtY2yDqCK2PPfm5ZY073sNP+6Qo4KB2bV7GKg56kBlLJ7RhnTWAvjrxZz5jltHsObpDG14/ZOUXaz/H1rCNYSfCCkCFwPCR/lAfAb7IjZDfsccV9ida9lB/DLT0tlL9TRNT3K55+u51L//vzmMiHFPV7YgB+5FT6yAXfXO/iXP3vHp0XVAY0CyNfkqE8Enj0wK9ugbq68KuAjRXAfFm1NCEs99goM2VzHkc+L3Kbd50FkUCiDlZqXTp+SC9fxtcnIeJgwSIKAwGTTAhCu92tJS2aPjhtZV2UkjPUoZ504k1iXreSpMv7UbfjJaYOBFa1t8x6h2UgntvgBRdg8ukoyiAXIM7A6TKC0Q4r3FejpWRksB8Gd/DnukPMJAwEb4+BMZ5QgZ5qLF+72e7duDSIB04gSTJoATEA+gcoJpZwW+rfnJlBa8KmZg5rOEOWm7wdUJqzqeWlM0CJvZbxoATcXX5ZuYBZwsEu98HMgh4u08/EtTQfaf7cEcMkSCk7/G7jLAa/dGjHwyHyOBV+BP5tqQukIuD7/Kp1T9T475hPkKFRfU1dj3reGip5L/f2cZZyznOCJ8MKPuBsjxg82CK8/gLu5W95bzosGYmNfA3gS1zQBX7B8JJk3sCgmV4Mo14HA9djBylqtCAMIuU2K2IBcIrMYz2OCDSAqsMYjG8ejnXINbXeuLIBMmacYihMH73uoRvuSXTLBUpL95/K0SzsIj2VB3muI2/rVJjGSzLmxibtmx/nS+FDKd48NvR5vDgFFmlYAN4dSIqTZwE8ZdnpEmd8ii6QN0AopbVxyjDigUMTaOmwdSzNtrBeWPn/eSKVKJTkrhrICsFd90SwyENUQ63nwWVcRY7VcovweNxG1kGPZqGb+pI7eFQQWt+8e7OGx7wYCBwGBLxVzwLJYyySTRmj5RC0MjU4RGEDykqHGTl7WEFaGTd1cZqDn1o84xSMyCDMiqDSjwfNVmTciQaSLn7u2qyjQxEAt70elZ54ZX69BluuR0gF31uMHfsRrE/Byc4R7+TE3iqyHvbqBHSy8zwiuwGmbTossoGvuqUZpe5ZyPqGYCL69SeIDzzxWbWk5ZqNyL0SA6XRfz2JB+7uto81FxlYzctWo1VH4lisk5HTEHB+4sHNrANvF6zIw4QRA7XXDm4ZmDwIvYgR1/61fzwzkbCFkZ7hZpNe0a4zKL/NZMZJfXrwrvtlyldU8Am5Vx88BgLJBKcz681OBPx6ebRL1NUXObBx5ZXlCYDQOV4aNGDUHnEoWKTXDzCe3ehJjzxvF/ToHgZ9nBceFfrkCOlrf6H5WQWKc/THN7K3Kw5wdSylci2n+0AM9mbjWyGII9eT8Q+JBt5dWSZkLDZW14YmC7FZYGZ5CfEhpQSrhVe/sCopfOm8GFtnIe8ptpfu7hRHCyYxSBpx7XbAZLTNhHRFu3IA7Q9jcZIzXwHDjYddrmDDADANP4aFRZJ7o8xoL5wYgCxaTI7P7BMTiSQEBfmp1wsuKZum7Vg9qVtDZWI4C1GzKbX+ElAGonmqCK3MXC2yV60oAqt6o/F3fT5nEDOw0Dx2+Ns8QpLrmMig1OSmg+o9cej6WU1ZPDaq+zdJaS2WxbNhyjPBhQTIxiTAcJ/jjAXZ6xCxyDfWYJI8FeFKVkLCxQzWPVOa9k9T6VDJOxKb01g41Nlw6VxyPVYpAGsKCiTy3NJYqGQJo5LOmG76MB6oXrpIyVTNc6gquIxrJRGOFlXpA19d5EwFLabr+EdFYkeV78+J7fR3Cx3IlTTj1KDlSFjYxkywUzGTMoElx2TLW62eNRbE8n32J1KVNHTrL5mstp6+bZ6yMxauwwgs74s4QwsbAXd2gOIcwFqylfouSy+X+Xq74AsszMC5VkEQqRiVjYDptcfWpgPgJAaLlLfHW2MW+Xhtd4O8Vqf56I8gKCGttBsv7gcSBNtk96IngCQ2Sxr658IwaJ3rArkpyeL+pxntP/IvQ4gZ7mrxjkvisvvg676dvu8yFKZj3X7+N1/x+1+8UCE6bLWi1wbwOcCNhkHvteDBIewMzEcIxY3j7GfanX2Ge3wJoN6cF0+xj2mGaeQQz5SNy3uMaFmvnYQGspKADuHieQXDuSmjqN7jafIzN5mes8SdMRP5hffhPz2r9KUNZ2axttOgEgGQEve9KmwXQc2UDbv2AleFj/MANuDOhsv22eH6kc+HMaRjkcWf3nAbSS0tBYCd/PsAJo8/4ZXI4RI87cwdnDP5q2mGmgscSMZkMA4/e9b1n0aV0qOAMUW4JBJpJX++wrIGJTH6y2cb4gJSOyPmIGO/x880d/m/B4QebIz76ZcTw07/5zvtrAGseZSo4dRtBGwG/fGbq/WU9ijiSFRnhUF6TBY/CNYa3nFMCsikypnOCKQzMahJFi8KusSPPx8FjOdYOnW7qHhxSphIxx3ukfIQxDnE4IpeIEFkb0Pt11UZ6sgpAJqHIiBgfhxc2D49T9gW6LWykkuI9ctohpkdOfmoHujUldBNw8v70ruzla5YJt8B4izyOSKOFFTFEliwyQCG4A2G4f4P58AlOp08Xib13K+QSkdIeMe5ZqiMd4CnhlehD9oWJFtIRPELr/Qar8SU26x9hWP2AmcDgjapIHCppjxTfIufDYvy7nurSWD8MRhxFf+4o5y5XfT+VglAWrDUGWxtw7UJl+720A+6sryNbWwA3rmDoHHzVFDKTQSlctKmLbzHNDEqlJGoTyZhFrFgDlSEEACtfsB4ShqEgJYOfEeCwwU/dise/7VvE6R47OsGQmIjYoRoE8PkQ48GzSQ69ZkWSnr5wq6aSJM9UiTBmAnBdfzemHWJ8wEtYXPmA/9Nwi598vMf6b/zf4V58uJCF4HtrZEMoM+BonIDNZpFInRuwOds0d7NboWQeRS9GWJKd8Ys2/ABUsxpHQDFsdFXyzKPkNskYVivotJHBDEg+BnaqZ95DQpKkt5XGfI+xKmM5JYkhe1gb2LW+TAhl4gIoj3Al12efn6mOgdJ36vX7ZwBx8QE5eLjIBZ2bTjBpRo5vkdKxyUKcsYG1+er8+rK+6Ddc3t+wfvjwAmkcUUZTTV7yzI2iMhlcPexQ9p/guP/vkhsc+PfdivOGfMQcd6CSMM8P2BDw43GL13795D0LCCfKcP4KwV9hHF9gNb7iuOBWMPmEHN/WPCGLy3hKx+7zPw98ljIjp2PTKQWzjIJ1Vd9vtK4WdKNxFQAOwkrsG8hrY7A2DQQebKmNHKAb6xRdP40RWfwGVGaqGTw15i9/mD5WNJagM5yvbELG6DOm5LA7rrAfX2BjPQ4l4TfxiCMiQJfTT75/jzDmQXItjRvCdgFqDlEETOUmbGNGtddK9TrEtENOO/x88wp/yw14NST88PcmDD/+ZZX08C9/AH9zhWFzj+FYat729Hq1poL3V3CUka3nvCelTquT9cP7pqnuNVzwEbKOuBaLnGcplkpl5FS9Pjsg+E2NEwkWKRXMokvcs8AKCDMS5nhfC7wwXMsRbAVwYPduZRP2EjIARM4gAVCJqbPJgE4yZsEGVoMXgFn5EbAx8tSOaGEX0egHVDZGov1zWoDfcPmw5ZH/cAsabxDXa2TvkKVRVJJBngzWuxPM7teY9v8DpUyI8UGa523cW/OcGB+xhcXHwxYf+Q2z/+SPHu2uRGQbENwVVquXGIYXrUkE0T5VDwxtwBuHS9OvujR3yCUipgNyOkqTKCIATVKumxiqjSKJDQ7aJGogT6/32ZNDOA/g/+71Pkt3RTIBsVjMZCRm8L83cFmkDjq5qWzUeLIxJDX+3BqCsx4fwePeFpzGhF2JeCixTl9wvWHBJqOlemRYykLmGYBuApFgREecpVK85fPii8EJWfKIGfZMSzznA2LcYU3A2nr8JGzx89sDbv/aBm57BbteM+MvrODijNEfEKzu9B0QJTHI2QB4VMkFKhGJZvEUIWEoN4LS+XrXc9AM2jg2eDei+Cj3DfuuZMxcW0mDyJE0og0quUalJqqpobKDRTJCl0ovKuAcwhbDcFcbslZq5me9SPqmkTKDS2lNI22e5lOtp3kqasE//Jqz8u7FHkCrGh8w3Fb9cF0lGoyHiOH+S9DxM6555jeLRhE3sPhcp3jASMBHYYOP/AZX1uO1DSKnwPf9Q55xMgbOXWEYOTb0+ZexDoaYdap+PM5t6j7Dviwtj6i/Z1zNi1VujgoT4J6LDRwXXP3eyjQJxepB1NUC/Mwq7rB8f80letO40jWPAM0fDJ8LajgFn0gFmx3LyhiWoJpFglGb2WvRHHhtB+yHa2xtwKEkfJ6OuC8JWVnBtYEMrlnzCSntBY/gZ10n+6L1yGmqzRIAdf+k+lrL+pWnEQ6cS8QdfuzX+F/DDe6Mx89ujlj/6BbuxYcwpz02N/8Bd8bh1snzmU7Ii+kclpVSk8GEEyYqMAoAF8BZwxx+oqoPXIiqPrBOrrbp61CfZ7nj+TSXJNKTTIjLpsBQm0QtRCxakwnaJuz1w7383dG6ngeVIOHY0t0YxrJcjBvFn4AlOlQ/XGPFkmjZyJXGeJiSYUoBOVfZwKYUmMJXimTa/rdiKPn/ZwT/77/SOCKvuZAbBsIwEFJiVk94yFg9HOCmE8r+E9Ho2UtHcoD3W1jrkERTL6VDTbQ2ZPDSj9g60VFFc8osIGQDrMIW43CDcXjJmsCbj3kEDlgyIGSDymnXAo2YPwGQ7vLUdHpkw6fOAGo0Kv/QA8HM6tm6gBd2xJX1GIzBnQm4NU2XZ22fH+m0UjzASgAmqompJl79SIdqf/XLWoL3HAjDy4ybVxnGEeaDRfiLK+zoBg4G+5Lwq3mPmSIurX7cPaXjBSYUF3A61qDBt3WkSMbe+NznPCHGR8zxATmf4CjjF36LX77e4fbDhKu//mOEH/788o1VEozjjW00DrMtLaCcjWI/t6ozvSXpVjcV0NZfb+OeyvQuYJAmGXXvFlZ4GUQbKNfA3a7BgOCBYn0dQyzEimIGbA4VJJEn6XzOJSJThIHFrCMj0t0vhZM479jgqmf59AGXekBIxq3hVgttHiPSCwwE7+vz1o+d8nXkK6ljvMFvn4w0fas13oDChnXEAksPAkA6GthjgZ8KhsMEc/gNpulznKY3/FnrhuhrlzymPbOYKeKF9fhB2ODWjQLuJMTStC+LMVgNtxiHW4xiDGfHD1gOIu5B81uUtBewZ4cUH55o/VVDHr1vpIuZhE2tjGq+rkuTFx3ptBCTFxuqXvitaNatpZC7cQVXLleAR+VerDB4YrKIxaIUjhUzGYAaU6HvtiswrPFiMI1dbOW1V6uMccPX3HvCZp/x4+jwmDyOdIPP0xFTOml/W+7tji0n2rgKfBI1F1gFeOoItcFiBB41PizZeAAbRVlK+HC4xgdhhV/agBe/5zD89G/CvfwQCw1cgLVAPbHEhsRmvm6tSQQ0ALQybkiaee74pEmUieqYVNOA58/DCZewgAyPuhaKoMINvlwSrO3HAXupF2F7QDRICzipEyBJG0QSdnDECXG+r+z/5X3J5jhEqY5w9sanei2s51jAj/f05OeKs8jBwZQCnzNMPABJ9LCz6l9fYr5ZAZ9GWBPwXZcfblgfOGxYHziY2omjyIxReyzw+0ecjr/C8fjZ8ijsCGWVpXiQ/fuEF27Ex+EKP3IrzMSmT0fKtUhPAIZBjF6GO4ThjmU2/AjIxEScv4ROxeg+2M6/wyUmNjeJ2vgpUV7EfAvWBz5nAWvzeBAA+NxQdmVbk2j0BcEW9KYumYz4A5jWVAaDPVU/XI7RyWvq3/nrsoE0k8EAzlVu1jM2VxnzZPGT6HBPG6ysw0OOmEvGoTfcURBEnr0smqzWOtGqzLXAYWVNLMYmlVvDWEx80lBO6ciN07SHp4Kf+Sv8tZd7XL9I2P7ixSKPsNd3sNstwviWzaHks7apBmHTdXmEkZH0ZAfEdGSgigqKKShdk6gx8zgmkOG4zJlFqWCJTgvw51Bmzru8BQhkmFfkiOVEIM2zGRE5ZegD4t3YNDINa4g7x1p9avL0ROKka9o088i8/G/txFjXgcAFJjMb2qYoRqkHMVTu9YHl8hstavGdl7Mbnu7zVyjDqumHWy6uSwKQCP54QDx9htPp1/K8MsPPirQAUa4Fb8kn3NiAn4YtPpZr0MPVmRi8GIY7rFZ3GMINQrjBUs9Q2dCdJMFivPxdcia56n8W8T3p8waVvXseBLbdlICpe7wzWhO0a3BpjLtfCgLHoiy+dh7002iDGVBJmQYM686mn/bKFdxIjvGYPN7QBr/xR+R4ZMMkIma9GZFDkZyu0AHeZWmWrJtup/VgVnBupmmmGWZBft+WGUSrBXCZS0ShCbcu4NaN+Klb4dWH9xh/r/mQaMOjnPYIriAYu6hh+kaUFeNCAIjGwqYDEs1V798pUch8vXTMpcVsXDHVcysEvYeoICaC6XRBTXd9iIAInrS0yaNYjyB1tRpLMrDUS9KMVW6Km0hX8MPt0/3sOUZw1zRiY6guLylF9s9Tl9+Vs/hgzr5++6Vgt3cbWL9FGdbIYopNTjClAoQpgo6f1SbRPH9VtcO1xs1K/CgTtsbhI7/BT/waaxiu34WYkTNhlyOc32Kz/rDFhgtLz6VTHAIQPfFpIRGh16VNGbLpp5KvdBJWa4p+kkiJFQoQr40VGUqOC2sjZvRyms+bRedV81NMYSkTwZIxChgzTlE9TAA44lpGDWpZH9ssapJgCSjAHRxmt8KV9diLce+uJKndqAG4IJhia63FNasCwc1sWuWt2vk33Dgh3t9qTBH2dpFcgok8Mz4Md/ilDXjpCl69nuE/+Ancyx/A7O/ZowjAxjKDORiLU/9e1sMZy/HHzMhp5ilgKvAwSMaIX4qtsjFJ5OSomkma2kBVwo2zLV+o18iNsHmu0pPcXFlOG1vREAcyCmlt1nCK3mhWm6SLBr2+lg3wbsQgRDTnBozjBwjDq6fG1FDWe/PWKXYFq42iDgRe/nxG9SiiZQ7xvusZdab3Wt+Lid1vef1OgeDsLZyzlc2jiwpr9LjpBDufZKzvKWNUt7asTpnEoJszKrPgGsDT0eoBU00ldIysFnQlM1vp3CynA3TaMaQanBcbGLXNt7HbliBwD3LUjr3Q8ntApk/UFvIQlpDz0zusF2bvRzqAlghYSwwYWf67cYC1gHEEFwxsMLDC6rmdBmwkuAzGwhaATAGRvZiw9+DgeUftmz6u1BVEGnQcwA6+m4KwMbCr9ROAp/7+PIFyqVppqq35dd2j8+trjK0HzSOpVD+HAjHnq3X31ZHTsbi6ars903LioCsyItZLDzVV8Lm+tuEixNbNgEc1iowNGpNRCkum1I3sHKQsCWQ6LWHV3DTLsU5TCDar3lKqpmeq/Xn2CeRLGyF7r+6aFJRkLVT7k1hYDSYDLmbYFLsCSz7jGcCvEi0g1gsfrOjsWodZALaIUp2aDQx3Mu1Q9efO77N+hE3HhPsk7VJR1zdKIPeHdqD7RpUmasqsqaNbpjFqznW7qsGLgMBWEidAOvMWyLnJPWhHXmNNxtJoro87mug5S7COAeBSWDdvDNIMI4Nt4niroGf6mqe9sSsumGe98zfb7zdTvggPYOsCrkzAjStwV6s67v19LU6KpBFm9Oo1Lk/fJNJ1riHO5AZlCBo0BlGTrTl/zwZQexjMzASgFoNUPiOT6KYRj9ZaKkh5wiBNSmNYUolsrgXwpT2Ni7mn5810TL/6b6XwntkxfriIO28S6X9ofPju2ZFqHXOMaCCwVNMwmWOEUQPHjr3ZF665qB4hszcHK8xasETLjAIIkJdFO1z1zpwTY45LEhudRIaej0tx/4mGYqf8ZiCFSRcb+v2mxokaL542dvpGzruWM83du71+99Usm8zo3gNY5iv6etYCLhB8IaxcwTYFbI1DtoTBOpjSAcAXFgOueXFPfd2S/tYCjNEJLs0jPNgQZ7UuWG0L7HYLs2oFyoLZev76F65hz5Kz9Vk1IKrcovopn8sZDM7ORZ0EsE8K73PNYAXIWI99GTsbU1pkaRZjlZclCt61ngOBlwd4IW7kZU54ztpe/CzPf3yr4+qXreekaX8W9SooBMpsFGdKYbmrMncNW87PqMwoMgLLrKeMwY4CmthqsMqNkqaXzbI8rJd6qeFz8fOaVnS/GwyWmKr7BPAkNlTdT4YGmkREB6y0P3QR2NGlz/I5MOwMwZGR6R0smsrA068zUIEe/fcFECSAWXAFsRSswXkES24IY17PlTw79To9GxMqR7euc3kEzccKtb2wlBkGhJX1GC3rkw4bgl1dwUqM6Jsil8z0Wp6/nHpyNkjOoNMArY4oZzHBdLIQzLj7+uehyUNwQ53f1zyJB+2dGoMZnTatQwOBe8kJNZ5VQkmdHDj3IzlrKl8+Vv/sJ6qM+UvX1pjaYPgui5uJDGbD+iobQ24Z122K1Q+lCPbQr9LlbEQZwTquKbpGC/+ckdhQpJ5Ywbn1xYbwk/+2jok6cu4zGgB8vpYyXFSlIHq5mF5CxvV/0OJCrS16zMA0xq8+rz0T+ImpZNFduC09atUT7qrR2sCtr48uf1F5DTmOgYC1schwyIaqubbus0b0t6sKheQQ1r57+kzB4Et786LWk0nwlI8gFGxswNYSrnxGGAlmGGGC/HGak6lcD9DXzL1GtVWih9QSPRmm4lYdiPxtObCmz7lJmsRYktq66FhJXn3DkuUeuElqbYA7x0lkORtYMq3zI6g6y4uD+vr9sWcE8wfPTwho3Qt+7et9k+X89wcq66L3kMH732v9ToHguPagkfWBSyHMs2FG8AOwefMV7MNfoeQTUnwLAAhdp0wfyjk+YJ6+AuUjVjAYjMNLP+KlH7ExAREZjzniWBIisZ6lsyusx1cYxzuEcAM/3LYbU0yxSDoUbELFf0oHXrQirzn6MhjHDreq5ahmDhqYvbE10RmNw7UdsLUOW8Mj31tjFw7fgy0YfTnr2ktSZVjPxpGRrhvDhxp4wxmbeBMy1mPCas3MoDAShk2BXxl2W3cWxhkYZ2BdwcsXM35+HAFcYUdsCPV4inikGRylunFH60XncIYxtmoe8lgCnxMFvfpVixdjupEGIKUjDqfPMZ2+QCkzfhY2+KUzePkzi+EHd/Af/uTiPZXf/gb5q88wfZUwU9sUHYBYEmJqbsO9pIUCz70DazP8ayPO52DPpUe8JlzSmGCsZEa2oTIitTu9+D0N2NbDugHI/L4JEVHGZer5BhAE78uYkWTEmVmADDyoCQxRgpduHLOB22ir81cIqy3M6hVINLvZCEpGOlNEiTvpqs7sWH3u9m0sVAHbuxWC32IcXiC/ByM4rdag1YbdvgFQMdwgOhZs3u4RHt/CxAPi9OUi8S6UZadkyZg4PwDlhBXYBOoDv8Zrv8at8dhRxiknHKS7fCgJ1q2xXn3IXcxww6Py2hTKJxQxpesTA2UTAUDO3bF0wHkubdyNUKqjsxq9KGtlFKkC/ruvI99qHLkGKttgEOPHCv5CJgNKG9Hqdfy46OpMobo1GAZsghPGr/xddduHsWBcFxgHOEcYwSaTKWWM+4yP4hU+DGscS8KJMh6EFcqseAYqzhlQuURYkVFB1zw739LpjCmTS8Q8swwBUcLh8Cl+Ejb4v44v8do4/OLVI8KPfrkAePpVjnuk9M0Th6cNSF4MZlqoHCHQ4pnaYhWwfIx+BAIhik6wNmhMtsg2CFO6MGDbsf+sDSBXpHBLoJwRRZ+Yx87FVMywqWSkiJwIpSuWQ9rL5MEWoUzVFIrfo12XImO3JjfGpnbyrd+i+IFHrb2Fi5aZPXHHI51pL472AlhQkQaaMKktM5Lfd1rADHcwww3ieoMc2AQKADABYZ/hpwg/TaDjZ0jpINdtySpI+YQU90h5D0+EK+PwYVjjIzvgtbHYAdhRxr4kHCjiMc8AvOQNr0R6ZwWIf0Ab+36q73qJZc5/55/lvZKb2bpnqHRU6GJDMBbBcvEzGo+1bQZxWyMO9zItMJw1cur1Lct4oKzgFQrvJ8Sj4ysyUN7SJSMYa/h8VjDYlvpe6yHBq7mkJayHhI+ix4ABb4zHp36Fz+IRp3yCavEb24AMfk+Nr7GypAtdgk3kXKJ7BkUaBQCOp8/wuP8rTNOXIEr4X4ct/jdv8PqvEYYPXmD48V+DCc3gCE5jN2S8+puAML4eu7WBGcLEz39GXEwLwGizWME8yPg2UAzHy5y5iUPd9EQvo9PAJW5YVuC4RCQ0816S68MypDxSfzp9hZQnlo0RqYYQrivQo+Ob+rkufVY+jiVL2JgrIGyRV1coQViK1sIliXHxgJz3zAbuY4RkDpz3BNZUfQ8jSR+u4cMt7PACcWBZKUCa2gfAlgI/JdjjWz4eHXHtmnFEGSnuEdMjiCLWZPDKr/CRCXhtCcdi8AbAPWXMKHiTTjgZwu34EqvxDsGzKU5tjskElvNXtUmkwC/nx09JJj3BpJS58yKRSUPT6gnNHxqxhBtaygbeGlcniZj1x8aO7kKMUGkpXaOCPppfFJWEMPW/VX5KV994isWK5jivczBp9AWbIcFL3vE6jbjzK0yUcSwJKU2isd2aJX1TPQtTmo8lCqhLizyCR5/PSCmUkfIR0/RFzdP2+1/jlQn46+MLfOAG/C9DxNXPrhF++AuY1RVoPqHs71FO+2fuPr1/ll4kVq61swOy8chg2QtDl2MZ0GIDKqHE8CRCZjNkp3Iu3d6tklKFxKfGRo6hEh09tZ6pAQPfMRKMdZyrybQDT/WpebrUKE8IFjwZa93TBhHAB9/HD2NXImPKU4fFhzp5aHIWSYhu4nAB9jSTN5jvnjd4AWKd2wDDLeJ6XY/BTtwkchNPEs3Tl5jnr2qe35o1RaZ9DrInzXjpr/GRHfCxtVVS6V5kU74oM/aUsV7dYb16jeCveQKjyu94WPfiybntV857mKx5jE4idwZxPUMSnHNZY5pRnBI/RBdYzXAHY6rEjU4gq+G0Nol6OUr1CdHJogXx5BusGjskB5mSw5Qs5sLNtaFwLqPVlMprABxT1jB4/f9j77+fJEmyPE/so8zMnATNSFJZrKvZzOzu7e0BuBXgcAIRCAR/P07u9m5ZzzYpXpkZmUGcmJkS/PBU1cw9oqqrK6en+kRGS6IiMoi7ubnZ00e+pMQyY3hlW16PO4YUqjfP4XksOYSZ5DvjUIdqBcZxbNR4/PcqWIbhms32S/b7N/iw5wLDb+2KX5xvWJ941h812CcvBXwSPbox9djr45EyWCuzifTEilPe1r271Pk6CRBoOr6pITyNuiQ+lJgoNdUExgJpzoZ8H4vM3EBgz5iKf4kskY7JAnR+Wx+jSDxQa5JJDuuxgVc1kJwZz8r5fDgkktwpSFyIMgDBtkTniNYJiC9G9LCTPDvuJ0PqcuRKZ7+F99d1+CGppp+6/vbbwD9zIzgtNbHTKJOIXrHbSs9l8W6PuvkD27v/IvSsKNQIa9ey+YddpnuPDMMtPtzzzDRc2Q6rNOem5YlpaZTiNnpu/CD6tjGwIbLorlivf0HbvRTYvF1PyLHkif4eP9xQ0ETebwk5EM9X0f4sjcOQtVgg4vIkyHFo9LLUdnIjx3CqHWezIu5MwakJ1diltQFnY6V7h6gg5KtVkydwDxOsMmlfNJ7WhdrMWawCzTKhjMJ2CrNwqMaiyqacp6Nx9Jw93fHr8Z6n9w13gyVwxjvf48ctnsTIINIUSstNnAOth9k5GaYE9ijtKbjSqOAY++L9PfvdK9rYs9CGf91d8ttndyz+/je4Zx8/KgsR3nzF8Kf/iH/7ivvXSrSglaLRBhc1QxoZx3sm99upESsJ5a4GUzE3EE3PY+TS9yF85tM1kyAWMfWUCNGgvDR5o9JYDhsw82Kv6INGZQXdF8CnUVxnEapb0S5MwD5FQtjWJK4gHKwdxfTMrqm08EyrK0FZmgYWv75kXAgtLGmNClGQt70YNYp+2p2Y4cSsU5qbXQrRZhPtsBVNc4ZrLh/oVf8lq18tMIuFFHLZsyJ66O5Hmuuv8Pd/JMZ91u8KNSEOccDna64fbvFhw6W2PLFd1X37RLesleY6ad6Enk0c2YSRbYp07SXr9S9pumcT8jDsIVli1pgMYVvNhyTBOKR/Tyi2TNsqw4VcdLqckBe0b2n2tMqwNLbqfp4aiQ3SCFasleLURBa56eLMJAdRVoiqIn7jrFgzCtCRknoYBc7EWoC1LtA0kabNRUxG/9bBdWYMlI3StRJDILDcBn65bfgyigblXRhJwz3v0kBMDSppzBGarlCskzL1HP3Y+l8KmNtsCDGiw47/YfUJ//MycHW24YN/o+h+/e++9+/D7TVj0BXRBTkBmiErxNhxStQqeqjQPpWtmr9lwl4SSZXkHq3/Rgr3JE9ETImABxQhJklkgsQFMWZwzJsCJjeJY5oKYpEXSYx4kQjKDRWHmFBFRNPcZxkKbxYobWmcaFQXaaVi9lKMEKUB1lfUim3O0Dl+0J7hF0t8a4lOZa3ukO8L0cQNFWVXiplJbsOYjsad0DRnhEecgH/sSqsnhPaEcbEgtgpjJT6oPrF88xazuYawZ9h/K1IVaSrQy9feS6NnmRBTINvxiV3zmVY8aUbeDJYvgZvQcxsG3oUB11ywWn5Eu3gpsUEbaZwHiH5Tm+jzdYzwPhwqxANJqTIwNWmSjClu1q0S1FExeVlow0rZyiRaozlTqhZyj5nDPdbQLfmCs4dFVCn0Dr73AzdoKQa1Bmsljug8rTxZjRideDoa3vWOb+KaL4d7hjAQKOY2Fq1slZIpeUSlxc8bYVCRTjCNaWMGh4s2vOiw7/bfsd9/w6WyrE3Hv19c8fef3rL+H/4t5vzZA5+B0hQOo8KPqqI/iz7xvMA6XkUWKZiOgK66fOU1ynCY2gwGKqIJwCeIjMSoSMmjU4OvjeCpITwvJK3LjdsUc566Y8iyZNVsMB/fkDzey56oMHi3EfNUf4oYW2VZBdPOCjx7+LU+RPfUpoWyJLdkWK/xrcOMovMnOuJB5KX8dqKVhrkZWJGU6nBuhXkPBI1rL7HNOak9ZVi2pDYX1feJxe1ODKCGPWH7RZabu3/wGCFrS5o4slCaC9vyiVvzsU28XO95u224GS3XceQ2jLzxe5RqWC0/ZLH4qOoginlk1rM12SkdMsowU+F1QKdSeE/N3/K5AhSiJ8YBUsRCHSAfmMLlgVGnDCtt6wD5TBnOsma4IdHpRGfCo83f0tgpA+EyCLbH8WF2CxzP9ObDJu9VbQABjF7XRrJRUp90XaBpI9YmXuwbPrVLNIq7OLCPgd1Mjq4MEApivkjzAXnY7uugXVFqDJGR8fnmk7grcgS7sGffv8kx4x3/avmc/5dbc+U8v/nVHd3f/0/YF7nWiB4fA2ns6+uM6QASURv2cu6aKsMCYOwCE/b5/g54grAFmRDek6xUln3KTLUyJIphqK9fKUM4iAdCe59HpxDMFEOVR6V5fRKIBNm/coMshB6lNI1bCyihyBDkuFvfh+iJ7B8MhCA3ekQRRv6tO5GiMh1oiRNlWDQ93r5quftch5VVhkRaOdR7DYnWOLfGtU/wq1P6VUsyYMaE7SNqG2l2k9zcbv8qv64JGZnSnuD3BL8l4Vmj+cCt+EwbPl7u2Y6GrwfHqxTYpciX44ZRGa6WH7Ja/6oOhOqwzXTgROZKTnSoxprEgI4ePbZZzsofHA9Qh0QiNSaZv8lN4INBsi6GcEVGKg+J0JwhEpRA9ROoKOAZ4tfpyKIVnxBtctxwE7NYXs90vkvNUN/joIhR9laA3b1mu7NsBzkXY1APBkfzdWoip0jO8tobvjELvjIb9j5mjeECJin1j4BMqnxoyP4VKcrQnZKLSzM4ze7lcm5jBkT0/RvuN1/i/S0uwW+WT/gf2sBH/+BxFwu6X/2mepHokyfoTnoLB/ITKWU2bsRUiSbJ7YPf471nUDmfT1EAfrN1LB0jmYPoCpd9QikNOjdQZ7GhcWuCkQGLHzd4H/GMlLykABchy8ZkH5uyL89zD2u6Ki0FZObslCNYu8w/t/U6T1liShi2s2awsijt0XQk5dF2TTItoWkJzspe1+9h3BzIx9RzkFHO6Xtysr90/Usj+GdYuk2YNhXwUDWCau7vGbZfst1+BcgFbUyDMUWjZJdvbBEEbxJc2Y4P3IpGaVbKZgF0xZADWh8DuxRAGdH/7F5iF89lMjd3Oi6awGFD0fqTxs+hi22d6NekJDJ39LWVlnGo0WOVUNO7jPZbK8NipvvZ6ViReVolnJVmjTiHJkAT46TDUyjcJbEqxZ/WKQfuQLcIFQHcnYNbWUH+NhbTtWAM6sjBWzWB7spzEUcW94GTW8uHr9ecmoZrv2fMlJekgiQmZKpVCbDzZmqcCqH5hPLY83FeYPmwI6Y9T2zHuWn5zHRcvHhH8+GvsVcv0SdPHlxP4fYN/s03+Otr9jvDwKSjaVAyOYujaPcFK2ZuFb1ZUMCxJt6pEjVkzRO+H7yumWQkSOBVzM/rUCmiTSPI4FmCMf+stcMYQfXqjBQLKiOL8uPbfG0VTaWYIpERlQIhmIx81kRlst7gghRNRVqV69naHrQlNC39qkXHhB6DmMTFiPIDMe7xfisafw9MXmSKJzIrMjl09gTbnBHewxDKN8IWSDbPPiOkUWH7gbh/Tb//qhpAHVMFi6lYDAM2JS5syzO3YKUcT3XDpdKsVWLImq9DivQpknIC3HTPMN2L/P75iSVQB0Ob2SS+P0IvTKvGhhnCvEyiS+Fm582eHBcm3c+C8JvMnxYzhsCxJnBZ80JsvtwsKXM61uav1kn0MJcSI4DMDOBA3iNFRQ6hKA12YYQ94DwXy4EXw4obu6BVlmu/522R7FA8eo4mKZORY9QvUCfhj/3dWIy14siZtnymWz7+8IbVVaL99LPvZQwQPXG/wwddE7TjBOuBpM1RE7iuTLdS6ZBqNUcHl3eiDowUWdal0NlURYaJsy9opRHpnXnjx6HzfmOiF6RtCsQYiUxaqWQ6Wsqvq09CgfYzRPZklqlx7kQStnTYhAAEOUMuVkxHckuCsyLlVIq8mPdIfy9xpWq0lnOYKWmZ6SAUySWPp/o/boWmhbbDtzbLxkgOYXzE7G6Iu2+kMT1cV43Z6b0sKFxB0Jwax5VdcGYbXmjHufOcLgb2QUOAbfRs4shAonErXHOJbWXvSWFPitlI6xGavLAxJnfwx5rAc0SPJP/U+FB8BArab+707Wp80LP4IE0eEITuMW3zmB0AU3O3DJvluMU3wLpDNOAx8qfEmePvHxeDTRuxTvZUext56htW2vE2DKgk5qryu7YGnOm8TIPk0gT6c/tvzBrDKQWG4Y5FUnzUrjk3LX+nnbCKPvkHMXZ5hDWQQiCFgnbM8VAd6ocfvN7cMElJjKtKw48AUQ1EZMhV6ODzZXI+FPPAOTDFGZEsOTStnHscJN1goQ6JynAtpigGOrnp05bjzqyugOQK3qsZ+lfjUqwMoip1oaccRRfR8+8plpJt8K3Dt5qkFW43oGJAjxPVuhpJ1hhb4mKOD6ZDqb+U/DotbVZotyY0nZjM5vpCR9EFNptrGAXoIRrew8F5VcrUHHClNCfacW5bnmrHk3ZkvfaMXsMoOpV3ceA+jhizpmkucCU2FNmi0FcD6nKutbIiOE5uqEUq7baey1k8rt4ZKVVEfKkn5lJzRRKixIZj48g5y3BuHCnHNN3jzsTqG2JtxLp0ICH3fU0fECR9uXeO/x2jYug1w6gZva5xpl3GnHcETqznMlh2psUoxbd6iwoPfUnmqOCp5hiY1DOnVWjW0x/LmS6D5KJpv0LzqV3yi9Wei/OB0886XGkCA2iLco8YMB+tmOKEvC2o4Kyd6XUjmULU0ohN1LxecgNpbhQ5u/JZag9hEhFLjnC4hx6CSeYI92xSW/ah/JgG8R+JgEdk+BIRrSxeO1wcBWRRwkcSqYL6vLNYcGASN5Nqqh4k2oJtK+swaUPUimS0yLTEbJgaHkME69oDeJ8BslZNRil2+Ea8iUAGGe1uwIweu9sSxneM411llQjTY+7b4El4mgRLY7kwDU/cyNnJAHcNDI77FLiJnk0Y0aaj617guuez92pqhCW3xC+WJG3QfkSPI8oPYECP0kSfx4dpP/Q55uc6m0O2QJWGKAjTmQzlYp436ESXWcPuKG8oSOASF5om0i5jlX4qn1WeKpXaQGdmcfkASCERh0gYEynA3BcjRIXTUsfOja6LJrkBOhPocj+EXcNldCy0pVFj9smZEKLT42a2QI4T5dpKM1Pq2gzOj5DUFC5CHjIN4y3Bb1kj/ZtP7JoPLnd0v3iOvXiCffox5vzZ9P4ak2U606y+ELBJySPmrGC5ti2kRFQBn+XI9FHGMAeXqFpgpKmGyIxgucYyY6DqIk+5lQwQUt5TvIBVZnWDJ5vuYQgIw9tkXxFBBC8e6IbPZWO07qq8Sb1nyqAoj6rEh2RqDhPlvojZwDE4gxm13KC5CVyAl4mj+MDj8mt/6fqXRvDPuEqTh5jQfazanwe/k6cT4qI7ZBdduTgWSkzXTrXLU69psgriMD2kKBgs5aqr4YFOSQzS8JlrAs8McuQYJl3VKVkPUwM0yfy5NOs0HATjauaQi7lJB/RQv0s/QrkoVMXjVZB+JqmqtVUaRI2LLFdedK60+F01pxaz6qTxawyqadBN8+BxUwjo3R639KSQSMGzfi0bn9MGouhJ+VmhkqInRF+T6UlnRtoeWj08fgm6+tDFPgdtnWClHSfGsVYa3agf1PAL777DX18zvt2y7101UStLQaZkJ0IY8Hn6Led3hjrKchYpivA8PyBI/kO6f3OEsCAORXtTaFuubgpzuieUAK5JypBU5FhbLKZEnGk0Ts+VcYnlNcQRpUpj+3CQMTeCQFnikU6WIHnEqfPYxOHwhSqhImmbkTBSCCvd8T5af9EpdNH286JLq8YkUhV+kylyD3UORb6iz+9nT4NilbVjC0qmalYB++TpY2Ag5diwoOoCRz/FhDiZXfzo1zA7Z3HWxDjWCj9ec/3P5iA+FBrnD+t+FkMoXX6voHhnzR5rE91CtK1ksi/xwXb5uqhJXE4eQsxxIBeMjUYZjXIWGxJNE1nDgQ6oDsg501NTXOWmRbna6jCNkF/jkbEnWW9YGaEd6WZCQWSEdacNa6VolhG3dujF8tHzksY98faaeH+fEcFzs4iUUS4QlEbHgViGRDlxgjzgmjWljhvYP+aKnydxCRmUReWlEZavFXUcu2ZNXK2FKZBTbxKScM4BBIexJ9a4F8PE1FDKoMOA1g0pPpyop5KoKwumfaAPrGOi0LUe1/3MjfJcHRTzHGNaaifkJ6xoHcydvj3EUWHGAL4XGacsYQO5yXLQWIxCa02iB7k0llPdiL5fLoLEPC2xi55dDHgFS9NWbcSUvJyXozxFqWmoehzXy/fmXx/G1CnJL7lDWZIrzLTY6oCT6q5d9MLlNaeDYm6+ys/m1M5549faiHHU5g8contSKE2eHxfftQbvQQfRFV+gq/kdKeLLWCQVLduJog/FA8LXAq40wsoKSQyAFRNaV3KynhAHlkpzaTouTMOFDZhV1vFrHjZ10rgnDQPeK7xXohPN1HiaH1f9mxSk4fVndHfnA6JS0JXv6SNdUFKApGc5VaxMAZWv57KUMhkBlIdHSQbvcaY5WH8Xsm7wRBMd1VYkLZRBe4e1AANJNyItkU0nDxpA+fvy/LL3R60nY7ZyLccoDuAzpORBDpHfx9Is07pB/cUqiLNlVzK0KvdglOtVRckdiozNnMUjx1Qo11nCiUCnrOQO2rJAH9xTQ0ps48h9kCaEzhRYZcSArMZfY6keDKZIkOylOZwsykyDomOd4IPao76T6SA+PJZ7AjU2TB+H5q9lzWNB+fecGWScxAbjqIygMiQu63BYnC/dUIbyggBMIeckOsebjDguSGBpKEFnI4tBGlU7ZbBKi7RJSnJdlLnBbDATU0AlXfdkOMy/i4GzmDYKsl8rjY+j1JBR2BhPtOVSWc5OdixPA2Z1hmpmsjFACp409qShrxqwf8lSKsuoKSXHnO/SY2XsozFJlndJE+gmSzk8NiQ6fj55jwwq6Do0Pq5PIMevqIgqyx+EneRrj+QGle4dHtK9pSEl3xOdW9krk2mh+H6U5555kMRH9T9LlpMZGe/RqLF2mZH52Sg3K03omDCjz55EO8ZwbHROZVsW7XCbhNFXpNucSRUlOyCyUndxZBNHtF7WRtmBZ4WS5ni0QoMHyW1UyCbeMcjwIccPHSE8Ii1V6+x06C0AVJ+cMiQyqngRTfnDhP6dNH9LzmBncnGlCdwuUm3+agemMbNGcK4Zct2gna35UBxG9CJiBp/riID3MoYogyLvJ/kIH7SkiVHXYyu9DadFQsHN+ijzO+i4KTjPtVKW7zx4f2fyCwmJrTEzi6IeGMZ7dPKcmpYT0/BUO1anW8zpOXp1hl6sOV4hTft8PqoHv1Mb/EpPutBJokIgoWtT9/Eeg3QmMpo51w0HAMX578+GnUpZFB4xa9D1+YDp/6kwmie/pqKzHYLcDyF5yRFmOW/xICpPPm8CS4yxKOUlVM+uZ6WNNLK1liGRnl5zkVh6LL+aezK877J/hY7o9+DE/qbWz4sItkl8Lnpo3w60my2m7+Huc/x4e5AIxUhGxfb0w41ox6aBJsHL5oRfuxM+0Y241KbEkJsI+xS4CT17pTBmRds9Ybl4iW6vSO1ppa0lLxqrMesBz1F/cx2x41UbTyHTkpLHIeg+oX+b/HWmbWWjqrKBrJVmzaT72WVZiDlV02cpiBAPaVZOR7SdkrjS+O3WCWUSbqlozhrM6bo2fPXq5NAB94jjlYKHIDqUultg1jd0ux2Lt1t+8XrPp3HFnRPNZcYdN6VJonQt5oT6JuZiMq2P6JSqBmoRefdJGjyVnpwLnRB6Rr/lRBl+2Z7yXLf8wnnai0YSM21J4/5A26//x/+F7f/xv/LmP/Xs7g1/vF1wk/bVWdwpTRMDYxpJasT7USjTY9Gvmcw4RDC9INsmaYiaMM3ef6GfPUzkyiAgkjAJPJ4QQeFJSRw+Q05IZcAxHEydS2GWtM3X1oBnzAPAhGFCS2olFDKVN57ilJpSrEVcTCFTPGxG1y9FNsKdgVvhW0d0CkZwPmB3WzGC2r/Bj7eMfpNp32PFPpZ2pcmUTq0dXXtJ0z5Hrz48SFr+4uUgOVAjuF1EjwHXj9h3X7Ptv2UY3h3Eh6LfNfodQ/9WJrlp5Int+EVzwoe6rfIK5YrfEXnre24IGLOgbS/ouqciFTNDdaWwr3TOx4ZB8zU197OGXdhX5EmMXgzrlK7SEEX7s8h91MQmJ2yLHB8MoutX5CDm68ClVydCVLQuSHPHTgWXaIJPsjB27TCrRWUE6MUC5R4OhUAGQxIfHr5mvdhx/vSaj25GQi86oK/cgu/GHbs0kELRgisT6XiAB5Vr1dOgaNVkJDbkAV6fIibrTjfNeaZ47VBxT4vi0/aczxYD609WuOfPDybz9Tm++T3jd38i3F5z9/s7vu4vuY5b7jKayCQYx/tM9x/qcG8a+M10Cf2+UvEmLMGEtJHfz9rA5d+z6FANLpJQx1Kmg8c0ouNEmZz0QQuCV5rhyURsbqIlUkbFi1mGYXKMRoHJlLfAiGh/SZJcdEJrs7IoIz3W0HWr6rAtsjHyas3oYdxUWYhJ32/OFnCV8t+4NW17RdM+e4DC/ktWv2qxbUPUCtUn0gjaR7p37/DbL9ltP8/J65DvVw35XhzGe2IY8P6eM2X4pDnhU7tkrQxPtcKZSIyKMSleh57Xfs9WJaxZ07XZ+ditUWEPiGRMSr6iQHXK0gJq0pGURuFDVPKBxl9mC5RhiJnFBfNIAVH1/fKgqCD+uhml+7gpXBq/3z8EEo8A3Th016Ca5pApVL4OgTQMB7EgzQ3BRk/YSbEXQ2Z8hYIi9Lx4q3hml9wGoX6HjDxLemq0xjhKAzmIYU/RZExpqPlDMWYdSWjVoU2DzqiUQvkP/p5ftGf835tTnpvIrz+8pf3Fv8I8efnoteW/+5zh23fcXDvebhthkTFRp5XSeYg7aUaWpuJjRmgqtzUjEhsCqUrHHC+DaHzLvapQIVaZn6L9XxL2ucmY/FuLxm+c9GdjHOjz3l8aA3aGghrTWO9bpQ3eLAhhj7UrJqmGE3TKOVL2ICjPr9PUVFHZnC04RXIymNEhYnYbVBAWjffbmhsmgQuiUtEWbGjcCV17+d6yMdGthDWAAEzUmGjvd6j7r+k3fyTGnmG4pkjgHO/T43jHIsHLdsULu+TKNDxVKkusJcaoeZVGPh/ueRcG7kmcdZdYd46ya9Rx3qMmNCTaoMYtprcodZ+vG4+O/cyD5Nh/ZJR8NEselPhepARKzlAaw4X6XeTm1ooqBwFUNHCJC5UZZMC1YqLolgrTaHRj0F2DXszAI8Yc5AnzGDHPE1KJE8NAHD2EiL8fGTcjY58bVU4MqpUBZSKrbuTpvgEcjdJ8bhrcuGVIY86y3TRUzHlWYQ0IAGDAJZFI0rM8AsCTUMri7AKtHXG4Y/TvWCZFpw3/dvGU/3Hd8/L/4rAXT2k//e2DXCJubgi3bwi3N2wHKwPY+lOdGyXzgdShEaHOWp0hDpC8DMESgvxLMhfROY9/6C0gNdW8hgCq54jKtRRk1J5pCTUXzQNnBgoB3qapISzIYBk6gaJImRnbobXD2SXOriolXIygHkcEyomCEOX6LiCf2HSTQZvWMkgGYR2GvTBv40DIOZlCkZQwRYztaNyaGH96V6XtPsA1K+ieMLZTnuV2g3iObL8j+nuG/rtZTC/7szzvONwR055zbbkwLU+caIefLjYsVoH7e8t1ivy3/pbXfsfrMLBYfihMgfZMGuLaUMywo3OMiwXjQvIZ23vKnaWiQeWaTSmTUZM9xUS1yBjGNPMe4dBbwKoiP3fUc8iAmLVK1R+k5Ayl2WozArhpZTDs2sTiicaeLtCNk55CqRmMNHylpzDTgDUGCngr9xWEYelpb9/RffuK4WYQNviQCKMijAJ663ea7cbQj3L9zGua0Wsu+5Yz03AfRrbRsxNqRc4BJvSrSMYME4swo6nnkp0gcSJlFK3kEDs228+JKbLffcNvmxP+/eKKp8ryfzvdc/lvzmg/+zfSCF6dHlxrKQSG5BhToE8hg1l0vlcOY4TcTy0xDJIvRE9gz5Aihf9U8p3SU5CvU2ZUpZrvxuQxqRHPEX0ov6K1mMhb05LcxKINYU+gr0P2qY4p/a9EGhJ+FJbx6Ha0zUAIXUYHLzEp1FhQ3/siCzEDVCplq6RMqaMrcKzohztHdMIYiEZXMFqoALD5IFkGa0rBsY75T1nHcmj/FOuHTJH/VtbP2wjOQxuzTaxevybd/J4U9/T77yrlu6yCBhZd4BtUHDhThhPr+GV7yt/pho/akX3QvPaG6wQ7EkOK3IaRpn3CcvmCtrmkW35CWlwQ2g7T71HDDdHfiySEv69aRRNK4Ifo3yFLSexrMG6Uqfp+pdFTvi4GUOv8O2IOl1gZoXt3NtaEE6QJPPppujU3gbJGpB9kqi7U7uWlormSxq9Zr7FPXqBPn6Bdi2o6VLfKrpb2wAFXgnMg7Te1GRzHZ9j9hrjbYG+vefHVH/hsc86NW3MXxcBsP+7YSbeMGGSKFOOkS5UQR3YLuIwCclpot4GE1o0Ij9tFDVQxig7xc9vyD2bJhwY+fHKHvXo6Hft+Q7y9Jo09cXfP/j///3j9v/f87ssTNkHz+5h4F4aKKmyUZqUtY5KWTJ8CY9hUDaCjd5U5xawi+Dhs9sz/HQ/TwYpaMqiM8hPdThA6dwhCg31MF3ROCY9xwFjRyY5BUCEB0UQq3rsGBUrnIjIxEAixl2ZMUHUkFcIumyVcVh0f686kyWM1yQGjoIHNfgOhF5qUF23g0e8eaPtJkragbS7Q2tG2V9jlhwxnTxj97tF75ketBrAKvY10t9us7bfDb7+k71/TD9dyrnVTG9wx7Ql+RwhbTIoslObjZs2vdcfHVpJfoeLJUwwpcRMGrD1ltXxB21zQdR9Ae0ayDSpPMoPfyEZ7pE80XzFNOsVz5FjIUjNlSFQadSUJmTeCK2NA6doEnpvDlSHRsSZwWeX7Rk/Nnm4dKxugvWiwF2eSwHULzOkl+vSJoEWMzclcHg6VoRDkBC4jYYJ/MDCK+w3LZze8eLdDXyfOeseXdsUfzB19GAhKmmthtlHX4oQoBUdGZ3bKEEn4lOhjkEaPgtYuadsnNM0lu/0rYuh5oh1r4/i1O+Hlsw3dr/4t5slLzMnlwXsT3n1H//v/jf4Pv8ff7nn1RcM3KVbERiRhgT7tIag8BIpEMzV45sccU0bYpwlvd0BFJWFQtdk5bwgDFcEQkziCD2R6q1KgIipIQZmUqUjAuWyMU5qU2hnCoRR4UlSalHAFFVLiQkY8jOwZR9BRmmZaicHj9L6EmrQVx9/YLDJ1MWv9+ggezNATx/usDbytRpJlKSVJ+VRMrmjbp7jlh4z+kKHwlyy/0NBqlE/oMWF8xPYjevOa7fZP7HZfz45h2jt96PHjvRTTceSqWfMbt+YzZWhU4tyNdcgyJMV12LNTirZ5Qtues+ieo5vzOiRSMatO5oTWWFtRwuV7xQhKqWmgrNSkiz1nopQmj0hIPWQSza+fBmkCn+XB1io3gVv7yKAmN3sEeScyMIuzSHuSGz0Lh704x5yey0CoW6G6lXx+hIETx5407B+JEVLkhftb4uaecC/N8FSK9xBRZuDF1wPPQ8tNWHAfR/ZjYJP8wX0WU4TcBPNZdzol0dR0ytR46VOU+ODWWLeqfz96kQ9zKfIP7Rn/4+U9Z5eey79fPNAFnq/x69+zeRV5s2l56y2b2Gd0kEdpQdQnU4bHgTBrxs5p6tO1J2yeJJA+Qe/nIdAc2VzyDMOE/gvKV2qqipaU3c/FX2Au2TAVeAAxioHc6DfEsGNMEZ0RoWXYmLJszJg8IXkkdcvDSrtDa0fjRBu8oGQiUCZ4Wrc4NzOV01YMoKwCq0hGELhq3ELYZ+mYse6D8pqVNEZRaNPg7IqmueA9ej30J6eEZkWwBhVA9RIj3OaOYfclu90XM3DH9EQhevy4yQ2wHWfG8YvmhM90x1opnjUjXRdQRpoUr0PPK79nUIbGnbNafohpZKh+vIoBb2glzpreZeafsI5Mzi206mVgULWCJ3ZXSoeyMSV3gCnPrIg/pVijhSVDGRCFBw1gEJ+AbiHeIcpAs4TuqsVeXaKbBtUtMatTqRuMzUj67gGIpMSJkieQ40Lcb4j7Ta0r4uYOf31N3A91eFSHRDqwPvE83Q/o3mGC4dy0NErTI0g58jDGzJoccs+NhGwe2+bmV8r6uiXn94A2DcZ0aN0Q4sAazW+6M85My//TrfnVf/eW9f/4/8WcPsE8+eDwjYyeuL3Fv32Df3vLdlxWoAlk1N6sKTvFhQnxLc1ZQedK7RgIKuaGrzR25syeymxNhcI+1RA+6KmGSDF7i4T63Fof7n/SNFcyqE2SL5SncrlmKTGqT8PDIVGzz9Itk5mc1kU3dHmAKTrII0KH0ZbQdvi2EYAJiAlUiKgsxRgy6nCKoTojXKV5b+1q2kt+wjKLDzDtKX51SnTTwdq+h81X7OuQ6G1tRsOhhEgIO9oEL5olV3bBM9PxoYHlKtCegP4ucZ1GvhzuuUkBZRYsFy8x7RXJifxDaDMK2GiCNYxLKzIVWlXt5AZEJqIvRqpTrJ3yhmwemBkMUmdP+sBlSDQ3j1xgKvisUUUv/HEpyuIp1J6AduDWFvf8CvfsQ1QjrBqzOquxQU6y5VhmsjaGZ7lhCoHw9lvsk69p3r2SOmK3I+72OTYk+rdiOrvdZBaBkyawMrDynrNNx4luODXyXt3GkQCVnVquQ5AYEcPk0wIRp+yUi5NyfOgwWjx6vN+KCXsKnKP4n5fP+P+cDpyd7nj+D4rFv/t/4z78zaPXWhw9A459DIwpZp+BQ63/sgrAI9oOHa3sTSEwMgqgBCk1jDpkCtQ7O4FXoaLWA6CCzXVDqDmClmnb9LYUVvKo8V7koirjJE2PH/CEEGTMoHSVmIl2qLkHQNJNlZgD6kB0HguUCvX7Stk8SM4D5aIfbp0MlLWSmiPX4EV+TtDvmWGbB1Cyl/70AfJ0Tt77IR6sv/028N9CI1gnVEyocYsfbypt61iTd06JSylgQQxTtONUW05NZN2N6MGyCBoS1egjkDB2gbMrQTjYlUzjrBM9HhB0V3UP9gcX7+FxTFokk05VoTYmuYEU1cihTu7z9L4kaoX2bQCXJ3FOT7QtQT9Pz/uY0Yv8XsJlYxbXJuxZhzk7Q7kGc3qJOX+GOX2SA3cndMiC6qgPnm/YISeiufGjjUwvlWshepplZK1goQxRJ1plBIlQackzmYgkkhC1kcpEZytFrRTRpk7J5u91Sp6lsZwpxYkdRZdoJmFRGlDFxde/fcf9neWtN9wDN2lknAUlcVEt71siIPp/Ufl6JlQ9LmkazhvAB9fA/Nw98u+yyvfK9K7oggqlXHSdUJO27cHfzvR9SmJJFkaPE4v04LmMUpDIGqRZmzkXsWGGFJLHz0FYCRVDdD+lgJMX5bMuj0ygi7SB/CzmYymNR5tpnWJqgBWh9/EHZDz+3FIzKrL2o7iGjpts1jYcXGdFuwyoaCNHNl/TjrVSrIwnJsUQpTAPGY05xoB1HY07FaMcu65T+7lD+pza+mPXAR0pCS7sWBZiTu0shRxkmjeSEDpdaJ2TbAw8HhPmWn+CthHEje005nSNOT1DNS16dYY5ucScPpmSN20PCroyHAJIw74WeClk2ZRhD2MvhhYLh2t7lo2n95qF1xX5nBIVbS/npcTNolknshA6J7A+ie5tJFXJAxmWtBWFkgh0umWtnQzVlkle0yN0TkHxvGN8u2PcRDb7jh2JMYVayBkkjkWV6rHFOMV5Oc7MGIihNoEL8vXBe8/jMYHZ942SGKQTIgGTJlbFpPP1MDMpiWRKGWGgDSnoPM2fqGRFBy1VpnaZ+GetdC1FTohj1Wub9r5ZLNea4B7eyyoEUkbJl3uyXOfTsU7oLa3byTRGuQeP96OXUxKvosKMETMGQSeHPSEKpRWkkW0q8qI0Xj0kud4WWkxaT02supllDUl8BZSyWLfKw8rVFBuS3C9VHmLmAg4WnTzKm0r9+7OxI8XDfTLnC48hR8sqkjFNlotxGdUzXzEqQQJnbU9thIJdGAHKWcx6hTk9x5xe1kbPVOAdSVuEgA6euN/UWABUA6XaGC7sgRI/QgAHtvO0NrDAsTQymJ0bppVzkVKcrqLZ0EgkEB6Je6apJqtFGihFT6M0Z8pycr5leZmwlxeVEfVgRXldY6/YRc0uTWaSECGpgyEfcLCnft97LKRV6fzO9+3ExBwAyVFUmobPUR405wyelPTsuQ418SQmBEzOpSZ3ck1SkZg4iLGRhKPEtsImmmSQyjX7fUy4QvecU8LrscxdYuf6+iWuCN65nptJNqatlPOfuoLVKGtImZqsYhK/g4w69LlZWFhS1NcpqPySP3TacqYk/1xngIbOGrkhUaXmtG7yoKsRWQh93ASZkH8lhqro0EOL8n2l0D92fo++8yCP5pHPlfKtZnIx5fMjklIiCyOIP+OS5AmrBWa1Ri8ENKJPn2BWZ9K0N7bWEhw3fEDYArPcQTUdyrVE19ZCXQ8DkNHQIZJGTwoR02g5hmyIuwhCvS+Ghyn/Vxoqx/diiREKXa/xmJvAMecRRT5GKwMp0ijNpe24Mg1XNtBeLbFPXqJPLw8Yh3KsXvKgYRCt0zQNe8v6IZ3KCeARK5KtZAMxI4GPY0KJdNNvZnxZycfz65vnDPPnmx+X1jbnMIEUdM0VypFUvfI8iB/x+YAiQZkspSdxRkzqeqCVWjUdmcnN4kbN8zLlW6NrE1he/ISaPgR/SQ5TmmdGO2a7wl++silbOQ55bmlIx5kJ9Ly+kOOfhjEpBWmoastJzj07HbNUQpaGyEO2pAzWLLB2UfOG6FxudFlBPDpTh2fKJBipsStpDcpWRPBj/Qig5qBlsKhzn6HmEAVVqoqxZMkZRC98LkUpn6kSLiVX0I3GrDqJC6tTGRI3naBhu1WNBceI4O9dMQNJxr4ihJVrMqpYE0eP2QWMo8rUzCWrrI00igqkcWpWSR3dgwXRXSToyMyKeW5VTB+NciK9Vpv/kjeujOOpMlw97VldJNzzF9hHmIfzFWAyopt9f87wm39Payey2ymigiEyUqAmKoNL5P2WNfdaKtGRlERWbpa/P/QGMRUtnFIgFkR/ZUDHus+U5ysOBiqlPDAeiTHXirohxjANMKM5MG97zFDywb9LLq3NJFNZtcbnPbkJnT8/dyK58/4t139pBP8Ma3+vMEazvt+Q9m+kEZzNmGBKssVoSdB4/XBDCFuemIYru+DSdjxVjlMb6NpAiIpAw03y3CTPddjTK7hsL1kuP8TaU7Tp5Ibzo0hDxMOLc05x+fPN4AmVlQi1UKlIHqUOKJ7zRK3odzWlCazTg0IOJPAReaDr1zSR9UWgOwPTaOypUKPt1QfobiWNkfNn31/41CfICWpnMU1LGvoJAWisfKzOcEvFqQlcRotJsDaOxmuhMCTyZLsgeySg2DxZKnS2IsxeCNVGNzi7AMTJfZOLeB82XLRXXJjI2WLEtYk4DMTNDSl4wt014c1X+Levibsdmy92vLo75ZsU2ZG4T6FSwmTiJ5NSrTRRgY/SZAq5QZKApKaA/VgTeP6z+dflZ8flafle3aTrtL+YXHhUEvmGoA7NaOabhFbTOEE0e0LVM3psTQ2hAMnUBKZsDFo3uOYJpjlDNeeMzgl6ZkyYMVWXzpj19EqCFIvJS6F0KjCmw9oVTXOO0S2ufUJsT8Q05hGTjx+70iC0uGY3Yje3xM2XpLjPJo7+AIXlwx6y03cIWxZJcWIcZ6aRBD9fQ/1o2PWa66jYpcTrOLBJgUV7XtGmZUg0vQ/i8iumL3Ymbdpmmv0AjBUN/OhryQVKIj1w9JX396FbdPloMnXLHGn5yd8ldGmWz3Q+izHk8jLRXrS12eOevxSDJNeiF2v0yeX3xoYHrZboibvN1Awee6I2pKYjGYtZLenWO5ZbMdNZD462FnEF9epBZddr0qS5nAKWSRojkkhRihFPkjFKCoz+DoBd/4YmJZ67Jc/sghdK49o0FWrBk/YblGtJY8/wp//I/g9f8+4L2O8cr/YNN9mRvBRyJsurpASj8hmZchz7p8JzUhN7fFh08Fezwu54lSGRL4+XyBIRmTEAFPM4mCd1E0JYK0dSElVjZgtUI7wy4T8YEgX5boTgd3izoQxai8u5UgbnTtF2zegcwebniwnby32tfTZs9TuKicP0qqLIQpgGZ5cSc9wa485I7Qkp7H/4pP2IZfsjtkD/hrkWusQGeV3eb/Djlph6bEoiBWEXvNCKq6U4uY9Rsxss9wlepchN6LF2zaJ9QtOciYyOzTqHtPm8HjaCy1LZBKNo+6X6vs3N42LVeUxZ1qOYgNqjYqYMjQ6M4hC3b5dNYrV6GB8wkx54u4hVBqK96nBXT2RgvD6dBsZZO1evzn6woNPj/rDpM/SVMVDRQdWANxAHeV/MfqB1gbVq6ZRlrwNGqanpiM6Vj+yHVXIrM4vmUdaniE8JhSDtjFnk93mD94LkeWoaXijN8jTSXrTobiEDrNmKd28It9fE/Ybh8z+JLETQXKfIPmtx17xGacZxc1CMaFW0SkVbs0jLyOsJU6H+A3GiNoBqy0vyhaBCRnzlvSJaGdx8T8Op6AVT9NTVQEqJqORcBRJ+jmJErrkaPYp5WrSMWbP3kKk0k4bQLcauRErJraRxERFT1zFi+p7k72uT5dinQGUKr1Iaa1qcO8E1T95LNiZaQ3QGFRPNbkTFKEOiXDcUdl/RfS/1hR+32Sl9pE1wYVqeKstVHhJpldjvNH5U3HnLddgTlaVrL0QOq7mUAdes8VsYFHP0H4AOTu4NbfO1PumAMpPFmHTNxZy3oIEP6otaS0wNkaYwiXKtIEOuWNkOZWBUUH/dOtGdK8xC/EPs1VPs1UvJE3IdoVdnIgtx1Bx9sNwRSGLcoza36MI0rDIBzYF0RAoBZQZcK/Gh9YbGS76klBIpywKOnQ0qi7EfiHyLTuC0xqIYSOIPU3Nlee6QGQYh7HnqFvzKLnmqDC9O7zHr84nKfrTCm68Zv/uS/qu3bK8Tt0HX/VWOKx0YIZbrXatZ3lCHpWWV6mDarwtbqDCJ5s1gqSGkPRSjz1qdWTqwNEQeyUV1pqUbMlhCBSIhx89Uh0T19xG5rKA8KSkI4NFVHsaV2iqFAw1hU9gyM9SjUkcShIAOMdffETKTqBhdyt8U5GQe8uUa431kY2K3JHQronUYH0m9xvYiXzMMN5nZNBDCjhD2YmyZRAosxF6YV2lgrRuemI4XpuUMjdOeMCrGTWKzd7wJIifl7Aldd0nbPgW3qkjgsXWMSyuIRweqBZPNGQsSMjiLGXkwWKomlKWeSzE3/ya2QKkWS3woOUODrn4CBVyiS+4wM4PrFqFKQXTnCnexQC86zHqNuZjyBL1YZYbxn4kJjy1tMRfPJCYYKwzkzQ2hadGLreQL4Zo4DhWkoMzUqLNO5BEfDMuP9sUyEI1VQsPX6z2S2EbPqCL7FIhK0ZgGYxeE/oYYdrg8LPq0PeEXznPyLNFcdtiLJ48azRI9/vVXDNd77lMnjKWUM+6MntdHtT5Qv58KMC5regclTWuFgBqNmoZPD4ZESXKNGJG4kAFa86GGPmo+yymzKO2EcUGE5AkqHuQrZUiVsueQzxJrWlt86GnikJm5OS8wTc0X5pIR84HGwSA5yycBmSUAkCrAYzKKm93/SmdAW4MxLVq/vxiv+ZdG8D//6r4ZcHZH+/oL9ps/st1+eZB0at0SY8/oN9IA9nu837JG8av2lE/cijNl+ZWFq7M9J+ciOj7cwbex55txy1fDBmtPOTv9LcvTfyXJl1tlN2NQfmDe7C3TYmOKTIF5VBqiJpMpZn0/CcpFo6dQM2yWQhDK96SP2+RGz0JBZyKLRo6hFHIFDVyaPVGLFES3iLhssNCewOKDJe75c/RiiTkV90p79fLHTeUeW9qiOjslN/sNadyDsbRXS65WPR/eLFmjubUL3vh9pR0LSiIScxARbFRuhufmF0hA8ykSFLRuhXOneL9hGG4ZxztSCpyh+aVd88HJjrPLkfYE0jAwfvc5yhjG775k/4evuf8mMvaKr75b8x8Hwz+GLUOKbLN0hZxDhcuJcpnQaQ02inZPysdU9L7KjTu/gX/o6+MWT0nm5r9bGmIk5BzFsaICdGqk6D2ijaiMqCyaXMUILoZQxd3nqGOQZFkVc7u8MVR32Xw+muYSe/pL/PqSaB2+bUSvqxe9LLPfEId3ov05XAs1N+sUk49HGUk5muaERfeUxfJjtO4wy4/YnZ4ynBri+NOjqtpFXC+6n+HuH9nd/17QflmypRSokrBJ0T+O96g4SIOnWfLEdPxat3xwsuHiamRza3i1b/gyeq7TyH/rbxmV5dn6M07O/o3ocTXn0/uvRaNLpzXarklhj1I2S0TkhCwOBxqR9RqYIYEndGXCoWmKRIrSB0lMmeAXxsBCKTodWbpQtbvmtM6SFBXa1GIVBBnbKNzK0Dy/xD1/KTTv1Rn2yctH9XN/1NL2oGmcxj06y8Yk12KvnrF4fZMRxANPNx2npuFt6BnztRcYiNUcZEKOqiRyOgst5jwEuGOkJxFVTh6iZ7d/xWju2O9f86Fd8H9tL3iqDL9a7WlOjSSTmYoaNzfE3ZY0Dmz+y5d88Z8a/nS75D4q/pQC34U92+irpEtpWkcK2stXjetagDINiDSH9/18IASTjlf52Vwm4vD9zj9L0v4JSvawkJFyJjWIxeRhE7h8bbQlZt1BQeYKfXQe+xRFPoYsHxMzwjBmLfxYJV6k6XmOtUtc80T09BYLxqWVIdFuwPa9MGl2bxmHN3h/z+jv8VlmR2kDSWF0Q9uc0bVPMaah6z5AL5/Tn5zRp/dD/oHEqub6K8L2C8bQ0+++EiqrmjRSS5NA9OHuWCZYm4Yr2/Eru+TT9Y4XH+zZbQzfXXd83TvugX8MG96EgZOzjzk5+RXWneG65yTTZmMXB0wFUDHWrKi35DF+QwgbQf2lgNbmQSFbkKspeSzqwE/gAMmDPijoFmjOdOLEeoyC1oZqBlmaPGWw3LSR1UWku3KoRoY27vkH2GefoF1mB1w8+4tyBuW6B00feUFS0Oluhd7cCJojswlETiawXL3h7FqkmkJKdMqgMhpTKTErqs2UNJKS6H7KAE3yiHJ9j5ke6NwpjTtjHG8Zx1sWKdBpw991F/zmZMfq0xPs1VP06kxkpTY3APjv/sTw5e/wr78jbLYiL3Vzzu/iIIY/YZQBcgpEFYlBCjufBxmK0nzJeqXJVxRRNX07KgUKlwCow/F6XpF7NeXfFHr7iGgHxskvQhVJKXuAYhGkj0PP9p+p4dnTl0ZL/v2CGBO5ishI1n5WmjTIvmVNW1FEhWKqVHYHz14bsekIzqJyHmF7j+7v8MMNfnzHON5mqbC8RyotOqOmxWhL1z6lW3yAXX/K+Khc149bfqHBaZr7kfb2FrO7Ad8zbP7IMLwV+ZpKrc4SQKHHhw0mjnRKc5plIX7bBD642ElNMWo2e8cYNH8K8NWwoVs84+zk17TNOe3iJak9IbRdzamGRUZdPTIjNkOHzfI4akZl1soQZujIglQW/XD1QNdSZ6BJpX4rk2UhptjgTJabmwFImlYo1u0isfpAKN/iCXJaawjlusebHX/BUq7DnE9x0pxe4rsVcXtbB7YyYB6Iux3d/WuWtwEfPKvR0PlsGCdnUgA3mcVSdPzL4CXEXqKyMqyMw4eBkURQmbGWkcTDeA8pYpPnX3UX/D+WgcuTLU9/4SVfKsZHpXmdh+D73/0v3P+nL3n1B8vdxvFlisIaoTRKfGbfjbnZk3OdGaCpyADNHYQKYyAieUXIucOxz8CcCp5FswhBgEeFrj1/3nlTWCmDs4uKjBQ6OBl1KNJ1Ojeayv5j0uRjMDLgvUjaFR+FEEesaQ+GRUV32870hIsxezRa0K4xYIZeZBn9QBzeZSnIKV8WhKTkNY1b07WXLBYfZQ3jn7Z2Z6fYZl2H2c1WmtFsvqLvX4nkWB4Q+NlAz3sZICsSi6T4wK34lV3yidYiu2IjQ6+J7xSv9g1fj29w9pzzs1/Ttk9ol5/gV6f4tsW3juHUYFaSv6u8V1srNf8A+F5je2FhOW0eDJkP0JHZ+Mzk62MOPCuyECUuFE+BtU4s8nCrs7HKQVibWJ0GFmdpkoK4usBePatyUfbJS8zFs5/W/D1e2mKffYK9eimyMbfXhNs3EhuGvTCAzXe41XDgNwDgepG1KHX2PK+eM7ZDioAXX4+wx6VU9cNDStyGAY3iPnqMWdA0pxjT0e/fsAJ+2Z1zYhz/U3PBbz97y/pff4a9eCq50xGIJrz5Cv/mK8K777j9WnFdjMhTyJI/JjN2DqUh6unIzF8PGdwxQs47yAObEgwquAMZ2MSUBIiXWYsxKvzIgUwGzLl6Ux1RmFSC7PW54drjcxzR83oniVSED/fZ80WhxwY/btC5+StD+Q6jpa/h3AnOnkymswfycfnYsoZ+GXzM5edSVQnop16c0qgUMaahcWsad3rYJP4JSwHukb36fVd8kCT/7a2ftxF8c4NTW8L2C/b7b6rup9FN1jJtSMmKPul4Twg7SCNXdsknbsWvdcuZSjxfShO4O4d+FxiAN2HPK7/jNo4sVh+xOPkt4fwTQJBMxCCF2yzpVLPJvKpTztKYfpzCPzl2TtTF0vysG+qsCdyo4tg5ufm6otFTm8BiCgdMTR8kgWsXsQbq5rKj+fgTmg9/Xaf2fxb9+xculTcAAHt5wenp11xtAk0wfJMcp6ZhHz0+o1mGlPVwoOqdakQfuASumFLWx9Q4u8DZNSHsRNMu7nAJXjQnfKIdZ5cb1lcJtzIQAuHdKwCGr77lze/hm9crtqPhc2/4Xdjy5bipDqAhTc2Y8txtpWPL++NzZB2jWLQUJN0h5m/2fiuyhl8+P3w/GrisSvNK5WdCu0pRHyB9onaZSj9HBudCU1v5HfntKXlTqj63CMln6mBCGvIwXZ+5aLbujPH0is3l6WTYEBN2DKKXNW7w442YJoYt3mftvOhR2qCRIg6lsXZF217huucouyasLulXLXoBuJ8+C7N9xGqP3r1js/2czfaLAx3eOeVadIFlar9WmhfNkk/smktteWkDF1cjq6tEjIHwCl7FgW/8ljd+T9Ocs1x9hl5/KiYWIBTIsqnYdpq8zp2RczI20fTD4zEiTTIgOoHRukqqFPmYolNVP+cpfoNQt4ru5wHab9boKSYv7Qm0F9LssRfnNB98gvvgl6huhTm9/OnDoUeWcl39iE2HOb3EXazphlvCGDj7NnFiGjoljS2fG5CTHMTUkLBAq6UR3GnDLjdoo1J5oixGScN4l1HfGz5cXPF3RvO063l6tces2yoXE26vGb/6gvHtFr+PvPqD5Xc3K/5z8OwIvA4D70KfjZTknHbaEFOmTCdpNMU8JCoshsfuc3ktj0995yaSx383bxLLSCU3h1JWAc9NsYA0CmIeMgLMDWG0drnQ0hlV4yVRyzGYRI3B5GvL5KRRUEXSbFI6G1/NmsC2fULoVgwL0f6MQab1pu+nAs5vaxM45uJcktxJ97NtzjF2heueExZn9OuO/n2Stnwybd8Ttl+wuftdZhLtDjRaRV+2r8WcSoFz03JpO567JZ9kqt/6hca8Cbx5m7hOiW/SyDfjFq8Mq6XkDsp00Ih2eDJidlOQfklrzOgrwkmFgAkr9NDWYbZWhnhUABzKxqQaE8rH8dDgoKDLcjfL7CdQzF3mcaGwA5plor04bPa4F59hn31yIBX1T7K0RZ88yQPllaCBd/eiEzr2mKGnW79irWCtDKOONNqgA0QVEPmFJDRDpUnZbFakfsRIUiP35FiGodphTScUXEAlzzO35MK0/NauuHp6i3v+US5gW+LYw5uvSMEzfPk79v/1d9x96Rl7xR+/XvH7GPg29GzjmOVBFE2SvEGGuD3F7VphKNqghY45H3IVmqVKj8cO+R3yYx0WtGU4RErCVspN5piRtA+Luof6gyCawSl6xjEQ0jDlZ5mdYpRojEbk3AeVmwxBMYKY2GiLMS3WBKIyGLMQdPvignF1UunWKoAKk5GkH9+Jfrjfie5mKtp+Erdc9oZwbi3xYXVJeB+2wAKSUejbhNndEDdfEvyGYf8d43hHMf0TPdIeclM/pZGVMqy05cot+ES3PD3ZcPFiZNhq3r523A2WTdB8kwZu48jZ8iUnp78VVPTiBX7WBO7XjrjQKJdIQdgXxIQKCB1caxk00/K4NERhjY01d7CFTcSh3JzDPBIbgshZHOl+lsFQsxTZqPZE464ucM8+RK9OMaszzJOX/+R1RFn65AkWiJt11gy+Qbkb0tijXINd3+DakcaJ5vmigCEo98/hcF0akn2+roKgobWlzch4r8DaNcZ2NQcOXgb5J8rwa9Pxi1+8ZfVU0758KoPyHA/rQDnLzw2f/4m3Xxq+frvg1htexSHrb8s9XIYpMY4kZTBZ3k/rORp4BhAgQWbqlErieJA8ZxOVPCFfIYyEHCM0Osp9GrRDqfiAMVAGRAZq03bSDBaPgflAyqFQepLS26dIjyfiUUGaVSXfNTqbu2UEoDENKbYos6w1dTGIS1qJLMQ4ovq7rB++ESRuppzDVPfIwKijaS5w3XP0e7AMhxNHdA63C7T3Q2USjf2b7Dvy7mC4EGvDdcDmBuKJcTy1Cz7Rmo+X+3xuE8OgGQZ4FRVv/J7V6W84OfkNrnmCXn1Iv1jgW8e4kCbwci0MvuMVI/ROEZx5FBF8vOaSSUU7vLANS1O4UWIa2eTY4FSkteJJ1LpQm8BNNopsL8QstrAI7dOP0Yv1X6WOkBMoPRfz5CWqaSU2ZNZOCgHtZGgb9wNxCKQgcphGJQHNzJvAqFqPzdH3MQ4kAp2aNPI9iTHKSHZQ0JgFjTsVFC2Jc9Pwb9pznirHf7/ac/7bJe1n/xpz+gR9euhDQvT4N18xfPE7wttrbm8c90mM4oYMerMcmj8DVZ5ovmcbbQnaTkj7pIjKI6X61FuR11tqiKkvEdQENEvBo1ODV4fPPTemL7rfZbjmx6xfnkQzGCZWtxxz6ZOIUMsYd6QxoIP0BKLp0KavkpECZFtiOPTNSClUk2WUldxa68ziyYCKcST6e7zfZkZPMZLU0ovRNrMFzt6LLVDWX0Ma4v8M62dtBKthj9IjMVMwjldxx4wpSkGQAiYJemutbHXDdWaGxIuKAdjHII7U5As9uxGqGEkFvTM/Fm3quGQ+RdXakJL9/kZPXdIOqI1H1MHUfr4OGj8zTc/j9QD5Z7IOcNHs6WbUrcXqr5a8yZOLjmhxFjUZ9VqoKFaJdlqVQajNcJlYQy7e8vnLNjuHhUsSKYmCjGoQWqvSyERwGFE7kY4Y7z37nWM7GjZBc5+E3uFzI/pHvywOp2Q/dv2YIc8xJXxqCGe8T4o5D/zh4520xTQqaVCTm/D8OcrrOHy0XKQqjdFFQN4Krd8gimoxoUKUzzGjBTNK7bH7siRoOtNPtW6lUWJbaZJMb+dPXnbwWDVMtLEyAc8/13mzD7n5Jc1u0e9aKpen35rO+NwslXMUUOxTYBc9fQriNG9aks2oyrksBEC0EiVjgCQ6RnN67Jwu+1iMmHTsDhGhcxpeofzATOMPKnULOJCEKWve7LFWhkO6a9CNQ3eLOsTR3eqfPnkrq7iIG5u/VqJLrKYYWNXwEkQ1tU3LS3nsXhJzBSVnQhV3217MIBIstaPTgnQyWW42jTl53G8Jmz3DbWDsFfvecJ8QuRhiRijPziOii1flE1ROtGYdmu8LKfHP3LvHzeA4e6/r82e6l67YoCRHlPRM70uSLlOHDocUr3JPCjroBw+pvKRHj1xnJo42ck+ngo6a1SMqBlToKTqhx0geebG6snq0kYao0pZoxA34faT+CJkKOY5Zw7zo+k1x4kAXLscHAzTasDRiStiofN80BmUCISl2JHYpss2a6tYuJbZl/c9C+U5ZyyzM9EghD5nhAMUjw+VQjbaOV9VphdrgeWwdxoj8fAdyUdPv2qwPXrwD9MKhmwa9WNa48E/eBJ4tlY0nE4hO6NhLDJ3RrkvuYChGRUXHM1/7uemjE5UiPtfFKwWJQtX3PEQx5Fxrx4lpWCstBXd53oxQDtnsLm7uGG49+3vN0Gs2wbBLgX3yeRicavyaTGUiKk0MnKzXJP+ueN/vGw+Rfy/Hg1nOeHD+jj7IsVOMniYmRX28vPc8eJxZbCAXTyXWpIPfk3hX4rS8pCn2ED0p6wrO973S4Cm6fjoKe03F/DcpZKfvGZKvUtgF9Wd0g9HSEE3GEN9HPzzIpF7FCL4n+I3QSg8YOlODteQOMqRVNNrQaSONkyZinOxnIAaSu6TYpZjriuUkjWHaHBekIZ60QrmEtpB0Io7yTiZS/rmhmLJ+36oNOw516KsG6GwfkVpiig1zU7i5LnDR/SzeAbrRYh67EM1P+Xh/tsYPLeU60Bu51rImeQo5Nhj9QCLvsfvjYIhWBjBZH/jB8+VcNYaeEAcZpiSfNeIlPpqFRTXNZHYXfWUOlEZw2PTsdxIj7pNimG1iFbE8M70MkdoMLrHp4J6SFzK9pu/ZlB+TSpka44kqtVWZZxMg5DEKejknBzISqaCSJ6ZC+RzV4SArkaUQy72UtctjHEUvOE6SEMWH5FgaQg4yywo9VmcU2rrStcbQpstuEu+xSi3tR5QfIPTVBPoA1JXmGsypom0tik6LLrCz5X1WjEFL7yHXuK1Z5NiwItlG8oQsBaFtlnErW9IsFxLfpB+uLh+TGJn3G8oqecS8pgBqz2H+nOWeU0ahGotuHKppJnNIJ+Zwf7U6Ii8Bl2RmWdOJbnDTQAgoZ1EhVnNJo4q047TmtfT8XkukqgtslcYTZehZ/yLXh3GQvSKOrGzLmbJcKsWi9ehmKf4jjxno7kqsuMffbuhHlyUzj9hAs8bvcR7/8GRoeKT+Ps4sdO4H1FeSkMFxDKAN831Pnls/+tw6D5eLya3KI65YzSynNWctKZg9fsoSgJOUnegJ998vnzgfFBWt6RhzU1hcGh6TaC167yYzldQj+8Rfuv4a0hD/JwAE/7yN4HD7OzCWof8ui01n/agUCKNMgULY0/dvCXHHIilW2vFRs+bX2vDL0y0269p4r9i/S9zcOv4Uez7v73hLwNgVy8ULcKINVB1L8+QB8kQla/cpbYSfQd68w2QYVVY6SsBFH3gqWIoEQmn2wlTgNUqxQGjfDeAeMXCYr6aJtdnTrRPLZ0L51osF5vwpzUe/wT775P3fjD+zVNOiuiWuTbQ20kXNImq6jOQLNQhlxC0I0kRNqdmQAkOQZt5dGNF5EgXUYHGaaV2XpmOhkqCjx0SKkTBs0W93xJB496Xmq3cL/nHU7Ei8iiN3caCPQcwBv+f285nqNMQ8qcsNljHFKhMx/3hwHmYJ0ZSMySrFXSkF57TPOXJXURC7mSI20/QpWpIysXNT0VdQwYAK6uD4YpoOStDQQkcQtJLDuRNOVh/RNOc0zQV2+SG7mfmTHgOuz3p6/T4j/W7xfsM43h3QsZQyGNvRuDVaN7TtJU33nLR8Smg7xsUCFSDsyMXPT1vd669wpmXcfsnoC5Jn2hQDcs2Mw53oQeJpEjx1K35hl3ymLWudWHejOH2HxNgbvomJP/S3fOt33JO47J5i2it8dvRORyNBFTtUCIL084NogoI0y5PH6BavdvX3S0Gu4TC5zFP7qpetHjZ8yuS+NLEbBc5Mg675YGiO7NEamhPonq9xz1/IUOjkEvfBL3+6FMSPXIUiJgljI4mkEd3ShTYZmaMYVSAk0aSDw3unnIc+SbNsFz0DCW2WWLPIdMteNIJT5FwZnpuWs3ZkuZBGf7gfGL/6Aoxh+PYd775IvH3T0Y+GL3ctf4ojr0PPSGAbDqUTYFZsKtDlZ6Uwyjf2senD9zWBj797XFyF2f1a1pwtEXJBCarqfZXmCRwWd0VbjGw0UdC4VRuYYnil6nHMmz0y0LFo3WDdqt7PevGC5JaE3BRQo9C1zNALkme8F8ZARvrNkTzWdKC0ULaac5r2OdquUN2T+njpzxQ7P7QWr3taBebuO/rhTUb6FRftfUU2BL/Dh10u/EfOtOXDZsUHZslT7XjSeGyXUEaTguK6d/yj3/DVuOGbcUvTPaVpn5O6Synm2hbfttk8z+BbLUYvgPca2xtsL+jgZMU8SpuOGPYPkJq1MVBMaIjYjOwrslLzJWgecf2Wz9DaeKD3OUcCt4s4c/t2NM+f4T74haB6VmfvJx/1I5bqVhIDM/2b4InGoptWmlCUYq5oGYInoJLKV27MxY0YA7fK0ChdJag2UUbJQ94J9/0bRr9hv3vFC9Py9+05T7XjYyO6yHEj+uJp6Imb+2z4NLL9YsO3f2r45nbBPgrt/3UcaoyIKWGVFP+i4yzPH/NdFSnDyalNUvb3ei6Ozs0PxYdjOvjcSM8n4RJNdHBXE3iVqZLzAq8WSUoTlEGbhuAHPBGd41rxqgCJQbrE5yT6xGXfVdphEPaWMQva5hzbPmFYLBmWOUaEiB7FJ8P0e6K/z1Idd5UtUCidWlucXdI2l0Lv7J5B94RhtWL46exv7E3AuUD37i1h/w1D/x0h9AzDu8pcONT9FN3IBYontuPKdlyajqcq0S4jbqXx+8h97/jcK16lkc+He6J2LBbPMe0VNGeMJ+f0qyUxxwV1Cm3em2OEcaBakcQgGqA2N4MPqLspIOa8kjuEmNlETPrh1TFipgEqcjGmaoeXJrAp8jBNrMwhQf1Z9MJhT0+wT15ULxH9UzU//4KluhU6N1w1kKLI5gAVher9ZOg732flnEiBJhq524pcs7nRM6aIzki8xLRf+rDH+1vWWWbnt90FH7Uj7YXFrIRNEO+uGXNzPty+Yfz2a/zbW8Iu8PoPmj+8W/H7IB4k78IgDCKlK1sgxJ40ynBKKUH2leeP0YuEQ22gCq2/mlOnw9hwPCSa50yKouGbz05Kh3RwpUkzvd75Z0CM12yHCrrmqCOD3JsoUFQKfYkTNhVTycxpDDsxCta2PobWDc4iSL3mDG3XqOZc0PKzPV/5YdIP95tMR5fhTNE21bmB3zRnVaaKRxpCP3Ypn9Ak2vsd9vYVcfcNIfTs919nNuqYZUcGkYVAwCU2JRbK0GrDiWm4VI7zxnN+PjD0mpu7hut9wyZqfh/3bFPktL3ENk/Q3RXD6oSYeDVJAADw10lEQVRh7UgOQQMvE6frCeAVowwNYgTvE3uXCDajsXVWjX+AKC9f+3pdGKRRXVDAOqOACxq46AOb7DliTRTk/SIIO2AhzCF7cZ5N4c6yd8DlT9cC/kvfo26FyrrBqlth1qdyHsYB7u9Jo69mpCGpbPgt4A65D2K9jgo4IJGIQWRjFtrQacs2enYxMCjZsRUa77fc3f0BgC6O/F33nP++iVws91x9MKLXglROxhKDr6aZadzT//4/sP0//lc2X+zY3Wi+2q7ZxLtpb09kmdNdHUwJKGuSsZhrnscc9w8a28iApwyQVZpAJDDFh4TkUqScf6mZRnB+Tmmezs57GQylSDQNNi0r0yLGIT9eMZGTvUeeSxFTxCtPiAGFJsWASZGk/UFd4PWOInNZQSJlwNN0hHYmITRmxtW4zfFhEFRwHCjGlwDWtDTNOV33wY8CwPy59VdpBP8THNdfe/2sjeC7u/+INU29YY2WxpefibXHMOD9HWcYzmzDuW35B7vitxf3PP9kkOC5V/Q7Tb/VvN62/G645h2wWLxk0T1ltf4VYXGWNcxihZ+rGFDOYbQRcW7AjLmx4W0t4FLyaH3oaDoh/SKJUHVUionDXP/TzKbUDVLQrRGTuM5kbb/ZplDW3MzBuERzamg/fkHzyW8xqzNx8/0rN3rKUq5Ddytsl2htYAyKtbcstWOhx6qL26SIT7EiAUGC1RAFhbnNqM5RKVq7ytNeQ4genSLPmhMubctL27HKDbAUUn6PFWOviQG+vl7wX0bN78KOfQrcxYEbP1S6d3n+AzmKjCIqxeSY0cMSOMVPNKnDZAymxsljDeCp/Js+z5vBcDhdhzJNEzOsQvmMaawUzDKxO5j4Kk2aNXuColI8YQIWBJKAYig6fg3LxXNOT/+eZvEh2q0JJ8/wraBudEwYL5pdRfdz6N8wDG8Zx7spQUIQmlrZrNn1FGsXLBYfodefsr18QnAy9dYxoe8Tqv/pVI3h7f9OMIa+f8Uw3NTzMdeGS9GLtl/ydEqzNpZftqf8K2P4NA+JlqsgxdgI+52WIdG4IZgFi/aC05NfkbpLxoUUAgeOwvn8lOV2OywZVJA8JnmMXWHClkM98cM4UZK2oh9eYkPZwEXfSZL+tTKcKUHDdzridHyUQmadUL67M7ALgz1d0Hz8Kc2Hv6kSMe+r7/djV4kNumnQjcG4QGcCXdb9tTkmxEhtwM5XaXr1MRCVGDh4pVg0Z7TNGfv+LX5/R5Opnx+3p3yiG85ObllfyPs73Ab8/oYU4PY7zR+/WfOH0bJLiW9Szxd+y+txX2PAwfOjDuJVQSp6YkYACupm3gz+c0jgx35aNL01qrIWyoBoQjpKweVrgQcxmWoeJ3qD8eAa09pVdKBSQhyOojIsz5moDNTj41YI6tVYae503Qv0+lOGsyckrRlbJ/fACGYMmN2GuH9NivuqD1wMsooeWdEUbZvLqvuZ3BK/WDG2TtDF74EI7r75Pc429Hf/yG73LcN4ixjD9TUuxOirtp9OiQWKF82S39gTPtGWCxO5POlxS4VylhgHXkXFP/Y3fD1u2SnF1eoj7PpT+rNLotFigNnqQ5OXBpSW/Wm8z2ZE1qD9iN2t0VoG2o8xK4rGX0xjHkbrqhE8HxSVgfKCHBuUYmVEMsbaxLEUhHHQnYshnOlazNkZ7sNf4T74JXp1+s9S0EEu6kDMZoMX9o1rBWVZ0YtFy1BnhN3hsMUkaYIvtWWhLZs4ch892xSzdIzI+Oz2b1BodNzz69Vz/r1teNJ4Lk96bAfxXpq//u0Nu297Nm813mu+u17zu13Dn+LIgOdtGEVSLAx1uN0oQ6OMxIIUpcGUih1rykXo9w+Fjn9ynCuUdUwHn1PCQRDAAyGjghUqZXvioyHRoc8GgENrkVCKyopWO0BK2FmjrZjq1uFRSgQGVNKVxWTtmrY5r43bfr1gXBmUT9gemm0vA+X9hmG8YRjeEUIeyCQpFFEabVra5lKaqUZkY8aTc/q1Yxx/OiJ4+fYWZwbU/dfst59X35FhvGXIBjfHup8uwaXt+NCteW5bnirH025keRox6wXq3Y67wfK7uOfLccMfhzva9opu+Qnh9CWh7ejXC4ZTA1Zh2sRynVguE0bD6GEYEsMgg71+zEwCrQV4UhhFsZjoSAO+DNhi8lhEXq00ekp8mDRAddUAXaiEM5NczLEmcHflcM+varPHffAZ7oPP/upov/nSixWpaSfGictGQY2r0nhj1BWoMd1DkRiGiuaOM/1wk5HSkmvIfTnX8I5hz5Vy/KvFJU9My39nOj568Q53dYFZr0khML7+lvTV5xACw+s7br9K3Fxb+rHli/uO/yMEPg87xhS59ntilgxQCpqUGBgJwVN3dWUrI3LK6QuWbvr6++uIQx8QBRNzCdH8l/qlaIEnYsran/nvlIq56TRnuoKzS9G8T6JtHnxgJNQhkVM511XisQLZS4Vs/ht6MZ2bGVIXKrhSBtNekbpLom0ITVuZMzpE1LjFDzeEPCwSeZbMKoJq/mm0q+CV4ewJffrp+uG2jzTjiLt7x3j3j+y2nxNjz27/qsaGmHz+LLFBJ+iU5sQ4FtpyaVteaMvV2S3rq8TuJvLdW8PnQfMqev4w3JF0I3XR6kP86pTt+Qp1KkDSxTJxfgpPTqCxMHj5CFEYtaOXnCI4hY6KZPIosLI0D4dEhc1QpCDm9cWBZAziS9SoPCTKxrJFDqLIxNiL00OZmItnIvX0z7hKbDDDXiQitK1svziMMASUSYQkUpRzibeUUo3xMfZ18AKBhZJG/kJbMZoloZQwUsSocI/xEkv+rjvnf7Yd//Dbd3TniuZqjTk9F8PA3T3p9o34HmT/g91//c98978NfPXdCRtv+F0Us+GYj0kDPpuskVHuMTdE5bjDIYI5eVKaR4PDPKLkFfMmcDUfTynnBqEye2JU4CFpfzB4nPKGSeKwcWu8dpjYkVKUQW7YSV8nP3uDzia/SZq8OS5EghhfB0jJQpwks4rHQOPOxFzetBi7hvaMYb3Gtw4zBmw/iH54jFWmchzvxKsoznT1laZxp3TdC9rVp4zxPYqKfBLdX2EL/BeN4D+z+v4t3kwi/mXVoi4IwkenxMpYzm3Lpel4oTRnl57FywVxN7L9LuBvFfu9YRM1t2HA2BXr5Uva9gm2eUJwjqgVGl1pM0lrtB+J1qFZVt1gbdfV0V4QFn/mNOUbvXzMkX4HX5cJPtIEdloo1N+3SlFnO9BOYdYN9uIKe/EcfXL515WCeGSJNITQ1I2iThqLCRsa0d5NUxFbihmvJPCOyI2hlcvi4mUiJsiftXGcG6FkdKYYEEAYod9qtjvL6DVvRsc3qedV2DHGmCd8fnLEnndkEYfxLKVeKaUh6wSVSZvcsMcp2WHBNn+7jr9+rBn82NurlRRxotcl5ybFQNITBXPeOJiomHFG8zw8yjjbLAoKQhBBDc6uaRYfok4+IdoGv1geIPJ0yJpdXqQYRG9zOyH9Zs27Qud0bo21K2xzVnVEo1OiNdxHVIjY94D27PffYIzJiMOBqaEas5RMzN/3NCiW2nJiGi4y0u/0dETrhGsTyiRSAB80t3FkUIpFe8Gie0rTPhOjG1so8Prg3BzoMMYWPY6Y0EO0KD25pMbYZy04e9gIniM+eCgZM29KHsQHcoywk3b4fElsSNiFIHv0eo05fSKJ2+rsn7WoA4QyNaP/lfhQkpNGG4ajJvAxEi4qKd7EAEoQY86uGMZ7EpGVtqy1sAUuC2KrFZfcsVekrUgD3d46vhotf4oDuxR5Gwbe+p5NHB8dEtXBXUXNSjyz6BwzIuRB0PF7dpycPTgvHMaB0owtRV15/eWONkqaxCajg0KODVEV5M18XzqUh5jciFWlmZZ4ME8ay3HJ36navLWmw7pz/OqUfr04eB06iu6nCj0x7jPlWqi2U/Ias7SEy7IKC6w7qyZKpRh8HzQwQOy/w48O728JYSsu8Gmm7Vfpph6dUjYQ0pyZhktleG4DSxdYrjym0ahcoN6nyE0Y2KqENSva9gmpPcnNa41vNbFVkGnfpoG2m6L+OGrCqCWuaw3F/TkVg5C5xnioSGBSNlfVh27fB+cflfdbxQKJDUYnbKanliawMkL7tp3GrJbi9H16IbHhn2lofLxUI/TSIg2hjBSjpjY0coMjn8p6RtXEoGizwWYZoiSl0WrSuYthACIrpfnAdrxYDFyc9izWEe0g7HvUMDLcDNy9Mby5bhmj5svcBP7c7ypb4D6Owk5Ajm0+1B9TrIMtEGPJ+d5/HBtKzvFYnFA8HjMOzh2HQyKTh0TlBBX9+QT1HpyvogUYYxkyG1SqXIcHz1/pxUmaUHLsUkgrJd4A1p1i7IrYLGQw0ua/6RH9Tz9C6CvSz4dJu7vke0bbGh+07jJqsK33109dZr/FmIDv3wga2W9qPVEGRPPYYJFBw0o7LjLa70xplo1HNwrtxIxvH5X4jow7NtHTujW6OWdoO3zbMC4Mqs207ybRNImukcJyP0gOWz5GlyQOGiMydbPjn+R2psYAWcpD5/fnOD6YOeIvy80VaQiQbVkZkVkzLon+5+k5ZnUqqL+/hu7nn1vFxCgEVCcUZjX2YAorNLNnjq7QbO2c5Ra8NMGYvEjKHj6xd1TNl1MKnNmO37g1T5Xh03ZkdRHRiwWqW5I2d8T7e8JmTxwim1eRN69aXm9a9lHzZRQT8mu/Z0yRXW7cK6WwSWTHbGH0qHz35KGNrIeSMXUfnr3M47ph/u9jucFD35EAFGHiCYRQXntKh+ZxxpjcSAx43RDUrjIdxChOkp5yXm0dmCdCingVcpCLWWJOPExiHGSvcytiI5KMMe/7FWQRveQRYTOBJw7qDIM1HVq3WHsKbsWwaPH+p4NLjA8Y5aUJPR9S5Vxm0gT2KCQHM0h8aDOoYakda6BdRppTg98HQoLrFHgVBzEfM12ti8bFgtiqHBOgaRJtAwsnjeDGwE5PzWBBUyfI52rOUCxsgUN08Lz3oGbxQRp1DZKP1NhAlm2bSc1JvqAwC4NZr2sT+K/hOfSjVo4NqhGACTGIZNBuizIaNWuaRFI1q6/fqY1UQXQnIi5Ba4Sh2GkxoEzI/mjtknEMmAgnWmTDXroVL5c9648a7MUZerWWYwletM2zF0nc3JGGgd1XO95cL/mid+yAV3F/AHopO/iB94fSpLqXz7XPS5yIE8ILRZpRBo7riAeM4/x16S/E5FHJlNBw0GOYewuUZrBTk8FlDIPcH0rqoFJ12MzQUvloTM7NJPZ6YgSlTWU0au2xJpLsKj9vlpcyLcEKkwbA5jxC+UGM4kKfAWATOE5nmSqtnTST35MtUNYP9eN+6lJ/hcf8p14/ayO4bE5hVtSWpC34fTaoGnDAKjcIL0zDykSaZUQ7CyESY2C/N9zuGl7FxF0YcO1VpsJfot0an5sUUSvQpjZ+jNGY2sBwmBiypp9B05G0z8WtqWjd+ebKbMKroE5/f2iJhlfWAH2g4SXfE5OBKUjbtcOsRN9Pr07Ri38etN98pRAyjUVVbR6NwmldKYUhpdr8KT8vK6QkkgXK5YATc6IuBg6NEqkJMdiTCWkYIYyC+N7vDfd7xxgV9wl2KTJGmQj6XJz5NOn6zZ9bmr+xNvaKFMRDXd3Hk7Sy2R5P5+d/9edQgvPHFY2++e9PRVzV+ZpfZwd/r46OdN4QFpSfzrp7xi5wbi0U5SzGDqBiQgUlVM6sl1V0PwtNay7HcGwA5dwpxog+XjCzBuCYaLZiCuSH7Y86H4+tEHZAQwi7io4pTeCqBxqlmGuVqejTM2VZND3duqDJYdjmRs/e8S5s0cplp9EzjF0RnKsNqqgV0R3ewyqjgvVoBMGiLAJsEr1grUyV9JivOCvkEoc0v9LwO14NKiefj2l5zZrGJXlbtehFJ+ie5amggP+5izrI2npi5hDGh9pdxfG8pCgxoy3KiiT2efjmsz6w0OdFB1anVGVoFtpglLy3YVSEUaikhS1wv3fcJ6Fv7mOgT0LzPh4SFa3Mkcl4seiYzwdHYww14Sx/Pv9c1mOR//h7D2JGSih1GCenhnT9LWlHRz9D/LmHcaFcg0VDXEkiWGhkdeAFWYtVo7SrrrvOnaDtivBAHiXvbzGKrmrW1QtH6HeRhZiQPNaIvm60rsYdMwahkA8/3fTFD7ckYyqSqCBjCq1zkmuS4aJTGqcNS+04U4qTxtO6gDIQhoje7Bm2ipsURBtYOzHMc6dy7EYTrDSBVSuFmrbgmqwxrGUA4V0iGUhREa2T5oayKHX4Pj2udyZr3uR5oAHKzGT2qNFThsYlZzALm4u6k0r5/jlXGvaCpBl64pAYo2JIoTZ65sOQel+lqaApRdWQgiD0c45WqKCZz8NCNywwWDOKBGuEsBfpGID9DdzfWW56xz5qbiCbuviK7n1Mk/Mveq358/fjhKffO44Px6jg41Ua5jK0ln2lxoXKJHpoQFONYlTJYrImaN6bHlslsy35hDUtzp1i3TnGneOdm34xyr2t/YgexzpQngq43FjPe5MxHfZIY1eHiO4TYXyP89/fgm0I/j7nCbmYjSMhDCIjkOSAC2jD5UGysHE0Z5k2DZBCJIyiDXwXRrbRMwIruwLTEZwVJpQD24Cx0vBp84dRECyMFmJMeK9E+vGoyfPYOoitUHPaecOnmsbBga9A1QfO9YRrc1zoFHrRoZu2+gf8czEEvncFL0Oi4EnDwNgrtoNlH/XB8LhoX5JSpjvH2gQpZzKkSLl8hiRSJMHvM9o6cGoaztCcKXBGWErx/l5qm/t7htcb+jt5z+/fGm52jrfesANuktDJi5FsWaUhYuY5QirgksAxuOTH9AW+7w54zHckZmaghIQsCpWHxwX9F9MkV3YcF4qcmbQJfR0AlY/H1lSB5PiRpetkoLxA6xaUzZr6RfczYWLKg6L9TJs3X+dK0INaO6xZSD6SqeNJmwN23k9Zth8xWsF4n2ucXmQoMxW/5A0QKwNUBrBiQLjKH4vsyVEakmPU3CfPuyhgA+tWKN0Rs6lsciprAksTuDGlCawYENZAoaTL/YrkEbOS4rChP/kf1DimNHYGvJh7DUxG1NQmsDxXqlrhttOoxmZN3m7Swv0ZaomylDmqqWIgjp6wC/i9Yh8Vuxhq/Q/5aqwN/UmyUyP3TpGfG2LJPGT/jHFkpTQXphVpSu1wVnJUMaHeSeN3v5FD2dwRbm4Imx1h59m81dz0jpuU2JHYpzBJsSmV8+8IyZNQ6AgeqtTgHBSQSDl/ncM4vm+PPswXSjycawbr/NxyPiQwqThWCUN5/oc5Q/l3YVSkpIgqEXNNUdjVKddRRY5OBtzClCciNfOMGQtgTJGFaEEf+myoDMhUsTDm5uAXnZUDAsXDo3j8/Is0xE9fP2sjGKbAVty9YxyzQ+COlDwmJZ7ajl+3Z/zCLHiqNJ+c3bN85rBXT/GvXzFsR/50u+TLAP/Bb3gVBq7Wn3Fy9q8x7py4foFvG6ITo5pkqNp+RIftI7ZvUDFincMhCVXM7sUhbNCxR6kgWq65iSnHL+lylYWYT+UeSeRFAxRWJoijry4af1NwBinu2kVkeanoPr5Cr9aY00uhfv8zUzUAQaqOe5Fo8EZoW8i0tFOWoCImI4HnU/x5UTWShAaYJ0Iperbbb+Vn4zuutONUN6yVoUGoYduNZegj253l2/uO10EzAF/GkTdhz20Q594hBfoY6GeJ43FBNkfmJL4fsl+KralkolJYS5woxjUlESsBMc6erySFczxAafiUx4x58hwRl06VFCpoohmZO3tClodQYp6l0FWdcC5nodAYu2LRPcG5U5xds1h+TFo+y0jgMnUbMaPoWZq+R4UefD/p+vl7Ri90ToruJ9A2Zyy653SrX6LdmtRdTjqiMdHe72mvvyZuvkSN94+f4B+x+uEtxjhC2DP6baX7hNgTQ09JU9dK88wtucxsgU+05tnznpMPLWEXuPsW3r527AbLf+odXw73LJYfcH7697jmEr36kP1iMVG+W4VuU8lJ5QNFCopBO4xfVPS0stJgL86nIfYPNtL5lad4aOhQliCBRc9rndkCbjYkEsM7sHaieLYXDc3LlxXVY5998rMVdXG/Idzc0L8V46V9MIQUcVpDhJiLgfmUvCRKQ0bX9ElMeIISDTsfekBQXUulee6WXNqO57pFq8TQa5SJ9FvN3Ube4zEqPh8tv497vvFb9lmSZhNG+liSHWEtfN8KadILL8iiyVTicE2DofL5x41/57GgXCHzxyyPFxMkxLwiKY2KmhA9So0PtIKLWZtYzhXzl6loE1wfJCVjLa0di+4J69UndN0LrDtHL5/Tty3BapF4GQPGB3SI2N2WuH/NOGS03Xh/gPTTps1UracY3dIuXqIWz/GLpWhi9gPdu3fi1D3+9CHRdvcntDIM4w39cEPwuwexIRFpEqyytt+ZafnYLPhs2fPy5a6iZ4c7GO48r14v+KMXSYjF4gWrxXO65Sf06zXjwlR9v245NX+tlWYPyP3pPYyjJtmE7QXpIA1Lz9xQsn4+ko0pxVuVBJihv0QDVLEGFjk2WDvJQYiJbNYLPzXYq0vss48wmTlknrz8yef7fZfo8t4Q7q4Jt9fs7zX3SdVBDUCrDSFn8gdGjpl+eB9GtFLSiFMKZ1YY2+HHexI7TtA4Zfi4WfNUW1q3x9pICrB5q9m8FQ3Nt+86/tvdgi9TZJcC12nkG7/lxg+1uKn64d8Tr6ukzyPfK2ObeZ7x/WXc49+v7J4k10AdbM80fHUCnzV81Qz1GJRBKbknS59xjgIsrurFibw0rObPW/KZoECrToa/bs1q+SGL9W/Qqw+JzaL6AaheWEBut8NubgUN3L+WQY3f4ENfdRHJ2p9tc0m7eIk5+VU2U3JoP7J8C36YNPf/0jXc/a5KSvXDteQOccSP4jpeNCNtSuIgj2JlHE/tgs+046NmzGyBrBO76dnfK75Mga+GDW/SiM6+I3Fxjm8d48JgT+DkNNaYcLKAdSeFZTPI562G0SeGAUanqkEOkIdYfR2+F2RYjKIja5QY2RUZFTNH/SnFAs1aCZtokY2sSnxoF5FmCbbT2LMWe3GJefIyo/5O/9kkpL5vpeCJu3vifoO/3XF763i1d7xKik30tdEJpcngIckuZxFEsFEiI7FNobIOc2eU0d8AcKksv2hO+JWLXCwGVgsvTf6vbtDmlv27xLtXlpv7BXuveTda/hQTr1LPkBK3ceQm9JUtAMJ0spnNZJPCpVgRiiFl+Tem2HDwur/ne9PrPFzF+6RIws3RwSZlsIvK1VfWDFahNHFi1tydHu8gLmgrjKMo+1IQYvk0PM9LwyynkKxCIVT3tjmjcac0zTmufULoVvh2Mh60vcQlu9sSxncMw1tC2FYNcaA2k9v2UuQVTIfrnhOt1OfmPRDB7u3XWK0Zdl8yDG9liBz2BL+rgJMSwS1U/e2VdlzZBVem5al2XLajeHN0DcqM3AbDF/6Wz/t7rsPAYn2Obs4Zm5Zh4bCrxHotTeBlB2cLWLc6S0MoSgQuiOBiGJdql86L/FZpXufBVpGKKACqIgvRlPigZp5EcCA354zEB9eK5KRZtZj1CnN6+TcTF5TrqtFsCp44DAzXe/Y3cPfOcp0Ud3FgG73IygGTAagMfhZp0rMNKfLWi7TIPmUTsjhkTVvPh80J/25xyaVyfKYVp6dbUtDE3Z602TJ++5oUEikkhtvA3RvDdmPox4avNx2/C4kvMxL4TZDPNu/NXTE3R/bcoEZUHAglhz+SgagDloPvTf8qNYNcPYe1BPn7lsnQbSTk61sdaAbHvC8/ZipZhkTGLoT5FzSJwMg481HJMah8rYRNEBH5LIikqAhodIpE7SrK37VP0Fk/vLAEVWEn93cQ9oTxJl/zQ61vjOkwWtjkbXuF6V4wrE7w/qfnDWX9SyP4Z1jSRNUZAbyrSL8Q9qjkJXApw8tmxW/Nkl/ZxHnbc/l8xF09xZxeEjf3DP2OPwX4L2HL74dbMAtOz/4BffEPBOuy/oglOPVos2fcaXzboMckchGZ/q21heTR2dEYOEAG19eRYfHiSKl+sBkgm4sYrplM/Z6vebOnWUbcxQr3/CX65FLonT9TQZeGnrjbMvaK3mv2MVO+laJThoDGkRjNpNcTcjJUkHdeQdec0bWXeL9hv3+bjb4CiyQ6bacZ1dkoRUiKzc7ibOTttuHboPkyegYir2d0b5+LtyEdGr5FNQ+hKmOO1Ow79dVBbpsoJgRwMUsoE9VG6WoEOKfwloSpFFDleB5DBFU9PiVB2iBi64EozR40SnlxPz9CBFd5iBx2Y6GVzF6bUpamOWO5eMli8RxrT2lWnzKuThgWkpQZH4TmHQN6HNHDDsYNKeyrAdTod4QsbK+0RZu2FnDd8hPU2WdiAGEdY9YbVkGSPH/739jc/1eG92gED+M9OuiKAC5InhgHVBLvYIfiwrZ84FY1Sftw0XPyHNqPX+Kvr+HbDW82LV+Nlt+FPW/CwJPVpyxP/0GStdMrhoUjWYkLdpFoO2myxKjwHryXa2RE43cO27ZorTGhF0Sxn15n1AMxzpxaj4wk5waScCg1YBQsgJXJscFMQ6ISF0TqAtyK3Oz5WOLC6T+/VMx8pWFP2OzZ32t294Z9nNAI5GawNbreIzANSogjdykxKtHUM8qglSPFbNgUetba8tKtuNSOS2VoVMR7DVvY7iyvty2vg2YHfBOlufPduKuanmMMjOVunBWWMCFzy9eBQzp3/ayoSJH538/lgCpl8+hv549f1nyaP+83FaRXOVcjIVO7RMMzxoZQpSAmWaUyuS98BYmBExpY/i063yqjbhbdM1brX+NWn4JtGU+v8DMdXx0TthfdT93fMY43UkT5HaO/P6BrGS2xp+s+kAJu+WGWmZDhhO0H9O4dYfsFvr/5wevph9Zu9x1aK0a/w4+b2jyRYtJjcvyea8JduY4PteX503vOf2GIQ2T/LrC70Qy95ttdy9fjNU1zyen6MxaL5+jVh4yLpuYLy3XiZJ1qsWY0uNncZ7+H0Mou4ltxSlfaQrIHumzzRk9BgFRk2yMDZEMxkVQsdKLTog88OX2TJaSU6O+uG+zFE9yzT34WCanjNadShtsbdvea+5TYRM8+722N0sSswzu/ucpwdUxCQ96niNYdTXuGs0s2fo9L8KJZstaOT9yap0rMsYyDfqfZbgy7wRKS4pt9w3/OUhB98mzykGgX/WHD9UcOdFI6LNeOpSAeL+WmpY5+Z16HFCR/aQYDFf1Zmj0hF3hKGaGbRltjQ6GCa2WkaFRFs7QwjnKOlq+/+TEmBAls7VJMJJszlstP4eLXbM/PM6BCV/1w28tAmeGGON7jh6LrJ8OZ0uAxphOdwOYct/yQ/uIpwVnM6LG7LXa3Rb/HkGi3+xJjDMNwwzDeiS5y9Fk+ZqixwSF5a2n0PDctHzUjHz7dZWNmGSL4XWC7cXwTB97FEeNOWXRPWCw/xi+WVRpjsYycrqmIv7MFLBrRwm7MDAzhJU4MGYiSZqi3lKnfBUU9Od6LkWSrDEZNmtrVgBotsUFNknM25w7WRmyXaE4nczhzeonN5nA/d7MHEOr32JP2G8ZN4Ga34FVSXGek/hxppurgIlXZmIKGHOVSBN1hTUPM73mb5PdeuCW/Nh0vz+9ZnQorY+wV43dyGDfXTQUUDSSu08i3oedd6CuasM+IYKBKSpVQEVOiKUyilKoZtZ/lOyVGwIydc3Q60uxmTBzmGse+I+VnVWYnP8eocs4QhZZtIA+QJTct1OrSDC76nYIaDETkdda85ugYJ2ZCAS41Uhu0TwRg0V4xtCK5VmSltBdD6qIPPI53hLDN+sBhko0xC5rmgmb5IcquRWLCOdEWfg/Yn7//PclYhv13DMMN3m8I0c+0R4PEWybNaac0p6bhuW15oRouleJ0MeBWWpD1esN9gm+GLa/8nlFZLtqnpPaUsXXEVrHsEusldE6GQ2cLxbpVNFaxU0kYtlEGb87KgFm5JCAUbShyMSEIMzLMJbAIOIQpp1G0yuCUqaC0puYOJTZMNYX4jIA9XWDOztDdIstBnP4s8nIPljFiQu1aaQYPA+M2cf/WcrdxXKfAbRiyJOQ0bpFhX6BJ2RxOmaolvI1jbaJGBSpf7ytl+HV7xr+3DZftyOliYHkaSUER9wPjvWd/A/t7jR8VN3dLvt21vIqKISVeJc/nfsdN6AmkGid0lo2JZVCbY0Moe3d6fLAhjL3vX9+XM9RTN88hE1OuoOTrmEwdEkFpCMuvlyawVoaYAta0RNMR0NnLSAZFPgncxBRmSm6ohVntEpXk5UqZLOcT0dqIkWRzDs0Z0bosg5JjjR8Fte/vK7Mn5j1Ra5cZyScoZXDNE9LigmHRMryvRjAiz/ZPveIPgI7+VtbfCCJ4muJI0ytKoycnPJ2yrJXipBlZNF6aIU2DalowBu8190Ru48AmjGi9kAZNblQFayZtIi1BVmctHqFxKgiJ6BTBZ/q3NhCtIHoy/TuTEx99HcfNgbIeQ5ToYw2vSguZCrtCEdGNqxSun5PemTJ9K0Zp0MLUyClJCEooSOQG5Zz6XpqiQvvppHjP9AFFmqaZWdMIBL02Rg0ehqjZpcSOwJCEejFmKYiQYi1oKrqlNoGVIGbyZG6SVZglFKn+L/8FtTA3ucVqcxO4NILnBlM6/624ccuMLqTDJt9jq+R70xGljBGeJCKOEaZApnhOXe7y+qRpa6r+njFL0c8p9GyjUUEeW6gXUejeyQviu7rYTxp1k9awqxqB2rQSvK0jZHX1QtvSfmSMe9H2fY8JnWwexY14clpOOTaURK3VhoU2rJVhrTStC5iFyRSnhhg37OLUePAKrF2gXU4wras0LGUSJlO4bKZylncnRvn5gb7pTPNTBkU/3cgCpiK/xAZ9NEpUWetPazBOoZum6mj97PTOGIhDrDIN4Sga6lmMmFOZajM0j0XmKPiqkUikUU4oekpXHUTRXFSMXrOPivuUGJgkIUoTuBhDFHTvHE0DGUkziwhz+YR6LOWLfNM+Fu/nTeBJ1zMd/Cymx5HF84KvxIWiJZ5PRkb+J+Zaeg+W0llW4+Gxy3OoKdEzDVq3GLsCtyLZJqPUZsOyHCNUCFKw59hQdP1ijhEwSyBNJ49puop4i1qhYoCwzyYxm+9/DX9mSVNHVyOlopXHjAY4NyFzSkuxBDTLhFl1KDOgbwPei+TQLip20WNaoaRadybaZdkxRxWKtZ1QO0ZNCAKT9+vch8+JrUErS/oej4G5nuv8milrKsIn+rcrucMBi0hik9IK3Wi0s4Kmce3PIiH1YEWfGz1b4m6P95oh79eF1fJYAzZmKak4R9kpGcaXIYj8LbSl6a+0MClm2+YYNHuvM4VXpCDuojCJ+kwtHWpzB+wsTh28jDQZTUYOkcs/1PD9odbFcaNnjug5XvO4VVCSdeydkhhG5tcRU6wGkgePoR4rG79vYKXQM/1wY9dE52TIMVs6pmq+nMIesrzU3OVeQdbTbzDaYUx7IK0gg2nRBeQ9GsEh7ElJzXwFJgo1FOSS5KwC3JhQdJ31uDbW3BvkdBaTU6+gMx3WrtC6I2hhEamCyrcT7dto+dpoxRBSjQ9FqgF+WBoiHr13RXLuGKV+KBkzSUIA9R6Q+CB6xxiTqd+t1E9/Aytl3U1B/SXGqNnlvbvcl/NcWTM1QI7vk6jAaovRDSmOqET1MVloK3tAKwP1FKQR7L1ISu0Gy31U3CDx4CZ6tlGGRDX+kB40Y2ucKDEjH6hFBre2NK+V1ESH0k9H50JNnyf93/rwjy6dwSjznETo4LmmqPdBqDXF99cWJu+lhVFUjvfxhtP870ptoE0HthVZBKOJOWd/LI841jQHshRjK01gK7Tv+rPw05s9MfQoMvK+yitM8o46TdfX3EfCaT0btkyyEMpIc2sA+iRAA6Wk9ip091TydT1pAhstTWCjlfjt5M8/9NIeNarPMU3VRtxDBkuVhMixQXKWSTJGagojH400XdE/ryTE964QCKPcr703DGlqqk4eOUWzNmU5Ol3fyyrXwny/lnPolGOtDefOs25HukXM3jJ5vx9h2Cq2G4MPmvvBch0VNymyS5Gb5OmTp08hMwEmiam5hA9JSnfSUQ/iaKUC3ji66edxoX6PaWh8IBtTh0VTbJDhTQYoqTmr/XAV3y5N6TfoKh8Danb+ZJX9SeU677g+mpteVr+MLPny2D54qJVfBtc5jiibexIiLZHyvRa/N0L++NU8DInvvd6/Pf3XXz+vWdxwgzGW4PeZmjEixVykUyLQvjaOZ6bjpQ1cne1plxHTKdIwEN5+h399zavbln8cN/yxv+NN6OmWLzHunL5pCc4KGnipwCq0S7hOdLwKnRMgGEhB4aPOzaFWbpzQiRaotugIsZq+ZP2Y2XS46HcdI3pqkK4JG5OG16yo09nopeh5uZWWSd3qDHP6BH16+c/11hysuLkhvPuOcHPD0GuGpBjy2HqSTJAGRVF+HFOsxitDDNzFEYVF50JE0JIjNonr7sJYOm0OTDD2UbMdDUZpboPmnsB9nrTtk9BBiu5vLLIMJZECJqRsXmmefiXS7BYtSJGCpyvJY0F4N3pCZNQEoUzTciPJ54JV3DVVnjbOmtOPBH41+yBFoW1niZSUpkS9FHD6ICCXREAKLKUsxjS0zQVt+1SoF1l/T5KwOJk+5aRMxQDjhjC+y+jbTX7ufNRK4+yCxp2idUvbXh2YpJjRY/te6Bwxou6/ZhyuK4Xpp64UA5Eo1K3YQz6XJl8vVsn0+9Q0PNctH2rLpU6s1x7VCNohDQObW8vnXvG7uOeL8R6lGtr2qbgZNx3DsiUuNLpNmCbRdYnVMoNYI/TDpAEavLj5RpuF6gdTB0XHeq1Qkrc4bcLHjZ6sEzw3gCmxwZmZxl/WALVWJvjagV079Oqkmjr8nMieuLkh3L5huA3c3zVs9o4hX+pOGTQRQxKv+jQZwBTUvOh+gs6IsULzD+OWlCIuRdbGVckYA+yiZrN3aJW46R3XSXGdhC1wG0XLsTSBC0XzQN7hRzRx5glXlYRhajTOh0Vm1sSaaxbCYdMoUFgL6iBRnD9/uV4S84QqQiqxwaMz2sjogvSbZTAVFSwJ8Zw5YHSLcycYu6BxJ3Sd3M+xWUjhpjV6DIARWYjRHxhJCmNgQvFopUUCAbB2RdNc4LrnYLoad9p7kViymzv87lvG4Zp+uHt4If3IFZM0fMXEYiClkZIOz4dEnZb4cGZarkzLhQ1y/6zXpHDL2A+8fddwvW/4UwrchIGuvaRbfIDrnuNXJ8RWcgbbJLoOlu3U6IHp8xDECGafM6pkmBLcmSZw0QeeUMFSiNZrST3UCD4wkdRRTGZzvqBKbOgUbm3RXYPOhi9/E6geINxe47/7guGrb9i/HrjbLtkx6fGWvfTB/qhENmYfAz3ZXwDRmxuGO8Zxg/f3PMnU3QvTcJab7vudNHe2O8vbXcNbbxiAb1LgbUYRlSbwfo7yS+BnQ9b5PV0lE4oUFNSv58n+/FXMC6I/V6Z8388fKxenIVGi6gomJXrBGYFzvCfV3KFQwrNpXBlOZVU/eV0KrF3SdU9om0tx+W7OGPPeB2SfgcwGGD2qvxMEj98QsvdDfW7taNwpbXuJ1i2uuZzlJUq0hXfviLtviO/BJIqxB4wMi7KZZSkmS45XctbiK3BiHGdoVt3I8jRmc2JFfyf7/pv7lu/8DVp1dN0TlosX2PYJu2UrkjEWmkYQf4uqASqNHiiNn0Tjy7ngQP8TbQ+K3knXWIphBbVhPZeFmC8DOJ3ERFJNjR7jQDcKs+rEUHa1RnWrn81L4HjFzQ3+zVf4118T3l6zeat57Q3XaeA+gz3meqfze0RnVt0+swVEE1gamCEKimyRFE9cx1o7XtglCwUxN4DH/pAt8Grv+CZFXsWBfQxs0lh1oSvCbZY3eA69BWKuAcp+H1JknA2gj63iSkPqLwGMzQdHMaUDtgDItV2eyxe2QIbW6GizdEw80NmUc6nR2gqKWBtUyOcxD6DL8QIZzYhIVeWGTNuc0bZXtIuXYrZuWmIGnuisC2z6fT75k0ZvuT+FKSDeMU1zhnXndTgNYPo9pt+/F1sghA1gq/fQ3JgrHeXp5RxbFJ2yPFWWpzpxYj3WJcIQCfcbhq3mOgXehYGgLG1zSts+rWwB1UpeUGNDzh0kbOac8AjlXAZFx2seG0IcSHFEJ7BaV0PT0nsIiEmuXBOHnkSFLVD0gVU2S9TdSoAlfwvDYyANPeHumnj7hrC5ZXh9x7tXjm9vOl6Pluu0o0+TEKUGAUwQcrsy+3uoiTE8KpC+QMKlIiujeOYWXCpHawdhg4aM/t3LVb+5Nby9bXnTi0fRdVJ8Ez3XaSSkxF0c2WQGY1kF/CLDFKp0gk6lofuQmVg+/1BcmDMGjtdj3gIlV6hKIwhqukhRAnilczNwrGwBo5uKWNba5amooIcj2csFMoNaur/pEeCbGH+v0EbiRNNcoNsrUntSa2njIzoqXD+ixm3NI0q+XLSBRTt8Tds+FVlGuyYhsjPJ//R+Q1n/Ig3xMyw/3hGCzkF5rIlacfheaceZbfjMtHxydcuzX0VBvDSGcL8h7nZsvu75r8OK/7T/km/igLErnqx/QVo+Y1iK1mFYa+wqYaxoeHVdYpH1u/aDNFj2e0WMMo32bYPdyQYk2kniXhoBnVqUGg71GfPHfCI3bwbXQk6Js69RouGlVdEbnKjf7SLRnIBpDO5iiTl/in3y8mdz/I53bxi//j3h9prh9R37bLIyJEHsNmgaEkHl6XFSGckbeRd6rn3PQMpIzDXGdEJjzGZkp8qw0pZz23Kim+xsKnSLexSDNxjgVUq8iiPvYs+YIvdhrMYxIaVq/JZqwnjQYmWehpXJmDTl5edWqdxAkA21GAQU13CXdZiKI6sY2qnazBtyUysghasNGh1HYj42n+JsU3g4KNApEVREJRGvLwjYsuaoO20adGyIIU+DdYt1S0Hu2BWLxQeSkC1egGmJzQIVgwTZ7OotTWBB4MTxnrF/k/W6bvFhV5FFWjva5oLl8kOMWdJ0z0nLpwyLlugMth9w774lbL8ghJ798Ib9/nU2cXocPf9jVogF2dOT0ojLU8Ymo3dEF8vyzC74TFs+WQys25H1ecB0a3nHR8/1Xct/8Bv+S/+O78Yd3eoj2tWnjCfn4va9MthVwmWn75O16PuVZG3fQD9IshYjbBaacJ/DZqF+5/dFfU9hVeQE4CFDoMnvq8Pk1yVN4EnHa0ramuWM4nlxjjl/hjl/9vM2ge/eEG6vGb/9mrs3hld3nSCwkeSzyMaMRQdNJcgGj8XkYRcDQSk6u6JpThnGe0Z/h40jDsW5aXlmlxX1bZAh0Ztekoi3QfNN9HwV9oLkCSIZ08dQ5WlGBE0I8xzqsUwrN2fn7xkzlkAeQhRqrs5xo5kNsSoCIMeGeQEpQ6yQE9TS4p30iOfXR3m+EhsgEZNCJZ8R87qawNS/OZKLEESQYKiUMjh3wnL5AV17ibMndMuPScunVT88Gi2awHlgZHdbdH8n+uHDu6wfvsH7TR5AuRrTF91TuuUnxNOPiM6hQpACbrcR44f7P7Lf/ont7iuG9yjoZMBU8oYBlRupxeG7NHpOTcMLt+RKNzxVlqvVju6qwZyek4aBYbvj823H72Pgfx9vuSPx6epTmtO/Iy7O2Z2foBfgOhkQnSzhciXFXFkFxTN4oYV3HQxDom/VIe276tbJEDRmynfZkybU7+T6XZbkDiIL0VrR+GtciQ1FFkJjL06rQZy9eP43Qvv2+Ddfsf/Dl7z9Y2Rz6/hm13CfhkxAlmFyq03V7T5ABYdBqNW6wZklxSR0GN4BiSYFXjRnfGwXXGbmGERudw1mn3jXO74KmlcpsEuB12Hgtd/xzvd4UpWMOXAe/x40ffk8z+vr9xUPZGPmGcicyn28BzyGLC55Qjr6+dwd3KAwWRcUVI0NOnqSikzGktOaDOOk2SC64XIVekQ6RiEMoOXiGSfrX9ItPsDYleh9tw1RK0EBh1hzCrvbkoZ3Ux7h7+r+X0wk2/aS1frXMvBrr4jNQl6HDzIkyvHhfYZEIRsH+tAL5TtM2PPCMjSIOdypaVgay7lpeaoVZ5ee7soRh8jmVeTm2rHrDX8cZt4CZ/9A0z4jnn7EuDDoBTSZ+i3an/LuSCNYjqkxR0jhBrCKaDR6hoaKGSkZ40CKPjesROqmUZpWT9IQ81Wo34s8JGpdOMgb3MpIE/j0HLM6xZxc/vwMorzC7RuGL/4b/effMdwGvn214ssU+Db07JMXUEXOx4EDcMaQouiDlr09X7spBoSV6LmyC/6hu+BCO54qx0pHhkETo8jOvd62vM2SUq9S4HO/4xu/xWe2wC4PlB9dRwX+sbdAmA1Wyq8/QPjNvv5z/eDSHiyN3hIfyprXnIW9EBGt1BgjIdiK7ANqfJibtRndiEGTGggponNsnMcvn+s5o9s81DlhuXghviGrD0naEHIzseQRpu+r7qfv30xGr2FfzeGMWaCUoW2vsIvn+NUpSWvsbovavSUO70jvMSTyfkdKGp91wysauNQ6HMZrkxkD56bhhYaPTnZYE3FtJOwT49sdd+8sn/sd9ySWyw9YLZ7TLj9hu1oSF/9/9v4lxLZt3feEfq213vsYIyLmY825Xnvve87hphcUBVExRQsiCIIVUZILmXhB1BQLWUhEElErgoKidUFNRAXRBMmKBSsKVoQEQUzy3pv3XPc5Z++z9nrNV8SMiDFGf7WHha99rbc+Ysy51ppzn712YbfFXPEaMWI8ev/61/7f/2Fpt5HdViwhdq0ExGldCHHpH07ZwMZyNlAyxqkagHta1rVBe1AJZpejQ5VEXfYHbppEt5GPbtfgLq9weXD8xzI8hkwwuXmJf/M94faWt18nfntzwW+94Tb5kgGi120lANRrJjFnxc9kwJgWgyOmgSvj+EV3yc42/Hl7xZ9by27j6TZR7B+uW+Zg8cHydmz5XbB8H2cmIvsYeBtH7sO8WLiluAKCYQGDRUkcxdqNREwxjx4y4zjf/hQzfCeGmGfVCjIudjkP1ZYGqZtFjZgSs/HEkKDqEVQBfO7d1wwQjMXElhjmSoWQMhFw2cvkhyivgevYbJ7mQfBz2SNcfsp8mffpzq78wxlv8ZN4A3sv+wS1rWmaK7bbX7C5/AshmzQbiIG27zEfEU6v609A8M+wQpywyZDwtGk5kS9zk3blWp67LZ+ZxJPPPds/EzA09j1xmAiHwOHG8U2ceBMm2vYp2+0n7Ha/wl8+KknfbpfYXSyS74vM7HFWZJ6yJNE3bBJ+05CsyOxxW5mQZtlrveqvlQ2sn4NKvbOVQM3uWaX6plXqt2sTzU7AHmnenuF+JiYwZDbPm2+Jh3umu8Bx2jGlxSDDGUOHgL9T1eUEEsfo6U0C0+JMQ9NclNdMJrGBR25b3utTRnCfElMGU25T4BA9xyBTN2X8hbRYQghjqOLuGZNnf1lngQSz1aBBg8GYxf+3yRuFTWYAt1aBBfEaUuafAg7OQEiL115IiUE9+PLFwWbmUzgp6zXLUDmBag8haZkxSzOWUAf9aE0DNkrz1mzZdE9o3I6muSoTt7h7muVZeeqvHl0KAscAYST6A36+w58EN4D4frbtIzbbX2KbS+zFF2LMvmnETiEGYv89h/u/yoVbvEOF4b8w4X7qEtm5MOjaBJsK4NH36sI2fGJbvmh9UQt0j4D8fNPkeTtv+Xa+5uXcczTw2e4LzO4Lpt2G+aKBC9hsBQTucpjD1VY2blOgJPqGKADPsU2EbAwaGzmujW3EOuXc86CS5Zz8rAYOVcIlIXHxQW1oGkn8LqEOl1e4n5kJnOYh+36+Idzt2d833PiGKUGfVHJlS5q2NkUh18Li35sixja07SVd+1hC4lLgyjguXctTt+Gxa9khrEiAPsEU5BW9TpHrlIdEMbKPc2H5CcAhG8VlSJSlTlWtkRqR8ueBlL119b1rWFjb9TGobMaNcQXgUdaWrpCWAKoxSpIudmENncrMT9fCEM6PMam37KJIAco1ymCLxNPoHRCxtqNtLwWw3X6Ja65w2y+Zdxf4nHpmYhT5ZYi4aRQmsB8LGziEY2bp+yx3Fs8uAZkfYzef0j9+TGgcXT/ihgMMb4hhYBpeMIxvGKe3eP/hNirqu61BSi3Lxq2t6vmVa/nEtnxpW54ZuLryZdMT7t4yjZbvY+J3YeD76UjjLtle/Dn+8WfMux1+Z2lyXVDG39XGsOtM3sSJnDMk2HUSBtNnX4GxOS/9lroWFtuTDAjrAFJB4BoM1WtsaxKbJhTvcGUDG5c3dBkEdo+fYy8ff/Dr+/tcaRoJd9fsvw+8fLHjODuukynKHl2NWZ6zrTa0ffQEZIi82Txh9j3T+Bb1gn6U2cCfmYZnRq7HAPdTgzOJmwwC65DobRgXX8GTITKsgd46hLWGaR7UjXL7Zchcg8EK7pfBzslrdHYgtPoby32tQWVh+aQkf1uHxzF6AXlsW/8Z6R9MfgSGsgkUYEn6J2va4h++3YgXbnvxK2gv8ZePy7UPKEw/EyN26gl+X/oI8fXLXaKx2Rf4k3JfyW2K7yeACSPz9IZj/+1H1QbpXUwBelQtYHV/wVKvL1zDI9vx2DY8doHtVaT55BPC3Z4UJg59w+3Y8ioF7sLM1e5Ldpd/v9S4tDO4JhXGn9YGWG8oVfrdNdJHuGzlIgqMtUdwbZWnjGC1JuuU9XdaHwT+lN7BCcFkUQuA7dwa7PkjYfwBxOMd/vU1++8j/aHh1dBxHSexbokxM4Ipffc29+WNsRwyCy8YgzX1sR5JSSxenjfbEjJ+ZRJbF/DBEmOinxpeB8s3GSh6HSe+90eu/VAIHHMMBdzVPmD1+Je/WPYiWkMilOGzrFOoNz346qeAwbD0DYsiNd/O2DxszKFTScKobRQwOAIps4KBMtRVCwgTHNHMKFm1lnZHwNDg3A7XbOmUoXfxBfOjp3KbSjlgfVYUzXtiGAh+X7FyA9BmX+CnOLeh7Z5D94TQCavYjSP4PfPwgnn+CEupeCQlV9WGxTLjFABWBmdrLFfG8bzzPH48l148RpgPkUPf8Cbsce6Cy90XXOx+Ka/DRYPdCN7QNgIC79pFJRCiWEKEk77PGVYWU+V9T2qnEcUOC7XQFGWk1oZzy7Eoidpm2Vu4FkzXYHeXfxT2k6crzRIy669v8HcDt9cy1P0qDhyi59ZPWVVIrpGm9OHq6T2VPQB5wCl5T9GP7GzD32uv+MS1fGk6Pmk8XScDdj879mPL26lhiJZXMfFVHPkuHIXMEYMEUKdQgNe6Jq8sGiowuNhdIfZ5qTq/fhwIXHYC9ZdVzTlPNIukZU+SKMGS5NfPxKkMiUMVFKfLndQKgyMaUavEfH+VkGpVoyRI8hM2m08LNjFeXjFdbDAhlswikFoRwyBqgRUj2BX7maZ7Qrr4nNr/y/UH0keQS5bn+UMV+Kcv81MkHz/T+nlHP1nKo0VYJ1pNbtS2pmFrHFubJQxdRwqBFCKh9/ghMvQt+xTEv6u9oGkucc1V9g1BwCpLAYHV408BntbJ11O+jW1MDsJwpLh2HVGv4NMl3izy+bmQETVuX4CfE0Cw8vszzmA7h20bbNeJ7uxnnNDF4UDsj4T9njAbkcgjbGBYfIBDngYp+OkzwJMwGSyTxiDGidmLX5NLi/euMjV0Pbj/wut4KNFar5rOo+2LSH90g1Y2ZywMYMviF1c+t/q4TmV5pjCXHYZg5LIckinMaLWW0NUY8Q3WVq/eDKp0Q4vnOe+gehBRQqHypk6DHoSd14lHl21WQISJ8eRr8eoibzZCHHNYYyj3bW2T71u8eGx7BabBxIDzETzYeSaGEQ0zqL2/znkP/diVYsBYeUVqILX29WuMZWecMOTyhBuAEIhDT+gDfTRiT0LCmg7nLkhNR2zFC9Vmv0/18ZJwl/x5Wrw/YWnQ0k+8WLzv1kVBUNUHWHy8Vrd1BuOsAN2ukX8/40rDgXi4JR7uCL1nDh0hvctFXZaGJfjcTM2ZRWPIoYlZ0pmItLbL4Rfr2iD3s9SIKdecMhR6D6iaH7nUBr1LlVjrzzJwoAyR2vpBWCJVrTBVeE9+L0+bcledz9EkvLHiW2wA8obNnDD/KrDHINcYebx5a5fOO2Kta0N9/rlsHbPN5/NWJvzvYrHHxUucMBDDUJqyeknd2UjdsXJ/NkRC4+R3k5ffjUP2Dc0ewx9RG0AB8JhlaUsPAetB7M64kpat19gUgjCCpyVboI8e60S+5nOuQGpNUey0zcLoW0AeCXlx1RuxeID+iOdwps6fSr71+cgxGHHFF7g6Viy5UDmMk5C6PwZWT5qHXB/uc8isYwji7Qfy/gSWAZG+gQLCxKy0ORmfJvGMbzKwp+qQevAyRwNW1F0TFK9RZeyofDud/EM//4Hyvn7fTnq5qm6c1g4Z6j4MolNen02Ll6i+Dg//wnotQ6J8y+q8KlLiM6xgvTaLB7O+/BZjW6xpi3+4zV6+mEyOCBEaK7YQWiOCnOcp6pBDQIt1zyK+nxjJ3cA6TAgSDAPgx1Jf3hWg85NXUp7UIostH80y0OuwOCO+n7pilOP1ECz7NONJ4lvqttBeSn3LmQKld1jVhnev91gDLw+9HvC977601hkeWM2V5ezSL/zM+4l6SW24xe9nxt4y9JY+GiaWazlkAIXlvQsIA02ZeAZXBp+JxfO1Rf1d1RxB1uwt1iaGzASeUiyexOrtqSo+HRaBHDO+Alpq9puy7c7VlGW9G9oBVsqx05/p5+bM99+1tG8g9w1UPfkP/b56fZ6rdJHMECz+4bs8ZJLjqh5u1H2EZH3kczzWakcFeTZLzcm/a/V3VxlCH7YMDmsf7t/P3jYPZUtOTGbX6wqz7INH73IoWJszWWTIlaxZ7SvOLbWE+CDb46SkofV6OCTKtaGyomzaDAK7JL7htpG+wTWFRPNzL+0dwt0t4TAy3QXGeUOfFXXF07/8q4l4i+1K8QTWa2r0GBOwKdFZx9Y6djg6HcZGwTimyTJ6yyFID9GTOCQvDOS0hMF5vY6eDG/P5gvkgXPxNV55G1fPPX80vL+G/JgaUNvG1N7kqzFzWvYUwA+eY/Uo+7TerZ4n2lM0eY+wKdjE2ftVTCL7A2svAQpER7kG5/4hWVd+p/zuR64/MYJ/hmVSwCa7+PqhjOCWz5odX7gNz0zDpxcDm08a3OOnxP7I/OI1d98mDncNv7254G/GV7jmMU8e/QO2209pL/+C/W5DagxmA7sL8f3cdgL87jqZ0DkL/UwG6CTRd5oSQ/YBNSFIw/oeH9DyXCpbCMgApoENS8O5M5aOqmmz0LR18rd4/bnLXfb5Ew/Qn2vF+zfMX/+a8W9/x7z37N86hmALCDMhvp/aRB2i520Y6XMS9zFFmvYxXfdENiRh4nh8SSIS/IHHxnFlWx65lq1pysZQgSSVVgH5AuALwBxJxY9GJFLC9o0mlj1lzehTbzhnFqlEYfVRMYAzAKxDCAV/d7phYGFvqqdr0Mea3/59MqWRDfmiEVMi2jXYU4pyWphEmuqpQGoE3AkjuHEbAYJigzGWrr2ia59IyFFzkYOaNitpMlDYwNbPS/HME/p53jP7ffEN61qRbWy6T9jufiGSr/ZC/n5/5Ko/yn0cX9JPb/C+F0Zwlnv5MH4c6y/NxGRkWMBi26FMPw0HemYcTy97Lj+JZSM33+wxdwduv4O/ip4Xc09qLtlunnF5+efMl48k7Xtn6LaRi4vEthNp99VW0r6VEawX3hDl565L+I0FGtq2xdkmN6nSrK6fQwR9b1mDAMoSa1nknh2GrrKN0dRvqQ2ILc5ut7B7fmY28Pibf8L0t78m7A/cfZu4G1rZWCG14XTNKTJHYfPfhJHbzObRhNppvMXPB+b5jl0yfOI2XLmWR1ZCoMj3LUOXVP7GPgX6uCR6a32ol1HWHArkxNJTnbL4yrmd3y+Vo56rFSpbbfPXnPyuPg6tB7ON3IeJJoPB56wi6rXy98r1rd7QnfMBLV5/pi0bNozFuQ2b7pn4h2+/wLhtOad1wybJ3BXAU/mH+/mWEBaYX3w/n7DbfSES0c1zsA7rZ7oYaQ73xMM3jP23pOSZpht8GMrj/NAlgFGu+VBqutaIxohVxyPb8Zlx/LIJXLSBdpOI0ywql5s7Xt3vSrbA6zCyu/oL7OWvGB6Lv19zmbi4EKbvRZZ2Sm0wBCPHuKoFnFkSvwFsm2RDbJtlg7wKfAmFDXzK9FzAHbO+3mQlUdOoUoAc9mIw1mJ3F8L4217+7EFQ8ze/xr/8inB3zeH/9w2vX215ObX0CfYECfo0jQyOCQSTsPlaeRcm7sPEjFgupZx0P/se74/Y5HliWy6ypdRl3lhIXYCAIeSL8XWKXMe5MAwLEzgDSaomCj+4q1o2UDVgY07+LZkJUu+brDrS3lAVR/VSwEsHZBpsqd6GusF6n/efSeBNZgQnj0myATutEzooskiIYUwRn60lhJX3hLa5oGsfs9t9gau8/JJ1IvX2EZf9w904Sh/hx9xH3BPCMW/autJHbDfPaDeS8B2bFhMjbjjg7g+QPL5/schAz5Atfuxq3BZjLcbsMzC4GIbp62czc+yx7fjUdjwzDRfthP7ZOAUOd47vxpZvUuRr3zMby8XFr+Dyl8yXj5iuWrqLVGzmukbsIDqX1QIpVbLvPPjQRgApCxKSZwuzaVHLZbpDZv690zKmDJEpagGn6qF2+WjbRth+uTb83Izg8OZb/NuXxMMt/a//Oa9/a/n+9Y4773hVqWeU7WitYaOKmhQYoueIqAVmkOucbUlhgjRziaXF8Kzd8ZnbsTOGTNTm3jcMQV7n18HyKvpsQxG4DxP7MDPkwKeQB8wKKpn0sKd510ioBnN01YBAvS+Bpf5/DHds2fks9+mQOXepDXFC7SFCtpcqtze2sIJVWRRVdL5i+7lcHz5n0z2jbR/JuZ3DZkH6Cac9xTzDfCD6fckhWbMNOzbdU7rN52Ib0z6FJLZUAGa8z73HkeA/nPXXto9w1hHChDF3qz4Kluenis+tbbiykk1x0Q1sdpkJPBrmg8XPhpdTy7Uf2O5+wW73Bd32c/zlI9LO0HSRrku0TlUB8t6EuPTHk1/wh3qZrBqIJ8iU7DNmEh6bJIOjyf3nad+ge4qtjWybSOMiXRfZ7CLNNtFeGOxuh+k2OXB6I4Dwz7jUai4ebhn+6h9z/5cvufm+YRg2/Paw5Zs48DaMxYpxYx0mrfM5ImLTMqbInO1ipOsPuCjs70e24RftBZ/ZjidYrhAi1/2hxfayl/nd3GRLKekhXmZLqUBiiqHUiXMsXF0KSp8OjYqKOX/v3AD63GBo9fPq4+nt6n6h/pnUGOkZmjzoCcaTYg5be09tgKyOtYKHaTaBhmiSyYAzSNYRFue2bDefyLmx+QLXPVn2HFVmUbGrnI/4nEMifv8S7p5St6gOu6eEpiU5hxvld5j3MH94OL2uzn1MBT6/fh8hdn/X62c967sC8JiVRP9J0/FLt+XPbcMnLvLJ04nmk6fYyyekEJj3njevNny73/LPfOJvp3uePvuP8cnzfxHbPWV+9iumq5a0MbQZ6Hn+SABgZxagR0McQFg9cwDvE/3GEtoGE1vstCkbOV3WOkK+jikzSxkf51I7l7R7AYLF+3OZ3LuWMnFsrrocEPfzSzynr3/N+LdfcfeVZ+wtt3fiD1wDMVNKZUJ3HybeemmqjtETbcuj3edsN8+Z5jsOh++Y/S0uJXYYPml3PGu2XNomA7MmA78pW03EzA6gTOMK0HPSlGnTo0QIy+IHV4NwGuSkrHNlA1/YhgvXFED60jYL+JuluTvMqvnWf6H6B3Jc4+S9n1LkaGaZkgWdluWNH6ZMEh2LhUU0MXvFiXG7gLNb2SDlzULbQEqb7OH7TAYg3TOs3eLap6ukXZMPVgV4iAETRoiBGAb8fMc03zLN9znRe8umu8TajRTw3a+Ynoo/YHc40Ny9Ihy/LuDQMHyP93tiCoTQM/uj+Fh9xITOpIhL4lck4LxsgXa24cq1XJiWT1wntjHPPLsvNqQQmfee/o3HD4bvv7/g1/6e0bY8ffwPxMfs8X+Qu8cX0qjtBOh5cpX9uxp4sjNcbWRDNwXdwCVCgmEWifjcgseu5G9nV2Yt6hCiOQG/HAubbWdkKt3amMMcZEhkHDmlOIlS4PKqhMP9nLYQ89e/ZvjLf4/739wzHS1vXnXc+IZ9bnKmJK+ZM0uQypy9gfvouY8e01yx6x6Tos8BZAfwEZsCn7gNn7ZbHtuOrXF02FwTpO70GSQKJEn3TiLT0il9HVpQAzVAZpE+ZO0pQFP7ECposLGufL21olbR+qJDJf39rrovWIAefV1aY2njREiJPnoIwhSuHf/08UfUQkS/TgXsUTevB/YQtsGlrvh6tc0Oazsat5Xz+eJXmN0XoprJdWIFAOfz1vqZ5Pf46ZYQBKAXVm+e0rsd2+2n4g3YXoHbktxGpJyAGa4Zhxccj9+U8Mj4Eb7hy2uTt+ZpObdEPrzIpwXoafnMJj6/Gug6SYqPw0S4uWa88Xw7N/x2uuN7PxBtx6Orv8/09Avmxw63S1xeRa4u8oBok6XfraVrhAnMtIS+OCtKgm0Hs5WBUWgftldLert6wGfZuln729UgcIfNtUHtrRbvcAWD7W4rm7kM+PycHqD+5VcM/+z/zfDbb5gPgRd/0/L1fss3Mcq5m4/XnXXFf3Im4EiMCCBzQ8iDDFGlJCIxTIQw8Ng4/qy74okTEFgD4mQ4nS2l8ubkOnrexpFbP2U/cs8clw2cgsAPDRt0YLQGgOV4W0CbwhiDlcVUHShb+4k7hKVYL2Uczkl8SX2ua6qaGFNYeQPXy+baoBDQclzFZUC5yhqQ+mBSJKY2g1vSgbTtIy53X2Yw+BHbiz8nXXzGfPmoqIlMjDSj2Me4ccD4SRh7fo/3d3i/x4ceYxyN29I2V8X3022/ZLp8RGgbNnd3MLxh6r8RuXg4EkIGfj5iSCQ+ozGDqlInlKW9vGawsa7YxjwBdp0XOXYIxClyf9jyVQr81vd8M+1pmsdsr/4FhmefMu86zGO4uFjspBb/T3k/QmBlHwN5Ex2kd1NlUWgbCaau9hhRa4SIh4tqrX7P1/XB0NlQ9hXF/7MFtxWwx+4uCxj8czKCw9uXjL/5J8zffYW/u+fNX4789feP+a03TCRepYlerz967c183jlFRi9D3ylJEFvKx5lzHVOY2CXDn2+ueOI6HtmOX7kNO0SVEzD0ESZkn3GdLWPUE/gYfbGVSmRLKSgB1LLet6l/yNY7HRrZ6mfvUgvU7/UpcSSlxcamVj9pcFz997UuiYJSdlUxShicBs7Wyxr1JCAfj7YEzardlMFgbcd2+4yry78Qkojd4rZfElZBkmEZLk8DqQqRVAWhycF11ra03TPay78Qz099PP1beW7DawmPCqMER3/gartPsAacf+hBXhiNpBw022SSUscTY7nYebpHEIbEsJe9cD81fBMjb8PExfZz6YMuvuD4+Ipmt1hKdQ0r1ZB6AxdrqQdhcWBswmSPYCGiufy7UtNLxo1Z8irqmgCa32PY2SC+4S6y3QW6C7GZa68a2U/kvsF072Zr/iFWPNwyff1r/JvviId79n/5PV/99Y6v91v2yfCbOPO9P/LaD+V3Lm3LJZTrpap9PInZgHMXNG7HPO9xMfDMdVzYhufNlj9vL/mVcVzlgM0pGa6HjoDkjnwVZ74NA3PGNt74gX2cSUUxsKgW9B08NwDS79cqgbXt1MP1Pvb/uQqk39NjWL2CgQe9g6vY/rEAuJ4YLcYYQmbxqrVU7SkOSP9gHSk6yTQyPlvI5LGrsVi3w9kNTXsp++6LPy+ZRaHbij9+VhWtgiQzMS1keynnRMUrtqIN3fZzaC+JrQym3TjAvMePb/Af4R9eXps/MYJ/hj9u1iCwSvK3puHKWJ7YxKULbHZRJlftBuMcKcJ+aHkdLNdxZEiRx5tn2N2XpM0j5t2OpNIHS5F1CgvYsGtNCXwJcQlygFyE24f+XbBM7E+Xbghq+4d66URfgcMi03CLLYT6eeEspu0w7Vae78+0oRPZ9x3T7cThzuG9pZ+alQ8wsIQxpZg9eYTdNqWIdbucJP+0yL1dSuyMJDZf2IV12+VWXZjUOYCNKIBSBn00AAHWkgcF4mvZQ2tsloZlf9x8G1s1W00G4WzenCkLWBnAIiuW903Ymst7qP+W12H5t8Oww9HnJmrOU9vGWHxmIupjtcasLCuWbV1+H1JAT9NlKteVn1nblWLpmktp4NxWQB5rK3BnAXlWMopsCxGzJF+SxZ3cX75fNk/wmw6/aWh7C2FgHt8Q4yihD/5IzGwD8d8Sj7v0EUCwY2Fx1/If3VjvrJPjyCa6i4i73BGnGfYCAvcHx/3UcOsnmuaK3fYzNpvPxHusNdhWZJ1NI+d/Sft2S6CDS9krOI91VepFYyDkab05X0JreesPzQOliVtkXLBIv2tbCpzFOCf/uu3POr2PxzvmmyOHG8c0WvaDsP1qFr8unZZrrVBbhE1zwXbzTCbAYYAMYEjz2pTzscvXiZDhjmUQJfVBmcZLQMr75VO1QgAeBkU2+TqkwI0ygNXLeWsaLnOQZA3U6f3VLE553svqCUzGMZuGmUA0jtEEGmPw+WFHEsaYAga/qyF8l/1KAXuMxdns5WezdNFdYJqrEtQU29zsnYDA5W9ELyBuGAuAKX/DYnOdsN1T8f0sbCCpL6kCeDQcdEkq/wj/cGKG4VQRwkrKWd4XY7h0ge025KFKIgVhBfsBblNiH2aCsTTugq57ht902E3CVlZS2h9oAFTXGCYPdSuvsnBb/ZMXI9fuMxus2j/cnGGD67VJV+0bfrpMtouxfwSsnnB/zfzqNceXgbE33B9bbpNhn0JW/MSs/pH3SwANC/l6KVYxDY2TQZdCHzGJJ/TGNjxynfiG5yE7LNdfBZsDiT4Fhgyuqg2Np47p0/Vw66b5AjULuFyTzrDQAbpKKVBfr7R2qNVU3a9gIBDpUr6+J1PJ0SM2mVVNqx9x3fsU1UOKmZGzgIrldzLjJwHWNCQb8rWtwblNyRhw7gLbXOE329VAQz19S96ASjmj/FNrH2spnn7So1xCsyG0jdiuWEv0e+bpmhDGPCjS2vDh6d/y/NaA2Ln62eX+bgfs8oClXnO07FPgPk4c4ozrHmGaK+ZdJ2qBbqkP1q5tY2om8KnsW6/vxiaiFRu6sysPu8R27qGdyPo+zTpzJO8njMvjAefyXkL2Tz/niodbwttXzK9vmPeew13LTbBcJ19CmObqiln7Ih9ydoWex8GQLUeaUl9bI0Hjz9yWJ7Zhh6UzlCyPelC0T4FDklBZZRrPuW5kzdDD3JH3dnNLVUk8PPYsy/lqWIN4wGr4DBkE1s/zVc8TM8t3AYTftdQrVYBmBa2iWNMbVQrECuhRZnr+njEVTTHvbq2TrIFcJ5r2Cba5yr7fa0uIhYAiALTaS9VgrpyvjUjG20sZTMfM8guDWNdlW6l6CP0hS0Lfwdqu2OO8y75O63abyVtNm3CdJc5xsY3xjn1Wwz5pH2HbK1J7QWhsHtimE69wVsCv5gvo5z92qRJKCU1LxkhmxVbHaJdrQ+OW4ZDtDK6zmK6RvUTuGX7u2qCYQ7h5Q9gf6G8NN33Hq2TYZ1buIXrGGJZsjkzQUBWB9v/aOTu7wTU7CSWMkinw2HU8dRuemEZ8w20e+CTDnBVF+5S4Tb4oifZRlAKq0NFsgRW4y3lWr37vlLp2Oto97UjkVuc//qjXM9/+dEgES21QFbb87QDJSXeU+waT1VgaQr1+9I5kAiRT7kE7crWXapsdbfMI21yRNo9I1pU9Byz9xGLvkK3jSnCqo21csbMzdputV1wZTsvtBmL48CGRrj95BP8MS31dVEKnhW2b0+EvneeiDbgW8fWbR2J/ZLyHN1PD9ynwMgzMBtr2sRThzVYCLRqD686btYsXqHwMDXRNosvXF53WR03stK40Ge+7CJ1jA4OCAmQ2sKEza/8uPbeE2SMST1wj0s6faUMX3ny7NGzHxDRJcuYcjQTFKSsvB7gNKXCIM3dh4i7MJcW3MY4QesbxDeN0Qwg9W0z2fXbslAmMLQ2ySgyUCawSEG3QdAqux40waWU5lsRMl3+u6xQEVpafMnQuTMvWOHbGyfuFzeFUC8tPmAX5b5m192fAZFmqhGF1GNnYmYWZ7DBIUEPK3kIpy7CW8aD8NQ14iNWEfh1WqGCwzQCPdVuZHFcePIUBfLqShzAIUOMPDxhDjduy6Z6KTKsRaWczCpPPjSNx3pdET7lYiHe2dbt8Xz0L3+rDVtnkmuV9VPB+axouTcPOOLYurDz3wiCWMce+4cY77sKE6z6hbR/jMgCWGvHvKkBPAXvM2QuBNnNq6WJcEv/x6g+nyvtsJQHP01lloterTPF1ks9iGbP2DZfaYFupC6bb5iDLP3zjFu/fEA93zC9+x3QXGPqOabYM2UtrykDwhLD5hzwUehtGrv3AkCVVCUNKEe8PzL4nhB6XIi1GQH5bgcAFSAZIxZKmHhJpbahX8V/O02pbnWMq1z4Fc3QYqQ2my7Via12R3+2sK48NMvPC2KU2lKFfBYDnn4V8222+r2ATTVRf8iwVSwsYbDO4XjeCWhvq/kLDHRT8le+JNEtB4KbZ/aBHV20LYfxEjFIjNABK79OmgHP5/prNsoELI2RGcPB7UvTZ+iOC7TIYHHnXUPVHrQx0nXrk1cOiTa7l6h+uf873ARgZ9obbJMeiMR1NK4O0sXU5UyDXB3eO0ZMesHhgAYJiPtHPhcXVz4G0sBW1F6qZPUt90CHRKdAjYI+xC9jzc3qHq+fn/N1vGF8f2b+VIdFxdvRqlURaXdenFLmPIskeo/QRQ4pVz6WhWRL61aS4WDbla6oOmCZjKsVAICSKekizBXQV8BQ9p058dPNHd0Y9oHZRcs6aMuQFVn2F2sbUAV+qEKuXgL6OiQgWhihWGUSYCPhcB953NVXJp3j9SeDsu0AOPfdsto4QP8tO/D6bnfj5NcLwX/0NDXZb+YdLkGSKw3r4mT2Bu+6T5f6AZhyxocVOQwb269s7YIP7PcozzaqvWrMuOww7I7YK1iZSJA+JEsfZcZtT4fsYcG4DzUb2Be0y7FElAKzBnNXnP5ERVAdYidJBa8LDY0jsyrQ3gZpUYi0C+GimAPxsjL94/4bYH5i/+TXTt99z+M6XIVEPq+u3w+IyUKkqwIjYxhyC5D34QoELzPMdxjtiGri0GzamWSl0piSybwWB90QCYjdXPMPPAKtLbYjls4drPUrSMGr9Wmu79rK1eqC2jakVAysgOC9lPDa5bkWDkDnM+UelSwEfeaQC1RjVJebz9fww2eYuRp67gLUd1jS4ZpuD4q4EBM7EE3g4SDYxyn4jLQNluf+Gxu2IKeS+RJjAyTqsnwQQCkMeMAWs3dC4C0gffvxat8n7ifP3oa9jGeDZRcULkIIMkv1sOM6Ou+wfHkD8z92W2LTE1lR9/LJ/OK0PdV2oB0jvW2optVJCsfTIWiuA0p+uMwwSxiI2c+3SK6TgBQz5GVZ4+5I0HJi+/jXT3/4V44s75kPk9rrjLgjY3ucaoMQMoATCAcVirY++gLQYssXARAg9l0bCp0X5K9foKdsPTiljG8g+4zbvXVZD5CTe5cqk1WGRrlU/Xl13TFpA2eU263g4A6v9SU1+Kt87gy/V613ZKKWenNkfxaQ9dEJyU7LHeooPwurLY83KAVMGRZZgAinJ4MzZlqa9oG0uaJurbFW5XYG3kIdFJbx+8QYGUd3HSM48kv7BZo/hRFYrWit7jmzdqjXkY9afGME/w9KDXRNxG2O5sA2PbcsXLvLZo4HtLtJsIfU94eYl/vUrrl+0/PMY+fenW36nsq2LP2N+9BS/6ZgvHe1lFNnWReLxDp7sbAaCKWCwrhCF8jc5uMs+oLF1hJiITfsAwFHJu3p5rTZyZrmQr6SdGVTUZF/1Bl58/hK2NdiuLemdf3Cvv+hFtvX1r4lDz/Db77h92XDXd8zBcOMbYVFlX+DbLLs8BpFUvfIDs+1o28flwBqGa8bxLfN8TxNnnjdbHjsJgXqep/bKBlbwCCiWEyoTU3/gmvF3KrW3mAcjs9orpw6DO2cFcWWEZeoQG4jOGPF0BjqDgPhGm1XZmOsKyTDnKu+iYcIyGceEAQtH6xiTW/mXKhgMFL8/XSlP0S2A2wjQauVYqAMPrL7e7RNh5pkG3lcQo/h++v4FMQ74+Rbv+wLOOLdls/mU3dXfxzZXAiwD7eGepnfYw2vG4QXTdFP8Qo1xNHmjF7L0W72sPnSVgCSWjXZjLFvr+MR2fGZbnhjL1WbCdgKEpDgy7C0vb3a8nFr+eZy5DiOXuy/ZXvwZbvsl/ePHcAHdVtK+L7aL7FusYlhqRFzAHZDU764D12XAvxUP0HeF3KiE3RWLkofy71ZtY8i2MTbLvrNnuGurGtF1i/x7d/UHVwuMf/3vMn/3G9JwpP/rr3nzbcuruw1ztNwUdoSAtPuctD4mz32Y+X4+chNnohEug7MtIU6M4y3eH3Fx5lPXcWlbdrbh02bHlXXFlzsksYMAii+5enTNhAe1wRiTAWAeTsNZAAFgBebUDODW5q8zA1g3l8pCVMC3K+BdNSjK/4SluADZOxagL5Bw0TDbuPI+98TCDk5I/UoKDqfcQmagoA6HEjClyx9lmt9mRUaTFQNN+wROGjJYQODaQ5z5gJ9umf0983xf/samewbAdvOcpntO3DwibDbi6Xe8ZR5eCPPHH/JG74IYgwyP8t+L7xpS/YiVSFnRsAwEFcDf2YaNdVy4hissV9uR7VXeCAfDcAvcBt5cb/k2DOyJ7LbPRBK/+xX7S0fXSW3YZs9wUQyYitGjG7n0gPXXVoPd1WOOS40o1hAENB9Bw0VX/n75GJOhJOLxl0Ft9f90rbB7bNdhuu3Pk/wdPeNfSW0Ihz3Hv/6e7/+q5cXtlilaXgfLnrAMd1nO3WOa+X4SueeUB8iYZqV6SWngCgH3L9yGL7uLYt0k55GMHskg8G309CkQScL4S2GRjVbXWLVVsGkt6XQVcGMMJ4q1da3QoZECOGobo0BdrXYSQP+hakwBsCkl+tQw2Pza2Hz9DBPRCByltjd6yNVAzwJaCUsnZnupejBpjc3DZ0syC8mhcRs23Sd03TO67ecYmwc8D+rE4vtp5iNxeE2KQ7aPOVbhLh3b7afsLqWPUACyOeQ6MlzLEDpqKnhDm2Xh3n+4fYyx8uqaPCiqWZiq9KhVh49dYOvEZiVOiXAYGe/hxju+90de+p59CnyykToXWwONKfVho9Lvyv9zXSN+/GPXuqDvWR2IKOHZbhVa6qoeVWwhpG9omkSzBdsa3K4RhaEGSf6BVxoOuW/4LWG/p//dNS//puH17RVzNLyYG67TUhuA7LXfMKfATZy58WM+hxODSWBbnBEf/JRmuhhojeXCdnzRXvCp23CVX6tAYp/Ptz5FblMoyoS7MMsAqqoPp29Xye3I195zLN8arDm1elCCEzy0o3P554XJecLsrAfbqrpUMMqnyAEwJ/XgnBpKVIeZr5diHsKHzOCfi1+/kE1yb2YF+I1BzimVecuw6JLd7guazXPYPs9e+K4wgCEPklUxEIMMk098P5tGVEmbzWfCGGy6heXn94TpVnyyk8e6La1pMPbDWX/GXWKtwbnNewfRTR7+X5iWS9OsyFsxwjA6XnvHqxR5GQaisYWIFtuW1FaD5JNTLsTEFB7aQRSyiQ6RoxEeUMxe4Sd9Q5cVr1vbsLXruqDEKt1T6FIbyvaqwV1uRWXtnCg3Y4DgSfPwB9tX+O9/w/ibf8z84jtiP9B/d+T6G8fN3Y45WL4bW75KgevoS4Dk1sr5M6fIIcwc4lyCYIcUmY0ClxmmjQMpwqWxfNle8qv2MpOIZIDWA1OUIdFtBpwnBNt4EwYOYWZOUZTOp2oB1rYxpzCtPfleLiPvuG3Vc7CQU0AVIWum9+mqg+hiHoyfVrO6xzmtDQoVk0xlXRYJKWalW1sNkFusacQ2xmTmQzIkk7DG0XZPuNx9yWbzjLZ9zGb3S9LmcbZzEKW9DZHoLCbm/UYYM/tf+wFXhj9t95z24leCbdgcVt8f5HZ5sOSaSxLvPqd/7Gr/5BH88yyTD/JNls/vbMMT2/C08zx55kuAWgqBcNjj73re7JeQlzdhZPfoF7jtlxyvdviNxVzBdssDoGfX2arg6psT6UJiF2Wjt22FRTy2BhMdybl3ThABSPI21yDj6XIZBBZ225rVU08OrTOYrhPWX5Zy/SEn+PPXv2b6zT9l+O03+D5w/9Jwe7/hfmqYk2GfYJ9Bnikl7qM0Uvsws48zk7FcXf6Ki90vCaHn0H/PNN3mKbDniW141mx56jZss4fjVbZfmEgyta9Yfn0MjMkTSCtmQPG+gbLhqhm/QGHd+sonZwlykQ3bY9txaRqcgSsjwIHaP3T6L4O9rU102UvImlTYoQAxChu4S4aQJ2S7aESWlgGfjWlojBQ5ZT/YPM4vFwEWlhJFniGTOQlycIUZ7Owmy7/dIs9yWzRN83QDpzYRJgbivMfPb/HzXbaF0Cm9xdlOpKFXf0HcPJKJm58w4z0mesLwPfN0zTzfFw/jprnA5o279500m3GRkX/I0sl2PRlt8wbuiW14ZixPTGK3CbjWFFnT2C8NxO98z4HI0+1nuIu/R9w9Zbzc0GQQuMuhkVIbTFEJ1KxgUQ8A1uBsQoboMt9N1e00Kb32/1T/8OIF9y7FgG7o8jFVD4kEBE641ubasC3BDn+wFT3T3/4zxr/69xh/9z2+D9x9Z3h9u+XN3DIl2CNgjDJ1D1FkVRr+dBtnTHPFxfY5Mc4EPxDiiA8TMY08MY5ftJc8cRt21kmzhiu+4TXrtx4SxVwbiudnqQ3LUKhmZNehErrq2q0M4HNDImX97nKd0CGRDopgUQmsGKRpAYN7DCFZsI08J5sYXCM+oMkUBqM10tSZPCDS+iCsv+yBbNLqHLPGoUEvIJP5tn2Upd6XWLeVDdfJoMjEWOqF9TPGTzKd9/vsDXzPNN/h3I622dC2Vzi7odt+jt1+yrS7ILQNTX8k+j1j/+1K/mlth7UQoysbmo9hBKcYhAXLAvKoWmCTk6AvTcuVMWw3gfZSXEemIwx7yzRakRz6a6zZstt+xnb7mWxqN6bUhk1XK4lqZs9DADhUQ6OQ5Lz1J+qChYElQz5INGgY4WJFUqsEusz+c0bAngUEJtc9YfeYthNbiG7zB1UKpOHA9NU/o//3/z/0v7smDIk337b87uaCb3OwrDJ6Qma3q8//nALH4LkNE72xuOYSB6h2QuS7gW0yfNld8EmzoTWWp3aT+wa5XT0k6glFqaS1QX13NbQFFn6fO6kHpUeo6oW+N7BIhnUIfeoXvs2WRXWwrKqKasVAvQoQbBJ9svRJ2MGnQyJ5DqbcXvuFEoKmIHcGezQM6dRD3FXnXrGbcjs2m09pu+cS1pSDJB/Yo8Uqb2A+EP2BkP2B60wA9f20V39B7HbSQ4QRM1xD9Dk4asiDEY+zG2H82A3GfkS2AI7Ty6xufI0x5XzbGscVSIikFQA1zAbfB8becp0Sb/3IbZiIpqHrnhA2G9LG4DYi+1alofYIGhCnth4hrQGfU7DnnSvJtr7V46coUpZBUVEaZkawNSmDwFHk3y00O4dRFVFWCvyhwOA0DwIC/+af0P/Tf5f9Vwf8YHjzsuM3txd8H2UwuiewT770/aD9kmPODL+7ODOZZdDp3A5rG2Z/wPqZzzK5ZGcbvmwusiXEchCITYwCwZ67IJkd90H6E7WdS9laqgZMgJV1mzIwgWJrqIBNrSgCiny9Bn23eWgEFIWRq2rP6dBa11TVzEDiGGRfFHOdMxn8ObfKY0+SP2IwC9Ek18XT8FZr20V1aBqaVsKWG7eVcLjuGWb7nHAydKzzSIoFXRjkXI8j3vcPfD/b7rnYVWmtScIG9vPbbH+XGYHtBuMGPni1l1hrpca8o/9QQtfWujJsbPNeHWSYfJwarlPi+zjzNowY0wgQ1XT4zQYaQ9NE2StUPUHtCayDIv25eov/UG1I0WOg2B7qtapWyHSm/rjsU5VcYrpGwui7roC+KXjZO07j3ykQXMLghgPT3/4lx7/8LW+/Rnqyuwu+Om54lWvBbZq5zpYMIHVVQpkdQ5JA+l5D26BYfDm3xYeeEA5c5uHLlWv5or3gC7vhSq95GPqkfUPiOs3cRS+5Phnb0HDZOYbsCZwtIFAQWM/Xyg6mqhdL3VgDvaDHmiwdGsn3WQ2byV+fBlDr0sGQqqV9BrOLXcaKe7ywk0v/gIDBwQj7X/tTUwLjVGGYgWBji5oIonhZ44Spbjc5HO4XbDafyXm7+VR8gbOHeNlraC5JtoQgDFC8w93CBm6fkLbPSE1XMgnMnEMjowfbCGktfXzf+ydriJ9x2XJhXIK5WhsLIw4MKUTSNBGnyBAcYxJLAg/sVJ5qTZa5rQHWmgV8+kY7qxdfAffU5y/9ng6IZXq/ZpHqhWXx8voZV/SkaSQOB8J+j+8DYUjMo2OOljmJhEJlE8r6m1PIjVTIRcdmq4KugIuScCrshs7a0tBqONzCkMnNMw9lnO9aK//ESl4F52US9W2WqXwt5T75p+COqaS5Jzx/pwky0RDT8v7WjMA6jKreyP2Y9SAIyshgQkFglUVgG7nSm/xRf+c0KA4WmZamCEP2/BT/QOu2YBpi22JnMNlKgsr390EAzZlhSfoJz/Pc0s3b6n3WoQoCzq9WiPjZ0AP7JEOEhKFpLsEJuympFzfrJuxdDfi5Za28r+/098srpSiyELM0mKfrlCHmTp8TJ+xCfW//wBu6eLwj7vfMh4AfEtPoFqsYyOFwqaoNceUbHoDGdrgcQBAY8rDAY0i0Vu1i3FIbTt4TlZWrFFy4EeeHDdaYYrFQB0SWn9evOQubQv3CW9zqvNVhXgF+Oa0XafF3rmpAPvsgVZvc8juZvZElv8qCl8eeVmy/tYxL3xz1+asZfzXIowxhrRfvPmZqTz+SF4/fuAw29O/oEMqeBByVh5R8Yb0C4u1lXGbLf3xQ3PvW4sW/XHNVCgkCBvvZ4L1hiJY5xcx2amnyRq6+Ftdgft03vEsCXq/3uULo0o2B3vT0eC/XH6gGyCf3UX/tMmPiD1Qb4uE2+/rdEg5HpnuYR8swOoa42DSolcsyyJHeYQE3IqYCHpYBqCelSGMWz/DTYEY4Zc4pO0Zqw7vkkrC8/vXGTAd2TbUBqyXbbbVBq8Pgugz4CAtrsYrRuqFL+ojqsWefPl2TAnzJMisgXViG8i9oy1E9jzV4lXvm/N3Twcs6DVwHyy3WiAeo9BIPj6E6b0D9/GIU30+tFXr/2peoJ6CLQdKYozD81HNcbr/UJ/n8nW/ZT14r5lMF+pee/MSqLc4y2J8Q2bGyp63tVqB47QN+Drw5Zx3zvlWrilRJZGvrALO+Fi296RrsKY/PGcwZdlMK/kwX8nte0RMPd6U2+LuBYW+ZR8kZ6ZOhJ+aw6Xjmmi6fqx1CQAB+siR5eTKxkIh2tuHStiuLJlBFTrW3yH9DAdW6dpyeT6dsPh3qv8sf/H3gTV0rzll86LH5Q31oIBZShFoDkHudxEN7ixrsMRnCOn1uKQmzr/YBVS9xCYnLWQO2leu53WCt7BHUF3jFBq5B4NXfCfk474rCUc73hwDOQqrwwEZuYxqM/QgChHXLxvt9Nzs53+oV41IfJmQ4p/ufEqjpHl6nf8xSMHj1WM40GCaBs7YMKl2lWa5VJ9prwrofMeceXPDSP0RfwLXf90rzIB7Ad29I80i4u2V4mzgeWqbZcj817BGyWUipWLfMaf0ahPzzQgxDz11bjmOQwUebMQfNIzp9T/UI1eB77UmmMnjV3JEfXgoCl89Zg8B15sM5VWKNX5ySU2rrGHnctbIplY9FbUwqdlK2whxqhTRo3an3Fdle6kfaOhosyYgygezXbm1H01wUOwes1Il3WaWpLQQs18Hys9wbqIrRWFfYw/IL+eM7epafuv5kDfEzLmuyHDezK3YY2iYWWXSYE+ZuwBxGjteJb4Plu/nIbfRE27Lpnok/cJv9u3LQy6ZjNZV7H9pfT+RspiGGxq4MqXWTK1/nzTGpsEiacqE/2dDBqvFsmsUH9Ode8f4N/vW3xOHA/M1fM714S38tG7r9vuHt1HCbpRPXKfB9GLmPM0PyfDsdeOUHRiMFQSZxI8f+e2Z/ZBpvMHFih/gCP3EbHtmOx7YVz93MBu6MyR5ei2RalzZv+hpH48BQpl/leeSmcf09ViBQCQBQoGcFRC9hM1QfP2bVF2KXASatr8ruKSBhkkbNIgzAZFIuig9PUW2ibGYF2+ZSAOC88YJzm7b8jMJYZFrzfF82iV37GICue1qm2/L7AUaRe+tUH2Czef4AGJLpvRrBxwJ+fcg6PVN1I6de2zuTimQrzImwP+D3M/eHLd+nwNe+5+Xc4+yWpnlM7Hb43UX2B5b6UPt31auEOaQ1609rQ9NAjInZsQLdT5faxmysK0ykUwBSzgObWaaphL6oWsC4JN7huqkr7+OHh2392BXefMv88ivSPDJ9/Tccv75l/9owj47b+44770RalRK3KfAqThLmkDyv/cDrueeYQeBkHDF5pnlPDBPzfIdNnha4MI5Ps1LgsW0KQLoAKAsTWBmFCibVdaAxtoBAGrRSQhkxa1BIzzuz3qRZI2FwCkirFcQSFHkmNNLIv3O2MQoG66UnRPUPl3PfsbAMdc15g6uP257URPHGjaRkH7DuBbTYFM/NprkUpmVzKXLvrBo4Xcna4gvMfCCFQdh+YSzXPGc7YRhvP1/uD7GNaQHT3xD8odyntZusFpDN2zSJZ9vHr4eb2fJ6GbHyaCtAIEWIU2IeLfcHSft+FQ1vw0jbPmWzeU7bPSNstuKfVwGuayYwTF56hCk8rA3l33t66IUV7CWMMvsQbirG3ymgqJZS+piKN7AzGfDRB+hJ80hyDWb7d9jaZYWAf/U74jQy/e4r7n4z8PZVi/eGm2PHbQX27JPnJmjYSuDaj9yGkTEGZhK9SRhs9gL2hDCQkNdni+F5u+Op2/DItiUEUJeGz0353B5KboEvm8X1pin3anmrU5f/4h/Lcr2p+zqgMM61f1C/bx1qSwDZsgl3WTmgq7aPyX+02owuzEAFqS5tK+E4+T5jSvgVA/ghQyhlhqB6/S1/yq6yBlwOTVIZpmsuS/BT3UsAK3/g4h/u99la6igDvdxHpBRKH1FqTWYG+vHNIvfOHsLaR2jOQUwfzvpLhGx3uPQfKzD4ZLCsy8+GeZQ9wNBbblPgGD2zMTRuS9NcSmjeCRYJiwVEiNkj/z3n/2m/IcnpDy2lXBK2eWfELu8U7FHGueaOOJtomljVBgWl8v4l+Az2/B2pBTKZJLx9yfzd3+BvXhGHnvF3L7n528Sb6w0+WF4NHXsoIPC+yhmZ8+d3YWKKAU/iPsw5FM5CSsTM9APoEjx3Gz5vdzyyXbHZggUA1p5BgiNjqQ1zPGcVk4HYk7a1MOiMoeX9NjF1HyF2Pwvrt9j/VGD+yt+1AoNrdm8gEYw8/i5Z2Q85u8pM8USGAv68nxksQM+iXFsPiRY1UXICENs8KHXugrZ9JNf0E1XRaVBcyQvIobFxFRDnsk3VUxkoZ/s5O/VSc/xYblfqgt1i2yuC+YhhsmmA9E428GogWCk6QIbIYU6kAEOwxfpsH2aMbbFuQ2xbQiP3LYBxbROTSn3X7+kSIsr6saQo7GP5XMOzIiFOtMCVa7MdSrPqHV29R8Kws4lNE2iamOvDyR+KnjQN8rpPg7CydZjs3Eexg9M8EG5eysB4Hgl318wvv8HfvCVNnsN3npffdLzcb5mS4SbYbM8gff0hh7UNUb7WUEe1cdlHz5Di4heOx/s7vL/HpcRT2/BZs+PKtaLcydeiSYdNLOoNrUPHbDXRR1/saEKK1T5iYQTbtJCdLMugCCjYggK+tR84sOopasWAvodqS3eaL6ArnGAfWtMAURdGwwDFTiqm84qBOifBJsTyVxWt0YOxRNuWnqWQ0WzDubPIuo34ArtLbCMqRFEWWaKzD3MGQigKAPEE173GhpjVAMZtCU0rYLLiGTl40mTSGs2Gh6jBT19/YgT/jEu9ky5tyyPbssuSTpU+xinRHyIxwvWLlt/EkRdzD80l2+4Jl5d/XkAe9e/adLDt1iFx+h7rsF4Bn2WzZ+hy2mfaWCnmTftg0lBLPElR5MTWrabBupThvAMJpjhJ9l08QDPYUzdqSpn/O5rOhTffMX31z5hfvyD1PeOLO26/g9vrjjmIfFYSfSM9ie/DyLfzgbsw0UfPyzBC+5hH2+cA+DDi5wPTeCsX/tDziW25ci0XtuHz5oIv3KYAwDsMOy1uxmafPymEMw8bmsZYbH4TNUBOG7mxYhjp667+XLqJqkOfdpX/qC5lHOrmTD8nS7VDUkZJzUDKF/fqoVqlgbIw/wrYY+W4a4w0cmR2j24+lfUnXlCJ2iICKKboBdwxDba9WgKb8jKawglF6i2+n7J5m6a3zH5fgqTa9lH293mG23wqhddajJ/w4xuOh98Q45SnfZds2scPGIGyGdSQn8X/+EOXgmB6XulreGUMjxvPppHXxA9JWCdvE6+Gjt/6A19N97z2A93uS7qLXzFdXjFdbOCCFQhc/wPW0s74kNnTNiLNjtEwNdUcNa6B2VIboIQb1Rd/WPwjd1h2xtCauAp7cTmURjZ3VV0JXjZ2fwcrzQNpGvEvv2L66i+ZX3xPHCb6FyM33zfc3G2Yg+Xt3HCdDLdJwJ5XceJV6Ln1Uhte+YHBOJr2qTRImeExz/fEMNImz6duw6Vri6TzU9utvHf13Oxz46a+olOKogiJayC4zUAwUIZFQJFL+fx1c1KjNX1YZJuWS9tUPmIZrMcu4RtkRnC+GwXwFQCu7WNCAldqhCGaxC4PvQB2uBKeaZOBCF4B7Vx3ymTfqI94yp7ePACCrV2sG4xtaJrHi3WM1Ybp/Cpy7+ktIUu+QzhW993SdZ/QXf4FdE+kpvgRs/8uewKL3BvyZs9taNonAghBef9TuluxmH/qSqSzU3bdfHdGQdTlZzHC8dDINc07vokzt2Fi9+hTdhd/Rrv9gmG3E2LBGaaf1AFhAily977AuPcNeXUD3gAXtimMtpYaNMgDCAxXxtKZUPoG0PqgPcMa7Pm7YP3Fwy3x/po0Dcwvf8f4N/+c4cWeMCTu3zjeXO+4HjrmZLiNhusM8kxEbsLMmzAUP843fuCeiDWyyTTIZkmS4Wea5PnEdeLjn/3CP3dbrs5s4BXg0VDKmVDsIOoeofgBm7ztqY+N6v50aFzbjVzY5gf9wjtMVSsWsFdsY3KfmYdFp4xFXUMUtmCXEpNJgPgFD65hjqKumFMUEDvlwKhqc6eMpGS0RqRiLSUbUmG2uuz3Z0xD0+zKMLdpn2DUOqayl1IJp/Uzdlbf4jH3ETfM870Aya5b9RG2e7r0ETEQp7fM0xtiHAvw3DRPhE1XMYHsmQ3rxy5hZtUKPbMa3nlvGHvLPCbu+o7rOLOPHtdc0nVPaLtnTI3L4YwPGX+TT0xONpK1bczpxjLE5XftO1jDMXk5711baoOGG+mQVI+5nbFsbaRZ2caYvJ+wxTIrRQnbBkjDAfORPuJpHiAECYd8+RXx/po4jfjXLzn+7TX714YwG+7uWl4fNtx4xwTsU+I227eohdSbMAjwEgPXfuA+SUCiwYBxYo+EIRFpU+Sp6yTY2TZ80V7wi2bLLg9mYAGBxTImZFsa6R+OaeYYfGW1Up0/GehtTvpWU4E3dbib9g3an26tW4LqzDr/obaJ0d6mJgg9WDo4zl9OKdGbSJ+c+B6nUBQPqrzyMRFSODvoqMGeWMCezOQ3Yj3niuJQHlFrLClt5LrfPmHTPaVpHwswm8OflAmcTgYMJmcMyEB5LyQq3Y8oELx5ziqQcj5IlfZ7AFEmIuCSba9I22cwf+Qg+XQvn4Xz+oop4G9PBv4xGlJIzKPhECzXUYaZx+hpNk9w7VOmzYaYw2Z1xQiTl3+q9jsdFDkjQdUhLtYQWXX/IPA7pcCFcTxvttk7fPGjBzmudnpdArY2lEwi11aE6BBIIUjPkGtDigELhHkUINg67O5SwGBlfruKeZn3PNJ3BOJwIN69IRxuxRf67g3+9Uv8zS1xCow3nvs3jv19wxwabvoLXnjHdbFu8aVnmFPkLk7choljlHyg+zBzTAFfZjUmq0gMpIBLkUujhELHZ+2Oz5tdsX90LFkjOkCua4OG1s4pFssYZR3rjt5RM+x5kAelYK760SuL911DIt0P6v5Wjoe1xYf+vF71cFuyBQKzjXmf5LEZHY8pMQEpD8QSCyt4HZ6rxxd4E2T4YLwMirNnvSr7rG1p3IZQqQdsHig3OZOk3TyXzKKMS8TcB0S0n8iKQT9ni6l9VgnJMeWaS2zyJbRW/IWd9B/ZWioljzMNbC6Jm0fvD2f+ketPQPDPtIothFVmRQ5GaRNKLowRxt4wj5a7vuN1GOlN4mLzjO3mGW33nHmzIbUG2y7+XSXxu7KFKGy/95i1qy9naiFWu8FFqkL1vVTAqhrkWd13ufgvQXEK9oCCwOdfnxR8CfT4fSyd0qU5gz3f/o7pxVvCFOmv4f5ty35smYPhLjgJh0uRnsB9nLkLE/dRvHOCbXly+SseXf0LhHBkf/gdx1m932aujOWTZsPjHAL1ieskkA2bN0gLW0YsFCjgyWkzU5gcBcxf5F4xA6phJSOx2Lzx0w1da+XCuRjryy0fSEVSImQwWBh9hrYqmjGZVVDcu9ZDawgBeFpjGastoM0sAw2Ly3Pg3A2YSkKphbfBWvH7NMoEdpuHyb36UUHg6AurN4SeEHoAuk4C5xRcxm2zlEPuz89vM3B8oGuf5HC6p5kF7IvEP4bhZNr+4Ru6Uy9X/agpvq1N4u1nk3j7DZGxl6nytR+49SN9ijzqZHM7b1r8xgoWVhj5D/9uzQJ+0LDZpT40TSI5I699NRhaqQbOqAXK8yvPZwl86Wxc/MJz02icKY1l2dQp0PN7HhKpOiDNo4A9X3/N8GLAD7B/KyDw27EtYI96f04I0+bWT9yHSfx7TWK7ecZu9zkxTiUwMsaZhOfSOD5tdzxz0tB+4tpcG85fNEPKPsFJwuHqJq28ptXEHZaL25hZYuV5ksrxpbYQwuxryvu1M4u8e/F3X4PA6gd8DgRu3cIUiJkxZo34oGuTR6JYYLT5vIkmMRpRCGAegiL1q6NshHjqAZpBFtlwXVX+4WvVwNmVQ94UBBYmyiLhdo1syMLuEjcOmPlAmN8Sw7hSDEiD7rB2K56jgKvYwh/jH67P/rQEy+Z8sRYptwzCrplmy11wXKeUveciz9onNN1zzPY5ftNi7DIcPrfey/bT60n9u+n8wCYluQ7sMqNH2cCwlnaqDU4tYdfBMWh9yEBwzBu7+cMDdc6teP+G+eXvhN0zHPAvvuP+N/fcvmzw3vL20PFqaLlOpnhxal2YkgS27XOwyxADhxRp2sdsNp8Iy8n3+NAXG6kL4/i82fGs2ZYsgWe2yX77ah9FkY9rYrjaTShzCDhh/C31oc4SWN3mRIapCqKtabBkv3DrCvCkm27tYyRXQGpDDfwWhcAZe6moIbNACBby355IMiQyDc4GARGNkXRxc6JwyEuP+hrcKD8zrpJkiwdf4y5EVZRrRj1QTs5VnsBhSfeG0kt43+PDgEuBptnRto9FCdA9WYM8QAwj83xHSl6ClOzz0sMoKEU1TP6QlWJYaTEVANO12rjXPV00TKPF2sToLfdxZjbQuR1dK8nnCvLUfUPN7pOP72YEa9ZAfTE6BXpA+ghnTBkSaRhUzSLtqtrQ2Vh6GlOr31eTLL/4gM6DsP1qUOeHloZd9gexfBgOEDz+7Uv8y6+ZX70mzZ7+xcirrzuu7zfM0XDnXRkYK0NX64IOd/vo2WfFwD4Fou3YtI8re5hQgMuNsava8Ilr+cy0pTaoFQ1UobJ5YDzk4fGYQgFQH4ZHAqauE8tqTvq4TQadukpJdJnDr52RIe8yJFrUAfWQSPc851ZNLpmMwSW5RigIdDAyKLLJEKP4zQuB5vxag8GJc9ZtxVrKduW672wn4W7t4yL3Nm57trsvYEzF8qttYMrfsVtor0jthTCH/VhYfilb0GkdMHYLragUo/kIraaG2r2jvtRvw6laNEZDmBMxWqZkZKiQWaPObWTPZC3RLv16iNCyKAZ+SG3vcg5JWSdqgZgEoGut45HtysDhgcoQGUYu4dMV+eykrylgsHUQPDFbRGi4ZIwB7OGddlNpHgspJR5uCW9fEu5uiNNEuL2j/+7I4UaGQvv7DS/329VQ6Dp5btOSnTPnHl9zgY7RM6hvbwr4TIQ6XTGMtKQKb2h45rZ8ZjuujF1qQ+4769qgxJJj8ByjF/A0BeYTogksYHCd5wBSG9QeaqUwrL5WoonFsMtgdVddj5ZQWVP2HfX7Wi/tgUCyBXbJZi/0HEDtcq4Askeq8YbTpWHUVBVBFAMPFcnWOAmZNa5cXqxt0ZBq8RB/XJRFqemIbbvC0cprqde+KFZRIQ+AoGYeO8jYhgTNWSjWUh7bSL8Q25ZgPj43p23eUYw/YkXz+7/P3/f62YFgqDY+1QSkYFhZIhFmg58No7cMyWOwkmDqtgJIqT9POTjXf+Mcu0++f+ZieGYTeHohW/kg6nM4kfToczu3HqSKF0+CnN6pm7rf84qHu0WqcbgjHI7Mh0iYE2PvGGfHcXZMVTjcbfZjfpttIfZhZiZhjDQLIYjNgA+jbOaSx+aNbu2fV/sW1ZPwBWDJxdBEAV+NJWBxKuVIC8NvCZyJhfFXc1CLRBxTpCRzjMwuEJNM6Kckf8thINki1daJ/cRyhy4asAu7DyLra7ZhivKmzlE3rGt2wnLbk43gOwDT00Co02MwRS9SRVjbP1TNQ/n+vM9N1rBir1qVX2XfL5V7u3GQaf+8gDfOdmLgrh6hbpt9g5fbVI/ubKP5U9bpabjyNqqC+gTokX8Twg6fkQR6aztoZFKfrHnH2SjrXQDwhyzdvJQhhFn8HnWd84M7xyRUzKw0bZAld7+/IVGaBwlxON6RpoF4uCfsJ6YjhFk2yYO32fvTCLMnBW6TsGtuw8h9EGuIKQnDJKVICAMhzoQwFRC4SbBxixRemdFd1VjVy6Xsm2ksE1HOXxMLaCM2EAuTuwZ31GdwBfhkEMXmTVXtS6j3E4x+rWF1qdQtecG05pPpuqKrCsnQWVGv6AppAXvCmX+n6xyj50PWasNTHSe6uVA7CKDIvVMV7KJ1Qr1bnevW91mGSwICl2l+btTFuuac/99HGu/k96U8jMLXeMfNgzD4Qw71nMq1gRxIkf0Of4AN8FN9P5cH4FeMKH3UCjRu8gD8dOmwFNYqlDPYUX6AvroGfOSQKHpif4DopS7cvSG8fUWcJvzdgelomSaLD5bRW/q0eALvk/QMWgvuw8x9VhHNCJPVpij1IIoVRAwjiYBLiY1bWD3nswTe77Nv8yBlNSQ6qSv6s1jVDGA9IPoRDXwBpM8w+2T4c/73dOB97vul59BhaL3xZAmMsWh05LvWGX9Jo1YQi8RTbab4AQC2SL6LNPNhToD0BtsFxIlRWDy6cTOOoIEw1hVpp0meFGUjeEq2+JAlj+0MyMcP19eQDEGrirHluQEPgJTyO2fAnvcFkKdosHoinz7fJEFxRcGWlQKn611s0gflVUHgDPKkEGAaBSkK/iEgHCvFUWENeuk/pkHUAcOhyL399TX+biBMkWFv6UfHEAQw69MyMFb2fp+Z7VIbhIV3jNJHZC47IU6QYraLmUlEXErsXMeFE8BV+4YCyNR2CqfWCik96Ls1R6B8TlUPCmtu3Yc+OCfNIt9+YPlQDY+h3ltUX1cDZViOmZByjdB6lPL7ne1g1ALAGUNMS8ClMaYMjxdKzLvrpQYany6bJwoxhdU5UDJJfmhYUzIGfDmfrXWkVGUV1L1BJpLo58a68gR+b0Sokm+ifqTVAP3kONAlgJtZLqu6t0vKJa7u3hqSO9+JhMhZV5ZTRaKuek6+roeRRokL1lXBlGkZJOtxZ5bjSfF9cQuKUgMUa5jy8N5lLrzWiXnE5PqQFAiuMImkVlS574iHW/zNa8LtLSlE5pue8R76vcN7Qz81DNGKnRyi9OsJRemnw5qYVX/7MDNkpcBcXuu05NQQ8jmfgCABoLblkWtpceX8KO9BZRMzpcViTvv/U1KJkrOcMQ/OHsOiMKH6vOQJsKgGCgOYZaB32tc8ZAAvQPC5PZH2DkpWw6hVDEwV+xjEas4ZIca9LzOhfm75lUYVybqU5KQ+zFob1GaqBDHah9ZSQTG6GCsQOKxqhNynXmtzrUh+zSA+ud0CEn+c7ZHh74YRzJ8YwT9u2cyI2hqZoBY7zFk2cWNvOR4ch6Hlxjfc+BHrduy2X7DdPMduPsVvGkwrE6+mWRfXEFPx9lvAnvMyDV3GksPnKkZwCc+piiGhBB21xhFMLFMtXfXk95QNAvIc9WNSyUb27UnD4aNTPNNwKECPf/kV/s33sqF7fc3+64n9W4efDbf7jldDx3X2BP4mTnzte669SLde+p49FEuC1jbMvuf2/m8IYWQa30Ic2CLg15Nmk20h2vLe1uy6Dtjp65EMU57cBSw7Es6a4ok1pcgRYRTFJEEemvobWZo9r0yYBGRTeWcMNoMacwbnttYxpcjOupX3rBblnlRYF5BB6lCxAqMtrB8Ju8hAT8oXuZTEIzEt4VmB+J6G7BxsGqWIpIgPPS4n7gZ/kPcgOki5aIKEusEKCCZ6kXrPtwsbOI4iBXM7nNvRdc/oLn6F6Z6i6Z1mv8eq3DuONM0FMQba5pHIPi5/JRu4+QDJ4+ehCnj4eCTVVh9rX79lkLAAwertdzw03KYo1iVJAoi69glx8wi/saSNwTYnwQPZ97P+upZ26qo3dashTuUd/gCoT4HOWK6chJice+8Lq4fztWH9YHPjln1AP7Y2pOFAuHsDMeBvXuBf/g5/c02aJqbXB+5fiEJAfT9fTi23COPv+zjzld9z48Xr8yaM3BMxpi3MsxAGjv1LUpwJsWeTxCZj4xzPiiew+IVfGccuy6pPfbp3GHY4JpPKuWqjoXW2NI1z1tLphk/TfmNu2LVxB2jV6DFJ8Mqch0Sj9ctxlgwdqQyFhOVjxNc1swAdeYOmtSFv6gJ2vRFNiw/onGtr8S488e5aMeALbr3e5K7ewxOwx1q3BEnapoQ1rDZdUaqV8Yvfnko5/XTLPF3jsyWEJHw/A6DrPhE/cijsQPUJjXHMLMPLAgRZt1nYyPp4UyDGmRCXhu6nr0U5cQ6sWw2UowyRw2wYvZMwkiw7DMaIR+nF54TdJX5j6Sr5pv6bwnlQp+4xZEC4/G6MRqTfZTMcHvzbWcenzW7xjSzS5rRm9lQbuhgNzqXcMyze4TokSpNspmO7wV4++XGvZraDSfNY6ku4eyMD4xAIb18xvXjJdD0QZzjcGG7edNwcO6ZouQmWVylym2Wdr8PEi/koXp8psI+eY4okI056hkZUAsO12Aklz6WxdBn4+jRLOh9ndt2VcTzJ51tAkr4DMgxw6YQRVQEjIMw3IoXZo1kC/h3nk6qIytfVxq68P4lqUJQfV8qM3nzeFkAooX4ND1RE7wKDYT2QluckzOQm2mxdkTLbxxRf0CUQCs6pcXTgK3YQjQS65PPVuk0ZiJTbV0GzOigy452ANrkv0F5Y76/dPF9saMKAPbyWR5OlnOot6Nwlrn0qcm/rMPMREwbCdCgb/Q9ZMU5imRM95F5w2ayfgjxyrBBhFu0G1iKMvxgwONr2kjZ7J4dWg6j1b0EwCwgc4oL8V44t8rdO+okUwc0BN2cQJb+WMcrA9NK1fNlerFREE+IRi+GB3Vy5XyXQZNPiOM2keSLNEgbNPGKDx7QbzJA30jXhJOa9RyajlH5jGkhZ/h3u3hL3+wL2HF4lDncO71vuj+1qD3GbAtfRcxdnAon7OHHjR7k+p0gfQ5F7Q94zJ4/390CiS2S5d8vWNvyiveBXzSVXmU2ntloOYc2S+wEFe4YYVuBSOQ5yuW4qgCTmmuLL5P2EfFCx+xTkaSslkXg6mwWcZgGOXbXnOWcppUtrRLGcy+exiybXEN0jiVrgwrTMLkAQhrI3kWjIFnNiD6O2Ui6z/mL+fy3/tsV6TgEeAX7lXFXF4BWuEysXHRzUjPaVPUQYVnsOAOcuSpCUdXnwZB0ESPn24h2+xTaXOO1t22xX87ErjJBstiCaikUTGQzXf/L6Z39pI0N87y1+EDLaBMyEss/v3GYhmzTmoWIg5T6C3DNUtUFYwGZVK7yHNBvsKEO0oOHecSIlz9P2ii/chs5Y+iTWJ0P21VXW+c4kUU26uCKXpABp8qR2ghCIzoFrsNGfuWKsVwo6DMoWM/NE7HvSNJFCJBxGxhvPsLeEGYbecbvvuJ8apiSWGq9S4jZ5AvLxbRAVYUB69vswFeWfWD3Je5DQN0d6J5vkXLowTvAX0/FZu+NXrdQGHZTo/l2tIPYZdFYV0SHOK2JZrPYJahGlX+u5BJn8p+QeFs9fDYhsMlCv4ZBq/6ZqgTr/4VR1CEsYNZzvPQOm2idJQHqfv9fZbC3n5DV0uaaFFIlmPSDXz/Q6GRGlndYHTCRFn3v2qSh+bSaHaNCscxdFYdS0T9EsEgVpIQ+FK1uIsoeolMo6SNYwattcQQw0h/vSJ6QwFIKJcVtitp4I5uMHyH8XYXEfyYf7g6w/DiC4mpCIHHcBRsNsGI9iCXE/NbyKibd+pNs85+Lil7Tdc9LukyL7dpXsWzdqdcjLKRAsn8tHLdI24wT1KHiZItabOQnjaExTvHomZaLkk3dpBBagZ5F9K5glt40hyQR+HkjzhuQaYi9+Xh8C+KgPsL95sZi1f/s1882xWEHcvG656zvmYHgzt3wfpUD3BL72R/52vOc2F+fJtjy6+guuLv+MECb64QXDcE0IPTF5bJx5nL27Ouv4xG14ajdsrSteertKHqUXKwVUQlwanSlf1PZJWFyH5BmDzwVNLhoSTBVLca7Pt5SbO4chYHIRFwC5MZYxOoJLzLnctrgCCjsjAHQd5lAYiyzyG4c2V2vwasogcC2PrSUmOn2sLzrL414ePyRISQplnMtmwdou2zA0GBPKYWrC8IAFlsKAn94IuOMPmcE9FWlH0+zotp/D5S+ZLx/R9Ee4/x3T8Zvy91IKudAjHsLbL/FXz0jW0hwcTG/LkER+R7nZH1cB1ZutVgvUU25rk3hwjZYYE4e+4TrN3IeZaByNu2S7/ZT58oq0U9uYk41cBnpqEEc3da7a1P3QelgfZJK6zTIuVQtoA1melwLBlZ3A6n6DhEKVIVGewMd5xPzE2qCAj6Z6+zffSoJvCISbN0wvrhlvPGE2DHvDm+sNd0PLFC13uYm7Tp6JyFd+z29zbQhAsC3bzedsNxL+MwzXzPMdMc0YEldYnuXBUGMsz9yWT7IncGcsV8ZyxeKnGTB5wALkDV/AMRn5vrWGOVmCSbSZWaRtgDZ5U27szg5YAGvsymOPmDd+ggkwGwuJ3MzFhZmMlfpUNXG7vNFyCPN0zkMiWA+KpjwoWgIrHj46lwEuDGIRUb+HP+J9roOXqP/pz1UlUFnGkDxx3jNPbxint4RwLH7DXfdMZF/tU/HqI28Ac/DkNF0T4yRDou457faLYkNRQOhK6hkzG/RDV1qZe8iq2U+1Csd7Q5hhHkVNtE+yGTgGkZR1m8+ZHz3FbzoZFFWbJt3AhbjI8HQ5m68FWiPOsIVNVB/GhfWQUiBETyLwyO147jZ0xpTEarU5wpB9gpcNXXn+53Cy7PMX5xFLHv7mwBd5MrWawC/ALwjLr5J7h8Md4e4t4faONHum24nDa8PhrsF7w2FoeTO23AS5Vl+nyHWauYuePga+mw98Ox84JgElMC1t+5SmvSTGmXm+l+MrJVrgsW35vN2VAJznbssz01Y+qKbUhj4ZghFVAvkc1FWGJ9YKI1gBY0uxkdEAmDqJvFw/8yapDhV7FzNYz9uQEn0eAImyiLIZV3D4lGRyej2xJhXFANSMQVN6Yvmbstn01VDRJ1XeLCBwRSpes96yHYT6hzt3SdM9WSym2qsVq0aZO8larJ8x85E4vSXFQexjKsm31Icn2N2Xi9x7vCX6t9k2alysoywCOm+e4C8fkayjPQDDmwyGfnhYXIxzUVGpPYayt+qleRAKuCkY7FJijoYxBoxpadvHdN1TeW0ac9YfuB4aQdU3rN74VP5OjAoEe2E4ZXa19HiimnnqLvml29Jh6HPN6lNgMhFnmlwbKIG58twBDCnE3C9EcJE4TWLngLD+avn3CuzNrOE4HKQ+hFDAntgPpBiJ/VzAnhiF7Xd9v+F+apiTYR8N1ydgz5swFF/eaz9wEyYGo0ethB03pkWCIntsCnSZTPK83fKL9oJHtmNrHc9My7M8NF4BqNQ9eG1BEcugFwQg1UA4Pa9D3q/5zBBMyqjVEymDPUCxAVSgaWvEvxnIeQ+L3Lu2hFAQuDNry5jOxhUBYBUFkWrbGCsXuaRqQ0tvHJNtmJMFR/EQ97nu+iTPLbczq3NBnlq+LmEf2M+p53exmsrhT6a5yi9EBmL8RO0nDtJfpDA8yBhomgv5mDMLSq2pBsopeZoWnH0CmycFAE5NJ3/jY8REYSQlI7UoK1fJe5V6YKQ+sDqon5LBe/k3TVaA4Pw6BxLWdiS3kbB6x4MaEUttkOVcBQQbxR1MdXuDmRNuTlg/M+f6kJLsHJ+4ji9tSwdcY5jSTEgJm2tMB2xtEsuYB0BwIk4R46b8h7PdXAZ3C2tavZ+nafV5HCbiFEgh4YfIfJDeSoHf+8MF+6lhiqIevM3qwYCwf2+j55CDXN/GkVs/cYhzCX+TgbEDDMa2GNvijJP6GHpcihKea8R28hftBU/dhtZYnpmWz2xTyCQrwkX+vM4SOAax9lCSSG01Z43s8YtyiJTPqWWY1FQEpcY89Au/sG1RQ+/MgoHIe2SKAtJBHuo9tJM6Z0G55BJp/YJdtPRIP9ZhCPk9VyB4zOGbNTHmdO+h54AMmUOeyllCnIg6NIFC9FE2cNNc0DaPZJhsN0IWcRvxBa6GQ5o1AAoCR9mDVEQJQDKQNp8ue5boZQANctu4DJ/JthDzpsX7jyGXyPoTI/hnWOakwV7YflIMC0AaDXMwDFGYmlOKNE4uTq65zIFuD+//FN0/Zw/xPkbw6YonO7By4JpFpqPskZAWZkld5N8bIhOV2aPFOG/UQwD3E6WeGewJh1vi4S4zgt8SDgPTXRCAvbf0Y1OsIPoEPUvTqZ45Y4p4wLkdm+4pm82nxDAyzbfE5HPzKuE3GytAcAlfWk3I9UK7lkfJa5jozAL+aEHrsDkxt7pQZlaPFLPz4IjCkIFUlMQiqxJwyFlhAhLz+2OE1SVNgEip5HHnKX2isH9AvD5rKfupFE0b0ZAWtvKpRcTyfPK/98g2aqZtXTQFXHBZCgyEtcee+G15vD/gfV9+HxaGkDENsdtmQ3d5l2IUkEdXkXu7rUy/m5bQNrhxLNKt34ek83S9S8apzbPUCYOfYY62sEEwDptlr9FZbFYLvNMyxpk1s4c1GPzOVXmoPlxpVRuEGb78dGGNVM/rPfWh/psqA0/T+OO8/qKXzWB/gBhyXbglHu7Fz2t/YD4EpqM0vMdDQz819NEyR5k47/NwQ2tDHz2TkTa6cTs23WO2m88I4cg43ZFSxCbd8Igf6i4HLe0ye2YZqkjdb20GRfSkTYtMqtQQkxY/rXxO1QzamJkwKjWFtVwv6WBIMd/MylWWn9SBBawHsapRgNYZOb9lUCS3majqWsqS/jL4MSspV5HzwYNm7MevdPKsfsqv1gwwnwFhbcgUrJwfyL0Li6f6Xb39EgTTCBvgHaF0cvvfg/fKj3jdarZljKYws1WhYXBYt2FqG0KbAarT+vAj3p5T5l+Iy3A3Va/R6arDhDAhMxQrUADKMbY8j4ePcfnjOSzOOgF25gHDdiXtVpl4YfkpAzADwWkaiUNPuL0rcu/pHvq95f7QEpPhfmo4hCzxTKl4AvcxMCafE7cjMU/TndvRdo9omwtinPH+CCQaKBLXK9fy1G5yGOhaPVQDKB3Kwl8wAfVJPH2FtSacuyrVATD6f5trglrNvGvpxtLlPkHBIoFWFlsoZTCLrDv7g5/Z2K1B4PPndZGkZ5Ban5c1ZnWMruvc+m+pDZTaQRjbYOx2Yfi9Q1qplhCEIW/EFtl3uW/13nTiMaysHwFd1nZUxWrBNMRG/AMb67DFK/gjGMEpYLMt0bkacc6qrYQAk8Q+RplRVje88toktz73Qj4XXfW1rETXKhgs36/zSeplggziTsNmN1b88jtMYZmvn4ccK/YMWFBqT1h8olPwmOBX18O0qgVjsYSI/ZE49DI8mibCMBL7WcKyDtn+YW/x3nLoG+6npgyF9ilJn0BYGLnZl3eMIgMXD18JebK2o3E7rOuIYSLEEZsCjRFrjCvb8tRt+MS2dFieGMdVBsHr474+YnTAGirQQ79fXj9jVn3Dh16HV4xf8/D751YN9GgfW5MbyipItIJC1YCp9CKyX3GpCrjEZsAqYYwpwPaDlYdIhtOBUVOsY3RoJNf/7Tv7TBPjCvRRYkgIo5xDdrGEOOfRm5QVHz3JyR5mCa38OMl3WVH0onWGx+lr81A1kMpxppdwVXGtSAZWrOdOPcDL/VRkM101E3ipE/pYwcS0UndKP42EnZMHC6yPu3Lf1bF1+vLpkMiQgd6uQ2DTBQDWMDlCEFVBjKTJE/qAH1IJzpuOhqHP1g9jw+3YchccU0L2DCkWzKZPkUOSYbGGuvbZPqoMYYwtIYECODZY24i1HAMWltBw2/LMbXmWAdcnCJlkZ1IeFOuzWt5LBYHnvE+sfcLP7b81/E3t5U6za/TzBdsw5RqtFhBARXJ8yAAWCzDZ+yzBskvg9OlS65cW6R00hFr72y4T2fRvK1PZyov6o+whZC32jjX2YCoQWLNAisWU22KyLURdD3SgrJ+vlAS674ieZMNCYGk2K6IKVc+xwjisJTlLih8PuP5deAT/GIuxn3v9UTCCT1dIi6QzBWH1DMHRJ1P8pZzbliCcuW3zJI6VdKtM6hNMP2ZH964Vl42chOfIdCQmcRpUWYAyN+ZkmU8ku8IYebhSMNXnEOfM1hkEhIv9XmRc4RLjmh9M+42HW2EDBU+4vya8+RZ/85o0TfibW4bXM4cbaeL2eyncr7N5+/cp8Dvf8yYMjDHw0vfcRk+0LQYxAvdhoO9fEMKRYbwWb0g8Li0FRyUVukq4i07mUMDEZCCWCoimJHveJi9/n1QSRN/6kUjKFxORjZx9HQBb9nOLBFs3jVNmAW6MK3KvjfG0+eDZmmYl2W2NLUDxEthhz+IRakSvDC81o5+jXHx8WoKu4hnvsnw0SKNmAjF5QvT40MvF0fdYKxMyY1xmCYdiol/fWwwjIRyyrEiOYfH5FRZQ2z7GuC3Gz8L68RPR7wn+gM+swKa5KICxa5/kYLq1ZUqMo/ytOEvAxwcDXOTndf6NFRYPRdIZrQCX1sqwSGVF1jZFIu8bh1GW/+n9rVjB6+WsWcu4lDyk3mXV7ygYprVBp/fq8yfApT9fG8xDlliMBhOlZoj/cZKJfH8A24h3V7vBtBti9gM1mQFoXFOSfNMs7Ko0Zbn3kIHguzf4mzcr1t/x2mSJp+Gu73gzNVwnkWK/ShPf+oHrXBte+Z5DimBbdDwyzXtS+hYfRub5HvC0kOWTtSfw4nl46n8Vkw6DTsDT6ngKiRwyI06OhxxiqXLTKUWGFN9JHklJJNVzlE3QZGKWqYrUa4yOwYbyeKWhW9QCU/Z0VXC6Jy5DI5Ygn3OAjqoFlKmgXmWBhbH0vrXcawK9DsWZEHqS7aRhDiPRqmIgnwcK2tSbsCrQJeWQuBiEGaIASNNcrFmDyYuMez6S/L6w/NSSwrpNCYkghiUIJnsAlnPjI8Ce94HgCv3rtcYHK2yeWYHgBSAwRlKnxV/MFIXOuWERnGzijNSHrnn4M102xAVcL4oJYf25BDvb8MRICBp5CDulWPoIYZMmTgPGZPiVG/SQSLMX1l+Wf5ta6m2ljyi2D5o/MByK3DvN6gm+hxAIh57xZmI+QJjhcOdWQZHX0fAqS74nIm/DxGvfsw/C7LnLQVsYJzzVFJjGW/x8IMSJ4Pds0iLrvLStyKtNpfyA1T/0tUhrJUUwli7l3ivBbBbpJ1CC46ZcK5Qh6NPCK1cmrTUmh+OAD2Ihpddq9frbWglv66pNVn3uB0MJhCwbvvrraIoK6nTNSZjOCiSfglPqQ1reWoWxjfiCWiOehhIGhfQPyr637cq+qIC4+fg0EfDjO+ErE0binG1gsoxT+odHuGwZdRriI7cbFu9PwDnpX21z+QDgiZU/+YcuURqYsnFVcEz7idoTfgLmbOkjQ3SbAz2XYZ0kortSN+3JHgPW9UFDqbU2OCPsrOmhDfDCuM7WUiFOhFwbLm3LE2Mz8CfqtJhSae4cC3CgtSEFCiEmhoQJSWTg00TshZlZfEDtwraK00gajostXd8ThhGxlgjMBwF/wizAz/6+4TC0zMFy5x0vguVVZtbdJs9NmDimmTlGjlnurT6gQwoEg5xzSfrTKU6YWd4zlzxXxnHpWjbG8ci1XJqGnXEZMFFFYSoeusq8V6WhyK8zWJL3ZcEkiHEFDPtSC2Iml6QCEAFyLiHWK6UfjYsNi95OA6iDcQSzHloLKGNybTCQDFPQzINlODSTwR/hJKyHmNWgqKikWMDgwDrgEqPMPgF9pD7IdislFvm3yQfimbNeQWCVaBfg5Zz3fLaacmMeBs9HOe/VOiYTTtRS0DWX0q/G/ApW+QKAEEtss7CAybJyP2P9h5NNUhwECI5jzrPRkcFiDQHaO8RloACMs8P7wJwHHueWiWnl7bsGfZevuwY6JyBw15j8+RpANjFhsoxe7PxmsUQALm3DE5toTWIfbBkIwAIqugwi1uFz2jfEkDBTlH7HeUzfF9BObR6A3FcEfJ+xjxmmozCAU8i5IYNjP7bEaDh4x+tguU2aFSAZIndhLn16H5dANg2K9LkXFjOfRIwZvq1Yq4lAl0Q9dJGJZk+aToJb66GxqYbnpwNjTOkTMDATcw5RpTFLSw8Zk9gvgeAJSj7T+5JzToBZqROLN7BLQvxR6ypREMZCJhNCCIsdRAKiJSoAnLNG6mOihBHnjxpADdonLsSZujY4FrsKnwSvSimUXWgi9z56zSt/UTCI+qBe2MCaK+Ro3IXYvrit5AzlIEkTQjmu6tBZO8/YqRdwN2cQyT4lLFkFzYbkNhhyiGRYD5PLPub3GJYOf2IE/+yrbnADAu6I5ECkiHfBStp3knTZJ+1jms1zkZdtNtAYXBPPJvr2kxTFyaYyhetOkJfToLe6oC8bOWVLTWVDZ0hc2IYntinPoT9zqTgFeoxLBQSOUZo446RxiwcJzTDT0hCb4ZB9vQ7Y7aVIOtRGQhnE2fOzePvdXTO/eMF800sY3D28fdVxf5Qm7u3c8H00XGcG8Ne+57fjHddhFCN1Y9lsP2e7fZ4f58w43WYAeGKe7yBObJCGS1OO62AsZdqJJFpAEJVJdzrVTmtfXWEWeF6Hibf5sRzCzE0Y6XOSZ4DcUIqMRF6k6kVOSRofLeoIQ1c3fS4GXJzLBK/FFGmHzZ/v8ntqqw3qkjq9BrtPTelnQpGmhpTE8D43nNp8qmeZBtuV97o8owjJiMeq75mNxeYNqMjojiLNcBc07WNs3OZj15fbpBSY5zu8PwoA4Xa0zSM2u19KQ2YaCWzxE80hYIZr8Qn194Qw0bbi+9luv1jknLtLQtsQc9FMcWCe7wjhKIBUDmr52PKnr29hVJulMZuDJHzH2TB7eU0OwXGIvQQZ2pa22eGaK6bWYSvLGFjkWqfWELV3V3lvy+ep/G6MJtO4a5BnLLXBhxFD4tK1fGY7udhHqQ0hJTQAUY6rNbOnZv2FWQBh4yAOE+GwJ4WA6ZZNtwDAzZLsq4zAaSjy73i4Jdxdy+9PE+FwZLoemO4F7OkPjtu7lv3YMEfLa+/4KgVexYkhBr6dD/xu2ovHlhFJp2sfi9wvRUKYmMYbxuF1Zi54roxl5xoajGzsMoiigOq65ottgh759YbntJpORA7R8zaMxJTYFyA4oCFggQyGvGPNJIw2dSlywK9qQWsdTf5a08F1s7U98zz0/C/WMixe97UaQsFf3WSojUWdlqwfTxPNIyI/jynhTW7W40zwA9622MzidS77d9kme8sNktINhdVrbCNBXfNt8QGXQc6Ym7yWptnRds9x2y9Jm8cQRpgPxP77Re6dASFrkWZw8yn+8jGxaXHjgOulkYthIIQDPgzEMC3N/gcsQz3ko9j+xLyBEzBVWNrj7BhzsJkEHS5ggDESVhVaR2jNapC85AvkwaWpQJ7y+dJHTBYglcFzjNAUawgFemZC9MQw0QDP3ZYvy8bAcptMATCLNyQZIDhRCkiAbgKiWMf0PWF/J/6f2T88Hu+KLYeCvjXwE/tefD/7gXAYme5E8jkdZSB07BtCNNwNLS/mhlfZ6uhVnPnGH7jxcm2+9SP3KRCyBzDGYc2mTN5inAjpgE2CU10Zy5Nmyy4HPj3JKd+aol1bQiwbW3ktooEuwc7IJofcp0zWiZ1KlCHRmGtBHz2HMDNmdUBAPTJ1P1htfpLIqKcQy/mstaCr+oK6x+mMLUBQ8QmlCoJJSwiMA7pk2CUdnS0bd6htYyhqp3ACOoH0WjPib94kYQRGI8CVYpokiKY6/vL7EDObF5sHuCFbiZgm/57H+Nx31puseY+f3jANL/G573B2Q7P5tIA7rn26gLs5mFaA4xHrNjTtkwIG2e6pePs5BXoCMQ4lePhDl4STQkxzBtWWgFgdvOugYEJURDPQJvFPtFYA4kiijpZN1kEjP6+tGGLkQQiUMwL27FqLs2QQODH5hRWcglkP3sNRHnsY6TA8dxt+2QRhks8Nr1Len+SHVOykbHzwmFIwiPNO7i/7AdN1K9n3SvqdJd8pROIUmQ8RP8h9zaNhPDqmyRKjYT+2XI8t1zk061UKfBsOvAkDc4zs48yNHwvwO5PwpU8nD4fk7EuIYmiTRGbdYLhstjxrtjkMzvHUdTyxTWFH78rz1mt31SckqR3FWo5FIj2niLOBEBfyxZjCKqROr7t6pmkfbjGYBLOJTEau1xboomO0gY315dxXi8ASgpuWWtBh6Vls5bpk2LFkCyiwf07gHNKa+V+ONe1B8t9Tz2NQZYPNzNW1vZHAjmqDEdYbXjIQ3FyW89VYIZyY5DPLJr+favs0H2XgCyS/x0+3hDBmz+6GrpE9hNG8ANNAGDHZH/iBmtBtiW1LbNoMAMu5gv/wvsFP10QD83xPDFP+m2sQWFetEuuB0TuG3tJPjYTN6uANIYHwjsG2OxkadU56hqttft/K4GjpLWIUkonzAcKY+6wJn2vDJ7bls+2ENYnhuOGVcdwwV0PUxKaJDwbIIPsJOyTiHDEOmjwsMs6W8z9MkRQhTgvrV1SXhmGQQPmYDIO33PuG21wLblPkVRq5CbMEQcaJN35gn4FgJWioH7gYrtjFOynlzj3NmCSM123uvRsaLl3LJ82GCyMM4E9dx2emLXaTWhPrgXF5H5C6rCxZhyHaVCyktO+aiaK2yfvzkGJW7MrxkMr9ZTwgD4kiyJDIVEpwq0Q3tRpxdMRSC9TiSgfGoRoaCzPYFnsIe6YHtOR9KFl1aeQc17qyy0S22QghaZPJLF7VWgV/yH3GCRgsagGpHUrgUDawkMMkPLppH4ttXHMpQ5zsDwyUnAGgBMfa8R7mQyGhxKD5IhdC7uyeEjePiG2L68GMt4RJbGPEN/hyURi4ze9NMZBSYjweuLi6+r3cn67j3eGHb/Qzrz8aIFiXTkrmYFdp9XtEmnyIHg+07SPx7Wov8JsW254BeszCCO7nRNcYXJSPwSZO2Wjn1prCHqilsyrV2BjHzjg68hSoknLV0s6zssAMAsco7OfQB5ppIroeGwOp2xBdg5lHcA223ZCmobD+VhLP4YC/eUm4ewsh4O/uGV4M9LcCqO/vG97sN7ydxbz9OiW+TxM3UQr3N9Oe733PbBqM7dhun/Hk0T/g4uJXxDiy3/+WcfyKeRbZt0mebW6ALKYUbWXYlvc0N7ATkQmzyCbT8toISJzos+n9XQZ63ubN5j7O7LMUHYzM3YwtDeYDBukpravy/hKpdxQfnNyUNgmGEIvvzyY5xhjKhg8WkKf8iZP24UHycD4IQlpYwCAXmdqvR4Pi6qPD5I2csFtk+GC8zZttPXZmrG0Xi5KKSSOsOwEgvO+L2bu1LS43ZWyfU3xC5wMGiPNeAJsCHHcy6dt+SmovSE1H6DYipdbHEUZCOJbf0fAFzjSuH7rKJk6HAAlCMMTq/TgEy5i8sDJsV55raA2bRkGeekLO4gNavZWn/l2n39ffNTEJ07GwrMKqNgizp+FJnsj2ZgEY1jLFhf1Xr2xbKyDglMSbq+/lezEHPQCmPQGFodSFOBxk4zcc8dfXzDfHIvE83tkl0XdsuB46boJ4oL2q1AF99HwzHbjDsNl+TmebbM2zxdqOEHr6/jUhDrQZTNlmNs/GyHDlwjalTqhEql7SdJt3AsA1Q06YRQLwzElYR4foGctd5vrwA6MIHdT6DCOaDA47oMlgkCEzmmMeElWM4VquvbyXC4OY/N51xq7qYe3RJaBEKFJDrQmnILACQiYPWFzSyhUEaPM90TZY22fp/WL9okFuCthYKzYPMYwEv2eablZefiAegY27EOuly0/xuwua/ogdb/HzLcEfVpYHEg63hfaSebcjNE4YWr0wCFMccp0YiCey8p+6TJKZ37veXXl9yYw/Ub/MOcVefSN90mDDhtAII/i0PkDF9svlrgaElcnjLLg5lfqgAJGJofgDa9hLzIqJnbE8ti2fZrBnP8t5O+fXM2hzb6MwSO1D1l8KEK2we+I0Y4Zearl1mBwCY5wrAS9plk20en6Gw1i8/sZ7su+nYeiXTAZlAH+fh0Jzirz0Pd9Me+6CBECNxtC2T7nafiIKjLJ59cTkIQV2ybDLg9ZHtuWx67hwDQ67AoHVi7+WTeqgDM5ZSOVQmJTtd0wsII9PMYdFRUZ0MLw6kjj3HZ9SAVUnllpgMbRRrCzUC1CA4UBr5eshSehxAZJPlEQ7HLtaPWAMXcVcqn0Np9U1IjOOcm9Ze2Gffi8hNTigigEvYO8DazMlNzi5jgEmVey/6ubq4TlOb/F+j3M7mt0lbfd8CYVsrxaAKAZiGPH+SAhHWsB0Da59KgBze0ls2+oP6O0PhLiuRT9l+TBirSVpICbrPq0MjFK278obcaIFGyGDGgKiLVYack6t9xiw2EMAa1DHGNlvVAMlPdZC9gKz84zJzMQQhA0cw8TOWJ6Yhk92cr7eeQk/mlJcLJEMtDbSuqU2lOcYRSkgXVjEDhO264kliHoizh5ClJCnSu6t+QBD7wT88QL+jt4yRcshWr6PQsjRYMjv5gPXfsCnxDF6jiZRQmNtw8Ztsa4jpZiPhz7X/8QWw7Nmw2PXSW1wLY9tV+rBlWm4yoMVBXtWjHqT6X35Z11avHkxlh2WedVv+AL8TPmfDonKP7PctRxDUgsWVaEMYbxZckcchjGta8HGNOysKFmdkZyDCWEou4TkHpglW2AXzcIIzI+2hMfp8VZ9XqyDUq6Buc+YUyxDbZvkYhkx1aBIYR4FgR0PvMTtprB45aXMAK5a0MWmbN5MDOBHCYQMep0/5GtewDmEKdg9Ff/wKABnsaM6sUZRK5bQia2bsglJXn7vA1fwR5IFHwZC1HGP9OmGhxJuOUasWJwEyzi7HPZ7fmNTKwRP68SiFhAWsA6J5GdmlV8E4LwEaxEGQhRP4xgmtsbyzDQ8uRJw6XJs6WIdpp3PD5NW/sBlLxEWcokNMIeInSLWGWJIhCFlxi94L/uDYXTM3jJHy3F2DNEKppIe+oG/8j23QfqE+zBxG+bFD9y0uOaKbfaKrleKnnnek1KgTdBguHItnzZbnrgOawyPbcdj2xQf7issT5QFTMpAb957GziNXCmMYOT2wTSAz2qBZY+pbUGoaoNaSRUEIUl9FaxHvqsjCovBFuwgEJMt3w+oOiCJ0iPfh3KRplznSIaWVIrRYiFz8qSsPFlndNCz1BOxHBPWswbN6tIdD2RLrOq5GciKgVNUIv/cOKztimKghEhq2OyJMmgFBvtJyCTTW2IYSw9i3ZYUvRBVmg1hIwCvbTrpTbKyyDVXMqx2V2Ca3xsI/MUXX/Af/8/+Z/g3/uF/jf/p//Hf5Omnz38v93v98hX/g3/0r/Kf+s//5/j0009/L/f5d7H+aIDgUxmcen9ClguzXIilqLgf5R9UQhwcq1Tfc+sBMFwV5tofuA6K0wtIHST2Y1ZtCaF+yIu3VxBafQjEacS0WVqX/f+YR2H5lGCHnBTeH0TiVZg+M36Qqb6fDT7YYrExAT0i3zhEz5C9/TzCGrOmpXFC/a9fA9nESydbXzxPL6J1MJpDUIuQvTU7QwGDV0BwkgTUgFg/qKxTJRny8pg8STRSUo1Zaf5X4M/KC8DkppGl00ugJT6YzBBM0vjZ3OBHUtmAOQw+30UNDusqrL8TIFgBzNp4fv3x/evUZqE2bldLgphZCuX7GQRePHXWnj5kHx8hFgaKB08cVhvG4udn9XzLDJ4QSblJE6AjLHYpP9qD6MOWbNRMkXGuf7Z8Q4MvfvD+IgS7BnnqdeoBWp+rutQjtbx2uTa0xhVQQ5uQEljyE5cGxpkQiNOEaUdSW6kGXFMk9yUAqj/KJrvvicOEHyIpSE2YR2FKzkEavEOUgduUm7tDEqbtmAMWjF74s+WGPG9JX45pndKuwMm7gpZqH79gBNBZ+3ktH6csNVPP7TkDPCWwI8WqNuj236wUAu8DhZfeL0nzkwBlfehmGlNqgTRfy/XCpqUGzokiNysKgkT5ugazQdKnlRkMVTOqn5+pG+eeiV6PVAoeY8BaVbMIMFiULcZLVlwGKPX81Vqv/oBGA9/0NdRzPTN4Fo/8xQNQU4JTQUWltijbWC1TPsY65p0AcGWzs7zOFYP/fStbx5yTfter9vQ797HezJWwuKpWk98nm0HA1sYHPsA/tFa9QgZ9UozUvn5EuRqVpO95KsEvygD0fSBF8EOSWjAKEDzOrtSDKYnv520UiedMYB9mUbjkoZxBAB9li8hzjYtNDhGntlEKUBjzQFWjqwY75GvZ3JBD1eocgdIXstg+aF3Q2hBIlTrA5P+b8nV9LKYMGOtPU64FKS3sYWURWWN0Uid+8iwMRJvBn5DSYjGTDM7Ewg4uktB8fahrXamNaRkcnQbL/piVsj1E/X7EFLARks3EhqjenV5IQmeO/ToMtV7CFtxW0vGs9yoKutx/KINHGUPV0iRxPVc+xjYmFSlrPFsntEZofYjJ6K5XGOWsmZOnz/ech/+p2m9h+GkvceZ9q/yC9XWKSi5B1HIaEKlWZD/0d8v9BakPlkTKQbNxmqU/DCHbz/kSHCW2DwICh9ngfbbTCZbZW0ZvOQRHSLBPQsjZJ/H7PcZZckRyGNFMwmCxpkH9uIw5OaCSAAw2yTVT7eTEis2Wgca79lIxLcCH1gM4ryJSmw+5xoYHtmy6r1AAuH6ntA4oIJy/S8FnUjxbC4gIqzd/3hm7HI2GrAiTO3dJ7acUuBIgSC8j+jziqW1Mehhgqkt9g99XLs73ENWeouwjAsbKoKjABdGDY7F2AIrN1JmwR+kPXNlDUAO76v+pj0tVCKc+whpwGz98gCy9znIdfl8PsrIiQxjZmjMgz2mhGqQUFun7yZti7bn6oB/N6uvlccpHJaGtyCWqTLUJ6wQYrP1p81X/Aalkue8MAms/m2tEJBFnSg2IkVwLpB+Yg2SFDNHS52GZkvP2mbx1yISMY7Zo0x5hMSoRz9+6R1BWqmIKNi0s9waT64IrvsArtU1R567fK1d9frrq/rsOBNQeXGuDZ6kLNQhcgGB51OUbNv8OBLn2WwloA3AmopHuHZaQAeHAoopWywhX9QNdNKini0s5M+vMtfl9rqdFMZA/xvxOkBaV4Yeu2vdbvrE+Z83pJpk8NDrtDXI2gDlj86DnVa1yflAbINuofPhz2W63/Dv/9/8n/8V/+V/iX/8v/yv8L/6t/x1f/tnf++D7A/j2t3/Lf+9f+W/wH/lP/if4v/2f/y+09eD7j2z98QDBFUNqMiLZ8nNO6Yw2eyuKyXg0FEPpZC2hsdgGmmZp1MqkvpKArz3+zAOAp15SlxI2xOogzGBXtoUIYcIBj2zHk1zcetxa8qyblkS5iOha2MDyMcwGPyTcYSCFiO0WaMQMhyL5VBm4Sr9jL6y/eNjjb26Zbqfi53P3puH+0DJHy/3U8G2w2Qoi8iKM/O10zxs/yAQvBWz7mIvd5+KNZjuG8VpSvuPMMXsDJ3wGfJaGIqZENDWgYTgGT7SJOUsS5hTpbcwN93pNSdjex5yA2kfPWz9yH+e1xMw0BQAuICUKdFaAsH6uH1cXHAorLSEbh5g8nlD8W8cUaMLC+tMLkzKP1Xy9No8/ZZ6Uz/NFx1cAT8oNqF5k9MJ0ykooK0Vh9lh9viLfBgFuUvKFCSjN2FTASWsdzj0VG4nmknbzvPh4mqkX2ef4RqSZOQ28aS6IMdC2j3HdE+LmUZnSAbSjCNjMeI+fb/F+jw89wfckAu/oQ37yKj7KpGyIL9LNKSozZpmUqqRWrqUCfGMaUpF0ngd4ajBHmH7LZq7+eXlMeXBjAqvGVEG44Ht8GNhm9tuz7Nd1G5aJ9NnnmqrhVwavbMzAdwQ7RGyuDSY/qGITEdYNcponwn5f0r7DfmJ4Gxj2i9Lidi+svykZboLlq+h5EUemFHkxH/l2PnCXZcXJNLTNRTmvZn/MEn+Ppn27qomr3zsBSAW8jUaaUJeT2hxSDzQ0a/HPWsDiKSVu4sQxKxf66Ln2A/so6cOexFxqQ4ai84CoAD75cZsznVRiGayo765Pi4jcpsSQFglhGy0tBqcWOCyhEpZFolmD4StGcAVElI1pZQdxqhhQ6areJp089hg9MGBiI/YxtsUYS4wOawOmzTJM2xSmjhyvPrP4l+uMcxfiG26cyLTcluQnmh7MfMRPt/j5LltIqIfwY4xtaDbPSU1XLGNMDDDvmcc3hHBgnvfZm29+EI70U1YF9S+vKfXxIkCrMHlcZvII0/104Axgo7AjNO27beRfsfbIb13nFpafft7lcAk3Vdd8ZQQH8XeX80OknT4MxDixs06YPbsBaxJXU1vS5hf3tncv8euUxxvbCGRv5zZfH5xbaMwhEIZxBf6M95HpaLP827HfN+yHlpDg3jd8E+A6iQfwizDy9bTnJozZSzvQm5SlgeIZF6NnHN/mPycsJvI51CZo8/WzVs3MKQggnDTsbR34NuV3uENBurwBTXEZGKfITVwspProuQ0Tx9PaQLaQMob1UEiu2npdlyHm8vrH/N+EgleBYwjl2t+sJNnQZVVUm60klI2jQ6GtaQpjWBnByhhehmOU43hIgSFvmIY8HNd6Mec64fPwtYY2qu5Djr8Ymf0RNy8SyyYcaeOY/f8dNmaPv3yNTwWc9cVGQm1nmmZH00hvYJospYweM1zLp9Pb7B/eYIxISm1zCd2T7P0pf6MZR9kwTqI0mKa3TPOHM4JTnAhJ/GZ1KKmVV/fRus/oSfRR6nSXfRlX96V2LmFcwCvW1jH1x8X3U1h/bVYMhMbQT4kQUxlMmbCwo4LfM/sDwQ+EMLCzDc+M4+IyYG3i8hDowtoHVMGPmiEWoya+GxjAOHBRwIkUBmw3iQKgD8SZwgCeR8PYO2JmAR76hv3UMEWx07lOhtsk58Bt9HzjD7zOe4Z9mLmLM5PJ11b1k1WwJ87McS7nVUoemyIN0iuU7ICT3lmOf+hITHk4GwCMIcTaamn5NwG3KRRgqk/iX64WUn303Gef0gL+QB4SmfLf+sqyKAnk/JKewGQguw+hHGcacKeqwu7ERkYtpfT5btXfNDMDO7O2jVHAq36eU95D9Ehob7GZyt+v1QHvClp+uJZBUYwzxoSs8Ltb5Nhui82fozYy0WOaDfiROL0t/uHaSzXuYvEGttvC4DMAYSBOb9FwSGMbnBOmqMv+4dFZkrXipT0ficNr0rz/kc/p4Zrne5xzhPIYU3m3V3u3lJhjZDAhe70m5mQYvcshZKlYcTiMqCDnA83omV2TQ6vSigVcs4E7Z9h1Uh9ikiGihlZPAbyX/ZX1M3Hey/7b94TQs81hid1GrB02TaSbcmZFpaJZvbsBopXaEAFmQ7IJMfIHk7kkKcDY26wGEFut/dhw75vCAL5NiT1y3O1T4GUYeBtGxhz8dhsm+uw/q/t16zblmhvjRJyyMqkow3LWUoKdkVBptZNTFeG5pSpCDYaTwapYY0xJAq57MokkxUJ6E8BXPj9kVZOqh8YUyn7cV0PBh2oiHRLJd6cUsFkZYIBD9NnSYm0vp0qi1tqVvdxWVeW5H7gyjn0yuTZAF+yK+VyrBgIw55BTVcIVwJulLjTVHsQbS8wEF58B+MiSM1AG4RkfqQfJwBISZ7RX8JgwyKA35KwBzQmpBz9+FJs4fyj9gWuuik2lBgW6cZRzfz4+IJ6YrCgiE9RMDDgfiP7DB8gAXdfx//i3/6/8w//2f51//b/0L/M/+z/9b/kP/If/Qx90X7/+x/+U//5/9V/lv/AP/yv8W//L/w32nQnPfxzrjwIIVtbTlGU3E4gUaRI5xhBNCdgZYuag5HTimIPi1Cer0aFlhDkPMRXkVTBYC/KpbEtvFyPE2WBCkiY1rcGeED3Bixn+hXE8di1P8km6T8umv97wgwI6BjVtF/mFTuCEeTYdwThPM0WMG3HTjJsmJAQqSz61UZ8n4n5fgh38fuZ4nTjeSVN37Btu+3ZlBfFN9vAZUuCr6Z5v5iPBdhi3ZdM94dHln3Fx8StS9PTDCw7998zTPTEzwWKaaPKEvDlpNsoUMLNe5ixTssaX4ufiejO4yKNlE6eBT2MMHFNgMjqZt1jTCRBqbEkTVcaBspFsVexOGUrLeyjMVWVgADnwLM8BM+g6kRlcqJ/Zwg5wCPOv3my8K+CsBn3lSFsY03p01ADPA6giqU+PPC5XntuamWlMtiYIExow4GxL0zxns/ksAzsb8fxsLwq7N8xvGY5fMfv7Utyt7XCuoWkeY7qnTJdXzJsWGxPNOOHGQRhv01um6YZpvsOHkRAmSIss8/ex6smtyLUSQxSp7ZyZwWSWuw4iCvBnG5KDpvII1pp8rjZ3Dnbd2gJE16n026rfX64PMYXyGoiMy/GZ7XjeeaxNXPfdIvM/qQ31Ukwyqkw1GppZZF7GetwkvqB29th2L/5/Kvusgh78fmY+xLLZO9y1HPoGnxnAN77hNsnm4ps08lfTPS/mI1PeQHm7ZXv5C1w1qTXGEeKMn494fw8Z9G+QeqB2Cqd1AdZMumgSQ1oC2O4qAFlku7H4bA8xcBcmDnHGZ9n3kGIGfy3g1vVAbWN0OFTVCHkOGbQtdTqu6kPMQGXZHKWZkINFSIkRyZU3GpJSPffiEWyWFG9OXo+HrN9lWKTPv64VD4ZE1DUikdJMjBHQCbtD/bza5lLAG7uRY+SEoapMfvm9jq77hG73K2ybwR3TLOFw01vm6Q2zv8f7I237CGs/od08l8DJ7XP8ZiMJvtZg55no98zTNT4cmebbfN2cHzDtfsqqN29y1ZT3YNnAyfWmJzJEy+id9BM/cL/WyjC5AMEngE/XGK42diUBb92a1aNAT4pG6mNJTz+KfUcYiGnmUXPJZ8by9Kk8qsf7gAuZMV6VhVNmj4I9QSWeDuxoiDGKdK47M+gICT+kE9/PpngAj97xdmq4q21hwsBL3zPGwGvf8zpMBNtiTYtpL9i1V7RZ4jnNe/y8Z56Pcs7gi7zTGUtrTLGM0vNgThFiBi70NU7iZxdwTCwy+Pr1mIjsYyi+2oc4l4FxHRTpjQ5tHbYMBfMRYxZ4cFUnzqwlLVs3QhLcGvSMTMJ4tzEPiVj8To1RyfYCBtXA0KmNDMgQoGa1a8Cs1gcFgkE2n7Xl1KnHqT7uGD3GGPx8ZDQChBhjacMVIUw0zU42ZG6DcxdluC7S7nGlLpJh8o62fUzTPcFsn4vc208wvMGPb4pqQAdO4v93iW2vin94CY2Zs0/u9JZxfM04vWWa+7PvxY9Z0gfBOxnB+bWcETLEPsv0rxDrjQ7p060xErgcerHWiQFjlWyy7iMEBM4gT1MPiaRWzKHea8g+w/gkthBhwM93TLPU1JhGnraPeGYSV0+lRl68CXRTuxqywqnNlVlUSnHpIYwztHPCDwFrAzGCH6QfiJlso76fcxT275133OZ+ap8i38eRmzAxJs+1H3k5H7lLIQOoDtc+ZpevF9pHx3ydkY9z2TO05HPAOrGQyrkiwPr6j7AfeyhDEpeHex0L214AUvnYpyhKpuiZUuSYxK/4PkxFLaB9gwyEZJyz7BmWATJUqoFTMolem2PItlIp9+iBfZqXWhCWQZFV4Df7oqvf+NY6WlzpGUpAdQaGu2wrFqqaANlmL/dJ2h/rwFn30zbbyUAqwHAyy96D/LgxJu9rZ3zoZcDnxQc8hBFrnOwbXOXNmf2CTfIlRHIaXpYBsXMbmvZxAXpse7UKf4t5QKxAs7FyO/EAvSI2XTm2TQjFo3yePtxv0/s9IWQSQ/IlZ0AJTYXUhGY3eGw09Dayjw3bYLMtgpdw8Tzwm4LYYnT9SGzFUqWuEQUINmT/cMPlxmX/8Dwgiil/DtEb3Oxxo3isT/Mds5fA78t2x5WB7ZW8hxedZ9d3xQ+2M6I6sXZtGaO4g42JZBOa01Mrr/1sGEbHfmiZo6GPlrsq/K0nch1nbsLETOA+zFILwlwGrhix47OmYWNsPl7yPtMPeH8kpQm15Nhi5HZGrOM0JFKP5RIiy3mVgA6A9HDOR0zOHMqh7flcOUTPfZyYowTF34WJQxDq15wHXepfvNSH8g0hn51eVYw+jlQIa5A4ErB5YKx1T1nNS7aAK4SRXbbO01qwAoaR2+/q0FljSzimvg7aUfdVXQSpny2O1izEttnY0lNoeBwoS3yxoBPcQcHgQFKbi2w7VxjByvANfnnFFDfLYdFE6QtCtpaLccwhcxvs5lNoFksJO+UeYD5kC4mw1Aq3lcD6qp642ZOmc+7qP21Za/m3/83/A/+t/+G/wX/3X/pH/E/+9/8r/qP/6X/xJ93H//f/9e/wP/pv/mv8o//Ov8b/+n/8P//ox/SHWH8UQLCuRTIs7Nk52CKJKRe9lPJG32UZqsv+fukssKPNUe1Hu5ZtUQIcTn+HuFDTy88yK1g31M4Im21r40LnJ8t/qsYmGPF8UdZfIaCFXIwDeCxtCMRJ0ipdazBOypztWjmt1RfUOWLfEw4D814kffMBjnfC7gnRsB8b3s4N11lSdEsU7904FnDFG8d2+ymN27DdPOfy8s/Z7H5JDCPj9JYQRrzflw2eSw8vnPJSCasq5o1szYh1GDzZj8gs7JfapF2DGzTkZUox+wHLjM1koEdYSHnzZpuFFVuBwQvgs0ysgBX4oMxu/d45YDjEqUiIUhQhbMyMAJEYLawTlydp59Y54FdfM/1eOvnZwzuJJBPLBnZJ7lw/v5hTZn2eetsMGDft08XHp5WJuyZ6xjAy+3um6RZrW9r2EY27KM1Zai+YNy1+09CMXjZxObwh+H1huxXPn3IR+f2uNetPfRYTeiSKVHD5erG1MA9qw7uYwbX3p666PigInKLBZum3LrWMkdcg0OTasOtGnE10fbewZX/APqMMjPIh67GEORAGkYEbm4t3yBOv7Pcn9hGJMEWme5nwpwBD7zj0DXdDS0iGQ7BcJ2HQTCnxOkiww1vdNJmGi4sveHT5FzjXMc/3wlrKCfDyvMX7U8FOfcVq0FM3cDFP3VWaFFMSn3Yyg8UsI3cFf1WmdYyefR5eLeoAI6CUAjxmLTurG1BrW1xmyeqq68IDBkWuCwoQqz+b1MBIyj6vCs/GDN7YPElvsaSkad0ZCK428DXo+0NDolNvsnN1QoZXoIwrUaw0GLOe4qtSIJSglIfLui22e0raPF68/PJ7HnOonHqBC9jcFH/QdCa4IYYRH45432d/4MWb70PX+4ZMel3R5j9gmINhirYoc1av28mq2cDnUr+XIbIkRi/yTt1YySmpc4UlaDZmBkzAkNgYx5VNbK8SMcLWxXdKoZcgKKmqi2rAgIemifhBeqBUZxqUHkMC4AT8EZuoY78wgA/BcVNt+K6j500YeDX3TClwG2ai7dhuP5UQQbehba5wblf6oHm+J6YZSLQJtnmjAwgwejIY0VpOykFOSIjswoCzD7wYVb4pEtS5BEXex5m9MnuAaGRovFIFVODvoqqRIZEy6Osh8umKRUlU1YI8JIpxKn1BINIk8eh1SbwAvUmFJTjbWICgRTHgq+ddXWtUvqqKmNwvLSoZqR+nA+R1jYh5gGUExPYS5irP2VU1su6Z1AJGzl0dKi0/b2QTaLek9uL/397ZhUqWXff9v/c+VXVv9+0ZWSN/MGgmEX4QRCAQAj0oSCjJWJgogSEaRUSDkBBSCDb4wXkwkfMSBxLkIFAwwSFgpAzKQ3BCQESIKCEoxIlkk/hRD8EYOdIoo5np7unue6vOx9575WGttfc+556+3dMzPVfprB9c6t6qulWnTp2zztrr47+QdkcIIgGjgyeX+uE6RIbnC3TohhEA+xAuDUiSQC3J5AeE39NDFRDbbzRL0EsDPWojgnNcfaoyEe2+o3zP7ZlV/Tm2DZtQB0CpK9EWmrgE1lXVQZLiO6ltuBoyOlHQ2G14zND9MLMNaJLViSuEVRaq1QA+jB32Uyh+wS1yuCGBkVOKuJ4G3JAK4JtpwG1KIJnB0IVjbLfXsNk8Bu8CpniKYbyNHCOfd8SVfkdaCedYy3bruXNSdffVLiRwG3WRkwMHPbdO5Zak/bsJdtQqWU4QndFUqpXP0oQzqQCeoJ1DGyw7hwA8UJKoFI8AxS9Y2oKR2LYnYrkalcLQVvSAWCqGNRDU7qu1DkrtGFD7oIHipVzV3WgfJfFiinRMHpFdKMc9lXNfKoE9X9e96wCw/n+KZ4hpz12yYYsQdvDhqFSEIhzNfYOim88dCcFL5ajr5Lm+ytBJkpO7Fd9AIDj1cI64G4lo1Y/wWNhdJ5JkAEtztElaseGUWRaDk1sJWY6fEvxtb5sitG3nAWRMyTVVwew7lEGSSRLnsv7cucCxhg1vSBdykaQskkNryeNQfYhWJku7AAAuStuPHc5ikMG6XAF8C7lU1N5MI26loQRSb6eJNcER4NwG2+1j2G4fO3fOEGW+bvIqDYGAHVgH+IoMZdcB7do1uXHr1cCzjuvm/lYWJlEjJye32pWohWZcAZxLzImHWnaLbW/XDNVWANVe8Ac8nyQi1IQxzwkSiT0AO+cx+lwKRrTIaeMSts5jchmT6PsGx5XBo6uawsekw+Du8vkXvpMOlAREtkp9MYnVOOc4KdQg9VXQ6+ASva5rMJiyyDvkCDhZX6gOeOpFC7wvSeKU+NwHAHQ7kGgLuzRANcSpVANXf4K7fLciQRe4YyDnc7G6B8U5h9/7x1/G297xBP7e85/HF//Zl/EXf/mZ+/rf//Lvv4Xf/rXfwD//3d/FZz7zmTdle94KfioCwVwZmkuGdySaafLMT/aVAEqTfWvbtoD6N7d7y62rQ160SriVhuDiKoLL1Oj8VR1UrfIhyug8tzQfe36BrWSw1j/n/P6ZQRZjHaNDmACAxHnLcIFb+xSnWdV+xHQaMe0JlByGA7d8q6ZPn7i94FScuht5wvXU4/rEA6BOc0ToTrDd8KLOex4gNA3XZcF/KosebqNR2gWHLrxVS1O+jmLAE7jlTquBNCjcLm60NaMMT5u9W9lD0KrYuiHayhRK2x8gAVrJcq3pxNaAXSoLPF3Y6eueN3x80dYGmyztak62LFE7iGFty+f7brkfCZhJF1cFKicGd1OrHlETEimdN37OBXThCESZh7p0nHUrYu4U4ccDV/GMt8Qwp9n/+8DDInzYlQp0n4l/pqlMCdbMXrtPAVrZCw9GWy2p+1ndCd5RfAGb63DVDGbLXbP05bYu3rZddc7ObZM4a655UGVjtCIGlLD1OxzDYbfh7diu7BTVgdy4qkO21DPVAFBrG1xwiEgIiX8vAeCJjyrV/ZyGKrFzGDscMmt98WIv4UbmAOuN2ON2Grnl2gHBb+DlHOIK8wkp9ZjivnxGldPVwGUb5NHAL/9dKwHVBmQ4IAPJNQe9fl5xigZKRSohkV4fRPrj3DJfv4e86oTOda/9uWNj/vwaBK7BjFqdSM7DURCdQJnI7VRHFGyXmjMYmC/Mlrpca4mitSRRayfqK0jlQhvwapJiAJBzgnPnh6xoR4FqAnMr51y/szhjMgSGsmTlpd17NiVY27QmkaQZe4zxVILAB9a5gw6peWNpIt2bxYYurie1iwBlxoDSOsFEkbXFmvO8XbS1tkEr/WoV8DxZ1AZ6qEkiZ9Fc1ORBR5BqIkLYEFzmYG9ojudWw5SDy+dtQpskciEX21BnDdSg0DS4ogE8jh77sUMvA/TOJAh8gyIOlPFqGnB96nEnjZhAGEBwEjhkm5BZBiizbzDFAyhzELj9XvQYzpL40exgCQJDzhNymJCwcaFWwy4S6bpPtApY27uHnDDlBBVyKW3edwkCl0TR4vaiIPCSWUKJeFbBzBbIEZ7FX+HAIy/EYqay+ANQKoSWfkPZd03niNrC9rFSs0CtRZjfgrS9/eJzToO/PqgNXF4/dwhBZCT8ThZ9rFnvciotnLkZWht0cVfaOOuizUfxI1IvCWUeaotzvtf9wwm4VtpjVVax6kqDsKV6HSoaoHBynHOwCmk4t1lh5ku4mc04934ZdTCtdhORLIyl6pqQ0BG4c84R7nPEwSrVnXMiWAuWmZqAcZhrAPfRF7/gIDIQtyhiJMLtPPHQ5sSSUadpKv5B6UajzPYdwBQPvGYQOYg6kuj8da9sa5MYDaASuCkV0DSvbtNbfZ7KI0yUcTuPuJO4O2CfI3pKiFTbvMsqRJPXupNLMNjPbIMmi2Y0B4IT20KU1/2CpS3IQHAcDI6OA8N6/msgSGUHNhR40N3KerLVNQV4yKhWPeuwzOo3V59sZe8DxP5QTgOy5wRycqEMn2b/oIPXwZIZyOiBCDgfSgFI3SdsH3QorZN2bxdHlp1ZPJ//pyvVfpA1TpgiD4uLI7KcJ/kNJIl4uLZj/xzn7eVy/6p8ER9nkEFxTIAvCb2ssjnDgLDbYcpzLdC5PERdY5T3agpNUllbpBIsj2mADqZfm7lxP2bibjGyGD1Uhm6YuHNKZwMcwBrAtzJLRJ3liFtpKBJRZ2nCCCrBU12bpjzBOz/rtNOB56DEnwMqp7jYTmJfms9vsd5S26PnOwgyYI2wpTZ5PO8QOKWIUyko6SnhjlQAc1epdBXJ+ZEcxC50mHX23iXw29oJuQOqcwxAwwVgmURCdmyHsvhIRBkxEyZw11SkjIGqFvLOBUzSRRXgceQCRkmebeGQEKB6yMuvVqUwDqVziO1CGUiNKkPXFqQsWeaSMmU4ibmkPMCnM7jcgbzOAYgAdSBNGBEHhanRD1f9f+4S2kHlG1XmoRyoWnCUq47wGjqIzuWMMD34IMk1vvx3v4gP/eJfwN96/nn8ym/9Jj72/N+88Pnf+Jf/Cv/iH/4T/Jvf/3187GMfe1O35WFzqYFgWjj4E3E70Ahu/R5iKMaXay7WHQlu/QZ2kjTXqh4vgd/jDXCycxLg4dbvbacVPcAYAb0wFA2vCeiGzO2tjRXNeZSKqAGOMh4PJ3i76/DYER+4J1O3MEwa3JaTlrgipw6Iq3/HZsKAH7jCJ00J4SwXp7D1zWMPDAeHYR8Qo8c4eZz2G9yW/XaLeNq3Bntemvb4wXAbt6Stq+tOcO3an8fJ1T8H7wJS5irgQ/8T5DyxLETT/i3ruCbzVKdrO6AMQ1H7oa2htT16pUVaPwvpkJd5MFgHtBAITqqSuejTw0vQR521XBy4emlcy+a3F6e14O8sKAy9ALSBJw8QIbt5FnBZi3N3XH3d8rdrFqWhVrOCK5h82Jbq5+A3EqCrLZSu+exdd4VbLlxA6K5ie/Rz8Lt3cJVfGrjdYjotmfxheIWdLEoI7hhddxXb3c9zMHj7NmQfeOEyJZaFOLuBfHgJKZ6hP/wfDONNxGnPi0BpufJ4Y+Hg5XGiQcVBghWnLnAFPtUp0YmoHGtlUBHFWaJIbQPA9uJ4W9s6jzf8c3Lk4R0HYcZIGGMN9EwRSNEhDQ67mOQCx++TUo+YDsjUoyPgbd0Ob3cOJ9f4Ynb1VtPuDKC2NvKQsdYmAJjZCe8dsIfoA2vrGSFsMlzgRFCaOKvPkjMB/cHjMHSl5bOVgniFJvxpPMVL4x4DJbyWRpzBYbN9OzZS0RHCkQT5M4bxJg79dT7miECI6OS7KUmfxpngChPCKBO2O+cwoupUaWfAmmPbDnvKAKYsUhByprHTdo9ji7LkCWSRQ74s4O5V+Tevom3KO+X1PDYg70AIYjc6kOT+Ae7mUFvgUIvMlgGaZTATK3+fD/y2SSJAZXK0MroLRzLks1moS6JmiXMBm41Uc3mu4Anbx2uLFkXk8TVM/U9K9Q63fvJCrwtX0G0eB+0eKxl6P03Y5szBof3LGIZXMIw3+NyYuL1R9RUfFD/fA7LfnTjTCV70pw+UcQrgauaWzlESRlqJSZmlK7phQuqkCqVjjc+i9SmXEpWMuboLsySRtnVqoKcf2UbkycFNe6S0l6Qqa6JtiLBzHm8LO1zbRmyueuRE2HVcyZhKNkErW3jye5WUWrMN7D+niWbVw+1zVWYrk0MfPe7EDjdEeuaGSEG8NLEtuBF7XE8jouvg3Aa+22KzOcGmO5Z24R59f5sry5GLZJROX3eQZA5yTRA7D091SE2bIM6ZOOAhnoXaBG2JbvWzVUKql0DHRKyVObkmgaqdQG4uE8PHvC/JEj0H7lbxB9RKYMW5IJ05jW/hPGrnUAK5JLaQJQgciP0n8QFVR1BtYGgCwXcbuqvHuXYQ6N+qib/0jdXuZPXHyBU7tpYcZx+XwxypaIinUhUYAvsV6hdAgzZpQOgTMHK75zjeLFV+7IdwO3nYPF4qfgBwMvlwE3l4tfgg43RbdHIffEHH1+Lz8kREPDAwS7X2RCwxcuy1/TZgK8UYOuCPEBGnM4zTbWA6BaV6vrEsjOoBs3042fnSLaA/AJAJGBO3fh8mYByBzWFEnk5ln72GmA7oiGSuwBa7jjsCgfPyMEvOycc0VX6I0lEw8G2MHoch4DB2vLbKHPi5RWxvblHCS3nE9dSjzwmvxQEvxwNOJYSh/mUn8wKIMs9EmLhSU/XBSYbHagdh2bbFcaoByok4wJOddAqJbehTmmkIt4VAqvXZSyJoyAlneeK/xV9gmRhAE6bObVYlpIDztoHvm58rRGlWBaiJXwBw2SO7eIEtyOiROPEH/mklpTbOF03UpYwMsKyEnAdykiSJNDCsMjmpJONrwlniaqwL6jh4pdXhmkgPHWcPupCQM9tTol0teEhnILohu4Gr2jm4s0UQXeBz+uGi/U3ja7V7MEc4bQ/vTkpS2ccJYRzQpQQ33MY0XGcJujcgDTHFPbz3yJmvWx7VB6tFDHW9MRAP/jrNCaeOffeD7Hv9ro58wM08YBx+gitnr2LrPfbDMb9mU4R2vOEAMN9KR5EcRilDbAOhnwAaOImO6QzTdBspHgBEbABc9R22K/agDgVjexD8+sC41i/IGYiJ/YJEDkP0eHXqcIOoDJJ/VfT3+8wdu9djz3N7wBW03h9h010pQWCiXGwBS8RMEvzjgjpHrA+uBSF6q7SyedpJCHl+SlQ6akC1Clr/rwQ8URPGp5IUYns/FVuRgTJXBM7BQwfedlgmicvvTZHFGst4QlZ5OchaNE9yPnJiSpNkLrOEREi1SGEr3QDaSXXsO1zxXSMrwZXTre/QJs51P3AnRKodlvKYJpS55pHXWWpTzslLgZBzREqDFN55uMEjxoPMH7pSZg0A3FWY41mZNZDTUJLEdX/yvi5zSLotcreBHxPrCE+n0CHTKkmlBWqaKAJq5TzSUOzLm8mzzz6L//Ctb+Gv/vW/htdevY5P/drfwVIClIjwwpd/B//u917Af/r2t/HBD37wTd+Oh82lVwSXlrecMboMZODgMg5UK1ZU/FoXBW0Oj7wHvEPX5RL8VSdNF3PHWxZn14qe463H0YZPctXmUVLmYEo3ZHQDH2RlmjHpoLgRnjK2cDjxG7zdOVw95oP8+IwQUmPYSIPBrrSp5sxBGwDNAg8AOBickwRLAgejw4adOH2eykloi+d+7DAlhyl73E4Bp1QHJ7yUBtwQp+7F6Qw3kbHbvQOhO8aVo5/FtWu/iKMrTwMA+v3/xv7wEg79K6AcMU13QDRhJ7sngYMwd3NLPdX2aAfehiAZb8h9ywBf+R4BaXvUxxYQYT4nl42Yo/UKn+Xv518uz27P/b7cgtZhBO5ZtVIzbGvP89WYNFVLfhb43RVtVh0MV4TZ5Vic4ml5XB8Lfgvvt9jtfpY1/Ly0eh//DLdwDgHor2M8vFiGPsUolThCCFfQ7Z4ANidA2CFvNnA5w8MjDD1y/yqGw49lAfcqxulULvgTZ3zBF7R7dKfdF207p28ynQeSVmpxfkA1QeGA0oZd9vgiENwmiY43ruj7qW1o9btaWMMLQCTWJWpsQ5LKgA2hBHt+pks4fjyDksNRSOcmCLNdc6Vtva30U+ecfwdy9mWBp5roPlTboAEfgAc97KeAs8TBn9PMGuG3KGFExo9jjz8b7uDl2HOzlt/g+PgXcO3q0whhi5RGpHQow63G8Q5SPEOgVM7gmhhacThJ3BypYghSEefVHiwWiOX/5H8TZXGWUNo6q+2pmfl7oQsb7RwAUBZH8+el2f/wL8sgULUxqpWlz1dtcaBJDLUJJ72XSn0Q7jdpVJXJ2oSRHgfsUHmRwvASBPa+thLzuT2Vba/t3RLcOfo5eNHnw+akZuenhDTdwjC8gpSqk6UDo0J3Fb47QdoeIe2OePE29HD9GUARcbguw59Opc38AKKIju7vk999j1QPoGhOg4dxTpThM2uhHSjhQISz5GftcrroJkpI8QzdMCDuNsiZz/tj2XWaIAJQBsMdbz2Oth5jzOjHPOsYGCMHgWME3EDcMZHYvsY0INOEq87jqu/wmN/gZDehO9mAUsYm5FnlVx0y6861BudUbcOUPILnbgE/yvA4SSZl4sFKWZLqffLc/p3nsjA/yTw09qVpzwsoyvDdCa5d+QUEreZqFj+jDrDJPSBB/Q3aNKkr520qyx0eqJhloaffmxddYK2uAuZ+wXLhot/xKAudDG3pFFkoOKlervIPGvjRv++mFT7bxxdc33VRSJQ5QUtd9Sd8k1AuC8AEOJV0YEkCTRQFQtGqVP9Ig8R3kw9q7227jcr2le9B3yUDcFyhecHnYlmpmlxeJo9CuIru+Od5UAsgEccBwFB0QnnI1B6bDeDcY2Uugd+clNZwnzIPQhpfw9jzAOJheJW1O/Mw80VePxywbBNNWhWsPll2vPjtiQeLbaXK6sRxVSzAldqBgJQOvF3xdObKed8kjEItLtF1hdoNoCaRDxNwGIFxdOiGAWniAXlTZB3Eq87jitiGXZfgt/Vaz5VfFxvOukZwJcizZIoep2OHsxREcg+l/TsR4QZNeCnu8fJ0wJgTbucJZwC223fABx4OGXydTRHTgGm8I5JR82BPe0zr+X7u25oljPjbUwk5oAZG2qSQyqPoUOlRqn4T5ZIw1u4A7mLYlA4Br4Fg3D0pdLdEcSbtNJwnVPQ88c5faAuqzibLSSXKPIdELGQnwbY2QdR2D7SdA1Ueph4QsfmbiIr/pPuZt6M5XoDa1YXI1ahNF2UqhSfsD3YhgmT+QEqDrA9rAFgTxKG7im6z0A+fzkDja7P28HmXlvgeXioEc0I4nHGngc4hGW9hnB48EJxiD2oqgtvjs0WDYupL9JQkMKrdiNzVkRzrW+c4YBxvYte/hLC5Cje9g/ebm8tBtEMkfVMVzEPiOA4xRcAPxEOyplO2p+kgcksBV/wGwVFJSAGSXNR10AW0tkH9g/3Y8fyEMhiS8BJNOBBXAF9PPa7HHqMMg1NZGOc32LgNus0VbDcnJUE8ii0o8RKaSiJ0OUckuHkhSCKSflux00TazMADp13GlNOsc0rRinjV0I+knUOpxI4GELLjDh44z2tltynJIJWTWysk887P1uBLZkFg+butiF7OHQEamwBCzgkJqawPzigiSMKIh2r6MmxO9cVVS7m1ke2+LN871UJL3ldZuouoJJd1H/F2nS9p426hEc55TI59BJ96LibpOEbWdewXeCkWca4rHUJZkrss57krHUWtbAzp/KvUI8cz5NyX9/fFD12ELDMnofN0CooPPlvgIj784Q/jv//XP8Bf+qVncPOVV/Arv/X3y/C3lBJ+54v/AN/9j/8Z3/2D/4b3vOc9D2UbHjaXHghuaS9qughayilcRDsEqh3yolVAbZZeH1NpiNl2ZMBlgk/cwtZmMrKcuJpN5InQQLch5CTZuHPBHrldceLalg0NBrPYvFaXcYVwDm4WAAaAceTWriHyAq+Xlo4RopEjBkCnYU6ZNR27zVVsuivouhN0m8c5EwvIicvt7SmNTXXn+QUas7iANnIJWj+rC0Jd3CTM9WPzwvgsf6/3OOhQBtlLfF9TVjd30vyFi57VQPAyaLusCgYHeThwu7ggtM4j5VoGuHb8avC3/O5nrTXOd6yZJY6YBnrbi1DOYwly1fb1+rgPRxwEDkdAt0PuNkVzi1v7q/6fVgOrU8dtnBwManW9tK1TW5aSLNqIsmgiEVQf2Ds3uxi9GeSmOkzqNaGT5stCqaH9blub4H110oDm1rXtne6cXQDQyELIe+Q2gFhlMVTjbeMzB2cg1YgriZC1rq2ZbIweQ5k/sz7uvUOHjCzJJQ0M5cxJoUnaPRO0q6K2Ug4UWS8LQHYOnd9huznBZnOC4HcA7swkP1QLLwClqu+iSlb+XFQWgc5pBYpWZXEQv37GxvZLEFir3TRDrc8oYdG7SPAsWZ4n93ou/3I+CDzrElgsFpuZzGLfMtsI4mpIR1whDZfBRZ8ZaGyKvCmWNnU+xVz3WaNtWKoU5hULvrUVZaF63omdtWS6xTmfY3HkYtxzBl+CwMUe+Q4UQrEt/DFkOrC2c+aJF19SDfEm5IdmtEEGlSCYyUPArZ5jANtCnzNc4lRTWVy19sFVm1ClZdSXqBVZZXv0MNEBGqi2oQM78lsn1/jAFsHfo0RaJSJm/gLpQtKVVsScMQsAAyh2YBR/aiTIzAXCAXUBNUqANTuHbXcF281j5RpU7IBWhFGtdFVfaLmgXn6iZTBoKReh/74mhxAl8JFkQaNBjnLGaRDYhcY+LKr9Gi5KEt8vxSbo+ywCRZwg8tI9oB1NSXwCrghKC5+p6OvPApl3PzbudYWtOn91b13ERTbSeW7hLFp+YB0/UCzHepFPU59EAztrrZ3qR+gwmBw5WP0G0kTqny1tjAaDAU00UlOkgfKD5tYDSEXyKgK5yq4oS21gvu+8hVvOGVBLXPcVJ7Y7SBDQ5yL59CADx1v/IS18iVTmrqD6BU0lXZ8TRgmAjZTh/BahO8am40rHWTAkDcXScrGG+gjVHtyPvW87i3Ib8Fb7sOgK0CriUbZRv8uImjAu3QE+lGKLmebvosJPg8B3k5PTdvflAOrZHBJ5Haw8j+1nlPM7sTHn7DDbApDY1KpwPUqQnJNm8/NCk+btPizJDtmW9vG11Vv1OEi+PwIcoXbUpWLzsxR5ACi+YS4dQmHud8g5TyoZBYg2L7eHn5tRoMlnTeDphU7kU3hI53jhmu5ecGLu/ryPEmSXp/Ocn7mvXgOZVBN+FGdm9rx++Pr7tQPtXUKxqzkngHJT8etKpe/SFt0vyyRxKUSByK0QFV9gEE3diFqM0UmxkQ9b6T7jJIAm8HTAGIm/p51C6ieor7AmowjM13G6XqrH8bwzXJ+rMlED1UBwWyGcoImhrvoJTquAq++s/g4wTxC3Q9SV5bVShzTz7+rzN93kANwi7lACxS7WY0gSaknWCgTCQBmOXLmOldkjpcCG15tr+7GVVqzb0v6O1fvlU/F2gmbrKP2uvd/WYiiRcaDWHs5sCA+658dbyahupgnO/xerLERJ3J33IVxO5Vyh/OZKQ7S8973vxf/43h/iQ8/8Zbz2q7+O3/invw3KhH/0q7+OP/tff4L/+b0/wtNPP/3Q3v9hcymB4CIJkTOcY63LKSWMSPCOMCDiQMAeGRM5HLLDkCPGFDHlhJwzYhwQpzPE0SENhHhImHSAYYfiaYUIDBIkTcEhdfyTpepvioR+yugHru4Z9wmxd0hDhh9H+GmPGHvEOCKlCSlFZAmIcYVvwiFFnE48kXefIoYUMaWE7BxGRPSIODiuSjpLEccxIouO4hgJMeZi1Gswmx1An4GOMlxbCSxVgmPM6COwTyiB4EPmSbuqEzXKtkQkpJyRHZBShHcc7I2xh5MpzTEO8hl16Fj9nIBkoV3rUCwN+XxR0z7HAaCmMngtENzWyZWMfvvyrhFTcI5jIk4DwwTXtsLco50OC0PM23D3QHB9Dq0sMxbvR02YbM1xcc1rOCrbrk4Ky3CE+rdj3TvVvmNDHIthbp8DcoiRv1dyW9a/9BvkrkOmDTAdQPHA50/k/DZ/5xO0FTTGAX46AHBATkgBiIHfO0xnQOzL/7fHiw6cyOo0Zd3e+1/Ytbah3NcED6aUMKSIXobFaQA+AVwNkvi4zTkhpYg4HZD6U0yHhMy9eHCRgzvogCEBfeZFnNs4bLNHlwKCZ1mIw5BwGHkBMpwlTAcg9h4YgDiewcceMc1tQ6aM5BzGFHGWIu6MbBvOUsSQiLcRDqOvtoEcYeMjNjEWe1Db9epx0AaMvAc6VKcwRt5mDQQfEmGfPBIcDsT7ZxDtvymJPcgc+MlO9lccQd4tPlMs9oCDs27FYZgvNGp+Ro50J5WtKt0BN/tel4FgzVCrXVB7UF7buRqNdyS2YH5Otedkqxt5EeVYXT337/IaF9kStQUaCIY6yO1zX18gmD+qm31uKoOO2LY71Ko6DQSTUymdzPYGbPND7OHcAWWaUE5SETy/9un/cPVlQAgDpumANJ4hIYLGATQNgOiHx9gX+0C5XlMyoQw1e6O2oTzmHJL4EhFcEdieX2ofBooYRVdW/QgazxBHIPcdxj1hcGwfKEjA1wFdcji4Dnt0SFuPqH7DmJEyoT+LGPdZ7AMQB49pOpzzGxJ4G4cUcRoj7gwEpIzTSOgbv2FwEQcE7MGLGnIJFCO2cv7HmDFFX4I8wdfrH60EgsfEOqBZ/Kle/IMB7CPELPZAAsEpJbkm6L6vgWD9LER5cZldX9g5xzJces63IUmtcnNuHsxfBoKT3k9cSadXWLYLjo9psE/AP/ya5fraugaOZoFgeh0VwUu98dnx21b6yN8loFJsgFYEkTyPiuxWe6a36ZKLAsEXoVamxAFdvS5y0CvCuwnN3PULAi1BfMV9bc1Mg0wETyDxCZJcN5wXPyL2cJ7g3BbodoijFwmZffmfpR+R34Bt0P91JAmg5pAsr+aAmBPGlDAggpxD7xwOzsM7Qp9R/QhkuS72SMMp4iHDJe6vGAnsQ0SgdwEHBMTACdpWB/RwFsU+EMYRiL2DG6sftWYbzmLCnSGBEnAaM/rE658Ah95F7MnjLEYER0g+YuszttoZFIEx+uI3tIHgmDz2CdgnwiSBYLaLooWaZb0g8grtPvBO9Rqba3WqvoEGgjXmrcdwOaYdfx/RaZGIBDOKdJxr1gj1Pu0o0ORe7Q7ISHk+P4DtV72Ssl1IEgimeq3kg6RcC/lzedb5XVk7tEOl63353HPW/IfWHpRrsQR9ZraAWg9Dhgw6N7ObLfcKBGvgvG4H5s9FtcO81spwjld7SfxBIILIwbsJMY4AONil5yx3WmXAjfAZkvTqEOIBbtqzzxEnYNpzxR6xFnGUbhnulhjg5fnnEkYUkRfrb95/D2IbEuAcH6+0OE7FryI5WqLj43wC+/EDInrHFcHsQ0SMlBHVj5C1NE17xOEU0yFjDBJ/yECfPXJwwOiwSaGsMfZDwuE0ot9nTJEwHQhxcJjEPvJ8Dr42J+iaIuDOyMfRaYw4JJZKCgAOjnCWIroYy3qhw7xTSNcUKTscEjBI53WfPfpMHGuhVPwktgXE/gEysqtKvN5FOMfHQEoRSfw8PbbVHtQ1vyvHtHdABGrhnFyv513D9XfvHK9VmvvaQPBECZFSkZVLWX6a9cPMT+BUX1kr8HDl+to0CwTz+nz2+EoX4fI+/TvlGtTnY25ecFIS7JkLBsoagfRzihUT2xaR+PsV2+CaPbzcNyJUU+QVq92sc3dKx/3Mr+Lvi9dOLInD3lQs8Qm1Dc6NEniTDieZIaLJIh1QTZ59c6KONYXdTqrfdyU+gemAGPumirjqBBMC2xUpbMvTnmMaqUeMOsj8wRPJF/Gud70Lf/zdP8SHfumv4Dc//bcRY8TY9/jj7/0RnnjiiYfynm8Vjh7WXruAH/3oR3jqqafe6rc1DOMS+OEPf4h3vvOd9/Vcsw2G8f8PZhsMw1jDbINhGGuYbTAMY43XYxsehDt37uCXP/E3ELqAb/3rf4urV68+tPd6q7iUQHDOGT/+8Y9x7dq1+27vNQzj/y2ICHfu3MGTTz5ZNHXuhdkGw3j0MdtgGMYaZhsMw1jDbINhGGs8iG0wmEsJBBuGYRiGYRiGYRiGYRiGYRhvHRY2NwzDMAzDMAzDMAzDMAzDeMSxQLBhGIZhGIZhGIZhGIZhGMYjjgWCDcMwDMMwDMMwDMMwDMMwHnEsEGwYhmEYhmEYhmEYhmEYhvGIY4FgwzAMwzAMwzAMwzAMwzCMRxwLBBuGYRiGYRiGYRiGYRiGYTziWCDYeGi88MILeOKJJzAMw+z+Z599Fp/+9KcvaasMw7hszDYYhrGG2QbDMNYw22AYxhpmGwzjwbBAsPHQ+MQnPoGUEr7xjW+U+15++WV885vfxOc+97lL3DLDMC4Tsw2GYaxhtsEwjDXMNhiGsYbZBsN4MCwQbDw0jo+P8alPfQpf/epXy31f//rX8fTTT+MjH/nI5W2YYRiXitkGwzDWMNtgGMYaZhsMw1jDbINhPBgWCDYeKl/4whfw7W9/Gy+++CIA4Gtf+xo++9nPwjl3yVtmGMZlYrbBMIw1zDYYhrGG2QbDMNYw22AYrx9HRHTZG2E82rz//e/Hc889h49+9KP4wAc+gB/84Ad46qmnLnuzDMO4ZMw2GIaxhtkGwzDWMNtgGMYaZhsM4/XRXfYGGI8+n//85/GVr3wFL774Ip555hkzyoZhADDbYBjGOmYbDMNYw2yDYRhrmG0wjNeHVQQbD51bt27hySefRIwRL7zwAj75yU9e9iYZhvFTgNkGwzDWMNtgGMYaZhsMw1jDbINhvD5MI9h46Dz++OP4+Mc/jpOTEzz77LOXvTmGYfyUYLbBMIw1zDYYhrGG2QbDMNYw22AYrw8LBBtvCS+++CKef/557Ha7y94UwzB+ijDbYBjGGmYbDMNYw2yDYRhrmG0wjPvHpCGMh8rNmzfxne98B8899xy+//3v493vfvdlb5JhGD8FmG0wDGMNsw2GYaxhtsEwjDXMNhjG68eGxRkPlfe97324efMmvvSlL5lRNgyjYLbBMIw1zDYYhrGG2QbDMNYw22AYrx+rCDYMwzAMwzAMwzAMwzAMw3jEMY1gwzAMwzAMwzAMwzAMwzCMRxwLBBuGYRiGYRiGYRiGYRiGYTziWCDYMAzDMAzDMAzDMAzDMAzjEccCwYZhGIZhGIZhGIZhGIZhGI84Fgg2DMMwDMMwDMMwDMMwDMN4xLFAsGEYhmEYhmEYhmEYhmEYxiOOBYINwzAMwzAMwzAMwzAMwzAecSwQbBiGYRiGYRiGYRiGYRiG8YhjgWDDMAzDMAzDMAzDMAzDMIxHnP8LkSzi29rdYUoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAEiCAYAAABEP6blAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xu0LVla1g3+5pwRsdbae5+zzyVPZmUmVEFVQRVVIJaiSIE2IIJ8gMMbCI0lUoLSoggKLcPLAC3Bxs+hMNSBo2gGXlC6GQ6xaUbbSNm2Dd8HBSLwUZ/KpYC6ZVZmnsu+rFtEzEv/8c45Y8baa5/MOqeqMiniyXFy77322mtFxIp4453P+7zPq0IIgQkTJkyYMGHChAkTJkyYMGHChAkTJkyY8BEL/WJvwIQJEyZMmDBhwoQJEyZMmDBhwoQJEyZM+NBiIoInTJgwYcKECRMmTJgwYcKECRMmTJgw4SMcExE8YcKECRMmTJgwYcKECRMmTJgwYcKECR/hmIjgCRMmTJgwYcKECRMmTJgwYcKECRMmTPgIx0QET5gwYcKECRMmTJgwYcKECRMmTJgwYcJHOCYieMKECRMmTJgwYcKECRMmTJgwYcKECRM+wjERwRMmTJgwYcKECRMmTJgwYcKECRMmTJjwEY6JCJ4wYcKECRMmTJgwYcKECRMmTJgwYcKEj3BMRPCECRMmTJgwYcKECRMmTJgwYcKECRMmfIRjIoInTJgwYcKECRMmTJgwYcKECRMmTJgw4SMcExE8YYTP/MzP5Ou//us/rO/5NV/zNSil+M7v/M77Pu9bv/VbUUqN/r32ta/98GzkhAm/hfBSjgMA73vf+/iTf/JPcvPmTRaLBZ/0SZ/Ef/kv/yX//t/+23/L537u53Lz5k2UUvz8z//8h27DJ0z4LYSXcmz4mI/5mAs5glKKr/3arwXg7t27/MW/+Bd5zWtew2Kx4OUvfzlf93Vfx+np6YdhLyZM+MjGSzk2OOf4m3/zb/KxH/uxLBYLXvWqV/GWt7yFEEJ+zrd+67fy2te+lsPDQ65fv87nfM7n8Pa3v/1DvAcTJnzk46UcG87Pz/n6r/96XvGKV7BYLHjjG9/Iz/zMzzz0606Y8JsB1Yu9ARN+a+OHfuiH+Kmf+imeeOKJF/T817/+9bztbW/LP1fVdApPmPCbHR9IHLh37x6f/umfzmd91mfx7//9v+fWrVv8yq/8CtevX8/PWa1WfMZnfAZf8iVfwld/9Vd/KDd9woQJH0J8ILHhZ37mZ3DO5Z/f8Y538Af+wB/gi7/4iwF46qmneOqpp/j7f//v87rXvY53vetdfM3XfA1PPfUU/+bf/JsP2T5MmDDhg48PJDZ8x3d8B9/93d/NP//n/5zXv/71/Jf/8l/4yq/8So6Pj/m6r/s6AD7+4z+ef/yP/zGvfOUr2Ww2/MN/+A/53M/9XH71V3+VW7dufah3Z8KECR8kfCCx4au+6qt4xzvewb/8l/+SJ554gu///u/ncz7nc/hv/+2/8eSTTz7w606Y8JsCYcKEiK/4iq8IwOjfr//6r3/I3u+9731vePLJJ8M73vGO8IpXvCL8w3/4D+/7/G/5lm8Jn/zJn/wh254JEya89OPAX/2rfzV8xmd8xgt67V//9V8PQPi5n/u5h9/QCRN+i+OlHht28Zf+0l8Kr3rVq4L3/tLn/OAP/mBomib0ff+QWzthwm9dvNRjwxd8wReEN7/5zaPH/ugf/aPhy7/8yy/9m9PT0wCEt73tbR+MTZ4w4bckXsqxYb1eB2NM+JEf+ZHR47/jd/yO8Nf/+l9/4NedMOE3CyZriAkZ3/Vd38Wnfdqn8dVf/dU8/fTTPP3003z0R3/03ud+zdd8DUdHR/f9dz9473nTm97EN33TN/H617/+BW/jr/zKr/DEE0/wyle+ki//8i/n3e9+9we0jxMmTLg/Xupx4Id/+If5lE/5FL74i7+YRx99lDe84Q18z/d8zwe8nxMmTPjA8FKPDSW6ruP7v//7efOb34xS6tLnnZ6ecvXq1am7aMKEh8BLPTa88Y1v5D/+x//IL//yLwPwC7/wC/zET/wEn//5n7/3+V3X8da3vpXj42M++ZM/+QW9x4QJEy7ipRwbrLU455jP56PHF4sFP/ETP/HArzthwm8WTJnvhIzj42OapuHg4ICXvexl933u3/7bf5tv/MZvfOD3+o7v+A6qqsotWS8En/qpn8o/+2f/jNe85jU8/fTT/K2/9bf4vb/39/KOd7yDK1euPPC2TJgwYcBLPQ782q/9Gt/93d/NX/7Lf5m/9tf+Gj/zMz/D133d19E0DV/xFV/xwNsyYcKE++OlHhtK/Lt/9+84OTnhT//pP33pc27fvs1b3vIW/uyf/bMPuJUTJkyAl35s+OZv/mbOzs547WtfizEG5xzf9m3fxpd/+ZePnvcjP/IjfOmXfinr9ZrHH3+cH/uxH+ORRx554G2dMOG3Ol7KseHKlSt82qd9Gm95y1v4hE/4BB577DF+4Ad+gJ/8yZ/k1a9+9QO/7oQJv1kwEcETHgiPPvoojz766AP97c/+7M/yXd/1XfzX//pf76vU2UVZuf9tv+238amf+qm84hWv4Ad/8Af5M3/mzzzQtkyYMOHB8WLEAe89n/Ipn8K3f/u3A/CGN7yBd7zjHfzTf/pPJyJ4woSXCF6M2FDie7/3e/n8z//8S738zs7O+IIv+AJe97rX8a3f+q0P9B4TJkz4wPFixIYf/MEf5F/9q3/Fv/7X/5rXv/71/PzP/zxf//VfzxNPPDHKGz7rsz6Ln//5n+f27dt8z/d8D1/yJV/C29/+9gfe3gkTJrxwvBix4V/+y3/Jm9/8Zp588kmMMfyO3/E7+LIv+zJ+9md/9qFed8KE3wyYrCEmPBAepn3jx3/8x3n22Wd5+ctfTlVVVFXFu971Lv7KX/krfMzHfMwL3oZr167x8R//8fzqr/7qB2GPJkyY8IHixYgDjz/+OK973etGj33CJ3zCZBMzYcJLCC9mjvCud72Lt73tbXzVV33V3t+fn5/zB//gH+TKlSv80A/9EHVdP+huTpgw4QPEixEbvumbvolv/uZv5ku/9Ev5pE/6JN70pjfxDd/wDfzdv/t3R887PDzk1a9+Nb/n9/wevvd7v5eqqvje7/3eD9auT5gw4T54MWLDq171Kv7zf/7PLJdL3vOe9/DTP/3T9H3PK1/5yod63QkTfjNgUgRPGKFpmtHU7cvwMO0bb3rTm/icz/mc0WOf93mfx5ve9Ca+8iu/8gW/znK55J3vfCdvetObHmg7JkyYsB8v5Tjw6Z/+6fzSL/3S6LFf/uVf5hWveMUDbceECRNeOF7KsSHh+77v+3j00Uf5gi/4ggu/Ozs74/M+7/OYzWb88A//8AVvwAkTJjwYXsqxYb1eo/VY+2SMwXt/3/fz3tO27QNt64QJEwQv5diQcHh4yOHhIffu3eNHf/RH+Xt/7+99UF53woSXMiYieMIIH/MxH8Pb3/52fuM3foOjoyNu3LhxIXmCh2vfuHnzJjdv3hw9Vtc1L3vZy3jNa16TH/v9v//380f+yB/hL/yFvwDAN37jN/JFX/RFvOIVr+Cpp57iW77lWzDG8GVf9mUPtB0TJkzYj5dyHPiGb/gG3vjGN/Lt3/7tfMmXfAk//dM/zVvf+lbe+ta35r+5e/cu7373u3nqqacAMnH8spe97Hk9yiZMmHA5XsqxAYS4+b7v+z6+4iu+4sIAuLOzMz73cz+X9XrN93//93N2dsbZ2RkAt27dwhjzQNs7YcKEl3Zs+KIv+iK+7du+jZe//OW8/vWv5+d+7uf4B//gH/DmN78ZgNVqxbd927fxh/7QH+Lxxx/n9u3b/JN/8k943/vexxd/8Rc/0LZOmDBB8FKODT/6oz9KCIHXvOY1/Oqv/irf9E3fxGtf+9pM8r7Q150w4TcjJmuICSN84zd+I8YYXve613Hr1q0Xtd36ne98J7dv384/v/e97+XLvuzLeM1rXsOXfMmXcPPmTX7qp36KW7duvWjbOGHCRyJeynHgd/2u38UP/dAP8QM/8AN84id+Im95y1v4zu/8ztHQlx/+4R/mDW94Q1YEfumXfilveMMb+Kf/9J9+2Ld/woSPJLyUYwPA2972Nt797ndngqfEf/2v/5W3v/3t/OIv/iKvfvWrefzxx/O/97znPR+uzZ4w4SMSL+XY8I/+0T/ij//xP86f//N/nk/4hE/gG7/xG/lzf+7P8Za3vAUQdfD/+B//gz/2x/4YH//xH88XfdEXcefOHX78x3+c17/+9S/WbkyY8BGBl3JsOD095Wu/9mt57Wtfy5/6U3+Kz/iMz+BHf/RHJ8uoCb8loEII4cXeiAkTJkyYMGHChAkTJkyYMGHChAkTJkyY8KHDpAieMGHChAkTJkyYMGHChAkTJkyYMGHChI9wTETwhAkTJkyYMGHChAkTJkyYMGHChAkTJnyEYyKCJ0yYMGHChAkTJkyYMGHChAkTJkyYMOEjHBMRPGHChAkTJkyYMGHChAkTJkyYMGHChAkf4ZiI4AkTJkyYMGHChAkTJkyYMGHChAkTJkz4CMdEBE+YMGHChAkTJkyYMGHChAkTJkyYMGHCRziqF+NNvfc89dRTXLlyBaXUi7EJEyZM+BAjhMD5+TlPPPEEWr+wmtMUGyZM+MjHFBsmTJiwD1NsmDBhwj5MsWHChAn78CCx4UGx2WwAWCwWH9L3+XDhRSGCn3rqKT76oz/6xXjrCRMmfJjxnve8h4/6qI96Qc+dYsOECb91MMWGCRMm7MMUGyZMmLAPU2yYMGHCPnwgseFB8Eu/9Et83mf/XozW/If/7//Cq171qg/Ze3248KIQwVeuXAHgt3/Ux1BpzUJXXNENB6aiwvBo1fCYariuFA44C4HboWcTPE/bNT+7vcvjj30mx4/+H/BXbnH2mpu89uM8Txwr6kqxqBXzWtFUitoori4qjg5Mfv/eBnrr8R5WrePO0nJv5dn0gV97Fp793xXHv/ZLhO4ufXuX7fb9dN1drNtydvZOHlXwuvkNruia15sZn/zYObc+1uP6wK/87wf86Crw39p7ADxWHfJR1ZxHVMVcKR41npuLloOFZbdo4T10ncY6jfcKHxQupK/yHOs1Lshx8UGx8ooNxOPkeNZ3nLieNlie7le837bo+gpGzzk4eIxrx69ndvW1UM3AtmBXBN/iXct69S6Wq99gs71N8BbvW7zvAA9AyFuq4v81KC1fAaUUSsXjrPTwnPRXqthhNd75/DxVPj++T3zN9Pc6vbYy+bHd7+V5Fx9T6oWd8iFYQnDxe48PDu/7/Jj3PT54QvDF8wIEv3f/ng+7lepyn7XSef+UMlRmTt1cRasGo2c080eoZ49CcwzagJkRqpqgNbprCcv3sF39Bn1/jg8dzm6wbov3PZWZM5+/jPniMUx1iNIz1OwmzK7gqwq9XcPmWWx3F+9a2vY2q/W72WxuE4LFuQ3Ot1QhoIFaaQ50xUIbgvf85Lvfma/3F4L03Dd81MdgtCYgZ58PgUoprlczHjEHXDM1jVIsMMyVpkFxL1h+ob3Hr7ZnWF3T1Nd4+cv/CGef+tncfNJxMIcbR/DoFcWiUcwrzdWF5tphRV3p+LkGnJcz/Xwzjg3vuQvveafh+Ndvo7drwuo9LM9+mdX63Vi7ZrV6D6+uD/id85tcVxWvrj0f9/Il1z62wm0dv/YLNT92VvGL7QkAj1ULXl4teEQZGuCa8Rw3PfPG5uMRgpwXzitaa9hYk69/kBgA4AL0QdEhsWAbAveC4zRY+uC57ba8t1tyz3VYAN1wdPRyrhy9iqpaoPUMbWZoPScEy2b9Ps6X72S7vYMPluB7Of/zO++cv5h4zio5l5VGoS7EgXQ9hpBiii9eQ1947MLf7sYVNcQe+WpG10z6uxyXim0oH9PF97vPS9sqx9sRYixIv3O+x7kOgpdtDx4f4meY97OMnpcfl4sboUcxFKXRuho9f9++lrHCVIscK+rmOvX8Fqo+jn9cScxQFfQr7Po9tJv307tz2V/X51hY18ccHL6c+uDlUB9c3NbtXbrN07Ttbbxv2ba3Wa2fpu/P4rFx1AEqFM57fu3p9z1QbPhtMTb4EPDxuGoUtVIcmppaaRoMj1RzHjdzriuDAzoC2+Dp8LzPbvnp9bNcuf6JXL/2yTRHH8u9176eJ17redk1OGzgsauGW1drFrVGazBaobVCa9hsPSdry72Vo3OB997zvPO9itV7od5YDp97ju2zP8np2f/A2jXny1/n9c1Vfs/8JteV5pXzjo991Yqjjzki9Jb3/KzjP98+4Oe7U7RSPGYWfLRuuKkVjQrMtWdROWot51O67gF6r2mdZus1XVD4QNxf+dqHwCmeM2/p8Zy4nqf7Jc/ZLV3wdAqa+jpXjl6OMQuMmVPXVzBGPuPN9inOzn+Drr2L95YQekzw1DEPkBgtV20AvIKAGl2jCn3hHhdCGB6L8SJfJ8U1l2PJPqTX1sN9ffd6KfOS3fupPDa+9i+9Fi/BKD6UOULwkif4Pu+PDzZeC8N+hhCQI5di2P1Va/J8RsdO9luhVFXsV4XS5kJM3M2ZlDJoZfJnr5Shqg5oZreoZo/C7GrcuSL2d6e06/ewXr8H5zZoPcOYefzaUFVXaQ4+Go5eJnmEtdCv5Z+3dOv3sFr9OuvN+3G+x9o1tj/Hhx7vXVbwvVCk577icVEDNUozV4ZaKbRSuBBGecSRqblp5ix0RaM0N3XDo7rmCLgXAr/YL/mV9h5nrmerFI/e+j0cf9z/kdOPuok5hld8lOfjX6a5Otc0leJwpjmcGbSG3gW2nWfbezobePrU8T+eCjzztCZs4cr7zvDv/v9xevoOuv6c5fI3eE1zyO+c3eSqMrx2Zvm4V624+uqr+LblfT9n+U/PHvK/9WdoNLfMjCe0rI9qRY4PlR7Ow5Q3dF6z9YptzA06ZJ2wCo5N8Ky95Rm74Y7d0AbPylt6XTOb3aSuDjBmRlMfU1WHKFXR96dsts/SdeeEYLF2hfIdc6VR8Szuw7Be8KR4kKDitXzZOR4u3ivjd2Okc19Rrj9GsSLHnf3rjn05hFIGo8drhN34kLc0DNeDT/sc/KXPKdcHozwh/60rYkF6rTJ/COyiPCoq7H/8wnYjnwk5Riu0riQH1A0oTVMf0tRXqKrD0X6FYHOMUVqOi9EHLA6epFo8Ac1VCFbWlq6VY2NPaTdP03Z38K6nqg6ZzR6hmT+K0jMwczAz+QfQneG2z2L7U7xv2Wzez3L9Prr2Ls5b3vOeB1tTPPnER6G0ogqBA2VY6D05H1ApTa00ldI0yvBYteDJasH1eB74IFmwI/Be3/L21bOc6JrF/BZHRy/n+GO/mO3vfIQb1wNHc/jo64rHr1XMaxWPl+QRAHfOLb92x/LUXWg7uPM+w/X/7b9zfvun6Lo73Dv57xz7jk9cCN/w28ycNzx+zq1Xg+89v/6Ohv/PWc0vtidopbhVzXnSzHlEGQxwqAJXK0el5eRoneQIvVc4FGcBVsGzIbAKlqfshmf6NRtvWXrLkkBTX8NUB9TVgllzjaa5iTEN1q7purt0/Tne93T9MuZ6PTrd3srzTu07gy+HYjinyyiQ4gw7X8PeOKNjjJC/VNpciA9w+dqiXFcYXd03byiR1gg+lDHZX4wHMFo3lNdZGQ8CKXaEHAt0GI6HBgxyr9t3HHXc58syG5+/yqv7EHJe5wCnZI2H0lTmgNnsGnV9JecNVXWI0bO4PrL40BG8Q2mD0QcY00heUV+lnj8BB7fwzQzdtbC9h+/u4F0rnIJd473EDmMOaBaPCyexe716h988xfLsl9lsn8Halv/+P/7TBxQbPlD8zM/8DP/T530Of+aPfja9dbzxd/9O/t9v+0+84Q1v+JC954cDLwoRnC8urdFaU2lDbeI/DEobtDb5wtTBMwsBFQLzUFErjXNLVH+PWXcVra5g5o7ZoZC/VxdC8DRVTNLmhroqFk42sNo6nA9U2hM6S996vAJvYI7DhA4bWqAlhC5dDqAcjzZX+fjZFY6V4ZVNz61rimvHDW7juFobZoYsTVcGKmOoVYVRiloHZiowR4Enk8FaBzyy/b0aiODeaVwgk8JGK/qg0AE6FBggBByBNjjOveWO39J6xzI4VDVjsXiEujrgYPEYB0cvR119El/V6G6Las/AbfFuC2FLCC3GVITg6O0G26/wvsvJ2WhBtpNoyaJiN7kakxQwELny2Ph3w88mL1DGC5cqf6+12Xl+NSJ00uLw+QI2IMR3JnQlCDvXFcRviysWebtf7/ceu+8l3xcE2C4prowkZAhBpXWdF1iySDukqq6izVz2uTpE10eSUAG4LaE7IXhL8Fu67jmcO8f7NQBVtaCqFvG1Fsxmt2gWT6LNXIghMxdiyAGhp/drvDvDuRbnzrBuTQgt3lvAY7SiCgqDolGamTYsTI1XPu7PC2/HSs81MS54QkwIhDQISqGMxA6vFF4pOUZIgjczFTNtcMoR6Al+Re0PcAqcCZg5HF7RHC90jBWGKwcSH7yHznp6K+d6hUNbi+8lNvQKaq+YWQtuQxdaQmiRlNBhFDzaHPDKesGxgscPtlw/0hzNKrxSHFYVlTGomASiNVpLgmGAWgcapZiNFi7yxaPkfDfjQpAL4FCoAP1wcmHxbL1j7TwtlmWwrILDmQqtKur6KgeLWxwePompjmRzzEw+92AhtFh7D6UCzlu8a3Guw4f4LpnAiJuZEqzd5Ko4x+9XCLr4/DFxa3S9EwfM6Dn74kQuCGmz83rPXxQKoSTjXREHXCyQ9QUp3OF9MyoM7S4IL9vX/LydhPGy47JLBKfjko6H0Q3GLHJ8rKsrmOpQijyqErK/OkIZiS/BbQndVpI31+LdGYEW4oKvaQ7RukHFc6aZ38TMr8uiLVjoVwS3BcD6Nc6dxRixxbqVLApUIKiACZpKQaM0LifYH3hsqLUWIhhGZHCljMQHJck/WuONIihDQApVVZDF7zxU1Fpj3Qpr79L0xxz0M7wx0EC1gPmh4eCo5nA+HH8Tr91eObCW0HuCDbgq0DnNUbulWbeYfskmtIAl4KiU4kYz56OrhmMduHUAx3PDQaUJQXOgFcEYgo7XtlZoY6giwVJpT6M0tb64lDIoCEbI1xgbOiQ1IAQ6AiEELNAHaBEiqFXgtKbWCw4ObnFw8BiVOUCbGcYcyv0AILT0/SmEHu8tzrd4t6XFFYuygdzRFxZgOpM0Fz7TImZcRsDm2HFJTlFeA/LYcL1fFhe0Hp578f2Gx8p79r7HvHdFLmDxvsf5LscM+dkOMaFY7Mnf+EtjRV4clsvn3edeQnzlf3qIg0ZXaF2PYoX8XGFMgzEH1PVVtJ6hdEVVH6ObK3Kte0sIG1x3GhdrSwhtzEkCWs+YNdeoaslLTHWImV8n1AcEbdBuA77H+ZUs+PwK65Y4t47FhQ6lAmaX2HuBKPMGo4XEMUrTpMVj8HKuBp9JcafAazluXmvQGqc0OngaLzmMU9B7i3VLZl3L0aZhc9CwxRMahZlrTKWo5hoVC0bKBpTyuOBBQ185ugCm09StY96fsFGWEGOD1nClmvFoNeNYKW7OPFdqwyGOoKDxDdoYnAVUwGtFMBqUicQVzLSnKYhgF4ngSimC0vjMmAiB4IPEhJ5Ah6dF4oQzmro65GBxk7o6ROsZdX0UiWCD1gHn13GhbwCHc54uHl+AoPSImIkUzA6pu/PZXvJZj+LHfc53eYl0vo8LHUbXw+/V+LpPa4z0e61nLyiXl0PpLuQJ8jUVfcrYMMSDRA4510qOXpDI6ZqHSPmUxRfKAlIihofYEEbf7x5D+S793yiNVlU+nlo3aJPigaYyDUrreF1qlErHTNYiVbXIsUKbucSKeiFkjetFcOLOZC3ltmgFdbUgmIa6usJsfpP64GXDmmW0lw4Xtjh3hvcdzq8JvkXKiztFsBeAgW+Q+3cdFI021MqglcLHPNYT0JFMk3NISa4eeYrMR8Tjq4FGOQ6rmhPX0fWndN1dmvac8/aVbJ2jVrA14CqDr2X9PtD70BnHFk8XhRxNDyZ0sr4KUsq9UjU8Ui84VhXHpuJAG+bW4XtFxQxlQJtMJIzWFDMFM62ZG48LYNBor6kVdEHRAJvg0MHjg6aXVRM9Aaug0gsWixvU9VUqM6dprtE0N+L9w+D9GutWBLT8rGs57y9+Cqi4ltt9/PkxsA8Xz2uVv1d78o18nRPz5hgf9glG0r1RzhkT84phrWBMk9flF7awuNaByB1YLlvzp9hQCsuEX4jrB2/lNVIhKLgiFviCGJajY/E4xsT5qEi099iXR3j4GpD8c2B8DLVucv5kqjlVNUPrlGd4Quhwcfu0Nhi1iN/P5Nypj9FmhtLzyFXMCEHuXz60OLeCIPlkVc1QSkQIpjqinl2H+XWCNijXxiKTrFk63+L9Gu83ON/Fz+qFx4YPBP/hP/wH/vgf/cP87b/wJ/j6N30hIQQeu3nMZ/6+z+CH/h//Tz77sz/7Q/K+Hw68KETwPjiCLOqUkJqb4Em34y6ekkZBrQwV0Hb3aLdPycJ283H08RoxGppKsWg080bI4JIEBnA+0FlR/m06z6YLbHrYdLDdKmarNba7Q9/dpe/PRPXotvR2TRUCT9SHvFprrlaWW1db5kce1czQLqCVpD755hJJ2o6ACRJ8eyeqXwDtg5DAUqLFB5W/T0gksAtCAneRANoAmxBYIonYmbfc7rfc7jf0yOPz5hEO5reo6yssFk+iFy+jvXKMN5qqrakA1YLWFbW/yUFwVNWCEBzWbujtUojggtzYtzhK2CVwykXZbtL1fMSuiQuScgGXn6+r+Fj6Of6uIHeUvg/R4y0EmxM5IUG2OXh736LU6kKAD2FMXA/bPrtAOA1/4y4sGHePY3nDUcpk0lepiqo6wJjDgbCrDtHNNVF178K2uPY27eYpbKyslZ+j1g1NfcysuZYX/PXsJnr+yEDueAf9CoLFdyf03R02m2fwvqXtTui7c5zbIKWLQBWEjDBK/qWKulUX04EHQSJ7dLyu+uDZBocJCjQYHA5NFwIGIVK74HBuQ9fdZbbs2W5rtAbnoakkRqR/RscEzQe8l/jgPHQ2sOkCy7aIDcsev34G15/SbZ/F2iXWtXjXUQM3zJwnjOdKYzm+0lHNkaAUlbRd3H6AHicUcgg4pXKlvnYXCRFXdAUMj0k8iSUqOmATJCFYBsc913HbbmiD455tWatAXR1jqjmL+SMcHDxJPX9MbsyjA26p6mNms5sAUfXa4dwWF5WwPiYt+4gJ+aM9hMUOgXOZane3CLR7fZVFn91iT4oHiczIb68ufp8ULePFVioEWYkRJIKnHRK0eE2lhaD3zYj8Ge32zsJTXq8kksYJYDr+z0ckQ1ICa7RuMLpBKU1dX6GurkR19wxTHVHNbqL2LLiC22LbO3TtszjXSrHLdTi3xsVuAWOuMZvdQpu5xIuZxImgDapv82uEYOm7u7TtbbbtHZzvJU74FvCYIMRkrTTViBT4wJFijA1+pB33MYew8dE2WDahZrmjYk+xqlGabXvKevN+jJ4xW63puit0FjonsaKE90PHwJA3SC5xvgG3gvnJPdTmHv32GbruJMaGlgq4pmdcN55rjeVgYVEmKmqdxzpDFzwbb9EotsGxIbABGsB4TaOSxm5nu3IMkNfL8aDIPZbBceY7+uA5cx3nvsfrmkrPqJurLOaPMZ+/DFMd5YJBKgpV9VWa+jhf/9o1OFVLUSjnBOPgNErGC8Vq+Vgi/HJhY4foLQvHI/Wqbi7EhvJ+mXOMIjaM8oxYQL0M5e+Ge3X86sc/l3HBByfXTrEItG6L9t0od/J7ru3y92VxyHs7Vg3uFo13rqMLBbcL+zbEUK1rUfXoGcbMqKqrkgvEPANd5FNuS799hu3maZxbx32XeJeJ5EpyCaXnQ1HZx7PStbj+hG77bOwWuEPbndLbFcE7QpBuExPgYdIGjRSkE6FToszJ++DzP7BsgmEZc7tN8BilWOgKT2DjHdv2Lm79XuYn1/D6OtvHDZsu0M3kNTedRyshmra9Z7n1OTYst7BaauZnHc1qhVo/S9fdw7mtxIYAV3TDDaW4ajyz2kms2fT4ztP2NcvgaON9aqUsG12zQceCj6IJSvKhiEQEO2KeQMoRAhscK2/ZBsfaWc59zzo4rAJUTdMcM5/dyoqvdC9RqkLrNUY3VGaGUwYT71vSIXNRtaqK/+ev6rL4XxA46S+T+rQoBu3LI+T7JJq4KKKAoSCcf4779nyxoSR782PeFqq9i/l8igdJ2SbrqXUuIHvfYXQt9wc/FNeH94zXux4/lrulcsG5WEPsHEvZpx0CvVA9GtMM5KauqcxsFDuc2wi5FGOu0eQ8rGluMFs8IeuQEm4rOUFcP1u7GrYvFaBiYZr6kGBmKO9EPey24C2uP6Vtn6Nt72DdlrY7xbmtxIj7rD2fD1UAE8hq3yqLlhiRwQSweBFfBBXzCCnEApQrPIPEicpu6e05m81zdKt3UZ98IquFBjynC1geeBKF7Ip75d2V53wD67Wi3yrmqy2uP5V1hV3hQ8+RmQsJrAyNClir6VeOvtWse8Mm9Ni0pogdT5vgaVB0qNHawZUxAnAh0AUpBvWxQyDFhk7BrD5iMX+UprmG0TOq+mrOEVLsHz7f2H0TTFwbJjoyl4iKviE58PfvDhjiRXr26LwuzundAihAWQSV4sYsihpMjg1lYVjO8Vn+W2MO5PeRayhjBYzjQlKzpvxA8gKbc4NyLZJiwxA/XMy7N5kgTnxTWTwOulAM7xSMsjBHCUks+VgRO0ZU7z46vnwsritEcYVWNaaa5yJRKcqRHMehYgwbFMKLWDA6oG5uUi0eg/pw6CpyLaq3BLukb+/QdffwvqUyBzE+xDy0OoT6iFA1subwDtwp3i7xrqXv7tL1Z3TdOda2l5xHD48f+J+/ga/6lu/mrd/y5/jyL/x9csyU4v/85j/MozeO+aIv/J/459/2F/jj3/D3P2Tb8KHES4II3q0fCTGyvwk5JXrOS1uSsytMH0aLNiGDhQS+n2d0InxcgM5CLyIf6r6nd9uogOyKRb5HA4e64lptOZpZ5guHmSuU1nlhV+6TED2AGpIyF6C3Gq2DxDXPiAweHwsyCVz+/UD+BGnvjGRwGxxt8PSEeNNdZHKgqq8R6gNcXeFqg3ZeKrjVDCwoLUqOBglyaYFlrST+IbhMBO1Wui+2Vw5kjvz8/MRvSe5k8icSGIn0VbogTMukLS1aSvJ3TytB3j5vc1WpfP1EAmFBqSGw7BLa6W/Sz1W1yDcR4ELgd3HBmI6Z3yGfdLGt6YaUbjymOqSqj4f9rY9EaVNJwqtsJwGyILX7/oyuO8mfmXObEbmUSGBTHcnCz8zk9bxB+XUkhEUlaO06WkB0kriGPt/Q0yksSh5GC7CHIXv2tbgkuBCTKVXGipCvOaUUJoALXhLu3tLZBu8hJSFGQyHMHb9+JoNDJoRcECLI9KKydnaJ8y3Od7H911KjONKGw8px0FiamUfXoHSynUjFniHeuaHXYHStJ5gXuCpOSd0QEwI9TuKBl68Kg6nm1NWCujrEmIOxkjwmMWg5P6rqMBOemXSJVdfUAu38eJGUE3Wl2VW966jM2SV25Pf7yV/5fIYkrSwM6SJpk9cYviptUHpMfl5GDMt2F8qeqKSX7x3eb1GqkuQubm8wkrzJa7k9sWG4nktlQbqPpO6D9Pgorip9kUgvjmM6huVxK9VMpaLT1Meo6kiSMBgtuIK3eLfF2hV9v8yJadn5oOPi2FSHQiariqBNjq3pNVKbsCiBk2JaCKyyhU0h1+eHcmiLI6BjPHAh0CkvqtmI9H2Fwoc+bveaRd/jvLSRyzU/XHs+fhwpLvgQr7eYQ/QWdBtQ7TnBLnF2GRcDQualbomF9swqJ24cBoL3BBfkfdmJayFIJwNDbKifd9+Hrym2dAXptY2xwBHvM2ZOXR1Il0h9LRPAw7VSDUSfmY+IAuWGa3wvWbKviwhGCzfgAsGzT8VXxodE7pTETlUdxOe/gIKxnl+4P483byc2xKJx2s9UOArBotwQF9RIESRfTSSlfFaraKEDLrm+U1FI/qaX/Q+adEtQuwrhnWO6D7v52XAcZ5kETkUjXR3BbmEw7qt3W5xb0/fn+XWG421i8S0qflQ15F/e5VxCCtMrWfS6lpCKYAxx4mGgkNzhsrRfFsvxPhyvN6EthqJJyiMSYWSUwnqLsyua9hxjr2JtNcQJLddv72Jc8ORCsvNSVPIWqrbDtFu8XcbuGlnYK6RLolFi86DjPT+4gOtDLPQMnQ8+qng7QiR7BGXekOBH5HAYYgkBF8kfG4vHAYVRFZWZxa6xg4EoiTmCiWShfOZeri9do0JqJA6FWjV9IuUHtEsCl4KKQcU3InYKla/W9X0LyKXKfVdQURK/+bFiDfFCYgNlnhC7aHaLROl3SVBSdhtau0aFgUQp86JSUZxj47AhXFAOX4ay8FYQv7skmS4IHaPrkSKytL8ati3F5Bg7qiOxo0vikZRXxA5Ta1dYu7lAwCtlUGZOSGsO26EcsQBuY3G9i/Z1Xc41A8+z388DHf8lOjGvMQL52iqRCssuXW8h5hFKjcjgWmlqYt7gttj+lKq1bLuGrpO40DnoIhvrilyic2IJ4azC9wrTxzjru1gwDFRKs1CaRim0EktL18u/LhR5Q8RoTcGQE4xiwahoHKKoxOc46JFzRptGyLz6ar5extfQzho7KalHtlCx4B181AWP/oBLo36h8JUfo8VTcU7rnPtLDqGLvGFX7StriDpf+0nhW8aGVPBSuopWiZF/0FXOfzNSLPAWXcl5n/IDHeY5L04nS4ozZQEpE8VqjVJmKCwHh9b1IBAJHrXHfmZfN0HqJCgZNBUuWUfuWlKiinxL4q42jRSKTcFvKDMufKXvdYNhyDGyqKA+JNQHUhhOqt4wHLMkQlHKYBi6F1W0rgsFP5K7F/1W1uDxetmXg34w8F3f/Gb+xj/6Af7td34Tn/fpv/3C7//0H/4sHrl2hS/9pu/kubtn/J/e8tYPyXZ8KPGiEsE+jMN6Sf4kYicRHCWMUnR2Q98vsf0p9aaj7Ro2vTyvs4HO+qgEVpidrLCPv+9dYNN7lm1g1UpA7reKQ9sXai850fpeFrkLpTlShoPasZg56llAZ2XPQP76ELI3WVYEI3YOvdf0PmBCwPtAXXm8i4G5UAbvJnaSEA4+oF0Q5fQyOLrgOfcdW29JTp6pvUHrJiZssoD3WhG0whstFhE+VvuDxfhtrHYbqp2zw3uH1hcr4KPERZWE5lglm1S+MFTryhZuVSxA9xG/uwhe2uviQb8/dhI4UaGUizt7IUAnpISyJGvHxPBYnZi2LR+3nTYQOTYmk8Gl0rE8DuU+e9fKAlJVqGBRbis3pqRsdttMYIm3Vje8lzLo6ggfnPgL11cGEtjMhDwPVkjgSBT5fgmxBdS5NTaq4tPirSSBNRdJYI163o/kfpDrZ/hZ7yQLqXLvlSQxiQwG8fgyKAKiwqg2a9zqgI1WrNogij+bkrJAbwNep04BT2c9PiCKHyvdAm0HXQcHXVssaDexGLXFuS1XtGGBYVZZKuNJl0Iie2CIa2kfU2wgkFXBdYwFRiVLiDDyDM+2EKhRstfFTgpRBIjaZ+OtFIqCR8VFUiZSUmKTbvD5/J6h3Ta2Cl8hqV616wqFi6iEzR4VbEJKUnbJHGCUkMlz5BpL30uiNiwcUoIGF4nfi+9rCc5KcYSLqr7LUKr9SvX+rn1M+diwbftazEviuSSCbS7We8jJa/q9D55QJLQwJn7H7d2DbQxAVagYZJu3skCDIU64wQrCuWj9kwtihspIkldVUp3XZjYquinXgq8kTtgVzq1IHSSJ4PFefKVFGcIQH+K/D9SHtcRuLEhqVK+G9k4g+oKGTHwYJSRwuv6M0gTf01sht8x2xWp7k/VWrr1NF9j2PucPZYFo0/kYR2DTSwHZ9CEroiRmbnFWPNQXcTE3qzy18VSVJzh50eDk+s7F41AQU5G4apDWUeMLmwqVnq9Gi7z0GrkohBdVo5eiUBc8TkGl6twOnCwhLqhBg5X2vOoKtlpLHNANVmmcrkc5wGX2Jhesj3aUOrskRFK3l/lBmUck8rL8uTznd5GLu4AKFcm7MsGn6+OSv5Wv+7t59llKpfu6FKvI+7SL4e/KXEPnxZ9SGh+JMMoF3yXHtiTU5efB1xDAmDlV9PFNxeuqOiiOnxFyOxHfscgjecCqUDt79tlVCUlQFN+8QxHvF7E4Ih12XcwnklJaCI+05H9wqmcoSA/HOJGnjIhUX96DVSwY4WnQ+TrUSmWSZ+u29N1dmvaUZnnM+XrOchtY1J7GqvgOGqNTzhDJHxtoO/C9QtseZbui+0IKyQ2KuTbMtWduPFoHggPXeXwXoj2cF9JaKVw8QgPhI3mDvqRoXJJBKf8oi0J9EOsrhUHpGmPmIkRIKuBI/shHuqWur0hngO/yfcmrKpMRibgAMmmTUNo6DI8N5+zQvj20bpf3u3TP2yfG2Kf4LWNN+fx0zTm73MkjTot7p2V3LXDBMqq4/nefs2splX4OwaOVIeiGiv1FodJnHMgxIRUOpFtAPz8pfBmKDqR992LJx4biW6nyM2YQ6OBaIXDtcpRX+EL4MnRtpEJ1JNe8kxgRSWRvpRjt7Eo8w+0q2pIli76H7zBM+UeJFA9K/SRhh4+IcSL9OpHBqfugVpo+OJzv6PszDjYbtsuGVivWW+ksLJHmkGziusJuFKoNmHZLG3My51p0VDA3SA5gEEFJ3yqs1XFNkPKZ/bHBh/HaoewszCR3LAq1XuKBA4i5pjEHeb1gqsOcI5jqKN5DDrNAJAQvK/LgBxK4UI9KETWeFykr3NM9lH4/XN/7i0K7lnFlN8CuJdRQFNrfOQTETmAH0f7qsjVHyRmkfUtFHyCvE+6HMj6UXUTCpxgqMxuIYIZYkI5zmXtlixkFPliUViSf+KQUzn9bXEcXxVp78vKkSC7Wc+m4pq+lgCedE8YcDGtM71C2I9nJJX5BCmmuiN/RqzwJEtLxt120nZEuxCS0sHYj1ltRjPXBRAiBv/5n/xhv/Tdv4z9+77fwuz/p4y597hd+5qfwH976N/jCr/2/8MydE77ln/zf+VCKXT7YeEkogoGRYsfHBdBmFNSGYFcrzdquWG+eQinDjZN7nJ69jOcOA0fzwKLxXF0EGhtytb6OLeDbzrPcOlatDHI43QRun8PdE2n95iSgNvdwVoJxb1e07QldL95o182cJ3XN9WsbZgvP/MijmyKQBAnGqZroQ8hEDEqzAVax9duoQK2l4p+SuJIA3iV/pGonlhAuWkLcDT133Jatd5zYljPX0yvxdanMQfSTlYtS6TluNsfOKoIB5Wu0O5AbvnPxxibBLt3QtZ7hvahtUuJTIiVBZVAdLeAKAiF5xOSgmoLEfSwcskoxLkxy+0WweLvKi7w03K4MzM4l0mpP61aRoMFYkQsXid5SoZv3b4f4HbWLsl8FXAa9kvhKasf0c0l8yWtuKQmt3bZ179rYhg3WbrKPqVKaKt6wE7lWNzeomptD+2YK1LQSpLsTIZPdlq67x7a9y7a9h3ed+EOGnjqqdwyKSilp945KHHPh5vKBIx41+WwKH69UZHFx4dUFj47WEMlyoVGauTZ03rJt72BO3s3Bc0ds+jln1+B048Uewqrs+dlUms56Vq20dTofON147q7gdCnJWn+uqVZnbPpTUVz3p2y397D2HHBcrw65pSsOF1vmCykSyUYL2dN72dK0L12QFq4NHqcUSwxNSfSA+P75RGzteAMXLZ+bEFgGz2kQ4vfEt9xzLaeuw4ZAq6A2BzT1EVVM6nN7Xmy7KaGBxgsJlNRg6TyTXRoq18+HYQE3FIESGZGuI63nI3uX3UKIbFT8uYwDUCQUF2NBaefgs5r5ok2LfF/GhzHZsruYHEgog1KD6gjYWxQqCeSkJA7BRa8+gy+IorKLYjh+Y8J8FJv2kWLx+WJ580x+7VTYKVvZrV0XcWmWY0Vq6zL1NVEJpuPdS7tnso2RNueOtrtL253R9+f53NBxiKSCbB3TKI19iBZPUfwNqr486CKEYlE33HvrmASbEBdvMTw1SuN9S9feY6Vrbpy/E3v3FdxrpFh8fBA4Xri8aEsKP+eF6DndeE43ovgT25iNHJPY6rZtxVrKh54rZsYNVXHQbJnPHSZy/25jsVsvsaHwO+6DDHPaKC/5gNIYr3Ah5Q6glRSXy04hGIifVBRaese57zixLdvgWLoedE3dXIkDYG5QNzfQs0ekOygtdmJMqIBZkPbG0hplUK/4ERlS3vNgfC9NC4ayeCJF1lku/CSlaqnmTUTUpbEhv/egMoHB8mkoYEWiIhf6O1FnFgUuOZcuK26NC8TlPg37Wo32bVc5dVEZNOQGWUW+03FVvv9lauLdBdquhYZYTB3keDEqBsdjC0LaBm+x3Z2YB7SjzzyhqhaDX2R1hKmPpbtEVxIrov84QL99hrZ9js32Obzv2LZijRCw6Ggbk4gV9xD5Q63EGzjFBxuvJxtbZy1iZeWLriIY7sVgpfgCzOP5v9AVJ3bNev0+tJ6xAMLdmzx3Kn/bVBIPFnXAaIkHyW7OeViuQa88ZrOC7hTbn9D1Z9heuorm2nCsKq5WjkVjqSopDPVrj90qtk7yBohFotzOLdsv3yvwGlMs8o0arKNgiAvb4Fj5no2XQnEbvJwrZk5dH9HUxzFHPB5sPupkS3YU7zkHWcVl7XKvL/YuSsJxd+DzkCNcVPRW5mDUJbgrGBl9LYQjg1J3uNeXsWA3bxb1qSt+P/b7ltfwe2PAPtzPtxygMnOIwxmHvxnHhrJTyEeLmcuIoXIo5f28x8u/Gb4fK35TwSjF5pQL6Fycj8c3ziIpYwWQj2ki56vqQHxC9TwXlgkWZclrjr69I/Zz7XO03T267lyscWIupx/SNkYU/pKDXCSDi069uI4pi0SpMOsINOhMBgMyE0Ub8HAaOtab93N8931cATbtFe4dKA7mgcPZsPFJFXz3HJZnGnPmaTY9ZnWXrrtH1y9xdkuF2MYcKcWREs6g7Q3rVaDrNUuvLqiZu7KTiLhOiOuKsSp4EI9svWMbxBKiB0LM12U43HWa+WOgKun2qA9BVdSqYmaXOaetqzV9dSCCoeBHs4Bkn8VDP+Xtu3ZQ8nVsCXWZp/0gzppdEIwkjIQYe8Qju+toKXQW64ZRrm6zrYv8PFyP+ec9RdrdY1AWwMufx7+T/a1TUZ5xLElxwfthHVHOItClnUT6R1H4AcoZL/uGzu4W8MQComWwhthfJNJKBsJV9TWxdUjH3m0HkUR3WnTMWZLFiDHRBjN3KadO1cRNOEJ3QhdzCckjnqPvzrN96QcL1lq+5k/8QX7sJ3+Bn/gXf4fXvvLJ5/2bN77htfz4v3gLn/fn3sIzd/4g//hf/78w5vL7w0sJL64iOC7WEgySwKXqW7en0plaLOWGcSrtisun2Swf53wj6p8bB6LkSf6fSe0H5Gm+y1YUPcs2cL6WYOw2ioMzWcy5nOSsxOco9DQBblZzbunA0TVHfQim1oXXX6HoCWlB57NvDwE6NBtE2aPjTcYFqE0kggt7iNwqzlgNnLz/lsFx5nru2ZbWO05dR0tAqzlaV1T1AXV1lKt5uj7CVjW+VqDBolGuxhstNhFIMq4BvEXpLdrM9qpnYVxJA0YLtmzdUJK9sRUoaEPQGl/X+fv8GrEHV3mH7nuU96hUTXItql+ChuAs3m9j+4WTKrJbY+0mHsdhuNvYxmJ/cqQvCW7552jPkH2ColIiHZPkWTNagMbEcnjvMjku1ZGz3JaSj12x2E0J7EBeS3tlmbimNir5++K1lc4LNlMdovUc0xyjmmtjT2Bvc1uXsyv67i7OtXTdCW13gu2X+YajQ6BCZfWNfK/R0buzVAU/KHwcDgmR+CnaPZOiJSVABhWLRx6tFDNl8CqwxdF1Z3Sb9zG/+yjwCMvljGUbOJoFXAVN9PaTVk4hgZetlwVcK96fy6Wi68AsPXRCAlu7ieqmNSY4GhTXqhnHwMGhpTkIkQhW+M5Ji6dXO2RPjA3KQ9Bs8GzQEJO2RoX8vez3xURupAbGceZ7+uA5dz1L17MNHqtARZ+nZAlRxcq+bxb4OrYmaj0if7R3aDPP5Mou2bqrlikxIi919QHFBgCvNaG4iSrnhthgO5RrUUV7kQoWb4V08F6sURJRZW1UZzqJDaJmHlqwR6rGC/uhR8oDWSQtdrwHZ3lwSrm/YiexzYvPspA2kGRVPIeH43Y/ojdVzPfF3n3IBH5UK6QYuY/4MlqIq6a5MShAmmOYHZNbvYtqvk0Fke4E53u6/jz6IHYk//BE7gxFo+jN95D+4VopEe4U11O5ICqVb6lANPhXx8GW2tA46PyWrj2l3TzF/KRjcySk/N2jwI2DWIyOVhGdLYlgWLViC9FuFYddi+1PcW5F35/T90t86KgDXDUNx0oznzmxjNFBWr87j90GeqfoiiLR0I4qizoTAhs1FIkbxO/Qq9TqPY61WQkcfCZ/l74X+ygCRs9o6iPq6lCGQTXHUB/im0W+H6frzwC1t3nxv3tOpfPnonp2TATncz23YA7t2alIDAx2Ncl+JMeGuF1xH0MsYCvvJT8AiQvFOarU0NmVSOy+X2Y/Pin2ryk9z+9HouwqcJWuordmtLQwC6pI7kix92DUYl/GxFSwKtvHE7lWHrsSu3nEbvwtn7/rq35hyGxSgEdSplQAJ/+9zeaZHDfT5wxglKh+qvpYCoqJJEhzC1KLuF0SvMP2p7TtHdruBO/7WHzqqCIXqxGiRqwdHrxbIA2J80UO7knDEtMk9J1YEWeTpDiRFHa10hitWOmK4Fs222dzkeLg3ms5O1tgdKCupDNg0QQak4hg+dpbKRLVa4tqz/D9EtufxXNOVGAHZsaRMiyalsXMoXXA9WC3inaj6YLKbds6djSkf12ATgU2qHhhFMWukLohUodAVD5H5d/aW7be0auoFq+kUNw01wavaDMnzK7im8Eaoo6el2XuXRaGkxfuPuyqT8f+3maUC4st2hG6Ohzy4VRoSIXrnaJV6gKSB8eWBUn5nwgI71p6e56tTmy0M8jDHdPAphDPnEyepNigB+K5jL+ZyKrQZuhuqMwMY+ZQFMPSGmO3q7AsuMGgOExrmt244PMMh0KN/AJnDUgMKUQokVBLwx+VquR8aK4NPp+xazD47eDV2d0T64uii0Nes8KYHXu7lK8EKRjZ/hRrz/Kao+uXWLeJ1jEO8HlI24PCIIKVtEYpu4OkMOSFFIv31TSTJBWN0gwSp0IWuxglBaNDXaNRbJz4iferd1HHWHh27Rr3Dhz9wXh7nIfzpcKt4Ohsg+la/PY2fX+Os3KPXSjNoa44UnCoPUaJoGS1qei9zqKwXYgl1lAkMqlIHHOF0l4yzVxZO0vrXRzAXQv5Xx0Jqddck1gQLQmD1iJUscvh3HQtdewaGZ9fSSDVRys9IVDvZw0HQ2xIKt8qDq9M+a/W83Fs2GcPWaIsTkX7kmQB5+wKG9dzqTDc21Umtb3voxCqo7RfYO8ARxA1tMnxAYoYoXS2tSgtLZJHd1pjGLPIYrHSwmJ3FkE6rrooFJWkdCLfk2I2GX+UOfhup0ZprlR2e4Xg4v156FgUfuE6xshnIUNmr42H1486lk+yJ/Cg1i5EANEXeMRPxLWe606xcc3hfS8FE7cFXLbOeFhsNhu+9At+H+98zzP8r9//bTz52M0X/Levf/VH879+/7fxuX/2LfyJz/8Mvv+H/xPz+cX5LC81vGQUwbuQpKX0yhx+p1EEPD5VadwW3yt6K4lX55JyB4ZbR7JeGCt7nJe2Tm9B9QHTx1b7pBgJ8j4mCOE114ZaBZQJKK1QRqGMJviURKpR69mwLxRepsm8XUheExTZg7CI6UkNXCoAHWmRGBe6uLzYdbHFS6aeVqOW48sQjCb46PhqxItFEq6qaNPbojC5sq7Mfq/NXY8tFSveYohYEaoGX9XxffRACMfeW707nQdy+1BKGLLiLyp9krptrFLyoxvOvjar0XsoTfLkUcqI35/SOCekjPMtOszie1eg5WzaN0Am+PuRY0Oytdvadunns1O1BGJrYVeoiHqSl9aoTaZsg9GzoRqvdhPpeHzjvvgUtJPa2Pdy4ysSsrLdW6mLg1mAC5XqDwb2qY1dbOVKyMRx9PbzbotyLVXb0tm5WMc4AGnjXDTRIsINnp/pOb1N8UFhrBvUqMXN1hDbt5QMdFLmou8wjK/t4bFQLOxE4ZsGazkGH2MYSOCczDFe5HUxYe2DE9+/4PNoBo3K8WDfUMPyekw/p2nxKp4bGrkUlaoIalhYJexW4Eu1zguJDen9EwGVtiURwPJ9vLbSAg9yPBifs2mgmx1dHz4TPePuhksXTErnZV/yLXW+yzHDe9A6nRNpUTgUcC7DPiUAlDYxY7/0Uey4jyKyxOC3NxBNg/XNeH9TrBh8hotYAXFib7xR7iivkzohH9fU6j0I7ob3ye/3wWubknLLGGWcyC3V8Wv5nFjCzcRA3Vt8O8POA70l5xElCZwfi97AvVgho5zL8T8t2JN9jtjVgNYSH9JHHjwEd9HaIW23U8k2Ji7o8u8QRVIijkPZ/s2ILBosMuL3CqpMTCYFazW+/k1RoNUG4vmQzvF87NN9LDiCj0WcHbX9PpuXREZmL7hEEOhI9sSBhEBeeIZL1BUpJuRcoThHpZPGZaWPxIE2K/0kNvSZNCkVNHvfK4yJYK00zttsHzK0f5exwUUSfVz8Gb2urtBejqfYRlEQKaVvp/xcvlYZZ8rX3uvNmYpUMe6OPsuwc9xiPHVFgVnvxK2Rp/Tu66W4nGxoRsfaEaIdRMojIOX2D543lPEldQi8ULgQqIvL0KBBSXFZh6Rok3tL3bW0dkEfD33noPFy/+7sEBtkwCRoHyTHConwT4VIIXcbFEbL4OiUmlmrcldgQtqfslW9vO6HbR8Xh0bWEHFYXiK/JH4OHt0yJChei8mjMcYDbUU5rGPRJnhLMMP553yL1u7CeQkXz/tEFpZDmkwieyKJoJMNQSIVYsfCbgdTwgVCOAoc5JeDB63E6FR08bko5PI5K97uci2k/Sg9kBEixYuiLp9lSkNwqLhGDd5mYirHheAuNGCHYIebQoEUA9J1r5Xf+zx0c3Gdo3xcp4xbutN27lMlpudpXfgpp2s7F+6REyoMFnuSC7giLu20jetqHOMB/HCfENK9HchuH18bIdf25RIfKDTyWe2iFKOVHuIw5CmuiCNuJ6YYdF5vKMicBP0K3R+DlSHU/Z500HtQPWjbo/teiPU8PDgMnVSE0byQNFR+d6Xpi/VEyoFKO4iBeyjWDrHDMvEWKhU4lAwUzPeKZC2ZhSPi9VyqcGF8fxI07M7EScWM8p6yaweVFL/p/BEf+8NR3jDqai0LRKODsnOUykJq/J1320iwdvGe149UtsIxxAJt/GwCbkz+yipZssrgQan4JWWZ5PiAKq5LhtiQjt8+5EKRG44dyFrTF8czBC2zBOIaVes69s8mUheCYiBO95C/Fyyn8vdm9LmNcshIzpMKPdrkfCx3cbtUMCzt9UpeZM+6JnYXAfGzaUfdGuAfVleSce/ePf7Q57yREODH//lbuH589Px/tIOXP36Ln/gXf4cv/Nq/y+f/vk/h3/3Y/8Lx8fEHZwM/RHhRieCRp2hs10jto7soSZRGGyoHzm1o2xP67TPUJ46zY0XXBe4u4HgxXPxGyzRfrWDbB5at+AKLNYQo/qo7nnrTUZ+fYO0qX5jOblC+54ZpONAVL6sOuNJYTK0wjaiBQ1wVus7Tu6T6E4wVwZqNCiyDkMEmQINiEZQkijvwQbHxatT+fYpnGaR97cyLGvjUdfTesQ5ObvC6RusqKyuyotRt4w0niDWEg6AVrjYop9DNDOUkSVHega7QugI/v0B6JowGMJUKv0TwlIOFtMmkjqh9XQ7SyUA8tSUmX7p+p+KYJlanKZvWJQVwn4O37POg7nkhKNtU0s9J5ZNaVHYnjibFjTz/IrmmdYPWQ6AbLaIKG4iEkZKqaMEsW9x3vYdUVC/r6NeYFn7lTbRubsg07zIR825g9vrlyJ+r7+6yjW1a0sK4lgCOQxHycLh0vVaRBIWhit6yfzr6C4WLNywV36diIHeN1Fr3/E3I1jFeGRql2bgN2+37qZfvogbcyTEnK2nnbCpwXtS/TaVkwneMDc7DcisV+/ZUo9rAwXITj5OLx2qDCpbrpuFQ19yqFhwaT1VJoQgkH7AbJ6o/r/NwFo3CRsuYLiZiJi4IXfIfC4rGFeQPw4KuQ+LBJqoGl8Fxz3XcdVtaL62f2yBeoIo40CWe02VSpryToU9aj4oyvq7RthES2BcDlwolR7nY29eaSX5sR80DOT7k7bBdJpwzmZMUPLFynyZQpwLQKE7HKn5ZBCqJ3922yReKEDx4GwcP9vF63dApURGlgRS7HQVjtcPYp1AWv6kZej8pHILFBTsaQCXvZ1AxBu7+zbDNRSu5HyxqUgt68i7d9V9NyuZyaBgAtpVY3S9x/YnYJrltrsz3/RnOW2wvXQqKYohk0TmQYoZWCrWH+HyhsMFDUBeouvTaechTVu3sf69KaeZRYWHdlm17h6N7z9EdzGi94ewocPeKkCUlAQywbOFkBadnSgpFZ2C2K7p8n9rg3ZbD+B7XzIwjFajqkItErld4H3C9oouxoY9dDb339FryBoOKij+fyZ0mDsRM+5hyBBBLiNNgued6tsFx7jrOXcc2OFJJR+8UGEKwaC/q2hwLqlj4mM2p7CE6qkaVjt55FmA2JPVJIb9DAJVeo8DIImpE/uY/MBJfXIwt/XpM5hQ+18E7uqLNsLQxyMX8nRZvG4me3CFU5Alqz6KoxGULJJ9fRyZ+j1tdL1pjlAveXcJX7un7C0WwaxWxrwX/4t/quDhPRV7JP1ZDEaBQeqfP08Y4kzybR57ARlq983C4+NkktiO4La4/pe/u4F1LG+OE7deZkFeRCE4xwiDXrntIxkcDtih+DI8P8SANgdM7643st5ktKrTEE6DvztmaO1TVAYvlXfrzGywrT9Okbj6ojQydXm9lroD3sF0qrmw22XKr78+x/RqwNAGOTM1CKSrjqepoZWE1WOhazcarTNwCQ2wIQg5touXNIp5zBrGQS8Xk5U6esA695AdeBkvLZ1sNOe7OwOWgTY4Fvqoxs2NMsGh/SPBblK3wWgouyqdOmP0T3Msip7z8bEz8RrHCyAKm3B7bQljJJ5lFC+PBrqXyN8WDMkew+ffDILJRnpC3VQMVuhwys5s7qPGQxgsdA3kN5oVkDmtgHddm9/IaYzg2F3OIvH7QQ9dg3pxEpsTjrZRB53XEbIeQKz+DwY4D5Bo3ZpHjkYmzBhK8XcHGypA3b3F92d7tCiuI0n/8MMayw0zg5c/SbQnWxo/0Dn13l7a9jfe9xAm3JQSZRRLwuVP1YZq/01qi7CwsSeCE3NkY1xlpzVGiFJ9ohi7ERmk2dk3bPiceumZOvbzBeq3Yp2ferhXNsqdanaP6Ndv2Dn0+rj0zZVgozVwHai3nXu8UXollTBcV/mlmSlb9K1k/bZSsKdK00bKLcBPjwSr0nLuedZwnonSDVnWR08bPTFX4qhYxV0xiqv4adTlzIlqPASP/bCmINnF44CBQKwdCD2vXsUXUaGC8NuPz0m2HkyIUnr1FLCiJx9IuMtlCDfe7oau29OlXShOUkU62PZYLGWVsUHsG4qZfpe93fue8RSmfeQxllwXZ2xQDdHeEIcpQ71hepJxHfnZZ2bzbBVlinDcUFoXF2lHu/fNoMSW5QF1fzd3GWQEdO4tSV5Czq0E4Etdt6T3FsuqwsAgsugVsi+9Osg2oWNGJtZLzfc4nDPuurg8MTz31FJ/3mZ/Gxz75KP+3//kbOFjMnv+PLsEj16/yH/+v38If/8t/n8/8Pb+df/+ffpKXvexlD7mFHzq8uERw4SmaCOCRkqf0uyqSuJkyzJVmHW8a6/W7uPrcXU4Xj9BdVTw39xzNxAPYaBWJYHkdsYPwLFv5/nQJ3W3F9affj2rPpTWju5MrxdZtOVaGj5sfc1U3vNrMuXa4pJordKNl0EsX1cCR7OmKpM0GTx+SAXuQFg1V0aX2VCVk736lYyJ7pMK3CZ67vufc9/RBrCBu2y2nrsMBVoFWjSTucaGXAjSAt0tMu6VqLb5OLdiKUEvCG5Iyt65R3gtZm9qwIXq1IIuyktCBTPqOWjgLVZHyXkhmO7wm7SmuPyF4J4NEuru03UkMXBt6u8yLtrK9IU/HDDuLop1QMLRrpYC7432zk9SFnBSkyn/SU+5imKyJ0tJGU0tbXWrraJpjmuZ6DtplJTOMbliFwjS1a+8QvruttiV2PUpLG4uR2qoq2zYHKwjcFtefYLvTHKQ322fYtndioF1h3QoVg61GvDWTJ3AiU+rYbpUr0iHQPYR5ex+r03UQVWxq50pkz+4gh/RRm5iUaa3YeMs937LevJ/KHDD3jsPnHufOowsgtXQGOudojKJz4uu36YTwuXsOqzPF4rmWqu1oTp6hbe/EBUWPjUTPk80R18yMl+sZx7MOU4OJ0iIfh0TYrWKbYkM8w/rg6XFsgxsGXCEeZAYpEhl2iWB5vQ5J4jaRTF55y2274a7d0sVWL7GJkXPD6FlOJNK5FLwMVFNeCjTeaFyV3m0mMUCbwZpFD2QOcVhhaRMzSvR3KvTBzPKictS+mYaF9Ks8cMS7FtufSKtW9Pbt+3N6u8oFH+davCuStmJirjzoi+u5UILsqGAUFxO1XexO6R08xHbjhahJUktYGnYhFj0HpNbxujqiro/2FoiAHf/lQfm/D/vUA7vP3VUMSrtZSegME6HzMJCiXTzYpeylXdK3d/Ln0vdLtu0d2vY0Lqo7QvQP18gCqSoWX2VL5oNHhtjKHQsqZQRPtjAzLUl7rQev0NHfIwWj0tvvPFjWm6dw5+/k6GlDt77ByeEBzx740aCXRASfb+DeiWJ1T4MNHNzdEjbP5KFaXb/EBMcj9QFHuubxas7VymHqgKnjMCgH9NL+vfVD+7cPgTZIXFh6Iay6EOgiuW2Uokl+x5kIHroKNsFxz/U8Zze0IdlCWDqFfCqqkSFxu+dOsCjbEZo5vqrpZ5H8iXmBideudi0UzQClbVTCSJkaLQj2KX6DPEH+vow1aaCb2448671v6bp72Yfa+R5rV/R2nUld7y0+bcueos/usBS5Lw9xQOtqnCcU2BcnBhVw7MJI6uJRnhLYnXpudENVH9LUVzLZKoNcD/Jnc7lX8UV7iIvKvoEElkNhcch08mBdfmzXv3zIN2LZIBa96/pKtsDRZo5JLaDVLHdopBZQ15/Stc+y3d7G+5a2u0fbnmLdKsZpRxXGtjGpq8Y+hLxnUBcnpdtA7JaFqJkyzGKxuPQcB4nmRinxAoVIxhjO7JLNRs6BK2e/xuzOy9nQ0M4C1srQ2boSAni7VbRbUYTpe4H6/IS2vYO1Z7TdXaxbsQiKA11xvZpxBDSNDJG0VmN7UfxtWsMG8TBO1hWplbsOsdgVOaYu7muZN0ie4Nngsnjk1Hasom1UR0CpmUyGzxZIZlCBqoqgNa6uRrm8VjK0mH6F0vPRvA6dv794Xl7aDZDyClUNPuVlYRjyvSjZsHm3xdqzPICwbOeW2JAGosY8Id0tCiXcPhL3frHg+Yac7hd2xBbtNET1ktiQh2shxE/dXMmxQetayNXol7y7Rtgd5lu+b9ruC59DYRtzmQWVHC6LdSfQp1hnsXaNc+sLSs/Uyl/XV7OnsFLVkFNEv9BMDgUrFjQ7aw7nZNW76x/Onvv5C0VpWweMZgoMx2nIVer4r4lFo8uQcgmQWLFyW7bbZ9DKMAcWJ49xfnO/ItCt4Oh8CauncHYZ/ZHPJJfCMdc1Cwxz45hXnt5pei8kcB8UXewK9nENlNT+XdBZXCJxoCSCU57gOfNCAq8iEWyJpGM1p46+rymXD1EN3C1m+NpQbzTK3cBE5adxW0x3kj/XfQPYtZ7lc3b3nEue9YnsHdnHQc5HIYqj4rDiVMR0bhVtaQbvcus2udhjd9YMPtgLsSAPpVMabWaYJNjSNapaXPj8LhOV7LNsKmPHbqdy6kxK22PDKpPNZRxKVnVNfYWmPo7HrcnDflMRTixNL9rKXIZxp8+uAni/YCRzDjvdgwSL60/kW+/yWm530La8vtjGXBSqDWuP0n+87U7YtnfYbu+KI4DbkrqUH8YY4vT0lDf+rt/OZ//uT+St3/o1VNXFddUHisODOT/8j76Zr/wb/4RP/12/nV/477/K0dEHrjD+cOAlYQ2RgvNuO2dJ7pRIwbkPnjb0dN0pZnNKvbpOj2F1FU43YLTI9pMi2CixjVi2ovZzAbZbqFcOtX4O197GdqdYOyiuvOs4NDWPmwNu6IqX6cB84dCNFksI54QMdqLs2bWGGLy8PI3ScQieDLdKC7qmIHtKOBDf0Egib4Ln3PecuBYbPMsYvHuIU39FwatidX+oNEUi2LVo76TFHfC1IRgIlQIPrtL0sxoTPYOD1mit0dakgwGIijC3ZkVyR15vXC3Mx9BoTG8xzg3Ej21x/Qnd9lmSp2fb3mXT3smk7+A3Gf25GIhZBfdtF/JqeKaKCUQICvbd0HN7R8itSCkBSYRGUrQRn9V7Id8D0Csk+YxKm1A7quooB01t5iN/rNJzFQ3eb3PFLH1epb+wbGIZPFOVMH2djaZ/m+pIfICT2Xw1y0RcNl4v2mdlSq/4c/X9OV3ysHNdTKotNWPlTqnUrZXOiVCPTLe2kah5ULjkEVws3tL7X/Z8IJPENZpGG/AtbXfKZvsM2syYr5as1wecN4GmGQpETSWKv00H2zjkZbuFsITZ2Rm62xK2d3BuRWrvC77nUFc8Wi24rmtuKM1iZjF1iJ0CoggKTmGttGTlpA1JRPtI5OZ9CwPZ28QYURLBaV+TR/jKW/rgWXnxAN14S0+gDZ6ghmEL2Y+qRLCFKj+2exlN0NKhkFRAykmrmLJGCjgAukK5LUrZ/HPp65nsHoCR5UPQOheFlPe5wEQcIpCuhbZ9jra9i4ved12/zEPNcjtivgKfDyq2dKtI1CpQMpk34GWhFy4jeWIFvSCak7cjUdFWxooQwNNLS3Ak3nyQeKbjFOAqeXSqwfpheD/pBkjq3VLVmLCPHLofcTRuvRssAYyejQY7pPbN/Dn6CvwwDTyRnL09x7mO3i7p7UYWbXE7k4VSqQBO12yKpbJND6MIDpgQRkR/fv2k9mN/vChbJmulmesKD2ydo+9XdNtnWdTXaLRhdXYgg552TgvvYbMVNY9eearW0yyFoJDY7fCuo0Fx3cy4YhqOVcWsclSVKIKdQ1o7e1H9dUHlbgEgt2uKF/pA9hglnQIdMivBxKugtJhJKp+1l2FQ2+DysFpJ3JtRfgCSsONdNqv2RudiMYCpalgcylDZLSMV6GAXsdsiGgsd1dHg+QYji6hdKKdFmezIxKLtT+m2z2Z/67a7S9cvGXz70hDL8T1855Xj/xOZkGKBiZ9vER9j3LwfxBpmPLmbKBxIvpZip2RF+RoFZKJ2jYtyVeW2c/EPXWC8o65MjBUOQzXkBXsI98sKRKU/Z4mkiALygnnfcCyJD00mgY1pRgOjcnG5PhQCHzHLHmLFMnrpy2K8t5tY4JK4aWKxSDEIQqp47T5Mn+eI6CkUf0qR1X1ld5HkFQPRU5JC6bFaCyEUQp+LPH13h9lqjZ1VOK9oKxWHvEHXCQlsVwp84GDVQncaiYpV7GTpmeuKA11xqGoWWroFlAGsxIau11in6Yh5Q9w2odGH2CBxToZKGpR4isc4l7zGl95FAnkYENcj/uNVVgPvKAAj0n3ba4WrK5SPViOpuyQ/MYpOKka2UeOi0Dx7Suf7TX0o+ak8IecLyftb8tV4ncUZFjLMu2W7vU3b3Y3+uEm4sBkJRcIFHWmKBZrs5RmJWK0G78vkAZ4ttYouQRiTOcO+DjFtPIdACkTOtxe2TQFDQ2i8P0b7qeQ/rpHrMBVts+VTKujH+7pzl7SVF6QvDHNJdtuyd2cPZA9438b8K6onow2f833ukBQv9Cg6MIdSKNpt3U+vG2OEvNaKPhbz0pqD4DAhFXaK7uGHyBt08Vo+jBeP5XWflcAMaw+4yEOURaZG6awIDr6n68/EH76+ymyzhvUxvVYX6ou6DZjNKnqfnshcAScksAlkRXBtLJWRa9wlEjgoOnwW3xDIA3LnWTDi2VAOjBzyhU0UobTe0QZH7x1OQa2G7oDdwce+qvG1wdUqD5uHWBzqNhILYhEnidAkFggBPLY1GtbHILYwpr42soHJ61YYCsTRri64LeUMjq67l+dVOLeRNUM/nLNC/LpRfpA+UbHHGWyTtKpBaUweUlmPVLkJ+wo/8r2/kIsnlX9pReN9L+sGZeRzT50Joc8exOl9BsJ8jtE1oTrMqtxS/OX9Nl/PAxEvhaJ92w1DvrD7u1JgVg7sTENmS7V4KlAl3/DB8kXWDInPKN9Lq2hDVw6HixZKMMR7mfnS0fWn4gvs27wO1Lmg/OCx4eTkhHc/fZvvfcufZ599zIOiriu+7+98Lc0bvpSzs7OJCN4HA6MWDBgvHvepZLMiMP9NEAm8bTG9w1pN14m6r4vXofFCChtNVvxte3LSVrVdJuaSB1iyHQg4ZqphoTQLNLUKkehJMmOHdwEfX6+/zOsv+XjiaZTKqsmsDknPLf8ukr9p+nea7Nl6F9vKXfb8k6RmrHgNRcKRknDVr8UHOcLrirDLD2nxxVTeEIzP/sdExU7pz5V9/LJawI0Uf8rHtp6+R3cb6E6lpSuqy7ruLt53WLumt0vx8kvK39S6WVC6gxsPhAsLhiEYpMmXpSp4pAguVX4EIFbf4iNeubx4kyEdUfCX3nvnnQPSWqJ9RQdofRcYqnXOrnKgLhXBMCTN6Yabjq7W+xd6ZdVe3mNoockqizKZ9w6l4kI/tlskv2VRV2yzP1fyBPauE2WVHwivUl9dJki78JEIfphWjfTKyX+4jnEitXSaS1p3YVjAGcTbL1VbvWtRtsNHtY2oeKQzAIT8Tb7A4h2u0G0QFXu/loQjtX3HBXOlRRHdoGmQz0wVhubBCdnj+vE09DyFOAzTy/vgo/pPCJ8OjwlDHExED8gQiLSwy4Syd1jSID05ivLfYHuSFyCxWk9U+2tt0E1a4EVbi9ginj8TbQjMom0MwBxKIriwe9j18JOhj4VCJXUFRMsBaQ+8k6vZogBeZp8u7wZ/Loq9S+fYxSSg+Llc7EFW5enSmqJo45TjNLSK7/pqCTUvcSkgg4ayEDn9U+lnGSrh3OChq3OL19gLTd53qJgnr1D5vtidnYA9UvpQ7y0apXiQpvsmJYY2RTtXQlLyx9bbwedzG20PunyPlPMoRJVT4fm5h/wdvcWelswXCvGxG3cL5ZiUFnF7fMt3c4pdglqUGbJw0bZD2YC1+739rAXXKmbrnrrt0d02dq+4GEMtjVLUOT6okccfSL7g/SVef5HESh7BGmn3NEkJHB8vyR4Xi0h98LHt2+WCnC/2NGGsdI+2D65FW4N2HuUDIZqUl7EgVA3KzVFui7A+g20DwMjypfQZ3Y0JLhWWfS5IKe+gO82DiJJVkQwZa+PQx5Sr2bGqR14t36OHn3QmENLPZSzQuhmu/1w8u7/yT/52iKnDu2uC0hACKjrzBRx7nVCCEMWu6HpKr5eGxOxT/IuqauyvN+zL5VZV+6C1IYTUej7Eu10riGFIT2Hpk+4fwUgLZ/5ctoMqKyqypLgvhbuCis++muXi62GKRELw7Gn3jrlDJoHzGmPoGkhrj/xaBdEjdjYpnkfla99LwbQX5a9cy2GYOdIGdB+o2hbfp2HColRVSGfVTKduqouxwXkRluwOg0rDqEf+4dEmwqByzmCUKIk3UU3cxbiQcrMxFTKcx2kBr+KCPBVtdRk7YjzQkQyW3LW6T1ZGzk3LQcvZPiqtK2IMyPlfv4Z+mcUTfbQRSGKJrj/NA97kPLOMu4Ek/8nenUUmO7JHUBcHOJUq2ssGGJbEVjqG5WP77GcEScNWemIPMUoKznZkY5M+m9LOZxd6915ebOduLlDGkLwPO9qNy+YcDMXkgtBLA62id2uO/RBjhQVVZXInWXcIqdzlNUcqopWfVo4XD0H27KLMQTQqD4jTxZqjVnoUI6DoTi7iBgwiFCkAFh2rxXq4bJIMTtG0DlXETB/P6yQuSLMFjApR2CbIM4OKfUjrg2yJowarCKcKT2CGmSL9hRzhIqRzMHUPFjmDVnhTzPSIeYHOa4stSg0Dp/HjNW3OP1VhPQejgkFpH0m/Ig15y8OK41BzIYJPRgPeQuweDjnSibHhmEWI70O87+sahXgjy7p6bPl24djsqP7z57zTrSyf2RAbLljX5et8sJtQShFSrr9jJ5GsLJLKWh4rB/oOFk95Hy/JB3atqfY9txSslDlHjkfBEtxgyzFShHsb/9Zd6EK4wFWkLsREIsc4kay+vO8K//CdOQMPSeAqBfQdD74yueR198y+eqnhRSWCF7qiiVXxmaok6BaLtV0i2KhxC5lTmi44uv4ct30/85NHUP4qm6tzTpdh+Bs9/Nt0cLoS709rYXNHcePkHv32mTwFfbN9jrY7wbkW5Xtuzq/ypK65oQI35h2zRUA1FSoujNw20K2lxVP8vIa2YRuTsKQEdAS8D9SJAC6StsHEPZE90gK2DTYv7s5cJy0cMbFrCbGSFb2BRxepBAu6E0nqt89S1cc0p9KW6RaHdP6QjqJl3GicAeWUTAaNXoHDQJbLT2rlHLqXxYyy3SiJ8za1ET+Xid+sPE0KYLeNrRuDNUMoSB+UQUdCJweS7LU7JG/y86CCK6GVvjA0LiVr5cAYqcj10Xsp0cGDuTsM6w0FhNBjbfI01LTb22jdIFXFhqa5QlUdFm1eB7kFtKy0KWXASFV2tzqfj/No8Vf4Jl3mq+a2pMnJ6bNIPp/et7TtbbruNKsvt9u7Q/W/aOFMCyWxhJCjUFo2JKRz0+6a9H8ASN59ldIsdMVCV3Lta81cVaPFW97NEOKAF1HEpCTK2a1U6Ns7HK2fRa+eZD1TiGBVPsS6ihO+O+g6IYHXZ4qjkyWcvwfbndK1z7DZPkPb3aO3G3zouGaOuaVrjpXheuWkW6AGbRR95+lbTd8qthvDMhBJ2rEiuA0WjcIFI2QPpYpyvDDtgs/Dn86LWNAGx7nv2cSELk3+TddIWuAnlUpvz6naO9mrU7trmLqmMgPhIy3hkbT0nmDMXvJGNvQi0ZOQ2737Fck3KikgktJEfJ9Os7LH2c1oYncohuvEV81HZ4h9aRheioel2mWIA3onRsD+gksZJ8oFnRRIhk4FHyye4XMNO4lmCB3WdqTlTLu9m1u9jG4w1YK6Sv58DXV1NHhxVokQemG36t1kdTeBG7Xmli14aXFYKLmSGjO1ZVknn1ObVBd2E9VtHQGffYETuVOhqLXJ5AvIOSwE5YPHhj6IR7CGbEmjkXziQFfMtYldASbnELsLuUQYJ2+/Slk2bkvfn9H0p+juiNmyZ7VsSKvjqhoI+e1WUZ84Dm/fFkupzfvZrN9D296NBc01V3TNLbPgWFfcUJpZ7TA14h/eK/pWiwdobP/ui2OSlD118PRILjDKjYqYm+KCeAw7tt5xz7WcuS6qjEO0jUpqlyq+hwO3wbkGZ5eY9jbaHaG8w8zmmLrCRyLY1VVUA0qnUAWoONVZwWixO8LOMEiQeKDtkCfQnYoPXFwQd9tnY/61xkX7r95u8v3ZZ7/fdJ35mMXHwlcmdsT2QQbeXIwFZRzYbYdMGIrRw88lfPE3ouAF5TVBxb6w2MEwso+RV5Lj6ltc22aCWuvnSFYV2jTUpdemrqnrK5lwyYe42N59KqR9P/tiAVm+Xu4e0KlINUxlz7YxediTBb9jG1N0Fm2275c256jaDqHLSuB07dYMeURqx7YPUSRyDC3fsj9yZNOaYabENuZAV8zTmqPIbRLKa61WMYYF8EhRr+/PONiumC0PUH5Gt6iwc9GV9Z2Ck8DRnRXa9lRnz9Fun8nndN+dswiKR6oFV0zNLd1waMQ2JsUX6zSbrmLrNBuG4W4wXO8pNjgf6JVGh/H2E/ONlbesfC/fO+ka6ghxfoDkzTnv9b20/fenECw6drKYfj7kBdEnNOUERhtUP4skrkW7wac3Ybj+9swKSM+Jc0LKodB9J8SvteI/33WntN29gfiN59bg/1+eO/qC0q3Mh1LRxxT3SHne/mLZ7u9ykTgi5wtZRTsMocx/gyIojVKgwkD0DJZWBbHn1mw3bY5lMnOkyttdV2IzVRZtdmPD7gyHYVudDKfEAu19Z5aU+5SeU1ULQpDcJHUkjmJF7IDM6tDC193ZVY7xaQ5J245n8+gQcsdAWvOLf/iDkyopYxyU9YLUjUDMC2bKsIh5xNgeQp5fdhs1QY86FrMtje8zsatci7IB34uNlOqhaqXQujg5w6+fyR0v2/YOzm3ybIEb1YwjpamMRysp9nRRDbxBxCL7rChXXrbPKUOngsweiYXibRSQbYPYS658T+ula2jsax0HKvan+ThpexXlAyoaubvKwGKBdh5te0waMhgsyrbjWLAjgCrXrMC4Gw2yH3gSJCTP+WT/kLxiU7FE1gzbgpwt8gNi0UfXDCIxPfAHWmwqkgK/7IhJ2FX8DsPKxijJ4dL+YfRzLnpE8jSuJYaDk4pU5G2VYyYxp+9X9NH6QeU4Nnj5VnFuUDrOQmw3e/dFnnMxTgKjQX27z0uWo9AO+7HHDgTI3IZS1YVYoVM3SLb7GDyF07yitruL933sDF3hg3SApcHqRikeIm0YjstD2Fle/poTEXxfHOha2qNMxUKLD1dCIaq7gCaSQ5ZA7Tw2tXSubjMDtmczllclIBstJI+ORPB6K95+m9M4AOruFrV8OgfitNDt2lN86JmjeFl1wBPGc6WxHF/pqA9B1xXKGNyqpW+FBF6vDEvIPqAwqCO33mGUpw+KPlWZ91Q3U9tXIo3XTlq5HIHOOzbesg4OjyS9QaXprmZU0ZZWCJ0Do1LSLlBtn6FBgm7lbuKrGlebQvmj8FqhtSL4IN9HheAuCSyqoUiOejeofqN3mGtv022fFesBt2azfY7N9rlCbdpGFUyq2oULR0QV32ndUJkFSmlMtaCpr1Bn791hAjFcDHQ5AOdJtWMP3jKwZz+hIpEbTwyNg5dUDHJB6LKKVJUKQwU8ng/n3R20EkWN0TPm8xvMmmsxiVrQNNezj3D2VCwH6JSJ3D6CuCThRh6sQxKWqoS2P6Xr7pJavKTd4lzUl3aLtUt8GKrSdbFQSuRsWTkv1cHehzgAbfC0exAYKW/kxduhrnIbZ1q8JeQWrbj40Qi5M9PiAbiO1gLGzLHtHWbLns2swdv0GoGqEpXfdisLuRC9/ZqTZ9iu3oXtz9i2d9hsn6VtT3G+ZRbgkWrBLWW4oQPHs556FvIQSVaevlWsV4ZNW7EJgd4PapVUie+i4rSPir/8ke74maVjmgjk1Padik2b4LFKFDDSchNv/oWyxfuOoEwkX++RPJ4qwGwOsrWLj4RwH72StA+oukK7dL37sddvOpLJ57OwfyB6ALvt+/NAie32/Zk0876n686lAyNWenetYMaIPrxKKAVtGur6KHt0S5yYZx+8XZQxQL4O1gu7RMrg/+lyIpc8vS54khaxQV47RII0jPxcfVRHAELydRVdJGOr+gDmUFW3yG2WcZI6cGlxKB+ZUlkBoyIRMExgL8mcvLOW0I9913bVmG13EofC2bzQ0bGTQjPYQuSCEYpFfK9kfWCTYuUB4YIkzbO4QGu0EL5p8TZTVSZySoJnWMClxaUs9Lw21F6LzUp/ju1P0e2MZrVis5qxQqO0xAghg6Xwe+XkjHDyK/RRmbKNRSLrWikS1Ve5pRtuKMN145nPHMoI2eO9wvbRA7ST2OByqbFQ9gY7xLo9hyz5sq+8dAp5Aq13LH3PyltRASnItlGFH24ZC2x/Ji16rsUEi2mvYJqZ2F9pPcoRXCVFH237UWHoMiRbmATTxsJQzBPs5hm263dny5HN9hna9kRyF8ZWLIIyK0gK37hQ0jWVWWCqmCfomqa+mgchwUXVXOnBXS5eyhbOQcU0Jn92vemUGVppy/gAct0LMdwPhe5gqYou5XgrIACdgt4cRvK3pqmPRj69sj07BI8vFmVhGDALY1K4LECPhlFFvz85lvOhtRsY+b7blhBk0ZZmPLTtc3QxVvR2JYOco5dzCA4VvORI8bqUvEJnu4ZcVH4IZU/vHSYSlon0SV7lZUE5kTzz0ZrjouovvU4uKiMigb5fQndKvRLfyH5h6BeS+9mN4ujemubuU9Av6bfPsN0+HQudG5xbc93UPFYfcFXX3NIVB/UWrSW2eAe91WydlrkCDMVfGArIKTb0wbEtuqRccUb2wbN2lqXv8zpkHdwwRDaSDMlvW8QAa2x/KucmoN0x2vZ5gGQ5S8BY8Q7WkRhORV8ZLOnGeWk8h8oB0rkLID4/WOkOSp6fbXub9eb9WTDS90uc27CvxVto+KR81bnFO+VAiTw1Rj6z5IdcDmAr1wXjyfT7i8W7yHkBjGea5P0vVn3KoKOdzoWiUfB4rFhExH0rKYqgNF11RNMcU5mZiEzMDYye7eQIg89v3sa4H8kyUB7cP9xvH1KreFLzKWWyvVRWepd2EE7EJ7Y7jeuPsyyo8L6ntxv6/lxiVywop3wpFXE+GP7hJdIwybR2SWuaOnILh7riQNeZhE65AyQriGjDEtcoNUZeLxae0gwRa1exWzngbUC3gdmyp1mtxGbp/Fm2m/dJXmWXdN05JjiuVXMOdc0NM+dYwax2UiTqwAcZIN8hnYFl4SsJxqSFVdYUc2XYKuks6KLwxBHYepkfsIm2MZYge1eQwd53uDgjQukK024x/WHOBcReMoraerm2dV2P5gHpaOeQUXYO7Zk1lJ8TLD56Dnu3pW2fY7N5erxmiHNDJNeO4z1TJ6+SeABKCi96LrZs0e6lrg4yn7BbSNlVwqfBcuVA6iRa2YeReATi0OaOZC832Ed5LtpVKZKNmy6u5eEz2bHN3IHWDU1zzKw5znYWSViyb9+G1y8EI4UlSEnipvNgl/hNNjXpseQHnOcWmRkwi/Y2x1Io0uO1SuIqbHdK2z5HCJYuegJ33Rkys0ssaUwsFGmGmUX+g9Es4B5coHL5a05E8H1RKxnoMm7Pkt/dz48nJYtp0ZkWpbgtuttg+oC1cZp3LOBqLd+3HfSdQm0CVeulbSt6+znX5YmNUpHu5cagNHPjxOOvDphaoVI7hJPBL7ZXWKezIiEhtWnkxxSQE/PxPpaDttL3bShbPIP4ekFU/cWEXonKZ1f9OgSjFEBaUdnYFTpYjD2Ki7kZoDMJDAgBLFtJprW1yaQwpDpb3K1ECkXrgdLbxbm1WD/EqdHZ2yrYfOMfN20NS76yzVqhchCvzIy6OqRprl1ITIb9H3vplYuioWoVkyLX5UWejy0czm1xUemjlBaFIlYUFMXFnarWMyUtp4N9iaCNC82eLcoZCJ7ersXrJ/idalyVVXq7nqt5X+6jvIwf2UAGR2XFqL07qiuc6+LCZFtYckjiWyp38pAVGL7eZ7GW2pofNmVLx1ISQTOyjDFqaJlM7dHEbXUhZMVfrM/nffN+i+ktqm8IWuGsEMAwxAzXQXCKWdsLgenWWLeWY5WOkXc5OV0AtQrUlR9sY9Kx8BIXeq/3TjwexQaGQVYA3Q650gefyR5p9RRfL0uIiW3UNKTWG8Yq+TIWDN6zcl6Y6lDaPNN5E/chJXkeaQ3NW2Q02ukLBNDISqK8qSZbjaiWLL2opRtgI+do4fub4kJ5HgVVKm7TYq8aPDajp2UarLIPu0ML5NqXIQtmVw2kTCaDICZjvgdd5/iq5QDlBV+IHQQJKVkZ1KkDtsGzQc4ppRzeVQNxUnYLFJOTgZGdQyiteHaI3wsdAimmqCIBT8MjgcHbLbZ3l3YxsZ2tLJhJIktW75RxYXewo0blD/NhrCFGmq8YD4bhLlL8gbFqdtcrOH8WSqGDig2DscAX/cd036P6IG3eWmEZSNzQK0wrwzVTJ5F1W5yXeKvD4O/XKEWjPFqHkXVMtoUI48G4Cb6wlLrfwUjF5ja4WDBy2R4mlVLyMKKdeJBbFYPLyh3tD3MxRwMuKQFjbqCMDI8CclfU/YhgGOJCfl6yKPLiFWljTLDZD3y8wDNFLBA7lrz7O5Sd5Agm5gnGLKiqI6pqkfOE8TF2aG3z9e29ybFRKSPX9Y5KbpcMThhsFYZWS+/7YTHnozJIjioQYhFZXbh2QGKDiy3TBI83A/mb2vF38x0NlB9FuM9YxnIQTDkscjS0pcxBoIgbadHndtqa2+jRuB3avIMU90z+hGKup4Y8aTduPCwGtd/YNiZ1HdbK7PUQH1nHFLEjETxxp0lWBbno6QPBKzn2HlG890tcfyLnd2p/j0RhoyvmKT5AjA3RIxghe1xU/u3LEVJsKBNmHzOMFC/S36X1g3QT+ZwniNxsd82QvOnjPUDP0bZFOZd9e0Nd5bwgxFkCQ8eQGEgoC5g9OWsxGBIYF5N9mp0xDH4Si6j1UHx0W0Loc/cJDIdA1kTJuim+XTEzxaR4kNvRzQWCRD6jscK+bGVPx0i+7uQ+UfWXbCDKoXAjpKIVQzyWdYd0NkiOJpHbFJ9QeV20wUdBTR8HfNV47/bPHIDs3wmyZhzWQS+M+NjXKp5mkigdxSv1UREfdgge73Ku6WI+kcQ2yfYr5RL78onS0/uDCR/vIBctIYb4IP/k+bsxI4lP8s9EC5nyMw82qmhBOTC9zYPYg10WcVMEUgby0Ns0BwAkRiQkm4cL+5MsKGMHkcbTBRl86ZDBcklQMlhCFEVopUb5gY+fm3JVjne7cJVG+4CrDcqP8wINYjFTFH4y7bRnbQtJTEJUArc5F012cb3dxPMnWvRFAjipQxVD3lN+OArpEqyi5UMVc4Pssxt9s/N2FJyBUvuVv5d1C6U4kL7P98Jc6Bn8wQfrCg0hdgzAKFfb/96ldKDgZVzA2S2+kvWPVgbvHcZI/uOL18jH5j6dhPL7y/3DS7tBuLi+QplRTpSsY0aewMUQwMGeNa03+iy2kSK6H3ULJNEJHwRJcLK3+GAiTETw/XGga+ZqUAOnKltC6Y05IFbAwuD+MgQu8bVSPuCspuskeFpLbrlarxX2HA5OtlRtS30uvjJZCWpX9N0Z1i0xAY6rBQsMPsjCLUE1g8zeWsV2a1h3VR7sBukmQw60adHWE29wgb0JXmof9yFk1V+IJHAbPE6Nq98pochHKLZ4SJVfFh9aaXplogpwqIJXyxlzompHmwvTgYG9KsCk+NO2l6q+a6E9lWr+zsAnG8nGrpOqr6jnQg6AQY3DdV4qpPbOqPqrqoOo+tMYsxhV8mW/3f7viwpVSf4MhLTP2+hiwJaWs0EFnBV/8Rajg1w8KRhValC3wDi9VkpRBwlUHofzG9qtBGulNFV9SNef0tTHaG0w5iAqhI/i3w/eajCoAi8M9SiqdInQSWqdNOQstW1au4yJRyeJdh7EJaWGRAKnhZuO+wGDQoa47x45T0HISiFlAvohcrYDbWh0xZGpmWuTlTulMrlWFGTwsPjJC6F8gx1viLY9ug94LaRvV5FJ4P5cozeeqvfMz5dSkXaD32HfnePcmoDnQDfMd0j5MdEjBaK2N7RWs8kDXgRpqGS5cJNjGH9fVPrTAL4UG2wkhbc5kSPaQZQeTOMkwgcvJCa9xIA+VvojsdCYOTUQqgZT1fi6xvQ7wxGKDoDRzzvKQN1tRp5e3fYZ2va5rPxou3t03dlg/xA7A0YJzSCdGUht4j7qGhO9PbWZ5QEKpRfevsFpcLEIlMm/mLil6yIRvWn6eJ74nf9eCF/5u3FXQyKxk0o2+djuwihFFQKWTpLA3rFaebr+HK00xsxp6qt5EEvy9y1btcokTYUKpRxKJ2K3IqgKXEzuvB0t0sqWzTJWeCckcGq/Sws3Z4thWMGNFm2p8FLFxCx3CRTDEdN97WEcxKVNU/w1S5Xfgamyeigd2918IqmBiWqgcnL40H5XJMCppRPJVdO8jfrModtzujjBXjorzum6U7wTs6W5NlHZJB5/2khsSC9vrWLdG1bOyPTvgsErjxUMsaxsDweyUlBaOx02BFwkfWyZJzDOE4ZW8A6nDH1/LteVk0G5zbqIBXWNa2b0s2i94kPsBrp4fZXFn1GsKJV/7SmuPxl1B6w375dBWukcC6kgFPd3RPzGYhfRIipaYiU7GFH9zUl2Cgkh2DxwrVTGlINZL4sFyc+v7BJKk8eHTqEYD9K5HYbtl+XeEB9UUWgtCY8yH1RACD29PUdhslBh294dFbyyxUNROErQZjYQZil/KJQ/iUxOVjGjRbm3wHY8uCIt9mKrru1PSb7uZawoh8PtKxYlYnZkGxMCPf6hbGN8fI+hc0nylUNT51zCIErguRZv/xKlRVtCuvdmk7JCHUW0OalaT7ep8BbM0lNt1pEEXmH7M7r+lDbGhoBlpmbSzYAQwSaSwGmd0jvN1su8gA4/WgOlNYIOKucKux1Saehk7hzyDhd8FpKQSuXajGKC93EgXncve1FrM8PE1mnfLCL5PRPruN5mm5cSl4kVRh7ASTRil7ljre/EPs7GIaRtd09yrjxkLZIrqowO8XNBx3buWSaAL7Z715kEln0uOwTHA1r3dRWWXUG73p6+yBtiuYq0VtiH8bpnILTL2JDOX2B0z1QQlennKBQukWN2SW4Prw5yh+RuEUwrA+qSzwgukD67pNCuxRQqesWny6kf7D2C38ZBaGeZ0Ov6s7jNNsYJN8qZUo6fvsLDFY8hhTEpwyUrCIAmWkGk3OHAVDk+JPVvw1DIT2plk193TLB6RSw8DDYdVdvjKk2z6ak2a3R7DrYVy7nunhyP6H8/V5pDU3OoKxkUpwfLGJD41MX9SbEh5wlKcgGvRJ3slMyw6GOuk2YHuFgg6qLALAnL0lopXWfJxxlA9RVNe8bsbE41m8dOIbGPCkZnL9RsIVPHHCAVML0bikOlKjV9H4dGq6gyte0duvbZKCbr2LbP0XZnMT9Ia4aB7nUqxv8wqIGTPaNWNVUt/IGoftMAuB1bpbivl/EFLua+3ncxBowt41LxZ9z5EwikQcpy1tVRRZ6EJ6lA5wmE4OjsCsuqiBEFL1LkEvshXVRdd4bSFb1eU7vNKDYkBTQMa4hSBTxSAKdYeYltQuaTUh6yozguC0ajjsVIAHu3JfhtXn903d24TuzFZi3lEt7lOJGLu2oo9F7sJ38AfAiI4EkR/Dy4YRpmpqJRigVCBJdISj+HygRPSQ7bYkEZohJH2Zaq7VlvKrZ6rBcBIXqO3r9i9uxvSBtSd0rXPpsv9K5f4tySR3XDga54sjnkWMWmsChN1Y0eEcHtWnNv3bByhmVRZYNYpS6I62zkHpHUfTAoe2yxWE5t9klj5pT43uliEZRan+KBGCdMUREiSmV5zNo1SlXM+zNmrqVuH8vqj1AfEKph30pkr0+4sKBLbcTb9k5s3ejidOVzfOgLMtVdCGK5HqZmcQEnFhemWlCZwccuefaMq/mD3+HgeTWQQGWbpEuV52Bz207yTLX9SoaAZcLXjSZbz0gDyyLJoAdvyoTLrD4apdFajRbvnW+x3RYPtN1tNuunpS1TVZhqLm2ghf/X8y34ygESZSUzBJsn/Mpi1uUF9+DNvIk3ezlDq1C0eBe+wKnFstGGmTIYpbJKtSuS5gpFpSvsXg3sC8Oj1QG1MRyYiqu6Ya4Gv8/SNsblr4lQ9VEdM64H57Yat6VpW6rW4r3BommdRtcBv4HFnZb5yYl4XK+fZbN5ir4X8rftTrH2jEOgURWPVguOVZW3R6uAMuIfLujZtoaTtmblNcvQjewyUmxIiza3Q/6UBSEf4116zMXC0ED2yPAzbeaZ8MleuSqp3GQxCERSo6O3S7QyOCdK/cYuET/II8zsWOLBzkBIGBeFciHItvnmnoa/ObvC+Za2vcO2vSN+XmVrU7pO46Ipqf6E+B3IHmMWmGouyVts88wJXU7qUqxINhjthQVf+r5sBy8TvBAcvV3nRYpPyqjQS6oRVQdNsUAR4nPoatmNC+lzHn4OJHsQg2KRFuIgnqjdXTbd3SGZNXNRK8SYWFriGNNQV1eykmE36YKYxO9pCRsGwK1zvEjdG6lVuO/P6PsVqR0uHYu0wC1bOE1U05QEDAwkZupqccE/lDXEQhtqbbhiGo6rhiu6Gc0OSHnEbldR2drp1ECo9ml7si9bTIBtR9V6mfbtA6YPUdnjWZyc4lfvo+vuxdhwl3Z7B+uWVAGOjWxXExeMWgWqylPNh23adBUnfcUyKE5DO8oDvAqjWOHKOBGJnt240McitAd6lQrFOp5DTSZH5LMX+6OkRgvxs1fKUPdneLel7k+knbI+wsxvUDXzkcXDLi4d/tavxAPYl2TPbYmrkdhMBHoqrJSdAeQFEFm5U1UHo+4gYxZ5KvfuUBMZiLZbJE4K4Iu2EGUskMXIOpO/u50LaXFXRxVPRVEQVvuLP6VtWO4YG+jjfL1ooAlAkOKd81tW9pT16n3y2roRq4hqkdXPTX0sVhJJeVNMZd87nGVH6bOrMA794O+YPJxD7MCTBdsy51P7bGNU8FnVWO2QO8nWJR2LHB8ewlPPE/KQpSu6ZhEtpVKr9zzmLQ36cuGJGoYpOdI1JoUVIcGa4RyLnQPNWuKsqzQHJyvU+rlsi7bZPiNzR7Z3CcGyCIqrpuFIGY6UZqECTS3dRAm9VyyDYhlkYLQPg/Yrq//9xRi6KySxuUg0xAYpGCeP+HR/TIWPXkgp36NjgSgES+PabFmm5zfR/eEoFpQFoNL6Yaz4dRd8gFOekKfCd6ds2jsjknC43gZkciR9HkTruPowkz0pHuz6W+5aw+wjgFNn4LhY3GdvYoKPM02GopUOnjlDZ2CjxPowFSbL7pR0/9u1+0gx3hLovaNn3F2XzgEpNjuCXeEVWLek609jQcxgzJzZ7BpNfTUKZw6o6yt5SKwcj/1rCIDdboNM+Kbn7VMIRju8ROo7K7EhFRbSHBJrV7TtKdauSepIYsdAKaypy5wq7f9D5A29dwQlsaFRgyd5soJIllKi1B+EaaUVBAw5j3wfc/EszHAoTPR2P5KWeG+pN+LnWm82mNVd/EZs0trtU2y2z7Ft74nCO2y5omfcMHMOdcUNVbHQqZtI9l08gkMWlpR8QxdJ4LbolCo7o9og9pLJam4bHB3SYROiyCIh2Vu03QnGNDJsW1XUbosxc6gPcfND7OIgzhOJfxcHMqWOQZU6CSjjQTPYQ8WOtGQLI+eNY7t9P5vtc9m20PZryVVLX90iR8hDsZXCxDVDVR+OuoNkTT3EgXJ9EMJgqpP4Ah8tU1zREZd+dm4oTkkHzKBs1yEwi+ex2KPNuGKEU5L7kdyLUmwoeSHxcZbiXWkDWHaGb4MTW5B4BHxRVAr42L3a5vVTWwhnTLVgMbuJ1sc535Wi0VhYV2KfnUTOr4oZI/s6FtMcmguvF2NFmkMSgqPvz2jbu9kHPs0hKW1jKgZnAFOITsIHoVsg9C/cIucFv+ZEBN8fxyr58IwrbOMFnKIj0EWGIJEuPi4o8w0yRLVJsFRti2rn2PjkkEpFQHNimd17jm75zjwEp7fnWQXi7JZDNB/dHHHNzHjENBypNL1XZVWwqqMXrQt0neHcViy9Yhn6MdkTk8m8yHse4jcR3tkmAkhWponsUUn5hs7DA3bbFYeK3uBRFYqgpZSO6lxpCVVahoGY+hqqPhoOf5k0FUSPd1vsziAHuaHdlbaEHQIFGA1Xg3FFXCHJy3x+fRS0m+baaMDJ/TDyvIKdJC5Ncx/I0K5fxpuvjb5jffbrm0XFWRMXdUPr8cWl3a5aM322CVUkJ8q/dcVnvvWOle/pfEevoO8NXXc6+BdFVUNSOSXia3dieNrX3WTWRz+jUtGUlZghtb0Plba0YJPq/LB4S6RwHY8NkC0KNvEGXyvNXOs4hGl/W8sLwfVqxsLU1EpztKPcGalf1HCduDBYRCSfbR8JnnLaqrIdddvjfAAqrNeEFpqVExL49Deyp1nX3Y3WEFuc3VIFz41qwZGpeaRacKRMViODKHp0nQZviRr4zGmWwDK4XAwqz4OUAJTnUFrE2TD4A7r42FAUukj2GF0ORtKjRL9UshHPBe3aOEBxIEV19KWtQ5wUXLRwXWjpTImc2+L7JSGSPV37LJvNM7kotG3vyaIyVslDsJlYhXG5TuptOi+4jW6Yza5lT+3kB37ZFNz0OZdfS+xd9GW7A49zbUFUe1SwHCBDRJSWhcJhPDfLQSElSvJz7a0k6GkhnheBsihcKJM96sr4IUp7x9qu6NQKUOhuhms22Pow+pwd4b3Lre/GyBAodYkPWOmBmBKvVCgqvc+SEtrZDdZtciEvBIsJISt3TBErks9nU1z3u6pbj5zDD6MIPtAVjZFugWt6xlVdZ6Vv6eVX4kILeCzqpvZpT0DFImuC8g7TO4JW6N7RbFpMuxU7pfVzbLfP5CJRF70rD4IQAdfNjEOdvIrj0NpaisgCz9ZqToNik8ieogiUFgAJecG3Q/66IlZIV0AqpFSkiddpKKFKQ5LSFiRf7Nh+Z+0KpYwMmCUVUiqq+pjaW4w7phz85utxt0B53MpFnu9O6LfPZKW5EGPP0kfS0No1PrSoMo6mroj8scU2al1T1UfMZ9fzQJSqOqCuruT256QwSyjV/+W1X/4+IS34hk6hNncHETzebdHBxUKQZq4NR6bOhdGZkuJlzcXY5OMCr/fyubXxvr/2Nhcv09JW7kzRI1+L+2sqosh54tnaFa3bYs2C5C+uY2wM8fPOdg+RvLng+buLrM4a1HzJ/sHZVS7sed/FVt1V7haQbpmtnIlBPIFrhq4iExfFMB4Op1G0iJq99e6hiOB0BlWICviKqakxLLThUFUjcmfsCTzAocS3vzgf008m+jaOhpDZjmqzzoMU6/MTXHs726J1/Rl9d4YPW0yAQ11zxTTRFkJRaykSlaq/jddCAhPizJFxITHFgvRz/l2MBb13WWHWBY+liA0FCZy7BJLYJA6VGwgPKZiE4LK/Yx2PVxKMBG1GReLy+3yMiqLxrgJ4vX4qDtjc0HZn9N0ppS1MKjiOCQ+ZE1AWhSozY9ZcZza7MSI1yvXDbjfQbiEorQ/SPo+eGxXA4wJxRxXz5kNluFHNOTR17lC5qpuRx+zu7JukPu+QoX5pMPjaWU5cy8r19IpMBqd/GrGUSUObA9D5HtF8Q+c2eQ2YhkZJjnCQCeD7ETgXBnklq5gyZpRzBtJQsFgwsv0JXXcvC1Ha7m4m9LzrYrFZhswqKKzo1IWCckJZLHsQWAIqBCo1WC9USnOoK66ZGYdR1CHFeTPiIxr2x4q0Xb0fSNkkXEjinRAsppV7qtms8Nvb9O2dWEy7F3OwNd7JuXTFNFwvCkW1dpkEljUOwokk66gw5JVaRVFUEq2p5G+u8pyhZBFjGTqMc4/GTk4tg92XeF+LhVr0h00DAU14jGAMuugoTv7hAKqqMxEMoFzRbawNykVbgGBxnQyDk+K6KIA3m+eG2SGhRwVHBXkNlPKDRHgmMZU2DU19RFNfzWvl9HnsiwdwsSC0a4OWuoKy5WbZGeQtvhiGeqAMV0zNoa6ZacM1M+NRM+dYVxhggeZIKRaUYqbha/J/BtjguestZ75nGxznruM5u+EkDgP2QAhkC80oKckx1ylQvpU+X6WoXCf+yP4IYxKfMMsdyHIsiu5iGB0nIIqLbFb4muqQC8PqS5uY0hokrhUJNlurte1tvHdYu4zdoudxPbJ/Dsk+u8qH6xeI+z1ZQ3z4UadFEsPXhKHtYozkp5datWQxrS94v+ELAtjLpE6QFg2iglUWu6UXiZBjNUPFZoHJrZ2ZBN65myefP6HT9lfp066V6mDZzMLmIpG/eeGc+OvUFhBP+yKB2+chk9XAYexR5b1F+R6nNFrpPNnUudXg7aOq4earqwttgeXN3tmVqEsjkeDcNhOrg3/OQPZAGazKhE4VCkYzMjgfmZYX15MfLfQuXry7yV4igVNgHxZ4qeXA0oTBy3OmDQexml+Sn7uEAgiZ0HpHVSzmnRoW9cl3qlQMa+ScSOqvNnnbBuhVJG9RsogP40CidY0ObpjwvXMOJEInHYdkeZGUDCUJnCqYpfo5/RtmlY69uuT4h0v9uqp4rOxDxL9GFdN6C3LnwvGP8aD0CR5dUxAJnnGSI6o1j+4dWiuCAdMLgZEWKT4ueHM7UIj+XVERLds2xm5scGmwQ0rYSmVoigVqqASX2+7DWC2WFD1DHVzODxWrorsWMfuQvesKMjgog3ab6Bktil2lDN4uMeVNXTtUKG7oha+s75d4u4qqv6i2d9Lemdup/RATij0YKtnlIi+1MCUPuqj4HbczXfTC2/1+F/tIYOcHL6pUDExtzRBym/88ErYLXcnU+ZjcaKVGxI/oGYfWXI1iE89PG8TfypKUa5Koz4p9cUVssCpIXInnSQii0sg2DwzXvygfLUbbkdfZ+PMfdwvsa3lLx8FHb640BI/Y6j7oMxl9X2JfO2t6vMr3swdDVcSGekcB3DzP+Z+Qr7Wi2DJYqsTPIlhMb3G1eONr26O7Lcq10U7D5XPIR0udWolaeVj8x/3OHqC7BYPB72+3Uyh/n+JEkRe4ggROV1NJkhA9gcuJ0yV2i8YpDijl0b7D2k22IXF2ibFxEJB2UmSoD9B75qQkJTBpQIzbxriQiisydNAWhEqi2S7LEySuVVH5URfdAOnxHX87VV0oBO0Oid0XI4aZCsOiTyxSumK4i5DAcyX2JAe64kjXHBixJ5mpKhcAYJzTdsEzD4atcji8xI8YQpPSR0eVV4Csikv2CZqAVUNhRWZGyDWb/MV7u4zHJxoA6KQAFkWntM4mtd/YJqb06QNyUa/0DLcudgsU8zTyXI0Y+QjSulp6uKYisnw+O/lzUQBJ7skPimTBk2LEXFW5W8AockE5FWj2/X3qLnKkAa2ixMr2RGU3VrDyV95niwTl2uG4eTmXUktrivlphoFsR7xq98aG/UWz3TVFOo5AXhsNYoPxHXf472K+MCiD5Wftu2z9YbTkBcYdo10rcUDJIn/kWV+S5CkepO+jFVEaAGXtepQnJL/Yy2g/KXJJpqrU8HnIOV/n4teF9WDev8uLQpLjjVXAwzqGfD/0BTlkwjBMOdkUXTE1BiEYr+oq2woYNV7npvs8SH7YaM0qaLrgqZXOxKIJkk9oQo4NSTWbbJhcCFTx3JXPXuKCdS0miBe8sRvKeSqQigLD2i+Uhf+9B9AOBM/OXIGyaDT2+WyzmjIN0CPfyUQglNYbZT7x4DKS/RiII0binpmqch4xFJNL1S+jrzAm7bIiOLjcWaSLzqLgbe4cUDEuJC9UiaPJ+1RU0dnaKm5HIoHLj6WMUbtIvcDpy24RPpHALpRXWMwZIItmfPDoeE3g5fxwrkXbVb6vaCvFcV/VBFPkFFqPLCWBYXg0sVjs3ag7wPsUD2RgZfaZ92lP/ShrHGYHDbyIVmkori7+XcwR9hWF0roYxrFgEFVdJIGHIdF2pFadacOhFjuiJnanHCnDEbJmPFKKIxWodZnnlbmCokNI/wUmXwxzZFbOOtr9ZII/eFwohXVFXh6I3uly0CTv35KsMZUy6OgDvQ+X5UsXi0jjTqNLEYn/7P8crRfFPzxeD0l44qWDfMRL7OQSH1Tf8Mka4sOPBZrDeIbv2kJADLYhtUN4Ojyb4Fg7y8pb1sFhlWJWH0rLm5mL6qHvqTcO6zXKIb48bSdeXqsz3Pq9sQV2Rd8vpa2zO41t8iuOqwU3zYxjVXGsDIu4aUN7xjAszrtA2xtOYxvXNriRkichJbvl5PSkai7bf5J+d1D2JOLXCNlT+uGNlI4XfWqGKfZSP1PKEayPLZhkP9y+P88VszSRep/aLvkFJcVN8oRLNgPObnFukwNnMkOHgeQZpnjG9m5VR9WrVPCq6jD73yllsuUDXE7+7iOBdgmfPiqAnZVKubVL8F1UN6io8Jyz0FUM3A1Xdc0iLujFJ0qNk7iIDlF0yXRnqe5vY5tQSQjldrBC9e2L1e+CQVnc+h7re4ICh0b1UQmOIrWEj/18xh7Ru95Fg+XFMLFUFBfDlN5M/hbXolJjlZ9G7CBK70odb3wgar3rRtpg7EMEwGu6ZhaT6HTsd+GQyeqmUAKnimkbHGeuoyXIUMFcHZ7lJKRqHVULs5W8XrVZw+opuu0ziJfZGdv2Lm3yCbZrrumaR+sFV3XD9Xh+pNtvSthU05Cmj/ZOsQE2DAq+XaRjmQa62CB+k2kIXDJTSSpgGOJCagVEjbsDEsrzIBcACFL59ANJlIbYJKuIqjpi1p9R1VfzYqH0dwo5+bek9r9SXdr1Z/F620aiqSWEwaGQeNRkf0Tdo3VNas+v4vT61NZVxUnfidApRUepkl/+nLZxH1JBKCl+u36J7ZcjBfCR0ix0TYXiWjXjkWrBYSwMHSnDsapy2/8uqZAWByCxYRk8y+BywrbyNk9uLgeDpnMhdxak+45SeUhgFxydPYuTnLW0fJkF2ggxljoHUmssjJXho4VtcMMCPCkbSoKuUEqXsSIlZKk9a5SUlce5KGqAxI4DbdBKYff4y75Q3KoOmBsh3G7EBBvGLZvyOYRiwSYKmuSpt/SOE9dyz7asvWWjArPqQFQjZi6LYe+y0s+0W2np3N4mBEvfipdlUrJZu6YJ8Egt95Ab1TxbfiQoQzFI0tF7LWrgSP7twubPSe4LaVaAhzzlO5E8w3UkJEmKC2WuMCJ9UjEo/UhBAsX7eRkLnFtTtXci6TIfT4hn534cC0GJPOy6u7TtnaweHa63SAik67XIeZICeFCrzKPvYkVVHY4GPklhd42Kg96c60YxYPh+OO8vKxZJTrgaFiZuiw42W8Fc1TNuVHNRmirDNdNwQ6U8ARZKcwQ0O7crQ4iLu8HfcRM8y9pzGoYp7ue+Y+XtBbsg4meug8fi8SjmKkh3U+gQRaAQdhtzm9QCOmuO47ESz1BjDuIEb0jefmVMl6+FZU4siIbgsFY6Y1JM6O0m51ODP6oUzwrZQj4GmiTakE/YIwV04vcVCq1NVg0/CK5VDTNdcdU03DRzrkd1ZoPOn9G+7o2RxVQILIPjxHVsg+WebVl5i64OqesrkqemQaTeofwa1Z5lb0TfndB3d6LP7VqshvyG61GFeKOStu/0+YKQPIWdNT6orPrrgt8pEgEFeZ4s8lJsSB2IZc4QitiQPSGLziF5yUFA4sMgJBBl/HYcC7bPZEXpbixQO8WFMk+w/Sl9d5e+PyMEx7a9G7sIoxVTmttRUBo+6nmkI9LEIlBVWCVJu3fyZC0tp9I+wLAmSO3eqWNu/Jwu/y51xeRjELs+UvfckdIcV3OumoZKaW6YOY9Vsm40KPk9sIh5Ya0CRgWMuhjrO6/ZesMmzOiATQjcrRynweYW/hPXsnR9vq+m4aCJ4AMRmPgQIAR6t8Rt2phbVWzq29TVgmQdUVeHF2YPDOfGLMf64XPdsdTwQ4xNQ4BTR0bfL3M3mHNb+n6FTcXTOIx97AnMqAvxgzEwchcH2tCYikNdc6OaiaWUUhyqimNdsShJ4D18hBhEEtd6EjNOveWO23Lbbth4xzI4qvo4DiiVYxv8Fr1+FqUrfL/E9qeR6Gzp7ZKuvYf3G1EDF0XF/L4qUEXbGKPkfXMuE8aFohwTipyrS/c9Ev8wrCmsQkrzSXiRC6wiFsuxHWJ3qXg8p1k2M7uk7h4T8jXaRQQzIw8hhovdg0CygnDdabYQadvnWG/eLzYxwQ/zWIrcIsUCkO1Oc0FQerRmSPuS1h4pT1CqG16r6BwqrWBK8jeTxIWQauic20AUUjUBruqa4xgLjquGW2bBcVzDHivDLaU4NGKVdFhZFo2lNkm1P14Xeq/wQeHisPF1bzizDV1QLM2C91cHPOc7tsGxDZZT27H0fR4A2Ba2MnJPA48XPsGtWW+epevOc57Q1FdynpCsKE2MARettmaj9eCF2QLps04o/MKJ94BkBbE7W2BfZ5EOIYvUkg2d5mJB+YOB8BDrkstfcyKC74urSrHIVdIBrvynpHWyw7P0jpW3nLmOVXC4eENr6itU9bEEIl2hvKdZt5i+omo7mtM7hM0zBLcVQrB9NrcfdP0p2+0duu6MECwHAR6vD3hSNxwrzQKYa48uCDtldDY9Dx7WveFuXOyvov9OQlIc6aBGC7oUwG0IowVd8oWE5H2SCMDC91MPC6C8mEsL+ZBM1MtFv88/43vxGUaJGtpuMJVYEIgKd569ZHZho5n9fl9d0RyURI+CrPIRZWYtwSUSmU1zNbduAHlhl9q+d4c+XTbAIR/rS3w/ve+KljO5hR8ExSPVgmvVjLk23DILXm7mHCsZ3nGsA9dqy6ySthyjA5UZ2ve8JyvEe6dpraG1JiZ0itOgOI0JQxcCp0GKFylJ74PLN+hZbDWXfZUEL/nuehDvKR+H1yE3b2tNVoPKolnlosCQ0Id47F18LMTqWhgROqnFOxHAKRmDQcE3U0LgpO3r4vmbiOM5ssC7ahpuVQseMQ12z6TVF4pHVB3VPJerd1JS5goVzzZYlr5n5XrOo8qtaa4wn92iro9kwRIspm2FEO7X2fLE90u6zfto2+dIfnXJvzL4HhMsjzZXeUV1mKu7R4w9i4XsEY2P97B1htMgCeI2Ju4lPENRoEs38LiIu7woJJ+QtKgOiRuxuJJfOyYu8n1SISQ1BpR6AO9lSJMxZ/9/9v7tSZIkS+/Efnqxi4d7RGRGVlZXd033zGAGGABcAAIusFzsgrJcofCBFKEIhf/t/ge7fAJ3RUgBAQILLLq7rpkZEe7h7mamqnw4etTULDyyqiurd/jQWhIVER6e7uZ2OXbOd77zfcJCdx3n4V1JDkrzoQIUa2b5WKRWssRAOBWDFwURdQRwjnNzYercFW13W4xdrG3xlbblegnwu2T56c/yvZbnWZ6HIRzFlCqzn8fxARMHeoQ59rq54st2yxvX02J5axu+MJabnMRdtxNX7Ym2mZM4X+k7TqNICGmMOA6e02SJyXCMlvfBcp9SaSC9SyMPucAbU+AU52Zi4yyb5MHNifwpSnGYUuIcTpzDUaSTkOTY2mZ5z3BzPK/vF3peRE3atJGIsn9jOW6XDGzq+KEa4usiTu9xIIXYjWu5ds0njX//xm/onM+gmzJ55qUFm4x4p5JLaCw+psBjHHk3nbiPI6MxOLuh79/QtncySm97CCfc8R53OsB4YHr6LcP56yIndToLoCESGk/cuZZft9dsrWdnXQGo9eyzFmzf5lGxkSEZjkjeoA0g3WeRnC8gTbdTCgUQUgVdNY3VRoocY4uxLjNna7ZXHsk0rjR9ojJAUZaLFm4SC6z9UAqF8/COtrlFtfm9u3qRdT5NT8UUMsaxjPpJcp8KEDCrnpK3Q2NcK3lIbnZ27W0xTFwvYVwGUlqyeWqQ5zkwdPnck6b4IeeCMrZ8lQyfN1e88T2tsbz1G760HXc5T7hxkVftROdHGhdp20jbzXqvmi9YKxNl49mU+DBNaiTqGIPhFDq+Czu+zXnDPk28DyMf4rmMHmtuEEl4a+hwZSx4TJEhnETHGDgPcDp+jRrmeNfj/CYXz7bEWB2jXzfXL8pkVGZ5BfwlUfsq1HFBl0FAYJXa0lxYj4TKyjTGfpK3wK+aLb1rCkB/a1zJIVqWk4Yz+GsysKLNu8hDGPluOrIPI/s4cjaGTXtL393R+K2MwkJhvU/n75nGD7LfpgPjJIa8MQWm8YlNMvyy27JzDde2ZWddzllMOT9clo2xThhhx5w3XJIcKzrTzHJyl2OD1BPSFJxjwzNfkXLcY8kVEgmTJbGsfcjbJnmBatR7v8G7qyw/4hZNYyBr0Gcz7jhxHj5wVjm5DPaITECuWUolNG97Panh/RVNsy0yaXr+1sQVzQ3Wkz9roEc/76KGqBpkNYNVdLAPXCXYubbEgl81W97altYY3hrHZy6ydYHGJa7aiavNhG+EQOQacM1s/GXc/DlTkNgQRskZhrPldBYD8jE4DqHn63DNtylwTIH7OPFtOPJ+OhdixqA1hYFGz4U4ARNjPHEKe87aKHR90RevgWEx2sv5V3VM1yvG8zMfkhCeSsxQnwU9n0RuSuU+luSTmS1t5lzijwDyvPIdrfXc+pbP3Ya7LEu5wXKb48OlVccKbeLtcw30Pg58P514HwbOBqxt6fs7uvYVvrkFYBrumYb7st+UYS/3mwemcODOeJESyd4CWlM4xF+g3E9Mys3EyJAnQupVN4Q0ZiRYEM1UQgqqfLEik6gPB+R7YjGDfMqPfw+A91uG4QPt+VuscSItmb9qaZG64klZdiqliWm4LwbS0hT6lvP5A+N0oEwrIg2Dmf1bEclcLzVd5RuiXgGL45cNsss2pLpumDEUxTUuTguVOCDs3xDPmDhmHWDLa9/xZbvlrd+UmuGtsdzaRGMSWz+x60faRvSe+02gvUolHhhnsA1YNRrPmjEpQgownWA8S00xni37vef+2DDGjofg+KpJfJUGOSfDwDfTEx+mc5EX1AaAnAeROB0YJzGj42w52S7HUUvTXtO1r4p5/RwLBJ9RGdESF1Z64ar/q/stZVmp2ltgGD7kBv6JYXxkyj4kMpF4LvcDZVnrVJRh9mFYnvc/z/qTNMTfwmrzl+jyzOFCErPlc0MecRB3zsBkwNlWNKJcL51LHVOKATecMVHcezl9Lxp1eURRNXl0bF46lWJU0lvPdQaBbzN1vzWrjXFWwJ4QSIHM7IkcM8B3aaip7tRd0gGOVaArIGju0hVgVjt1dqnNV0tBLNyrk94O6hNRM0RDimKtFuOEMZZgPdadcRXTdH6PWU5hBpUG1hrA9eW53gfq4mldS+M3dO0ruu4NLhcimlQsP9vHmb9l/z4b89JCZczJubCTbBIw58Y1fNFe8dZt2BjHl7blNw5eNVLQbfuR3fVE081uzq6R0d4UEopjpCDJ23g2nI5OgJ+z4+bUsBm9dPcNECFYOfbPNCwNWWfUEjI77BRDGVk+mokmi8UnlA0WCIVHaDBJe2b1ntdEQGA/AyUBq8EcDbDwnMEDs56fM4Zz3u+qW9cai0d1DE0eh2u4NZ74Cclcv2oSXZKKGZiTSP3IxSU7ieagyTex0uE0nuJcPQ2zkVE2t5jGh8oARxhPMQOePcIcl0kBAQLWzC9jATcf4dK9T6nEBl0LGYhFPFgzgPMovU4GWDVR8wsW8Ny5tcuYwFzwzCCffuVtSZJApjSBsaXYD+60YAvU+lo1SDCMe4mpldGS6vvBUnZkjkZmZgA3V3TtK5qsU+Vcizpez+Pal5l8dbE3f57nz52bRGL0oDI2MY3sjOXGNrTW8cvmij/3W74wjRR4NvG2P7PtR7yXJK7fVcl5azBWkrgYEilCHCRGSIE3FgBoGCw3h44Po2dIlvtkS2xQGYlgkzxGokGMJpWhMsbI2fpS/B3jlI0k5MwamZjihImDnDfGYyrTvEXRrwBOAX0V0JmLcdUNX4xmVXFDjSSBZ8VbXBUkAFdO9Pg+Bey5MbPe5wZeLOAGpJFMAYOloTymyCkzrUZDNindZM3Zbja3iBOMBzCeOHwouofz6OKxmB8mAldWtP1u87atpxiMS2WSSPaPyWawzws6dL+lubirNcKfs/xsmRjRgm6tCbye8ilTQwWczU2bPIoZo7xWrIA/NW2d3BHvN8+2WZmj43QoTeNpPOSYugQCilqyqSORyUy/vpigde0dffcG67qcs53LNW8tZfx4zfitr/c12FMvLXpj0qmJcZEnfN5s+MJfsTGWL8zH84SmSzRbi3Gm+spFdYjEIRKGUGKEgD9S4B33juvHjttzwzFa3mHByZSLszKeG5EpokAqMUGvu3POGfTeLA7xA1MaMRjRNw6nkk9a1xHcqeSTa7B8zYisZb8umf+6CtyBOU7ozzqOnQ+zkCDysbAZIO6su9j0/bHr1rZsyj3acVskOvJX3qBZyo3yd5jlGEYCT3EqI7iix35Fk1nBtTREDKfsdv5+HvcOT+UeGdNIn8ECNb5ViQrN4EQ2pvKQSJTphXChzC0gT5o9SOrpgKQ5A4YaSC0TQ9WEQIJCJFGgY24Y23weZJA6s+3VZ8RNYlDos564yg4oSFBrSivx5jzcrxjAUnsBi4hZcts8OWitp2m2dO1rXJ4Q0jxBzVD1fdbST7KvZtkXmOPAnCOtzv84zRqhUZhpV7bhtevorOOL5orfuJ4vjKU18NpPvL4a6LuAbxLdJtLvYskPXGtxmwaq42wyKpxiJA0TcYikkAjjxHQaGZ5siQ3bDz27oeFoHN8aJ1rCZsJi8pTA3CTQvFR9B9R0XI3Hx/CU33cSYCfvE2dH1FxOfu9Qw9ly7uU6S+orYYkKSeiIGuqF6bjYdzoNpmSAH2oo/zFWy2w+fWs8t0hNs4EXx/RFinKJR+h00TEFnrLG+2CE6GRdL1Otfou1PTEKG7I25K0lCUS6I3Hj2yIxpHJ4umQSeflZdFKg+KBUS6cCZPtnabkEBWuY8wY/N3BUZsXMBtO1HIK8Xiw55HxvEK1YH55oooz7a0PI2n7BJFfJHDGMfmAYPizN5afDwrhcz5WU1CvJFBaqd71o3eamnLKDNRZoMxNq0Dcsrvc6BtSMX2CRO62nakmBBjEubo3lle/4wguBsMVwZwyfNRO7dqLxkbaJ9JtA00lTqL2SPMG2TnKE1mMbv8gPdaUQiONEPI4SG4bA7jHwaj8Qo2H/6Nk+btiEjmNKbIxlRBrG5xQqTEbmKtbrnCJDlGsXY0gpCinQNsToaBqtK2dmsDGZAV6tS4bUqgOs2FsIOi0gvlJTEDKi+pLo+VTXHUpSK7XHS/XGs0/2h68/mcX9La9QnaBDTtJUW/M+TbyPA49x4ClMHGPIoKKODIogO2mCKZ88MeCsw4xPxGmfNYEnGfHWZCZT0WMQE6gmAz2q0RMwktzaSOMSTXbvBLk4xfVQR/5CSdzqwJyq8f+11leBY8pHr26Jme1ZdLxWo//yPVSaS8zavBcYXfp+NThokpGbtDXINNHzhKh+PwGBKwZIWnbvk5l/Xeh9okLuAgI71z0Ds9fC7fN7Lxm/L/1tzQZS0yMd6ZARz8hVZp3c+Z63bsMXrmOD4a0xvGpGbjYD3ieuthP9LuH7zPK04HLQBkghkXLXLoaEf4o0nbB+2mPE2YQ9JmIyPEwOrBcJg5Q4EthHyynl86w6XywODMXV3pKI1i3YYgYgxcK2luLwZWClZv/Ka77MANa/r4NtXJ3XCgKpHvDGzhqJCoJckJD80evSlIB+L195rPo+Thwz43YfJDE7RnHDLQZquZMp3coTZnQwnYnjXrqVqtkVVdtvzE2iIzGdsAk2lQP0XEBKx7e1ldlLCFWTyEj3nhdkIS4Aw0uYtiroMAUErgs6XTL65GbQt4oNqSrg1w0CeRcy+CPHPgAmWCYoY2Ixjgtmad1BV22/eaxzlZxW92xh/jmMaSr2YrNyLBYOpyakdXG3XpdGPNc/179L8pF17NKET4mda7jzvYzuup63puHOGFojkwHbfqTfRLyPOYkD18yAj22rplmIJT6kkPCnRHMSYHh4ysDHMTEGQzt5Qr4NK8vjIVoOZr566usuGIOvQITWOhkDjDkRysBu0HiQIinWarVrFmZaNAZqBvCa2VeDwLqKhnj1aJGCMEaMdIzoo2+spzee3rhigPpTVpHkWD0eVj8fWY5x1uPe99PAU5xQk0XrWqxtSh6RQh6uVGabOhfnczxkiYNx3JPiiE9JDMNQ4GnZxHKmyhuQaYEa7JFtrrwD0lKDXQH1OjYUl2yYJwXMLPdiqoIOngMdMwhct56Yix0spCDs5OCZjMXGkWiHZ03b+rUVBJ7CbEAI80QKsDCKFdDKLRpOmiNoMyimgMkxrQYhdNQ71A2oiu2n27YGf+v9MGmxmJlrJgU6ZDrg2rW8sh13uSl0awxbJ2Odzib6jdz3fZ9wjcH3FrdxmFZ18yymIg7YPuJGlRAIuGMgjjlO+NmHYgyGdvQMsSG4WW7qMQ4czDx1pudLSEnkmVRGi0QyiZAkF5QrWwrJFEdpFoSB6MdnuZjuMwXDLgOECR2LhTnH0LVuMhfQn1RNG1GA4daIJ8PGesb004NDb5yYsJlaO3xesznXDAQPOY9Qlt9BR22DmPMMJEyellP2aUqBOO0xcapiw1TOx3E6ME5PiO7tWXTDs76jW31BypNEpuSUcwP5OdhTg8B6VqfVV9nrJkdtBYGxPJv2q8CPVK59+W6I+faQ39MaMfuq5Mim6r5trehNlm2NQ9YGn02aVXe7SNdpTkudjUh8EzmYrsTnZ3VDyRNCyRO0KaQNobXcQ836lccvTAtkJquSACDSItJnO9fQZ/PBDYbWQJuBRO8ivhHzP9ckbGtwjeQIbuMxjS/xAAD9HgKp8dg+kmLEDROuCbhGYoO18HqQz3EKDhccg+tLE+CUJvZhFLPF6h6i50vM5wvGzgap4SR1hbG5thuriawDTdhSm+6tDalrQ0GN98WHJA5ZgjDHjkwK+DEN5fXSJpLFfFLesHNtyT9aY8okUcmMVuCv/jwguUTIUwOKRzzFkfswcIyiE65NUmscqnmrLEgFgYUNnDWxk0wLeGbzurWXjAOcTfk8kMfkjI9lmrBeKS1zCFjFhgym6pdOkn7Mb6iAp1WzSFewnjE3mWqDMZ1atvZUmkIzAC7fpal+LOzoGIY8lVQROqSPTzJKJGuKPKbVHGFFWNPv65xAa5Znn0s2+tlnu7gfYqHu0RrxCFDDQa17WyOmkNakgheprKhOBqwbxcZaTNteBIINYNxQmkb2NCDmAokYEzBxNw6EU8sYDW1qGVwiNtoMlrpYJ4xruTZpJOYJHSOmtSE8cT5/KPXkFE5M0zGbTTrcSjIQZnBYj3M5fnkiZBwfFs3AaToUbGbKWtCgDYdZCqL+emmtJah+8kr8SSP4b2OJZpIG3rmQ26fEnlhYtr8PT3w1PPEY5UZ3T6BrP6Pv73BuQ9MIiywFCbwMoBolITvTiiaVjLBM014AnjgyDPf4OPDn7Y5Ndg+9tcLk3CfYYbg2MubjnST98sITKQTCaDhFW2QhTjEU/V+AaEwejc0gRJoNxWru1TzyoGLnz3WAgZKc68+zkUmWZUg6HEbpvj7vssv3aKRICGE2HZJOv6neby4Qa6OnS2DPGtQWptU84rnWrxQAPxTNYU3k5ve+rO/3saXPH8ZH0ZqJZxnrjwO/9Bu+aK/ojefP/RV/bRt+0Uw0NvJq+8Tt3UR7FXGNodla/M0G2zbC8GxbbL+53LEbB+IwkIYBQiCczgzvTgyPZ5EH2Fvef2h5ODUM0fIQPN+axH0KhaUmbHL5jC4ZnBV2cEyJLok5mY4IqmyEjlzX4v/r4yxHYtk9M/CiDp9qAtfBVd+zXqoZrHpbr1xX9FPvjBc27ycwgusxTl2SAM3gzpAS79LIt9ORxzByToHvxiMfCGBkxKnrXtO2t2XMLYYT49NvS/dStc1UC3F2Qh84n++J4SAyFU60/d64frFdjU30eRTQ+3ydDAMpBKbJ5BFPKeLHmPV/87+VJtEcE1IFAqskxKWR76URwlobek7YnseGcBHoA4hGk6BASkbAsDhipqcZbMpFpGqQK7C8jD1zaVqKOwNSlLqczDm82+D8JhceVka6qiJPmIXn8rOOHOrv+nnr59drzY4u7MAUGce9GGAlKe7e+p6/7l7xa7/JrD/Hn7Ujt5sR7yJX28DVTaTZyq5odh637bEbYSWZtsU0l5O4FAJpHMo5EY8nXr0/cn4c5N6xt/zyQ8v7Y8uQPA/B8q1tuE+hAMMqCwDQpFjiQkASvc44JiuA4hADxzgV5qhok8ssTR0Tknl+DqyB36L9q7+b1e+5kKjdveuGUWscG+eLrMy1a3jjOu5s84lgj2GXt6VmA2t80CbRHtFf1evv2+nIt9Ox6LfvSXTtHW17jXM93l/JeTfey2fJLAWgGvd+ynIHHzifvsPFgQbDrWu5810uAkzWizXsMkjQNfmcDVLoh9FwTKYcX50ASSVvIF+pM6taJwQUBF5PDq29A+ZroJKRyrFBgFRNviVnMIhhm4K0ejtJQdlLpwzOzAaO9fX1rGGcQokNqh2rK5Vzy5axZOc3WCO/+yoeGOOEYbkwHxpnxmVl9AgstuXSWsvnhOlETKMUofHEZ67lc78R1p+/4q/dhi+sNoVGXm3PXG0FpOk2if5VBnmcxW03mM0G27YyneYcpn3BuDEE0nCW+BACcb9n9/6JNx/2hNHw9OD44n3HtyfRBrxP8FWceJdGgp43SXJOkGu9UaCHRG8jXZyKhuyQIkMcCTkWjAamqWaN22e5X5H6qogFctyeTwvkVyj5xmLUOz9DzDLlZwWBLerRsOHaNgT706cFfmFFUmpj7GJaYBEbEJB1n+PrQOR9HPkQRAv4GKc5j8Bh3YauuxPmq98gOrRnhtM3klPkKUOdJDoP7zkev5Oag8AmwWu3YWMdmwxCyfZl7wkb8niwKCfHkDgChyQNbZUKmsr5vcy7Q3oeG8r0kDGluVLkYapJgeXEkID9tanrerYxBDFMm8IRg2G0LYPfFwBxbcqruo8KEE7ZULomq2hc0DrIauPeeHxzRdvsZgZwZv3NxI9pns7LMaoGftXIsHzWj8SF5X6IWZ90oE1k8siGv+hu+KXPklHG84WFGz/R2MSuH7naBrpNxDjorqG98di+FbCnbbGbXEPk2IB7mQWYTk/E45EUApvDE9vPTnx2L3nD4cHxZx96vhmuOQL3KfJVHPkunBkJz6YKuxQZjSu55qB/D0cESjowjPWEiS8kivqcueQ1oP4TJYYyT59prqlTiGsAWH+v6401088by841dMZ9kqTUF77jyjW5RnFsqCcBzNwkSstYodJuxySyjl+NTxfzCN9s8RmcjOHMxD06waJN5HF85HT+XmqLJKzYL1zLZ01fQOpNbihrHtE2SjISQHFISbCGHPt1OmxBKkmzwbSygBd5g+5526wmjh0xiaFxTHEhBVTig+bS0RHjxDgeUFm6xm8W12ot26JNMm3STEVObkC1fIU5rsc4zxrnZpZzPU17Q5MloiRP6J+dk7Uk5ML/In8Wea7mPS/EBGMxaa6vYpKGXmLCAFssb3zP582GxljeZPLILkuM9DYuJAOtTauGscHt2sICNm1b6gigxIZLKw1nmsOebn8gxch2P3D95onPH06kAA/3Db9+3PA7d5dr5MDvwonvw2khPal4QpfiQnbsHAeG4TuG4R0SC5qC42BsPsZ98W1RI297wWQyhKH4aCymBYpMWG4MIACwAZq0nBZwVf5QtypiSnhjaHMTZbrQyPhD1x9FGuJPGsEfXyoJIRqfc/C9J/IujjnYBb4anvh6OooeqAHvb7i6+oJN/xZjHE1zA0Cc9qQYZMR7elh04ZQFLGMsx9KtD9MTn7uOf9C/5s40WUts1hbcYGhcom1E+833CWNtKfDHs2GfEPO6DFTXYE8Z+85dlxrsgTn5MVnDS3U/1chhMcKVE5maARzzKKMmbYaEzy++7r5qr1/fVyaQI8nEReE3o7mp3MhhvpFTvcYS/KU8Q/TDrthsPqPNx+eSCV099r0Wby+jRReAn/JuL3QxwyQGPjGdsSnxxrX83f4Vf+Wv2GH5tU/85nbP7d0kBd01dK9bSdraFrfbYbfXmKbPgbrH9FthZGqA1u8hM8jGc/nePbwjHh5Jw8D08MjN1yf2352ZJtH32e57vgu+AJv3BPZZ7EEdg4EiIzLaGQAaUiyFQUizBtC6wfBj19rQSfX6VMtPEscw/z3/TU323voNX+SRmBaRdHhpXPvHLocUcWH1dUyRfYocEfbOt9OR349PPMWJcww8EHBuh292ONdx1b+l8dc4d5WTsgPTJHp3Yg75xDQdS4KjhkYhjoRw5AbH3+lvuLYtW+u51ZHHJKO5rUlcNYHGx6ITK2zgDPZALtilM6sdWZAmUcxgcET1u+rmUAZ7VyaBMwtwmZjrZ1Kt8JnNokxPiQ1r4E/OAQWglXkeCGliaf9VX+jLaQNdK88D2SYEzPFuW0yf1LxPdT9r2YdLun46RiR/X3XzV0v3i7OeNQNIGFon2hS5dTKm+xfdDf+kueY3ThK415sjb+7O9LuEcYnu2uJve0nacjFnt9fYtgPrsZstpumkqNP48FJsOB1oDw/0Dx9Iw0B42HP99ZE37+fY8Hrf83VocjNSwMz7HPPbDPToxEBvIsHNTaRTBoLXuoHFqDLfA/QcXDeI4Md3110GgeumUt0EbQ3sbMOt62gza+KtFd3OYS239AesraEYuOrSZrJqfQ4k3sWZuXPI4M734Zz1lC2Nv2WzeUvX3hWwJOVRNmkaP2UA8jnzdBoPmDjwC98Xd+hXriuM4BYZOd3aSGtj0ZdPMUKIxGhy7A8cF8WcHCOfMvMvxwgFexZAj45C8lwKojYQXTeIYjXSqbHBplTG+mucSWJCIMQTJo8OmjCPm5NfoWbyKLBcA7+aRywM4YzFGk/TXLO7+hVte1u2Xb9rc3iaZJRZjR51lFDkHM4l7s3vXwvQ2Gq/WCIzGByDvpZoAt8ax6/bHb9pdmyM5Uvb8hc+8Hoz0LhI3we2N6LvZ5yhvXHSMN5swDncdofd3hbw1zSd5A5VXDBOJMyIgTSciHkcMZ0ONO+/ocux4eZhz/XvD7x9f2I4Wx4PDXdPHV9FxxExNHsXRw5MmR02N4iKCaVrC4D4FCeGGIp0hIyKTyX2CzlgPmp17lc3ifTSK7JM1ar/rXvWJJqZ7V6OSpGU2uUm0VvbXJRJ+bHrM1OZwlWbVktB1E0ibcR8Mx35djxKHpECj0R8lUdsujc02cwYhGCiTDaVQ9HmhEwK3LNJkc5Yrr00iYqcjXGFOdYizWRrk0jOATEKQH2MgXOS7ambRLp0XwbSUg6iNIVcucYuGcnO00MzKCJVRFhcv3XjOJpMxgiVz0g8Mxlt2izfY25G56mDFVFFVzlvTJNH6zc462maG/rubp4MuCD9UEvB6BTgJUa7vM/zuLCOk9rkjmlkh+XG1ZJRV3xpm+Ijcu0nrhrxEbnaTHSbWGJDs3Vzw9g5bL/Bbq7y9e8xbSfxIecKGitkx03E02HOG4Yz7cM7rg57Ugi8ev/Aq9/v+eX3jmmyvHvs+Hfnjp1x4qeTZPrlEMcSE+o8X+sGfXzI4FC2EmaIJ6Z4msfxlVXOJbBlBn71uOpI/xr4pXqsTBqpv0AVS+p36ayT+6vtCJ9g5vQr07LNx04btLIvRJO7NIkQs75Q5RHfhTNPaeQpTHwzHXkfBsZM1OjaO66uvii62c615bqo69uUAsP4wPH0PdP0iCFxjRWvGtuxy0BaW316ZxB2eW+wUdjBA4mnOArbM+MNhQXMkgSkDSJWsUEnjq3xz0B+YM6ZNV+g+rk0dU1uutjScJrGQ4k1au668BWpTNdKU7d4DEVUNqrkCcajcni+2dHnhpycN0smsLz+jBkUTfscB2rt83oaQVc9uyJyFhGFyIQJPNEmue+pZNSXfktrDHem4c6IJrA1iY2NsxFcNvtzDQIANwa/a3B9J8bizmHbFtNfCdZQx4cqNmh9kcYz8XAv8WE4k0KgOx3Z5abR6/dPvPnqnl+/axhGy3eHjv/vuOU/2qZMzj5GmXiR83+WJgQ4Z2JCSFINDvHMOZ6QQSbD2fgis6geJHqs1ysqFqOkivRcUkp1gGGeVi6yV+sKdJVvaA7xqZNEZf0xGMF/AoJ//NIiTr7H4pR6yonQkEFgg8fnTpDNGsGFkh51ZGXpdqwgI1A6xKXTRWBju6IpVo9p1qmK97MsBCBJfJBRak0u69FOXQKwVjqg679V5249pvHSWowvJE2t0+KiWrO85m6KebZ90vmbny/bkxPA9Bz8nSHiy9/rMXaRgdgUvSntGNXjqir3cIn5+zFNH/vRfRRK0DdIgdtn7VrtBL9qpXuvGl7tjV+weUx/he23kphZV342TS7wLoA9ck5MpOGUnyPjoDhHe/yW/hQIY2AaDdtj4BBsNjYyoguVIg4xPtMRLgFcM2gj8zFYE3DJMEZDMAmXDDYZAYPMDOyutaPguTxJJCdoGXjQZEyBXgxMcTZ10b2uI0zSOLEFBK6Nmz5F669eazC4ZkqeYmCIaq4XScZgbVv0JdXhFPS8mxZaXZdGCUuMSBONsVyZRvRjjSlMaF0uj//UY0DK+ovRVLFBz+uqa18di/WxmuNCTqOfFXEXzv+qqJtjQ7wYG56DfhKbLFWTyKSPtBTSs3Hg5V+Xn0OdqzVh8G5TXOwlsRyIcRkH6hhQErrq79rdX+8TBZ7rcfDCGM77pzFW2BfWi7mXMVz7kd5HtpuJ9kpkYWxjcBtXkjadDJB4IIma6bfYuoizblHQKRAMENtKVytMGOdoj98TxkgYAzHA9hTYRcuQJDYckVHnQNL8W+JEHvW0ScwTApFgEtEIuBJNKlN26iIdM0h0ia3/Kf10bRqtH2usZZNHHjfGvijr8IcsRyoNZJjHvef4kArTT1kz58zekTPGSsHmhdWgJogyJZDvSzl/0PgAUJtnhTjgoYDAWyuSUku3b2htzEDPvP0pRGLIen16XKoc4aU1wzJ6h52lo+avl/fsEugobVxKw7f6qgE9ynZG5BRU4KRqd6fn00KXmkLzq86SUc51izzh5e0PC21yZSzVzfFLDJ9asmodNxW01gK0c45t1rgXM0K4agJdE/A+FTJA0QVvKzZPZv/WAE8BgjP4a5wUeGQN6tR0mJw7ROtwarIyyDnXHyfCOMtObc8Nu+RKnrAxjpMJkERWasw/OyO5gU3SWI4plQtcjYt1aRNJxsefH/v5XrGUhlGmjmW+0+iuziIE5d9cOq913NsZkeHQ0dqXppV+zGrMc91+WDKBVeNTc4hjFR+01pgNtDZ5iq1B9TTn0fhZnkTPTZVkSoQy7i2SUi4TX1aSMZD1gZ9vr4L1oQLwPlZS1rk3yvDTJsiFumJxL9XrJsVFJ0hB4MIZT9osyMSTBCmORCvvnBKlUQ35b1lbE+T6rBsMaxKJMaZMD9qsU6lmRSk+l4bSeABU7L/V9ENlhrr4/HWgu7QfSDgsrZWJvK5mmhuZaG2c5H2Ni1hHkfiwOv69jg2ZWEIdG0pc6Avgk4YTNn9PMZCaVU0B9Mf3Uk9MkWky3A6ee2M55thwMhIPNA7U12AwiSbZkg/YlKUXEIDY5P0VUm4VGmVwX8oSUrkba05omQ2e9DzStQaB18s+e67Eh8bYhWn7H7r63HiRaUPJ2YscxLOvtDCXPec84pgJJ1PGIqxtsE5MN2sz01qioMYfJG8dsSnhgcbaHPtsJRVTx4nqWsw7JjB7idTH9HmjaA1yzrGhrileyhtKMyVfE7N8lOYNuV43iZTArOvNfC0uGLuV6VpMdWyYZcnqbS5yeEZkIbwyU1crhFARRPTnZSNobh4p6JyqmGCy/IRiKwKaa/2j0iYOg88NTp080fq3GPvl7+tlXMLY6hM6J9PGzpWJwh9qEhnnSc6TwiS1WtNDlDoite0cG057pmmiHw3jZLmdenb5HkSEk7HCsCdh9d6icpQaC7TBECXOaiwIjIQoOATGEtOEsy2xAoJLLRYnAYEXzcDlZKrqhcNSBobq8RdlYzSH0HveJ64/ikbwn4Dgj6+vowRm1eeSke/IhzDwbjqxjyNDDLn7ZgX0tQ0ua5WAnKAmnpnG+5lBUun5aRDWbv04PnA6vWeaHkmE3PFtFwF4DQZ3PtB2koy7xpDGibDfk4aB8WyL2Ys6O5fxzpwoRWOeJSGl6EqQTCoXCBlYNqsb7jyCOQczHfcmFzF6A35ptLd+TLevhrtT+d9yPXtO/j6Pr9tS1Klxg7VekujFGKYmcRqslyZPlxjAqumjv8v3QCqsoecXWcxsTpcmtsbROenmf2lbfuEiGxu52Qz0u1iMXWzfCgjcbzBth+23wuxpKrBns5Ug7XwO4JVTZpiyNqyAPqbtidtbCBO2FxaJbd8Rh4Dv5TM1j6IT+jh52uhwVouVmHVl6/Nw/l7AICvn6hjnZCkk0aSOFWvwEvhYGIHUAPAMAseUCqisWp8ArZ21/Fpjuc6OyXr9aEfdIbpaP3XdI135gcRRCyIS93HiQzzzFKRB9G46cR9Gzgiz1tkNvnKVBmHvAIsJAY0N6nQsrJ4D5/N9NpKc8GnidbvjxjXlhr82rWusjH23bcQ1uYYYJ+IQGHJsUJ0/ZW3X11BIAr8ukzZy3MgafTk2RDmAEgtW+0sLnlmuQUduXr7h1stiypZpfWTyjR/WBdvMEFpsg34v7CRhJVrjxIyrjM7JKJrEg6d8jJ4bvNRJ3aLAk4P57JzRvxkq4BdlAc9GRyZN3LiOt82GrW34he24s4ldN9E4mfxwTRIQuLWYdmYCm6bFbm+x25tSxNnNTqYFnCvxoR4Hl679BFFiQWw67PaWNJ4lpgBuc59jg2jL2RwbdpPHxVlffDDzOHNjsvRDLgpsMs/AHmtN+blMDJglvH+pYVT+dgnAqY58YfvlONGTze0wbF3DlWlmTT5mfe3h2av++HVIhjEzeJQBHBAN4PtcsA0pch/OfD+dOKXAGAOPKRBVW840uCxLEqOMZqvOp45+T9OxNImmcOQ83DONEhumcOCVbbj1bY6BdsXkMfQ2ctUE0Y30kRgphh/T5EpsGAmlSTxDq2BIF0C0lP+igKuAszHmwuDC/VDZN8qGqc17YDnir++3bv4KAKSvHUlJtcvnGFEnDzUIXOsBGzJD0fWip+jaMuq51PmfWVRrDWAdMSyxoWIszXupiqcplviVUsQogIyMfKY00iVpbl7bhuvMWm+NYWdTbvbNgJ3Nal2utaL5qdIwmjf027lwa7o8MSANoAIC64pTyR1M3WyOIbMHHbZ9TxwiTTcSIzT7jlNw3AZHa6X5qjFhTG4BHgYTy71cO33KPrfJ4FMsbFOVk3kpHtSj3OWx6vssJcWi0RTzeWyr1+mMY+sattZjjeHGtvn+aviUsumQhNhQAJ1MLqlrjEDiIYzch3MZk30fzuzjxGggGSOjsBkErg2IRN/2XLRvgayhKGPOpMgwfGCTDLdNV3KlXnMRxCx4Y0wxo+58znezWdg0OQayuWxmburEEDy/d39spdykMamKItV1IoZtKxmXSiZGa4p1jZDQ6zoimuoRCug3b19Ky2Z0eVyvxypPMMbh/baA7zp1IPuanKMdF/Hg2fh38YCZYx2LrGtes/HubKRacg5kKmPjHDvb0FnHNvtgrJdb6IAKGGxV+zMDPViHbbvF9JDGiiIPUbEAlQWcxrM0k8czoe2xmy0pTBJHQsC4R8IQ8X5gDJbmqeMUHffJscHxzjpCzj3LvWY1NYCBJlnOeRJRGcK+MIRzzMj/zeeW7sc5t9Rz012IFbrWcjGggI4sNadWssnONWxNw846pp+OA5e6RPIGo1RZjkk0wrVBdCTwEKcyefluOvEhnIve6lOKGNvmyd0W77LZ+YrUJD9PxUgvpcjp9I4Qj9zmJtF1Noir8QdtmLc5h7Dz6ck4Zbwhy8yJcbhMGuuVtvAoKkdIvyoQ+AKor/dXfcMyPbSS/JiX3NwNhkQkxkzWMFYaNNX7FEC5AsmXcnKmxJV5AvKqSEs22Zy23s91zTAFkRzQBnGYToR4Xl3XM2u9lkYreEbZEXNc0uPoQUDgXGvbjBXp14DIhAp470QuEIjJEKMhBSOht8LcNT5o7lATz+xmV4hndYwo+MJRJuAJE3Z7Jh4P8ppNSx8ixj4Rx4S1J2IytMeOY/Lcm8RX1vHejIIfJCFMjBmwtBisNWViwGKEeJbvITKNPBLNmLNRS6imrpQhLvstsZZ+WEtKaTOY6veXAGCdMFJZqU3WbL+2LcMnTBKVwx4+/TWeveafgOCPr/8QzngcD1mfS0da78PAYxilwDNgbStjxM0WZ5us9+kroGACDnOythofUt2olGIGej7wxjRc2ZZXvuNXzZbNqpsg6mDC6umaUIzDbANxCPCwJw6Bp4NjTyzAlCZtmnYl1ARmuayR7rklMREz6CIFngmBZV9Uu1KpCpzzRaVxpQrz5T0+thzmwk2jfte5OF2XegkBuHV0w1qRgui6V6L3mUdT1WygHvvW3+vjAizMp8o21YDPotCbnneAlNkSJ0I88oVr+WWz5cp5/n5zw9/z8OXtE94nrl9NXN0Z/G2HbTx2t8PdvMLmTpzd3uJu3hSAx/RzMXdpGeuhmRNm9+pz0niCEIiHe9zNHeGzb4jDmfb99zRX37L9Loi0yKOn3/dsJpeNCaxoZDODPA5h+BRJgmTL76MLWQtUjo4mc3oMF4ySirley0GsGwR1QmEx+Exp21kx1XrlpHBrjWFXdZPFUEHW6SMA0w+tb+KIN1K8PYSRp6yL+GE6cx8GTimITqJJkpS5Hm88vtnStbcL7ahxfCSElwFHPQeH4ZFhfM8OYf7e+Cu+bHbcmWYRH/KZLOZ4PnC1DblJJIYO034kjInjueFIKmwCPUYK6GuTyDBLxtQpGyQ5/7WBYmIFxlRgRy7kZx1guWI1NtSveamQ0eVW50C99FCuIak6HszFHVjT4P0O5+U4NH5D40XrT2OANOhYHAt5LwV7Zm2/taPvetWTEtZ6yKyulEIe/z7KcSbw2jj+vLvmr5trNsbyG+N425+53o74JkmD6MrgNw7bOtz2CrvdCTDT9NjtDe7mTSni7Pbm47GhX3Lc3OvPCzgcD/fY6zuax3fE4Uzz3Tc0V++exYbd5BiMFC33JnJMYREXdBqg1hcHiQXaoNTf62s7VD8XoLg6ynF1j9CCrdYP1+d7RMtPm0RXtuG1bdllUE3XkBLjJ8SG9ynSJNFVv09TiQUf4pn7ScxbphR5jCNPSSeJHNZv6ZprYaBm8yeQ8y2sEsBiGJlBkvNwz/n0HSYOOODOen7d7vjSz7lDaSInyRs2NrLtR9o20l3J/p+OgTjCMDYZ7Inla6piOCaDr6vYAHLdm5Ty/U6YLClFUoilYSzPm5sm831WQJFaJmYdG1wuyKq9kZsrCyiHdcbw0hGVrVSzKkfT7Oj7Oxq/KzmCc23J5+ox+7T4ktwgxCm7j8+MvwVTcBUjkrGYFAt7pTTTMnC0SYZb19BbzxftFV+4jrdZ9mfrlA0sBbn32QCqtdjWYttmHvlu+md5g93eLoHf9cqSHjTg+i3u1ee4V59DnIiHB9zN7/CffS+j4d99S7O95/q7ifE8S0ztQpsBjFQ0sRXoGVMsDeHGOPocN/Rv5xjKda/n4Jp9eklGRh+vY0UBgS4812YWlZrUah5RJm2wizzip66HDHgdESafAuSHOBWz6TFFHsMgniMKshojzUrbSS7bbGmba3zljD5NRzFKvNBAFnLJnkSgTYm3fsNv2msBunM+EXJ31QG3JvG2H2msTKAAhGMgjInz2DIwG/3ocdE9HTT3/yFAOJ/z2iyZySQz+CIgz5ivH5WJWeYNdU2h9UxijgeJKA2oKkeoQcK6aVznCEAGezaSr1lP46/o2leL6YAQ5npONIePFfhzLrEgZmMuAbJS+Twz4Wb53okJE72MyvMctGgxXLuWO9/TG8fOiqTHpaXTYMr6M85gGiGMyIRQJ2SSq5sC8NjtLSaTRNbLWP8sp3CnQx4HP+Gu73DbG9zrb0njQPfuPe3VgdffD0yj4f6x5e6p49vkix72fZw4qHdODQYjE2uan2osOKcZNJ7ydaXXfA08KnBzCdwFFvkF1Ky/av8xk1A647hxbQZIRVLqxnp2xjP++B7Is3VKAkQq47fIxKRQ9LgjiQ/hzEMYiozOU5w4moRC3c5f0WTJmDqPmFm/M2FhCkeGcc80HuR8nR54jePXncSGxkiDgbxNzhh2xnKLSFe86ka8j6QIcUiM0TIQSwNryNIQCthfWjULWKeO9ZxfeowsGbuJuGL0y/WkvkMzwiHfVTbGpALjXdiaOoOoiBtlS+emkHMbum72d7HGsZzIGBeEkXE6llggZoWi/a+1UINIqxWw0YDLn1/rZM2HRQhiKtCiT9Aby8Z6PCJHUDc7B1KWE5GpFiL0wdBYg7OJGGaFgBg0VsxsYNtvsbmm0Nhgt7cvHNG8/zK+kMYTaTgTTwcIE+7mDre7wd99RwqB/rt3bG4PvPn+zHC2fDi0/PbY8ZWRHHSfAu/jyMFMXJKXGu2cnwIF51LvAcklcpOeJW9cG0SiSi3XvTNzvLi0Xrqv2QzC64SGM6ZIxtzYRszuPnH9SSP4b2F9HwYMcD8NYtQQRiZS1gIW5o43Ujh07W3W4HGzViaUIHBJYxLmcc7iYB2O7LD8eXfNG9fTW8et8WVMa90PcIibs7jE5xvbEIlDLEmbGn1dEm0HnhXSsCzAJBBKuWSSeujqyVOPZ8tfNBBrJ1aTa10fu1euLzJnLo/tAUxJ3v0iEGxmdo8KznfdKzb9FzTNtXzuPFqra63rVR+XWtPrpbUGgS7qeyUZOWkSfOY3/EV7zc44fmMcv9g9FU3g/hb8bYfbXi3GvYX162bWX78t4xp/6DJNXwo802YW4HAibG9IIeDaD0wnYfqMwRKeOsZk2EdDSJZg5oQNEwkpg8HIOIcjzeAPkZBBwjbZYi6lzGAN4gJUxPruO8tAlL9Tnm+NnFvaAdUu9tusCQwskmMdzQZh4fzU9T4DwQ9x4P105knBnTCyT4FgTNYn6mmaa9pGQAUtKuoGxBpwjGnuKIum3Fg6yl1K/LLdsrMN167lF74r7DB1DVa2EUDjI90mZifYDASfIIyJKdg8XhYXRXZ9LZVx//q8ob6G9bYKKVmEsWhYjjdp0RNW7L4Z3PmxzSFdlwBjNaBAt5vn4I92iK1t6bpbmuamMIKda7MOa1g4JwOFlSSf87LJS6xiwyWTvLm4zQyocrynPD4aaBJc+5Yv/BW/sQ0b4PN25PpqpLuKEuu7hGsFBDZFF3iWinE5SVN5iD84NlhfwGHRE5XpgVRND3wsNoienc2Fg7BY9HDNoIPEiQZpFNXJ3bpRNFaxYmQJFENCdWo1EdNxrKixQgs8Y4rhapulN3bGscsAkJ4zquH7U9chRXxm/6oO4pgiD2HgfjpzykDYYMC5Da3bYIy9CO4sjYfm+FADkEBmlA/cWc+V9dy4lrd+w51t2GBK3NO464DOx2Iq5vNIRRzJecPM+lOg/qUm0fO1eqwCfueGTZofX00HKNBTA/qGZWyoHccvJeb1I1UkWmzdAio2c67Qttf03Vv67k2R6KnzOAV75ut/loTSplCRgkj1KHd+3yrfWhQbFRhskpX9xcTGeu58T2ccb1zPnXFsXSz67161/jIj2Fhmt++2XbB5bL8VwOenxgYoBaBOJNmrG1IMeXrgf8Y1D4Qx0HwXGScL2S38PslANkwF6HD5vhWRppFODWFgJNBnxiCwAIahahqvgBz925RziAIGVU2iSzmly/mDN5YrJ1Jdb21T8gflZo7P/uWPX8cMWim4c4hS3D6GkQ/TWeRhkgDDZ2Oy/r6j9Vc07XUxPROmX19k52DZuKxlYsbpyBQOuDThQPKjZsPnTsZxhS0Wi4SNw9DbxK4bi9yItRIX4pA4T65MQOmxS7koT3BR1gdyg4hMJkkR1ZtIVCBtylOFOT7UTDmtLRxauC/rFXkt+Z+C0dWbv7BNy59TkilCeU3JE5pml/M3R+O3NM31QhN4ms7MwK+aDo2lkVM397XZe2lCUlOtOodJ1SdRmRiTgaMuAz/XtqE1lg1ungjTY1mNgCsjWNjAFSO47WaCSZ4e0jjxhyzTb3H9VppEOW8w/VamB7bfYNx/or15YjoFuu9O8DW4Y5eNJp2O/8n2mzypVnRy5wnCkFIxnNPYUJtL1dNtdZNoTSaBfB/JNaY2ldfNZP335Mc667hynldW8oiNkSbRBsvpAov1x65aNko9RoY0N4n0M97n6QBtEsWSv/aFmer9thjp6VrXtgDj9MQ0HmTKkIBLkbtmy5fNlhvry3kk+10ayDvgtQ80NtI1AeOQYeGIeAvUeIMCmC801ueGTL4aarkYWJCp6saqxoa1nqvGh0tLGtfaGALzQkzQVdc5iTxdbGyZKhZSz2u831X7dyrXunoFvBgL0ohPqcSzzthy/9H7lWInWp8pkW+MgXOKjDnmNpgi4aE+OXXNPKTE0STxqjCGNhlhAidDiPN5nsnSy5VlYVxuDCkQ/ENL8QWTY4LN5BJ7OpTXSMNJfAv6r+iuD4QxcPX1BN+AO7UMCd5hCVaBcAsZdyix4RI4XJ17U9U0iiSmlIq+MMxeATDnnOtcc0k+eXlpo+gqTxKpbOPdz6UR/BH86ae/5p+A4I+ufRxwWI5xyiYNkvxMBhkfNE3RlaydZNcGSS8ZDelzpnAmTMcyBtUZR591C3UcDZYgsAYPZ+puryGFRAyJFGE6SYeuMCwvgcA5SQYJenojXHfMVZs3sQSB1iNV9TjDj2IFrJZuz0vg7yVgp/55MeZp7Ow6WonCP3vN1QjHXGivLpD174vXiIvvH3M9JsUyvrFRbUpD0XG15R5Yaa5Wzr2mGLr4nwwCr5fptxKonSc+PWA3G9xmD0w0ndzwexdw0TIkYR64JEF0SBmYq2kNVREmIIumvRAJi2IhpOUxt7k41J8vLZWHUP0dBYJbY58VIgNpHrnKN8VA4vyR4/lD6xAD3iSegsQGBYJnrXCVHWiKe/3cNX5+vEqsqMGdOIgp3HTMAMNAk7WTND4ogBVWF4ZOC1iTwQGXE98IxEQYjQB4qwSt/k2Pnf68HsnN5Ymc48YgirHmItjzYiUGf2CEuLxqEFjXAvAxUMxqsCVO62RA+TfV/q8fm3+Oq/g9g8AK9hqE2bRoAtUjixfjSioguR7XtaHQj146ppVHtT512X4ruuJZKuIHY0NSR2kpClzWCQfAzCCeanzHZEEZW0ZG1fSkiBdig96jLjGBn217JRvT5Ngg9mVmdV9NJT6E9GmxYZ8CPolB6yGO7MNIJJUcQjldasJazEsqLbzLpqXPdam1yAjhJKyQohcp8WG9ardv1Q/3PuViLseS0UhT7yOfcRknZM1NY3lGuW4ubMdz87bZ+HWdO6wBn/q9FwDQ6rGPrTJJtGoYq4nVpf2/zOMqjcU0s/1rmRfVLRQjl5oRnLfWmByYEjpfq8zgWkqi6FDapcYzQKiKixh/XLD42WKDzZJU41lM5fotZrPBbQ4YF0ts2AwRh2UIWac/N4kGEyUu6EGtv6NxQQ2bRS+zMbNu6Pr5mm+UzUPVJp7vl0vSQzryLbF3mXdL/jDHiJ+6DmmiQ0wYNT7ElDiEUTSAY8hsL4kPej5a64seLYB9dn5O1TkZ89ThKbPTB0iBBtGP7K3LedL870v+lj9ra6XpqN4jMTP+wmiyt8BcT6iJpO6VmC5rvOctzduYcr6YcwYz30vXkgk1a1Zf9RIIXK+Pv/vyec9qCCQmSJ7gVvXd0gBq1mBeejjUDaGYdFpIKrG1F4Iymsv+KxEUJo0DxpStKzGyIkjUK1TfQwZ6rJHjFqMw/kxIIpdR74uiE57jw09dlYao7bciMdXnvOE0sMgbzhGbDEOwbDAMJseGJOxIbVxKHDDVde8WsUHvdZG5Wal1b9msRdMt15oX8ojFR6kAYFvlDg2u5BK6r4fqvX/KOqXIlIyY6WVN8JAST2ksGMSUm2HSiBFw0qrkYcYiLuvpajN9lisRoomaxokZaZPjYPETqAzrag3xxkbRn85/TyFJ/pDWU1yLXQ4sr835rBaZOTmi8/1UJWMWZIuSgydIMwZRA7cvXf/l8fTyc+ptLd9znqAYj8TjbEZmVeKvloSYm1jLx7IkzLrGQAgLLiUUovQpNy+TeVZ/GWPKZ1jnS3rOlrrQzMaCIPX2xliGaOlSxEaVhsjH8SNFh1lJTv7oZT2mBYKDOEmTaDwLqW0855rihHGR9ipy1U5sB4+Lhg2GTXIc7SwpNVTNQ2kgxJzT54ZRlM/vDeUkHNF8KjIAKm22bvzUTSONEXVu8VKrx1bXjuZqzghGpyz/T11/kob4W1j/8/kBYy2nFMTJ28hAknMdjd9iXYezXvS6KrOGS6tm9ay79efTd4R4xCXYGcvnjbh03laaT0eEYemQC0NNr7ZuygYhMgo47ifGp8TwZBnPlg+DZ5/OCzbPYruYR6lKIVfl2OTHVFOv6AVXf1s7N9cBWVfdmf1Y0abbo/8msUzu10nb4j0MGHwu6hzOdkX30xiLd5t885vH8GvW3zpwl21UQMfkRLUGd9f9ocJ+slhml/SYJCFPCOi8sY473/PWNOyM4caFwsqaX2qdqMkY12zk8NMYPZeWafoyEg4UQzl3PGLcPbfniRgFPHSnhjB6MC7rgiYxgMhde+1A1uxgmI+rxRQtMC0YRg3s+cTTgk//nbICdXkjRWJjLDvbZGB0BkclUVpqJIU0F2DnNDF+QlD9d8MHrMlNoiQmTzHHCIkHcs45v8macptnoCPMBVzdqdckbQpnhuGeGI4kIl2Cz5orPvMbtnm83WEKC1ibQy3QGsPWiot8ewW2MYRTYngyjGfDcLY8TI4j43JaoAJUE7Njq/5ezhckJgjLW2/KJh9C1fNdxgl1atbf13Hix7KB4eOxQd856jFB4oLL2qs6Wuv9FltphIcwzHIN8bwA5ddLx9S0wRPieQFu6SddMP4Ky0HkYayxJak1KdIhrICta4RhYmT8TvOykOcOfXwhoagNn5r+o3IQf8gy/RbnXNb880Xryw8Dxr3j9iz3tilYmmNDGBocWWPWGI5Jxtg1LjgjxQ7MZiNqNDkSirb43KSYY0PdNNIEbX0nUF1B1SX3VgDgzjjRBLauuq+GUmyq8copBYZPGMH6t8MDzlr2GQQ+ZTbCQGIyBmOE5eecsM2U5ad5hLUdaxYwUGRiZF+fGYfHohdu0sSdbfhFc8WV8/TGF+b10czGTxIzYGNg24/0O5GMCaPEhTAapsnyOHiOaVpMC4Tqbme06K12vcaEBMW8Z75+6mtbS7/5il3rsr3E+NNj78xzLvIlGal17JL8guIdABbrOprmmiZ7O3i/zfv7nPMFNewMzPrgykiKYvwb9LEp/ztxLtd94qmL3vm0lRhlMMGBmQ3qMJYUAy5Ba205pqUxlwwD0ATDeXTC9MsNvjgmUitAz7PC4WeODXZ7K5qh4ymbSJ0xzhFz3hDGEWuFYd6f/RwbSAxYjojfQBmHNjPLVJqcM5GhcbFIyWCyrAyx5BeaQ9SxwV+4pSjZwBtbwB01TdvaBothY8W4RuLV7IsQEjzFn84J/k/jEzZa9mHkIQycMsP5FANnUpYFNZnxO+tPetfhsgl1vWYZo1mqJIQTw/CQJUwmYjpzleAz37PJEwNX+b6nOZnLAL0zog981QSuthMu3x7Hs8lfOW9Iw4JcojmWvtalXCEWr5F8/ccqx87n9fx35fCni1NENdC8Zno6Y7KU3fNVTwbI+81NIYBkLNa0WOsz6++KtrmmyTFB9NkDMYrDhEpw1PWcknpUBrCedvBJpx3m+FbHtnokeUhRGodmKjWZTlteYq4NRPbItJ4DXLC0Y/aqiYb2HOnHiBtlT7iY40OYgGwynVm8nxoftJ4wbS+ms00nbDbncMPwLDZszx4GYd8P5JoiRY4FaM21QM0Kzo2iQGI0kTHNsjI1K1Cfr8cfLseKhRREBQY1FVPTYbhyno11+XqR99/n6/Ccfnre8J/CEZccT0nyBmUAi2Gk3IsTiPyEkfPTXahz1w2LNblkGPeE6ZRr0hMmDtwYR2Madr7hznfFT6A0GkzKMcKwdXH2q2gjYTQ8PVjCKH4yQxqLXMcsYyD73VSvaUulEDHJyN0yjtQSc2qkKOSKqVxXcw6xbKzMY/7Pl6SQlxwDXv495ng8TwdcizZ7ltzQyU6QWDyFU8ERQjjNE8VxEn3gIoEl2z/HnsQ5JQ5VnVtrnytBpCkAJcUMFShNPl1TEl3dQxKzZiryVYsl2AYXLAxeDIN9pD+HHO8TcQikIF8mTFJXNNlMsvIX+YNWlpnS/CP2oice2l4kD5wjDQPwgdfnAWs0NjS4ybNJ8wTrPs15ey2boTVCdIodRHrrGGNcNC/rqcOyebkpVONP5d5i5vvMunFUs6831nPtGq5sU004SZ0xpU8FXFPBZ37OlV6qJ///aP2tAsH35Jut29C4TdGTdNYvRi9sLt60M7ReNcAYslGYBohhuIcgerFb27B1DV82W97alk3pjkqBCmRnRXGL1tHApkvZHdqT4sTx3rJ/9BzPnvfBcso6Pdq5h7mgqhOhAgSzHKuqb5DrCY91d2/9GCwBZWVzrf+mqx75jFWgXIA8872pBEvZfofzV3h/hbXNQvdz3v6JadLRjTmBqxna9bKl06z/vhrzTjr6/vwCl22qWYCBlEZA2GI3vuUXruNLC72NXLcT3iur6NnLCciTmcC2Uefvn6eYmz+sjIT7z3+dA3Mu7Nrfsj1+JQy00dA8RsLewOQIxnDE4DIgXEY+c4FHTux0BBSqJMyI9pfDMOYDbDGl+6/FnhaGZfzb2KUUhGt5lQ0VlSWvQFPtvB1JHKKMYB7iWMTnf8r6ejpjrBV9R9uLMy8W51qc3yxGOF3u0puie7Vm8yxBYIkNgXHcE8KBWxwbK/Hhy3bHr3zPpnqNIRdWwi434hoNbH2gu5oNB8Np4nyU2HAeHQ/Bso/zyMxcesnSlsYawoE56Sru2ov/p0USU3+vO9eXQOCPQcFluzIIHFi2YepYEhUjzEmccz1t97qMeDrb4lxl6lkBPfIe627+miVcsYCrgq/eQzM72oCxmJT3mpVGUe0a3gI7JyOe165hZyytSWLGoYysaGBETB0qCrh26edJAffTk7UXVpGRefNLmmwGI7Gh5Sb8HmtHpsngP0Tio4HRl9jQYrKeeB0X1JgtA7vKRkumAD/BRIgzsEvKuvEswWDLktWjsaLPRkjXrilNot5UBVxCZJ7y+X+IE49h4ClODJ8wgvUfhkectZxSZMzNSWOzHImTWGGMK+BOnUeYipGqRnB6LtbGQ9N4YBzvaVIQvWPX8mWz5dftbqFlqswJ0TidTV5uXKDfRNprcK1jeAg8PVieDq7EhmPJGVLRB67ZvzElqlt5iQkJMhATn5k4luempXdAXSDWAMkl4y+NEuupIQWHi04klxvHMuI5s/yaZsemf5s1ged9N03H0hSqzeCWDeNYNL71cZMCGwzOWJn8ca6MbOq+nHSkOYlB2GSmnNgYdJogIWYuG+u5Mo2ADwUkkomc0ViR+BkT3kXCmFk9+evZftcG8s+4TB4jN00GfXJssJuvuAm/xzUj43mi+xCIjwY3egYMR+SYHytJKc0falAYMxd7A5HoZs3QU3X/gqqhDBeLt3qyQAEem8Gda9tykws4bb7p9bPPDeRTmjhPnxYbjJUGshx32VBjPc52dK7PklJdNi5tyv3KlibRJYm52UtgnJ7EdyAe8Qm2xvJFK34CW+sXTMaBmL0UZmf5XW4SbW5FEmI8G84PjtPRlthwSqEYgU4prWLDPEkECnDOyKwAwtPi4rwEHNfgzho4vWwlJY9PLBtFi8K9qnvqL20YW+OlOddsscbSNDe0zS2+GEENpTEELHxEQhyZxkMml6huqcg9KTjlsnwRLJvECuq2mZUOMEQ950J9Spfne6OMsxksFUPzlI+xow0WZxLRGrpBdP2tTbiQSIOYQAIl31ew5+dYpulxryoTSiT+iJlUy034BteMhHFi8yHAA7RjQ0iGPXCf8/ma4atLYsNscKhkkVpbeG08t5ZGrGPFJSawnsOddeyysWyba49NlmOT+CWeCGOKHMNPbxL9bjxgreUQRh7jKNIYkGOEx9gWYwzedjjfl0lDNTheS0Hoqu9Z43SUuiJLQfiU+My1fNnu2NqGxthMMnnONlcTyRs/cXsj2sDTZBnOlng0DKPlPprS+JaYvcwbakPOmGYWr85IKcPXXCBgqCl1LSG1Npium8fwvP18yXeobhavawid2gKL91u67hVd+1reL2M+sy7wcyKPNohV/i2mkbpNVgPNxjTZhHImj2k9MsQzQxrp87SdkTOiaAhrHqy5cEjSXHRkzW1mUL4xlsCG1nYQLG20NKdEfwy4Jojh6xBJw0Bqq3NKTaZ/pglkpyb1m62YWufpAdO2vOIbmm4gjIbthwl337ObPEOCvXG8S7Y0X0Tu4jLRsTCIbeVRVMWF8pw0x5hzxssuFr55X9dyU102VhRJJce1bZ8Zdx6TyFN88vojMIL5ExD88eVcj3UN3vU0zXbhFKvMHSADPj88SrOWCYhxJMWRFsOt67jzHVe24cb64syZ7YkKozEYZfYkeivJv+h/2iIlME2W49lznhxHWHROLm4XFEkFZfS8BOq+BNR8DMCp30cLSF0v6f6V7aICYc0yUOf7BnXYd7al8ZsMBO/wfof3ygReGnHpeO08lj8fH7Ma1b0E9s46Zsv9aoz2HecxcTXRU0ZAl/Upe5vos+HLD51CJoPBsuP+iJeG9aIxejqQmhNue0+z83SPE6NFmAUu0gYrrNskukMhpcJQVVAWoDUwVCdV1L8lAMuYweB59GKZIEOl05NfR508FdzZZBmVmpmiY0rHGDgn0SXch5FDHDnEiekTgOCYZQWkYNvgvOh8aqf4Eriz2MXWlbHCS6BjihMpipb01nmuXZvdR5uiRxYQA551otxCkYyxWS/Stg7jAtMoDDKNDQoA102iS+DJpaVJ3KV/U/+tLl5YPQZ/GBNY17qYW68ZBBYQ1ua40DY3C0BejwPMgLz8fCERLSBx1eBB4ggpotp9Ek9rxmNmKBkpQ/OcWbkPkK+bVmU/jKfF0BjR2FWdP9lM84OSTj+XXMzF186GUxob7OmA231Pe3XEjTCeI90xsglJtIKTuGG3ZKmBzFJdXA3ayWNuAGlscCYuxjdr4HctGQHLewtkNk9mx6qGmo44aoFYjB2TjF8e4vhJjOBzEnNVkZDKwC8W5/viOA8smkTALFdSnZNLPeBIiKo1KQITm8rd+9Z13BqfG8jMOp7VFSLGVyIL0XSxmIpBIMY5Ngz1v0+z8U4xNErPr711UzixfEINZtRf8LyIexkE5uLIfyxX/PP3ex7P1PRFRu+962j8jrZ9VfIDyRVC/j2SVsdBjs2sU1hyCgINot/ZWFfMQ66yKZeyqwtbLVLGfDViGP0pZRZhpf2n49EBAyZLeLww/m1hWThogvHHig39VmLDeF7GhsMJ18RFbHA5NrQYhkpGRl4os4ErgFhyiVju8Tou2xhbAJ1Lcg/zxj2PDTWbp84j1uBTSBTn8qcwcfqEJtExBgxRxsCNwZomX/MdvrmqGshNiQ8goMNcZ7iVt0VdV4RsqCS5g+rI3riW164tTaJFnpS/l4kiI3IxrjHYBsIo9546b6g9HuomMuScvZr2enatl3vk8/2j5I56ckh1MutY8ZKZT6ruC+X5q/H/xfMX2yFsfOvaAq5510tz33Y5NxhKTKgl5LSWiGmqZGGE9KGTW7Vh2aWcxyPnY6e5op1j8Lo2WsdHkHx3MJJLu2QYsAwYhigRMyaZ+IhdEiWm3ChKQYTbjP2JY98/Ypl+i93sSOOZNJ5xxwNu94HudGI6CRvx6hg4BceY49mxig1aW9Ssc2UHgymTRsWgOtcU2lQ+Mc2SU5dixep41L423lh64xdNlDVQqszdTwF7jlGagcc4lSYykAHCjUgcXmgSKR6xlqSsJcgWcgVxJDFhc/y9di1vnBhjAuWzrfe3fIfGRbwX3CHGRIyWYbSMk2WgMvyFOW9YfdbS1ElpIT0JScDgUlgs7961GdylJpG+dr3qMX+YNcw1Tq3jRR3HdEJH44JzG7y/+qjM5GwqX3/J/l/WCOg7lImwpr3GqTlfrExmxz3TJDWsSfIZjJlZwJdiirDiQ9EYVq+HxlgOZuJoGwYcJBizPEQYwVqKYRxQporMzyQ1t152e4s9Hhaxwd880J2estfVxO44MURLm2PDBolvoCDwUiarTFEyk00wcg60yRaimBJOysRxjDhjmFYn7BqnsuV6kNxBZec64+ntnEcMxCJF+RL+9oesP440xJ+A4I8u565wzskogOvxmVn6ErijawYWAmv3yBBOjOOBcTpkx8uBrW3YuaYUrDDrkKnukOr1OATo6W0SSn82ChG9p4k4JE5Hy37wHGNm9ayKQR3JKN3xCmCN8ja8hDW8dMq8BOVcOvkXz10laOvi7dINpP5bMOReotwgrWsXOknapdOf13pes47nfPMsox1p1umLMY98xpF6vO1ZeVvp/hlrmA2i5Lma2K411EI0xADTZLAR4pggRHHdHAbSIDp8pulI1pHGn39EoF7GOUyWoRAmssW4bDZhRVuyyer72rBQsEe1TdtkF0UGXNbJcRhG5oRd2T/1ueOzVIQmytqBK9dLEpaQMOhnofhTCnwIZ45xEi2+OPIQxqwF+tOBYOukG+xsVzGAbenM15ID9dLzTA1GdEKgZpRM4UiKQUY6jS0gcJ+dYCXpnZkO9X4UWQg5Nk1mk4LEhzAmhqGODbN5VL3WYEq68PjFz3bh3y2v1/kZ9WsVPegfeId1sbk+k2rXbYMFU2ksZiO4xfNTKOY6zz7LqsgLubhWnTLp/E+yVUnK6iZVwHiqYiqJaEJltEkuJnOTiJnZqgmHGHUZiBY7JXwe8fQ+a7iOCTsEYWAOA3E4Y5oTWCfsnjj98QCfKjaodrlxprgoOSPacWLckVlLGRWcwQY1IswJldGizSzOaV0lkVuDORUYDBQ2FUizrU7gtEAZ8nuOKXJII09hyg2jifswcIwT4ROaRKPJgLVpMqjQg7Hi4u36hc5nPSkAct5N05Jtps3KcToyTU+QRBO4y02ijfVsXVP2oSaei3FtI8zsDdKY63ykkqAnRhjOlv3ZcwqOfTWFUa8F2JOLkvpvl4DhOn48u2b1/TUfqQD/UBVn60mm+t/C80midZzQwishgLt1bS7obInVS1d1BYHnRl3RVYxTcf+OuWEn17Fs5QQcUsAFAXKbaNmbmSlWn5MhibadV7DdzKOy9eeVHFAYsUcS9xjaBESLGx0xGiYXac+R7iRF+kTAbUfS6YmUGXlSbJ1+/mkiXc4vYoNtPLaBFMD7KPekHBuUgdpmwGGhCQooQlAACZNbAPnGYpEDWjeP3CpO1LGhHvcuWn5FN1zyi2OKpYAbUyzb8xgH7ieJDZ8yLXBM4lovTaJu0SSqwZ11kwgyyBB0xFtY6vLzwDg9FUmCEI6YNHFlHBvr2GYzsZDPH1217meLyc106G3AN0m93Agjkjfk2HBUBvAP5O5rVv767r6OHevnrJ+fVo+tCRjynsvrfy0hVW9PQieHpDGEMQLIu65Iecn7hCITs27e6wSX5gay3Sa/pieYyL56V5NZ/+T74VoepwnQG1eaXZdi8PxZ02zkqWBXlUs5a2iNh2DZJEM3ePqzTJACYip+PGLaluQc8XQgng5Y5372+CDj4J3UE3lqwDa+GJw3XaLxkdZGiDY3LMXUCuY676UC1K38SdZ5hNYYuj4GyrgMyOvofa0/TKLUGDrlWNcY509oID+EEWPNPElkGgxmrinyJJGrtIDV5wKWNWzdQC4SBVGkC0KU3KExlivrS+NhKOD5cqmclMv5g5LPXJMYz4ZpMjwNnvMkNUVYoQfra+5C1VzlCpIPmwtdoqIVvvo3H2sg16ueBoCXY0N1tWY94G72grrg/6S/q4G01gw1ecyaBuNnUpk1nq65osnTy95t8H4n0hOuE7mpeM5TSRPn4T3Ho2ecHhkzK7qNkU4bxEakfdRoTpvNNic95yjyIgoEN9byLjY4K6DqLjiOZ0fbSdRpT5F4GjDtQHKOdDoQjwe5jv9AE8kfXNnryDSSo9jNFts2+N4SbKTpkuiJj0sfEiU86KTQJfc/Z5AcQnOufBMpTZxUaaq/EGefbW7VBNI8os0yUyB1xT4/d0yxENE+RYpSVy2n9HOtPwHBP7A2m89wriljxM5JAbc2dJnHAuYkba3ZpePe0/jEND3QpigMBNvyeXPF537DtioIlfYO80nbYtlg2ZnEdTvRWNHoAbmpQ+S0t3w4dPwvo+eYEt+moRhS6LLMY5RTUhaKvndkMrFoAtfrUgf/5z2Fnqd+hvn61m3SgjIai7VdHvEWPda22RXA3hjRFQqBZ4D84l0VPMgsbQV7QjhmEHnuRDY87zDKz8IAS5roYeVnBZoJWSvQFJfKuqM8BcswyHN9k2hOiXCcwJ2xjSeNA2k8E08HTJiww+mPCvaIuHse63IO03hcM0hB1wjI2Cp9I8ImZRAcinPrkDueQ0pgorCCEUuxutsMzHqfBsYoYxRTLpL1xqU3vI31WedTHgvIWLczhmMMPGVwJyIGTQ9h4FiZsCTjsa7DfALY03VvcM6XoqGWf6gnBGIVuC+NGT9L0qYDPomxS28db/2GXzbbBRuh1jWtzyEd67zxgc5HNt2UTaBkTHh4ktjwu9FzBL5NA6c0lRFPOVrz9TUXSsx/S8ur9CXQ+Ket51358hezfHy9LctpAYMxor+qTO3GX2VGhVwv9Vit/L5kT9QSHSlOTNMTIZ5RZr929lUCQ6/rYjhQbfuUC4cpR4yISB6gGsGImZICE5LYJPa5IAoAZ4kR3gm433QBYwMuJGx/xG6eiM5hQiD2W+L29kc5+/6ktYgNvoA9Loi5kHdzbAgxA1bGzIaGVQK3GAnPjJ3aCKoxlmAqHcoXQOK6SdTkpKwxtjRP5vHQ2W38mGPDKUrT75wiJxLJ2Fxy/LTVNq+lSeT7kujX492XJGIuxYb6HAzTiWnak9JQxr3v/IYv2iuujIDArbFZVzHODJ78MSQ2GF47KbZ33YhrEsZZUkhMJ8OHQ8vvh4Yj8C5NHOK0mBio93yCwmKtH6tXXahpbHjx+l69lnmxOTQDfOviUn9exyQZv8x6wMbi3BVtd0vbXC8KaWVZrvO3WpIjxjFL9hwF3SzbPUemZByTEWmUlBIn3dqUSARcTLTMLCZfjYsPKTIijaN6H+rI8zFF3jGyT5I/3BrHMTl2wdJYacAIiBdwTcIfztiNlCWmv8I8fC/GTdkB/OdepumE+ec8tt9i2hbXSpKgYM/GSrwjwoDGBZWQmmMD1COfmkeARUDxkJzIS5mETbOLuGXWAQQuSko1ZtZd1rxiqIDfU5p4DGMpnk9xYq+G0Z8ySZSnDNuVrue6gbyOEbV00SUvgXF4IIQnEpEmwWvX8kVzxTa7lze44gVQTHXzvm+t5dZYbo00ka9bMfMyFqwzTBN8OHRVbBgXWqipNDHyOZC0yVedF1z+ubzG6u/6HMss9wLzWO5LbWmNC7Um7EID+Nl7iiawjmQ37XWRgyivmTWBNUbXchDj9MQ0ik67vGYqAJ2xDU2zo+/uMrP4iq59hW9usK7PuqEHYhA/gmH4wP7pP3E4vxeSUBwxKdDl83MNCEdEWuYhm5qPKXDKurLWGA6uZ/A9e+PZBAPnhs4HMQhtEq4JuI14gaRhwG62hH4rQG2OET/nMv0Wt70lZXkId3uLHyfscaQ9TVxtJs6jo0sRBs8QLDpBVPw+KhmMUJ8DacUMXOURP2bV4E5nXfES0AaSxuAhRZ7SWGRptIF8SuGTwJ5HMknL9rT+KgO/NgOFXWkgKzNYJQngOfhbx4ZpfJLYkIQsdovjs0b0wjUOAlVDIQO/JrHBCVCYm0SvfWC7mWi6hHGJGA0Px5ZvhoZjkthwyjWPRP1U3YN5hiuowdeyKTTfT9PiuXO+rYCv3kPreLGWjNHJgRITVk3jehIyMtcS1sj127bXxTuglplUiRjN2epabn5vm1ncLdvNF2yv/gzf3OCbV/ibv8P57peMXUNyGSewku/780T38IA73sN0Jp6/43j49zw9/ZYYR47n7zkdv+ExHgVXSLAxjo2tmuWRwlA/BJmC1QaGPn50GzbG4UzH9tTgbKJtIq6ZcP1Ay15iQ7/Bbr+BGOQ6fvU5P+cy/RYbJmlUhwn3+oEWCKczKZ7YHYXRP04WzjAkBylPvpUJoiXhsfxshAUMSwmJIjuVbDGSq2uMSw04rSvqPEIMmmcc5hCnIsVxKDXG9ElSlLpEQ/nnXX8Cgn9g9f1n+NyFs7Z75tQLPBslngu44yIYh+kkrL/wRJ8Sv2q23LiW3jruXM+dbcTJMSWOBNHuJGU9Ihl715GU3oqrYtvE3MGBMMj389Hx/eD5KgWOKfA+i84XjVXAGUmv9IQXIfSGlAsVkyhi7c+XWf32rM+/fI75oecDz0I3CNMuCnRnZtDHMI+GRixNc03fv7lYaM8yEDpWO5vtzJtXF+NxBoHjmRBPNCkVLZ7WyvhgzVyN6AiG6ERNSEFikATZzC9eAPjCRNFPmsc7z5n1N025Q36K2HYihojdCOvPZuBXA6b5Y7H+2q5IUZimz4xg6QK7Rgq6ZpTuvQI+pbumoG5ewYj2p3btnVlqAtcdtqLpE2Vf+hxsld0nGlYNvXGlIx+QrjyJzPgdOISRCUnSDimSjAdjsrHCjrbZEWME/vVP2j9X/Wd434thwwW2admPJizGOJUBrMBCmI5FsiTEM00KfOY6rl1Ll4Hgz1zLBlcYPccKBG5zJ1hZPb2N7NpJ2BWtsP50BPB8tHwYNTZE3sc5mV1sc/4+gzfazIiqaiDPS8/BnbpZ9MO3l4+DbctYYVaPiKGEagnOMIwaQLVZz+vVYvS+bFtVVNfLGkfQZDqcC/s3hCM2BVzeErmGzWLUs9YqU+ABROvvmEGEhLDXI7McCEhsqBlrQxKTryFBCPI6Y7TZrTmyOUdcE0kx4k4D8XgEK0wiHbH6YzH/1BEcyJqjLdYZUoswRaww1luE4TizeiQuqHwMJhsdKoPVCBjsqqZQTCIPkXdTZhcvWcC6z9X06do1pUlUr5FQwJ16OuBMykaPFuuuaP2WEBPwH37S/tlsPs9Nos0z/4DayKXWmhVmelzEhhjHojEXwhHiwCvj2GQW8OfNhi/8VfESOObx1JDSLIOR90uLKQ3kzgf6XoDCsm/OhsfB820Sxum7NHJK00XmH6BDLxcnh9aMncW/e+Hn9e/6b+vjvI5LNbgTV2+mcUH/LgayAsj7RgCZvruT91CW38oQTnMFaSBPBZAP4YiNI17fm7mABFP0yL17rsU7jHuG8ztOaZCGaUpc5QkXABuFbRiriKb7QRueo+oCYhisJ+AZsLTB0J4bNscpj+4afB+wmydp5oZA2t4QTwdwXorqnxkMXsSGts9u4HtgwjWRtokZsA4EHG0Q3cmANJAH5hxCwZ7S/DGxgDwaC5QVjKmYOvo7hinGwjZvskyCw9BYW3SXVbJDdG9DkZASLwGZFhDTLvEDSC/mxj+8Nptf4JwYTDd+WyQfgKI3uV46uVJ7WsxNopjPyaeZXOIcv2y2/KrZcms9Q0oc0lR8EpThOMcH2ACv/URjE5t2wvuEzV2kMBoeJse3KbJPkXdZv3SxjaufE8+v7xqsedasYTaspnreeimo/zGZO80hdRtqkHr9XAF4rvDNtni/rDWBxZBzGRc0JoTplI1lJ4WlRGIBg/dX3F7/Nbev/jF+8wtobzl+9gue7npSZ2BKuKeEP0/4mLh+9z233/0r9o//mnF85HD8muPT74gpLPTT9ZMr60+AN8kx9mFkSKFMVzhjGGySPDG2XJ+9jPZPSWqM/QScSCFiN+9LPLDjGbvZ/qxEE9N28vpZD9T2G9z2CmNPNMdA20U27cQYLDGaPBFlCMZkqaJ51Ltmruo0wUt5xKUpxHrVExrWyL/rrSsNVl0KEj2lkffTeVFjPKUojb+fIHOmq23vcL7JZvRXC0JTbUq2jhEhPJXm0Do2xDAwhQOkEZ+gN2JG/5v2mhvbEJi1lYdUN5Alz9oY2BjLXZ4yvG4n+k3A98gUGHCYHF/FxBGJDWtjb+XJK8QbSYvzWa6W+RitiVbrvGChP/4jJGP09dIz0HfZJJrjhMg1WNvSttf03ZsFyad8rtwUCtkgLsQpy/JM5bjp98ZfcXPzN/S//G843r3h4abl6leJL79I3G1hmPJXkFzw8cnz4cMbzu8/w4zQ7ke23/1dtvvfE8OJ4/7f8O79/8jh6fekODKkAZciTbJYgzRGNVZmQPKQApMxQCROZ3y+ZrZZbvDt5OgGT4iB9hhpnyasG2XycHOP3b4TkHZ7K03enzF3sJstxImUzSXjzZ2AzpuBNHxH/zgxjRPTZInJcIqWECUGDBj2KTIYCiBcr1pGpm4UaUO5+BBV/24dM2rZyhqPUDmINk8QHGPgEKXGCLnGkCbRpzWQdcnk/8+7/gQE/8AS91hhkVnjCuhWd3xAE7V5nHDRmUtRgkMFSvrMaqzdvevgVnt8aNeijNginTplhpXR73x+TKNhSMpumMfkL36+8pOBSr9ylnB/vp6DMzz/vYxpzCH64mu9oPE1/5t8C1ltfkkyjZhsWNvmMVu7AHvm11wCPqoBfGml1U2sLmpnwMdUGZkAGjbNupPqkCz78/nr6aohqJg1eqZg8ajpi4J4cXb3jRMEB2ESs6Y/1ojnj+xsL0ay9LHy3eSk7eV16dx8aRTukqQGZPfwfHzHFDlHYcyGzPCJRoGAPHKZR7TNJxR0Au50i+KtbkCsVz1qLOdjrMaIpjJK5JHYoIyEUqwp6J13TWE7VGeUxAeJCdakIgmpek8xkGNDyg7oL48dwgxsrLl9WrAlM4PB+vyP31JM9dMPJcwvxBmTEah6O9H3zdtqDNb4AsK9tGpt5sK8quO2fr1wjk5GACe95jWeeWPxCSbiYpS9NsiAtIgN61ioI/7KCB6jySHRZq0/SRhNkOQghQAxZKffiTScSE33x9ELzu/FR8YgbS7GoI4HlPPYQZGR+SkcmkuawAoErUHgusOvxfOUY8NEIuTz3BoxbLKug0+KDeIroOefThLB8yIOKiCyig3qNC1awDJq6BDjmk02weuML0Bv/VlVRqBeEkOgsRFn59igTSItvI/MxjcfWx8DetaF2yVg6IdSzzUodOm967jzsdcpd+8sFWNtsxq7n2MzLOPCfDzCcmqAGWQKBmQUXAxffMUCXC9jrEwXTBOTEZmDiUTHZTbTUkZCPo2O94uubuJoEi7lxkqSHGKaLMZF4pAgRGGSOJGU0tiQnPujsIJ/aFmbCOF5bAjMOUO9aqPZS38vz8Owjkg6aaRGOsrwWxshgRjqDDk+qCyETssIOC0SQ59SODnXV02i7qNThvp9ri1qUsMMOsQ0koiVDrqjsVUjyKTsHC+f0eZCWGOCgsHWpKz/OX++GEQDdIwSGwbiR+QKZphSgZa1dE+91tq96yNSF9/1K6wNp+t/+5LPSP3Y8t+Z7O3gKzJJLdejsnJLTeCXlrW+sIu79obN5hf43Z8TtndMmyuOdz3+LtG2iWGAqTOczw1mBDfe0u1/QTd8j7Ut43TgZBpibu5dWrHK4UKajSitETbgKU0ckwz2DykxRssYpLYKI0Q1lxynUmOk8UxSo+j+j1iCZyaqcRbrDMZJbHDPgJx17rCMAR+LCT96U5hluercofYSgKUch9YYU5Icwhj/vFj9Q7bB92XKUJvIwEdlKJ95i1SxQaSLBkiiVV2TavpsdheyOW8tGVMDtbIPoLGJNkt+1SsGGJM09IcX5KTmpd45+d++MN0lz5yZrRpVDFxsDj3fJ2mRT9fx51Le8nwr5Z3IrOvLIPBzL5H6Z2UCmxxXvN/S9p9zevWa49sOv028fpX44gZuN5YQE/tz4jgKIAxwOiXGjSFawzR6xu017TRgxwNNeycMZduJNGYIBEKRLxEMRn7WJnJEiTIi3zHEwDl/jiOBY/KMQUhv02iKBJ1xSeqK8UQaO6KSTP7YuYN12QjbiiSlAxtzbWuen6Pl6LwQJ+R5L8eK8JFzt9YEXr9e+fdpnkSqc4ghiSls+Ok9omojf34g+E9mcT+w5OKXTYgpiF5rBeiCBIQQni5363OipiOdLsEGw2vfc+tbbjKLcMjjfnp+6gkVUpKEDpvFp6Vz3+dkzWdGTxiBgwADh6PnXUq8iyOnJGPydVEnY2FyRk4mYYIo7BrjkDlyKyzPF8rzS+DuAsQwq37/C4ArADXIkqIwkpPoboIwEF2a3ykA0ajRi6XxuzzyXWsC1yNroYxtzNvqykiNGvYBubt/LN09uZl4RkLWaxY2hJ1GvU2UG6sunwsMYQgnRsZCmVoNMhHz+PchijlCExOnYGnGSJO1eJtuBAK2AeP2GOfE2KHtMG2PaXvSeP7Zu3MA8XBPePieNJ4JD+8IhxPTSfVJRbBdlwThOTDXnXr9XZIpSgdaRmCFjTpk8FbPeWvEYMdnZltn53FvdQMOSBE9pshTmDhn8EJHOE8pZpaWxbsrfLMrnVnvtzR+R/gEh1+XTUR01YWaFm4wd431b1M4E3JsCFHd5kdcgh7DK9fyyndsbVPG0e7jxN6ERTIq+92U2KD6n2o8KGzgRBhhfEqkYHg6eu7TPL51eBYbhOmakhZ7lGRIPqQCwXNqVYMwplz5L4O4zwHgdXxYM400PuTSMi1h3/ldbAXOe3H9tu2KfTmDPetibhnTx9IsMsbiTIerAWVjidZjXCc/p6VZTwwD0yQjn6IKnGgSRUfKpsTEHHtcznJjEpOTc5rYpyCFfKJo5bVJxvPcU4t3MuYnRqETpn2STRsGbNsRnJeC7rTFvf78ZwWD4+GecLgnDaccG56YTonpJMzSEI0Ys1TrJcC3xAaej3WplIOy1uv4oE9t7MyO1CbRKU0l4dOiDViMcKr8RswmHYbM5Gyv8X6bpwV+2mr8DudU69Mt7j86HfCSTMw4HUveIPeiAR33vrUNd75n55oSax/iyKEafSxFqxHTl53xRRZi6yY2XWb7WYnl4yGSQuLp0HIfDfdx4pgCxxgYs3FGZDZrqsHeNcvOsKyD6z8neCbv8nOu+r2TkS89gsb4BetPTX/XRbRqrq6lo2pQHqBtbqWRbCyd33C1+RXb7W/wzS3Ob7GbLwjbO2LTYGLEjiNmylMhh99xfPz/cDj8R6Zw4nj6lv3xa85hkNwhR7wyQmtmo7ICSlSJ+ykFDsnPhT0d7aEjREPXBEBHPMEMI7ZtMU0nWqD9Fg/Y6zc/23GIhwfi4Z44nuX7fs+0HwljKs2rGJ/HBsgmPikVzWAqEGYdI2KJD7GMXBZmT3V/dMYRTJrHOTOLR1i+s6bnKQb2mckzpZglpoJodWJFaiifQ58WG65KbHguDbP0FqmnVkI4ziy/ODKN+yxVFIDINZY3vufK+iI7dogTp5w31PkWRvb1Jk8N7Ixl6yJXTaDxkjfEaDg/yud8Ojjukyk1hbKkLy8jJIj850sgsN7TRTP/h8GZ+r3KmZOe5wBUr/WsSSUfWzxQdMjcGKzrRaLDb/Mxsfk4yP1UTSPXk0MgYI9vtljXQkR9tnsAAQAASURBVIo0zZab67/i5tU/wW6+IG5ecf9nb4lfwNVVorOw9RFnwVo4D7Dfw9kaojccbza44S+5sp447mmaG2IcOTz9nnMcSWnCpohHzu2Uz/8y5h0nTinLhun+T4l7O8jEQXPNZuoITx29C1liSmuMgGnei653jg04j3/zq5+ttkinA/FwL4y/04F0eiIeT6RxIoySo8Y41xY12KNAj9auIjOXSv4AyzxC40bxC8l1h8YNmIklSu7RWk6/j4QiJXXKoFkkcQgjj3HkmCe8gjE4u8G5zUeJFT+02mZXxYYlqUn164ESF4ASG5ShHuOYJwROEkOY6BLcupY+T5501nFKgRjTs9jQGc82G846RBJiB2xdoHEyCRqjYTolYoTTyXEfDe/SwDHFIidVthUFcTP9wUhdUdcyiybP6spdN3JK7Cj7gvK7ngf2AllE9pWcBy81iaIBY8SkUxn9kiv4Rb6gHg6aL+jyriNkA3FnPZv+c7bb39C0b2iuvuTdP/zHfPkPI//4TaB1sOsMtxtL6w37c2R/TuxPcBrh6QSnkyGeDeacz+/GM21vMGFLmyZuhndY45jCkePxW87Dd5xiEOnJZGisA+apZSFENUDkzMD7nAtL7mDZtZ4wNGxGYc1aKwCw7wPG3QPgbp6wB/m5AZGP+Rlqi3gUDWJikNgwnoinY/Y/kYmYGObcoQZ+WyjoipJLhnyCrBnCtSyExoJANu8tU97Lc0fzBpA6w6/yiEedHEsiRXkfzkWK8pwiozFY0+Hsz8EI/pNG8P/qy7l2IdytydpLGsBrM6FEIsYBH0feuFbGvY3jzve8cm2RgniII09Bxq2kqy8dO9Dxb1s0enZ5dKvtYhntHM+G89EwjYb3x5Zv08S34VhuXnqSwyxubY3hHGXkaDK2sFdinEimVs5ZLrMAgJcgjgInNfi7fo7KL+jPRbPX2Fz0Ts9cQV1mBIwm4d2WtntdCjodr5PXWwI99biMbMsy+V4D9iGecwc1grFiBOb6i/IL0/TEcdqLKycU12k1LztGAXPGbFFgszSEbJskJfs0sU8Ol3WFJbg5nJGAJwm5jPCmOIB7xA0Dpq0YZv0W23S415//bAVdfPye6fvfET58QzweCA/3jPuJ4cmKccjZPivmXlpFC3SVoEmSNWt1PuUCzCLj3eqyruydEnjzmIsG7XMMkpTlUYyBRDAO53c443G+p2tvaJubIvHi/QZnO6bpp+vteHeVQR41Dlvqg9fmkHqOqblQTCMpSrHn0sRNng7YWM9r3/E26zYNSGL1GE5F26k3PsuKGBoj4OIOm0GfxFUTuNqGRWwQQwfL+6eWb1Pg+3AqWnIKkqlBRlNGaIRdkozFur40bVIcucTwXzeISnNIx6Mw1c+X48OScSegqtEGkYiulNggz5kBJmM8TXtL370uRjvK2I55X2vMvrRqHVDZFo0Zoj1+1b9ls/klTXODb25prv+K8dUvmLpscJA7tSZG2vvvGT/8vzjs/y3j+Mj+6Xccn34rIC6iByqM4qnaYxT22SFOvA9DGYFU5hYJkQgZPXbfEaPJ7K1JxiuHCdNmVnqYsId7TNsTTwfczR2m337yBEF8/J7pwzeE99+QxhPh4Z7p/sz5UYwu17HBmlRGNAuzhzlhg6qASyuNLuYm0ZSPS+3kDRSAp16qUTelyFOcOMWJKSXOKfCUItE4GU+1LV1zTZubRM5tMojbFlOmn7K83+J9+6xhnLRo+xF5Q4ojxIGdsWxsS2ssb/2Gt37D1nqGXHR9iGfGKJqQ2mhw+Yxqsdzm2HBrErt2WsSGMBqO9xSdv69S4JtwYsxgQims8hXrMLiUigxCAVSA0iC6yIjS9pChjhTlSjb1Iz+C8UPKhV7Kv4uc1Sy1JOwL3T7nNvT9XZGJ0QK71gTWZt1iq40rzR2V73Gu5+b6L7i5+fu0/S+w2y9593f/is3fiby+gcZB62HTij7zcYT9GfZPQubY77/k9NV/wc23T7jhjP36f+Kr3/933N//W8bM7NRcQXOgmBJPGbBUNrvqgD6YoejVddYxNAlHz/DUsbEROOH9SIoDrhlJ8RtSCNh+g2kFEPZvDiLj8IkN5Xi4Jz5IfCBMhIf3TA8HxkMkjIbz0TIFS0iURpGYyko8aIEhF/Gihb8CeKpGcskh4gyEKSMSVHt5jg0qK6XNopCLNgWHjjFrAiexOpoMOLeh89tyD2iba7zrPw0Ibm7xXvK3dYNIaow5bw3hVKYDVCYmJjEnDPHIJsk139mWz3zP5140gVXmoo4N9eqMjHvfGkeL4RbxFdhuRFLEOiGXnPaWFODhqHnDWTwFopyDCqAZY54RIUPViIHnRMn/tZpEhqVMTAQwYvKLsTTNjq59RdvcVrnCbNi5bhDVx0xyjKawN7fb3+D+5v+O/9/1/Pot7Dr44sby2bVj1zv2p8B3j4Fv90HiwkkYsA/ANCVCY3joXuPvbrFjYPvdX/K52/L4+G8Ypz1Px685n75dbMOU748gTaFjDLPReBjYh7HcI2NKtN0tAy2bYImPkj9ojQFPpPgNrr/HbDazeVy/xfaf1lAWEFiaRCk3icJ+TzwNxCFKI3lyiwayAL9CoWnTnDeodMyxBnjqGiMTRBTgVCBXr3VdmkOoZ4tqApcaJTf+nuLEYzaRnQq4Y7FugzGO7lkD+f/5k/ZR175ekEt01XiD/D7rg8cUC7EkxgnxxDnikviMtMbxuun4vNlwbdsSN5/iyBNzvqUgqXUGZxp2xktsMJbXPrDrpjItEKPhtDclb/g2Rb6ezvK6YSo65EWSwYDmCSKKJj9dWlX/8webRIbLjSZtMK1f86Xf9TGTc4Wm2RVdZp+bxsCihqiJP0AB77XJ3Da33H32X3L6O/8lD287tm8i/4e/H/nf/82Wvp3z1cenwDBFnA18dR+5P8Axg8DDk8EeIy7rKE5dw9QJS7xvGrbG0/W/IsYT9x/+J969P3Ge9rgk14xJs5l6IGGQiRYAEx2nOHBMEzZOTGchWOz9FTvjGY7yvGka8D4SxsDV8B73/gHbt8TjE/Fwj80yEe7V5z9ZUzyNJ8kdDvdikn64Jx4eifs9KUTiEFmXbc6kEhtIs+ycfFb9rl2C/Jwqn1AQWKd+NKcCFnjZwltghUWA+Bnt41hqlIL7mDwhZnu6ZodvtqQYgX/7k/ZR2Vfh575D/gkI/sG11vPTYuAlDeCYpsxszUGCREojO+P4vLnird/gMGytZ5dBwz0CYD2GkXMKNMayc00Be1Tfr0US5SaPbzWdsHqmSUCe4WyZJsNDcNwnSQDOapCVZp20RYJs5wRJwU5rsoHRC+NPa6C3PEY93iamLPV+1H0Yq9eOccTq6GUu7gxy0NdC8AIOGHyzY7v5xcVxDX2PtXC+vt96/K7IdmgBnrvuIK6l1rb0/V1xEK71h0/nb9kffssUDkXrz1vD1jXlBngOUrAko0L3y3GVISWOKS11qDIjZjs5dmeHPyb8KHqgfi+Fqw0B0z4SnMMOJ9HV0TGrTwB70niCEErCFh7eE4eBcHgiZDbwNF0GgWXEkMVdto7dNcijIxiF0ZPmUW2PocOJ6ZN9DjjCnPwGEqcMIs8MYIf317TdLc42RfOtaa6LvEvR5TPni6//Y5axLjeJAOZmwzo2jNMx64NPGeDJg6YZ3NwYYfKoXvgr23GXXb73aeJhFRtwYGnKheuAjTHZ7VvcVTU2xGgYR1NiwyE47uMgr6fAdXXApNsp7RebIkcEmLHGZ8bqlOUJwrMpgPJjAXfmQedaK6sAv6tmUYk3JTZMRb/LEEmJbLaYnwYLfS9Jvnb03duix1o+l3XSUc4Ftj5fvy9G6laMYWMs3nVsNr/k5u6fQf+G4fYN3//ZNW++DNzkS02xgRDh3bst/t/9kle//XPi8AH/7v/B+fQdMZxolIGSkjCBmaG0KUU8lnMMPNkRAiU2KDNmb4Jotk2e5pzowqznBROujRj7INMDwxnTZiZzmGSK4CcaPaTxRBrOM+PvcE8aB8L+wHRKpdkwTc/ZwLL9H5eAWMeHulM/ZdaTxdBgnzl6N9YuGMB1k+gpx4eYUtYC9rhsHOj8hq69zQxPl7W+O5zrChDwU5azHc62+Xw7L6YDVGNSjYZezhsmmR5yHTvX0JlKL9w49tnMTachLIarbKKpshatERB4g8SGTScmL65JpCDAfRilgfw4ePZJCt5LshCaO5gMUkZ9VOVwMhi7LOXqZQrg+0NNo+Vznq+yj3IclWenco8dyzZkRr9t8X5L173BGC/HIQNvQGFlK0NfjXjm94tzY8pY+v4XdJ//C46ffc7xFx3/4B8G/pu/afnlayme6tvWaYh8/zhx/xQYQuLbx8j/8lniu3cbnk4bms1/we3h33M8fsM0PUmRjxgCmvx59PyHDHDE2SxUtcktMkWztQ3vbMMmOMZouDo1XB0DronEJmLcgLHvsZsjdjMb3ygQ/FMLujSeBOw5HeT7cCYej4RjkCmBfJ6FS7nD+meNeek5G7iYyOUcom5mKpghGyTTAjULWF7flP14TqEwgM+FASwFnLMtTXtL194UIzfvd3i/IXzCeKZ3V3j3PDaIR8A8VVhPDgEzYSKDwk2Ca9dwZT1X1vOZ3/AL37Ezch1/PcVFbKgLWR39bhF95o1NdF40Wr0y/iYLk0jNHSbHfRp5DMMCdK/353JlAKjKLda3hLqZ+/zRH2oImRd+Lu9WXlkJLfWzrPGF4NH4K5ksbK7zX5+YpnOJBbVMzKXV5Lji/Zarm3/I/h9s+L/9Y8c//PXm2XNf7Tyf3UTc70/sz4nWRU4jDENiGAzRJ6YW4mQJ0fLY/IKb8R9jrCdMBwCG84cc/7KmKXM+PWZfDZU6CiRGxD/Dp8D304mvfU+LEIt2k+N1VWOIzOAJvxmxJ4mNxnliBoKBnwYGx0nAnuNe4sNwFiDpeCIcAzFIbaG+ynV9IQ3wVMCc8viFt1k3k2uyieYEY4oLGYhFHmFslpWKhBQWTaJDnHjKTaJgDN5d0bRCLmn8hra5oWmumcInkEv8dW4gT8z69Eu5Im0gK/v3UgPZJMkROyOEGvUSuDU+e4MMfIjnizWA7h+ZMDRlAnnTBbzPcTbAkHWcJTZMxTxvqkC0xdJ7f7IkE4np8pVbrxoIfhY/ktYGP/DvqwZTwTqqzVv+eyHEtc2uMu+c/R3qGuJ503g2/DTG0ndv4O7vE/+64S+/CPzqFfxXf/dqAQIDXF85xslyVI+nAZ6eDNNgSGdozhETIslZgrfERsCEZK+BL/HdDT6c2Y73POz/A6ewhwTFA6pusOVcyBhLzJ4Jcv4M3IeB78YTDY69DWxcz+vBiydJbg5aG/CnKTOEv5U9driX2JAb1X+wrnicSKeDNIdOMyM4Ho/EcYIQCWMq0pnrpZPIOi0QIDeS66ObXphGrFjBVTOkPn91aqDLptP6mK5TrjP2cRRSWwqZWHmFqYhojd9RG8f/1BWHl+X4fvJr/gkI/viapiMg0g+SpI8lEAjrb5zHBiudzxjHfOrJSHDnZgdSpZMfk+ht7WPgnKa5C1FR2oXBkDujQGugtTq6RTaCEobmMFrGyTIkSnKsN7J1YC7jMEm+S+FZJbc1YKMPXQB214+DAMkv6RnpKkE0xYV2Moj5k4LAiZnCH5GxDee6wuws75k7+ZfWx7bF2YbkIsZ6HP1iH7TNrox8Or+rXs+T0kR//B3GOA6H3xPTyDEcSVlqwGI45WTNkvMY/exkXcFS4MgTBuYxpzYZHoLlevD4Y8R7g2vA9xHjRggR0x4xTe7uhYBp7sW4KQRMc/6Diznpyj3IuPfhvgTjNAykYZJELZo8nsEzsCckBXPka2D+fEPWlitMnoptVi81zALVXc3MwFXxd87mWwr2qAYPmAzY+8LWqA0eYwrYSD6X3GLc6g9dwiaTBExjA1BA4Do2zGOeqYxrGZDYYAX0lvhgJfHMseGoI1t6DWtsMNogEkkIuQlKl7SODcreHgbRhTtGw0AsjaF6387HwGANRMycbCmQm6RzZOw6K6sBnOfgb/m+emzxEhUYXLR5UyBFiQuyRfM2asGjnXyjx9sum3c/dqlOYEzSxLK2KQ2gvn/Lzd0/4/hn/5Djqx528PqzwJtXwvoJUZh/4yTXRt/DYdfQbz/D+o7+6Qua9pbj6ciYlme+gj0piclkrJKTmA9AJHEiltG9vQ3cx4Z+dIzB0B0D3ZPFWjGPs202j0NjQ59jwyRfTfcHxQcd6UxhEkmI06GMbelYZ4y2FHKhig1ihFl36euvNGvZU8UGjfnVufmSNlwgQRSjlgIa5yaRaqANSUc4Mwhg26zdtgb88kh2dPm8+2krxDMmpszqG8r1L0aRK2OROm9IEyRJT11iHuXM8QHERBDE7FHzhjHFJfMRV8xI67yhXjEaxrNowQ2D5RRFb1YZl5e02JWhOj9gMEWIPBdddTy5yPStwN8XGkgXl8aGcvXEihU8m7LOplPauBUWjMt6i89etooRy+mEULF8urINff+G7fVf8/jlr0i/tLx5FfjNneHz24bGVw3dKHF4nBLDJPp/w5QWcQIgWUvT3tH3bxjGjnF4JE0TkZgB9/laqE1q9bMWTdQkMxOPYeDeT+ywDBi2g+f66HBNwo9gnMQH2ciAaVpM8yAmdTk2iOHbj2wmxynHhlAaRPF4II0Sg0QSQjXNcw6RzXHLvlp/pVRyiIGYz/mKDVw3lFd5hBZpdR5Bmu9zp/x8zSFOMRBS5JRzCGO80C/y/aQmN+h58YfcV9arjg21r8gUTkumXxyXGuFxnBtGBLo8gaZSECCxYc/0LDZo3dFgZ2Y0ajQrUxvWzvsxRgHtBRA2JTZobNalGp52kd0u2f/y6HNe3xoAftl75AWop45Pixwm5Xdcvuf8k8jgCSGgKTqsl3wd5reax8Lr+4VICb1ic/VrfPuG6c1f8uYu8Yvbl8vWcUocR/2C00Am8+S8ejLECVKQvC65DucFhG38DutapnQS0kwSc6g6JqyXgmEhCWP4KY7c24aA4z417E8N3kmNYZw0jCCIEWZ/JOwfsGEShn8VG0zb/SDgo82hEhueHuZYcToSTwPTKZFCIoyiaz5mM6hSSyQZ+65riwD5XkUxm5X8gZJH1GSTNbCjTPb6HleaSsQyZVDIJmVCRuUDfCEhqbY08GIN+mOXMH/TgnSmeUMdG0KcRHasTAsMMxCcJlooILCakIaUisb3KU1lUhgq002YY0OOD87wLDbIl/xcYkNuwGt8KNMCl86L6uslIDdV3y8aPWq6kH+/YFWzeB2q59XRSq+PRCbBZUBX7/3ymS/JwtQxwaL64j5PlDXtHadXr3j1KvGrV/D22rLtL2MRpyFyGhNDoMSBlP0/Lq4IZgXeWdvR+A1n0xARQD4wy0LIB07EOM01GTZPUzoCMsX8GAciiXvb8BAa2sHTTOJJ1XRRzs8QcZsTdrNHfUmMThPFCaz/QUBYiSWSP+S4oIDw8UmA4ONYpgXGTGZa5w+B2jRy+V1+nnGV+mvW/4/P4ud6goZqH4p838wuPoRxjg8piUdBJinafI+Zz6VPB4L/GOzdPzGCf2CdTl9hrC1jWsoY0zHvEojTWCQFEpE2JXa5U98Zxyvf8cp2ZaTzIYw8pbEUvjWwZZMpIPDGODY46d7aRGMSnY+FcRKj4XR0PD41fH9uGKPhtynwIcyOpsslv+sYDAhr6JDEDdtaj3UtPptp1WsJ/j5n4b601qxcHXED8j49k9KslSk3IIsFnlLgbMAgN942j3E1zXXF5AvVe02FDazbuS709bsxTpzD80Xbd2/YvfnnHH/19zjddMSNZfM68vou0bdSvBXdngjDg+HuP5348tvfwnjg6cP/yNff/vd8/fQ7EgGX2Yu93kwqppvDlCLkmAv0fQrsk+hhNsZydB3DseX14GlN4rPzmTAOtFcB10x0+5HmeMJuekzbZgbvu+La7ba3AvY4L4LrTQ/OYZzPZlJn0nguel3h4XsBgscT8fDI9O4d4/snUkiMh8hpP7POz6NjDJYxWkLKJkPJIG0TOKbIfQqliBPH0rGMbNfMnZiyi7X18zhGZkHVzD5tagx5/OKcwZ3JALbB26504Npml6UgbJWkCegbgTTl0fFP6N6fTl/hXMMUjiU21Od3YZGtCrg2wTYDPG2ODXeuZ2t9Zh8EHhiK9uFTnAprCWDnmlnTyUhsuM2x4aoJi9gwnC2Ph4b7c8MpWr5KkQ95XLAe7Sz6R0ZGyVpgiIE9UwbNbe4mXw7Hz5tGy+LZXvi7TgfoqtkNdUxVhr6YMc6FfgCMabNEh6dtr2mbm2LuqUn0OolbTwVY44jIGLC1Ms7fNjfcvvpHNG/+KeP1K/Zvd/i/F/k//pXli1v5d43ztF4+1+Ec+Oo+8O0+chwAZFLjffc59vyW2+6aL43j3ft/xTQdOJ/vGcd7XAplBDwCU0pEIr408mTbD3HiEET+pLWOpzQyNDvejQ0b03C4d/wqnNgdZbR3cxrphw+4zR7TeOJhX2KDbTvCh2+wVzcY54Ul3Iibd4kNOS6kIN368PiuAMEaG6aHI3GIjIfI8d5yOgrr+jw6YswmJFVBp1eagBWxSA/sU+AhjLN+JSt5iAyANRlAVDYwUGKD/rtzjp/nDLYPSZyEjW0wGLxt8c2uSEGohAjkaZUIMR6ZOBbZgJ+yzufvmKbmWVNIwZ06b0j5bxBxKWYmT4O3hjvf85nfFJmoIUV+H56Krvo+CEtvItEbx8429Eb0YnfGcWtciQ2dn02gUhDJmPuHhv3ZcwqOryJ8l/MGBZbrfa1TRNqcHUnFXA8QOak89VCutbrMWzWLFtMBVDHkwkSSyFVRAPMC2OfmkMrF6DsHY2QSpL3FWY+/IB9V5w7WOFLlHTCfDyPWNuyu/oy2fUXT3LC5/nu8/6/+t/w3/yzyN194bjaOV7vncfE0RA6nyMMx8B/fTfz2fSraf/u94fQkgA+dZ/Pmn/KF3zIN9zw+/hvef/h/M4zvZKQ9RZoUaVM2lksxx4l5ombITTEb5mvhfZYQ2aeO8P6Ku+NA4yM3x5Gr00SznXCNwR+OuJt77GaDaVrch2+w399JXLAOu72Vn11urqmhVI4T4eH7qoA7ML1/R3jYE4fAeAg8vTMc9wLyDKPlPDmGaAmIAeaQJDYouHMkFXDnSGAfA6eKDa2Fm0wDhQL02ErrU5cwfWbWmzSFhNU3KgMYBXec6MW6TQEJG78pRsRyHp4zSPPTvQU0NoRcU9RTcgtwJ0tAzLnzRJ9kYqcxnteu403Tc2Wa8vm+CdL8O8XAQxgkNqREbx0djivnaXBsrefWOHbAxiY22UBSPmOeEDg0PI2uxIb3YWAfxzkeF9kNW1jpspI0g42rrv+0Amur9WxKAITJfzl2zG+jTeMEZp4oFBA4lmmb/O7EAvaImeOm/yyDN83iutd8QRvT1jhirhfk8bme6Ls7Xn32X/Phb/4pvDV89nnk//Sfed7cXG46AXx9P/LbD5H3B4kF9w+GpwdDGg3EhAlgJvEVsGMgtj1u9+e46cwunPIkooCDYxqwKeCT3g8XO0gaGkaaGimOvA8D/+H8yGMYuXKeo98xnDveDp7eJu4OA7dPA91VxPtAf7inOxyxfYtpW9z7b5m+/30GeZxMETRdmUYECjMwjmdpGB8PAvZkibmwP5DGiWk/cvqQssSALXXs0+gISUwvT9FmLWCJEQOUptCRyD6F0rxcGDsm0f9WCTnZN1JnBJYTmNrM2MdRmMm5gaw1RkDAnWhESspnTwHfbGn81aLGVCD3p65heE8ITZkaqv1rND+u5eX0XhjTiM8syMZYblzLZ43Ef5C8/jGOPDIypsB9GHgIA1OKtCabzzoxrd+ahlvruTWGjYGtjTQ2FjB4mgzHs+dpdIzR8m0yPMSRfRwXbGuNw88b+PJI/FFmvKb890PrsmFsDTnruy89h0RCSmKVzWzgxm+pjb+1SaTHo2zdqkHU92+52v4lvntDuv0L0t9v+Jd/Y/jf/NnmGRNY1/cPI989Tnz7GPjuEQ57y3Q0MCXcOWFCxEapCxxgVSN3DBjtJhtP073hevcXGOOYwpnz+R3H6YCLoRLvEja5MUYanZkUEY1njGe+m04MKdAaxylNDM2Ou6Fhg+GLwfPFaWDbj7RtZPs0sdl/i9847KYhvP9eYkO/Fbwh1xWL2KBLDSmHk+zX04Hw8CFLQQTC4cT5/cT5Ue5Hx73n8dBwHLw0tILLDQhTaouBeUol5BxCY4XiENokEnb/yBhjmZjXdalRFFLiKZ8DKv+g2uNDEsJWNHLPk7xhK9rxmVBk7XO5l5+6/iQN8bewDsevcc4TwzCPZgFqbFb4JxnkUZbfnWv5TXfNG9dnczYZ0dTx1cc48O145ClOz/W7cqK1MY6NsUWs/dpPNE5GuETEG0KAYbB8f274XbAcU+SrOPBuOmdgWYKe0cBs5q5fbzzOZg2ZNEmSS8S6lqYRKjtUgIl9DgSvkyct0OafRQNYV8iFcMiguQA9I20u5MTxWL4iUnRY09P1d6LX47fZjftK3nc1XqeP1cG5ZgKFOAPTzra07Sv6/guc3+Hv/hGnf/kl/+f/3PBXn3f0rb0YvA+nwDglvnuc+I/vOv7ju7/kPMD3/+af8Of/w2/46vf/HefhPo+CH+mNw2c95qcUJKnIXeZDGjmmjkDifRz5ZjoWTa+Dnzj6ntvk2WA5PW4YJ8v1dsQ3iekU6McnXHPEtha7+YDbvpOCzTlsv8FurjDOg/UlOAMFCCZKQSd6P/uSpIXjxPAQGJ6yecMoidowSLd+CuIiHXIgPkYBgY85KdsnSdLUVOQxCvj4FKcSaFXXECQ16IwrrdpS5GYW8VOcSnd+TFGaA7bBIB153+zKCKcxDu/61UhPWJg0qU7npxR0T6fvcmw4z917jQV5dJkSI2KRNXjlWr5orrhzfdb8deyso8WyT4EP6cw345FjBpanivXldWyrAoEvxQb5zBIb3p1avg6WY0p8FUfeTScZlSfhsXgMnllvVcEfh8GHIXc4bQbOmlw4XZ4OWK9LxdPiWq2S3WQcMQ0zaB5HUhqrEen5Jq3GB11zw9XVFzLmn7W9vN9KjFnEoWnxvjUIDJQYYYxcH9vtb+Av/lvSP7/iz9/Cb+4S//LvX/PyarjZjLhvBvbnxKZNND5xv0tME9y/+pz+5v/Kr77+J6ThA/ff/w98/c1/j532eP1M+dy2CQYMZxOKrt+H6cz7cOacIibAKYpO43e+pzeOY+ph3/NmHPEucn0eCWOg6c4YN+D7I353j2m8OPBuNpi2zQ2iVgDibA4jIE8QmRggHp+kgDuIyOk6NoxnJ7FhtIRoOE9uERsCpgA9ykrZJ2GthZSkQKlGjuG5hM66gNO/axP1lELR+DqlyJinA0zWb2yaXY4L0uCsdd/Whiw69fMpseF4foe1FjVuWd4Tn+cNAD7BjfW89RtufSsFnW25sZ4Njn0K/D488d14Kk3jIUXGKMCWt3Ieba3PeYMrJi+dj6vYIA3kh1PD70bPEfhtOnMfzhzimJsSkY31uHKtiKSUmKjK6KExDt9s82vOhaquS8x/+cMcT3Stm0Wl+EWufc0ZZKpCgPOmYvdAxTIynq57ze7qz4rm4vPmtR6TzIrKyfo8+ilx3Not2+1v2Lz9FyIJ85tr/i//Iv5APIDDKfL+IAXef3yX+O1XhmEQxl9YGMAY7n/9Je6Xv8SNgTf/4V8xjPdM93sSUzmvhzzin/mhhTV/JhHz9EJKge/DgXB+4H04c2U9p/YauOLw1NOaxN3guTuf6fcB10D7eKa5H3CtlTyib3G7reQQbYtp2pndk/MFkNxMpGJy3hAj8Tjm2CDNhvPR8nRwpTl0nhynICBwTMtCDuCYG0M/1EDW+6FOACjrt9byiykVA1lpnIh+6jE3iSYDZIkAZ7ywuCrTMGvUsKk2G5XmwKfGBue8+I5kzV95g1jFBz0/59xhayxvmp6dbeis45XreG3FZ+SYG0TfjSfOORZqQ0yL41dO/AUEBPbsjOXGRVorJnFiPiprGCz354avJ8fAHBtUa71X814MmFn2zOb7skxm5dFj6gaObMuL0wAwTw0xN4rqplFNwNH9VOoOI5M1SsLQ62UyAosq2NO1N2z6t4tjW+eHZVOqKSVd6j1gjGOz+ZL9X/wj/vKfJ/6zLw1f3Lb85m3HS2ucEt8+Bn77vQDAwwDjo8XtI24KBfQpAA8wba4IXY+JgT6cuD5/S0qxgD2n6SBNImaWWmmKGStyJs2WGM6ch/d8G84c4iSGYTFwbHa8tS2baPny0PPLybE7Sh5xdQxcHQZcc8a2hmZ7j9t+jW1zvtS2mVzyPAeUScKBcDpDiMQhMDwEplPOTZ8MT4eG43mODYdJAB6AIVV5Ay83iZTVWhueaZNIdTtrMzhvZ2KOrtqnRHVDzySScYUh2vktTZNjQwZ31lMmtbzQT1nD+IgNpjB+yzmZZYnK/Y9QSGeQ6BJc26YwgNVnZGcdQ0q8DwP34VxYzoc4FjOr3iQ2WVKqN54b23CLkEt6G+ldLAaSAFOQ2PA+x4av4siHeC5kldZkWb8cH5wxGJ0WAsEg0iwbtwZqF3NHRkHgNZHkAuqbG8jzsZA8Syes9D0sYvIOEl3FZDrXjWoknmViailQmLGFOm4oGOxsS9e9FRzh7jOefrHhv/7rwH/+d+Zp4kvr6/uJrx4C7w6JDw8wHUQX2ARwk8QDQL5XpBY3TpjKx8J1n7G7/hu67jOm6Yn7h3/N4+O/X0x3GRIpDSSdenQ9zm9EnjMOPIUDQxhw5OmBMHHrW7am4d5vGJ66Ihdxexy5OY64JtJ0J7rrE832HbZ14CzG2hInZAPdqpkcivFZPA1M+7FMBwxPhsOD43QSzfDz6HgcPIdgL04H1FNENQg8EHOTKC1Yu4pHTOl5M8IaM5+/ecowpFDuq0rAEJk5OaOs39L5rZClXCemsm7zcv77CesThpFefs1P97D7o6+/VSA4xhFDNjTL3Xlg0X2W30MxJPAYeut5ZTs+e6ETEPOJeU5B5BkAZ2ZRb8gmGmWEK4lEhEmLzj3AGCynaNnnzkTR6UE1UKTIjDk7UEadFNci6m6SBE6TVHdO9BIvATl14QySiBlTs2gca9BlydqNFOOpDHzo6JoaVtmK32OtL5o9YgynY72O/x97/9KrW5ZdhaJtvOac32M99t4RGeGMdKbTvobjc8wR596LdAUSokTp/gjqNhJlKqaGqFBCoggliiAkpEMREMXD1ZWujw9gwHbakY7IvWPt9fhec84xRr+F3vsYY37r2zsiY4edFQ9pab2/x3z00XvrrbeGNILOHl9fxyUGszW5MEQA0WsLt3DdDaabl/jsU8Jf/ZUN3Pnoe7N0vON26zGEEds+4jgRdocEuv11rN7+f7grN++R0xFeCujJsM4pceOfwSwJVgCKKdIxR4zGoM8OD5nB+mQsdtnhNjr0E7u9ep/h9gQaCDYluVEOMNbCOMuBdp44+FonQLCwoqSI07GOfDyyDvBuAiUqmp/zaApDJEaDOck1WsYyqkREHb/QDlwuXbM5V8OnCMCjFhFA1Z/UVdw7iYQBVbv9ETr2W0Ff7uIqy4+T9KXpQm0O5Dw2ZizfXhoipwkGXECo+VsL8NTYoHInHBs6Y3HlAq5dKOOZK7D+kJP3OFJlQQGa1KCMr2hTqY0NQVg952NcMxnsBIA7UmVWJ0mUrLGL8U41zkiNkJYWxNrhvBQXLi1b/q4pqJQ9QTp6nZf3r8YG0AIA5sdbGk1ZxzHBCzND2YnGehhqIYb6enLztb42fS/KGvThBofbDf7SK8L/7XsWv/LR13d0N4ND5ww6R+gcsBHJiJzZCGb3coCbvw9/vMWw/6PSJV5c9wxjLcbBtWMdiTAb1kk+iiZVyBbJBOxsxil7nKJFIIN+SpgOEsstwNfiDNslGGeQ5wgbtDnEbB+axjMgWDTqmtiQpox04kRtPNplbJCRztyAwMsRT2qSNjQSMVXGqJyns7FNABelCvSYRUnwojyHQS3gvBsQ/Lpct94NcNJIBHC2N6VG+unba3FxAecE6DmPDZWlooxWI/GhM+wPcGt7OGPYvRtORrj5/Wts4DHMDOXgamxoJWM6AwRLrPPmltlezsAxW2ngZRknT4Vteg7MAih5SmHyn00JaLGq612JsI7KtTJS56aRxuQlS3ixqBwzZXRR+Q2ff+96aQBUZs/5uuSDoOxgoBb0PtyUyYCrVxm/8tG7GX+6UiYcJx4BP5yA8WSY6ZMBM1MZ7yRrkHsgWQ9kh9Wb7wsjydWpEijbj2NCAQvBeZ21Hbxfg3LElE44UUYQNtxjnrBzAx7IYUUGm8hSQdYSbDkkGXnOsFOGTwTKGcZaUBc4Nsw1jlJTwJH6BzR5w3RAaRJNI5vDsUGcxAIyJS4AzTinTkxJ4day/FoNYL3OU/P18vxVHVz9nxI/KTcsMAvreni/LgXceZMIQHP9JBQjtw+oxhhUSCL7MC3A32WMyCU+ONRR7ysX0AuguzIWK2mSAToREet7pWVsqPUEG087QwiWYM+c3LKwMd8VGy7JSRWcpxy4Buwxel/mBug9B4OX0wHnfgLla8owwooEAALr47FKeAVCNWeor8vIK2VDKOfWsMbJROK7R7+NTCdmStIccCW/dH6Lw3XA928zfuWjDt+7fX9cmGJmSYgTME1Amrgh5MdYAODWdJasRXYWFDxMzgj9DUJQ4+Md5imUvbWNkDomb2BgrYd3PZKxsHGPSDzKnDNhn2Y8uRmdsZhgcWM6nJJFmB1SNvAjwR1ZUsbNfO+HdCrSMsYdYcKyHjROgNY5ltHunAh5BqYDT6JQqnKGY2QgeJZc9V1Az1QAngruaDMUwDM9YJU/0ybROeFKm0VAzSH0/yMI2RjRU+Vaw/kVnBvKhIDmxO30Wdug+DYrphEOX0MuARYNZEd8Xw+Wmb29dVibgK112BqPIxLeojbN1USvyutIIxS2ENY6YxBMLnlDGx+SMDGV+DOJlIZiDhprrJDe2qZ+uUcXsi7nR8E0ALA80lnjqH285Q8EaAQ3q/lUNPmIPJfWEYY4Kul5rESXSn5TXeD3rZLPuAFptcHpuke4yni5+Xog8Dhn7EbCbmS2tZkJbiaYzGzg8hxnBqXt92T59btwAwBwbgPv/wSQuksPsSFmYhuAD46xcDYg5RkqiRRNRCYxu88zbDLIlvCQA3bOoUtcY4SJ4PcZXccavkBm4l5IsM7AOAPjVGfccFyQ2ICUQfLeKFGZLOTYwLXFNFluIJPhyZRscVxgDVh83eIPCykIqhOGqhve6oXr9VBqzKbWdIZzFY0PqsM+gyqT3AT2BPGrZ+ahGhsAXNxjvs1K83fP3k1/wQh+/2LB9ipBULrQSACoAX9Zz08ZrdeuK1rAqgd8kg7cIc/M7sqcWBmQjFlxKhSMRQBLQqiZgwZk7dpHnodn2vzkcUfAHc04UsZTZnZVmyRnoHTrW4VKB4vOOoQEjHQCJQ8bu0Xgs7YvJluXVkotWyIVVhWAMv5WRmPTWOQgQGyWxRqGtiQyfKPxa54MMPi1jHz3nHyp0VezeLMGiHzp0upmbZu/t7ZnpoB16LoX2Lz433D4wf+E022H7fcJ/48f2veCwOU9Z8L9LuLtPuFun3GcubAeb1/g+vZ/xWr8CgDw9v4JO2HBzhKQW40iHSsAgKfM4zq7PC82zyfLUgCTG5DGgBfRoTOEm+OMm3FC12e4AIQ+IWwSXOAgbPcnmM4XYFiZwnrSKCUWYweQjzPiMWE+ECixnt94ZCmInA2m2eIwecyJA+MxW+yTLVIQzADOOCIhEXAUNvBIsbB4zxcnDtKZbbvz4NEsZcJq4jJJB45gSkLOJmaWGR15KsWzMRYpHUoyn5omTs4TYhqF2fMBYE8+gTQ2lPHud8cGZ7gAu3U9s/Hlve9ywiPzbrHPEQ9xwkFGT7SxpE0i7lQye5iLwBob6uiWRd7JY48Bd9nggSKOSHjKc2EJZXmN2WChP2wFYHbC2j5SRJwPsNbDhA28gGkASgKl6zLYshy1bE0v2FhvhMrtJNFJVK0zT6iMWWFqKChiTSdTAusiB6ENoncVdkBtuLU/s7Zn5/Dhe3B+A3vzlzD8CPgrnzn8+i/179T2atebxxmvdwkPR+A4AU9Hdv/NGTid+EWn4GFyj9C/wmr1ER7nR0xIsEQIWMbB1ghpKoCfQTLcRHwbR8yU0ZuJmwhmjYcpYAXgxeTx0Tyif0rwnjCsEro1wdoE4wh+iCVOGGdgVwG2KegosdawMnnmfZJuPevK1tjADJHD5DFGfuUaG5TNcySWgjhK8XGkjH2OOFFCAu+LLbig7OhWkwuo+9aiSQRqxrT4+chYGBNgVCta4gORNLHyDKLds+sRqAz1lOMHxYacTiAyz2JDC+4YQjnneq/duB4bG4re75GYwQhwbHgbxyIVcz56qXJPCg6tjMVwITYcd/xK9qeAx2RxJ8+xz7E0iajJFVpTKG7SKkOFQV8FhVVjW9e7mkSt9m77d8+bubk0jVPiRjznFcyI8lhOCPD4Lht9eSnYjfHNaLd/Fp/0Grhkdqtmf6vhY4SrX8NXP7zFzScJv/wJ8Esvv74x9OVDxOtdwp24gOcIIDaj34lZPtkCmAFyVDQBV8MnWK8/xRyPmMZ7nPIJIScG4aW5/wwELefBYaKEXZoxm4Q38wl/bAJ2LmAFh+PsMT1ZbI4JwWWs9hHrDRsBaR7hhwQbAOuMTBs1AFdTnJ7HhjQDx70rsWGcHY6TZxawSkjlKiF1zvLbUcKeYmHujBQLsQGoo58tyKvXbASDHUeZslNWbPk9kbD8GLYsI90LtmlCTKeL12RhA39o3hCPIOuEaRYLoNMy/AAmbwSIFITlBtHWBawlv50p445mOGMWeUNrAKXgV2cseuuKZMwKPPbdNohisjixsgR2p4CHbHAnLKrnsaHGagXZuJFNTHIwVEDIevzy2b323IekrLPfPWfzVy+BpVQM11MFQhKGMINJHYx18GG9YHKy1msLLTQv4wwMtjYghCt03Qs4t0HY/Aj+JeHTa4dX1+8vVedIbBp5ZNmoHA3fshbIwYEywSQDspZBHmdhU4aTHN3IeQ3dK6xWB3SJfSl28QknSmXaFBD+JAFkWBNU6y8G4qoM1ZNMiCXkkpO6GHCTLIIlXE8e23EWDWHJIw4Z1mYYR5JDTO9U7ohiMA0AaTaLvOE8NpzyUl6OdX/5A6gNCR3vPlHCieJCcq+VnCsGcZLbJmriCJZgcSzELMkjjF4Xakhuy4RISkfkMyJE0fSm9IGx4QDKrpGFEYCNNOJzA9lRlUnzxuDKBly7DlshlwBcVxwNx8CHNOIxTUUWh4jvEWcMgmWZuo313Hg2Diuwp0AQfZU5WdiJCt7AeQPXZI85Ct5Q6whlXwOqFYximq6xt1w0VKerW9D33DPgvFG0uNaa+nK5x2f5oJZn3OSUgDGBiSTSMKn3fI05C5+Z5tGXeuFr+O4VDldb0LXBep2xCu8HgvenhIcj4eHAMjFRXnq2BrAG1prl8wlgpwCxjXId5sS6vFKXWdejCzdwboUxP8JSbZQzxS6XmqvFtdqViI3YAa7Ve+OxNQ5H47Aii9Opwxgtes8Ng80xYlgluECwFnChSpgaxz8zjs+AyhsUg+2Z64p5ZJ+RabLYnwJOkeUnT9liJ3kDUPXB9V6fpK5oG8lKQtMGc0s6aaeKgKamkL87okpwtNM1BJk8MADLlVqpMzg+JPUJAmCaSfhq8vjhRm9/wQj+BSzW8LLPWDyOgB5VJ+vGdXgVBlzZruj7dsZyoksJd+mEN/FUxie4EM5FuiFAGUE8VrGxPLqlo98ryyBwcLlQ5Y8jg3I/mwI+zxP+JB6KNphqp3G/S1ioYDbZuQHP1gbcuE7Ap4gYD0iiNcad7567541msDoZs7FOLMGqgjvHJmmuI3BczI0wlOV9G6wsMx0sTHF4V6s951YYhlcYhk+KSVwLPBmbYJpxjfMxUJUH0KQ/hGv4cANrB/jrX8Xd//Zr+F//l4wffwT88svuGxV4f3o34fGY8HDM+Pw+480TO33GaHD4pRXm1d9COE745I8+Q4x7PD39D0BkQ5ThqBvSmFkfM4PwVsa/DwIAauGv19IXYYUvwwYvckAHi0/jgE9OHTYuITjCtp9LQWccwfsIFyKMU2b12bU9m2eBuDUIOY4ec2Yg+JQY3NmpFAQRHpCwo1iA36c84ySbsGrvtJ23tjvcgjkAB9coCUGUxGzWgtdo0SDGb8bC2R7WdaUrnykjpVO9Pptoea6vVfT36Ll+7M+zamzgREPdqVXn2hsDD4Mr1+HW97hyAQ5s8KLGkRMy7vOIt5EbQyMl7NOMAyUkuVascQjyWJqw3TSyECub0ctoZ86mjNplMnh9CviCEv44HXEiLhZPMlauqVcmHp20ROiNgzUGg3WwxPfmLk2IcVeAVte/QtfdAsCChcvndSkNw6yGKs3QOu4qCJzTVDTPchqxMNIztuijnsCdWKheeHeNoX+F4K9g3XIc83mjSLTS7PLvVDok+Cusr38D6dP/BfvbK9AvWfztv0L4qz9e45usn93P+K9fzvj9Lxj0iZG1xOcTF3s0G9icMa86JO+wvfo1vLj9TRjjMMcDxtNXmOMOGn0yuNCHFOAjJWYDmx5AxoSIuzzjMc/wMHhKE+7CCTeux8o6fJJ7fPa0wtYAnSFc+YhtHwso2HUZXZ8lNhC8P+HskJWEI0aWf2hjwyj6cBobNFEDgB1QpGFa4LdMB1AqAA3kfRaWXwM88vUkbL6zWKLALwFi8ORK8cBOzx2DEKbKDzCIOC/iRCbR7S2AQi4SBKr5/W1WjHtYa1HjgoCphAJgOpFxeOkHkWAwWJsgTD/HsSFNuE81NjymSeR2ODb0xpZ7dmU9NibgpYx9qyzEqotiIMkNvf3RS2zo8Dkl/DSdcJRi8Sijse2xbwu6ldxHPnO8nyW2quyG95tGZqVKb5zLRbVLm86tZq8W3aq1znrhc4kNCpIFAWgmAGScPH8neuE3pYFts04g1NfCX6cFs4sbym4xHbDe/Bj3v/rr+I3fTPifv2/x/dvwtc3in7we8V++TPjqiePB46NBPgJmBuxMcDGXMXAAhQmoLJ/19W/Ah2ukdMD9w/+Fh4ffx0gJ7gz8LQ285pgaG5Ap44CEIxLGaYd9nrGR0eGf+hVe0wo30aMzBjfHHte7JKAgYd1FdCHDi1M4A8Tjs0kT/oyLsWGMDomAWRvGmjcAZXJNY4NOqSQQTgL8qpyD3u/njWJdOi2k+1iizLmj/G8EgzrM+rLC3lGjJ8vNzYaVHtMIW8aAVY9TpIvUuI3iB+UNbWzg+MCfrTSGNDasnceN6zg2SB6xsaz/PVFeSOqMmXU/9zkiCujRGYsAA2N4QvHKdnhpA7aw2BqDjUhC6HkdZ4fD5JGz1BTviQ26HHiqq9UPnyljFOavXUwV1gTUlnvuufSCrvMJAY0NKQME1Vmv50RrCp28qmaBvO93/QtYG9CFq8VESHlNRUZMn1PjRAX9vF9jGD7FsP010Pp7OHz0Pfzg+4Rf+6R/b0w41wE9HlgeBhkwIMRewK5sS4PIZIIfZ4RphBtPZSw8bH6EMHyCHHfc9JmeME5vYOQa4gkqDguRErKMtutxNvCYjZxLGY++iyd01uEpTNj5DW6MR5cNttHjZgxYCXN841K5ZpylRZzQpbfGuanYnJj9q2SSKVvss8WRqofATsBFNX87yl4PVKO7iapG+KXRbgAyHVTN0mPOUlcsa4zY1BgEU7wEnGFdZWYE29JMnuNxAQqXa5eqt4WCQd9mzXHHsYEq1sDnjMFfnY4bjGVdXzGK3LogBBOHDPYZeZ2ORfLiPo54yrMQz2TqT2qxwThcuYCPbFfl5iwVgA/gJtEooONXk8cXlPGTdMJMXL8cGi1mQMhs1sJS9ftJyACpjmpfavVzqReNyYtpgQtNoUvngWM0QKqfLMfQ01JcQr2TsjHo/Bp9f1umx6qXgBJYfKmdidIzIonmDcPwEezmM0yfBrz8XsarW+Bm/X4g+I9eT/jJHeHtI08ITCcBSh14UsgaUGgY1TJJBDiEo4Ufm4lW1wOuh6UI5IT16WdYH3+KfZ5ZJo8SDPGxIAAJSZpEAgY3eSoZYCbCY2IJkZ2ZxUgxYWOYqPDSBtxkh9Xs0QG4ORA2jq8ZZ4DeJ5YU0aahrTjEGbmZpWGE/ZvIYIwW++RYOoo0b6BiQN/KPrTEsxlVQkrjxPlq40YhETQ1hk7ZlekXyOSzstSNhzXspdV6XbTkpnZVw/j8QXlDeby/AIL//BcDGK2WDW+wHYx059kM7pOwxo/8Gi+N5wQXhB3F4rT7kCa8mY84SFdBx9P0YTOoJFPFJM5YrMBmDsFSKeJzYj2lMVpM2eKOgDdpKvpgJwEPqHnV5YYwyxFSGKC3DjeuQ2csDjniLU2Li9naHs5vi3Mtg7/KoDrB5hGmGa+qLGBOQGI8iDkcJ26WMvqGcbi1ASthDkzETNDZGBg4dOEKQ/8xhtUv1RGcHC8mabqc65CzWwDAxnjWbuleIaw/A7ob7D79Pn79L2X8v//q+hsx/nT99H7G3T7j4Qh89QTW9Yl8Mq9eZeCVQc49RvzfcX3//8Xx+IZBQ4G3dVPSIkdNA/dpFtFxPhYJzLA1lOAyj2occ8TWBqydx4Nb4Ug9blJAB+B68riduHvvLJUuflvAtUsTNQBF9iGK9MOcLE7JYiJlABs8gBM11gBOeJtnASW4Y7ZL80Ln89LS5Py8gGvHlTIE3JGO2yIpU/ODM51aACUBOzdkUiBhoestHfZ8viP9HItoLrHBAIUB3ElzYzAOnXV45Qd8FjZ4KaYuZWQFhJQJT2nGG9Ht1bG0KKOUTsZaPAw6K00iIxqgADYuswmUnOtpYv3mw+wkNhi8zhPuIscGZRprQWcMkJSW0uiHB7mfBuvRpRknLbzEcda7tRjq9My4t77cl2rKxyDLHjEey/ftZAXroIlhDkiYwLHofqqMhppanhLDX+rK2/e36Lpb+HB9AWyKPPbZnC+VurlkdOn8Bubmx3j6tRtcv8z45U8y/p+/uvnaa+DpkPB2H/HFQ8RP7ghf3RmMB4M888inHQkuEyd0jvVAU/CYr26xPv4GrO0xz4+4f/g9PO32PGLb3CM6khSJ9VhtSZ4TKKcyDjlJoa7FwX1YcUFnPVYwuMkBL6PHYDOcGIf1PhWZofPR4HZlYtmHOWtsMJgzxwYAIkvEiZrqgz+IUYuCO4cUS2xQlnPLAF4+Xx351oSulTMZQUiyP8AYOONl6kOSMsuxfvmYlUFWCocG+C0AZJbhMvrA2IBY2l62br1lOqC3Dh4GH4UVPvVrvHAcG5TNAwATAfs84818LMdS2Qgkj+uJYEXnf9FABseGQQzivM+YJovjyZfY8DobvM4zvkon1opswHoC4BR8l/Ok2uEq3RSMxSQj7sapScYW3q8WIHA5JhRlwgrIOdX7FIGbRgWAqTFioReOWPZObbYrSM1avh1Wwys4N4hczKpKSFkUMPjSMqIRq/HB+w28v2bzsO2P0P0y8Fd/2eGv/OjrG0NPh4T/9rMZf/KaTeFSNKz7N+Yy8unmVJh+Ns6w8wwbJeeyDubqh+ivfgiTRlCO2O0/xzw/QnHfS67WpZA2AcbxCC7lhANGxHhCZyYEGOwyj4Zf2YCVcbixHi+JJ9AcgO0YsHEJViSHtKBrl8aLOVkZ666x4ZQcj3gT63zuUL0DjiA85Ii9xOpjTs9MW1o3+/etNjZqbDhRwmQgzDPL51Vdu2H5HOs1Uc591Z4FgNgAvzqezb9P5Xr8kNjAfKEGFJX4EFCnCr1ho8jv+XWRkFIZKQc+pieKeB2PJW84SrNQY4Mj1vL1xmBtRRtYQOCtIQyOz6t3uZj/7iPvmXcE3IlnxUwZ+zSX2MDHvq6W+MLGbRYjsjDzlbxhF3tvq8Gsx/783iwGfaXAltihsRwK9HDWqCA6wEAXM98Y5OvcCqvh46Lv61y3YPkt2H8WSCnhXAJPJQJC/wrp9oc4vHqB+WOHX36ZcbV+f/3wx1/NZTrgcQekCUUjnNjhi7/O3CyiDJhk4GYLO88w4xOPFPgeefMRcggwKWET93ja/aHEhoxkYpHa40GD5X5XmNbkQIZwQkbMEXtEdNkyeJozrpxq1AcGhY1hYDgFbKeAToDhleX80xll4WqDSEB4QpGOm7LFrLrgxMCvSo8AWNTMyuBjJjo3lFXzt60xFqQmuTcU3ElYTg6xUaSyBpX1yz4jtjHPKkz1M1b6Qpe6aQrx72TPAiGnb4/UXKopAM4bVNbFGYNr1+GF65fmj9ajg8URrIW+SzN2acYkINmRMpIRogoBwbIfSG8drm23IJewrwDnh3O0pR5MZPCgNYXkDYccMeU6gawyf8FYOMmClIVqJL9VPXYABYjUxeSSd08WPddtz3XiGGB5ywJ+aIOtxoMW8jTGw4cN+u7FwlPmkp8IsGxqA6ixxPbw/prz+mvC914ALzfApr8cF1ImfPUY8fl9xNtHzhNilKkhMAgMC1Bv4Hoq8sc5AJS4gRSzBTUdGLIO5LsyUdAN38PQv8I075CFzAOa4CFSB6gEnRIf2tcIiPRKgqOEHPmeXEvz4d4FXNtOjMsN685nW8zGV1PgekMez53VGO33ag5ZYgUZ7KgawE2SO7SyMG0D+SBYRDsNcx4bWrm58/xC44NOB0yLGsPCGg9vwwL4PZ+QP28KPdf+Tx+YN/D6Dh7iz+Uxv+v1CwWCtWuvo5zK6vSmFl9akHCy1oy1lPEVEa1vAlC9RE35TgMoj1np6MfzlQTAqxsrFUbluU6Pan/S4pmWSwHZ2Vgxg4kyGqtF29frqCq7UgOLgsCUpZBDAoi7cxa1I+mNLWNlujLAaa8wEK3VrptcCoyiloBsjSvGUIAmbEALAlvtQvoN0N0gDRvMa49tTz8XCHyasuj+8fj3aQKmibve1uoHH+3JKwOZi8eUhJWEOs6riVcS6GB5fnjMlUBIhjBSLiPBCcQC7ob5ZStj4LKFmzwGaRgEmxFSfifIk8mUaykTA8Fzrklb68rZasUpk4cBmmrgpsG31Zu9+LxnBRxRZQzrIE8NuFUCwmin+MJajgbls49YgnH929ot/rZLY4FqVZ7Hhs5WqRhN4HRMpU129b5VFlPty9bnaZPcEhvkELcbqp7HY+ZzeWzkBfS5qNkg9avzc6axSF+3JUIylfVw8XhYD0rxWbIE1HtVO6ZZzkcuo0kEUC6Med20F6ZhRICw/q3ri0a0xoVzth8wPgN+zycK9G+d3yD1A1wHDAOw6oDg38/6A4DjlLE7cUzgqQDJp+RDmT0cshgMNomTNuOG0lxzboABaz1aAiJYu1lP0PkYOHemjRR0HFdmEBxlWGHc7ilKI4HZ5102SGThjOh0ZlOaROdJWrsSmQL+lu8lcQOAIzHQc0TGRX1wqtp7JUacgb1A1XrNzX2gHfqqZ8eSBdVIqDLLdAxZY4Rq3Oaz67UFgUsC3DSJdET7Q2KDpdoYaj80V+hkr21zB6CyHRNVwLzV8zuPDTp2qcCs5iAaI3Rp06+NDZo3qL6fgvO1huI3kEAL/TSNCYb/CMqabA1aCwNfGLk6NaReAsoKOTdxLAmzNJ3OtRHbOFvem/y2NfGpe//zvb2Ogi8byYt8wfZipLIBhTW8B7pvEA8AYHdKOE4kTLhlfZVtHXDNMvq9WDkBUtDpsq6Hs50oFlMZ+25zpjam8xuyXBAbAyMad4lYN5HNFSMCscxERwY7sDZnZwwjZ3AMBAOYs0GIlxvKrAeOEhsmMnJtVRO4Njao1Ik2I2ckzLk2etp96n1LY0eU+MCsHRVlAspd0eYPBdypAOT5WrDLShygmj80k4HfdmlsAOp1zEfcLGKDl6+7BjSuo6/1vtW4WF8VZ/qaN2jjxql8AyQ+yJOX2JBrXNfaRdlS56O0z94TtNBm/XAFfjLlYjZZz8XShE+Xew87eJm7YRG3QbSIseV/0Iyq26YGaFjK71qtvJROCQBgWTo7IPYDkrewvspevmudpowpcc0wxYZxrC9BQB95ZsCqO8K7jzcJRdGKrrWxAcgziN7xf8+OK/9dezW3LNoTRSRYdMSasYkskrFwxIatExl0SbW+DZyhAgID7/AQIeAoBnCAxgZhAAMSF6h4YxxzwiyxovUKuZQ7AJo/mPL2tZGe5WutscqUobZXrIPYCFYQ+J0H/l2xgcrX32Vs0A8HgyD3l5d6PViWkNT7utVEVYKA1lmp3ddRgTGPatrN3gI1LrRLm3qZTNEFbhv0731PJY9v6q3m/ncWyFQlmux7YvQl4td5zKj5XYPdyOvQ46AfDEzbM4byuyVi+GuuMzhP0JjCZJjsA7wnqBzuJe3VlAmHU8Z+TCUetEAcObk7g4FxDAIbwRSMbP4qfkPWcr4AYEHLB0oeo6QIkwMSTc/ieOvZBCxjKOQ4ZdT4MOaEZETOFPz1ZFhSk2MDoZN8IiUruSgtHvn8GmMd3+obMOmH1suy55WmkeBqrVGkxgdgKSMH1LxVpSjbiaN2j3teYziUPKIFgS/FiDY2tMe0yWHPEZ5vs/6CEfwLWCsyCOACq3dOxhx4DHPrAjY2wIKBH9XhbF06DyIFoY7veg6ZscC3tOoC9yL2vrFBzF54rLdlXzgijNHhq8njThK2L2gqbt9T2ZR4aXFdFqFspnqzBBkz8VJIPqUZ4+kNAMC7Hqs0PRupBriIy+mEGA+I8YicR8R0whwPbJRWpCB4q7fEJ3NtHFbW1QQVpjpg54RkLPr+JazrMfQvEfyVgMKOR6mMBxkBmiIHbtMEaV3WONb7bIo6c/vrePrke5g3DsP3CJ9ef7PiDmCNr//zT474b68JuwPLQRwODQNQJBiM5XHwIRPW1/8zPqGEeX7E49N/x273EziwiycRYZ/nspmOOck1wXZoKkRurRNmzwkUR+zNjGAdjjniyU9Y28C61NbjJnusZg8HiAnZ82YCA0FLwXUNupqUabHxLtfNGal06IuujlzrQJUc4K9FV06eS4tSBb4J3J0XVTl+78bLiNDlEU6+/lrwd8ny0279M6MFZQTLlvDNz/7zNZCBo8pMU1PA3jhsXCjyD73xmCjjLs9I4HGbgzihj2XsUmUPeFniGKGxYSWTBxvLOo8rcGxw4KQ7JoucCYfJ4372eC1Az2uacZ9G7PJcHE/bhkOVheAzozHBCci4sh5b62GELTilPcbpLZxj1l/f3cIEB2uGkhxVdiUzAFM6IEkcmOOBNRKJmZispcqvyBKhB4+9mQYE1kJgBsG5AX1/C+dW6MINO7zLdUIUa3ygyGAxVdkYlbFQGQmddDDGw68+wf1Ht7i9zfj4BrhZGcyR4Lp3XyE/u5/xf/10xN2B8HBUpo8BzQYQABjg7r7JBD+nYghjcgK6G3T4EfK8w2Z8jd3+cxzmRzgAgQzIEIJ1yKTNvIScTlAdNX5PAJFBNqJvR1WPO4HwlTQjrm2Ha2GMOBieNpmZ6aOrjRPp7GuNDfq4bdLERcGygHsXy69l6MSSOGmcQH38Zn/isSyI67TGhg5qNqRjWsCSLXLOAtZrssQHAX2f63SqjM+3T9o6KbKcYQdiL9ezMrZ7ywXcYDwyeMJCGY06/jrmhPs0lrhb9nSJDRzjLTY2sEGM86L/icL8BoBptrCGsBsDvpo8XlMTGzLHhpkyppwYVNPzYQzzmom13BW4VtmYjfXYpwnz/MhsKhvQd7Hswc71RZ+fbIIpkwLaFFI95qVUjEpCsLzUVM5JRyyFUeSF0IBVpnoJOLeGcx287P38XKxhaBWEkYaSTg6xA3wvDaYe3fAJ7OpTUH+F48tX2A6ElLmIe9cI+J/eTeIZkPB6V6eEAMAEluYwSYA3G4o8RACY9RfVIV5yQ8smrz7cYBheIsY9IkUQzeiJEGABw8zPZEQjH7Zc14QzUzkBCQ454qv5hJ2d4Y3Fowtl3LMzrC29JVebCsIUvmTW2Dp1AzriXce5dbxbY9Ixp6L7q7GhnRDQEc02NrR5gwJWLTNVoReVkLIyqsuxISxGjc8ZfnptlO+pmpBVnU7NHdo27bevnALUFNlI3sCj04P12Mq9rLEBQNEIbzVRTznhq8iyDSeZMiSI9JuhIhujE4ttbOgMM7oTAXNk08DD7PA2erzOHM/bvKGNDW3ecG7wubIenjImSjimhJjYjDfnGV3Ywtmu5A3ttF7rL9LKSNUJL40TS58RlphiblsgjoUeZjH2zw2iAOdXZZJI84AyXZafn03n3MW8wbkN7PoTnK7XyC8M1mvCFHkK4BIreI6E//HliC8eMx4OwGnmJli3JsTSWGoa+VHy4Fn8AIJDDgF26hnoMR4mJ7hxhMkJZDz67iXWqz1iGjFND4hpj9CAiZRTuaZrUy03cFJ9FbrnHHOENxYHG3Fv2ZciGJbpWgkD0MEwUJyq0dL5Ss37a0e6AZSvtUk8UcYo+uBan2p9UacGGy1a1IaQxonyPWqcKECWAcjUGsPaIFIQAqpfkCRoWX4LcgnyWWwgaBvqQxrIHlXaJMgEjoWpRnCmSrcNxpeYvM8Re3mME0W8mU94SFM5frqnMFucY9Ba8pCtY2O5lTEFcwBQa4rZ4X6ueMNrirhPE3YiKzJrTdGcE232axO5M5ZlSkCFKVlztQB/RtZo2fq6zicGlg1kqfF0KpFiOSdKPFMCVR3zt2IOWuUjLz12+7oAlZBRo/I1fLiG81v4/hX2fYDKAk8JePMUcb122Axu4St0nDIejjxVbC3gPYPBdk1InRHyPsFYKgSzGAnGMtagl1h2FtkHNn3NCTZOgEhDZADD8BFU13p//AKn04SZOK4aiLdOPNXrGRltv7fkIkCdDLFM5huJJSO0/r13LE2mxEL1sWmnNFTXWpcecc4hKj6m2MMk19REuQC/qvPbegeoEWLbQF7kCJkWsSKiNkeyYh5tjQEmFajcnOIRfB1Ubevl9SfYh7Ksz8zjWZf5AxFXWuaV39VK9PV/84tev1Ag+JXv0TlO0F76AVeif1fcNYXFtaOEt2kqG9m96L2eMidp6jKox7tlEnoYNnGQkX8e73Ri5kDPAvOTFHOf5wlHyvgq8XPtGw2v8/Oqlx9BndX5RtCEM1gdBXfY5xmv0xHH4xewtgNRWox7AhVwZWO4ESkdEdMRKZ0wT0+I8SAAT4KTDpGaZa2tx7XrCkitGzZ3ojN8uMH11Y/h/RrBXyF0L0WQ28M4vRwqMK0bAIAy9qe6PT7cwvevADeA+ms8/dInsL9s8NF1xkc3wGcvvt79+798fsTDMeP1U8YfvQFevzGIk+GkbQSPfycq7L/W6XP8pf8J3ce/htU4Ivzx/47D8Wdw6YgAFoHf54idGIWp828g2UwN4P0aPmxAlDDPO5ziAUdEGNGE+yqeCoNkJYVEsLYAkCsBgnS1zLO2oJqEBXDS0QqiZ93eRQGmnTO53s4LuNT8nvT55LqkkpB5Ziyhmr+p07S1viTqlRl8WTPuYgH3LBDXPrBudhbABZLTN143LsBbBn2vXVeaQkUWwpiiX3SihPvM5l4PcSpmkTx6k9kc0dS4oElbaGLDYOvo98pQAXtUX8kajg1f5Bob3qYJb+IJuzQX7aP2PFppwiiRJEtMUNbflQvIIAw54pQjXqcJp9NbLo7cAGtdYbUa40FYMoFTmjDHfZGKifOeXbp1eqAZ9/aSnK6tL2Y/zHxSuRhg3b/AZv0ZGzP4ddH7NtaBMjeIiCIMGJBuJQIUmFIpC9+9gh0+AoU1pqtbmE8MfukV4bNbg5uVxRwJw5lk+NOBk7g3TxH/7XXEH3zJzaAYWd8rj6bR8RIGoMSE7shaf+oGnoYNaHMNO89YT19hvftD7NIJkRISsTyBIVMSbEtAxswAKHyRS+GmB2HGSQqqhDly0hasKyCD6rArmNdLIXGpiKvMVBm7Ri36Ww1Z/duWpaOgjv69TgC0DF+9Dsv/4xzQqWYinJS5JfAr+r983S3jw2KE86xBVPTBdfy7MAC1XKpafB9ipHvlOA4Pstdt5JreiAawAvBqInvMM2YkPETWBD4J8DKSmGTK4xZ2C9W84dp1GKzDre05NsjIrhWW1jI2AJ/TiCOx/vCb+YSnxKV5cUMusYHPmzKOAc4PrmyHiXh8eJ8jDnlCognzFJAHPq7tBI613CRKomlJlBDjHkTxa7wE2G5Qi9eVNJAtTCkM1NzHGpaKUS8BBaAXfgIiEQGIhqbxsJaBa+/XDPK4gcHg7Y9w/OgTjJse+YXBp+vMMj4H0en0pgDC+1PCH76Z8JM7LuzGCdgdqvGLsYD1gCqM5dkgBSDPDkaYtP6IUsAZ9IuRT9+9wnbzQwCsYXs6/gw5HREMM3pHykhlNLk2NNqlYAiB2IOBcimOO8kddJy3N6xhr/ITbqGu+O6l7vMK7AA1T2gLtpbxq02hEkveERvahjHf567kDnrv+0UDuQK/34gB/I4GchZtRT6GNW94Dzn2a9fGejhb8+C18wKyeVzbUGJDO1E4U8Z9GnEfR5ZPo2pupcVzYQ9K3tDbWlNwbOCaYrC51BRztkAGnqLHF5kkb0hiIjaW2NBqKAIMNmuMV0ZiMB4bYzBmNZ6cEOMBznYgn7l5K94C1jhY15embU4jG0iDgV+uH06LBlFOY2kgpzyCBNDw0iBaWc9xOydEqKGPlabxFUK4quy4Fmiy4HE9/bYhvSiZROOY624w3X6C+Mpie0sYBmb6/uHrES82DplkSmjMmCIwRcLrHeGrJ54e1LVeE/IguXOsXh0xsnAIZW0GGaSuh51X3DzOCSZOMBIryHis15/B+xViPOJx9wc4Ho4o7D4CyFRZDRKDz6I921zHGktimuReMoWVrhNivWFZI80ZtNaox6sFec6k21ABXjVyayWftAbU2NDmDC2ZpAV7tb5YgDlyN5QYwDtmbT6gzRua5tB5jFjkEY1MEajkr23eYL+DvKEzLMvWW4craQp5Y7ERje9NkVBcGmE9ZQZmFRBTrx3VwuUjAs0csbIet74vecON8eI3QggN8cxawj45vCaDLzJLF74Vqbm9kEs0PmTo+9eckV8f16ZM4pqJNeFBuUzuOBvYg8g+B38BFF3VaujLcaBgGhInVK6DG0QRmst5acobwxdHNoCzzKIPYYvgt6UR3ILN+nzWuvIaqnwUTxiE7iXC8Als2IKGl5i2AVvpNk8R+Pw+YTeesAoGUyLsRsLDkSQ2AAcZtu669qKRGKs1RK731HRmW0HWIgfGMOyUgHkPirsCiHf99xC6l8jpBGsDUjxhnh/kOQQITuxkze/3eXNIX9kEQqQEkxIsDHY5Fg16zSM6iQ2aSyi50Ar2o5KDmk9qI+PcBLaYujVxQmOD5hNtfGj/t52O0njReg6RxAjeA4zkEcsao04c1jjRmhvy81yODWi+54yrxocPShz0nPxZMIL/Agh+/7pyHXrn8dIN+MT3Reez6J7AFMfCkSKzaYlBul2ORbOLFyeuemG0ox++GfUYjGPgFFQ7JgRYGcOZybAOozivPyU2gFKAV29kvdlKFx+qqrAc83Iw6Kywc4lNKR7TjCPNyClhnvdIaULOI87HqtUQKjVu6xyIuaRUFrCy/AZlNYo5zpwzRiTEnEtR4MMaq+GTwuZV1h4fQgEHZdy0OLsW0NBJEcgOmtZvgLAFhTXi5grztcMntwkvr4BPb4Dr1ftHxP7kzYj/8mXE3Z6Lu7f3BuODhRnFzGEm2Fk2ici6f+ruG/sex+sV0noNMwO3dz+GNQEOpzJCp8wFXTr6Ws6X69CF7aJDmRPzdkfMyDkWzcTezHiyUxkr7I0roBrwnNHTuuwqa28UhhX0Omn+/n3lYDxL1lT2oBRwQBm3gAK/jXZfGe1+B7hTXoMcN13nIE9hQ+W2KG5BYE0Ti8LIt14r69E5LuZeuQHXNsAZLDqhyRBeZ3ZnVgbwk3TTC8OySV7pLC5Yw9rAwVr0xpfYECzBNdMC6V2xIU84SuHfAvO6VBIiE48N62aq10owTgosBgwf0owpj5jjQe79m/ceIxKjEpWKYXZPZfmp6ZMzPPqmzAdnTNEzVmBADanYsZvNKxUENsY/O6HtKKp+r9MB1vWwYYu8ukVcrXG6XmO1JtysgJuVxaozz8a6fnY/46dvZ+zGjIcj4Sevgbs7g3gyrNsVCSbRxYvKZmIt0OkEkxNyt0JcrRH7Dm6O6IZP0AXWJM1pQgYnQZrU6PWq40V8fYgerrHINMMkj2x4BJ+IkzaXmPl+zAkHGwuop6xU3SPaAu48sdKRsPPx4EsjgZdiR1vIAVgYMWhsUL18Hccq4/3fMDa0MhDPDIjO2TwqRVI69E1hDJUmed5M/XlWbyw6AXpeuqHofK6MxVbu4QTgjuH7MmGxyzOe0lxYfoXJpO+T6h6her2DdViL3uvKWASTEawWEzxWoK7sO2S8lcd/SlPRBT5nSeh5I3BDUl+BJvgACkMpEmEmQqZ5UUjxeeR7jcihlYGojeQlC7gYSUoTuW0ScQODjbM4llA5PlxMrgqgC2Cp4ZYBlYPgNyLsYMkdFnHBb5GGDU7XPejaoFsThsAmVceJAeHTTPI1sBszPr8nfPGWDV9yXoI7zOwBSAo6Y5lzTiAgGZCzICd5SI7M/MvMBibrYN2ArnuBlej8zdMTcjpW3TvJQSknGGOwlIlo9kr5zOc5wRJDJKMxOBEXd+1UyyUd4netlqXdTpvpdVSlHJbgDlDZfMDzaQBtEOUSH3xh8gG4qOnZxgZ7lj98nUxMe40SKWhW83WNDR+SNwTZ07eukkucMWLUVGPDA3gPT8QGm8ccWd9ZyCWtlwCwjA0GYjwtzMHBOqxg0ZlKLGEZKf5f1nJOeJunoul+1JqCqjGnPheRiucQQFXyJohkQW8cnmhGK//EzePaoNHPRLJ/R2b98UMcyjmojOFY4neRkaLKcFSDOCtXD0/UOTgxgfJ+DWv75vw2Wp/GLXNdzRkkNji/gfVbmO4W06qHHxgE7juOC3d7ln+YIvBwzNiNLB2XCDic2DBS44H3/AEIC9CqjIyAIpYBYAJ7C2RnRRPYMvMvjUAcuXEEwIcbGOMQwojj6QscGdmub4Zq3lvpGHW1vGS9/yL4wnImY9SsXcAcn+0ib7gEBJ8DPUBtKl9qIOvn8zqiBX35mm1A4HJn8of6inBMMM11Vhm/51MB71oLCRK0cYJzh3P2bxsbPmTpfTTIVKEaTF/ZgBshiKmMxo6Y6JKIMOeMnezrhUAhr7LUEqh5Q2e52bc2TDDpYFj32VCj9wykxJIx6vvAmsBzyRvOp7p0JarNPM1TegmcB1TJFQWBvV89M53WZW0sMaA8fjqKJGQlAy3kOtAYJxqzNHhDlYhhNnAoEwI2o8hMtnIQ/Dqq74E2sqwbYMMW6G6QuwEUUIzlpsjGycc5i0wEsDvxVMAskhCpiQn8HPxZ/z5GZgLrKz9f2RrWBnbyQOmEND3wX1sHF25Esu+EbnwN5wdushWuvmTgxNfyu3b89j7Tn1gilqsixh9GY+BzLMCw5hIAFjJol2qO8n6a+qGNFwmESQhBABZSinTxyCxjxix7pREbTWvqxDEf9+fTAPwgefEzY9gQVScLgWVs4O/bZpvkzfThsUFX2xj4rtaHNK/+vNYvFAhWdgTAHfodEgM8qJuZSkE8pbmMYLdmbUqtXwBRZwVdqx3Y6vzp0qRNjbt2YsZzoFnkJypgANSNePn8zeM1SVzLDMkgYYVYzJQQTUZMJ0zzA7xf8eOZasbDo18jj4DnuWgFalDR0XbVNtKAoEy0GULrlw0sAehsKCOaWpwZNyxevwI/xlaQB0D5HwaC+Wu4HuQ7ZB8AywF4TsBxBh6PCa+uL7OCUyYZ4+DAnbIkcxagAGA2yBZAcDCZQJlEqL3ZPDIhzwZ2JsB4+LDGfr6Ha8b5yt8CpXs2Uw0iC/aCABdoEiL9zJ1Z/UqCsxR85Tkk+JaubcPo1Y7bOYDzrtVu/ucgwjMGMFTqogZea7tFcvZNCjh18m5Z4CrMvjB8oog26W2LJL0mAwzSz1Hsnq/BegTDcjHlPRN3M3X8LRHwKO7eKhPTjnkDwsowKACfJpQGKCYxg7C7u6KnXYu5TAAyA8G7JjaMxOL579P2a1c5d00Sp3EBlmOGNwanPCHOBxBlTPMDuvmxXKPL0c6xxoMytlU3SX2vXvTCg7AfXANwqMZZBDUs5HqPG+tgLMcGA5QqXWUqjEkwVjv7TTyxA+AG5BCQgueCKwO7kQu5KRl0nq+vzeCwP7Ep3G7M2I3MAuLHVLYfvyNqKSEzn6fkDOxslnpeAI94zhFGKkTvtwhhi2ROmGNCpqX7rLLF9Vop562AG7Uo0Y92RcqSmAlbN6Mkaue3+XnBdq7NV5+t+Z8mibs00t1OBxQGsHbnodMARpjOfR3FKlMez4Hf+tzNSFjjkL4wbpC4sezW5wImfJexgYF2X0DTRAQYFI11zSEec8RTnrDX2NCYrujSc645Qxsbehnb1QklzhtqIZeJddoAYEcGO2EYnii+V9+vfeeZ6FnSrvt3Z9hbAJQ5LsQ95vmpmHJZp2z9Gq/bGNHGBna3Z5YVqJ4X1U71jU46IPFWkntrQjGCqk3hJnW0gKGlyaxxdV9tQWDjtxWYBe/5B4kLnU9ImQrokzLhOLNshLO1kKt+AQ2zR7PAs0SerMQG4znb1Wa3MAABwLlNyb+s6zAbZnAvHhcJKHt9Mz0DWoAUtdFcdeGJGPDnmjNDNV/ftd63p7SxQ8uhSwVeGxMWf4s2b5DmEJipY1W/uSncrIDC78od6muuuQO/51xNn+SaqwZQWhgTvLxA9vTSBu+3jw0bmSTqTW3EJWIdZX4ejg0POeIxTziJrM6Y02KcFXh3bCiAkk4nwT6TCEvEPiMAxOwzlqmwkZ7HoefHU86zHAptEiXDeYLLQE4jYDMzevOIlEYBUZZ5bQvKVuC3IZfopAAlGWFOC+NIYwyqFilfQ0bIBlbMnKqXwHPyRzvJpLrmBUi0HsYOXIOomVQ2BaA5zsDDSXK/TJhSBXgAjgs6+v3OY5nNUis0E9q+1buWymJZN4AnoFawNmBKkhsboReo+fc77tvzq7m9vvhSZ5+IKFdfAXNgypGzAh4v9gpaTiGq/Is+RxsbdBqgjQsaJ+Shnn2tMYJf4fMm0XkDmT8vjcbqa10STNq4QHIMqckbzmOD7lMfljc4dCIfxbHGlslZ1UdN8vVjmosWsNYW6gGSqdYSQHOfoDZVFW9gGUpT8AYllejakcGRlOWfi6zPpdWC9+0eoXlmNgSbhTyWjqVBBKwWjVvbnJbW/yfnxHhDEyNSjo15Xyq5QxsPC+FFs03NTyRnaJfGifrasPAcaqcZrOsB4wWMdTCJwduT3G4pA52vwC4gmuLyVhUQvngsm3ig4J+W/1pj8BQys3RNYalLPM2AMbFc1s72CH6N6A5QKYicZ7QtFSkl+ThcOMV09nWW45sES4LhWpsfySIjV5a4IcwmV7+Js/ukvV7Om0Q6bdzmDm3D+NJrbD+rMaQtRMKvN4as3yzjwuXYIIiHEkykrtA6TOMDfYMm1Net/A32hZ/7Mf8CCH7/eul6dBKg9jniZKqWn+q7RuJunOppEWQ8Vh6jBX2B9uIwJWlbWY9r22FjxP3TGFiTiwj/qXFp/4IyfppO+HzeiRPq0mVZh2HatdhABeiZKRWqvrKJHAxe+B5jTnBpwkgJT/ER+/3niHEPYyyC3xatr5xHTPMjppnHEWI6IeeZTQVQx72vbCgg8JULZSx5ItaWfUgTIhHIBqz6VwjdK9b0dZKAtUBwjoCMf5t0YrBXlvPb+n/GA8MrxM01Utdj7jlBmCbu0n+ZAWdmPBwytoPlJC7WIu84E754INw9ccCeZLTL9QQKQPY64ilB2hqYnGEjYHKuruCzg4sJ1g243v4YD2LEl9IBmSZ01CTvAojNOWGUrp2znegoZtTOaAWCNTWp5kzMijiZBJ9rcnwp8JZNG7XLxt/XhKy9fvKz55WfGzT6OpyCqNC6OvI6q47dtnRirVVtz2oiog7SLVAAKQiKm7wUBgBqcUC1S69MUyNJz8o5dMJy0vG2wTrMKeF38e3WK7dCJ4ABgzq8+yvIohqp+zRjn2eRgkDR1NJlUTfdAv4aPoq9SE9cWdbx2hpfdJ+tIczZ4pQtjplNOF5LbPhZPBSGt14XRq4B1Zxtl57rc20vZwzWJmANHlvbuR5jPGKK94jRA5RFnqAaSmryFCPLxczxWNh+OU8wlKBGmIOpeuHe8LjsSuKtsg6OhmDg0IVr9N1LhO5VScCsGxiJBUDpxLEBJ2ml1dfDhnBbuO6mxJO8usW8WiH2ATkYjCfgi7eE/UgIjvD5fca2n9E5Hevijv6cOB7MERgGQvSatBFSrAlbjkCeLZAJMzxc7FkfWMZQ3TgWrT8jI57WOsR4wOPTH+A0/gw6xcGa4lzUZQISatLHz5fKda/XVHtuNVFLxJpp0VAxGru0zll7rZxIuee/QWxYFGtGY4MydUxpADnblYTMuV7iQ40NgLC2mq57BQwq8KsGpe8Dd3Rv4uubwZLO2GKspPHhQ2LDx36NzjHQ44RxCdLR+FSYVzuJDaqLOMrYdy1uZfqInseGlYx+37oOW+Nwo7GhYfw9RoedGHe9poQv04g38Vg0m+OzvGE5GpgBSYTtM2Bo7Txe0oBVZvbgz9KIw+ELpDzDux5D/3EtunMsMlKqHc5+AscSy3M6SfODRzo7sF64NpEH9TEwLKs0A3B2BWt7DMMLdN0tnN8WDfAWCM6Jn9c2F3wBhqxniZnuFggbkOuRup4B2sQSUPePhP9qCZ/f8z3XGkSlXLU/lSHoPZVCThnCKhVBFjCOQLlh/fmA3DXj3zkx8y8nwHqE/hWsG5DiDtP8gGm8wz5PUoRJs59mFJ19iZmFHQXOxeRSWpxLlQYyBZAxmEwu18T5av/3fAwTqEVc+Zvmf84ZvjVnkANqbCnQbAP+asFmXY8gMmWXjYPOx4irtmw7Ptyyf1VPUl+dl3vNg3OF4HjIXRm2veH87PeeHZlvtj7xm0Vs0Nx9nyN+hlT2312aeXKIOG/gXD8vit/3xYaNCywJoXmDMQhSU0zZYp8tjgTJGxLepAlv47iIDRkEHqle3vsK+MzEoGAvzajBsOzFjetFKz4i5ohpshjDVkgkHRwlhOCX9yglAYub2CDx/FwvPBBPXeh7VvkCgEkJZKxM2HTouxuEsF00iQA0jSm5fhLnMLZIy/hnsSF33IyJR4OdNfCeGXuHExDEJMpaMeOTpnTwtSGkZBIFhWp8kJ9H0QdlsidPEqUsQE/meJATWEZG6gu/gaUe1g5YDR9jnO5xOr0BKMMIaF7lTbSx4gAQyGSpTxVAX04Bss44f8VZPcGRgsC8zAXgs/WmaT0AWvJJGxc0V0iQfEHBqLaFZdrawixiBEuAdGKsWQH/92mCp4xnEwHLmqIB1mSGwzWxoTMOvcQGleYLxiLl/K1jww/CFr33BQBWRjXXyQlfgWW6DomnA1p5uVEAWgXRNXcoRpFyNFVC8Nb2hWW8Eryhs3kRG0rekEe8jscyOTo1BJOWvc3nvRKLNKfaCjg/2oTTnLBPe4zjfbkfu+625Ol8Aam2f5S4MBUQOKYTYtwjE5vUpnhiWRn5HkgIqKQqC56SUXKSdT267hrODQieG6wqb0fGwVACZfWZqNMDSoBzbo06cbyVuDAw0SyzVBxAJR/Q+99ZIDhg01dgOGXWElbAV+uKNj7odJEaUav0nB8z/DiVGgKS41DT8CZykhtEOL/BdvPL6MI1YjrieHyNaXoLpw0GU+9ygJBNBTMBqfGba5WwrFv13i74k5x//b1FnSw49wXR9a4ao2g7o2kQmwbqb2ID5Dmqvq9FJz4i1gacGxKexwW9rur+cGHiWOsPUNmTlKijuJf6glQpPoeYE/4LPmz9BSP4F7BeuQ7eOewy62bt04xMhF2eF2LsPMJcE9zz/Fkv2bYbol8Phs0crq0XoGdp8pUAZgEDxeTldTziq3gqwHPrjlie80x/pRbsKMxEAEWzcCvJ3JF6zCGjt44F4eMJp+keKU+wxmPyO/TdDaztkPOEad4hxZMUcxMIER4oHUfVQgtWx154xN0ZU/QQD5SRDND5K/T9S/j+FYzfAtaDwrq4aJs4waQRyB7IEcYNsKmCUMrqQdgC1iENG0ybDWLvkcSFc5o4UB9PDAj/9D7B2YSUWd+vHePSTj1/zZ99x0We9QL2eANkIGUDP9oC9lgANs7wln+GsMX1zW8ghG2j5/VTQFjmATyy3VmHCQYPSUdoqgGSsq3PgWB+R7QA+QzlxWjWeVHXdtuB5134r+/AX9DxLKBN7cYr8Mtszk70IwO8Xz8r5lQzTs0Hc54FFM4g0o2u6nzqmBZRhJUueKsnqQnaC9/jynbMrrXc9FjBYbQR/xrfbmlsOFEqJjhawD0mZvJobJioavm1S7cubQppXNDzNhiHK1fHwraw4uxbi/aHbPBAbOb1RZ7wOh7xJp4axtj7l26+RbNbk3WjmmVWWMkOJ5/E0IoZx9N0j6Mw1QDIRstsmhh3Yg7HAI8yeTrUpsfKemxcKCNDCtDrmijLeDlrgPbdbQVzjeebsBnZQtwBJKzzM+KP9RuY7rZMCMTVGvOqQ+yZ8Zwm4P7eYLeDGDgQvEczurns3lsLdB3re9Xfs2Yzj3TJmGcGMgxiH7ioy5m1gkssY7CnX/8Q3fA9pLjHHPcYx69Kcs3JPF8n3EjINQmRREQZlOX1Nfe7grrWMCg4U7rY8QdqU6AFeC/GgvZ/FkmiglGciF3S/7ZFa83KeOBQ2RZnseF8aWyoDaMMIJbkLeVpERsgI5SGqkyRGrh1xi10OgNc0fgeU7z4/N9kfep7eOsxIRcmTULGU4kNcQHuRFw+GZw3PI8NbCDjceU63BiPG2nkrhq5mClb7MjgNbHO8GuJDawzuowKl8AeQGODkQZE27xivWPneXJoL2Dw27QHTkCU86kADBWQZ+TiLktxVxpEEZlmeKqgJUteVF1rHi9tmLrGYOhuEPwKQ/+KJWOkCXy+DEWRXTnx99YvZGVsdwsaXnJBF0JpGgO8x+8eLU4nKsYu3hO6bskCVqfwgCUjkJvIfBxzBrJl05dyPzkgBQ/bc6PIzjPM+ATM+/IYtv8Itv8IPu6wOn2Bnf9jTPNd0bjXzyzlkWDIACYDsicqC6wt1spUGJanPoKexYZ2koifp14fl2JDW6u0D6XAjhZxmjMUsFdYWgrmWJGP0qaQl4kQdXhvl8qULWOD5g4MAqc0cbOhFHPcMDJAbT6IZA5r8ocir6UGTYNxSB9Ay/nMD/DOPTPgfcoTHkWuJcvvTs047HnMvZQ3BGloDdbj1vV4aYOYxJnSJLKGi+odAXdNbLiLJ9zHcaEF/K6lY/wWGV6K796wv8lMGTe+w0gJQaTyntIB4/QI51bIOcjYdYR6fbRTAhwnTkjxWOJCTiNEsKBoAq+tL80NL++7gGCiGe7cgC7cIIjsUgs8q+F0TqfF5FABeSQ+WL8F9dclNgCAGQkzLKIjzJPB4UAlLmzWwHYtLDCJDUHCljaR0/S8xsiMMYBmU4xmzaUKPTMIXKaexDfFuAHD8Ck28xOcDUh5xun0BjntMQiyOkGkfoxtmh/caG7v7bYRqSQCgJtF+nXJLxqwqF2XagkFcvT37eKcQWfgwMfehNIE0vigeYOVaYDK2uzgmu+fHbYzY1J2Gm9AYPldW1MYiYViD4beMAitJq0K/qo804fGhh+ENXrnkYiNNrUBv88RT0LMUtOuY46se9pMWikArI0hayrZTE0pWXKiexYbuiY2HBexYcbPJG/Q5tClmkLPd/GPAQHEz71xPD15In4f+zxhnp9Yp9evQZQKM7dt0OZ0gjVMidJ6MEmTqGoCj3XiC2wqq/jCsyaEAYLt0YXrYh65NJUV80qtR8uUaZWQ0mazMR7Gb5G7FVI/IAUPkwnTwSBFA+cJk9QH3jMgHFbAqgNWoYLABRCWdFO/52vWlCZRjmxEbWOGSYBJGTbOtY5IJ1AW8+0ceYozcR1EOcGHG6xtj2EYkcS3ZZru0MndOxIhGwtjAh8xiiABg8/38KJ8W258viYYOG4qgbN9xMiFcglfwOLxzr/XiWKtIc7yBmkSa+PHWY0brny8KzZojqCxwco9RohoG0RlmrWAwIzDGLCvk0dL7KzEMyU3bWxATF9XjX/9Sn9hFvfnv+q2xMWzdsqPOZYiLmu3wpzfMCjGT21g1sctYxta4MGwVs85YEfM9lPn9iPlpmv//AxqYqjLokpZvP99VifytvDqjMURAvLaBJu9CIxDtPrm0lmFJtVQZ2RbklMddemE1aMrCQjMYKKvY1zWA47dckmqLWMdg8CoSZuxDoZ08xgKOESuBznHjBtrQGLuUvW4qGj66c+nyeB0wkLPzzbFXssoyuCCzjge6qczN3Fl/pnGiML5Dfr+Y3h/YD0vY8tmA9RroZw/eteWu0y+NAFou+xqBFaOM+i9BV37fUna9PsLQM85K2fhrCkFnSZs7M66KmOcrNfWQfWW2pUBEeiXrt+ioFOG37IjB1Bh3WvR2xlXzW+kSFGdzpVo8ZXR+G+xnAE6YzCRKYBvJipxYRT5j1lA4Hbkpj13JT4UfTXpnsq4o4MtsYH1rhogWD40LpyIdYjnpoC8tPRaOV+5fKYS93gE3CDBIFi+f2cYBjcpIaURMR2ba4FHqgqA34zQMFhpyjhniQ/lnNmFyUgG3/POcjdXE7AyISBO2vw1M2vJeKh+njYWlN0D60C+41Eua5GtASyDMQa8yeZM4tJrFvd+u+yFuBALbkjwXkEf+YnEn+wsXM6NJmiqzJ6wBTIXq94N5SyVyRI5Z/YdZ8+gKc6a82ib1OybyIS0BZx+/wzsMeevQDv/ytixFfyVhE1jg7J2NBZwAafdemaMaWx49tooLuJOYTqVJK3p2CtQjrxg8jCbp+5vvWjlKbNsEFD1XSPm32TpPTPJQVLzC5V/UPBHpwPaKK/xoP1eCzplHykIVEw6wI7f7eK4wHIUE6rLMsv45ItMrnYtzrkWd831w7refO8mSwjWsf51joCZlrIwWpyUx6vxvPq6U3lfqivYmo20OQOPvlqZKglQE0gY/+y60fsfaKcWfNUWlw/yHXIIMuZpCxGNkgFZQpwMjGUG4DAYWDFASML6Ay7HivwNLiPV+lv+UI6XrQ0vA8C7NUsjwCKb/CzPzOXsPV8WBmSwkHFSsOd9qw0b74oNz+NCGxPkeyOiP2LMove7NowZBA6L2KCTQqrxzsbFl84xm/q0saHV8SsakmoiS8sRTpV+UHZpOzlkjSk5RAeL+K4u2jdYHSw8LNRcrzXKKjUFUWkQvauBrJ/b2KBTHrqnlprC1NFvoNYUbWwYKS0Mf9tlgYuvA1heOyxrUUFplZsD6fi2mJbR80dr2dw1PlQZHwNU3U+J45fyt0ycl1sb4N0gBk++3PMARE+75qrI47Nclr+WXMO6EhvkTTNWAoMc2+z7ubfAYnrg7LJpG8yUzSLdr2Bwlo+0kJ1bLOuBVI0vfTrBSE5mqOaWCsyoV42+8mfn4vKzlN8ZoNSU79pFzmuIWh9fiAsAKvu/Nvbb2MBgTgWCtUGk9UNLQnj2WiiBZ0guvM5mH3pWU5zFBjXfLdMBUh8H4yRvcB8UG1Zw6OFwNAmOTKOZnkt80JxhRvVh0ePdxvQaF0xhY/qzXPt9sUFriolq7rIwjGyukvP9I1Mlk0BeSzAWCQJIE5ApwpK9GAvO5Z1yc923uR6BpTDaGFFiIQxfc2fTKVabjUUypuqBIy9jk+oEtx5E5XUJRkHWlg+TgJwMSKYDo6UiC6M4Q+eAzhmwYhdBPSQ1TpwTz8prz4BKxtgs5vQiCaF1hEpwFWkI52W/axpcSrqQPdYZqQ+I72xjHUDm4nl5fu/W41qFT89//jxGvK+GqN+1z2JrzobGFFYmjDVvaMHfMmWIGtMvTQ/x15cB2oWvSGs+Lx+LPUnut6qJzQ1l9fEYjJNz/mHrLxjBv4D1h3EPl20xcmm79dr10gtdOydtMNJTVrr18r0KatdxVF/AKdX6SwBADDQ9EOGOIiaw23cZJ0UtcDXwt6vdGBZBUgorDdC6KShQNhiPWYR6eusQUsKME0xyZTtVA6gUT8LC4ILPU9Uo6wSI29hQmIVAZSmPOeFE7CBq3YC+v4X365J8ke+Qehm7AEDOFT1HpfxZ2hadUBVuV7AndT1ycMjBgALgfGX0ACiduqrlRwtdP4BBH13tTRgjMGcIKZajgY55GmEB23muyZt1cP1HMHZAjnt04ScKqTKbAcApJ0ymcc5NJ5zGr5ApI8UTGHK2JRidS4605/2ifs7Zprgo9i+AvSXwG8sJVxm38EVniY9RDcT898skjYN1fzEQR7l2dLNvx3+IEmIaEedDc41xt05HODkxY6MSFakfxMhI9bdnSnhMM5wx2KOy6qYPYP39NB5LbFCNrpkyJgFjWxC+lX/Qo6pMP30tOjbjjS1Ml74kmEuwZ8oWzhBO2eKBMl7nGUdKuE8jm7yAGTu6OenjZT61RUNMgcUiHVFerymfO2OwAiOlaxOwsYH/nxJOOWKen5pzHODFEEZZPZRn6ajWSQGNDSvpluroGsCgWRmTN8DgN3B+hS5csxGUavUJeKPFmZ0AiHkisznA4BNFBoj8FuR6HsMW1h/HBQMTCK4D+oHgfQV5va8JWsrncWFZ5LWAz/v0AAE0CVx9fQAAx/yqEK7g/BqH+bFcLy1TnN8bM+CojDZfBnQu/YwufH1eUCzzjWZ8G6Z05tsRrJbxaxqgV1m/9XtO0vR3y8JbHZonGJNKXGgZYxdHA0VvTmODsqOVXap7r0pBqBlWMBaZCAea4cjgZAz2Am5O6V3Qx9evz+MJjpi9fUhVj/coJo6tkebyvltODdVCrsYGBar43mFGj+YMAHBKDs4Q9snijhLuiA2m7vOIQ46lSWSpxh4+79woJHpe5F2SCLDgKYFsCMjAlQ14SjOOOIHijNPpDk60K8+dv2eZFiiTApSKw3drmKOM4PJaSLXtMzOOJS6EsBWmzpmMFOq+aFtzKGX0KEvQ99wY8gHZWSRvQb2B69noLXRUmD068jl07wB+m0IuncUL/Xx+ZRWtPwF8UI5XhMkAjOpK8IjnMLyCal/ztT+X83+pTFD2L6Fq69Um8HKdxwN+zNoofmeeIOOZZQIAKDGhNWxqY0PL6ms1GM/1PPlrBQUYpgBQ4p/e+zEdkdLp2diwavids/wU4NE9sm+YPMowPeXEvg0m40QRDvaDmD1/FI/oyGEUPV6NDWr2NIuE1LnOp+4B+nUhDQCFpdgaBa908knrCUKRmHvIBneU8DpPmCmX2KDyYPqYRcP4HfuKsv4WYLAx6A2Pn1uwgdA+RszzY2F1qv5mCEmkHw6FzZ0a02mV9VE5CAW5ezGV1XPU6s8mkDANNwjhCsFfsdmbyEnxtdTohROTT5h44BYeIwr2ZB9KbJjXHtjyZKCxhGFgiSitI9YDsO1ZGxRgpt/UjHtrHnFpykjBHjsz0OPmtGT95QSkE082UOSmN58ggCKM9ei6F+CJrCPG8R6n+Pje65HkWlPg9n2s3a97nOVaTga1TD7+rd7jy9igv1fQt80b2s8AFiSSnGe0hqBp0YjkOiIllRCIEhda3d+00Jb1MIv8OaiEFKph6ixNm2QJKWfs4T4ob/jTdIKDKxJS2hQ6yMSNysTMjTRDW0vocsaUnN9pfW9d8RUYlAncxIZ9snDZltjwhcSGRzGc1iZRWxsAkieeyX20sQEGhQCWiO/blbE45BmJIk6ntwjhdckDW/mFVg+YfUdYE1gnO1i+oxrTq9xcL9OgUQg5pYltDMsLhStuqLoezm2qvKT0f9t7ckEmaeKCEaKa+oyk4JDWBmGTMQyMMawGng5YBa4VVgFYBVNkY9iAtrKDTxNPJSspbZpQzKjNSOj2Cd1hhMkZ/niA3b9Bnu5B+YScRsT5ASnyJJGxHibtF0zr4q1i2KMHxmESScOS71MuOMF5o7fFBORB+ZP+vbncXipzBKV+OcsT+AVfvCdaw+gWb9DcgR+25g9AjQtL08faCEqF/a95w8hTJwL8ltggTaGW/dvGCJVdYcNzkZfDskGpOUQ2hPkDYkN5vL8Agv/81++fHuCsRaK8GMM4H4njzYJXq8lTWX6mdOvb7wEIdZzHvrdNQTdnNlN7IOA1zfhpPGGkiLs44inNmME3rydOCnWT0vE/BXfOQWBN8JiZx2LxKxhsDXcCt3DYyQ0XTMQxd5gFsE1ImNIelGcW5RfaPKSTaolk5JsD8cay8+mVuJpLOs4sSeLC+GgI69Un6MIW69Wn6PpPuDAT0EZ1PMka+DEiWAs3MvsIrocJG06ShAWsI1zZB0zrHnFlC9jjzwq64GtBlzMXeCztS2UzaHN+Hv3W75g9qOzh7IAcHFL0cDNqF38WB2TXg/orkLVw0wnD/g8AVOO8BMKcYwFxswGQTjgeX8tzx/K8WrprwlKLumWB942AXingDDiQtWCvmrIY64uuL8BMHR3T5GTNXWTxaUBuXWBboyAu5BJSYj1ZHdua45HdTaUTl2lc6E6vrMfa+cIoVfYOgAVzTNcpJ5xQE4LS4f6AMa4/GB9hrC3FkxZL567pQAViFfhVxk51WZbjhSWLfm2ZhdTGBi7o+I6+I+CLPOPzuMcpJzymibXDlClAEAY+P56afulqwWBdSyawLXI1HQyOLuNAHZwxDCpRxlPaI6dRNuuOx8KtRxZDiJynkqj1po7N9OKcfuv6cv23+spcgHcYhlfowjVWwycI/SvW8SxNor4Awc7aZ2DIojnSXyOtNsieE7fYe9CKwR7ruaBbr6nEg+BrAqejW3M6jwf8OeUaQxhEvsy1secAQgNOwdfCcxg+xWp4JckyG8cFqiPbhgDCDM4rdPCtgjrt+78E9Gqxd96RN7pTGMs8dI0Hxj1LyNpkTFm9ABqGZsuwcs9iAwBULbMKFOYG4FbgN6VT0fpMkcEe1fckiovY0BmHlXOLe6k1IQSwmIyYKWOUBK11Kv6Q2PA/xnt46xYmFwAKw6ed2mjBndDc++fLg92+tcF15QKupajayt8kGOxlP7ojlor5fN7jmCMOOWKX5pLHcIFWY1CGKQVdKfKISpOyHfksTGSjZpYOhzDgmCN8Zl3TaX7A4WDFW6CyuABIk+gkup/MtOjA8U6L1q3kDmqeekiRTayIMFKG9RsM/ccIYYuuewkXboD+pjZVmlVznzpGXaeOBlBYl/HO84LOWh73vtlU45dV0K+NGMbVgi7JqTuPDZcWj3gCbo7SNM4wcYKOfgMCBqcTQKxF5cMNbq5+HUP/MVI64PHpDzFOb+CpNtlzw0rTHEBZwKq31+YFwHluoBkjf1/y3NLsEVECYxfa/8a4kie0I5m1GF1KSC0YVqjxoLx2qs0g/T7GES3wO8dDmUqrMkQK/M5wTVOoE9KFtZUh17LONXfXlcEgTPv9B8eG6R5WmLKRuKkBPDfcBZomEJZ5A4BF7mDfERu2Eht0cmiXmbF7RxlfpBE/nfcYRepJ93PdH8JZbGjHfAlMKoggeLPUkHeS/wM9rlwnpBXWIB7Hr5hll6M0i3VUv8p5xLgXWQgp1mXcu28ayBsbiqTUmFMBySLY9i34NbruluVi3Kbq/AL13pImrC09CwUZBpaREiM2jQ3cOHbIK4vVNmMYuI642QIvNjVXcNagU9nhDOxGKuPe55rAKguhbGBKBmYmuJjh5sQaoMc9zPjIo98UQYlBH151ygHg+6jrv4fQvUSKe5zG1xjHN/y2z6eBjBEQv8oKZDxvANevam6w/Jmt12MT463ocqqxuDaDVebFnu0J54y9Nn+omt8ta7w2gPj9JeR0LL9n/fkRqgmu0gIM+mZYIni0Xj2OySTmeWyAfH9eWzBLFjjEWK7/D6oppkd46xYMXH2euckjgJq3f5Oags1ruSavUnM1b+DpAINEwANlfJ5GfNH4jOzTXBpUBCr1BB93WnxWicLWSLLkNbZ6EHVCZtvFBxwOf8rNYNvB+y2G4SORlKreAmxGP8k51XOZYSizXJ4A9JtGbu4gPiM587E08Nw8lrigElHqK5DTiIwTnm/Xcg37LYqBpBtYYq7vMa2YVOKvgNtbwnpgLOHlBvh4a7HtZW/OlQR3nNhg8jhXbeD9ATidRA4iGqSjgT1m2ETojjP6x0e44wOQE2i6x3T6EvN0VyS3VDYNQCVryT6s8jjW8XENfgNne0xiSk1yLRVWvNazpgGBDWes/PgXYoE2cJsmT2nqNg1gnQh0rpEVPJ8MXkxKL2OFvr9Lq40LucSNOqGWKSOlkSfcZeqk7jV8hTMpoTZZ2NCciS/aJPbNvdbGiXr/8eeZMmap+z4kNuhKfwZA8M8rDfEP/+E/xL/8l/8S//k//2esViv89b/+1/GP/tE/wl/+y3/5O39tun6hQPB9nmFhCxOiNDZoCbBqEacXjo6Zno8unSdxAF9Eg3HCvKtLzeGOxA7Cd+mEMSc8pQknSsgC4KktnQLBESQbZxXsX4LBlQ3MX0MYh6KvCouVsUhy021twNFFOGEvgBImTDCpdlK1U+LBCVsZyxftpK1l5+IJGcemKB4pwZiA9fAx+v4l+v5juO6GQVMZ1Yx9wLzSAODh5iA6vBYAfw05cjkEZgE7i+QdYs8gsBVmTwsAW8sgcHBc1JWOvcgDJqqsnlbMver3EGI0NRYWCQorekHC7ImSrIU15s0W07qHH2eEL6951CHxpj2L9Edq7nOiiFS6SHrxWYCysFpMGe04N2hRVl9tVkhZocCvdtAa1k6rxdUCv86t4N3AbG0IECzaSgt35VaDrXV7TQ1rPDskMQXRDT2mI6Z5h4U5SBqh/eWOWPdX76sb1+PGd0XXsxOmn4Mpo0yqgzlSxEE6w8o01VHI9HXUzfest2ni0SZU0P0cgCwABCr7TjXFFky3BhjS+8ai0TM2Biv580QcG1jLK+Mxz7iLYyno2NVXXw8/rm8bUuDx4JZRQECJB5DXyseaAeCVsXBE2Boeo0+WwaCTjYhpxgTWPE0pFbZPMfISENiDi8tBdNVUN0klO5gpaUtBOlOGdSv03Ut03S1C95L1+gQE1mbP3AdYddGNM8wZmKDAkBo6pOCRPE8J2MAgsPfM6rlaA4N27zsZ4/IV7FF2D8Ad/Ll5qmzl49Ildanlqq8zRx5VEIYzrIMPNxj6V0ULbZ4fkWiCl2vFABz3Fw735yy+5yzfNi6Ylkdi6teFmSejVa12pwK/Gg+K+Y9bw7kmFrQs32bMT2OCarWea8fySiXxJwEGlqZiE4gm6Fh3h6oJdw4SaIHUum/rmCUAzLk6bicBbU85sVzRB8SGuzTBSWxom3HtudEz0+r+6qhpcdk+A4214RUE0FrBFX2/BCPagrx2Mj10H8divKgag3pRBLMsGN+VYl5ilTvwpICCwVe2w63vYZMRBvKMed6BKC+uIWMsUhrF4KWaHPIkhyvvce081jZwbBDz05ypjLB7NxQQ2Icb2MCM/2fi4HK827iw0BiXhnMBgb0FvEEnTeO+YxD446vK5um8Qef46ykRdic+y8r804bR88mi5ggvnL9zBYEplthQ5DQsAJlecX6DYf1D9KvvI84PGKd7jNNXRQPYCmBvgAL2lPu+lDqXGP8aC0S8xzyPDefAr06AcKxwove9LvIN1jhmYyoQfDbyew78ZmnwlGJO2KLcZEtStFWtz2neIc77ouHHBR3HxPPYoHm26nq2MlzOVBkt3Rd1D2pjw6Tff0hsiFPRiL4UG/hs1OkAnQxQQ7bzmiKDFiaX74oNagw3EeGBeELgq3hiAJWqUSWwlKniz88jA08jEiI9jw+DcQgyLjMYh6OPYh6XEJEwz08Yp1rttMzN1JxfQp0UWIkmcCds4I31xey6ZSxmAzjXI4Rr+HDD15/f1kmiOHJjhdNoPtYOoFylixTo4RjhkIJnkkcwcCvCMHBzaOiAj66AT68ttj2/X5WGYJYf4Tgvj00FhM+0gYWOa2dmArs5cj6TRlDcgRQIznp/LGNEAbU8Mxxz3KELvw/ALkCV8yut6H1iWSvoV7XuEJ3Opgl0DvgY6xfAr/ebkicY4xZxoer91prhXNahHd8+zxNarwD+fQV7Uo5IYlbcTgM4YbvXppArpk5tI0UB1XB+rzW1q4Kz2kzW++hDYsNXcYSzVctdCSXn56edKgREU9+4d8cGeW/B8rTvynBsWFniWoKAnTzfHc24SyeODbnKxcTm6tDGGprX0BKQ1GsEVCcXOlgkQ1ibgFvfIyTLEptpxBz3MOMdvFw7Ma4QghOWpoB6cn65bpyhBn7s+1DzvzJlCJ7isDBVP9lYOLfi5lB3A5V4KE2g8h5O3Kyy7bUp0gRqYG94UkDNpqk36IeM7ZobQ53nuPDpjcf1yiFlwn7M2J0yG9PLJPEcmQXMXgIG04mbQnlkELjfcYM4HI9wxwfkw5egfEKcHjCOrzFN9+U+0LjJr9fBpUZyTfZgCKuZyRodUuIJY72XmQW7xBL0vOv9r9+12ME5o//clE3JY3rPe7+Cd+vFMW5XKyUGYPF37e/yoimUAHRIQkJqTWNjkuYBZcR0kjoiyjtMTKhEbShojqBNob40uGrDuN0X28aI3r9AbeJk0AdNIOuK34W+xNlK503Cr1n//t//e/zWb/0W/tpf+2uIMeLv//2/j7/9t/82fu/3fg+bzeY7f33ALxgI1sWFxPNArB+qe7kY72669+1a6ASXQlU0ek1F53ULVAatjjlEULM9VO5GYR0TO/1m2SB13JMZpA0ADJWEsOW5QToyJ6xmqvIV1mTunpZrpvJPF8C4qf+jx6X9ALDQHbLGw7lV0fkzxlcNT89MYFiAHJBnIyBrBnw1dNEV+64Yw5E1oJWBXxFCx+Pew8DjGoPM2CsIrEYv7fjW+9b5OFcrMWNyLqZQy3+S0c/Ev4ft4WyPU9zDoknC6n6LViG0HbMiAfPa/LtNFJ4XGXKFaHeuAXuA5VhWO8rdmrvpxgEArgDA54lbowNZXDcbTd/cusCOpahLwnLQcVc1FtPunN5bCmQCHLwcCLNJheboTAWCZ9kEdPxSjR2ZoZfPjs+HrSV/avl1KwvDsaECwgBKwgSgdBtrIvoc1EjNxwSWqVHtUZUUOQeiAY0Pl990iSHG1AK53LNoPpQJaJENVaYl8XtIJjfsTj4pi4aZqfqBy+cwkrDlOjEAaoBGcfxWnV/R5MrOgpxFcoCbOV7YLAmPdYUtTNYirtaY1j2St8jBAFugX9cJgfXAIPBKTKAUBHbm3fqI5ZzkyzGjjQ2t8UuJDWfJDkQHkN/3GsGvENMIkwIyTZxYSwSo3F55LsPY0nkzAjgDgssvlOFTG0MASlxgQ7clyw9YTgPoJMCzMa/FMVDn7fN4UAvZNka07A8d6VRTsdbgqdWL1NhQDiMRZmRk4r1DgYrCyJWiJ8oepIlaa4byPo3tb7MuNYnOY4MmnSpZAblf1ehPgW3V2XfNBBEgQA9QmkQzVe3PFlAGls3od73ec3ZDuWeNapUv93aNz17eSxK2BQznGBlcILBkS5YChJ/Lw5zlJ81UFVX2NifaOjrcgAnGP7vnAbnXtIDTN+cGqGkkWVeNI2V6KGwy1mtm9gSvBi8Gq06Ow1kunqjGgDYOLMfAl8CPERtsU2QhzvT+pFkC45dFqfEwljUA+R4MYELAkk3aFnQKAr/rim71OjkWaJG3LPbYlKUrBbs2hdSIRY3cWrCnXQtgG8scgT+nwmgiGd9W1qiCwO3kEOcMdcwTxOCAITT5wnKpHq8D69xbGChW1+pfJqLnsYEIRPRzF07nz+/qlbiI08t9uxabFig5NWttVtC6bd4WmTeND/J4iTQmcNw7UqMZ3rCSL+0dX7faBjKgOsGNx0BbOBMTRsr5azSDK6A3Sw5RY4NrYmOJmWfPq7qk3NS2WICMaiprPGATQB4mgzU0hR1sRH7FuIGNqmUqcREbeoPVkLEaOF/onEwHSFMIaOIA0SImqFGcxoLWBCpHlPFvP0aE45FNZY97YHxAmh4K+Fs0QM9XRjHAa5cxFkkbsPKzGhuWQOM7l6lxQaeDAJSJwdYUup0GaPOE4iNyoWaojaHl5GD7s2o0Osl1UusHvZ6iAocL01iGJg0qCNzWEeXw6SQFoVy/OhGjv9fVNohUkqQAoG0x+HMubvLTs/PxrtxBm0TK0G33dI0Nui+rWXtn7CJn0ObxEbnkDdrwUk1gauLMt4GhNF8A1Rymtzwh7JPBqAQgAD5Phfmr8b+cY2pbmVTIUO05bRt8LUgtaMizfaklMJHsrYaqCSNQG5fGXooNDtgCzkuDqBcJiI6bxa11UMrEIHAiTJEbx8oGnib+yBFsGDkSwoFjgZ1nuNMedPoKcfoKOZ0Q50dM0z3G6a7Ez1Sud86PyLH5mTUOMR3g4w7Ob4puMBu6S6TW65u+JhpQRsv8LaxfaQy34O+5WZsSx4o+cwMcL+59wQkW60xWYUE0y1ORkOM/rRPGrfSDTgdwXIjQ1rhra4l35MUzZVhpGLe5Q31BKA1lnRzS/9P84buoKD6gz/Tux/w5X9i//bf/dvH9P//n/xzf+9738J/+03/C3/ybf/M7fGV1/YLN4pjFBiwLo5bFcz5Kor9vA1HrpulQxaQdDLuPFkYu97k4MHMycUcRX6UT7iIzgmftboGBwmJyIY8HoLAh9fy2Bdtg3EKuYSvdwY3NmMlglZnpkxh1wECuMdEAZmOZXo/cdCb5s5rtbG0oRhuDsIHVPOeUWct0JnZU9901hv4VQveSR7+HV4ir9ULaAWtm8CZvcVx3MLMguRYgoTXZQAgDYSvgjrNcyF2vBOw1/FmTNk7Wlh18Zf3JSePNvWEFp2asK0aDeTJIo+GCTpI4N0eYnJb6wABMGlnXJ86w8wzqbnBz/at42nfIaUKMOxBN6Fo0t7wUwmwynOnKyExMe95I22sMWIx9cynAYE8xYjBsyuD8gODXpVsX/Aber5vAvQzUQN0QdVVAZwRFdViVpLMBe3Keno17x7gvOtMxHiobCBmOCCtoA6Iy7PV+OwqL79LS5Cw3n7XY0WSNUAuHb7s0yWrjwnkBBzDTzTevvRi5yP/oRpFADVOW9e82lrv3DMJy9/4IYEectL3OM+7iCW/TWPTECDVZY1ZkbUplSgzQYBnLANX2cwuW7soII1l+vwKzmSfygAVW1uOU61j9TISICYYcdPyuHcttGVmDdSITwWyBozC1H9OESaRouu4KXfcCoXsJ370CuhvE1ZrBG2n6RGXi+BV8H+AiD7zFPvBEgBV98A2w3pLo+XFsaEc6O8dAjxZ0zO7jYs4Jgl6LvJrA8fWtMaHGhjgZ5JHRWTs2en+NDmjRKRTNP+MGIEdY12O9/gzerxDjEfeP/xWntC/MbhBgiJAV3pP7HcYioxogaYOJgIVZCydwfGaMMTA2FHMF63oEv0LwW6i2t3bv+SmeM3kWDSAZ5yvfS1LXFnbtqKcWdKoFx67Qh+IKXeVFuADwBNHkqhq6yl7MAPai5Y/mGtfVMmz17yOxJppGEwVZPjQ22LPYANSixUmecCk2aHzIhgGrGbk0jnrjcGU7YT77hbHsRMCDsP0mZLxJE97EE8tISRKrzwmgaJnVZJaaJkNl8ujrZbahK5IQK7CnwUrAwo3I9cyUYclglRMiRaR0AGCQzSSFhy3sTY0PAazBqLGBGUy+THkcwc28Q46iHW6w9mth/d3CdTdA2CD1gzSJqsEsIM3ZuOF911qkfsC4XXF88Ab2GtheZ2zWGcEDVytmAG97u4gNPB0AHKfMxdzMI567kbA7VSawMnw0JsRYgZ80GWAHdLsZNhP8OMEfDzDjE1eB6YQ03wsbikES63qAzthJAmJ5xyy7SUE1CM+vsF3qxAqaz5Y0T5BIoWCPDbAmlALP+ZXovr87T9DR2kuLR1afxwP9XVsAtqAvoEyeZUHHsgHc2sjKkpSGo8pAtHtaBmCJMFNCNHkh9XC+zoGUDMK58zzzh76b2NA+pzZDTLlPbQU4GhA4GFsN5iRqad5w63qODYZjAzeMuZ64I/YSUJ+R+zhin+PC9GvZsH4+zWiav3UldrUgNL/2DrUOcmCpim0KIGKTqx1NmKaHJetLG+MqGaOTAuC8RH0fNHcYDMvIHESLXbXXmW22Ee3PntnAYQMKnDeY3MHEHsVQFlj4eOT+CpNM7iVvka4trl5lrCU23G6AT28Mtr0RmRjLEwLeYIoM9OzGjClxbHg4Avd7jgcxAofDc9Zfd4hwMSEcj/C7O+TDlwBFzPMD5ukO8/yIVi9f1/k0DiA5OkXkNMrevcU03zdtIAKa2KAgWdskJuF7G2ijmCcESqNHcgDvejhh+SnQw6xflevqC+jW1gUAQBITluDvcwkI/hwLW7w2jJcsP50wrIZv3Gk7N3zTnMGC7+dJ5ZDo548N/NroO4sNLQTH+/SyEVt42s392TIWF6C10cexWDuPV25Y+I0koNQTd5TwhdTkT5ljg05G6fMF1Pe/OBZNTNDX0zabSyMIDAZvrEciKtMNuzRjzBPG6S2s8QXIjP6wqBXZJ4cnw3RSwAGFBazxcWV9Mfg85sjTXWDJJu8qQ9ZYlrAzfsuNIgDWDaC4Y88h9RZRoNh60PAS09UtphV7D8VXFtcvM662y+mAm5VliRhv4KwR0Dfj4ZBxd8jYjYTjBHz1BDw8ihbwZJAfgbBPcHNCt9/D3/8p4uFzpHzCabrD8fglxulO5BMPmOcd74FnjR0+ZwFOzTKtbxqoY7mv+v4WOmEc46GZ0roEBvP0N4hhUNiwkI4Mfs1Twg1xzPuVvBa/iFHPrnuZ/KtNnuXrfP73udQL+v+1gYiGPCIUiDwXKRF9b2ogrXVS21jRZrHaQ41fQwXSPbvF+5avl2PEh0wL6EqVyfOdrZ9XGuJ8PTw8AABevnz5Hbyay+sXCgTzyIF9BkS1SRlQR7rPNwtdtaDjYmstwSoYJ2DPkpWrYM8Ewts846t4woPo+7WJPKC6iLaMtaS8dIpvE0xvLLYu4Mp2eGkDj9kbi60lbHzCnA2OmTVJE9ggajA8aqEdxmiq6Yg+fju+tnGs7dcb0T5uNp8dEvY04zGxAP2BMjb9LfrV9+H7VzDDK8TNNebVCik4zCsHswXCIO9GPqsWZ9cBw5DRd8zcebEBPt4abAfegLaDxfXKYdUtx7YAYIqE/ZjwcMilQ9eCPfz3z0FgLuhM6d6ZkYAM+DEjjDPceFqOeQL8OQI2J9jRMesn3OLlq/8Xbm52SGmPN1/9H3ja/QEG454l43NOuEeCtT26/qaM1pLo+yhLKi3AHicMYAtjHawJxYXXuR59d4vgt3CuQ/BXBYg3IpxfNBQBHktrtMlyPiHFfQF8UhqRxPADUDBIX5smbqrJw/pdKZ5KgpfzCEe5FHGDZbORBWsWNQE7EUuk1C780gDnXR319nsN+N92eUly1EhCAflWlxR4v+6n3lMjmNWsRc6VZdmLrZpByd8ncFy4o4gjZfwsHXEXT3jKkcFdoGilWkneNOFyYI1gY0zp/mpDSw3qFITeCuCzBeuIbWWEbEcsGzNbB0cGW5sw2gRL/NiOMkbKyCIX0ybfvYDAa+cxGF8MoVZwhd045sSJISUkY9F3N+j673Fs6G5LbMjWIPYeueeRLABIvUFaBwDCXF0Bqy2h6zK8B15cA5/dQpI04GblFrEBqPFhioTHY8LDMbGWV9LfV8mY3MSFFvABuLOfRu7q26L5F4uBpJq+LNiyCcC84+vTDRi2v4qV+UtIM3f9T6cvaxwHlcmQRISRiDv7JgAsfgDXXNrCn4AqTnLyxkxCYzx8WJemUPBb9P1LdN0LZvO4gUfvNWHOlZmkBWeKO0nc4rOkrhZouQGAWjB4LkwGonTR/K0jNW9hU0i9pkvDR+4l1eNV+QMtzL7pXV5Lrw8r6Cpb1ywAEy3Y2tjQMlja1bL9MnGTaO08rl2Q5gzHBl0TgAdK+Gk64UTcbH0bRxyIpWIcUdHZLHlM87xWuglqwHQeG5bGlRwHtqWBbbAVkDo5QsgW0WWkRMXUNiKBkpPCI8FQRpD/7U01hyvjqyKL42DwaAxrFeaIGQRrB96/uldw3Q1Md4s0bDCvVjwpYA3IcROonNtMMCmDnMV07RBuCJsB8D7j45ccG15uLDpncLPm2DCc5Q05A1Pka2v3lHCcOW/YnYDDWKWjoox5aoyYJ2H9ZQAHBoGHpx1MSrDTCWZ85PHvHMvYZ0ps+lL1dROPprYmd4BMU3WY81SLcQIKCGwgMhCm/EzBEQaNTWHvsPRDX6YBvIzYd+EGznXwbi1NuedjtYCAvHGPFHdyvEakuJdcRUybRPsfAM7HWVtmqI54n5u4tJJRjjjaa57gzLIJm8q1J7Ey54vj1kqsuMSIvfT1h7D+Wpbr+b3YibQD8Lyh3DZuk6HSCNfYsLEBL2wne7cpsUHHvl/nGX+aDjikiF2e8TaNOBLrfrYmSy382zaJ2tdQ2HeoBJjO1AlAZR0WINh2uHacD06UkNKMY+I9okyjGIaambU1l5ivOZHmg4PIzWmzmuXAEkbKiAZwbmD9S7+F9Vs2iRWd3zolMMA0DDNydYrgeHuF+dahv8oYPPDiNuEHr4CXawZ2blYWH135EhtmAX+5ZuD95+FYdcMf9qz9OU3cDIonAxwAZKA7RgyPO4SneyCNyKc3OB0/x+n0hYw3HzDHPTdGL1xzXdii714ihO2zxmxOJzjXoe9v5Drhn2WaSm6g4G+dO0RzxrWSEDkI44Q8siqTAF24YWNbp0w/Pu7GumcSFjmdkNIBJBrfrTQcvz6tEWps4M9CNMhVLgbAwjAMYK1PQ5WcVBqdpk7q6r12Pr5dyCLfIDYAl+OErvwBsYFNmKnUFW3DuGuA3jZfuDSmPqOOogVjcWU7fKSxASz5xuxf1gRWvXBttKpxZSKCNwY9hAjWHDs+bu9eykQGONZpc2hlCM51mMhjbdlYe5wTjnlGMjOmkR87et7/lCykI/1EcyEDeMN65CoF5qUh3RuVejClLjbwRd5wIf8SNizJBgA58c/L5EqdJCDf4XT7AoePB/grZgB/9lHGjz4CPr7ivOHl1uHFxmM9WOQMnKbMTeOYcZoJD8eMLx4IT0c2htvtDI47UxpCm7dHdE8PMPMB+fAl9rvfx273h0U6cRrfcm6snisaa415luUe8gkjnRAT5/lcb6dSowPA0H8sXgNH7I9fIJ/eIL/vrBKBjILBKCCwdz26cI2uuymNKefW8OG2SkmcxacU94X8ldOIGI8cHyQnUCmQ9n5qYwIJu1d/TsoWp1z2kFbzV/NUQCdGllOE7dKpVKDWEOfNdMVjDaF6t6B+/q7zBl1/lmZx4zji8fFx8bu+79H3727055zx9/7e38Pf+Bt/A7/5m7/5nb82Xb9YRnDDRlTdW2XuKOCjf9fqCWlHTkdRtSOWJcjr2LeCRDqCbQ1vO0n0Yo+UcMwJkzCBo5GLjCoLt8gwnG0GupQxpQWdvu5OwNkOQDAEa0VXzciNYwwS1eSOgSXLABjxCzHNc0BeC78nZvsFKRo71DG1TIQxsyNqksTN+Q0nbEWvj7X6KDDgq9q+5T0JCj4MwNUa2IhL78u1wac3XMR13mAz1GLufM2xgj4qrOhmeiYT0YI95yOeeTYw4vJrWq0/ZRjktASDU6xz5m6AX38Gbz1oukf/9N/xhD98Bhx4Y3EAYFIqxRlRhmFhhPJ+KvipMhJNgm3cwuTJu75oLDrbw4drhOET2PUnUE1VHbEFmM1sxgf+HS1H05i5NxZdHj7Hz5O6FuzJJYmro1uh2dTW1mPrQgF7dBTLCSAQic0bFQDWju9yLYuYtkj+LlR2LGqy1oKtbZOoHeduV5kO0MYN1ZtJ/3dlXLl3gCobw3GBGTCnnDhhA5AlGbBU2Xwq0+Ka+/Mc39L30b7uEhuMQWc4LmlM6KiykoJl9l7OPHaXiBnqUXhmrWSOsh+1+C1mU6aJDdBzzcCm19ggo9waG8ga1uUSnd926eRSv6Yy3t13wKfXwKfXDi82Ds4aXK8dNsMF6Y1MmKWDvzsx68edzc60I5+XHMApc3XVun+zLIzod7WmAY0pFCBsPzMAgQtYN3Jhq6OZzBZlk1D+B2YHk+GGDzIKTFz00QxHBZ0O4PFOw9MBxbhhgLMdnFshhGuE7pUkzANsdwvqr8trN0l0FpXlk09AM9LdspdyHlmTq4wBV/mQLAmcJvrq5l0NSDMCYQFgtg7YCoiUCRiNFVia39QI8Bzc1f1Uv9Z99UOXPpbGhsLqFb0+gO9HLbD4ePAL0YLUwpTYYGFYDx22avPKvZMghZ00Wk+ZDV6YPSvFrLxHlW64tM6nBTQ2tGzlIhsFnH1UEAgW6DM3kwBpGhMhmsTXKmrTj3Msu8it9Fi1clI6ipuMmo0wE7XEhhAWIHDyFrS4vfmMkDWwKzaG3Kw5Nny85djw0ZV/b96QMsFOgDumZsxTRr/jkgXcxgSSXAEZsDHDRZkYihMb3UqjlaSxkgvgKa88eTi/BeVUR1atALGyx2fZQhTkXV7t2gQiKPddr3suaKrslGr/Vg3goYA9zq0R+lew/UelSdxqMpt5X/IDHrkfGymoyv4/d+3WsV+gxgce4YxS1PEdzZMBsezhrT5kC6gCChXXpmeRgwEWRplVG1HBr3rUbBMX9P74LmKDTgtqTg6gaJQW09t2zz5fBOFA6+sykjPYhlQiQDBUFiLhKc2NuVqWvKGNDSg51zd9D+34eZWJERkpGCQj2t/WoSfenzqTGBBGBGA4nzUeMAZUmsim1F8lN7G2TCW0dUmZhIOaHPelaQLLUnMsM2dhcmZmsBQU7fRACh5xZdFfZWy3LBn1Slh+LzdcU1yvHG63tSxNmXA4MdhjDUQbmEFglYNQEDhHA5oNx4CZ4McZ/ngATjLuPX2FcXyNcbxjnwxh/jGIk6HSbgCDMLOxCH4DIvFISWMjs8CGfN5vCpg255mbfVgCnc1ldRYXGEBVM2mNCWwOG+DFeMuqX4DqMVvP8UwaW5QrgNvqQZ/Hghb4aeMAgAL8KOBDeZY8QSGaDI9KgmglRPTaLo1Vg8IEbokk6q1RJyrfHRvO84bnMffDVjGmAoq5ctsk0nUpPujoukpbdKY2bvn3vFp5uV2epS5PxZiulXgpE87yJr8piaaVwQFkWsBkOHkVmg9FAcEjZqR4Ktf64rxLTqhTCG3dooxoW/Kiug/otVuMj40vjUyNDQBgsuPcvDhI8u8hfxP7ALcBVjJ1fLthEPjjK4fgDG7WHldrZcPzmTpOGZkYZzjOhP0IHE5MFhlPBvkImJngx8yTQce3gMSC4/FLHE6vBSg9IKY9AlHJK1fWYy0NMT6fda8zeUbOETNmABYpj5jjEc7tWLvfreA9S3Km1GGc3mLEcn9bxgaWLeEbQwqdcjyd1BBrBtptXya1lFjWrjzvYEzNb8o0oBq65amw/UsDTK4BQBnBeu/zaysNIVCpHTRPaLEFXQtZISwnf/S9V5b/El8wTSZApp0yrJXGn1Vs+LNkBP+Tf/JP8I//8T9e/O53fud38A/+wT945//+1m/9Fn73d38X//E//sfv/HW16xcKBF+5AF8MGGogVr2dtn++uLAMm9LozprJIKJ20nVMWs2gFOzJagIFwk5YfweaC2gKMNijxRcXh5cB4DZ51WJUO2Zb67CFjHgaYHAJvU9ckCWCIwtQTcbOF4/V1BEbBSiUmTzIhxarSQ5EAmEvDsUnSmAXTwF6fC8unF0Z6YY36IaMTjR+W6M3Z3mE82aFMqb18RUXc5uBwZ7gn792BXrmSDjNGceJCrPnOONrRzwnAY3TJDo+xwSTKhvYTkcGd0Tr75kOaHsQxcCCN6Y6MMiNBFO0muacRAM01nEoCVnnTtP1/JtS3LEUxEq6+TzeuRo+QTd8rxpMDB8h91clWdbxdSOGdzmdkONeunk7pLhHTIfSZUzp+M4CT8Ee3dSV2aOpl6cGthVm3y7NRQ+v6nBJZ65hozsJsZba4g5og7IrR7YmEMawJu23XVvn4ZvirR3vbsEdNarSxe8hLbT0VAfTGza/U0mGAqSAx7jY3ZcN4k4UZfSJFt1JJzGBJSGexwZ7diwUWFPG4dZwbHAAtuDG0Mry3d41u+H5pqrMhFafsWVoqRxOQG0S6UpA0XGeBOTXxIKBngG5W3GhpnIPPRu3eNFS0UaRxon1mvDyCtiKlt/HVxYvNg43ay9Gkc+BntOUMUfCccps7DBmiQ1c2J3myvobp6UUBE8I1JHP8JjQ73g6gOPCCWY+QMe/c9wtxr+bg8k/yywxA/m9MR6nPJfpi2cx/xtKGZS4IDHHuo5d1oX1F/wVO48Pn0h8Yuf0wpqIE8wcS6GXE8eGFPcC+mh3n5tCbXcfqOAvv2TR80tT6eZX/S5aMBc5zhEmQBoPAhCiYcdBmiBSqFg5LJXns+zWn49oG+C7iQ3Ww1n7rIDzpppanseHDAJMXoAwWsxmUIkrLdgD8PSQI9b/3OWEQ4qF2aMAsPaZFKi9VDzqPm6kca3sOy20OFfhCR+HajCr0wq612uzSQtHg6qdZgnIptF3LsWcKaxCNf9sC0jVaxXBDzErXZXYQL6TQs0jlyYRAPEXAADj2DDWWpaBeHlbZaNebixu1g7bwUmOsTw+LdhznHjEczdWA0mNC22OECdTAGC7z+gPcx3/fnyNdPgT5Jx4L017xHgAgHL/6LSNc2uEcIWg3/sNO1pLU9b7FULYlpHZhLkYnxCE7WHaq/49YKZhho+6ege/Rdfdssu63zLQo00h62p+sDCG5QkBZvfvkdKhsIBZ3uFYYkGbH+j3beGvJnBa5LEG8PIeVo39ouup4CDV4g6ocYFlM/hnDO00wDiwiK0GFWjRn1sA6R2NlG+yti4gWLsY526bRO2+urgHJH4lAXcsDHo4ZEPFZFIbuPp3R2nY7MAybEf50MaZNg54v0ZpWDG4WqW12Huk5vwai/T1a2xQBn9tDNUG0bmUnoVOa3DTmMF+A1BqpI2WIPBg/AJ8BppJEAMYOJFL6Hi8W80gA5tBtnIxAJ41jcgauFvg+ppws2UPkZcbniLa9CwBEcQ81llT4sLDIeI0c97wcMyLCYHTiaUgcgRoBMIuYXg8wOQEv38CPf0Ep8NPkOIec3zC4fgFTqevoH4ZS1OjdplyL3XzY8nru+4WIVyXZmvwGxjjOD+PJ6R8uvhYZX98RxqhIHBrHK3SPNqQ03hcHjHvyv+z8XXV/GYvAPYH4d+nwvrl7/MC/CkNodJEVp35yvrTuyUTwRidCDCFGarbge7sVl+pvH3Wsed40sYGfT/necN5bAA+PDY4uyRsAVhISb5rtRNMFjzBAwOZPF6SsSYS8gwIO0o4CAisfiP6nlrpO713z0FgvR/1pTmpJ7QmCqZKQ/JzS1wzVGKDTleytF1Cplmu+yXTk/cBamJKxTWC1dizvMcTEWA9y5+JSVoxivXVlJ6sg41zqX8BFENqNZiebj1urhNurxmHeLlh+ahN7+Akt2hjw+Mh4u0+inxUxsOxgsCnk0HcG3SPkc3jj0e4x59i2v8RUtxjHF/jNL7GPD3J8RhhhWhT8ibUxjkA9BeuPTYPzxjTHtMoOaf1CCEhhC0Dt8axxIsNyA1j+OtW8Q0QKYgQrsUcdiiTWnD9Eg8BqlwM1akBbhJXw8cWL+C/rfei5gUcHwSyLQ0hKiBwe89mqSfKdQEqkg78XqThQYxVmYK38TXUSsVpXCiNs/aY4Hl8UDLUh8QGXXP+Lmhsy6Xv7bd/+7fxO7/zO4vfvY8N/Nu//dv4N//m3+A//If/gB/84Aff+etq1y8UCP5xd43O+VKQuebEtp/Fl7Qc0BOl2jkhvgC8bEHBWKxtwAsXsBUtrzKqkQ12AB4o4ss4YqTI4505lu4L0QwHYC2yFV2zYagRBSdufPH1lnU/V9ajtw4v3YBPTYdPrUFnCFc+4mY1Y+gTpsliNTt0SXSEzq7bBGE3G9aVUaaxymasrMeV68p742OEuunkhPs44j7PiAbowi36/iOY7ha5v2JDp1VAXlmYQOjX3Jnfrhn4HUIFdnhMy+DjKy9Jmi3duPetwyljd0qYE+H1U8TdPpeC7lEC9Tn4q1+nSTp4CbAjYdiPbOygI57zAZh3hd137nypy1gO47AOFNYwcSwjoLpmYYErk4UMQHnmjUFkFtqxx+ewhTCBRQ+4726wGj6Gc2t03QsM219Duv0hcgiI4oycvHQzY0K328GdRN4inZDmB8zTVyBKmEWoPupox9l4N1ATOWA5xsUOvlysajND9T4h7+OYE/ZoWMfAAiApXX75vw6t4VIFFuQoXJRqCNZiTgn/v6+9Yi6vH3ZXGFwoDZAW2DxvnqimH+S9aaGq78HDwoIwWJaKubEeq6aAOkI1QDPe5Amv4xHHHPGUJkyUKxAMbvpshE0NPO/IK7MfgOiFd0Wq5pUb8LEJ+NQy33ywGRufEFyGjYTHJCOgZJBQWYLqzuthebpAijstGL2p2sc62g45bxozjznhKc84GoKBR9/doO9uYbpbkMSGcdMjbyxsIPguYxjYABJgZt/QVQPIlxvg463Dzdo+69ZfWvtTwttdxH7MmCLhbp/xesdaXok4LrTgr7J8KBukCcCB9b1MyuiOI8LTPczpDsixAKU6Mn1umKYsJusGUKrAr0oxeL+C91sc5jsYVJ3cc6b5+5cRQMiWMU9jLLqwxXr1KdbrHzHY090Am+9jurpFCn5hfGlyghfgJ8cdKCfE+R7T9BbTdA+VhJnjrrB7LsUEaj4yiWlQw+wJVFn7FstxRCtV2rtSKt6rpUB7Bj7UcVH9W9/s663E04fEhh90WwyOdb4HUxkbl6Z22hHViQxGiXv6mpQ9PFiHaxtwYxy2xvKeSgQttV+L2/freCwGmTPlAvY4SC4gMauy7yv43MbMwTpcuw4ry1qcH/sVPrUBH5sqY+VA/JkMOjKlOd6ZClzrewQAELNjtDmtcbkTWYgr2xWgvM2tZvBkFIlebt/foOteLGPDdsC8tYA1sD03iLwnmSgidCIfFYTl99kta/l13uDFxuHV9XPzWYALu68eI948RRylcXx3INztOR6kDBxPXNipDETcG7hdho8Z3WFE//Y18o4LvHl+wP3+JziNr8s9ktL4fNRRIAznBwz9CwS/YWmo7hZ9jgjgOBLCNa42v4wubBHTiNPxZ6B0LIaDSaA2Yzw3XuU+K0Ax1JRLGsYiB+HdgK67xXrzY4TNj8oI7bxaI/Y9yNqib6zNb0onpLjDNL0FawMfEeNuYfD2DOyR6wJQjWCNjapJWDULDbAAfAgQY1G536UB0YJZrYxBZ2vR3MaEpUHrknXXxgZlGs4p4XcvXi1fv37YbRGcK/dKaPbpNm9QRp5+PYtOtq6hYQ73xuPaetzAYqW1hOiFJyK8zhPexCPexrE0iJLocxNQQOiVZaBVjalbwMc1zSeNDb1xCNbipRvw0nq8PNOATAA6bU7L/Z7BwPWYMkCau2ZkqZW4GSdTIAJwr6zH2gSsBFzqmn0vgeVnrOlg3YCuu0YI17CBtYFzt8K8WmFedaVJBAv2FgFge4LrOD54n3F7DfzgpcjEeODlxuF7N6FMD6VMfJ/HjNOU8eYp4ouHWBpDb/fAw47BnhgNDo8G5pHgZ0I4Thju3oCefoIc9ziOX2K3+wPsj18W1l9KB1iRONCGG18j9ToE+L49xQNOcY+TsYBxCP4K6/UnGPqPi5Hrev0ZrO0xz4+sq7vbAYhn4IVKCZ43S2vT2FqPLlxhNXwM79bw4Rrd6jPY9SegwP4BuZkOsNMRNkeRiTrJ1OAB0/ywYP0lnXw4Y/wtAECQSE3ouDe/Vt3bOKvRn9b7hwxgNM9u9pRyHI1O4hq0+QbKz+rX53IMfE+YZ/8zp4Tfw7dbn4UNgnOF0XreLC4sf5W2kGMxE4+eaDNsaOLLYBxujC9eH0dwY+gux6IX/iae8JCm4iWguTtQc3idVBA+9qIe0/sagEi38EQny8IE8SHS6WnO3yawYedgHTrj0BnOVRJlpHTErM0/KBsbACUEqrlDZyzWUlcE45bHCOqxQDz16tfowpVIQ0gD2fVIfV/k5oBag5OziL1FXlnYnmA98PHLhF/+mOUnO28K8UzrijlyYyhlbgp9+RDxxWPCw5H9h94+Ao+P7B+SjgbrL49YvfkSmB6Qxjd4ePzP2O1/IlMAR0zTIzKdYIljYgDLaCnusxLddN23BiHaAMALLzlg5jzwZ/GIu7jDMZ1gjMdqnbFZ/wD96vtIcY/u9CWc7WUSqQKq71oGOjHUw7sV+o4lPlmTfQvqrzCvVJc9wY0jT0DlBNNMQarhaxRvEAWAtRHGf7h8HdxAbhnBqcQCfm01RygN45YwVR8IQCV/aEwI74gHaH72Lia+/m0bI/TvPyRv0PWher7ve8y+73F9ff21f09E+Lt/9+/iX/2rf4V/9+/+HX784x9/9y/qbP1CgeAf+jUG5xcdbqBO9/PXLDg/gTV9F9qCAgazLASzFYJlVu5LExjsMSzPoI85EeEhR9wlNod7ShMmEIxhN9ZEEQ4oYI8Ws+1Stg3AYyWq2zsYj49th4+NwaswIzjCuotYryK6PsNaQj9mdLO+36VOIVAv8owKAqvuIRdzATdGdYYVJOfPOoKSDOv1DMNL9P3HoP4Kqe8R+w5pzUw/Ky6c2zVr/7KuJ4O/214LOL8Y0/q6lTJhd0rYj8LsOXJBtx+5oNsdakGn4C9lYfZEsMlLwwAO+x3s+ATV/MzzDjnuy/MZu0yMy9hWEmMo45F9gPMqpF6TvBkkeqsoGn+ZIiiKwBgYANSb+HxigEeLOIHzrkffvcRq9Rl8uIVffYLp41/F7pMta6xqnJUR+LBz8GOAOwHISVxKH6TAS5jnJ4zTfdUua4AdYNm9Y1OXCa1mT0fAqmHY62iGvCtmQuPyKIUF612q9qyHEWNCX+4FNSrUZErBmGJqIh3q0b7bHOLr1q/4DXpXH3fhxKufz+ICjzYr0yZJZ5zflbL+VsLI3ZaEpo6x7UT78y6ecMqJR79L8s7pvOoFanI2C9CjTRwvyT3AZm+qGb6yrsSGFz7CGkJwxJMClmANYTV7dGQWRWtJsAV4iMIeMsI21vPSG9b2Y81wV8AvjZcM9kRYwwYoQ88mcRwbBkyrHmlrETaZGb1DHe0OHtj2PB2wCjVJawu4r1v7U8bbfcLDkY1e7vaEtw3Yw66+tSmUYzWKtMeM4XFE//jIyc58QDr8Cebxq8J+aXVzASyME7xbl53OWF+65EbGxa3tEbor1trMM2aw0dZl6Or9q8YFTuKC32IYPkV/9WtAd4PcrXC6vcXptgMFw2Nrxww/Vo1jl1nji3Is7sUM/k5lnPUSs6ACwNK+0kmBZtxbdaWdgJUK9lB5jFqymuZDiwALFM1ujQWaLGvh0RYNLVutNVX9kNjwo1BjQwe7KOB0JUhsII4JBfhpgl7L3t0Yvne2hnW7JwA7sNt3yRniiAdpDgEc1vX4hKZ4cDAlLui75GhKi6auxobOWLw0AS+NxQvHj+1atC0r46gZ0RdmEHIzeme48ePMUr+8NZbdXjAUmUX+w/kNfNgKE+2maH/OqxXiysKuAOsJoePcoes4b+g7Zv9uRULq463D918EvNh6mS663FZImXCaMh6PSQo6ng7Yj8DTQVy+pSk0CwM4yTTA8HiAG09w+zuM9/8nnp5+HykdMU5vcTq9RYw7NAIGrDUHKcHk5RCAmJilE7orOBtAFOH9Gi6xKaZzG2w2P0Tff4R5fuICMh0RYBANpNgxC9mY9r4BhA0j7B7W+7uRse+XCOvPML/8bKnNLiBaOHKRZydm/zO7f495fiqSMDHuEZNqBOcF4N2uS00hZfboFXH+urUB3hqeGaJFPOBrm9+jmpW28m5tnhBQQRi+xpcFHcB58Zi+fWz4geYNprJldRXgFyQyUDyinQ2V+0glpULDnh8sgz1bwxN+RwIewDFhQsZ9HnGfxqKxrcCZPjffizVOIqOAzln+tgXBVpZ9QzQ23FjPDSpwg2iiKkmRINMCsI28nEUvZBKS95sl9JUmkcTwXiYn1ThXl0plqSa89Sx11oVreH/NQE9YS10REFciFeMNXM+NZPYZ4TxiPXAT+dMb4IcvPV5sWCbmau0W8cFZgzlm7E8Jxynj9VPC5/eE+z3nCXupIZQ4Yh4Jw+MIP47w+yfkh/+K/dN/kxz6Drvdn2COD5y7EXBlHK78qlyfOlFyTkJKIOzSjPs44pgjZkrYzXcwRytGbgOG4RP0w/fhV5+gn+5xOn2J/f5zGHqeW3P2WO+j9udVC3RA172ADzfsG7D5DNPNK8S+K81iK5p6AYCdJJeRyaEYD4hxX9i/WRjCugrw1IC/7bg3kKskFp6z8dqlzY72elHdfQsAxpSJufflCXrNt3GBH2/Z1NXzM31IbAgbrN37szptfHADTIgUBiWHAHiv35hQ6wnDhvCdxIYjZbzNEw55xlOa8ZAmHBsvAR2jb/0BtFabddJZVjGhRW1ca+OmK8/PDSoADAIblpfkBhGzhydKsODJoRNlZKh0QEMAoqobrpOMvXHFj+i8psiCPXR+jRA2rB3uNsxadz1yx7nDtAplIgAWHCcs4xBXW55I7jvg0xfAjz+y+OTao/MWm8Eu6otsgbenWPCFLx4T/viOcYVpYqPIeW9hRkK3jxju3iA+/FfMIgnz+PTfcTh8IRJIDHqvjX2W12p+peQ+JzXulQ1sLm6eT5NczQF2fMTbNCFSRJz3zATuP4L1W3TdH8P5YeHPoYBwXfVrYyys4eks51YI3UvY/iPQ6gVPZ63WxXDTj5Hl3EbLhtkzFztZvI54oviEFI8yPbxk/7dr2SCWXFSAcn3P2uBe/B+W8UCPjkoL6VlUElk7rdPGYL1mzxszus7zB6DGjw+JDbryn4E0RD7fDL5m/dZv/Rb+xb/4F/jX//pf4+rqCl988QUA4ObmBqvV6jt/fcAvGAhewWBokrUWCK6ArymsGNeKK11YuskoqKzjErpUs0eZOqyH+nz0vx0nW/z/2Xhwy2LQpJF1PxnkCTbDu8x66CyFA2cI3wQ60Q1VN1JnTDHy6fQmaUZQdPybnX07CSDs3Kl6tNkawBoYq0weFM3ezvFm3jkGeoK7LP3wvpUzMCeqrt+RCzvV+GsB4JzrqDdlHutSXS+bMtw0cgE07wvrL0v3m3Jk1i/5pUg6UgWHF47JHtYyEFwMDOiCd2cRa69giBaOyxSuFnbKJHeuEwONDRA2iH3H4/U9lZdDQgFPwSw0gqvun8hAqHtv0f3i4M2vqSnySKGcuqm0HXwvQRi0HG0q/25wUYi91Z4N0lHWZEU7o73xJSi3LDNnUAzKzLvm4L7BUk0+lNfDK0FZ8KIBLHHhfZ28ai5l+RpvmkMTGmBZQXLKSFJEFYBMCzyzHNG+tEq306hWry3jY50hBMua4cHmAgJby+y/xes+G8Pix2YN23aEs2h3NbEPxiwSN9UlM45NDa1lho9q+JGzgIxftR/BS1zwHBtWnUHnOD50/psxZlNmTeDjTMXte4rnup9mERfUDM5E1vcKxyM3heKIPN0jTg+I82MxSmrHvfntu0VsUCfulhFsjAflyAmbDbAmsCxGipe79cStFF16950vYyycOP7qWFeR3+h7xN6DegPj+KpK0cDORnj3zdO1nX2RhamTAZfBHiqFnTKFc4kHCuDo94ApDQx9LwqWtaCQXmMObNw4NCwJdZHWBK5It5wBv3ptd7Dyt98+NqiOb9XSlbhqmiYy1bhxHvsULLUKoOhr1ceTg6BNogm55AyJlldGGzfb+/HShdGyH1q98KB5A4DOXpg9MXpG3r1UdqKcMzkH5cOYcuzb46GTVhkkzLQgDvUsq1R1gQHnUXIHlY8KnieJVh0kNvDnVWe/Nn+YIzWGLzIdkNnoRRl/tTHEMhBmJPgxFqYsTfeYpztM8wNi3GOeWS5Bmx88FVPPD4PmdW+PYN1sGz2yneH9BjEe4MOpHn/bIwSOJcb6RQr682RIahpnRa5K40KUmLCQ3QCQZivx2cG8o8hppaLOG8aLv4MmWspGOmcnLps+wBIA1s96r5U8oYA9powst3InQ5lcqwCDrjYuoHlsa77ZvnJprQQEvSS71upyTibL5M3lOMTMezGyRpVScRIdtdGk0wHaDFZgl9+Hqfdi81qWsk/6eRkblnmDlXqGFscp6WMRys91VL/o3TcxQZ+v1BZt3mCW50LzKc2TtbmpoKXqfPL1aQq4YwOTTNR3pOtkmihwDqGN5FVn39kkYg8BwpyqpJzmCjGaYg6ZR4NuZDkYN7IpZJweME33SOmISRomVtjZSmpQ4EEbFa0Moe4FiQjJEmZtzFHGMeczuQW5J9XY0XC0uXRFtZnC5ZzBlZzFWpaBIN/xJGGQXS7lIr/hQoDVPKYZBedz1uiAn9UL5bWQ0kJImOO1dgCWca1eOwaX4t257FOJB02e0BuHtTRvlTyieQJwBvAsAOD6PA4G4wfkDStjn2ECukocIJFRgCmJ0HwGzOqkQfHhOHusCRknipVM0tQSupO39+D5agHwNj6UBvBZ3sAN8Vob6evRY1dzAJ3oeFb5AmjifxMXtN7hxzMLDCQrC9So7r1ci3YJKy1AYJkYMI6nirqOsBo4j1gFYBV4+rjzz+uLlKngC8eZ48I4VRKJyknakXEEMx8Q53vM8yPm+QlzPAoxIjXEiCq/2a5nk54SF/T6UQKCA+eIaxswWI+uyDNOxby5HN9i2omLe/Sz89E05oxIbWQfihRP8hY5GOTskKKHjQ6Us9Q6ci7EZBpYTgKQkgeerVzigUFtoLcsXTU7rgjdcp1LuqhEoj5GK/d4Lkukf/su7O1Zw0hyiA+NDfV5vnsg+OdlGf/Tf/pPAQB/62/9rcXP/9k/+2f4O3/n73w3L+ps/UKB4OsG7KlgDArL4nnBIt1tKMNHuqPGloRCWXHK7FGw5wgZ9aSEpzzhPo44EWtmEiShBsESoZMxLmX9tU7pCbQY8VxbjxvX44XrsDIWN8bh2kds+5lHJvuM0Gd4T6CUpajDs81DV2UVctDfusC6Z9KF3BZnce78HSljRxETEe7iCUfK6PprdN01jxl1r4oWTw6Og3BTzAXHAdjZWsCpJs83AXqU1VPHuBJ2I5+rhwPwdKz6fodDo+c183hnf5xhcoYfedybjl8Wd+zj9BXm+XEBkirYY4wvgBYAcePuBeBRQXlmm2Pew7k1+v4lHsc3nPyIQZeTy41DX2zAPwMDX5zRDSngCqghlHVdcfQchk8Rrn4N1F9hvLrB8VWHzQvudlagS8beskXsOwQvinNSLOXiBCwd/QYILoUcaiJX9XsitJuvYWwGIYtp1nn3bmiZH7aaNZ6DO8qKUbaIMxC2b9XEKlp1baEjH8cPCMw3sBjOgDEZeF3GCjwPtK3+qL4HJ4wllotpJFWIsAMz4t7mGbs0Yy86f5q0MUuC0JsqxRCMLd171VkGmvFvY7D9/7P3Z02SJFeeL/bTxTZ3jzUzqwqoxtLdM3PnchHhFfKF/AD8uBShUPgF+EIhKRQO7/R0T6O70Q0UqlBVmRmru9umCx+Oqpq5R1QBqOphzwMUEpJRgcwID3Ozo0f/57/oimvTcJMmybdKc13NXHbC0tDlOYySbLu6Xrm+ZZZS/p42HfYsiq2pSp3apqTv7Ik+EekJ7FM4xaObGIjU1QVNfUnb3GKqq1IbohZgMg+IrBUriF2TakMFu3ZRC9RWo7+nPMwucr93ySc8cHcIfP0k/n7ZCuJwXADg8Si2MNLEebartO84PTAefsN+lfY9Tg9M876AHz4x3ZJQu3j0AhjbUlc7KrsTu4b6mqZ5J6zHKEOlrv00gUAHDsffE9yhgKUWmHCEkOFSCdUKMQ+JVPlf9gG1dos1LU3zlnrzOdPtT5m6BPjcKJpNwFqYpoirFJOtUC5i5g3msEOP7Yn1zeILnkKeVr6ha2nXqawrBYfFpckPaR/NhWIBc3hhRbRu2hbfSpEKZoAke22vA4zWe9trHvggzJkfui6VoV0NifJKcXkvFEWvrTy83SZrBpF2ng6c9gTeh4khKQUOYS6hsiYuydqZ1dDo79rVWYIcU429MjVvTMutqqiV4p0y3FjPrnZoHXFeM3uNT3tUvo7FW/SVoXQJ8knNdE777rRlm35OrXTpgzLAvfczk4KuvhDLmOYN2m5TXTDSN1iFsXLP5sPbppXD5tUGrlrFrlVpWPT9fcPDXqwg9oMMjN8/B97vF9uoYZBeIQ+EqgfP7uFJ2PL9I37/G477f8b5I9P0wP74FdN4n7ztHFWMbJV4uGflxLmqC+RA0wfHwR0Y/YEITJMAytP0UDy9q/pWErqVoa529L0qllH5jltLPvPTKL6quihEUBprOip7UQJk3eU7+tsWNhSPZZ1oebPVDGEjrOC5xbgR3TdobYhxnRIeWNK8w3LwK+BGKEyfJbKJF8BPrgXrA1wO1tWowhDL93FOkM/3W1s8rrMS77QeLKzLU9Uf5P1O1vAdNeOPWduUn5F/Tl7TeV04O0usl0F6hUtdlfpWky0hFPsYuQuOj37g6B37MNMHV+4HhfQdrTInIa7r3zXbywEnzFSN4soutcEoxa0yvNNiMxeiog+aIegyrFqzWNe9noDQAmhpKKooAeltqQ2b9Ht2mKKiyLXhGByzgq7aUlcX1PU1xm5XwdMWXylUI+cKU0uIbF3LvbxpRXEoagEZJGePT1A8H30BhGcXuT843j879oNki7x/Fsn3MIg3+PisMU+BanTU/Uh99xXT098zzY/M8xOH45f0/bflrOBDTwXF+zNAAe7RMAd5PaIs1eVelksqjOxLUzMGj3Y9H+cn9n5A6QrvB6zdSq1MSkWt7QlwCEtFUCykksiiFAAZElm7oarfYJs30FzJOeK2XVSFIaJyTrZWbMcbjNujfUPwA3r8WJiEgRXYlAkj5cyQdsn1mSYBP+fPwfp+rpR+wfLNdSIzyzNQmjN6DCkUGX3icZ3JTK/VgvyMlM/Ln5HhR+A0l8rSKrtSBiw/aypnO5kS+iikkPw8Se2SWrDVltv0zORrtI+RHsVj9HzwEx/mIfmFi32M1NeFcZvzATLYuv59s50dLH3DeW24SirMK2W4VYqdjqlXUExR4dM+X5RcSqWBSKrHq3t0PSSq1OKhvAadW2VSAGYilRCSDY6ish2V3Uk4ut0mNnCHb1rpdxvFYikVypBosxGv8BxGf9WpFAIn4W/+uPS4k4t8eHa834eiHHr/CPcPgin4UVHfOTYf7zHDAYaPHJ/+lufnf2Kan5jdkXl6ZK3YCYjNqEbsjowKhXk96VDqqUaBASMMnBLIt8MU69EbXfOTakOjDH1wfOGeeHj8W3Tai6bpISmCurRHR2Lya5ea8HLYnwc7YjW3xXdXTLsdrqmYtwY2grnPo8E1Ld4adIg0WmPnPd7tUcoQwoSa7lFKnwHQazxhTXkKKBbP3zxIz6+uUqdWkescHOCkR8hnhm5VK/JesyZylNB2WH19pXyJ8dU6kdePrQ3ym4t93L/2+lMZwa8D9P9t178pEHyjIxsdJagpruwblCqG6991tDrx10LTJlRiqyWQ6UrBVgeGIIVxH0VCfhdm7tzIU5gZMwis8sboqRCgLPt6DsEz4nHJIwgoRdKg2JmKG1Pzma7pUHymIzebicurGWXEP89UMgEDqGwojKO88vfNUvY6FY9GGa5MzTvbJYBHc6usyFBIAHfaeIbouHMDXldcb/+Cprml6/4C3b5lrpvSsOkqFqCnsonJU0kBFmN2kWR8VxhcXrOLfHia+ebRsR9fl3s7l9m/0sRNRwV70In5u7m7R++/Jsx7/PzIvv+KfvhGvLZ8L14+fjxhumQAxOgabWph3CmNtSJNqaqL5PXsqYLHJjZxVV1ydfnvGcZr8fobPhD8gSYuTIz827oY6RUYKymdMTgJjvAjwrBTGF1TVzuM6Wjbd7S7v6b/9OeM2wZ/qbl4E3h7G6mssByHKTImqesTgWlf0VhxkxW5+ir12w/i7VMCG/IEnxX4Kwe6PLyoWBo3KWgLkJkPdrmh2yav6SwZvtYNN6YqIG+2TsiAaafFz9YoYa8aJTYn5VkMy33i4yKvOP4I+feNUnRKFcbusiG8PNTBwmxbyz/lQCfAVW5Ed4iXV6cjPij6VBOG6PnoB+79yDFKOEr2jmrSFDdLNjMolsGY7LG6btqs0tzalk91wzstz+xbE0ptWF+3EBR1CCsQavm+awZ7bsBBasNOV1yZhi6xNLNlTK0UjzHQx8BHPzDHwL0fQdfsNj99URvmpsI1WvIdrNSsppYGLR/gdo3iqjNcdq8PiTK7L/t3nTdtT71IuM4D4LIHsL6PXN49YcYR3T8wP/8TD/t/xLmeaX6k779lmtJQCJ+CHRYAo1ZLor1L90J6UhgnGJL/qVKGur5it3mmaz9FaWHmXVz8e5S2uPlR6oM7FN/GkJ4xAeZJ3u6aWA5xCQRGxkeV7airK6pqR9v9hHj1S/af7lA7MHVktwlsN9IMjxMcjzBYAb5631E/blDaSFp4qQ3idxpSWnGRda0Od7kuZE+vJVjwtMX0CCtSIaqBTttysLuxDde6EW85kiyZhbHaKaQWIOzVSkcqc/qc54FGiKqAmfm/pyCWRsfv8Uf7Q+t8gLxmAffnw2MWxuv5YWurxcopD0+6fDCNsrc+Bsd733P0jic/sU+giEITCFiluDL1SbL2d60qAbN5wPbGtPxcN9ymoe7byvFmO7LZym8zjZp+NDivCVFhfP59lz6k/C4obLonRZ0tQ6JLUyefv4rLlZfgXsng68FPzNHz6EdQFZv2HU0jdlK6fcvUtGInVYmyRXw+BQS+6AQANkoOcLdbw67VaEVh+81OXucwLbkBk4t8/ej4+iny1EufcEzAb+4X3KDgCMpFuv3E5vf/wvjwXxinO8bpgefDbxiGDyX40MTAJh1gK12xSWnfmXGSFSywMEoyu+kQRb4r8u/AB9fz/PwvjOMDxnZcbH9O0/0Uu/sFZrqifvqvKGVxIUfridw34gpTOKhsGyIMYKkOoiAypqNuP8HWb9Dbz9nfXlG/FfAMKIdkgGMbeMYAF9jR0bkZe7xGj+8JwaOVEfbfSfL72iPYn/YOZwe88+5OwUkQ6oWpubENrZI970bXxV+/RrFTil1SuBgkFLkyqT/IKpf0w/xqr4PT2hCiKHuGIP/9/CMOYzepNqzrQlHGpL577Q2ce4Y14FMpk2pDxW4N4LJ4gH7wI19PRw5BwqaHZDOWVVZt6t3XHulr78+15Vy2icmWUze65jNdldpwaQLXzUxXCxDcTJaHyULQSzjU2cqDocDC0MpAcH4+1rYQOU9FaqgTm4sYOIQZMCUDo65vMNU1vm7xCXwIjcLWYJLd3HaD5I6kIdHtRgbIQjaRTAEfIj5ECY0dRBEw+cjXT4FvHqVXCEEA4OG4hMF1H0e6u4+o8ZnQf83Dw/+Xh6d/KNke3vfo6Mk2SBlwVCzy+inlSBBA65TpEJPyKYFeAFtjMapJ4Frk1rb8dnrmyU8M7sh+/9tilRGSMsmYVvZnhNShYyx0hsWGLtWG1elWK40xG2zzhrj5BLe94PBmQ/02FjJJ/gAYmxrjbujchPIj1o8S8DkZlDodDAMlPyQrAjLgI6/l+4dCFukRrm1TfKsvdM1N2jszILk+M2xNoEv9gajdAlr5cm7IdUGrKLXA6VIHQlDMQT73KeB9DgqPZv8jwpzWtWFaAUu9ChB1AYMzCDyuhu35emS/8HfJKkbO4JFHpPe9izPfzMeSJUC62vkZzb67l6YuCpUc1nr6s+TekFygqgzccm24SrWhU5FL62hsIASFmS190EzRl/NcZgRLnxILmAun7GOrZKBdLCHSvrlVtjBhh+iZE4FOvMMrmvqGur6irm+lNrRbQlUJ8SFZSikdqVvZ57qWEkb/7oJELsls4NPa8NhLboAMjAX8zb3CNCjC06pP+OYLpoe/pR++XfqE/ttkGXdKigCp507JO6Qi6JV6wvpQBu453DO/h7PSgC2gpgE+0xVddUFvtxyiI/Qf+XL/W3xwZThjdIVtb1Mg/SQBdcgjeZ4XtV5aG7Td0V9eFku56iKw2QhxxzlFf1SMXQ0u4qsbdtNA5fZo18rP0XVRMauok5XkalBcVMXp+V+RR9Z+2pn0sLYsvbI117pJpArFTi1++gbYqcjWLPhBawPWzKUGwHJmOF8hKsbZMOf+NwqRLjN317XhGH94bcjrv4VH8J8KBP9brH9TIHhrPBuj0EFjEmC7Bn/XMsZyqOMMHFlNJTSqMHtaHWiNx2PwPjHkoiR3HsLMEEMqAisZbJRNr04AWaUMXkdG7wvrby2Z0AloEuBZCvPWJE/g9JBmlp0yCj9/9w2f1/qha7T4fmYz+nxYrRGZmInSoByDsBgPwWHslrZ9R9O8o2reiAdokhdFrVaybwEpaytAj4A7wub5Prbf89GXdO9vnhxfPgQejzB7OdA97xeJN6z+dEpSfUfxw6wPB/T+a8bnf8K5J+b5iWP/Nf3wQbzwwkQMc0rAXk+r8v1gRI6iKxQaW2WfPI/WTZFeZqsIY7dsNj+lbd4wu2e8Hxn84cS/MrNf+uDp8cLoqy9FTjKGdPAU8Z/StiT8VtUlcfMJ/XWLuoRuE7i6jNxs5fpOTpjXGRSeJthXilBV4guavY2jl9+7sP/OwZ7FIzgX7jxpFuarNP5TOpTk1iKJ+Mqm32nL26plq4RF+pmuead0AXm2xrGpPJWVA11mtgMnAHBeblblgOecwnmNDwrjfjgQ3OpIp/M9LsCMQYZExNPXcA72ZAA1szt2KVm3U7I51WlDAqkLUhMcRy+p314JozQwoyKFUdYmi4y1tygsQ6ksf83N8jZ5+90qeV6vm5nN1lOnQ3/0EecU2kfcnKxvUCffEzhh/+XDY5Y1brVlp82KnblMU6co0tWcZm7sZQF61rWh2EJYea/zkChLOYURrNg2+lVJZ1YFPB6XMLivnzxfPkiwS77nh0FsEFZEFfn8CN1TLwzg6RHXf8P++e95fP413vXM7oD3B7ooDMwqHWDrtf/kivXnkkVOZv7swywgns/J6YHRdmjdYEwtbP72U/TmU+zxG5rHv6M/flFCTgISNhiIuHR/RSVyOODk2cwyuWrltTpvd5hr6DbxhE1ZGzhYCGE56E1HRbSSyq7yQSKGAgKXpm01GFoOeAL2ZNmbWn2sV2QZlBi1eKF12vLOdHxuGhmYKMWtjlxXjsbKIa6pPHUtdkdaR0wVT/aKXO+jF9DHzQrntID/XjM7zegMRp2Pcv74tVWwUS+9MjO74BwofY31B6TaIB9rSSXIQfEQHXsvKoFjcIwxFHlfRNgjW12dJI6/JvXMX2+14ULX6eBsuVKatyZQ68BlK7Wh6ZYDoVgjqFd7hnOVB8hBTn4vqVMZWGqTiqhLgL5JjKciXw1eAMr6aqkN1QZfiV1BtAqzqg1NnQfIYhezazS7VobIRqvyATA5AYHvD14Gxi7y5UPk6/vE+k21IThV7JNUH6l6j5k97YMMhR4f/0ZUANMT43hHFZ1ICFFsbctWV2UPz5YEuS/MSonFpkQlhmekjw1744s6zKD4Yj4wzY9o39PUV2Ih01wIUFpdoJXFM5frnu+bGOVgGRPwm0eweWULKVtdoWs5MM+Xhjc7z26zAMCm/JPIMATcqAm6om7aonrSK/b565LPxfvzHPD5ruOSsMkFBG4TWPHOdAL+KsO7xEzNvXVXO7adw1ax1AJrI6/NQ3I9CGH5fBp1ucdnL3VhdBqrfnjf0KWPk+GxUoktdzpAzmqb1yzfRN2nuVJyOOxJNlIx0sfAc5h4DlIXfIwnDPE8YMuM/GwbsQZ78vWGPJyvuNDi+3mrLe+U+IXXOrCpPNt2pu2CxGUERT0bCWpaVfeTnBElyqETdQaL7DaDwI2SIXlmb09pQDJHkbdPMaBUJSQLe4GtrqDaEapKbGPO1ALWyt6WlUS7RurD1UZqg1asakNkP4gPcA6D+/YRPt4pxmOyjZvFR58g+SHtwwM8f8E8fmTsv0q+n19BnDFR7AY3uiq2aG41KFUqBaOqZbDe5PdfJd/dUiPE4mynlmDvDIbdOWF7/vN8YJzuce6pqHe0qdGhluGtDyi8qA5hdX8so9kcmyS1oYHmCt9tGbcb2MFuJ0N5vwKC5SMwbhvq/RY9GXQKuxQ15HwiKy+WVuu6wBIGl+/Z1wZDetUjZE/7VqW8C23ZId64l8ZzUTusCVQm0LY+qZ7StTe8eqbM9cA5xTym/m1WTJMu4I/zmsFp5qCx38sL/P617huMUityiby/ZjWAylkq62C5bBezSyDwlY70QcKm++jpY+DJz0kh4CV7iKUvyWoduzojzCFwjO6EDJaxBZOA2TzINagUGim1IQ/fNpWnqTyz1wxeUwdT7uHCBs7KAKXk98wkhtX1sWl4lP1a1/YXNRqf+pDsoTwHjzKteNjaC2EDp9qQFcixUid+4bsNbAoDWEIjr7qs4KWoBUKE/Sgqwowv3D/B44PGHRQEsYCoj66Er/v9b3h++hXjdMc0P5dg1zr9fusqn4d2Wc0X1DIMVEhfPUaPjgqb/JYH5YuvdZssPvPg4yr1kR7Yx4pvqw3v3R1D/15yhOyGprlOqkTDpB5Prv934cAxehkmm5apq2ADNqkuths5pw2T7L9HrYhBMXuD77bYo+QcaNNgdC2M4Jc/AFb1IFtBrDuXNZlMswyG8rDgjWn5qWkLYeRWRd7UcmaobKBtPG3nMVU+M4CpIsooYkJeQzh7WdlGc4Z5lF5B+gcltcKn/04D5Tkomh/RN+T1w6vLd68fTnn5/9/6NwWC88QvRIVHnTZvZPCXVw9xwElxzl5aHSZt2DJpDAlcnhJDbohOkryB9MgX5lRmTK7B2O/6uUt4jirS2BpkApo2vcwCPl9mVfRzwT3/nvng2CbgaS2zk99H0UcBtzOjZYoBa1qs3WLsTnymzuSqsTQSKnlxQT9HagN9Yu7kRq2ycqDTWv7NYfDsB88wx9TEia/f7EXSOU4LCziGdLAL6XA3RpqnmfZ5L35e/T3j8z9xPP4G545M8xPDeC/yjeJv5cqk+rxRCTiZtoUJUIQoaZi+GtAp9CXLMpS2BD9wfiF0hEovNh/C7MyHbLViIedHOYkklUpTPoPWjXj9aUOswKzY1nXyPTJKGjkf5TpaG4nJJziuuqMs2whrn79zEJjXC7c0uDK5zM3H+p5eg5nXtuGNaZOFiimNRZ7gd7Wja3yyLojYSg55r63oQSeKewhyr+RqumYK/6lLgkqyhDN9jZcSkXPQpzyT6MWzNIOk5flJYAipLgQZDuXE7/XKk/Rz36I1OJsn+5CkXHqpR8UzXC1ewPkt92e7znf5Ey3pxurk8FgpCYbLHoZrmV0GuPvgOKbaYEyNNRuM3X5HbVCEEHHJj88HmHyUA6KPDHMotSE3bblxe+o9j0cvPsAush8pDHjnxMPLTQvYg5NGTnuo+5nm/j3++Z9w0yPzdEc/vMfNB2HHh0kCCxLrNysyslwuSxNzoz2HxeN9PSBQKand+YFxekLrGmtatG6w1TV6PhDDUAYwa3+29Z0hvmjrZjoQY/5cF68/pSzKtPjKorSAJNl3Odvx+ABjDc7JUGBMAyKTfNbUGaqSZeDy+QqAlq+wnuqv78/8tax8yNfnytRc24atrsoB71ZJMFGXQOBdO4vXvaZYHcEyUMwvUS6bgD3K8GoHlNUCP2byHuLy71/tGVbKgPOVvXKr1CfIvnr6vUCenz54jsElFsyKVRnlAG30ogCQ1/W6ZcNrnsA5ZTyzKCsTCpj2SoZHen3LkOt8ra0P8s/KIHCtFm9gHwXknmPg6B1j9IwxpEyBTRqeij8wIEMiltqQgQifP7TUiH4KJyBP/rPUhj4kIFgSvhe1UPIE7wXw0S7Q7Geapyf0NKCO33LsvyogsPNDYbwv90NMPV2+tzReycB2TSDIaz0syGoC0ZXlA45mjjPBB6b5mXn6iB2fidMDzh1fSPfya1mAntStKHUi/4b0PCvxUQxVBXrpF7SWXiEDwXMtHqtzI6CWrxvxalWGoEyxvimr1IbcO7y8T9Z9VK4DCtk3uxRGnIOd3piWd7pOYUSaWyX2BHlIvD7ggRzuXusTok/M1NQjrNdaFRNWLMAful7Wg7OzxBmhJD9LUg8NFZTnZf09Jyiqwn2U4ckcfNlf5HvIJV+zfU0GHzMreQXWZmBmGdZITerQdCqW2mBNSHvHMiiW1/XyOvnvqUH586VHSbVBnf77DAIP6XcU5d1ivUbyrQ7pRn3tnOND3t9iqg8LO3xI3gk+RB77wOMQ2Q8w+eUMEWYFAdS4DIWqvkcfPjAev2Se7hjGj8yuhxhYz8p8ImuchyTnyxcK/PrHrwzmtcnrNiAqvHk+iDohemZ3OJNeL8GKYVUdpDboF76kuTbkzAa9OktULGAwpHCsRuGbVl5ftUMXn+HVb3eiGFqINMDJNcvAz1o52KTwrFobLpOV0TaRkm4TwWGrT4cV1sp5oWoCTRfLvXEOAuffQ64N8B0YTq4JmS38Y2pD7htOFYZx9eeiDljby+WgyxwcmVdWDmULtkNwHOPMFHyB2xcwfWHlFiuX7+hTcm+2xgCyIlgG9NBpIelUJpZzmjknyHwXbsLSmhVvckhDwEXRmHMT1r9vrg9jkCDtPNzUplnlCiy1IT9omYB28vqCkKT6KayIJQlsdpHHXurCccyWUaIeVLNkhzT7mfpwKHhCP3zLND8ypVDXGD1RLYzMuPoJ+aPs1bmGx+VZsCwEw/W5Lg+UX1uZUJDftzGORO9AaaowExJZLb+Sl9/ldHgMidWvLFE4CMXas0q1AZYBkXMR12h83WBNi0ph2LkmvOgZ1j/5bCi07g3yPZEtCS9NvVKwVNwqwxWJ8JTODHUlPW3b+RNipKkUOgXiUsnAb80LiX4Fyq/6Ba1f9g+Q78sfVxvK9/rR3+Hl+jMQ/AfWEIQy3weRWGQZuHhULY5mxbdqtclWSqOjPKiXuuJW28J4ybl6PgrL+DF6vvEjhzhz7yTdNyTWX4wOQ2SjFh/R7szsfN1cZdZfLphbbZOUXtiUjfVYG140xHFtzEiSKMZIl9gA+WvSFNpyYMwH8zXLYZ++x/s489V84Kv5wBA8g9LcbH5Cu/kZpnkL9RWuaYTVkwptDDBP4ldrLdwfpCEzGvajTOY/PJ8+Dj5GfID9GGVyn6wfDqOwgPOBbhhWHsAj1E+e9mkvcu/xGff0a4bjb5ndM9P0mLz97oqcuY6Ix5xSWK1pVVd8qPJ7nlcgMiYz/hAjvR84uAPPI4DCmi2bzUfa5k1h/lmzKaFRITgq4NLUhCig2ZiCP2SD0/gwFR9SkGk/0WKMeI7W9ZXIuapr5u0F9gK2O5F932zh3U4XRnBXSzPso4ThPHakNGCRkwFlkyiBL2sfYGKZ3kU85ozZI3JvOQo3SqeQN7lPb0zDO9sVZtTnuuYzHdkaT2M9u2Zgs/VUjYA9+UC33rhVOi1EH/GzKo2cfB5xcwJDgjBWnNfMP0ITMUSFiqu6EHMtSLVh1bidSDsRlj6KYpdwm2RreU2RVBciH8LE7+eDqASCsMKkL5BBQZvAsnXica5DOWhrnX66TWnfVWL23Cq4rhyVCWw7R9Ush+UQhCXvnDCj1l5osBwSs0/V2qu1UoY3pilS3bz69NruguO96/n9dGCIgUkZrrtPaDc/Lx50J7UhQEjNlsiTI/c2H+jkud8Pka6WV+nz+x+W2vDYw5CCXYZJvD5z4NN4VMQ9Jcih2MJMD8zjRz7uf83z4Td41+P9hPMHiLMMa9I93WlbgOCS6IsqYQOlPmRmXQJ8hihs7zmKr9mHued++Jp5ekTpis30QIyOLgy4+ZFxekzP12lzuubTaMwKpFXk20vqTFfYwKq+ZuoqNi10rbAp316InL42ct1y6NbsItMUmDtRGmjrUJMt3l7rIKjTunCqEFhP8gWUWIaMl6bmxjRsjKXC8Klt+EzV7NK++bZy3GyOtGkQ1GyWA11WtiRS7MLszsIFH5lH0InxF3UkBL0aPOrCWnE/QuLZpz/XEk+f6kL2t/Tp8zXY02lDR2Z0JCuVJG+fomIPPCaw532Y+NYduXcj/QqZtYmB3akksTbiOzgntdG88hW0alEO7EzFtW54p2tqpfhMGX7SzFxvx6K4aDrpG0S5kySzQZhQGbydsr9lWutg23x4E0uppkh3YWFA9QnIeu96vnU9Y/AcVeSyTUqB9lN0fV085/KKQZ5liAwT9HUaBqXBTz9FulpuCJF5L7XhsRdrmOPwUh0QHPAQ2d0fMdOI6Q/Ep19zfP6H5AP+yPH4e8bpnhhnFOLZnge3swLSoCt7qI/a02lbDtIS/LT4WgMltEyGAfL/TURCLdf2wY8cg+P+8AUfzf+bmzDi3IF++DbZ07w8MOUxrVY2KZUE8MmKH5NsaLRpidUG1zTYLnKxgcuO4sXepUPSXR2Tl2pgmqAfO5r2Lea4BWBWz8v7s2IDr92L18DPOiBHIYfVzcru6K3t+IkV/8kOzTuleFs5NpUMgi62M90ulN7AtqCrPAgGtVCZ5TDnI2EGKvBzxHl1phRYmD1zkLowZP/bH7im9OdSG+T37xHSxBQXVtvaAzKDPHkwICqi5Xs9Rs+Xfix+4R9czyF6ZkWxkMqgQVZX5P0og75rOXajDFpLP3FrW96amnfFLzzyWTdxsZnLIN7aIKxKL4CqHHxJ/VFgPqs9GdTLz0SuRY0yRcqb7X/qMjCBHvn9vp6ODNHzHD1VfUnbvi3+tbHaCFiZgiTzymDE7GAy6x4hsB8XgKefl0HSUw9PexkUhwDDMQ2FRgmJ7R6eqe6+TAGxH7nf/xPP+39hmp4JweH8gYhYQUQkG8NFj1rV7PwE2PS0aiJ5wy5q0lRH12sZHsjqlOYm2fsM2vPkJ343fsvHu2nZo8sQRp7HbNXjo1hWyaC4SmSS0yGvUpZo6xQeqWlaqQ3bRv7/1eNFZSNfTXBwW+zYsXMz1fMtdvgmvRfzCba6JpCcL5WuTZvODRbFtW24sQ2XqZf9TNd8pgxXWkgN183E1W6ibgTsqTeRekPpDUyt0bVBGU1MN0Jm/0UfcUMgTDJRDWMaBuXa4BaFAMDsxVJqCIrhR5BLiqqQNcaQhr74Ui/Og6m2qip+4dnPVDKHxILtSz/yxbznkAhZz2HGQ7GJsUpxoavyDFqlmWNAo9IAc3lPci7QVldoVLGdXNvEvGkmtq0oUvIZTYZEIakKl4FX7heyfR0IM76oxlZK2NxXdyk3oVn31EideQ4Td25gCJ5jDOkcfENVv8HUV0VJ5K0Ru7lqCY5cnyeFZAJ3h8A+ZTznIXEOmH/u4XkvvUIIMD9rqidP1U+SKXT3JePT3zNMd8zumf3hC47Hr/FhXJ2VFbPKkO8pyJr37LxMquM6PQsXpubS1MVe6kLXxf6gw6TzxVqNJqtG8Ynp+LzeUs19ymh5YprqZB0zE9LZxqYziooQEyaltAxzQgyoMJesn6hVCtiD7Qaut6LMmpywrIeNDOrvbGDfbzDTTzD9gdoPVP2XWNPgAJWzR8o1Wiwx1iC4UUsWzXU+MyixNftcNzIgRiwPb9uBrnFYK8Bvu4vYVuqBqVSqBUp6BKNROhMMZCMIk/yOYQr4GZjiC5ZwVhSds4HzkOhfw9/3teHqj11/BoL/wBqCIqgF7CmFGL4f7EmNlUmN/q22fKYMOyU3dp5wC2sWHqMEO+z9zKMfGRIDRusa7wMVgYtV8FJzMvU7m66nwrlNB42dNnRKlcloUyUKfJ2Bs9QUh+XAbJQUnRopKBep6GcZ4xIIp5I8TXzYhqB5jAsz4YOf+GY+ch8dKEvT3HKx/QVm9wt8J0FQc9eJfAtQIRJmafqUVhyPsoHMTpqMp14Kc53uislJsZ4T0HscpCivrR8gyXuS12ccZbpT9YHdN98SH/6BefzIPN3x+PwP7A9fEvxAiDNdhM9MTWfa4jWzUdWKNWUWSWeRvKdp6tmh/97PvHc9T35ijJ6P7sB+/1umeY/WFW1zKx5n5kZec3RcKMONaeSA7XrxPSImHy8lVg1OmMRi9J6m77ajri6LHMbUV/S7ji7JNa62cLtV3G5FSi8H5bCwJYfI+zbiGosKDdUq9TeEOQHj5yDw0mTmNHS7uhYh/WmAShs+sR1XtmarKn5pO/5SG26Sl9TtxTMX1w7bynTOtgq7q8BUpUDnQ130oRTr6IMU6ingh7gCg/N9kKQbRcr1w0tgBnvWDRskIDgd4s7BnmWQItdFmAuWd1qeTw8cvC4yz8fo+db1fHSDSDxXP0ek32KjkaefcxSLmPx7rYdDIL69F7oufsu3Sq75ZTdhbWSzFSBY1+qE9ZcbYFEvLNcspxNn/+E1yNwpw5W2ZUiUvcr6NDR7CjMf5p7H6InKUNc3bDefY3e/EEuIRtLq4+p0EWaF05AD6mUCKw3c3sJjH6ltLJP8DPqGAH32+ZyWjTT3kMFBfIL2aaLqe+zhGXf3n7l7+M9JxrVn6L/BhEmGGKRQDV2XA+06cCcz1nI4yTr0ay3rPGEz2HS/EPhddeSfhyfu/YDzPXs/lUn5PO9x81EY9fnfx8XfsfB6lFosXdbsEdNgrYRmmOpKrvVG0baBTSuHutuN4t2FobaK/RAw2lNb6Cc4HCPHrqartugg03xIrIAiAT+vC3IzKXihoFhP81tl+Em14d9VF8Xj7lPrebvt2SSJ9+Yy0F4rdK2lcasbdPV6mxB9IAwTYUqDkUnA6HlUaBbeZraKEWBTGrYfDfasBkOlZ4hB9oO4HITmVCvyADfvJxLeKAfbVgdM0Nx5uIsz++C58wMf3MBzen4iHhsXz8lcFzaqotOGQ4CBBYzJwHuFHP42quKdrvks+YV/WjluL0Yurl0B1kwltSFMmf0nh+Dsk1hsb1aHVdJ9msGnfIC7MXUZjheQPP27Q3Tc+5EHPzEpsGbHpvsp9eZzVCtAT7AV0eiTAXL2+9c6clwJbPpJhkWZ8bdPA+KsCMg+n75Pz9N6wDhGtvc9zYffEfqvmcaPPDz8zzw+/Rrvj8UDeKc0lbLEGHFq8QDPPaJKIJtREuQ2J2B4DEa63JDA8BX4kqXy+UDjgc50XLaWp2S19bf9HXfP/1I8usfxnjWPKz9jikzAjaI0sJsX961SRr5e7fDdlrmradpYvNi7SpVATqMVXe3xQZ6pcYIPgyZ01xLWlZg+OgFQJ2zgldxzrRBY1wSDDIV+Um24Ng2tMvylbvjrKnDTTVQmsLtwbC5DAXyrnUW3HbrOFODUVxpD9B68lz+BMDtCPxNMIPiXLPfcJzgvfn+jEwC4/5FgzxBlYF7u93SPTIgiMD872TrIJ65yq82JBdsuAS+GyITiLji+mg88+Yk+OB5TwKLC4pWjiQL25NCcLg0e8jAysPhyZkltqw0Vhhtd87mueacilQ68aWZuLke2l/6FzYafF6uYAmglkoxbgdtAAYHrBPjnPTRnQuShWN4nxT4v8Ogn7v3IGANeV1w0t9TNJ9jmDSoPibLdnMnvJ0U5ODuYrSgFJw/7QeqDD8Lue1qDO8MSEgugfKR2crPUx5Hq/T+xv///0A/fMLsD+/3vmN0DaV6D5ZTpJ9Ysp0tBygCLaKIoMle8nLWy9DzcdN0T1ijeqQoU9DpyaC4Yes/D/IAHglJo1aALkUj2nUYZZmQInUOm5XXpE4aeUkYC+JLv8mYTuOxEQm+0DI4zc7K2gWGKfAyaqbcM4w3Nwxuq6kJet+8TOC29AvF0KHT+hGUrk2x19Hm15ZemK5Zxn9Qztxc9m63DVNDuAs2NRdcWjMa0DaquT2pCXqU2TBPRe8LsUGZmxouiULOyjlnOELNXJVdgCIo+KoYfAfbkIdE50SzbOswxFH/gvF7zC/fpmeuJ3EXH1+7I76Y9fWICix3Nch82ynBhajbaFlVP7ifznl7OElrspq5NTY3mna74XGk+qWeMgl07s9s5upQl4JxKZJw02FDL8GJtmbf2J9eocgNkslAeYG20LeqwPDgt3rgxJAxlYoyBoCztWW2Yuw2uqfBWnyhkl2Ds5f3oJznnZbWsWEsuQ6F1bVAeun5clELjE4e7/xf3D3/DMNzhw4R3B0z0tKnmTgoZumDK4CWHSIfoxHoyurJfGoQgoEHAT9twa9pCEMwWSac4xLIyGNwpxTtd4Zsr3tqOZz/xj+MjR3cghGt8cMTgi6WjznuD0gICZ4g6hmJ3ibbEKoV4t5GLDm630jNk5WYermkd6Y+Kvr+krhua+Uj1fCEgdAxE7ZIadekR1pYQuVfO4ZDXpuFn9Y63iVjwuTL8RTNz2fVYG9leSp9QbeXMYLoKs+2kHgAYg0ofeeU+Iaa6oKeJ6AO6drCfZUiU1rou5I855GcRpqCZk2rgx64pnu8eP36dK3T+e1z/pkBwntCtp/fn8s4sZ3yR7LuSS4t3rviKwunDmb93Zo+6WOC0glSUdPSVvFj+7etAVvGlTFOhGjAJrM0yjfUSEHhFcVfZn1GVw8isFsmosBFy2qrYTdQqMqfuJYNhQ2IhgUGbhqraYqtLmco17cnEvkzuQ0yvJeJTYFMu0rmQpOGMhCxNrzN+YQF6Mjss+3mpELGjQ43PjMM3TNM94/iBYfiIdwdU9DTAlal5W3XF0+9CV+wyK4NVknsBgZepW95sc6Nfm+W9HJOkt48zzh0xusbbfiXJQORkStiEhEW+ld8mhUogi8g6cvq3UmL6LhLa5ENsWrzVWBtPvFVzMAYISzbL5eokEXdaiTXE96TNy2tdT/KX6V0GqmJcmIogINrG2DLJvlWGT2phn9V1YHfj2dwqTGdRRqPbGlXXS+Fer1SowzSDCWicDDYMCez5vpf9wwvza9JO4EVdgJd+mVm6s7ZmaI0X1pGiyKNzMvYYPdk6f/lOsUzJc8CT/HyXXt/rxT03T3U6SFY6e2sKo0cZGcJAPjgtTdxrK6eLy+ZsCggsU+nkF85S8wo7MrMHlUKrCmOFpYpp8E0rQI9egJ50IQvLM0u3Z7cc8IKV2iDhh1Ifpkl+h2GA+aBRY5TDoVaoKqK0AMxmDthxwowjaj4yTx8ZxveMY5ZbT+yUYZt0xms569o3Lf9/WdparHmUSv7IS+1YJ9HmxncistcNF6YuvqCHOOH8yDzv8b4XkEWOaa96sWZpZ/mvs8+1Nmjdok1L0Aa0KtLv7Mm+/ugqRZ/kstaCr1SRj7+64st9KR92X/t6Dg6SoKDqZDhy001cX0/Um0jVROpLg71sBezJzVv6Mx/oQBo45T0xLDVBm5f+vOt1YgX1I3qjsGIBr+2j1nkC8ErPwPrZlGdHJ/BlSCF2fd5Xkyw6KMRiKGbGjVqx8k/DWGAZGKBWvoDpHs12EF3qFcRmIxa5nDJKpH+JdZ0Dts4l7ee2NPnPrBRYfP3kmZjS4DAP0KYYmIIXdggGY1oJGjIt0TSlNqxXtpSCU+af0TCExdYgH+gOx1OwJ+7BjGmAVilihdQIFzHTKLYLs9jCiO/mHhUdFlFlyKDHMEUPwZ8AXrCq21F8QR0LU3oOgWAE/Anq/J6ghCD6CF5pJqyE5SZ21gd3ZJ5F9h1PMguWJazg9HWlT+pDfl5LnUiWUEErYYOvakJXJR92lXqICtp8nqohVBVatyh1OPEJXn79ZReL3/k6lwGR+E9KWNitUrzdjlxezpgq0u4C7bXBdAvYo3e7kwNd+bkZBJ6m9HNIw2PZR0MBDJfDnM+y72IJsez3P3Sd9w1r9c5JlsArPUOtxEf73C8chA13TF77Q0yyaEwC2xaCSKNM6etP7CXSM1tqw0pu3qmcLxKoEpmk2YSSJbD4rovKYv175t/tfEldWAbVVp1a0+Te6MX1S2elKQYcwm63JnlTmxZMc3KuiGeMYFjOEeXrCCi8DoacjqpYxlV9QM8efaYgM9NIcHvG6YFxumea9zh/oImwUQaHePav/ZnlhKTJcu/yv8TOzNe/XKcEAp+zgV9b2X5LiEiBS12zM1U5V44xEpUHbLFjWPuzLu/MS5m2UloYwcakzAa19AtmyXDJn+9HqQtVHWVI11S0pl2BXd99pnjtN83D9qxqu0xetG+N+IFfdhMX1452F9C1otpaqptdAX91XaOqWpA/WNgEpNowJxjWJ/b25E5KZF4hsITGrcLi1taRP3TlPkE+P7OEiAvmsFYX5j+FtEVizS8D6CnGYss4pX8XzoYReVBbaY2OkZmwgMBntSjvWdkKokOxNSEFbIkdT9MFbJsGJ9mqfgbO6s26D3oNjFqHyJm8X2b7g7Q/nC8XAy71X0rZFNq+rg3mpCaoHAr4CiMYlrqQySTDcFobzBgxLizWMNOAmo+E6SHhCg/M854YHSp6ahSN0owxMJMcgBO4KuQ/K+f4oHHRn7xRmQ1bafOiXmYLvmwvWKz4EgEpr/zUdQiOQwoFbJThUBS/HpKRleb0ns4qIkjEsHUAWlKKSUaL1IXapnvULYD6tolUdWRsNMpXNEZsfeRb6NXPW4ZDGVNYX4eyp2nDVknejagiAtfbkd2FDIW6q0hzUwmOYDS669BdV3CN0i8YW+qCqtIZwiwom/Iy+Jb+VyWsSv6/zAZeg70LeYpiI/lj15+tIf4NVpFxnYPA6etL0qb810tfN4QZp3QJsAhR0QfNwcsN/xgD937iyU/F7w8gRkfwwqOslS1S47zCqnF7HQxIr71sKCp5wIq0JUzhxAwbFjZNrSI7lcNuNKREb2EqvQyvGYJmJvIYFe+j52sv9hbfzEeeg8NW11T1BW3zBltdFxC4BEGtlvLp8Q+KoCPDkF+XAMLr1Ors75kfQufWcmBFHKNsRCFi5shmP1A/P6LmI3H4yOHp73h8+lXx7JmmB1T0WBabhzHJHrxawswETFsOVSbG8p6fQ5W5Mdth6JPFxqQF3BumA0f3hEesIMQSwuPcnhCmE1/FlagLUEQ8IXe2yqDMFmMaKrvBmg6bwqbUK2CNNMJrxhbJTzXivRTxc78kSf5erCEyuycf7NYBD7kU5vBCqxQtGpM2rp/UW35ud2WK/TPrub0Y2V6KdKPegOkMOp0wy7RuBfLkz8M0E2eH712yhYi4IeIGRQiaeVQcD4ZxNmVSd5wNQ9Acf0RVHdI1OK8JeRlSZx9lWuvTcKVLm7ZBNuMOqLJcKir2Ee6iZx89H/zEwc9LY0OSzqazQpuYOyZNxUvPtZJzrdk3a7Dy+6D9GDIDYvlaiML0yQ2ETwBTpTSzDosNTfISXIKxsjxUGM7vw8QcAx9cz3OYMXZLZbe0zS22uiLUXQF6glaoIFJ0FeRAEeZlox00hHDayOX7Nvv+lvASp8qOp2ZQIWCe8lBopr37QHz6NfP4EeeeeHr+J/r+A973hCAyKacix+AWu430CJ0zgo1SJeDl5H54ZZXg0bRf1BF2WuSxLg0BRjcwDB/QSuP8iA8jNQuotzyF6fcjEvxIDBLKIh7DGwmJsxuUMml/GVBugiSRP19SF1JtUGIRYVM5ifr0NzoJhIpxsYjIbvfxpazLoNimtO+dqdioil/aDZ9reFPPNNZzsZ1pd5FqC6bSiQmsC7MneuH1ZqAnpsl9DIE4OXzvcUMsljFjr5lHTfAwTZrDUDGkRPA+yb77CP2PGBL1qR4WRcAroA5wwvAyqBTqugxZDZI4/Bwt+6C4izMf/cCznzn4OQ1eKde9TtezTnVBqwR8p3pQPHyJ5ZCVrUuqtKfXSgDT7AmcLTfW1lFyLRf5mzS/scjXfYxUUVPFl2qBLPfO0kWQ+rlPNW+KgTs38Bxmoq4wuqGuL2RIVG0JdSthL+u+IQ2yg4OoM9YnSqJyL696hmmS2jBPqtQU7QI6SD2oe4+ZHdrNmHGEu//K0+PfMAzvmd2ecXwkF5NAAvOCoyd5fKdrnK9YZrEoFj/8zMxskqdnqxZbnW7FDM8HuuXeSUotJf3mTlc0EcbxTt4bvl88qIDgJ3xi+2lTY2yHVjoFxVhwI2YcsaPDuTWnMV3L1C8IOCxBs97KoTpq2WHWQM9JSFx8pV9ItaFGiZ1J6nV/Um35qWkl8Rxh/W06AXtMFak2aVhc2VIT4lmPkP8b7/HDSJzSoHgKzIfAPIr6ZR4VQ28YRoMPitGZ0ifIYFYVpU7PD1996uQWYkne+0//3uIDbArw0iFhzOTXEWV4cJcUhYcg0m9XgHbp1WyEWuti3ZQHmBmEPlEOqcXDu1tZPYlfuARtZT/29fKzWkK1UjiO7PvrPnOpOTnYyZCZnlZCVosX8eIbLuxGj4/wEEZh/ClhO9fVBXV9jbY7qLZEW59kC2SVYbBSG4ZBrsxrOcGZTOImVXIClIvo2VONMyoEbH9E9w8w7/HzA0+P/4XD8QvG8ZEQJkgA9THlOWRCSHk9BQTOQHgs/ZxBLKZaZYoMfps+8iAtA3Byj2QP+eVcklf2C7400kdMMYCf6aMjBFGQ6FgcKMqrCnhiXMglGZjSWnpxPc+Y2UMwhEDxDBdG8AL81EbR1HJeC3XEWQGSX1uv5YpoFpsYoxQXpuKTquONaWmV4TNV89YErhuxhZGQ44BpFdqI1Hu5OT1hmlCr0IvM/s2fZ4VA9BE/BeZjZDpq/CzWaMeDoZ9subf7lUXMFBP4GqMw/n/gGpJ3dLaQOieU5CXB2xoU5Z4ASq+9J3AXnOTzBAmTzQoVxXJ+UMj9lm2I8lqDwPnnoaTP3Rib+nyblAmKrXF0tSsWUmvbPo/Uhhy8mW2ksjIqs4HzygBfYFELNGlvzLaUOVdAvr/0DiB2Sc9hZlARMFR2Q11fSW0wbaoNGhWiDHk9+EnhbEwYgigMxzwrCJyoi09qQwDlInU/CwA8z5jnb5kPv5GB8fzE4fhlIpE4QJS8Q5SQt6AAVaFNW5R72b5FASG4FP4u/9ZGii1orQ07Lez4bAVxTkyDU2Ja/m+/+jxjOhjYaMsHPzDPB/nZ0ad9XKFiXI3tlnUyzPEDao5Mk+QGwAIG58/zAK62EkrdNxrnxW7mu2oDLPdqVl82SmwxMib2ie34TFdJHRC5qB11HZLNIUtGSHoj4zS9Cn6ue4UwzeXfhH4mTKFYSU1HCc0OQTONmmEUfCEPjQeviw1EVhjKfv3DzxR5/RkI/jdYTzHQJpYKnNHs02G/sPvU8vUuAT6ZDXeTNqym8hwny9NguIuRPYH3YeZbd+QuWUIsB3pHjNBGJWmopqJRNkm4fPHWycnz52CwhHPJ1yZgjgp8umFnJ/LYxPhbL2vlQTKz+HztguY2mCJZFGBTJGkeYfM8RpmI3kXPv7gjv52e6YPjzo0Eu+Xm8q9omlva9jPs7hf0XYdrUqJ9Zh+GmGZQEQlXjMRZMVcaV/yM5e+u961zYkvM7OYA1V48vLIH8Pz4Kx6e/55pemSanzj23+LcE1UG1lCJxUcJSuiDBNZUSid2ZvL2U5ZJW3aZda00XQoVzAzhnNgp94Wm1jXvdMVEFD9cbblzgxx+5wee9zOzO+JdT4gTVjXpvsuBEsKQigR0jDTpfhvCTNSOpr6ma9+hlKGqLpMJuxX2HpQQnfXKYVqlmQPOsHnxBiBPAAPZX0zAnoi8c/Ek4Tem102E68SsvjYNW235pen4d0Zx2wjYc3M9cfHGU1+aNLGrFinX2crs3zDImCYDPdORchAZj4ZhMCL1dgL8Hry8ExnomYD9j5B4HpLUMb8/J9d0Nalfn8prJWEKV0oUAgZh+9Vavs+cPL2+8ANPYeLRJQkkErSniLRRwJ51cnqekOuomEM4AYJhYWavQSf5M3t3pWvrE6CSZC/RL+woef0xJc9KNvKVsaVhPR8SyXVZGAqP0fOVH/hqPtAHxwc3MOmKy+3nNPUNm83n1N3nTN0G15y+7ypETEK54wwke4h+1AwmvmBuvEJIPUn31nNk83CgfvwI0yNheuDp8W94fPqVHOiiS8xbSfo2yNuYWcyZtXYebFa8/KKiiRFPQK9asQLsrBUEZ02bV4orLJ/bLRe6Zkjs39+7A/v9F0BER0kHzqGiceWxphCP0pj2D69A6Uq80qpL8Qw3GwGC3QHrx5MghPJadf5TGD5drTBOFAWFUZGtJ4ovcK4NwijIB7y1HUQOuMi+Zp9WG/5dfcFnqqZTip9Zz2eXh5Npfn1p0J3YwqyZwBnsCSvwN/QzrvfCQhrkMDf2pgC/4ywHOh9hDponb+jjcojKsszDdyWi/RHrKTrGs655XSOyNdQSoij3RA64aXUgROiDYh/zHhv4wvV8Me7Zh7lIRIXM5aii+Py+teJbnxkzeYg9J6/6wthVFI9arRaQodWBWsUE9pz6sAsALHXBzelQl4Ay8Sq0TAkwWLOds6VUlrbL765O6sRjFM/wQ3B8Ox95JtC1n9HUV2y6z2g3P8d3V7huQzC6MIJViOg5EnRiKGvwE0xWvUZ6fdEjECJqlkFxBnxyMOQ8fmScn8Qyav8F3vfk/U5+uOxzIzCu2+lV2c/+rNkHWxhtEmailchss9Ios8G7BO6s60QGA0TamYbPyvLTass+SLaEgNCSa7S+/U4YNDEyMxKdQylLbWrq6oLKbqmqC7RuiG6P7i11v2FyVpRCBfBZg8Aq2UVI/1DXEGyFPWcCr20hViPt4gOZXt/OVHxWbbg1LVtt+blp+Q8W3jQjTeW5vJxXfYI66RPWoE6EcpgLw1SA33WfIMBvxTAa8QZfDYin9Mz1CNhabJ6IiZH6w9O/c204B3cEGDn1BK71oiDZKV18OCfgfZSzQwZ7vpwOPCRJdH7Pm3R9ayXAwU6Lf+zafgIWIHjt590qy1YJyHCF5tIEulqyBNrkFV5yGWYBe+ZR6sLoDH1U9ImF6IknDL48lM6KhAtdc5nsqmolQ44u1cXsGX4fJobo+HbueQwztrqkqnZ07Tu67i9Q3acyRK5kiCzniYCZFdGm8YgGb0QBkGvDST2ApSYISoUdA3U/YsYBPQ34+7/j8em/0A/v8X6g7z/g3DPrCu8TkJWVOeLXr06t1JB920Ro0nWolebS1OxSyNHGWN4Y8cTORJOcMwNLz3Deb/n0tStl+bzacmEqhuD5ctoz+wmPqAYysJLPOzqCi44Qkj+wsWIlZVKwk7YoJ/ZZ41gVgCz3CLkm5H6hqyKbFML01Ggw7Sts4Fw3U35AXIbFbWL7WaX5ab3lf6guy1DoU+v5ZDekPuFMHQCoZBdVwJ1pInj/ap8QJrGLEnBH4WbDsbccJ1uAnYPX9FGd9QmnRBCfQL4fup6iZ4zqBQA8sfTzBtk4hrzoAAEAAElEQVSz80Ag990Z5Otj4Osw8cUkfcIYPI9+Yk5AZLZ83KQzRK1O/cJzH5ltXDIAm9XIF7rmna55lyzfbkzgZjNxeTVjKmRAt7KXix7crErvdfCafbLBEdWwKz8zD6fXdahLOQcCfgsbPO+VE4F98MnzOPDt3HPvJ4zdYe2GrvuEtv0MVV8Xu7m8dIhEB2HUjGQc4WXPUMKj17dqECuIZj/TPjyg+wfi9MDh6e+4f/gbxvEB7ye8H4hxWsgQqkKZWhSQaQirdVUA4BBmgp8IwRHCSIgzVZTntFWmBCcL6abijWm41VUZBnVqyZ+Se+V0rRnrnVLUCK7TRc0b2/J71zNNT+kX9SXsumQMxMWvt1zHfMGCw/YBN2imWohmtVV0GRhDFexhP0pO0XMnuJHrNkkp8Do9SaUzWK0kDO7KNvwk9Qm10vxcN/zSRt40Y8kK2N34pGZTmBz8luwj/exgGMvXwuQL0JvPDXmwGULe13QhUfajZXRGBhkrAklWDOUssXzN8xn58NrB9E9c36do/KHr+4ik/72sf1Mg+BA9Lp6CJ3mtEyvXnix5SnalIq2OmDSh6NKUwgeFp+YRz2NwfPQjd27gQABl06Q2UqXDVaeNAMHJe1O8w3wBgLPH4HetbFvhZQgmh7dRUzWyeZ3bRNgq0tUOrSQMZlOkcfL/L6nqMunovS7en3dh5pv5yLdzL7JmpbnY/ITLy/+hBDn47W3x6MkrS650iKfjiXkx6j//uwC+UgSriPlBXwPEc6TqJ6qHbwjDB6bpIw/3/4nHp18zu2cJX4rwmW3Z6qp4pLm4hN0EIlP0hCiNSU7/tokFmX+mQdERy+jJRAqjK9fBGlJoljQTnWnplOHedhzDjB6f+MYfGAaIwVPF06T14v+pNCpGLJELU7HRlns3so+eyu5k41M2hc7ZlKK8PEbfBQbPXgr35OTQ9yJFdxUStzCCl0n++lAXVx8G8bH9WbXjc9OwQ/NLG/nZzYGLa/Gkba8V1c0Ws9umFyRSrvKzp+mEDSwMYI+fI2GKDHvN2C8sv360HGfzguWXi3Q+oPwYsEfYX6cMjPXnBWwth3nZrG+V4q31tGZ5E/Kz5ePiC/zgRvrkA7kER85YpbhK09DcEGT5N8hG4VY14dy2INet72KohgCqSKxV8geW/650EDkRCwMhf5s8+KhXQ6J9lIN0TjJ/CBJi0wcJeWnad1zs/pK6vqVuPyFuPsE1Nb562RAsYHB6NrXcadkDUPnT2hC0IlSq1ASV2H4AxgWqwzPu8VeMw1dM0z13D3/HMHxNE6FC0SqFwaCVhKhkKWrmWmlApTqRvbAFBP7DNTmvcxA4f1wpg9GKK2XlPotSh+69DD+kQSPZCOUYtmVVLCnQx/Tc1tUlbfspWolNTwyOwABu/N6RcJF4GeGTmPygn6/CAI6pYVwAifWHSTLEzG74vNryP+iGX6Sh0NXFxNUnTth+tcbsGsx28+pQSCG1IcyuNHTTk1+BPZrjwXLoLSEqBqc5+IXll4GefXqta0/3Mf5wsOcQPXN8Kb+GBQQ+twipleJWwZtqprWB2Wv8ZLkLwjB+H2Y+uJ57P5bAxYgcnCPynm+05dYKiJaB4pwwPiWPwbUEc20hVQbXKhbmX+7Ls3IoW0hlllQIijkPP4nUSoZU+XsvzOeF7bwOlc3VdyJySMOhPjievCgFdpuf0jRvaJp36O4zxm7DnAbIAMoHSa9Ph7pkpwqc3dIhPf9+LTGU2qE8RdqpQhC59+FLnh7+Z47910zznr7/mjY4rrXFx8AQxf5qsWnKe61KYWjpBAwEFSBmFnwCevPhNh1sr5KSYrERUy9qwvKepQGzUpioeWtqhvqCna4k9MWPPPmZqcBNy8qAq4mRoFyRh9fVlYTWGlEQRT/A9IAZbwlhe3r/anXyIWBw+j51ZDS69B1KGRkcpxUTiL4oKc5Yf7ri88QC3qH5uYGfXx24uhWwp7mA5qZJEk9TZN9FLbTy+Yw+4A8j80F8Pv0sfUK/F2XQNGv2Q8WTM4W1sycDv6H40WbmGiyHsB9TG56DYz4bzAInDDzIz4wtgGgOjax0BK9TBsfIox/Zh5lHJ3XBp4FxHUkB0zJwuzR1uedmPD4Nhk7ZeMk3XAsrdZcsnnZKsbWOrpGg6Rzaq8yiHPIzhfU3Ol3YwDkjIds/AMXKKmcMXOrq1SGRUemMkQLw+uC4dyNOGS66T2jqa9r2U6r2U3y7Xezmsg1biMQQ0WPKi9CIegAg9QLKg3UBlQPDjBb/0FQb7DgXEFgNdxz2/8Ddw9+VEGkVPR3ZZzdyIKBUJQzaxKoVWwUtAE+cIczl6cwsYKMk3PPS1FybDPZYblUl/QCZAcyJ6tCstpcpLiCEqBA16IYbXbGPvtTWY6q8Ov29tToE4olFnTUN1m4xZpOu14ieW0yyisrDoWwJ0aazmFjPLbYxj40C25w8C3mAnAGm9RmiVvrEE/gzu+EvdcVf1DOViVx2E1e3TljAlaLaGsyuxrSrn5El36+oAcbnwHSUoNh5NAy9nBvWfcLB5/s49wk+Xecl7LU8v/8KtWGf+ob194N8fk/XO7E/c2AmnA4CeiIPKZvnOQ2MZyJOQT6dNUqXMwSchpznn5eHRKi1/ZyRZxXNbcI3rpuZzVbCt/JwKFtI5eWcgMCjM2nIFovt2doiIquHMuic85ByzoFGMo92ysrvHGGOM88pd+c5zDil2bRvCimqbj8pIHCwoiSSZ12jkr1DOcelHmHdL1Sr2hAqg68U0YpllB0n9OEDfviaefzI49OveH7+LSpIQEG+BArxBtfK0rZvqZNP9nqFMDHN+YztCNGhY6RN4Gf3Wm1I74VJdaFD+je5T06//3Rmd5ZJakZBjYT3tkrzHEcg4U/qVPm4XrmmZfA2+EEURMeaKeHtJ9YQKzuOXaPZtIGqjcwogq0KIzi8ApYqFpVKHpa9sx2f64YOxecGfrobuLycT4IhbasXG4e0YrKDit6VwFg/xDIEkn3slEg2B83oEvs/+YFP8VTtmmvBuXPA2iryx9SGvP7sEfxvsDLTUz5/BQxe/b38eZ2mMq2O1DqIL6+KKdhIbrYpymbSR8+c/JsimYYvjVxujq3SpYEySjH/gfcsrAorLDfkFIUBU/zPZmnksu0CJAn1ChvLoQ8BVfz1INtMqCL/kgmf55A8yqYYmEE8ekyLsVu03UK1I1TLQe61pVZgTtRKJvsr1vD67yiviFpA39OLIKy/er8nDB+Yh29w7onZHVJip5drnAC0HO736vX83lcra82wXL6W/zxlgvlEI6rTJLdXBjS02mL8VMLYLIsH6cmKp6EKIBuOBLmNhDCilPhcadui1nYiQdi/Pi72EPkDFrsIsRAhSWVlLBrjqTVEfKV4FBbU+jok4KdThh2anVK0xhX/SWke9JLovZZ8n4e85ANe7woIPI+qHEJCoDQcgzd4sjRjaZB9/H7f4D925TTr8nuugWClTmpDlu6JH7AAqlUCgs9TRScCY5BBzxRXx7Qkz8kJ25XS4h+d1lpilVl/r94/6RqgZCMr3kapLkQfC+PztSw9k2qTfJ6+H6f3vvyMpTHNh+qjd4xBfMODUph8yLBblG5BG4JWxQrifGWbCKDUhcxm1SugF9I9OHMCFJvU1FXjjOrvmaePTNM90/RI8JMAlWc1fuGrpI/0f585P5SfmQ9U8qFPgPe11Ht9Dc8Bn/x5rRREQ6NE7p/3IosqigVNSvUtr2EB/he5ZywN5ot0n3RdswROEpFj8QsXX6/4wk5GLoI0NqHYGa2vVvre8QwITntqo02qCxL20lhPZQM2B5PlMLgXGuRzeWc4OeD5WWwLck2YZmnkZi8M1lwPMhA5lWcmX/vXn5k/ZVWpNqxB3/VaVESLT24OfoJl3831oC+9QigST1bXFCiMu+IHnCZyniWVO681+GPKUGd98FwGviGAZgGBz2uCTvY3RinqqItlkqiG8nB88a4rP4OlqZ1i4JjYS0MQP3SjG2Gv2y3G7qQ2nElV1rZSykNMQM/5Uska6ry3yAc+M3s51LkZ0x+Yp4/M83NR5xDDyTu49rsXb/7F5w88+VIv4IaAwFatajemWIPkPWKpDQvYsyiK8gtff02ueT4w66iwQVQJeUi19hZd2D05BTwKgz86QgK1zlf8zp5h1S+cXfOY6sIaUFpsIfJ1W+qB+NGuBkQJDG+1x1rpEUy1eNeX75ltYYB1VkC2hQlTIEzC7hHGqgCVzgswMfiFyVP6g3KQe7lOlD4/cGX1zvn3MWrxL18yBE6Z4R6FifngGRijqNXmrAzJ1/aVey57zeaVQeBzn/L16/lD6yRQ9nvUVdkbvEoT5nz/m8SCrZU66Zny8mmIPEfpiXJfpJT4hhuzwZgGbVqcMS98w9dLBeGyqRUADKlv8GEZIucDkJNBkx1HzHAoyqF53uPdUAKT82sWIrF4/erkgwtrwCQFr51c7piGo/I+ZZZ0BjzW6qFMLFkrMs/XuqfwUPYYokimbbr38vP/2n1chmTfeSCSgZkKcp6dPEwuDYKCIqnuX7Wa+mNXHljlWrkwYKEyoqKzNr5QrMCKAQwr8shiE5Xl3ZnBHoLYFoyzedknsB5a5rPR6XmufI4qypgfuvJznxV2pJ8rz6JeqQVOLYPK64s5m0fsYda9go4QVCzs76UmnA6j1h7E2XpsTSYp96QSklvGNpR5/X7JdaEQyL7j9859a35duZeps9IufX7yehNBI9eHOXhQBmuaVU5Om3yBT28U5QNaC3NfzctQWLn43bVhlqcqpLOE7cUL2E2PuPkpMYDdyfk3rj6UMhhdYZJqKry23+buIi6MfZMwoDUYWietYQaBS11QS/94co3P7k2pKct+k1V6RFeev/XvkeuCED7Uqtdf/Z0QZNAWhFiWA+Lyb2b0689GMLpgGGffkXXBXA+sck9ZK0Wlwuo+XNmAJf//6POAIiYQWCwkhbEuGEKuBWv2ej6Xjy4p3yB5/qpiG/t9ywCssKV/jbPFn60h/g3WLzJTQ8lDU509YKb8dzz5WmODHGxNll4JnRzgcax4HwNf+YE7N4h8Iz8AiUm1eP0Je6RNUs/1dKEke+bP80RCxeIJ5YkM0fIYPQbxHmSy6EPEyYhwtaGmjX1aNkWQVPAMqgnDUpgTHtjHwNdh5Gt35BAcD27ka9fjdIsxLW17w+Xur6i7z6F9s/L/XB1OzgAcddJBLNN5AG/U6b+dI3YMaXoXaA5H7OEZNR9h3nN8+lsen37FMN4Rwoyb9wQ/FFbKjCQQ70PygylM4Dwt10XSWSfgYmcqDIpG2eKJWqwhkmzrhB15/uzHKOmqKDyW2mj66DlWG47B8eAnDKqwfXNzYJXCAhOulJMxCKtjJhKj43n/W8bpAWu3bDd/wcbuBGAzDTpEhkGOX0ZHHreRu4Onq1YHuwT47AcYB0XdjwKmTw+EMEmaaAySaFoMKxZfYNlA5LV22pZJ5k+qLZ/rms80bI3nqptToABlYifN2nTayAFhdi+auOkIw16XJq4fDfs0zZ+C5hA0+8LiydKMZdXp1Sq+++Dwh9Zf6apM1OElEFq+npp22aADW+PZVAJ6zU4zeM29M/TAXQz83g2LR2a6piZGIo4GxdZW7IxIPHOISPb6k6HSyiomf4MoTd0cAkPw9EYk4x2Kh9mie2nqusnhZk/dyPdzTuPcco0qE2m9yBkF6F0CdCAzJ+TrfQy8jzP3fmaInjs38JvpmWciWre09SUX21/Qbn6Gqa6huWLuNgXcyWCwOjtR5CYtpubhJGxyVRuMC9SjQ4WA9kG8wfe/x88PeHfgfv9P7A9fMI4PhODw/kgEhgyqrhr+DACfA3CWxfezS5LvHF5wYWoudFUYHLsUZJA9PutVA5fvnzxsq4GdSl5qKvLWNBzrDY0z6X0Op+9zYYacgn1FyRYmjsN7fJiwpqVtP8VWV2jdgraYOXI8yo0yb6CrI7X11EYx+Ug/RfpZasMwISnJ85Ew7/H+QAgiZ4sE4mqSuNSEFevPVHxabcTrTxs+VzVvqpmuEY+5LOfK3vVhmIghoPpBPL6SvAtIcu/AfCAxexTj0TIMhtnr4vP55E0Be/L0fg365Otfq+x9rxj+CCDku9ZfmYYuhdJ8V+OW94gu9RYS0Cp7bLayeR8jvw0jD37iOX1k71kNJXgks8l2SR0AidWDAKtZOeRWljGh9BKy2/korKeD11RRUU2Rdu+LN/96OSdZApUJdEHCLvEGoy37mO/F00NHBpby9X8k8Jh8DB/CyG/GZ977kVmB1i2Xm0/ZbD4vSqLQXEh45AvfomQPgdyXsNSE9RAIlpqyBn6V98Xbb5o+4tyRw/F3HA5f4twh9QSRXkXGVJNLwGWhTCfxpNKCjsWF+WqhqLqy1PXKNNyYmizrvVLmJHehW+0ZcHqwm4OC5DmX68SnyXJpCAtjLXjpaTLwaJXGxYBB4dJQMRDwfmKan1DKYm0nzL/6jYTrAH6Cj88C+u7apVeorWI/BPZjTGCQ3BdmdgQvA2m/GmyvjxvJUjr1B5IE3yjDJ3bD57rmcy0WJVfNTN0sfrQxkLIAXh5d1vYPix+41APZxxT7seKYvPyGoOgTC9i/Ug+yDzMYUAuoZoD+O3f7P7x+ohtabb9XMSIKM2Hi5qDVCXgf5PXt8Xzher6dxWe/yLiR59qm88OVqU8AhDl6tFJJVbgoBNaKobx8jMnHV5WBupwZNHoErQPKhKQQOE1MlywBUbZMCcgyqJKRUcDffKhXujCfPaLQyOeX+zDzu3nP76cDYwwcVaRrP2XTfUbTvKOq30BzVdh+wAnoo3zAJuVAuVfWYVFnw007TjRPg9QGNxH2v2H//A8M40e87zn0Xwvgk3pfp0iezD4FNbdYu0Wb+lWwRAYvCUSOIvnOnti5NlzqqjDCrxArsdwfZOuek/tFiY1fFVVii+evi2rAK7mfr03Dha5waehdrUhGOYTcxIhPKoYQJKRWKU0wLcEPEBzKTdhx5nhsuDtITZBzBMlmTrEfA/1ECdoiAG6UoVMYXwF9Ts8QjTbcmIZ3VsK6P1M1lyawSWpVm1QIfk7g/iHgpwGdimaWea/Bnuzr6WbFMCyevz7C4A1DUKWnzX7geRUv5jzcXam5YNnnf0xtuNRWasNrw5nVz61TfciYwGP03MWZIXgOcebjLMqamYU80qjUq2phVDbaFD//OQYJLGWxjFmHysrvmUkN8t/rPUkIJCm4OES0z1+X92eadfFWzr9Dm4KUL3RNMFEGmWkIku2qKoz01cqWnyuewDJofAqOD67nW9czJpVhXd8kS6lr6vYTdLXDn4HAmUSiZ18ApnCGSUDqKxIZSvtAPYlFjHITzAfGp7/n+fkfGMb3OD8yjY+gFCluTCpaUgpZXVFVuxMrCFjAz2IL4bOZjpP3WRux9jFV8WfO54kdmiso+FSrJczzHHPwUX6/PuiTMLP8HtZe9otLUzPMPgHxSkLpUASlsTEw4wlhKoGPQAmUDO5A1fd4axirisc9vH8OTE7qgSgEUg/oJL8hJGGxmYUBvZDMct1U6YQVyz5Ra8lUuNK2WCy2xpceNds+hZCHREkNwvL/O6eYR5PUrqeY19rjN4dG55qwXmtVRsea8Xz6dz3Qq/Tnv4pH8Hf3DT90/dka4g+sv971bK2lqTxtF7A2vCBUrVMD88pm6VrLBrR/tuyHioMzfPCaL8PA76Y9935kDl58vZTc8DpKCvUb27LRlkprNmph0WaZSC7W+YCXAyJ0avB0kAf6SU3iFUjERMWkDH6o2U4WkxLJc+JnDn/Jm+NaWp9ZlXcxcBdn+hh48jO/nw98Ox8ZYmBQEVtdc3v5V9T1FU3zlu7iP+Cvf45vWnxlcU11wvBV51O31Uq2rtK46XSw0wpVRQmDC5HqIJ5VZhyIj//M4envGMaPzG7Pfv8F03xHk771+aTOAc8p1GEdZgTJowpodUVO1exS4E2enl2pDATng8PpdG59wM+NglZyXXdEsQrACCu42uGJfJxFVpLlo9lPLTMC19KJIq9BDsLD+C3j+EGYErpis/1LdH1NtDV69oyHmpiu84c2UptQZJ2F7R0izz24Z7h4ehJv5fmReX6WQ10yks/WEIrF1yt7CW215a3tuLI1W1XxS9vxSxv5dDNSmcDl1Uy7C9h2xVAZJmJK9zn37JkPJOavKsEN+7EqRfvJG/ZxAX37xKJbT9ZLGBeKXWIX/DGsl+9a/+HyyNa+LE9+5akLUgNMUgXk/7Z2udeHXvNlDDxGxwc/8eW0595PDCouQIKSY1qnLdem4do0tMoU1rBYEYQitTpp4hIInA+AQ/Tsg8YoAQXqYPFDhVGwnQ2XfqaZXjbpOtWKrfWlNmSZTPYKz4FwU4w8RseX7sDX01F+pp/ptWW7+alIOptbLi7/l5iLv8a3W0JVMXcdUStp0s7qgkpURJ1AAF9ZsZBYgT65ThRvv8NBGrf5yPTwtzw+/Gf64Vtp2qZHvD9QxQXoVWii0lJJlVpxLtK9XiT5wrjPjL5aaa6MBJ7VStMoy6WRgM3ie4guQT9Z3vnyQLdi8kTwSq4tuqKuLng0HXMMPIeJxxQuGmJEE7BKAB6gHPILGyE6xuED8/SMrTYYs6Hb/AxTX4E22NEx7GvmSTFNMhQ0KlBbOchloMcHCdup+5k4PeDnR5w7ShObGrkMQSsooS+10lRIY/nOdvy7+oLPkyfwT63nZjOx2frC/AM5yJGCW7Tx5WvC5onFomDsNUNvRJI8C/D77GwCNgXo2adasJZqwRrcUWTv1R2w05Hjiyfgj1//sRtp0346B2EV5JU/f23vHZ3h4Ix4hQfFl2Hk1+MTd27AIUGFPt2rOkrAx3mfkGuaXzHpcp9Q/IGRgXEGiFHQR5/8ODW1V5jJ0vTSYGtDGRZnObjWpxZSlQtsvVmkrWUQpwoI36frvyfwtR/5aj4wpiHRt35CV5d01Y62ueX66n+ku/pfQC0BkvN2h68M3upXlEGhSJVBDj3R6PSUvlx2nKieH1DjE2F6YP/0d9w//i19/4EYHT6MxR9cfoBGqRZlLEpprLJoU5cDXUwD0lieOY+Ny3BhpytuTEOrhd3/1jRcaVvABZH9L+BvpURNtj5s5yHRrDR4vUgTlKZTtex7ya6qT3UBki9w2gO1kgGgZpkRhjAyTo+EMFNXl9T1Ddq0ErxlDBzh/kExTpHnVg5xPnhqq+jnyH6M9FOqERN044DzA94dEuCTwiNLNVq9D0pxYxreVC2tsvzSbvhLo/i0G6hsYNM5mi4UtlmYIo4AQyj/vWaqT0fFNJoC/PaT5XmyTEm9to+K/Qr0zWx7WAZVWb2TWckdSy+3NY7GBg6vJY39kesXWrHRCo8uygT5+UvfCBnwCxgVmYLmK6/5Os48JruoL6ZnvnE9QwwsnqrmZD+6sjWtskUV4IlMIbwEglkYeOeryF9DZkmlfVgvA0g/nyoJKxPpdBQbPKXoMOy02FkUm6zv6L36KEDPeoD8xbRPA+SGptpxuftLdhf/EVNfoeprfHclwdMJ8DkHdVQI6FEGI8FovDUvBkpBK4zzEgb39Dvm4Ru82/P09F/FTm5+QpiyS98rLL8KYzqMrlP4onjqltoQfSJQZNWM7ETrIVEG5i50zVvTcJtqQ6cE6NkaYR5nhWkmGJ0z/45zsqZLJJ7cQ4AAlG9Mw51ty8Ffl7ogllZ5H1QRnAoy4PUjQVt5pv0R/IAKW+w4cnzu+PjgOQ6waWHygcmJRcR+jPQzjJMEbqk5gh/S0Hg+A3xOl0IUkp9VG35pOjoUn2m4bSfaxp8Ql5gjzAo3pH9rYgGDnBPQNwRFPybgNyx96z7Ju/O5YTqrUWuG9fpsl0G31vgXoNvB//DacJOCEl9kjpyRBmCpG3vgLs78y/TMgxtxMUhgWgw4JUzQLllB5LDIHFBq0Aw4xhDpgzslmK1sYzJDt7DUX3ntAvar8tqyv+o06iSvV4VVmXutrASolWaKoXzeJnKV2BYswalTAoH7VLs++oFvXc9HP+GVwtgt2+3n7HZ/RdW8Qdsdsb1NvuGnrOBcF4zzJ2cKsZST31D5UEBg7Wbs/o758VdM47fM8xPP+3/hcPgSHyQ+VNRBBq1qlDJYu6WuLzCmLR64Jg3DVBoaZ5WtDy4xiufSP7SJUNIow4WpuNYNV8qWrJlbpbg0ofSSmWBUlNyrvnN2mmrlawtLLzqryK2WMMbvsgmYlcZFj5fdBJ3A+BwiGcJAfXhCxsc7Hq4sX20ij32kqyNXneIqKcf6OTJMEJwizgrtZlwY5RyRagNKJzbtcn7P4XCXuuZWGd4aydfZVP4k78r1CvqVuMPponqdvcZ5zZAsH9ZD4UUluAyHkz55hR9kAodcp0pHuqz8T1aw8syks1iyleiD5vivwL39MxD8b7AuLxyXScLe7iSR9HwtU8cgMsrsSZl2CGUi+iATddl8Ik9BfG2Owb2QqisozNNtAiEzy2fN5sl/rj/Pf6cExUUBBYbgxdMtM9GiwXuRrrZp8lH5zCQifb/F/iGHa/UJ4Ln3M4c48+xnPrqBp+ilEOuOzeYTdrtfUtW32PoNbH/KtNu9CIcrv68PiwXBi2US+HsKAmsLMU2AzOww/QE1Hxn7L3k+/EaCHNzANN9xg+GqanAxcAyOIXhcauecIrc+RCXhEgGRTbFi1GVWTZuki5nRIBKNRbqVWcDplRcQWP5blkeKhFZQpfezC4q9srwzi9V7luPIJDYkTzX5WXH1kWXhBgmJgsDoD8zuIN/INkuKsospSEeYffvxVO6dpeCzE3aVnnqYD3i3X4Kg0p+FCbwMjQEKaH1la96Ylp0yvFOG63pi2znsKkxA1yuWho9AEHn3FE4An2GfU2f1ibdfZqg/soA92efz9IAHdWKq1WmS89Jx9E9bV1czu+rlPZvlJXlTWgMp678DoKco3oQJBH4OE4cwMxIBg1fSEGQQbZOGA+epuWNq4s5D4tYT/VwL5ugZokiLeuUF+EFjogAF1bRiOa9sbfLv0lif1AIRHAK2BLnOUxQLiH30PIWZRyeA5RA9o4KmumK3+Qvq+pqmeYfdfM58cY1rGqLW+MqcHOLyWoPA+XP5c2lJ18Oi/B30PKPGZ+L0QH/8gufDF4zDHTE6VHRcKE1nLHPw7KPHKYXWVWH4yTQ/BzmMBNwJUzgz7WplSghUlRpZsTwwpT6cDIlICpNXzLd0at5RC+v6Kh31O2MK+3sInhFfGhSRDWa5L+Vr+c0PYSqHUe8F5sxBkioEOILzikFHjoPUhjptTBkElhTlxPpzoq4o7J5cH1b33ykbWLzONsbyTlV8bqBSwvprWwl2eBFOlh4vN8fiUZsl3jLZf5nm/eQMj6mpy/6/ffS8lr4tILBJ74u8Pzsd2RqPVj/8QHe5m9jZUGToc2LVrxtwoyJN5akrGTA7pwlHhU8+ej3wFOaShO1jLPtWXq2WOnuRmvH6DMw5Z/d8V5OfD30TUcBaoIsCTDfTwgq2VcQSTmpbU3lCFBZgZSJzMs7N/QMkf7rUX2SbmOcw8+Sl3u2DI+qKrn1DU9/QNLc03U/lEFe3ZYhcLGvSoGi98oENQBk5cOqzWhK0woSICl5A4PEDbn4UBvDx9wR/QCWAxiZgcI6BCTCmparF289oK3UCiDEwu6MweVbWKPm+Lz6HxpbE8y4d5HJdyN5+WsVUFwKVWdeZdOgAcFBFJcF4QBfTXqYUPYY7XdEog11Zx2TGp0ugoUaVPidER/ATThm07hfAyojXpnKRcUjXPUSaGroqUvvI5JbaENKHCqlWJnZPCYk7U1hkpto2HXBbbbhVhuvKcbGdU58QTqSeQAkyXWrBEuoy9IZ+NPLMec2TMzyd+HyG1VAoln4BkqVbNHi1gMIdlIN2awK7dqauAnVSkP2QdVU5Or1YQeWakHvFteS6MulgOYP3uvjsP/v5BOxRyJ5RZMOpV7jQdRkYH5iZwmITcwL2rIbF5TrnaxRz2KRI5nHyWoX9m9+LzAZe7tdKRTol+1cd5fr6FbC27r/WEnwQUE56IceTn+hjwNgtld3SNNd03afY7lOor4i2LgFx39U7mNmhnbxnysrf9a+hWYByE278WMCeQ/8N03xPVwZbcl7Lw2OtLHV9RWW7AvZk38wYPd4PqGSJkdlzeV+sUu+Qa0Onl9qQzxNdAhq0kiFRtlDK64SZmd6joGSvOwEpo/i0b4xlG6oCKKyDuoQRvBCSghJLKR8cJkxp4OVQfhR7iDGrDGVvrg3URoIj+5nC+nNOpRLgCMGn2vD9IudGGS615VZpeQ6tk/2yWQ8iVtYDYQEfMwA5zfokCPKQmH55KJmzQvI9d2LNctKvqQL+ZFZ2zv15kbHzI4ZEXfrw6vQ+zj+70jJ0zWGW+QoOwfPgRh6TYmhKdSG/MqMkcD6rWTPbNv+ua0IZfD8wtAaC874UvFz7xTNclffDrQA3f/I90v6lNEYr2sL6lMHRebbKeg1BCFBDEN/roDRGN1TVBW1zKyBw81bOvvaVbImz84Q6mWLZQpZ68W/GR8b+Kw7H3+F8z7H/luh7LtKAdSAQlUHpCq0qbLWlbd5QJU/gEDLwezYYyiqB1ZAoD5GzIrxRVkI0E+bQKUWnYxlGVCbQVL4ovPMqvdoKmJTnVRWRTqUjXRB29tG4wgzPSpNcG2yqDfl/Wi0ewTE4mA+Y3lDVDYehYn+MJZOoNlHqg5WhcSitQUT51+tBMrEpKoFsk1qlmtAaL1YxNpzUg+Bfgr+jM4WYsSY3in0hiTh2qgryMZb7sF4N3vMdVWnp1xq7KBXyGSa/nhwuVzmDeS2V+09cf7aG+DdYl28dF7XBtIpqV6GT832WqEICgBN4lfPDcjgFgJ9Fuv7kDHdR8YjnOQg4kllbAAoJGTFQvJzWAVD5L+YGLf+Zv5ZX/vocJd1+DoFBeUyU77dPITZeCfjTJ5+0zE7zMfkJIw3aPopJfg7O+MaN3HmRnhz8zFOYCcpiTYutdjT1DdZeivS42hFsXSZxme0HAtgEFFQmFV7zQgYOWdYZkXN5hD4dJDxs756oPv4G18v0/nAQawQ3HyWUARhjYO9nAlE2kDzTV3LVQZ34uKyZwUapdKiSKWqbinGd5N6ZNbK2glizgNdNfT4YGzhliJEYJ+RpqNzy63Avjy7SLR1V8SjMQ9i8ceRNfo6BcXpkOP6WFrDNG9qqwjXXBK9wVtEPkb576eXlAxyOUB1d8UXz/ogP0yos7pWNcvVxGkCU2beLBQmkhmF6+X6fev9KMR96wzAafGLNZW+/zELNTdy6SC5MYOgwhfkn6dtwaTyj/uFN2/ZNZFcvANXy+rNUcmmO8sqNUfYz3o8VjxHuwsxzmHj2M1MUNmVIrEqTQODMQl9LrtdMPx8Xht9JCEyU9yPbyEwxUKWGr4+BXkUeowQ9kcCaOck7iwwssS98TGGT6QCbbWIy+P4+znzjRsboypBon4ZEWjU0zTV1fU1d34jv53pI8cqKRhMIoE1KAUemFYj8U/nFo8+OC3vYzI768Y74/FvG4Ru8PzCk4VA+xkUltSEGJwC5Aq0qVJ7Ys/j6rUNNcqHI4TfZ7zYPiaoEAHcsyefZNz4H6a1Zf7DUg1IX1LIrkJg6NamRTtK5SmuaKNK+/MzntGc4bWikfUvAjB+Y5ifm6aPIwYGqv2QcG7yRKb1zwubJ4O/sF7BnHBS7/kjwI94fJB05OGkNS104rQ/i9yfXy3B6D69XCCLzzP5d8rXM+FOF6SPPjyqsv+NsmIJmjjLZXyb6p+yec0+/fOjepRp+aQJvmpltO3MMP7w27K48F9XyWrO9SvHiXoE/clCWQ+txNtx7zT5G7qL0CVMMhekt4JnchvWqKS5+gqvfeV0H1p+vh8nFI1QtmQU9iglFHRTtbDCqElDKBqwLWKvKtc/sCuCEYZGl5OtAjccYuEtsnqcUKnvnhkVJZC5p6hvq+oq6vhFvvzOQ5xzoyVYP0WhiWEDyqBNrePZlyGxHAS/0PKP3XzMdfsM0fIvzR6b5KQ0xFtsCAUolEE6yDmqMznLIlzVrkXouctwMzDXKFE/gcpjLg2ME7Gl1KL1CZomfrxBUshpa2cColVdkAtyaJCeVeyyDb6f7RumBYsT5npDu92m6p50fMGOL0QY7BpwzOCfMvnESkMdHAYH3o3xtduAGhZ76klVQegZO60JWEBl15gG6BiJ9JlhQ9tNyrRPYsGQDfBfrbwGBzwkXxa891dqcYZD7uSsVua4cV90sAH0d6HYysDLzDz+OXbUzraaA1Zmhdc7uFIsYeZ4OQXMXPQ9+4tFN9MHhUp+QQWCbiQnayP2W2bH5vLDuD9Yg8NnKikMJm4ygAhPCaBqdLkF3uo+FcZXrgfNaWMCr/jYHx578DOTwXT5PKi6xm3N86/sSHPnsZ7zSNNUFdbWjri7FvsRk70/z/T2E1lI/bFX+28yugEFmdhIGt7KCOB7+mXH8kJjtPQqFS1dLem5V+gOtm5PQJOAE5JE/A2vZs0n9evbFztYdBchfnSmqBABqnQZENlC/SkBIwwSV1Wen19ykPaNVwqrzq/2g+MLm11t+EZ9YigGlNM4fCW6PsTupo3NkmmTgpnVkmKU2GA39BMcBhkHhHFS9l+FxGBebuXKSkY8T9dDq7FCX3+lUeRvGpTddgo0TEDxrjpMt4I8ERi+svxK+htiRrAcV2Xohvw+7dF64qB02AW5tF2i65X3I9Un9iNqwVZFNPoezSMxz3zIn9V0f4TE9M/vSJ5ziCSZBBlU6V+Zeobxe8s+JJ/fCH1qipEgWRQjL1DnNPC5q6bVKel23ix1Wwh/y+2DUot489QDOP09eVx89937mox8YgwRIDjGgTSfs22pHZS/E1kgLyeE13/CiHODMBzcNjfJQ2UxjIZnhB8bDb4ra2PkRYiAoGErvoNG6xugGrS1GVzJISSHPMghJyoToEzkj1YakGsikrjwkOq8LWUVUaoNZ1YU6lEFJvv7L05zUxC4REnTyjY5Lf5DPMmI3mcDyvGcnQBbkeBLDzOykimtlCGE8uY5xlud+djCkwVBtxUaqn0Q9FHowx4h2M96PUhNCsokI6bxCKHUhn7NqTt/T2enUL8nXzwkYYw6ETYz0dXj8ohJc2LYZS6HU4QXn6VIt2FSeSqda0HqaTXjVRm0elVjejQH1I4ZEeWUi0L/m+nNY3B9Y1//7/5Gr3Qa0RdUNqmogeOI0EIYDcRqJ3hOGnrDfFz/T6cnhj8JW6PeGb44N/xgC78PMvZ/4ejqyD44pTfNtlImDQlg+W13RJglAvjkLEyxKE5glnyFGXIz4coNopuDFGF7J1N4TOYQZoxTPwXKvhZkCsPbqApgIBVibY+ApAVRj8IzR8+hGnqMvbNq6ecv15jPq6oqq2rHZ/iXVxV8Tqw3B1kXSuWYCZ+++UClOY1hOGzrxAHZFvmH7I6Z/hPlA9AP986/48PQr+uE9MTicOyb/ruWB61Wkj8lvVWlhwKXf9nRgLt5+2SS9UkuKb6sNG11xo2ve6eqFjDgDv3lCBZwY6efDv4+qAGqwsKY84vV3q6vSmMBSmOqoOWrHQc1EJZ7AQ8wJ0cIcNTFKkVQaFRz7/mu++fD/pKn/K23zjuvxf+LC/09Mux3j2PCAJoRAXeep/QJUPH+juP32K8bnf0og2gem+RkfpsLwyR5nsPh6kf5slOHSVNyqig6RrzSVT0FQcj3Eyy+BVivgNATF2JuSQD17TT/ZwgAWBi1J4pmCEBPAuQZ+8n1dK83V6oD31gQ+vzpyce04eg//6dVH/w+uy//tf+Cyq4jDkTBNxGkipxOHfi7WFmtm8zwqjgfN3XNT2Er/6Ef+eUry7yjDCrk3Jbl1oy03plkdGEwBdKfE8D16OaaMwRd/8Mzy0Ap0kn+OwdMrV3wBhyggaJZidUpzFQ2det37WGw3MpNK7CyewswQhWn/0Q3cu1FeG5Goa5rNT1ODtmO3+yXd7t+jqx1U2yLp9PblQa54/trkYXc2pdezxziP6UdU8OINfvwWN34khIHHw7/wvP8XxvEhsVpGgh8LPKqQQ+2MEnsE3WDtBpXAnoXNtjB58n1vo9j3XCSf6EYbrnXDW1MXK4grZdixsH+3ZvHvWh/qQBqZbMkDFMBd1AOwC/KKa4R17VXFbFoqpQnpnsmhQToqDsHhgETOLKxyoxRDGNgfvkQpQ1N/Rdu8YQd09X9kcg2zNzxZaSCtpQBA05Se0W8i5ukr+v4rZvfMND/KdQ3JBzRfs3yISYOMNvmAbrUkPudDKyygjjIQUnCDSL2kNmSGfbZ/yGCPj4qD10XimYdCGVTIKzeOZtVIC9ijeGs9V81MZQOXlzNXPwk0b1v2s4L/23c+/t+7bv5XN1xWCj+MuMcRN8ircYPIqJ0TUHsatXgVjmJp8cVs+Xs/8sGPHOPMV9NBhkPpkNykA4FNrPMb09AqK/cBS3AKSJ9wTOGtCwhMefZzDwGroSOKXotlzF5b9s6wc2J9lMHKSoeTcMt8kOiDKmziKTGx98kmpo+e974v3oVD9DwGR9Qtxra01YaL7c+4uPj32OpaJN/dp8xNQ7CVsIHzAMjIELiAwokd7JoE0r7mAXy4w+1/wzR+Q/Ajx/4r9sevmOe9HOYy0w0NKBky6RpQWGWx1Ya62hUZ5CmbZwF4YvLOt5FiE7PVFVe25sbUi++nMtymoVCrI1vraawvvsvWxnKgW7Nb8pL+QXIbqtWeRxC7qmvTLKnvLI2+jp596j98aX4cwTtRSPkDRlsqe0HtDlTuU9puw/P2iikd6vNBp0qqosNxBfa894TDl0zTPfP8jHOH1DMI0JN9k4UtnaSvupY+IfVTa2AHhIWsx+VrrvjRLsGwa6bPITGAM8A48ZofuHpRC3ZK8dYELuqZSgcutjM3n810byy6Nui2Re926LajHmb4P/2nP1gHXluf/mxkZzx+XgZFkP34l+HKx7HiG695jIF9nPm12/Ob8ZnHBCr45AWsY6RKe9GtbZPkWwgBPg1osyqwBMudDYxtOmfo1DPMMXCIMyYN1tBgqJhmqd07Z9lOlk11CnplAHh0+juZS+v3Jfdtd2HmIYwMQSyk3ruex+DwCrSq2Wx+wsX2FzT1Nba6pN39NbG5wDdtUhLZkyHR2vbBm1OrCOM8Vd9TzQL8cviKYf9rxvE93k8M43v6/j0uKerkWdc4JV2Z1hW16Yo1jDUNxrRoXZd6kP+d9B1z+TyECXB0WZ6vLTe24Vo3MohQhivkORD7gchF7dgkADLXhWw9eM6CBSf1eD59P2Rpdl5zbepiFZL3i3w/DHGBQxSgYsD5PXiF9z3H6oK2/QylW7S2NIdLjs8dwQkgHFYhs89HeHhQjI8aNUauPt4zDd/KENodU88wpwFc9kvWKRvHcGtb6aG0sMuNkvNSfl5yPSx2hmkQmc9X2fN3PYzsV8Ogcz/wtV1JB9yYwKV1VCawbWdu3s50t2Bqjeks5vIK3YmCM04Toe8Js6MeHfxfv+Pm/wPr5xc9rRbLuwxeAfQl5Fb22K+jeITnZ+bD3PPoRUmokV6vU4tt2a1tuTAVW1WlIHfPIczlfR+TxeDaTigrR4DFQopFVVEjFlIhqpI5dM6GBMqguAzcdOQqCOvXI/vQuUf72sZrHz2H6Eqg7O/nYzljDCpiqksutp8nW6Nr2s3PUe0bYrWRIZF5OShaegeDt6acLew4UR32KDeh/Eg4fMnh+R/oh2+I0TNOD4zjQ8IYIsSAVm0aFisq01HVF1R2A8jAOEQZgMi9unjmh9IzpN7QD4Q408XkmZ4sYy50XXySdylLoAaudOS6mbnYzNgUsiy5O+vasADx1RiwR8006cKSBSM9dozslOatrsHKfx+S53S2GZ2UZ0x7CsAcZ6bxATcLKN627+j8APpGfvcxst9LX9BbITxMTlSm7x/h6U7TfRRbT56/YJoe8K6X4XGYi0WGjjKkvbUtn9mNKIe0pUtvYQiKGU0YqkK4m70uPr9AUrWfWj8sVjALzuJZvMDXBL/LVS3oasfV7cz2JqIrsJ2hutmhd7sSbh9TcC3e4w894/3EfHA8jv8ajOB/fdD2z9YQf2Bt/3f/RzYJCF6vcHgkPN8R+j1xHgmHR9z9e8LQE/ueef9YQODngzR0/+L2vHc9+zBz50emxJKLcUIR6HJisrYlWERSHEMp3iFK4NM6+GWB5dJKUsYs+XJKM8dQmkPNRKNNAX4z0zSvIYFJ2UNs74UdNeeNU9fUzRu6aptCyT5nu/v3cnizO2J3w7S9KJ5dGQReM4ELKKwhVmL3sF4xnVJiiFTjLL5dbkbtf0///CvG8T3O9Tzt/5mh/5o6sZ8r5MHNXniDiihVi+cdIuPS2or/TJrUyeEtQlhil2wCELe64so0pRC/0xW3Shf27zZ5pmZvmKbyJ0ye9TBy3eRXkEBhAekImk7BLYZaqwXgTODmhGZjLJ238r4Gz0BmKnUS4hAnWiWeQrUyRD9yGL5mHL7laL9FKcOb5g2t+wl23LA3lzyh0TZKMvgEcVYQIruvj8SnX9P3v8O5nnG6w7u+SMDX3l5rQD03EI2WpjbLurbGUVeheExC8pVLLD8xb9fl0JvD3zL79OA1j1AONj2xyL1hsTOBzK7WxTphl8I2Lo2EbHyyG/j05xObv9jy7AL8X14+93/M2vyv/w9sth3h8IQ/PBIOj+Ad/vBEODwT+r5sBG4/44ZICJFp1nw7VbwPkbvo+K2TIJT9ShpThkNpGHFrGzaJqZqf28zmWx/wSkhkzCni6Y5OjGDS8zwq8Q/vg+aoHJUWVmGjLB9SHSrXM7MNyYnEvlhMPPqJh9SUjdGzJ6CUgDt1tWHbfcZu90tRCNRXmPYzwvYtcyNM4AwCrwPicpADnNaKgFrG9wGqEDH9iO2PKDcRn37N0+PfcOy/lkPL8Vtm98CmHIYS6KiSokBVWLvD2DZ5d9kU5GCkUQszzo8nTD/JHU8eZ2lItDGWraq4MRW3ypYguKs0OTaJ0dNYT5MOzlm+lQNPclKtTU2z8yLBNVler+EqKTU8Co+h17ZIvA/KocOMjQESs0+a04oYHYZYwif3fubOHdjvv2Co7pnmR2x1SfP4CSpco3zDaCqeYAGCBwVHue6XH+6Zj18WZsQ8P+F8YlqvGNN56XQYyYFQVWE8LUAwUKRq58yeDP7mRO+DNwXsyYe7Hr+a7C8fJV24+HuJIqBL7+HbyvHp1cD1uxlTRbY/aWh+8XOqn/wlIij5v//BOvDa6v7j/4a2MVIbHt7j9/syJPL7CTcEkbjfw/OhKr7Gvw0zv5oe+TD36eDjGJTcdTExw29MU4YPF7ou4SETgT545nSoy4PbfMB7aRkjfQEhsUZT+TnEGYPmEC17bdkpAX9qr9gFQ70aDfnVRwZ/c42+D8LcyfLND3NfLKSUsjTdZ+w2P02y6gvazc+xu1/IAc7WzN0G19TF7/e1QXJ5HYkytQ6Y1G7GHp7Aj0xPf8/D/X/i0AsQPE0PqDDRpT1ijIE5vS6FwdoNTXOFtVuUMmhlUm2whdXjV1YrGcyIiVVXoUp438ZYrnVTwiJzwEuuDVlWmPfHfKAzqzAkPyfrEC/y0jmcZgXkZYBd1NzoGm8y22/xh8VnWwgZ4stQK9ImFt4hzPT9ew7178QnOTia50+pLnfMSADjUcvOYq0AwMe9wh9AzXD18Z55+IZpeiysKblG2Vt1AYFzcN6NEb+/LHU1agEVpkmTSTQhUFg+GfA5uAXsOZd7n9cDuT4L4SHXgiukZ7ixjncXAxfXjqqJbN9pur/+BdVPfolqt+iqkT+7Lf7QA//nP6YUvFgXf3XFRaUIw5T6Ak/0kemo6A+GaYxMc2ToG74MM1/5gWOY+WLa860bmJQM6SrSYIglnPTWtmxT2FSxioqxDHzHdLAvBJJ0XVzqnwOiDnAJODa45etafGYNil3Q7IJl5zPrXCSyObRs8UE/7c1yreiRIXKffs7X7siHuWeIEm7ZK0XdvKWtttTVBbvtL9he/DsJlTUtsbth3kp4ZDB6URy+EiQZtcJbW2qG3kdhsx4+gB84PP0d9w9/w+H4tez7fkBHT51+7zGB0dq0aGWT3PuWyu6IySezAL3p8zXYs+RqyMDJRgSUMzJEvtbiFy4qIsWVUmxTr9qawC5ZJ9nkn990Edum6zlLKKKo0pIk2vty/dekEx/T/a4sXjdlcDhEGRQegsPmc1e6dhXSg2ilOISefvjANN1j7A6lLfX+lnHbSC6GE3VYDmk6HhXjvaL7OGLHCfP0FeP4nmneE/woPUNcAqctpIBDIT1cm5orpdkaV3yRfciBhZzIvfPgfEjnhRz21qe9CDipCWvbAcjqIFX6gksT+HQ3cHk5UzWRzW1k84tb6r/4S3S3RVUNenuFbrdgLOHwiH/6SDg8MfcT8P/4U0pCWbdvxW5uHsXmZpqFYa9Hy0Owpd/5OpFHProBnwatUyJmOTx1vseSVdmVrbnUtaiHomL0rtQCFwNTOvPna6M5DY8sobJRcmn20RempA8KnZjX+RxsTSg+1tnCqNJRzrokhWJc3ZtqCeVaZzpMiHroY1Igy5BoYFAabVrq5Al8dfkfsNUVxm7ljNFcEKpFAbBe57UialWwEztO6PGZcPwG7w7sn/8r949/zzh8WAa+ZGMYwW+qaoettmilscm+xtoNIXi8PzK7Q/m3zicyyit7dwwzJkaxglCGram4MBWXRoakHaaQS4RY4tm2M9tLCVm2baTaKGxnS9jyOmfHJBWBNjJc1lMsIGoVgwyhlAFdMxGoguYZIfmADCMsmTUfsTHiGAhewQTzvC/1UAWPHQPzwRBcxNZSF2YnmMj9g0LfR7q7j5LfMnzDND8WEDiExSdZI3Xh1rZ8apoSrrtWsM9On6gqs+fv2nIoWz/AKXFsXQPkxcv5bbnOgZtu4upSAPfuKrD9i476Jz9Bdxv09gp7/Qnm5hPQljgcCOkjTgPh+Q774Rvc/QNx/PGM4P8W7N0/M4L/0NL2BQgMoLstcR4ldMNY4jyijJGJQPo7BeAKmj5GhugLQ2eOQbyktCmgZ/Y/ybYQ5/LZsGpq129ciIskN7MA5XNZi++PICCV0rJZ5wfgzI8oHyDzxPgYHCNJIonBmg1Nc01ld1i7E6/P5g00V8Rqg0sHOJ8M189B4O9aCZuVz40wKJVP3n/TgPIjfn5gmu4Yxzuc75nnPToGNsqglFpdBxI6GVG6wiYgGKVX3n4eHQM+j9Xz6yADmouRfQYvsiQjW0DUWja8zPzNU/tyn5zIBIS9F1bMxlDeg4ghlmlULl4kQNsrj0n2EBqFSlYWcpfI7DaygPpZSjIFCRHz/ohze4Lbo8fnIvmcektsIMwKNUa0CygPtj/i3QHnerzvKQbuMdtCxHKtXnxkJu5K1pWlTWtF7dqj6AXrz5kCAs+JaZYneFMCgdeeXuv1Iq1+9X5VWuQzplWY3RYT1It//8cuvbtFbxJDLAdEeJemgSPKe/AehvHk3/nkuZ0Zc0cvQxanKOFa6+tZKV3ANFikm/BS9rn4/62ucxoIgYCga+8/EGDAh7QhpqA1r17fGIbo5VCZhlHi8SnTekcEZUtjVNkNbfuOuvkEk2xiYnOJ6zZlSJRBHuAE6FmDwelFvv4euFl8rP3IPD8yTQ+M04PIjPyROjGq86FnjIEYkyQajTY1ld0UaWf+yI3bSwl4TO9R8lnTmgpTZIxrb7l8v2X/rsoutSFP8Jf6IDW5+LyHzIBJtSHKzVGDyPZR1FHsfKYYyvOeg3/ySkY0yEFLmPqTkibehwnnjsLa80eUl0TkSmvm0eInRQzgJ+AIeowYFzDjwJgknjnkQvyBM+svrn7+ohawSlPpfJ1O1wkDMA2D5OvLgS8f9ko9IA+G4soaJt/b8n3PrSCyv1226Kh0pO089QZsqzHbDnPzCeb6k5PwsT916c0lprWiHkrhn2Ga0N4Ta4fx8UQ+OQctjNoY6FOP4BCgRo4c0nyLxYZO0v8lvGW9XgS+nKiF0vuy8pXOtlMzAsqI5XekDypJSV06KBuIoYCna6m9J5bhXLaJeQpTGSJPwTPEQFAarWqMaWnqS9r2HVUlNlK2efMqyy+DwPL56XXOlmvnX9dBwB78CPMeNz8mO5RnQpwJcWaTwNqF7SRudEopkXWalspu0/WyZ7XgFY/YvD8Syx6cP3IfUepDAs2qpAyQviGgjdSGdWhivkeEtbQcts+tBEBqhdQeVdRkOipm5UvNAla2WGmPQSTqow8MweF8n/b+g/j+zR7nNNGAmxQuHeymCfyoMMeAcdKnnVhC5Npw1i9kmaleMfGySmD9O8ufC0s4g8BzYqKdWMGQrI6ILwZC5fqcPStLnZaPug4FaDO7GnN5g7n+BFU1qLpFby9RVYtWPzxKUnUtuq2APcYHQNjBZubEOmuKSH8QJItDsi1yTZc0C3nPVVGw5Q9NxGc/eHL/v1gArAdDWSFwkj+iMgtQBsbCDA4nNdQoXfqnWt7M5C8r78VJ4jqnA6OcJTAEzyHOpeYNCcTXuqWuL6iqSyq7Eyup6lrOGKY5qRHASR/xvdc+nSeUm8APhDTInOY93vfpXvXFpi3b6qC0kEhMjTWN2ODZLnkArwZC37EW4CeUGp4tUZbeITNTU9+qFnVABoGtlT91le9j2Rc8Co38PT2sBqwaSECpSarFvG8sJArDrHzpM4FCiCneoChMhOAnsXbwA9GLnYZxgThqAgpfK6ZJBt3zpNBjFBB4lL+fr1Vc1cq8MvhYpPDpmqwzKmCRsjuvixIgq1PW3rkyKF6z/layamECnPQh676g1mK/kRmW1VYYwObmk2UgtL1Cd2l/MAbSGUCr037/T1m2iRgj7Ek7h8TmzFkgqvxOQ5Th6hD8itm8UHJ0suHKKkKDLrU271zntiD57BxzbTjDBUKyicmD3ons+Z+sN7zGhJe5F7mOLz3Z0s/m4HRiPLFnXHuTT6knOiYlkdSHGmu32GpLXV1J/1Bdoa0oDbMdzJ+yVMoOwI0EJ7k48/yMm1PoKdLfKuScFtIzprRN4ZAm1YVNUg5NeL8MhspQKA2EYK00JA36pTbUK/VnPlcUu5jVfmVtytvRYCqF7Qy6S9Z2OS/Bi31h9PJcimWpWpjbgWQ3FUvdIyY7llLvl94B8jBZfMSjioTg5BoFJ/kLIUiQb+KleK2SrZS8VufAjk7q8HyQelJIZnKdF+WQOgkrzBiM3JNiqZSHj3nfyYPhkzMCS7+aQeA1YQTWgyG5Jrk/aypPlbLCqo3CXl5gLm/R3VZ6/ZtP0Bdv5Jt3W3i6QxlLTA4Cev+E2U5ofnhtyOvPjOD/jlboD8IKPjwS5xF3/y3u/g7/tMftZ56/VXzzvuPjWHHvNb8NA7+fD9y7MXl6AkShwBMWOE/lorlMLHyMjEkaITYQ8nW3PvBBcVsKkBqaxQcnN40amM6aliwXzZvBnIpvIMkHlRyKGtOiTU3XvmPTfUZd32Lslrr7nLj7Cb5pCbZi6hpcY0+Zv/mHBym4Oh2ydZDR7Un6t/PJp8dTPT/gHn9FnySd/fANh/5rpvGRnO6tgEP0ZLxLPLxSM6PkMGesSHj02iMpajmopBVT8ckFp9WmGLXvUpprp1QBFduUVpkDA85lW7DIlwDsnDxys2l7Yv/pqJi9FB3jc3MiDZ4BaVji0iDp5BMs/5ccWkMUiUdmgs0xCKNZGQJwCBOPT79GKU3TvKGub9k9/hVc/AzftCjvJUwjeFQQeWd//ILZSYPs/FgYUHlD1PEUrCwheomdIkmvq/sswDxqtD716vujgh3WxfwPHPJ85MTzwyT2YaUDrRUPpWpn0dsd2v9pzcJ6heMTIVZSC4YDcTgQvUvsgEf84UicHOO943CvGI+GYTD8Zt/xj2HiGz/yHCbu3MAUgxzO5W0vQUX5/c5DmTUADItNTJ7sZ9e1cqhDmMUZ73ZRvnoiD8cvPpJ+CRZa/5wlcdwXxvFiT6JRWrx1u+aWbfcpVXWBMRu6zc+otr+Q5szWJ0Oi18Ad5RcLCOMCpvfFr0sFASFzuIM6vmc6/IbDdIf3I33/ew7918zTk8CRMeCQwK2IBEOirLDotcGajsp2mDQket330xc2T4yuePvlEIeNqtjqJcQhB8J1CrbJRyoHamX/rhx+tK4T8xhOkrCzxAnEQ7LWgSloAsljmBxUGTCIVcisDF7HchgngVoxSoRc9g/WStEqzTFMuDhxOExlOFbVt1TVFTf3v2C6eoNratrZiSJjGqQ27H/DOL5ndge8HxLDYc36i9i4+GxtteXaNtyaVtKOlVk8w9PvKQzARfKdvSazRPLgDHMCFvZRnUi+p1dqQV7nXyuHbBaWdtVEqq3IPVXXCehj7HeEl/5xK4xHAib1Cc/4/Z44Tbinnv6jYzpqxt7w7V3Lb/ua9zHwGGd+6/bcu5Fj9GUvk2Y7YEngy6ohn2LARAH5hugZk0VLtn1wK3XA2Y1NBiUAsRFBhpRj8CkE0XGMc/EVzB632Yai1OHUOwzRcfSuqBP2fuaQlUQKlG5p21squ0lKor+g2/xsGRK1t8xnSiJv9avDY5Mto5KfnwoeM45F0hmHj4wHuU9DmOiH94zjQxleKCQoc/ICEwSlMabDmg6lLZXtig2EXC5XAl5E7j0VmaekfU/kMEYdI82KDbxVlfQPaYAjCpnArnbF77PtPE0ntcFUEdsqbCu/uBsCpgq4YRmWnLP+YHXQRhQxbfYBTQdvHyPVKqxElcl7lD4igTDHOHA4/F4yBsb3AGyArrnEd1uGix37y4pYaXQf2Dz11Ps92s3E598yDF/j3EF6Bj+J31+6A22EjTJ0WnIXbm1iQ5JBmPT8rDMUgrDVcy0YvLB/5uRRn4fEa4uoaXXHr4dCp4e+xEwugS/i81dfiNzTbDdLLTDJLmgawXvi/CMOdD6IlHyYmJ4c80HUUc8PlrvnhofJcvCafwwz/zI9894t6gC5LMmeiOz5aqi1KT7xhxRAPSPPYQ6MHIMXy7h8Xlj1EgHpMUZ8GQx7lXJGlGJQ8r2e0jAjezqXUKcIJizAWqnJqUb0MRR59xwDD37kyU9pQOR5Dg6nDEqLzULXvWW3/ZkAwGZD3X0O7RtC3RGqCl83zE31Yoic1QDrM4SeZ9m75iMEhx++5nj8gmH4wP+Pvf9qliRL0gSx7xAzc79+SZAkxbp6esjuzIIIBBD8ejxBBA8reJiFACOzQ7q6qqsqszIzIm5c4sTMDlE8qOo5x+z6jYiMaGzhoU5K5GVOzI2oqX76fZ/mPGGc3iGGIwwMSECQk8k4SZZq7QZddwnnt2VmQM4BITxKIzSUWACgNEcLSzjNSFn8RClgY3gQODP/ng6AunYZL4YA7zK2Q8LuOmJzyf6TbsOMPwV7aI4I+wgXIKxgQj9lZErM1BTGH7LhOACdRSKsbcNNfwf+u4WB0jz0zukhMypSxik+4uHxd5imWwzDK1ymCZf5PyBtd0j9gNNxi8OlhekI5oFw+eYB3d2PQNhjPPyz2EjNEj85prJtmVhtCau9a/IEQGKcBZC0YV7l3woAqe/npzSFnDTSdTCkxgP1Ih6kTugviEkjuwHu8hp2sysxATkinw4lLlCK0vidPzs0xMkgOFYSH04ep9ljTBY/Roc/5ohb4nvqn+c97tKMsclv+Mgx47y3bD1S1XwcF0axgzvkFSNYagfNOYzgCxY8a+AkdbKDQbZyTYuF1NZY3BuPS3JFSq8NNn5vbQhpbKgNIQA4oVrEJBDey4BcVTrexhH3KRSyjPeXuLj4hXgC3+Di4tfoNt/CyMyR3G9LowgActMgsinDT3MBK20IsNMjEA5Ajgjjj3g4/gnT9BY5B0zzeyGEsD6g2dmwsGIJU4llIR4Q08iWEHlGSiNCPDU1hKgLtTmn1ihEyDRhA4ONYY/3rfVSWzAecQmLV4bwuo8YfMJuG3H9OuLiFQ9dt72D221h+h5wDjTPsPMMShmUM4ybkULi6yezv3sXTWEFO4MaywX83VonSSjXhrztSjgsXDvMmHA4/YiLh/8VQ7iH626wC/8WwGvEwSJ5g9OlET9xINwb3DzukQ/fIYV7qSeOZVgeIaEHysyVa8fKN82h6kyEygLW+qA2TOrsICWLFHUALUHgvsELih2nxMvOcYN4c5nhNwb9Tc9NoetXHA96IRnKNZJPwgQ+7dnnOH05C7hdfwOC/5orRz6giQ9suvsJ6e4nBoNPB8S3b3D88z2mR2A+Gvz5hx3+y9ThTY64pQn/ON3jL+GIowA+pFcQRRgQnKkdOwDi2yOyLJF/q6QriJSjBW/L0BeAu/kAMmXFXgGqB1tvjHqzV8BX/fGM6eG7C3jXo7cdhv4G283X6PwVA7+bb+AuflMknPP2AtPlthRt5A2oM+dZfJFgJgZ5TMropoDuwCxV5ASEPVK4Q5zvkSlif/oOj/s/YBzfF+AXFNBRwcyQDDjZgYExHazr0Vv273J+i6506Hipj5fJAUm7t8Joc2AGoSZrL9xQ/Ou2YLnAzmb0NmPw7B11sRNvv4HlGX5jFuxmxd3jSHAngp84CPvIEsApOMABLqGweVjCxM+bQaUrqEProlHqtIWxHjZ3CAblhu1hsBGZlTMGD2nGu3CPt+/+I4zxsG6Di+03uNj+Cl5ActP4wobwiFFlXDnwRHRlBQvg4+R9DKqP7aXrsLEO37gND8oyVR4Yk8Xc1E+tx1c78CkB7PuJWuCdkEXaoV1iemqaLsFcPZaTdpkBbCyxubuXLv/1FfzLr+Hj5zOC090bpLBhGcjhvgDB6eEe4e095oeEOAIP7xx+er/FXfC4zwb/OU34L9Md3kqBdyhe4TxWpQzMkATAyudRCV/L5p0yqwxmYt6PyrsIlekTQYAwRZMUfQBq970pCPV5erPnJpLECdlGYzoY18OaDn1/VWSSzvXYbH6BYfsr7sy7DfLuK0y7y8Luy51DHCQwWGHyabNIvCC1WdQfJ44Npztm78x3CNM7hPkWKU+Ypnfs8ynALwMxURJi6d0bjyhsX28H+O6iMICt7eHdZjHhm4iLqPbn6v0Z0YNBVLWFuHZdaRItZVsM9FztAnxH6IbKNDOO1Q/WGRihrHZjRjgQuonZINNRmkSBfbHHaFl2C056erDlCYyv14TJADxGkzQaCsM5IRMQqfq8XdkOO9lP+zzj/uG/43R6K5Yel9hd/Brbt78u8teQxgKizfN7HE8/YJrv2Zc9jQL2iO0FcVGnXrbq7fWtG9ivTnz/lLWUSKwfGluMkGxh+ozZYp9b1h97AGshsS7yitxQkrzqeMirRwP+dIkTvOsd7HYDd/1CkruB0ZnPXPnwgBwtN4Xu75EOJ6RTxOFNxu2PPR5OPY7B4XfB4j+JZdQxR7yLI+5yED9KgiOW51rxjdtYV1haCdwgDuLzGygvgNh1gfdkG0VJFAsLMy1YH7rO3cYVSNKchMD2CjypnAcpWbdBN7zGVpotm+FrXFz8mpk7boC7+A3S7hVS1yGID3AcfGkOLfKISMzmk69+ihgeHnheQJyQp7eYTt8vfD7H8Z2ANTyEd8FMNR7WbqUp5OH8Fn13Ce/0Xrgc/sSMnlRyBwaA+X6Y4okbIjTDETDA4Mb1uHFDaRKtvf2u+oibq1liA2FzmdFfOxhnxI+254IOgD+NiA+j2Inw9RtlIJE2S0K2SMkURvClsUjwSIbvlZ0Rqy84eGOYgAWdhiAkAcOs4MtMGMMdpnCH8fQTpvkeN6cf0XXM0Ly4+C0ud78G+R4mHJGPPyLO7xBzxDj+BcfTD5jnx8ISAqXC7tkYi5d+wGvPTaFf+12JBzo8M5Epn2s9V2Ht+6kyYm0Qz02esF492aIQUMXd1gBbzeW2ERfXGcNXO9i+g7u+gdnsWEsLsNoHYCu44+nJ63/qonkGkUHcBxxvDQ4PDvNs8ZfHLX4XDX6gGfuc8Pv5AX+c9zgoAFEIc7kM/roUj3ptDukcEAV/NR+IAubo7AAAaAf+BkrM1ldGIQFzEw8sDN6ZsbCzWuamnjttg0oVQxofdLB0kOM0gUBGrJjcgOHiJV5svi4N5M32lwz+dpeAG5A2O0zbC2RnkbyreURDLjFJGGSB0O/3JTak8Qcc9r/H8fQ9Ug7i8/leGMCcIyo/3RoD4zo424sHMFtGqQcw77eEmE6guC8ewClNC1KJrpyjxIYJALFk33e4cT0uLDeRS5PIGB5QOAS8vJ4KELm5AfpXWxhrYfsOZruFldiQTyfYzQF5nEGJYFxClvuBDkxD5PrIkijjSPxZjTAArS0ASRkqzIRNJnmI+uTCeoQcsN//EQfzF3TdJeb5DtfhDr57gb6/wfD+W4SrFyDr0B0eQfe/x+n4R+Q84XT6EaMoOXkQ1AxHvA3OGFy5Ht92F/il32ALx3YxLRM48zwZvb+PiZvDaysI9ZhtFSoAFjkCD4ICIDFBwaXOEDYu4aKPuLhO2HzFA+K7r7+CvXoFu7uROUGi/FMguJGC48x58KlrOlk4a/F46PBm7PE+WZwA/D5NxTIqgnCfZkzGwNoNfyoK6KkOKL0Q66iNdVw75ISjyPYnUSYfZXZAkhwhCo7ghF3OjWIDgMFDzR27bNGZGV6ufR6SzDVzUaM2dlzrpYCcxqgDhZK3TJnt5g45ckw3TObqt9+WPOJi+wtst7+G85dwfgc7fAXavkTyHci5J02idgC9CxHd4RFmegTSiHD8Dg/7f8Tx9ANynhHiCWF+REqs4jLWwZoOXXcpP6t9nMY9KwpCfo8QT2KhmKWWCLVuNjzPx1jHTSe1kJF5Rj0Bl64vdnMXpsO15XkCPQxeGYNfbCe8fjmhGxiY3P1ygP/qFccD62C3FzAdA5MURm5QhBmUEmx3jzTvy3BzSmI3RRmIMrMDpgCjWzHJ7JzFIRt4MzFWxJVVGVLsjMEpJ5xOP+DN7f+Cvvvv2Axf4yYecJn/90L+GRAPHcKW76WX747w736Pw/6/I8YDjqcfWK3VWELsBFPwxuIrv8Ur05UcStEcZQJrHFA1wAlP84IWCE5NLcS5tCgQDC2UCIzzJGwvMzYvHNxlD//yBfxXv4J//SvOD2RpM4iEFJbHAzeGRo4RxjnAfUAS/4nrb8Pi/horRw7688QXVkpAigX8SQ/vkU8nhPf7ktQdTh5/mTr8Pk34KY14TDN+CEfskSWZIBhSUYawp8ySeq8MQAfzJKnSryr3bAu9FgAqk6GxBHfUoF2EkDw53vawtoe1Hl23w9C/ZP9MAXf67a9h+xeAH5C2NzheXxfGTu4MaKjAr+2WUh6ggqI6xVK79v50hN3/gHj6ETmPiOEe0/QW88x+MafxLabxLRxF6IC2re2xkYFZt3HCEYB1WwZ7PA918SLpdLaTqb4q946lqAOW0gyVTyvbTztyl8YKECwDc2Qg3ODr5FjXMZOn21n4y66+YsoiyyAYV45GBYejgXcZNhv0NsNlWwawQbpzvRyvBSMYKuvk4RXZzDBwmCnB5gRYh50wbgbDntODcbhPMwIljOEBj/GAcbyFtR7G+pL0AkDKETlN0rXPIqeNULhQlIAwQJG93vger2WAFXuemcW03xBtnfy7KvaYAexKMNdAXpI6Yflwx6/KmXRZmOJvtQZ+isxO2Ff9BfHQl90NXP78wJyPD8iYChs4nw6glJD2B8wPCad7Hnr19n6Df566wvr7fXjEd/Mej8L6U8sV7R4YUJENqk1MEgZfojr5G+CkLlIuSRxRtYrQ6x7gBF+T4NY+oPgIljMTZSI2JDZY69kbz1iRYjFgYm2HYfgKm+0v4bsbGLeB2bxGvHyFWIAdufkr6MsbowcNxhGMxIocjPiyVo9Pe3iLePwOOY+Yx59wPH2PcXqHlCPm+R4xPmCgRmpsmFadiXA0BOsGdN0VjLGLieP2zJTxJLJHCxRZrfphk4AZOrmWY0MnAI/DFjU+WPH22w4R28sEa4FuIPRXQHfpYZSh4CyMsBaMmwAkGJfF84+TtJB4gE9HBkFiqDMQIMBgSwazJG2jscL605hm+JwCM4mTAAPeWOxcV2SDD2lm/9b5FnMAprHHNN1hO76Bd5sCjqv8NaWRpbRx5KswB4BkwGHDmFZP4BvX4yvX42vji/dWJ3HBGRRGguIdU7SYs10ygFG7+Cc0apkV4NOCwM8tZ6pth/fC+Lm5ht1sa4ff+nJefs6i6YBMFnk88cA48Qg/Pji82w/4ae6wB/CP+YTfzw+lwDtSRjYOzvYMrlMAe3dbdJaZIm2eMFMuDR0d+qJM4Cg5gjaG5IwoS5tErddsbh6rTadFboHKFMslbnFhY/0Gg7+AcwOc7TD0L7DZfIuuu4a1A7rNt7C7XxdW32m7xbQbkLsaD9oYYSSPMBbIDqAJMFJjuxDhxgPy8UfkeMA0fo+Hx9/hePoRlCMPgcsjNk2cS6hqIWsc+uElNsMrWOOYDey3sHbgz5YnxHgqLOBMCSmdSixIuZn+nfk46UDGja1snkvrsAXHBy1gNpYHjgwXIjUcCMNLD3+9ZXuxvofdbmE6LndSvxdGT0DuMnJmD8kYOWdsrx1Azm9iplYC4MDniDMGp0ajY6wTQKY+tzcW1npcyPE/5ojT6UcQZXR+y0DwfIvt/A7Wblg+O98ixEekNGMO9xin92WYjrKBHR9eDDLg8Bu/xcbw0Jcb2SdqlQHUAUNtQ0i9//aNFcSecs0Nmgax5gYLn0tzJi8As/86K0qhnYW73MFut3CX1zD9htl/zjMQPI9S3I343EU5IQcmBugMkSk6fJ8s/jEd8UM8Yp+C1AwE7y55X6YJQISlpcfyheZsoDL8UeuEdiCcxoMntlG6n4jzK9MCOKsQqOCxMsiXcuG6VL2kTesZhGwsW6xYh767wmbzmtV67gLb7bfYXPy2NJDXc0a0iQwAqTNPmkQIXFdkGFYOSWygPOK0/z3e3/9nHNUDOE/wlHEp98kxZ0RjS53g/QW2m68w9K+eHjtKopIbi/+1Mlyrr52V/AkMBBF7f3L9woPAWxD4slESbSyJ72cqnp/DVxd8fzoD9pjNAXAOtj8hzwF+PqEbCCnkoq5JjQWbAxWLO4AHz8Jk9HAIJje5gyoqTbGUguUcYqSMSCOmecLjnoGwvn+BrrtGP9+jC78GrEce32I8/BOOx++R84RpvkMMhwKMtaz2zlgh3vT42nTowV7J1tSzNRFKY6hVBBSGKaoVBDeMUyWPrJR0SQAvZwigyopmqz+SOgHw1zsG3ndXcOIJbPqBmcDzxMqAFJEDf09fqBaYZwNvLfazx9tk8UY+wx/jHn+e93jIPNSTDCvanNuIxVeEBxNyvDHYWl+tPogt3TQv0KGAIaeCHei1yvtGhkYS3ysjsaJ4FmLZiGVcVZsTrVV8Y3nC59yylawzDLSO2efAc0soIRLhZAjObeHcFp3rcbH9tiiQSx5x8W0ZBhdFIaBe4a2SyCQA3sJmqqrjcEQ+/YAUDzgefo/39/8V4+kNdNCrI/ZfJ/BMDuOv4Py2NIS09gEgc0ROpTGc4gkxHiQ3qAo5cWAAkJkBpXgEqg/uIDmzgsDMgFW1APtWX10EXL2OzEy97tB9+zX861/A9MJSt66qVxSUDAJQpgT/cEIOCSkQXGeKQtkKMUJVMkC1InQAkoD8iilp7a/KHgAIOWA8/Yh5eo857NF1V7geXqOLr+FPrAb1E+dX/f0t5tN3GMe3iGLPk7NeuVRmLFy7XgbKdmW2h9q38LnKKxFbKbVs85ZlfqI6QH2tZLM6DNUwQzOBO2CqFuoc52n+est2ktcv4K5ewV6/qqD7eCj4IIWpUQinohSAWMd+6fqbR/BfYdE8g2YHCiMDPRr4D/dI+wek/R75NGJ+SJhODuPEE83vARwo4pBl0Bqx4MIYB5D6KHLyQqi+fslQSSgsqQ9alX4DkCFxvMpXOg8Gt39rgbMnh10kTzDqlWlhrTsrlwbEZ6vYGDDQoIVcjqhgD29A+dZOGcM+oDudOGE73SNNb8s07xAfuWscDxJYR0A4jCT/IvEwvEic3Bp4WNPJNnf8Tz5Du/0MBi+7tWvfW4N6Y2v9FzVAWkPoHDX+Xewh5ToD2xm4rYPpGOyhlAHHzGdKGS4RosvwHsjWwEbx6PnIIMlPmTPJgLYpx3l9YSubuJfkIGWWAaZ0QqYOJlk41xewR32MNGFTxnTxSXombrSsdoADtPpA6T+Ak9Mosq6cDWbxA9ZgroFcfb20o6cBPEhgL59PCxIB6xIIPZhtsAcPm7sKfC7MR4N8OnHA/nzSH/J4RKaRm0KnIw+KnGekw4T5yN39eWKbiz3x9Nu9eHsFTREM0Hp7yUfg12+Y/hw/7IKFp6DwUhmwfA2NMi0g3MYCjQ3l8QYCqRruYJsKBhvrZaBaL9fZAOcGWLthENh4QFjlrT+XDYTcGdScvjl5bP3JxozuGNGfJh42cHhEbmLDNN/JxGmRWqkUs/k8NeFnxpspQ56qB/A5EDjnJKBPBT3rVF+OD9r0UB/31j+rjQ+9xIa+F6CxA/yG5cZ2w+COgsE6Zdb2DubEoDG6mqQ5S2XYBhctT1kWa9/LdpkmCVf7IN1X2s3vBGT0ie11EgJiGjGHR/CUcyyGW8Q01aIXS2bZx9Y6lrF34VLe3sq8ysTvEg9oEQ/4Nal5vWWDaCZm/RVJuHHYk4FLFh0Z3ASLNBKyDHMz/YA8HmDHAyh+fuc9Pd4hdRbp/h7xfsL0yNL+44GHwt2DQayHxP6YkySs2YDBe2NhyPDhlo+jwCyzeOr1q6uNBeV3q+1qAeEsjbP62CUIrHGhzTXItK8h6gBhuHi3KVYr1vaFQer8jpk73SXI98hdVzz8bKZ6KuUK9JIFEBgABgATgP6U4KcAmzK6wx50+hFh/BE5T5jn91yAFSuCxLJnaXqp6onjoa3DISVPKPtH8gMdIqtN46yetyUuLIfEASyV1PigvsDVE5jPw9anfthSaR7bbccT6KVYMF3PrHQANsywnQfNkSWgVm1k+Ii6M9efEzupNtZ+TFJY7hEaNYxBMBZHJMR4LNf87DbwfgdrB+TMOVuMR95XLSD2AebKchBRXYkqoJhU6tn4/2k8aGPCCXVegOYFqdkneo4HykjWYStWGc4AJ3I4BoeNMxhPFuEQ0Z+Y7Wu6HlaYPcZ5UQSyMjCPnw/2pIcR0RhMj8Dx5LGfPQ7J4Z4yHgUUqXNENBbk4qHZRvvi8Y16/NrcoDyOnuaEazmoFvjPxXO9fwDMGFZv8aeP4/dXQxCOGwy08j+Pvr9G312j665g7dD4ezIDOPvuicenDQnkLPxESMmCogA7ohBwMZXYgPEd4vwOOY0MQCb2+Cz5LZa5Aneltf4Ru4nGQk/jQs6hWKXp0KcsNhB6vhtoHmVLfFCvSyfMaYflP507snFsIaXKQvb83MButgL2OJhuU2KDCSPnEM7BuMSKgqaB+ZxNqiplNE48jQ2GvT81B9WcwVh4yf8TEWI8Yg4PZX+x2nBgJdb8TuLCJOqJtMgjPnVliWOZuE4A8CQWLMGfpWpQSRMtINze99gflZvNp8wM6jlYzEdgM05wAPLmWAZAGQHY8uGeAZ8Uy8D4fDoijZ9fVBxPHtH2eIgcD+4pYp95jshMud7Dyjmai9LFrkhCvO+a+HDmem+X3i3sKp/UGSNMLmt+V94jlcaTlXNbh08CwJrgVpQKYKXCMbNVhRLUrKn+v94N6Lsb9P2roiSy3SXI8bBpzSNMFpsrsZAzOsQyE+MMga/f7vAIGt8hhvsyA2ft7902vJkqp02dLCpiVz53iQWqDkpjYbWiiZW1wmsxGM6wNDYom7vkDpo3QBrILqEf2J6g2zm4HccFu91VANhxo60stS0AZIbV8tiuCXvn1ofqi/I6spcSRW4+xRPm+Q5xegcPwLgNvNj0kHMw0wNSZO/lrDnV6vxsG43t9crWj4bVHLJtZz2BV+SxFjMISOXacDDl5sdqO84Lxsx1whAcwsTDXY2zsNujsP8nzgvmqVEDpDI4Pj3cCjA8I+/3yHNAOn2+bUz5/B/J4z5n/c0a4iMrPd4ixQ7p4R3bQewfgJwQb28xvz1gemQG192bDt/fbfE+Omb6pBF/mvfF6+ZEWQCUgUvxrN6NhAQekmByQCd+f72xOOXqD9oOeMgAQk4MJq1k3LoMAJxJ6FrQB+XSo8J8Q+NtlRKftCkdkcI9QBEmbuBywmYeQb5vJnC6EpBNErataP9NZE8eAGwMPt8hhXukNOI4vcHh+Gecxjcg8dpLaQSRdtR4i4PEgbmAkvwpreWhM13H0725Y7cpzJ7FZy8ATyqeXpRj8aoCMjbi7Xfj++rtp3IEA1z7hMshwHvCxS7i8ivC8LKD6T1s55lpumFmD4UZeZ7FTiTB9EcAE6zNSAHIOcuAtMzSrRW6uvC2as6BxZLEVf9FQklIJxkkkMFNAWWOZDDzGTngmE5I+QQDi5gcrPHCIlRAUPednjnLZoIWA+c6SpygcZB1sLCRiqdPSCJnFdBnn02xgphRQVMN4KfM/pe6L9rp18Dy/a1hBoN2xF+4AXu3xe1xwBbAFBz6i3cA/hMm8/nhZfrDf8PUGaTDCfP9jHAkpGCwf+/w/uECj+L198dM+F064l0acUwRP4UTTpRBxvFeLtJEALBIYN887lYuvV31s6YmHswCVBagbwUGLY5JwwYGluCPHl3GplUt4OBcD+sGGKNTcS/RdZesJPDX8rc6VNMGToQdAD9NJWEzmVm+JqXi66me1KBYYkOU2HCa3+Nw/DPG6bbYk+jgQt1iA4tZhzZAGz+WWUdui76/atQBIqfMKvGOi+JEfT8L6y+eqi82BQzSpd7ZDpeOO/Y6vEC9/V6Ltx/7dyVcfOOK1LuNDQBYXQIAOSGfTgDuEV3gKb+J/caV9Rc/4GW9jhHK8NZljEEy3FCxGcgWGOR8UlbZjeuFXCVDTcMDjulU4oExEhv0vNGGWinsxFvQcN+PlLkuTJITZZwMS2NPwmTuNRbkOmX+nNffnnioooK/PCglSYEqapmcF9dEW/C1wNzGeLxwPV6ZDn02ONxfwP6B8E3Yw2/22Hx1z4nd4R7zFzSJ7v6XPyE6j3Fv8HDfYT91mKLFn4LH7/OMt2nGgQK+mw94E0dM0hAy4P1sYEAi0IzyXSa2hJoM+ySuV9swVpuY55Y+OxEtegttQ7mwaEuPTbdPGyyDWEgxk67vrtH3N3COWcFd/wq+fw3bCcuvuygAD1lX/H39ZEuxto4PJkriHA7I01vEwHYkx/l2oQ7IaRLQYW4imq+xQXIDqwoHx16kWlAzmMzgHk/3ZruHJDJf9QrXv+tXHogWYChjZxwGK4w/54ud0xYGNwBedwEbz6yel78I2P1y4Liw3cJd37Ds2Dku5oTdA0BAyATjHPIc0M0Z3ZHQR80fuDEdVgVbnTVQQZCAtMoTubjXAkmbxco8t8YgJcIxPGCMD5gmj3F8j8PpB3g3NPuCY1kUFRG/uC15WvWsr2oePb9msBWUM6wUCJnB8kwGJxkOWWYFoLKAEwj34nfJ534qvpItA7BtghbmGliKfus2+Jo69MHjF3OHnA/4atqjGx4xvLxFf9jDP7yD6TYLqe30BWDPd/+Z7yNvHjf4XfB4kyP2NOO7eMA/T4+4SzOzew3fs6zxyIgSE3gpkHkSebd+Pl3rHOFjqz7GrH5evp/mCy1YUptDjZJIrBWs8fCNypCZfj36/iUPkfU7wHjY/gVouC41BTnHMUFqCI0L5fs4A2li1kkaq51cnrAPD5imt8XfM8QjYjiCsqoA2TLlpPvNdujcVqwgmEyS0oixaYKqDUybh9R5Gai1ljEwlGBsByAjU4QjwoXEhgvri30aN4csXhmDb7uIwWe82M14+YuIi9+IVdHlJdz1S9irVwugR1l/ydV7MvU93DjDdRPPH0iEGFYxwbAEXQdSz6vj3MZ/Pe6ReDYEALF74tfscsJD2uPx8Q9lIPcwvMDQ/1PTJDpIPZe4ga/RR5oapfEo8UkHkGpcGHM706XaQOjf29khJwFO1RdbLQfa60BBYbU2GawrecG92+CWOvRw+DpcIGWDFCb0FydsXjxyPTceYLoBNB6QHm6RDtxATvsD4sOIcMh4OH2+NcR/PAzonMMPeS7zAqac8D5NrCg2fQEmqahUWK1mVvfxKSdkQ0Up0JJIeB8AGpudqR3elpZShq+bWmO1tUbbOG5X+1MbMzRuZG2UwLJqr3+F3g3wbsDQv8AwvK5KouE13PAV4DaAG0C+Lx7AnCew12/JGcKxeP7mNDLWEPdsaxYP3BiKe2RKiPEAogznNlDCE6GqpFhR7EvNkeIJOd8WghQJllBtpzI8sUWH7tsSWQls6ahxgxI6YpWAKkAvbYed4fhwYzy+Ng7f+oSNy3h1NeHlrxMu/v6V5Awv4F//ioeZqmqlPQbjAelwz3mE8zDdA4yzPKPkGXaZzvUoHrxKhDMVxm7JRpGEPW5YtWYoI9OMaX6Hu/v/ipynYvejQ4GN8TjN73A8foc5PEhzbUkuKdvTKOX1mnfy5g5GiCv8+2IFgaoGGCUX0FjQqupVLaN5QSfknivX4eQzThiwzRZfpw3sjwRrR/QXjxgeuFFMKcJudpUBPPP9KL5/i/DjG0zvZ+SZMYHpZDAdLfbxU2h9H15/A4L/Cive/gVx4xHffo/pz3/GfDsiB+B0b/B453GaHKbo8MPY448545Ym7HPCP8+P+D4cmk6Xg3cXcH4DUEY2notpysjZIWLCkTIcMfu1MxadgETAsksf9aZZYdyalMlj1j2c9mcFeyoITAKQRlh4Hn6S51IkxXiAtTyczcQDbNzD2A3bCQA8KRIAZKBKTlMJvOXnPMlrnRDjvsgp5vkB03QLRxEWLK28kBt0lqL/AALgq69nd4nObwvbrxN2CoAnjD/1y6rATy5DXVIOAvRwB68j4MJ53PgeL+xQvP3Wks7Lq1h8/TbfbtF/+01h8NjNrvjGUJgWliKmvwNwB2CCS3y0UmCwp0Mukztr8db+owXLpT2O/MF5YFci9mEDZcyUEHKGzJzBhePBdwCwtR59cnhIc8OwDYgmyPligQX404qC6/vXm/ty+xKxv5N27wIBSA4h01lZ154I9wL2JBAeshZ4qUyNXQ83aP0p24aIMi+0S7lzHe66CT+KHPV03GD4fcKv8a76733GOvzuFvAOp3uLh/se+6lDSAZ3weOHDOyRcaKIP8UT/jQ/ii1HxoESsu3g5JwlaCOGAENISIXV5IxBShmzrYOd9GhAPrd6fOl+WMu5268G54u85aqgtDI89Hrr/K7IAI1xcP4Sxm04SQOkWTTDCYBTGkAUgTiB4h5pvkfKI/vLxgdJxhJiPGGabxGEXRbCHikeYEk9b/lmoBNrAwAyHt5tAGPh3QZ9fy0Aj1vYwgAVrMgSi1TWVb2AUwF+ODmZ2RtbIIveOFy7HjeuZ7sVW739tuAm0dVFQD9kXFwn7H7p0f/q28LmsSItBFAHiwjLLB2YVQP3CKQMyjO6idAHtojwKQPheVlR7XqnpviXM0akqgHMdt5klhA6Y9DBwVkGf65dX+Tg79PESpYckMCD9gz8okGgDSM9Z9hZLhfwMsp5PclAoBNlzMagB1vAdFLkhVWBp15/WuDtKeIh10FDOpRMY8EkAJCy4teeuDqI1YiFzZXrcWk7dNbi1l8i3e0wBYftEHH1PuDl/Ef0hz2m8Pmx4b/990tsbYf30eNNJokFGd+nR/x53uM+TZgpy5Ckeg63y1gHkywyNNbxQDibmam5XjpItrWJ0Wu95YauLXVKgdf8TXOKVABqwyCq28DZHsZ69N0lNsNrsV5x6PtX6DffwHpuEmG4QR6uEDsZpiIAcNsU8ie+39gYYE7vkec7gCKzdcI9QngAEVs9TPPtwpc6xSOAWNQpCmjzfVFknP4CMLbYGnhXGTJAjQlJmH4aB9jrb0Sm5wE/bd7lHNADfF7JEKidzBXoxVbqpU94fTlhs824fJGw+80Ww9//qyI1trsbuN1N9aMtBzUVsCc5BzPPoBDhHyf4KZcBixC8PJEpwyRdc9SLBdA5ZqipQDARoXe2SIsHGVxzyhHs9ZpwDHc4xHvJETgns6axw2ruqaouySrBlnN0FsbYiRJO4GaaI3B8MIRZ1EM6DE69P/fIuM8RJ2mUPuQZjykU2bPGArVAWEhAUdmYAMtaf3QDXvkBnXH4pd9gvtvhH2aPoUu4fhdwc/gBm2+4gM4hIp8C8pxx+AKw5//97hLOeXyXA/4pvsdP4YRAGe/iiD0yYDsYOPiivvFABpYZgHiC54jZZIFUuOm1Jo8A5ws9vY/W47YsMtu4kOSoJtM823gY23GeZXs4vylNIe932Ayv2IbJOB5COrxm1q/1QH+DtNkhdV2JCe1QJx30VgY6zSdgvgdyRAp3mMefMM+37OsZHlktND+IL7U2dPlOoP6/RmySrPWlhgCAqhpyxbdTGb+AWEZRYBsVJLCvG/s0lxxYcTQCAB6wRLAAJbY5kNgwGIcr27OHKiy2sHjpMr6+Gmts+PsrDP/q38BsdrCbHdz1a9jddWm01wMUAWGqF8vC/R62n+E9IcI8YfxVH1AAMAX4SVgSBLjpUFn2AOANzx1h+wGLU47o4oRDGpHSCXOQWk7UYVo/1mabMKfLmbdULOh5WhtEBicCkjTBC+MP0gQBLWxhHnIsxKuE6kutQ9XbPJlzScOzeQwP6Lp1I36SQXVfuR7z4xan2WPbR9xcB7wcv8PFfg/T9wvgNwXCuLd4vPM4jBs8hM8He/6f83vAGLyLI97GESPErxme8QO5fzHzVId3Z3TyefQKCkLqCsZWcsAqJhhjYIVVWcBg1Ox/kf20tR3O2cnp2WSYlCTXk5HrzTlRERoesKY1u3M9On/Fc4f8DsZuSlMo9xv2/PUdZrGIWQ/wdWWQ8YlrjOke0+GfMY5/ORsbABTchfcBb1vXX/HrFQ9gV/ZzO+wtpRNSHmFVIQieCaD1pjMeveVmo+IX2phIIBABySQY4j03GIsryRkGw0PWdUDcK+Pxrcv4xfUJm23G1euIi79/jeFf/3vYzY5zhhffwO5uzp5L+XDPX60DOc+Kgs4DmJ8oBwBWHLKtm9gsAqVBoPfMTNU/nD9TlnkW7Ol7BQZuDyngbn6L2/eHepy7HYP7xomdyUHsdTLbzK2Y2couV2sRrgfqUrxBG1pKFknEQDAPKq6Di/cpYBb7ER12nqhRegretokOjyng0F1wXKAe6XGLnA3XCA8RL9KfWcm52YLCXJwBKGdMb0e8/87h/d22DLc9JMsWd/8Cg+M0Hv9Lrr9ZQ3xk0XREJof0wBLP8R5Igb2AH48dHmePMVu8yYQ3OeB9nnHMAQ9p5gFvgHjSdSUYkgAbnCxkGEswySGZCCIp3ymLJOzpAVLPv/W/XO/ji9vrczL+c4/WQqhaBMTiq4WIYq9gzFSGizHYy55pOU9cxKWjyCvTQhqkhuxqqB7jHo4iroyDk8KpFy9EAHgXRxxzBizfXLy/wGZ4ib67lmSDGYvnLCyIWGqtYDAA1IEveSGr4VSRGTEbI0w/UydUFl9JV339eJrsBezuqsi1rCRvANg3yh2YLZ0SaJ5guz1sH2ASwXWpSDyfG1CvhcxzXSADC2ss+68VMCYVSV6SnxxEyt5YdkRJDrQwQ47cFACQTIYRxroxZgGtrJsKH+omJXmQcDGKDHQW30+VdJ2QF4NeTjlhpFj8saeccMihMN0UFFp3mQHAEJVJxLoRdzIUcGMdXtkO96cOLx9mjF8QVE+PFtZaPNx3eHcY8BAZ4LolwhuK2BMDYLdpxKNYxETw5FsnntwARMos6Zjsyqx7Vzv9OcFpQr24XmkBArdHogWB2+/XTaJzR09Bjso2d0XRwHYQAw9OUDYwUAqVBfibE5DG0p2PM8uytDkUwh4h7suE3Xl+XAwT6YRp5ySh1c+cASQZcOPcpgBTQ/8Cff9Ctn0ZE/g9lOWTCtuX5d+5iX1ZEj9WCYDqcARmmvPUe2X8ARwfOic+kwP7y7kdDx8z3QZ2uyuFHYDiK2dEamzDhNz3cJsBeQ5wXeDY4FjeBuCJYmC91j54y2PJzD+DakOky8JgMB6DnBidrftaPeVOlBFNlJhQz41zZw415yPbE9aBDT1Z6drXWMDy76W/lw6D05hwyqkkdccUi3Q6StdfGydVqF/P9fKPgNmwjVGgjC5bXJgOt7bHVxP7dFoLXLyfYbePz8bkT1k/zh1653FPhDcUcJ8jRkr4MRyZ3SMFajBsqeD9BQAUqTEAKYf5uFlUVt6a6asFvNp+fCgen/vbGiBucwqgnj9GvIut5DG+aQotmDsds/xyv0XcXiB1NYWzzeAWBYMhLJ483xU5d0pHzPN7jNOtNIkOmKZ7xHhkqIAiOiJs1OoI6g2ruRDB2h59fw1jLDp/WdjKAIoHMO/zVOJAErAii1/4sjip57sxptmTVNhlg3HFH1EBF5Z15jJPoNsB/vqqTp3upEm03VWwR8+BlGDnEbkb2KoAgOk8XDfDdQB3WJ8utap5YsXyzLmh55YxlS23sQ4dbBkil4jQmwibZm5mIiEiIScCbF40MlqFSxHFmpWkWEAfLvBkX7W5Ap1j/SWc5L7axoJJGkFHaRhpLFBfaB3O3OYFQc7FDGIGNAy+7jpcTx220nQbthP8ZoRxBnnOAvwYfIEzBL6nBJsJ36cRP4UT3sWRPwtlGNvDuYuFyqu1KwDq/VuPGUPEBt4sGdDPFXcyX22x2ke2ALDuH82xtK2k+YCy6nnY4lVR43XdJYbha/juBYx1cN0LYPMaud+yj+ewwbwdkDtXvDvL50sZNrXqocSKgLAH5RFheodpeoPT+AYpnRDiiWeKxCM0CjriwtFAiDPiD23A4E/ntxj6l0/uYSTMcm0Eqwc+MwJ5T1gieFRwhHP0FhDmiK18QC/Xj8YGrS2cNJE3LpbY0F8B7uaGB5NtdrDbS9jdNYM91qMdREYpws4Tx49+QJ4B0/fscOH4kgQAtwZ8oADP87Gg/b7eV4z41fPncDDITgYSkyp/Ig/h03qkAdVQ6q2PLwV7k2msYFCHR9e40eQJuSoCgpBHNE6Ue2cDBFsAjrL4rNdIOchne2M63ASPkA2cJWzvErrdHrZ3iPuA6TFj3FtQMtg/etwdBtwFj8f4+WDPm3gCjMF9mnnGhenhjCuMa+uGmruietCuc/pi50FLpdS51TKD6+/Wr1hjd9b8G3q+i32cqMecHRZNIVXp6mwOZYc6v2NV4fAaZvO6KIbmJjaU927qVh00bzNV+5g0FWVAmG8xjm8Q0wkhHpvBkE/PPY5hfQGAdYC0cxfMIA73SDkiiuVUzqEMOCw1gXXCAK62ktqM4/KBisVXJe+xb7AT9eogioGNcYI72CexYbiycNc37E8r+cJzIDAA2O0ONB5g5hGUU1EiGgvQM72KNYrigMLe5+2uXzXXzsQxrpfPoN7QU8w4ZvFPTh45R8Q0CQbG6ooyg+UTCVkLshmqak0bQie5949U64WQKxlF8wS1FdWayBI3zkDgIZo5YEgTdraDMwb38LifOoRsuUZ4mNHd34t17FyGQac5Y7wD7h86/HgaMJPBnpjotgcPafySVe/5/7Lr59j7/bXWXxUIHn/3X9APHvHhhHDIoGQWBaIrQ29s8RrqhOrP/kskeA6zWDxQQEi9AIx00UAW2WS5uIAk7OD1WgDApr1xLzu6/FgqSTAWfy1Qz4Ld1fpjpRxgTUaMJykC+SQ26VgYuAoUp6QsuwnzfIcgLL/aXZ+bz62SbGEiAzhSgqOM0RiYHOClAD5SEtbfRZF0rgGelObCAm4ZwLp97XA4tYTIEoi0o+qpDmPTBE2nR6q338ZlbDY8Zd5tDPpXGw7M169huoH/9Rv+6jwwNnzTFLkj1/ew/Yw8r7pfkqypBLLaQsjTUW0inr2pGy26GIwpnpFEYIPWClypl1T5Kt+bBZhYgTc9l/QMawGWAkRIAM4gbI3FiTJfF/K5HCn7YDXVE8B9jjhQLIDPMUXsc6hgTyP5JEhyD6w8KwUoNVT4Bobk3BK55WAc/mA8Xpkr4M87zB9gfH1shclithZBvI4V3OKkNRcJuwLu7aKcQEZugE2CouyVaHLx4UtykzJnEhm9IZ9rDAHr+PDxpSwvZtCoGiFXaVQ6MksvRxjrkdMI5w/sCwdUUNh4gHTg4Ci2LwfM83vM8x2S+EmGeCxNoZwjypRd2eoI4EAJhtKTz6cgsAJTGrsU7OVtX8aBavVQY1PxrWv2b9sQ04EO3hp01pY4oQXdFlUtcHGdeDDctYd/9Ypjw2YHq7FBGcHzCOs8+0o5LzHDiUcoe/0ZmRqpsSGTYRsFPc8aGWU76EPPC/Z4tlLvsd8sEUr8SESLroAyQhxxPPAwgLGla86vS4UtVM/HjydxM+UymGaGxQkGWDF9tMjbI2NPsSR1jzngMc3l+tcCL1KdPB2aayCvznmNA7wPM4zIqb0xeGtO+KPr4cKAbXQ4RL6PvJjGMmX7S5ZKVg85YiKejB2KZU9zny6MzCzHTPMChwxuKLPvJ0/w9s2Ba1VD2vw7ZxlFq6+8b1Zxqfnayjdh+FxotzPnWXIDD2sqMmbCnptE4RL9vAM1LNdFk0isYEgYwGG+xTy/F3uok/iBH4t9E6uKtDFjEEyVcGaD6ssJU5iU1bLgBMyAtUf5eaz2UJRKjpIzlwc5KaMwlZgMQ83xQolRhIQOrgFPHbZS0OkQyctNwMV1Qn8BDC97uJevuaDbXhYg2PRDAXtYKZAAG3l4oft4GqxWS+19qFUTtexYzQFJ7v5ZWHXq76i5BiCAl7HwhhtDzlg4aaA7ArJhNUtxkDQWNYt4GhuqBJwBtGSW6ifNFVQppGz6BMJ9jrjLzPoLlHFIAY85lFgwC+uvNgRqXgBwkVdiJBH2MnxJr6c/ug4ubnBpPE57VcTN8F6Hb1lQAsJKcv9z1kOOMMbiMc84JM1xqGxrAYBXyxgDQzU34BwvcbwWr1dnzuQIpPfS5QBZjQ/lce1zVt8v5dxSPTTb2DZRc56Qcy+kkL0MIvaws4elCBgPGwPcNCJ3XbGTW1jJhSMQ9shpRBbwd57flwZOqw4oTFNjAGIAMplcjjOTJXypc4yxPGw2PJRY284ESPEkzWi5qwgDWL0+LZRNasr+XHJb+TkEZlx2Ao5w7sBgz9Y49ODBqZdDLLGBa4oXzAJu1AKlQdSwgg1QbWSaZd1ya3QoM8A5xMKTu6krglxjute0jmA7MTUqat7H1Lkjev3wcCb1S7ZAthw6sSSTnFvFHkL2IcvA6/a2DaFEzAA8UFUKPaYZD2leqBfm5jPpOaxbYYmvCUOsLkOakUHwmdmcG+vQY4Nt9jg8OmnEz3BdQgrAdHKIwSBGi9PkcYgOp2wwnpnj8KnrlBPIABPl0mxhcJXt2Zz1yMQ/Uw5yLWckZEyUkTOK+sk312erDFjnCby3nzaJnwODFQQuxJsmHpgzz9HFOTfgSl8g8oyQNMJEJpbZXG2hNG/QnEHjhJ1Hjg9iCxOnd5jDHVuRhAeM4xtM8/vFQFceats2J2XbjeNrPkekzAS3GA8w5q4og2LYV8s4xDLgkGcCyPlvdLBaral1VyhYqg0IvmdyM0mtirSe2OhwWWMXsWG4ArqXF3DXTU2x3T27rz916bD2rANZV3/n+3Fe5Q6otQRqk4j3rCnKlM5YeEpCcMxIIichWy222tqrrS3Wq+QMRrerzhBidUAqqsFEhKNYQWhT6JhjmdVVSHIGckQ4fmudkylhn3hI88myKvnSOPSxx2VymKKF9xnAI9xmD8pAngk5A5QMTgeeE1YG3xOrnfeU/kVqiv9f2Dh8LDb//8P6qwLB//T/mHHpM/reoB8cXEelm2JlynEi4onxcDjZjJQJW+uxtZ4nWFPGDO6U6oCjEjQVgLUdDLmKzBtltzQHqPxtCfiWS9CsgrCxH+7AFvDXPUlA1fyckyYuzNbD13iTUgF1tKAK82Nh7oASDOXSQW8ZWwYcUFjZ6Mo2GbgygMbaHhf9FTp/AR325HUwFVBYOylJcUqpbAtvH/t76fcLT9DIxWBPPLFzK/7A7bTOS2Owsxkbl3C5Cbh+nbD91RZudwH/8hW6X/4D/De/LeBvW8xZ8ZosRuIpIh8ekU8jl9d94s69JQnEyoDJRe6wKJiEDaaFQym15PPoMQQRsmF5pBqk96iNCmcMErkF8K3JbPuPzz4phJU5TS0ArObq/OiJEo45IAi7xtmnNxaAg7h6AOv2PeaZJ8fmGri1m5/B0vQy0AOmyvz0nF8zOzIn72QIMyW8o4D7EGDBLPMfuyP+Y7hASue28NPW4eCQbIf9xF7A6mu6R8ZDjnjIc/UiAhWgnW896ans2JTxCrKXKpgzfwBsawvdiuzpfil8vsVz1oG/ZXAZs0zqcg6IAIwwY1IOcDI1V2U/a/sFfl5CSkdE8YgrjF9pEmlipQXWurFlYEG2Q4TjItg4AZ34PLeuR+cvllKuHEC0L8z/hedvVmC6SsQWQ17k9flzcBJpKMGD48POdmWa76VxuITFDbhJ9KKPePlVwNWvPdxuA//V1+h/82/R/fIfeLKsDHmpOyfy8FEZNoIUYQ4PMKcT0Pcw7gRrJTZI9jNnixPVRkoxrZAYEZAKgz4TyT6zRaaZySAZ6YbLeRmQqlpAruUgnf2JHHtUG4KlJMeIWSiGDGrJRuUvmlS1S9/nQBEzdNiLw1a+PwnQo7KuhxzwmOcC9uhUab2OGOxpzhfD3rWAgVpX2OY+RaURBkRKeETCMXPqus8RD2nGH/wGnbX4hb/Av32zw69vgfELJklWD8OM92nG28jy7/s040hVKcQKDqoJMVDuw0Ryf5a8IBsubKfCmWSAuyWK6z7BqkFs1nFhsdawefOspilUQNAcQYYHo0zzLVI6ctE638FPb+BELaA+wuVdqPHlzhEhPiKEx2LLMM0PUnQxE1+bMHV7aqOTB1h2ZUisb9iTug91sjczeyYGjoSVViXkWpSU1mLZr+w2zvE3mszHQe6vaMqfgYCdZ9/wK8tTrm+sxyuxlfqqi3j5esb1P2yYCfzyNYbf/nt0v/l3T+XeACCDOdFJXAyTNJml2aY+f5aQZfhLSLbYKcy0Hq5IxVJFZara8DPWgZJFMhkgvlYjSIBVJjN01mLTnBf8Gvw4Ph8FGiDJCpp7wHIUaQUcAhJAKCyeVqIOVAB7T6mw6QNl3KUJd3EqjaAxJ0ygAvDwOeALeO/kvvH0jCfkHLCngGPiqPSQA/Y54Idui43xeO0G/PZui18/bNHJVPWLLmHwCYcvYP39OR5gs8W7OOIhB5woC6jieCjripShi2sEguYGCYTY6B8s1cFETz/v00bQ803iJZDIvxGjrdYaCG0Di+/vvN2ufPVugrEeKR7gwr3ci8Tn1ng4aRineBDQd4IOf5zn++LbP80PXFPI/brKu6WSKPWU5Am2E/D3vLd+DAeE+RHq80nSEJIzA16uf4NK7lE1XSVQsEcmwKQdMmjyY94vPUzxBdbc4cZ43MBiawy+8gmvX024/m0Pd30J/9U36H/7H9D9+t+d3e7FstxAhuP5DMYtz8nSQJbaghtFDdsWlbRwkjy8DCI3luXfhqXUmiO1smQnc0eUAbjPge+1QgZJJmmoLDXrOeaZ2rkBKMoOByPWcvX9TsSzAp6zhdFBi9oISgZyP3DLvKCpi4n4eCfKmBDxGFOpEd6naREL/u3dDn/3uEVvs5C/6mc4RIe3yWJPhMMXsOvu0wxjLaKxcH4nszh4sKkOYa05bS6fJeeAIyKsxF5DrRZjufSQlFwBz8WB5z8HxwNJNPSa0+vwCcs+rX6OyHniOJGBFA/8mnEPAMXHv5BJ5jsk8ZrOecI0vSlkElUExHCozFKqzry6Te08gBbn0P0Y5kcAqEQUUvSFSSAdqvXO1nm24VA2r3VnQXPNVws7G7WJBGIw+UKsVi4c20ndGI+vrccWwLddxFdfT5w3vHyB7qtv0f/238O9/tWzx2WxJLeoQ06XxyFLgyhE2zSR62oHrrWzJ9QCjlWZejYBEALkoKQ8R3A5lAbtKZ+QKXKlsaoxOa5/+LpR8BfgWKBDYmchWjzmueAHB1Hgar4zgxAN542QesEJxkSgQsziZlTC+xxwyJHJItbjMQX8KFYRr1KHf/jhGr+55ZkP1hCGLsF73rbDyeMueNxLHnZLCT/mCXdpwiF+weAR3Q9/YwT/b7/+57sLXPsOv7CE31ydcH1dDyTL+gkdZTgIpZ8skgSH3khAh+FiBMpMlUTKdjIN2HIpbpcJ4GIyaPNVl/78XOL4qeucPIq9Mpm5YHNAMuPqMeqtF8sABWUDpHxCTyhTMHduwJXr0RmLiRIOKRQT7xMlBOPh/SV7Cfkthv4GnchG1PO3BZqWvr9LILqVd2rRt+g8NSuLN7CCwBqQe6O+nzzpe+cTOpdxsY3Yvrbof/lLuMtr2CsGgu3V66c71XqYjYeV4S8QU3G7uYXt98iAyL/b7dGBKA0AXAqjyuLTm8u68axAvU5HjtqtI5bGdUDjZcQF3kAOARleuvoTKsCQDXfLW0Z5Cyfo6xjwrSBIYcaedQI4N9uvPqYJVAK3Alct2JNAGClL4ObEzdqeAYb2XH/ufG+OeWvqn3JCAvCOZtxN9/in6eGLAuB+6hAtT/w+6dRSOadPMulXbS10WTBLJIvk8AnwahznzKZffJ4PrXPdvAXwa8oceHn8p8lwylCK0i23SGZCTFM5Djo4qry2MGv4+7wcuJYDMs0YCKUB0ZkOvWVAf8wsnZm1WWQA73bohxvx++3g3RbObZ/ug4bxG8TrM8kQAvX3UuCngEsl2aOy760lqFcgIaIHb+vGOOxcBYHZP9xgawkbm3E5BFy8IvS/+pYZPS++eT42AID1sLsbkHr8jQfYzQ65fwTmuTCC2R5CEjaqntrthGxN1PTaqZOi28TXCauaFRhRlAKBMmCAzvgSG7RBpAWeN1yYLWNBbvK2JdjD505dmQhjTujAsSEZQrKEE2wBqs4xeyYBew6Zh6kqC6WC21w+FqaXfN4WTNHzUON/LkBkAAGsQognvIkjnDH43h3wpr/EL/xFGS70OauwmJDwmPnzzJRwypFBbLneS+OVIkojrxwz++RzKADS+orXEU7LZTVKm2Us4ONzhnmxjjNrhk9pEnMsCPGETLkAQNZ2sKFfgPBtDqNNWqB67ym408aGXoosbk9z0TBTrvcE8Pnc9zfYbr4uTSl+P1dyAp3o/XNYflabcUbZLcwaGykjGG6ACMcHnRTbG8MD4q5s9fe7BDN6tpZwvQk8VPY3v2FGz4tvngeBz6yiNHIe5Fji2d76coYAPcwGLj6acm0V2wxpACUQ1P8/6zEiK3ZQKOzaTOwbyfGvbutkE2ZKcKrOocz3M8MNzMU5Q1TOM1HnL+JOIIeTScXPWC1kSlyQPOGQIyJl3MUJDzkw+w1AMgbWiCKkNAia6391DbX3qpxD8YHOOeFAM6ZwxH2c4IzFjevxrr/Ed26D3hi8Mh6/iD2uXcaUPy/XBlj+bY3FY2Jrqlya2x3MOfCSmJBhjWd0Uu+vev02sS0VcBTLx6DNCWrz/CmAoe+9fA+ziiVKHgEkvuaIZByAsQLB4bGo9YxxsOFhERt0qUUU+2+qRdQDqwoFoDWUOH9ttlc/WUBGRIYxA9tQ2AFdf4Whf1H8KHnwY6g5SRk6y/lhRzyfhOOOQ2d5KFrLbmuH9eqaKCGkpXLTgWOJAVuRLRrI1uHSWNwYg60h3AwcG/rf/Br+5dclb/jUZfpBhsc5UECRf1vLggLeXvOMWkCut6KqEfWaYe0gs/4kX4AMLFVAS3OFxte5S5afn1DIKrNhT+BarNjF1/YOlKmxkIKV7+vaU8JDDqWhdR9nuYZqLTkbQGcZMKA4LO+lKxCwnEsyFyenGezJH0ss6KzDjevx0F/hTd5iayy2MJz/GZ7rsieDe1EvHJ/T3X/Cmo34Frst+v4GfQGC+1rfib0kUWLJHOp9r8zBIB0Kp4zftg1kyvUsTy65wvl1LhYANb+sdZpZvQZvTwdVAuvvKEdkM8EYbQ7z/KHlc9lObp7fY5re8lyAdMI43iKEPXi2T2bWPWojMULZynw/cG4L5zdFNdjWLEpcU0JZpoCOiAefAfBw6JwrwK+FKcBvO4i4l3NK77OqrgFEyQXI65miFu8Vd3AeG8Pzey6Nww1q3nD1DWH4+38Fd/0K/sU38N/89oPnz5PlGjBYj5ozoKxNIm4Q5dxatS2bRAq2qsWKZpaqIgKhqAXKvrDANRjzSWDLJqSAUaK1Ial1Jb9bNwvWq3qHU9mufWYf4AxaqAEiWDXIdnaQXoXUjmLHyD7WzaBNqRE1x85pxCge80d53bs0YZA5MbfdDj/QgO3ksTUGrwzhRcf7+JAc7rMpCoZ7iniXRrwLI6YvtIYAnrd8+pL1NyD4I+s9RUzZYAuPV7PHZuITdp4tYrKFWq9LWZc6eTka7qh4MkJtVyo8WOVYgCAHlekpE7ddi5vWGUD4c0Hgc6/HHffq+ZZLcVrB2JbSr+walqrF0kV3ZhksrTGwImMrOSy/sNg+9PBuKJ6JZlFQuhXbsE74biWeCky3E75bD5rFjYpyATQ9qjF5m2w6MBjjXYbvCLa3nHyJ3+eC5XdmGec5SQM4KDsv2pjnO0Prjk8FU+vE1w++J6rgV29Klp6hiqBKwvm5Z/rAq+0xq396+y8AFAEBCYl86eCVIC5Atvr/qnRjlk6eglnJQG4S4k9reHqrBu9zLJ+6ucwaUem62g6QJMk5ZUTMDKJ8BGT90DpGlvKP2RYQWFlYiy6wgu8wDDAQiXwO4FucgaFGumSYVfUhmdXHVh2S8vmLAXT2igYqOPVcbFjHBQZj51LMEaViD6JlpE6mLyybhXcdA2XeDdII6MvUcYAZx8oyBFCAJrV+SSr3VvCsPLZNbGuibEiZIqbcGPW4eVMZs+r96cBT7jub4T3BdQZ2sy0+4R+LDQCYKQw8kX4b9zSeFzYPnvf6rCAwyjFbnuPPSzQLu5+an1fn0Nn4gOW+fG5liQ3ZULGJ0MEOmmgGYguYSX6nw88KCAzLCaQAP1p82BIXarGn56RB0zTNlmOBlf2QgYQZM3GMPKSA+zRjMB7pS4Fg4ubXucStlAZkgJwAw0CaIXMeDGo+w7nVWkE9/yC7eOwTMPgTcogFc5nUXkntLLgRa1b5Aj8vleYMUEG4s7GhaVbasq1PPwvfF9yTewH/HGpinwMf86yFcmX9KWvKSYFmy2vUd6wsy+a6kue2eU7xC4dYS4ltWOcyXGdq3rC9/GQQGMAT6fe5pTlojRF1W9f3o6frw8ddh7Wo7LUMYhUGZFlEgDGre8+ygbxeZeCLfNXCU8HrWZrLURqqc8kRIFYgyv6UIt/6xfXfNix1FfWIMgMTQM6VvOBICR0INgfcpWlR3G5ND5ctpvT5+TZbdbWWLaqiyNLQPP/aiybQmcXX83q/r4/H+itw/vgzF/6DUm8uYPh70mY7YAzHg5z1Pg0BZNJ5hViaEeK+gLMxTcW6hT9vKjJqVRXqJ1Ql25Ot/0AsK8pAUQC4hrRi8VTurfJtzZP1egLA9czq9TUv1tqnxAfTxgegs4TOZ/iNgd1efFZsADg+rNl+utQSQldqTp3qsSmgENVz0hi+NxGWnv/rpWoiALAm8bBCoKjfAJS4IFuE1qVa64eyvU29sNhuVDBqzGkx26QO49KawTM4aWvNsI4H60W2K6Aq17RAADdqQmZf8bs0iVrUYguHVDjjMtASuTAov2w1LEn5mvJcQCxtaJwniMm+bfI4fUU1JyhMXqA5Lvrj06upKJPK5/q02KeEEEsJmVKpI1Kaa7PIppqnrfIFAGL38IggjOCYpsWAdwZX+RpVAlPVphGfex/Im9QastYutLivKzbQxoI2N1GsxzbX9oeAOlUSqIUCxzRbaqIenDd0mjf0FnY1hP5nrRTPEhoUStH4wHnq+Vjf1u1tW1HtIc59Wie1HMcDKlY6TCaRM1EwiQpCfrh+aPVhbfNKG8taM6gHcNJ6AdIUMk9jgZV6lozj3BVcI2gMAGUkwySVY46Igt9dOI+tUQsPmRcTPTpDGLMtis21avNfAsQNX9Boem79DQj+yPp/Tbforccf/Bb/mDf4+ni5MNRmmX0dbuNgsDUWLxxPIh4pIhFhyswG0pMhkniZEZ/IlGeesg6+HBZ+LKiXSPu1fG/Wl1At9D5l0ZNXP7eevtby9WsCSgBGYZNaytjniDdxhAFKx65MI7cdvNvB+W25SbOUvAbvlOuAp5b1C2DBRq4yL2b7nP0UpXNpkCnCE7B1zPbTSdklKBuDnUu4HAI2m4SL6wz/8gX861/CXb+Gu3718eBsvQBCI0zrlegsciKkYDDPFlNwOCSHPbHkIREW0iMAxe9XfXAIKMGMzsofn18FjJOEQW9kSziHUEEzZk/Z5vnKGtSADyg7iNmdjwgIEjjnJmizTCQupniOlDA1BR4kodPCrvpD8+dVY39NHlxjD9ACkq1FQAEI4wkhHvh3XxBU/+cQMGRaJNcAA1udxICEjAvyeOmGIhU65ogxxyIrZN+uAJ2Zsi711kPgWk9gXYu4cCYefCko/HStX69lDj73XgbJGJzAxxsAbErlmSrnU/mOSjtjmqoqQXz9ADxh/yurQxsB1eO3ltzuTD9E92U2qSS9JLFhI137rfVlQArArMWtAV4MAUOXsLuO6L/awX/zd58eG1CLOAV7tGlEiYcSxWgxTxZTZNb5Xq6Rlu2nRZL6aM85CdOvPSZLoaCqCgAFJupDW3ArwywKtXqeVU9QlcgrYNaV5Hk5xT5Q4u8zYRaWMbMFQmH8KSP4IH5fBDQMWgF4BPhR5p91gwwmEXDQ9gIQLkHwc3YhMU2I4YhMASknvKcR4/SIt5EnAH/u+nNmMPlECRfOA9ggUMaVKGLaSeaZQvX01a9n7v3Ax0uwdX7A5/UCwpT/n7tGP3BNl1+1TcPKIjrHOl4+br2dBGU0q/9uBuGIzHAWY2WL2NB6lIIyYjiwf3jbhJLjndK89BsXBrBe/1qYaEPKGVvOV0BBEY0cuQE8+bcezARWX2DNHXph+lwCeNFFXHQJ1zcBw7fX8N/8Fv7FN7DXr87s++dXlXZWiWcOIvkOBlNwOGWeSv2cWmCkWBQXgTKMYYaZhQeZIHFPir1PKAq0YfeEUUp63mpsSDwUBzU2WKNTyVmpdBJ2MIDip61NocfEYOyY2erqSAmTAMCAEd/MAdb1pWnIMmAnTLpOWIFP86Ocp8IyI8oI8cjDS9MoctMZ+zHgB3eEh8GV6/HP3QYv7PBFseHK9XAyWX7IEUHidcgBMc9nwVJg2Xz/0N/b1eZybUwAlNe+foXnXptfnRQsMHFxXadkYZIrv5uMLffvlp393GoZWZrHF19PMggmMet3BW4BKF6lRNLsyRzjx/G9NK5jkxMQPw6xxAIdnmbBccw2/xwqkUXZbRa0sPta70EeqGbRiSp0MG3ewHZzL73EhuuA7uUW7sU37At89fNiA1JCDhPYVzxxbEiEFIAYDWI0GKPFKLYQ1YtfBzVy3jASD1oLOUEVFwBgKCEZJi0kVEVBpqefXYFu04DAy6pQf5BZM6CSa2ieANk+PUtbEOohz7iPcxkUu89BZoqogoyVg2oLYl2Pvrss1mE8oJlZ92VTGpaqNh/aWDDKkLFjmnEa7/EmnDBIvH/hBrxw/dLShgjzF7D+tsQD7OZ4wCkdMY5vZF8JZG6YpKADU9tGW3u//JAthB6NLF193dtMQtNHfigXUCsABaz5PNFcIGcDk0Zokz40DTp+mtRvTcN4bTvZ1nIKAGuODwDW9mU/BCTMkoPiSa6TkfIEWs3kqXNvJC5AQGDZH9xsVLUr4xg6FLG3DgMcx4ICAFvR2lXvZbU1XO9FjQuFICfXQG+YZf6iCyVv6F7uSmxw18+oCz+wKEygeZSvEyhExJGQAiFMPN9miqwWmFvFodQUp1JXiP+uYesOPv+0sUeL2KBLMYIMQm8dXI6MnRGTQZTna2AKCF8Je0u/ZWb8szYhESv5WqXQQ2KbGPUzDgVD6BYqES+zbHQoYJs7tnOkyjmXIzcq0xG3NMMQ0KUZ92nGD+5YYsFrt8FL17GSAbGJB3wu9cbi0naY/wXq8L95BP8V1n+dH+GMRTfd40IsH7xhv8hL12FnuyIdvrHcJQCAS+eLKfq5VX2a6g1vpvq9TkIHUJJilR0oczI2f4+US+HSDhNrk/rn+nlGgpEGtdKxKj9rx9eU11a/GO3KTiIhqgMv2AeMjEU2DmiSwl4ndDadmSeBPx7KQLd2iIsCvRzANZjUcKtgRFtALnxHSRhlMCCKGIzFlevx0g9sY2F9kXn0AC66hJtXAcOWsPulR/+rv0P/m3+3HODwkVW8/foNyzoV7MnAPFmcZo8xWuyzEfkT3+w62OLtq4mbDhtiaWWVFp9512e3xxmDIOCvslQ1Ua1JgXaRtatbPRMBlEnIG+MWCeGUK9gTKPONoOnY6ffqAaxgTzAoxZsy/GyRQy3BHmt7dH6HrruSBG/ggtAtgbfCFM0TYjwipSNyTohxj2l+jxBPSDEA+MMnHcf1+r/vf0DneB9cuo4njxuDnfhM76xfDR40DXC3ZGgtvm+uX/VX0p81DqgPbAYVXyQATYOpFvW5ef31RPDnVkkozRLGUfb3eeYAT2JNmW8rVaZlUDuzwzIpbOTwDqhen2VDLFJiV9Q6GEaPq35foXFHNQlukwlOoy2c5cRCbVbaQiMQQedKExJ6Kf6vXY/BOlzZvk77hsG1S7i5nLHZJlx9Q+h+9RuODc/ZQZxb1gPi7WeaGwZpk2iymIPFITrcEw8deMKWkWRDm42jxGI07Fh+AyPevnxe6AAGd+ZYimv8EgRePKxKvtvYYCFqGOvQy/Vg5byfSRlkqTCXM7GM65BDaXAViadRybQr3n6loJMBgc526Ltr9P2NxAsPJwNF24KvbHXjUcsMcmacqI/1HB4xT/d4m8bCaPmc9c/hgIE8OjjsTIcX3XD2cXl13bfno+ypcm0razI3eUKR8S+KD2ru0wI2o14lSQrtdcOptv3qPWC9zgEx7ddz7K72tdv7MbO3NOZ7GDsswSJlPIFZf64Ax5wHhPiIEB/LY5UhBNRzUqEpZww8HJzY0FhwrGmZPlqUZQF6dMK0/j2Q+mVD8gZuHg9iDdFLE3kLg5cu4/XlhItdwtW3Eht+/e8+j9XTAAsM9mRQ4kIuBoMpOhySxb0yadFaQvDQpDGLJVeOzJyzjtU1OUpzPMKQBZlUzhUARcW2gZPhxw0DcHX8GbRbFnTMtqxsztZPMcl+HnNCkkbAQSSYre/nYwqYNcIbKx7UHQwsT3z329Ic7rtrdN1VsZLy3TV896I04ZkVXn2hUzywP20TC3TQcYjHEgsICd+HR/xhfsSFcV/E7HnpNuhXxYFe52qVVQ79Ktbrvmttwspjm5wiNzGhrQvUc1VzghJTJJ6v40Hb+Fs0mOlpjFj31PNHdlF7P1E4q0w0KKqPMzEc4umoEYxIrtooLxQgc6jKNrZZsuYFQM1vuDHEj1IGYNfEBrX6A8CMVN0BUOATRSXgjSnN48E6biCbyh58ZQmvdxwbrr/J6H/1K3Tf/Bb2+tWnqYjafRHG0iSieQLNM7KAwCkYxGQxJod9Xs4W0BhxIh5qrJ6aE2W2rbI9qzuJ92+1jWmsp0gUsAqGkVnkDRaVAVhPnJqreYIM3LXCHDRIyIUk0KqEEgj3ccZ9mnCSYasTZQQjliowohjbSFPIoe8uMfSv4P0Wxjh4v4P31wtJOKBNCPatzWkqsaAdej6HPQ7zAx7SCZQyHBEujMWV7YpXrFqHhS+YO/L3wyW8dSWnb+t6oA6dtsYApivn9blMpf3buh7Qo6CNZ76a9H5bCSVlHz159SXbpP27OcMsfRpZnr5eZSqbAjIvLGmM2ml5OL9rCCGR1RIAnvp9EyAN4VoT1LpAz+VlrANCiSt8zhvwPu+NLaT2rslV1FojYInR6P4lVPupjeBIOkCyl3N/C8ex4XLC5VXkvOHbX8C//tVnx4YCAo8H5PGEdIqII0ptcZo9TtkiZMMzbrSJjDrk+Cj34EmaRNZ6EBw3nAzH3NDUnXpf0euiWFMau/CwTkZnjSjcXgklRU0BWywmx5wwCvR8lyfcxxkHGRR7yBFHykhGrcM8rNuwpYr16PwWQ/8Szmks2ML7HawdSj5Q9hslxp/yzISCPCHEA0I8FjzqNuzxNh6hcWxnHK5cx81dwQN2tiv36844vPIO8xfEBl1/8wj+K6yuewlrHWKecJdn7rwiY4gjblyPK8sH/6tug0vr4KBsMWaF9IbtBXTYxHJxaFKTbqXml2mDqH6QOlBn7amYSIYESRKpxfVziaKuFrzTAkh/p1K4tttVPF/l/VSeM1HCXZxkcjODKckYWLfhjov16LtL9N11GRzTDpfSC43Zmqn4+uU0Lf9OsQC/EHYqsJR26h5twSsejFSDsSY0zGUh9IY7OheGC7keFZRyAAafMGwJ/RXgr7k797OAHmAF9jTd6ATEaDGKWTvLi9hfVj9cKzlV3z52OSUYLIuJ4pvbZORFjrC6N5eibiUhWrxe8zTdz+oa6RvAR4vn9iaQiRBMxiSvoExFHUSjQ14KM9z4wvDVm00r43DSPNBhgV13hb5/Kc8b4PsbWH95FvzJcY8Y7pHiAUQRITD73LkDopuePP5T1zuKsDmhJ+A6xzI4w3UGV2DjfwcjnnAW/cdfsrCBUvOvMjggN+hUYkGgjJN0bBOoFJItINQ2jdqi8LnVxgYFTOoNbSmTXGy7xAM9ziEnHCiJPQgBRga8CUtjzewuDF5l+BJP7V16/M5NkleHulgp5JTJWqwmsGxk6e+ZmZ44uTEqqaYyRRogdBobxMOrM9qYYXB/4zK2lxIfbnr4l58RGyAxwS6vZUo8hTZGHuYwZmZS7+XaZiaN7HdQsVTQe0JumjtAy8o0T7zF26UMnfKzqfcFLdbXLBRNcNUvvLUD0lXuSatzUv3DTsIAzuCmkDX9E/sHAMVCiIeHWjjx0huGr4T55+H8JaxrgNc2Jogfncrlch4Rw30pAFM6Yh7uRaocAfzT8zvrA+t9mjAg4cb1uHZbvDIdnzfSRFAWGu/zupaDfOo133rGc4xdNozXljsKErce5drAjatGU8s+XucMdnEOye8aGWRh0cl1pV56esz1fZnxyOytJPewYJT1Z0tc18no/PxGFZSm4ufK/QQG9KwWaWC2qZ5zzprie6/b7I1dAEDdKq6p7UEigs0J2fB5qn6fehUYeS8dLttZJgK0TaKNi7i8ithcEoaXPdyLbz4PBJZFzbAXyqwWyJkVAyFVabKeP+qzq3DZJGqBKECAhan5gmGRa/UErY2Gpx6ycg4UsOfMtkpBp7Gh5JMwT+4dCRkzmZI3HHLgxpCw5vcpYDQEYDkrQBnA7Bs/yPmzRdddlVhg3Qa+fw27+QpwAzMRc6rAehp5QJnkBS0wDAAhPpZYQJQxhz3CfI+7PH9Rk2hnHTbSONg2OWdri1H3z9P7dAve6rUPoNQB+pgSY0ujs8kD5BqMpbkCaYGi/F1aLnJMGdjVv7dki3ONoHoflr+t8oW28OTtoDrTwgBEcn4pGaDJBdX6LYl1BDeE5woigBs12pg/l+ucA9gL8cVUQBOo5+9gPN/DLCEkvr7aukP/daaqiLjBVJsfPQw2NuNil3BxndBfO7jrV58F9JR92cYGaRJRagZBfWS2wEixxAetK6z1QMZCLaBu9FpbwvAQLWAJrLMF4LlG4nKgLCsxTGnIuZKXVYKTKhmyxIaDgNUZQDRCLHA9tCmk9w9bGsQv4P0F1wjdC7j+BsbJfm4bbBRBaSx1Z84j+r7mBSE8YppvMYdH5BwQwh77uMeYJliwOiRQRnaE9AVqgW/9BXrnyzWrLNO15ZfWWECt8cpxObN03kJurvVMhGyoEjiaa56AhexfG7jtkWxXe6x1ILaulpgB1BxT781LYDqXPERr9mgg1nl8n/Kem3/eDdVCQuNemhDDHilP0pTkGqFv3rMlKczChm+9fVs9sUKUpvlc3lh4IgRkDLI/W0u1QpRb5VIAx8FOYlMZ1m4qI3hjc8kb+mvPsWF381mxgeYJWZnAKYLmGWnOpa6I0SBk/jermgi1hp9Rrz+1cFw0iYwFkUE2hEx4cg6W/NYYOKr2esuzR+8vVOK33kdaazAAhRCVkHFMsTSvEvEMhyTxwBjDQ8zFF9pZj667hveX8H4LZwc4v4PvbhZ1QjsoXIeXqp1gSyRL6YhpvkOIR1Dmvz2kIw5xhAWwNQ4vaUB2hM7aMmOhNxbdvwDe+jdG8F9hOX8B5zxMtEgwMmWaB78dc0QmYiaIMejgcHJZwB/2D+mlS+qyEcbI+bUAgJqujP58goA/crGxJKYyq/Rm2QLA6xvFYjU/qnx/cTNvAIE2SQJQCkwFgtsiXoE9AEWqyb5fI4z4A6ZU94JOBVbZfhngIZ7DzOAo4h8GGmgJTCoAUbYVqBIaU28qejNSWbOhWhBWH69amDtA/P0Irncwfc9Tej9nlUQtFlZPCsTSreQwZsNFwAeux9LVfebvrTRWl1sdu5+z1s/62KsszjPBizRoKVNVC5NUPoep/8kAGyOAoTL+FPDxbsMB3vXoums4t4N1G2Gfb2qC164chY3uGxuJAc5dyLt/fnixpudkAixRSZQLqwQARkrojcXeeOwlHjy39JyrcYDKz3pTBrBI4JUtrLIdjQVtwdf62S2sALC8obSFWaJl4RapSqBmSgtguF1amKrUtTVlKGcPiYUD8ZAcSxlWfUMpQz09+aHnrB5ieVW1KmmLMS0sgKcgdinwjCnJGnvhUeNpx6mwJcCa2ohp46Eer85lWAv4DWA6/9mxgRIDFJQS8jyDUkKaM8LkMAWHKTpJ1Oox5SeahVpArWM+FCM+tlqW2HpVCLiCwPq9fm1ZxFooa/GoIIWen9qsqGBFCzHbAgLbhUUMAz/e7+BsB+cu0PmrVSxwS/B38SGk/FCSNPnSoDRyfukwQms+f8LvXZrRyVAbABhtKoO3erCFAKha9BT/yabgW4O+5XfNfb613GkbQSUPaMFYaq/HT1vnAJMWiGq9ID0ZLs7JLJ7bqhJ04Ehl3xCDc5abvgBbvtSp7nLOi9c4xwaGJAyoyQMqQN1G2bL9ei8y9XOUz9QWLDCAwdl7Zgv2tOD3ueZJ5wiuA1xHHBv6zwN5AGYBIydm/oUZNEekwGoiLuZsbRyuAAOAwdbSqKXMBX1RCTS8MTmOBcwrXz/FE5Lk+U8BghIXmsKu5qNsC5HJFlbs1DSMNU8wygaDzJOQvKDzF/BuKw3FYRELrGMw+PzmVhDIWNeonV0pDh0leK9AQypKgpgsPjTj4WPrNk3oEHlAkAACgMqRn4+/63UOKAq53iPWaoFzy8II8EqloU9Ase9o1/qK0Jy6fVSSHF2vN72OzOq12p9aVl59XSo2PjAWRgZUsvdwrMoOopITqNWDbqeydj+kjqzbwxGlqIUMW0A81whpP++5x7T2Epo7lNkChuA91xW252HSn+IDfm6x3Ftl3zMoxGIpFYMOiWuJBavYQPWeESU2F/alNoqeWev5AbqenmvtmaKg2vl6oj3/g9hVaK7Q5gkZUjnYtmYY0PltmSfRdVfw/mIRD9h2zPP1L4qIdhnrSpOY2YIJNjN5ybsN16WWh5/lNCNgAsAWjzbNAgB+PhC8zwEWGnOeNoTy4hyWnOBMPv+pS69/Swz0ZqKF1YUeNYtye6hH88wBfMJ1w1OeUQF65flnm05Pniv3FyOEkOQRGgtAlNqBVYPV7mH5njDg2Qbgz6w+9JqX6LmldjPtuWpRAfhslrGlzcnOxe82N7aLOsI23xs4k2Gc5A19O1PoM1YWK6kwLtQCKVS1gFpCMAi8jBPaTAzN/tEBx+r3/CWrYjEAQGU/L/Z1E8MTnta4LZZghDnO9nC+1Ar8dbNgATu/q/Hg3LYJZqDLGodsHKwFiNh+iighayzIEVFiASjBSS7bZSvAf0RnLXL6/NigK35ifvBz1t8YwR9ZL67/HZxziPFYDMtTDgjzI45xjz0FgAhvpgl/mvcYBGwq/ohNsdCyIc4WIs3v2ht221lqg/65juBaCqaP1WJMf9bX0QDcnga0+opn/lalYjI1FAYwBgauWDwgATEeAbyTJ6qcSws9SbCb0K8AT8v2NQCsMHpU3t1KPNfJmPr5lMECq4KQDLHPn0i3mNHDQwCUtdUbQt9n9NcO3csLuOubz/TpGUEpIo8H5NMR6XBEPgWMe4t3hwHfJ4sTsez71DJyiBPSpIMGoVJfNU0/bw1Ru+7nQeDnblbAeaaHfm/LcTAFKGwLO/W+1p91KRtsagq7te+nJm/GsrR76F9gM7wqDKCufwXf3zDgaz2Dvm7zhEnJbyisH0n2DKmUyDPQ43fw3bVIQY/nD9onrOvrfw1rLab5HiHsMYm39dt4wJ/CAYOcl8oo6Zttdavr/6nMqMaFdWLdXr8tE7scB6wAIDyNIUumT8ME0rOnSfo+FAee/N4s/2YaNicA5Dxjntvku4k+JXlr4EBaSpAdqt9xZe7wUp/Pwk40Sw8uoAISCjLMKZfiz4KbTNmwB+hgHQbjMEg3V+09VC2w7SO2N4ThpYd/9fLzY8M8IZ/2yId75P0eeZwxPwL3Dx1+PA04ZYNbYjawyiZLgSaxIeTMDGe1FJJirrxPA9QYAoxdglfPLT3PFPAjsyzk9J9vGJZtzFEJ6aT+wNI8VM/PDEnGoeoAQCcJKwjsux2G/qY0gvr+Bfr+JZwoAKwbYP0zQ3YaKxGAmwsFDAaHD40LAOD9iL6fhAXwJWoBZkX9EA74/byHcJsLGKxDdQob6kw+cG6t73Pr5k5aX/vNtX7ONqq996+bCOtrn3+mDzKDPlqLmvqNgSn5AKWIjBGxHCqFZuRzE4raqvzOWBhzbp8AICpsIYBjQwTB68bbhgUMU5gbHRwzK5EXahkr1z10O0yViw/Gy9+VEQxclNjQcWzY3XxkxzyzcmRZ5+Ee6eEeNM+YHyIe7zzuDj2maPE+OtxSwv0Zb0r1Dj+kUH23jconXSmk10y9krc2IDma37erFnS5FHbK7FGfQFWYKcAYkOu+be5z+xywb2xiArhZa6WR6/0Fum7HEnDbY7v5GpvNL4oKwPpLmDYW6D23ZQOnscYE9SsVMNj5S1hi8Ni5HTrJEwAgxgPm+Q4xjYhxBPCPn3VI/z+nWzhry755jjVbBm81IPoSRDgfJ9a1Q/l+FRt0VTBIIR7++5rldq5GaMvatXVQ+/WDYeHMxyDkst/55+XraV7QAge2iQ0EFGZpCzSdq230PNU6I4NgqeZk58DTlvUHeT6BqlLOcF2h574qeHoYXHSJlQJXFu768mfZzJWV2QoiS2zIhz3HhvsZ495gv/cI0eJx9rgng3ttMsh+qcpSvt4OiZn4wUB8tbsG0Gxjw9Om+NnNa/ZtfiY2rK2nAjHTT4lJE7GnuSrMTjkigBANv7I1Pbzbwnc7WGMx9C8xDK/g3QWDwv1r+OE1xwNdup8zyrW/loYDgLUcAzQ3YGu6C/T9C5GOHzEPL4tcPMUR9/GIuxyQv2DI7O/Gezh7xndft+uZax5YNkLbmLHOA/Qxar8gKBosAVl+12GtBvj0GqH9+RxYHCQH1Rd4bsZR/alp7RAhpRNjC827tVd2e46178l/ZsuD8lmMVMrFn9iIVaaV98sgk5HBahtI/qpDIqdsMZoE63QORl40LoDKFmbWr11YzaitqCqJODYw5uB2F58+dLpZNB5AKSK9/wnp7ifE9+9A84z4cML0CBweHGI02I8dHpLDHgz+niQP14GHB5njs0+BWdMgnr9RhnU7gGpDdE0gXK+17ZghyOA4IfihieNC1jnkwFaWK6Wr5jNLdQA3g63VmuEFOn8J53r0/UsMm1/B+p2oSzzHAm0K5YicxpoPyGA5ZGEKexRLGcoR3m+R0iw41wlzeKgM4TTifTziNh75c0nO2BmL/AVqgbIf/wYE/2+/rl/+n+BdhxQPCPM7xHgEUcQ83xWfUWUKnNKIoxYfrF+UHdykIbQOp8C6S9omN8ASgANqgHuuKASWwbuFVwgS/AwqhGJqog0AOqRLT3yV4J1bhcEnHTmVcJP4wbKXL4st9PN5VKZqHRZQ/Y4qo28JiEGetwbUi9ftagXKuMPE3SxSE3IGfEAsH9taj53pcGldYWqpjKSzGZttgr/ewt3cwL38+YNeADRd+xF5PCGfAsIh4fDQ4cfg8cc8i19XYmYp8lkWjjJ6CifyidwuLy7oltmzllmsVwF35enteaivVUDg1esDlYHS+tO2k0bZQwhlcNHCH9I4OLeB81s46+H9DhfbX+Bi9w9w3Q1sdwm6+Bphd4U48E3INAHVhQgbA9w0AjnBGB2JCoAijDIFz7CDunB6dp98bL1+/X+Fsx5hvsU03yHGPbL4C4V4xCxDDA+ZPa6RGvFlw55q2e4qp13GgRb8KK5ZZTs+1pttG0DrpE6B+fKYcnxkKwSMU38u/bltQLTfUxMHCMLileGN7E0bC8Cj4I5fxAJXZMT6edvPumY3rQta34A7XhKuIhdv4oSyAFqwR2VLmdS7zskgKJZ29iLfUrBHm0T+5TX8y69gd9cfORJPV4kNYWIPr8OIdEo4Pli8PQ74LrFk+F6AnpmaRMLUKepBmA1c5El3/MmZwUlXa5fRWj98bJVzkpb3J3F4XQAXwFPmuTaLdDCNXg0JEB9pVxqJrUXM0N9gd/HrogLoL34Ns/0Wud+WbSuFZ04wcQZE4snepyz75F2myZz82XhYfz7FiPHzWX9ff/V/gXM9YtwjxD2ibE9IE8Y4ynVA4menihdA4wCw3M+675ee17Xw02XOXC/tWrPiNB4ANT+g1d8XDd8SF5SdqRA3oBYe63hQv48FnC32L0jlMzvCCjD3JRa0QJgyltrGY6s20c+dms/mwCBwlvjgGwCngMEQH1ACrKl2GkCVNwIk4A7HhtIkKmAPx4bNkDC89Oi+esmx4ecOgcKySZT2D0j7A/I4Y7wDHg8d3owdZjJ4Q4R7ijhIEdMWY2wdFIt3eARgmkGL5VjJ/cg2TaJWDaGvu17qj1qhOlqAdKrQ6JtBmxlcTAOVDao5A9vErAdA1QLP+S3LPMUe6mL3r9C/+J+Qtgy0x64DCfhrcoKbJtj5xPFAQOC24GsXM4EHPKsmoMhS8axA8P/t0w9mu8+Gr2GcQ6KMIFZzy+GmUifIvdKW+9MS8FzHgXWOp0SJ51YLBilgZEp+ogAeyt/rEea1HkJZYgM0J7AVzGryh9b7m7/JJR5UYCfDUmX8q/WQQjTGVuUP0DSxhPCinpXAU5afbm9dBEdUbGbK61FFk9b3yBaU0L+7AvY4mZ/hi/y75A3GYNtHbF4YHhJ3ffNZTaJ8uOfYcLhHPjyW2DA/AvtHj/tTh5At3ieLW8q4l/O9BbV1UFw7nBXGsteu9eCBfcvP3Q7RK8BPe79ZAY5G9m8bG3RwZAsYZWkOZSJMTcNYh1tyU4iHQKmdkHMb+G6HvruCdxtsNt9ie/F3DP66DdDfIG12SMMGNgbYEDgW6LWfapOYmiaa+olbbBY3V6KIofk+FUsZyfnDXiylAv705z/+7GMKAPcArAKbtNyP5xRY+lWVcWvP6+dyOyVaARCFnDnbkAGwsJAA+FrSmL3GF8pzVuBuGxsAA7KV0GEg21nuRUoSk1enhXlE8Z1fxsEKegMVgNa6s5IMrIB8jGe4Js9cLx4gFpGTcGUpIxq2V5oyK7y8WCboOaog8Nw2oWXfdlqTGAWBneQOfA1tJTYMVxb+egN3fcNNop+xKIxID+9AYUJ6vEV6eI90/wAKEdP7iMODx+OBY8NDdNgTygDqFgQ+UcaRGAQujVlj0Nse3g2IAJBOcgSWOWbLKH+yfc33WgMCfC7qgGmt41pbM81jFGPgfCbLUDjAmk4wBLaDGPoX2G6+Rt+/ZPLI5lvY3a+RhyveBm3W5ASTExAOUidEAYkBQ1WpYayHw67EiQ6v5Bzh6z/FAw8lpIQYT5jDPZJYS+hA6hMF5C9QEun6HOb/x9bfrCE+sszwmjsgkhyqXESXc9siYepkiv16rSdaF8C0sBLE58rI5fOEGSfJNenPFSAq29m+H5YwsyZCy4LOlSLA2I5911byWwV/mZW5BIJbyWad6plkCE+UC0Y/M/v06M1KO2Ka1PYNWNMmtefWGvgtBu7NKkEoV1bFGrxkBuBatlVfV1l/xgG272A3W5hu+DwfLwEBWd6ZxMOLfXpOkE7cKrFMyEgtk7JJagEF8us+as/JNoE4x+D50DKrf7q/2kYEsDz3Fh9VQYWmwFOgsXRfpSAwMgBKZWjq7eVsz9Lv7qb4+4XdFcbrC6ROticBNhNMJpC1nBiEUG5LhhzUFqLt8vHGSyfQesB8inPv+eVlEIXKzmK8AnsQ7+HjvjZEcigTSHnf1MYEfy9yJmSQEfnumesfAAy1cujzDaL2+LRdfT0+bXxoj40+rvh2wsgE5gocaHxwTeLUTvtNRb6NMnE1mwz2meMit2X8L4eFoBRR+hkWfpIN23mtggCWRQpQgd/qxap/r7GmbbaxRybvBYPKGNTX0sXyTsCLtNP0PWD9Z3v8lWEvEhtSIMRQfYHZJqjK/SF7sjPLwo6oHXrx3DW/LO6f3SQ89TdrV1uEGCgAef41F0CwFOupOcPrgFG9H7kSE7Qw9eLp5fwOpn+BuLtG2G5hU4bJmZM5cAywAIwyAK3n2Lve/sX56ytTaBEjPl8tcHHxd3DOI8UDYjoiRm44caF4KlOwc5qEWSCwuIIi5b9c5N+cOFMBSIAzMYAI/gPHFVg2hpa/XzaSASzYOtWvWYA260ps4J+rjyewvCfpxG/19dTf6flYGL8SB5yxArTWgYMt0JVBdTAp8X7LTQHypOFFIlMndsjNpsYM/dqCn+eWNQZET5vYy/xBHmsJpu+KndRnSb8TM1gpszUEhYg8Z8TIA+JO4v1ZhsPpfV9ugjpkpZVTkxzH55VETz/zx9h/GgOoiS3t31qQAlgyWrSB3DaPI1gdoA1JlXoa69kOpgDDA3x3gzxcYb5k1h/ZRmobImw4U3idAYHrBrcEiIY1JM+zojAwX9BA3m6/grW21AVJrZHWg5Fz4FxajlwQUNiUa6ayNA0AtTaoZh9PWcRL25Tnl5W/P+exu151yJuyGV3J7zS2n2sQKeNON6aNCe2wRwVUvXyWVgWYQYjIiATAmOIzus5vlrB4kzsjF6m3Lc+hZ20fzu2PNl/Wa6aoBJr8w0FigzOwfceDpM+p2j60suYKkZvIqcaGFICYeObIXLyBq8VQu6qPdI0RaO/DZrldn15FnFv0pK5Y1xQKvJdZKIVZWVWu+goaw5zUC9YObAPR3cD0LwA3IG12iNsLpM5Xlm2cYVb5AJ2p2YEKCPO+8ACW1l/O74qNhI97eP+ALl4ixvmz95J1g9xnmixdmnTKnpStrnuDavtE7VE4IGeopmbdIOK7YPO+8nX9e/nwEoxFOSfnSjl2pBSD51Zz5E21AawDo02JEwA4HlCWDyYNqObWZlGHj1pw7qlNobVPbaoVobyPY1ZrM4ic85ZlzkIkey4BZBOQM8hwzBaKCzOoW9IT0UJt2cbXkiM3+UbLiD8bG5z72XlDSzqjeUQ+ndgu5lQtY0LmuQIh1/wBWNmSyWcp9gtEdX+VAb/PR4QWDP6Q+hjQo9PEz+YxgTKcMTLbIlefYGpU0W2OIDiCsx28a2xh/CWou0AaxAYuZ5iUYLID4vxkgCSAhVJQsYP2eLSewtYOcKJg8e4gJJCjAMEjoht4OL398mFxf2ME/xUWjT8h+w0zARrzaGcHmU7MJ1bxr2wCCYDqLSaAEDNlmUVrZQhSTYrkBmAk3FEFg5JRphcvIwnhs9uN2hVb92cNLBZs0sLile2wzHwogbop7vSzls9I6sszl0I2k3ZaK9NHB660AyQASeKkEFgAlmc+mhYTHSwnueUGdR6kTIb9jtZMV30ttypyznWxrAV79HyBj1c+HUDjAenhHeL7exzeZITJ4OHU454yHnJYDAdo90W1h2gmwqMGTwArT6qmuF7tu3PLNYm+3pjOFXT8PrxdmqJocAaqB7DeBHX4QO3j1ttxbUQ4GONFunGNzfCafb3cBTYXfwd78S3ycIXcdUidBOIGAHZBBmeFCDeNnOTlxOyfNBYWIIlNRCsBK0E8jvjsRQmU+fnsXZwADOUzVc/LSQDS6oGpcWABBjXMoDocEQAykllCfMrC4u8/DP0tNrn5ByybQ/x/g8UrEZdZOgDDwIKsTJ5fgQktG5h/jqvPUs9NXcUfkBKcschIiB/wUVLGeXm+AIvGsDepN7la8pDYQzTP18GX6+ZIbvbCWrL4oWU6LwnbZ/h45cjMnvGA/HiL+P4Op3cRcTS4f+xF0hmKL/Q6oVLPs1LQNbFhrRZo7yVagBUw6wxvbB0vSjxZhchyPhFJM4HKH2pC3NgSCbOnZWnx/ag2hpwd4LtdUQdsNl9j2PwKfvstYDxouEL29aianJrELjMjOE4F8KE2FhQGUE3InhR8CgZ9AdhjHQ+rUM9R7y6QKcH7LUJ4RLcejppDAUvzOZagHD/OA1rWsHpy0uLK/djZ25aTi+/N+hBX5s5Sm4CnsaHx8WyBHn7t+nn496m8cwvYzFKAORBSypitwhPLpXZDyvrTImYpZq7LybY4AYo8GR4ERzzToQ6KaWILLSW1tVhp/XOf7mkHxnaMtRwXPidvkNiQxwPS+58Qb28xvZ8RDsDhocNd8LglbhLtZciTLo0LWpiqDY5eb3a9NxsmZmu1tbArwYcBYanZn3h/FiC+KeZb+5J2dgARlVkTCgJb2zHA47dwtsNmeI3t5lt0/Su2cdj+AvP2AslL8zATXBBmdAywMZR8QOWfOU01DpwBhUvRJ37jCx/Bpvj73MXTy/tFzcCA8FxYRJkyUpoYGKZY8mwyNRbEAvOI3U/TINJQrPezn7NaIGMdJ5Y1xSpnaM4PLix1qGuCIVPqCX7AkhVcClFjAGJOZDBshWYARLE8KpGoUaYR6vWvcSQV4Je3za5qmMXnpQhQQjLqHcqAg5e6pBN2mjN24cm8Vid9iIH9XP7NL/bzwIH0cIv88A45TEgP7xDevsP4dkYKhMODx/tjj7fRIQHYEzeJFs+XfV59NrMMoMbqGGpDMj+JfW1D/exHWlWdBDQKl/P7olgYyL6dciqNIYIcU1Wv2g6+22EzvJaBcDv0w7ewm6+Qty9A1iJ3nTSJ+Z8NASZNJTfQvECvZY0LLTDcAkFrsMisYoG1A7rOwZjPt5QahteLJpFeJ1kIVu11U5R2RpWiVV1T2PSruhfN/j93FNq68glIjxoPWiJJuX8/izesagrI9U4Jxhi2CKQ2S2yWsTIoTs4i4iGzEVVh3H7GJ9tiDIzhZgED0B7Ob+DcUGLCuea15i3RTjwfSoZZ50QI4OOQYOCEteqNfcKGf24tFM5NE/ncovnT61MKI9LdT4URHN+/QXx/j/HtjDgC+zuHu0OPu9kjZIM9mRIb1BdYh5UqG7d4KGv1bvTcrGSFltjzc0ln+tXqvigAOS+NCap4LHNFQMvawXasFvJbGSD9Av3mGx4W6zbAcIPsWS1kcoJJCXYeK14Q9iUW8FyquIgFLbYH4Mm9pJ43UewtL2At3+NdmsWjeERKf2MEf+76qwLBp8Mf4P3w5MCrz2hJGhsWgZ5A6nGV84QYD4jxhKz08TQixkMDBnkZgpBr0QSqgb8AKbLMx08I84GA3y69sNkuHIjr1vEikaip4XPWFizbkP2E5YTQVrqqn0bBRAYPeK0TLF0elUFsyRT2YIczSZ7FQj6mr6XJSMsq0MFGqbkVOkNi2t7D9sNnDYPKj++Q7n5CHg+Ib3/Cwx9n/PT9gCk4/PPU4bt8wm0cy/t3tvpFFi89cIFchiUYoIFmeNcJs1SLBJV46iC8BUtBpUBU9wnvD/6nN9b1UTeoYHAiQjRV4qmgcBkMRLQApiojw4rViIf3FzDWo/MXuLr8V7i8+vfww2ugu0TavcLx+hpxWF7+NhNsSOgmLvI0wbPzCQiHRYKn07+zBPiF55xu9xf4gKZ4gMGGO4JuUwbTtMAjCYNIr3t+T44FWgi23uMKDJfET7d1HQfkkngSAz6ls7e6WSs0f27V2NB87pZ8XoC/9ftq4rgEINcDXQgoFg2B0uKkWw+R0Me372SaP3jo+c5gMDIwGIdEVK6Bcv6TTKluXl8bVcDHLRMceOBLUQv0m5891CG9/wnx3feg8YDw4/c4/PmEd9/3OE0O3x8H/DEHfB/Hsn1rKxZlfIwyEbow/4xAdgsGVvXiWhd0LXNpDf4oK8rj+SIXEFC3NDHPs4B1X8+UEQ3fNVqWhg6LHIYbbDfflAJve/nvYG7+AdPVTX0/11iTaJGnthDhAIr70gBSOTeAcl9+Dshph0p+SWxQtcDah1AbyroNOo1YWcGsHjiVZlEUMKg2WSpzmF9Xr8B6lbRJ3UI18onJ3oeBo9U59WQ/NlYQz8YG/mu9q1CRkqY1sK1DVrG89vUeWO2tuLmtn3cprSUkpCL/tgBsBnqT2LcN3FzWVdg9aGYL6H4xKJLb6snI/p/rZZz9+Ww/WfHt9zU2/OWPOP55j9vvHObZ4oeHLX6fCN/leTE8sF1qITNRLL7hCo4p4553szLQcynoNI5y0909KVLrHIoal6yAkcAyvgNtbEBh+ulzi52NvCbLeKtizbkthuEF+u4azl1gt/stNtf/I+jia5B1mHaXmC43SJ2BSUB/CnDzVOPB9MhFnuQFKR6Q4r7c03KeRMXWstcr+OPcUBrW3NTZwNoN8hc0kK+u/z283zwpNLlOONYaIR4R03hWWaQDatbxIK3qhKce3h+KAR+LD+bMd/qL5rrjLWHUWPfzJ9cqRq5jEchLXOAG4nPbaLjpUhjILGFWhSNv3jNgD2VWLeWpAG0BfL1YURx0meXcncsFlGgVSQBfAxnckF4PAD0H8hhnSr5AZxQrZ1eOSA+3iD/9kWuKeUL4/s84/PmE+5885tni3X7An4LHD5QKOM5NZH4JbShnsEXTsZFYEwyc1LNalzLYSPCEav+0AoHb2inJvb6N7q3FUVGzmWWzvRJLaDE7IKBRB5gOzm2ZAex67Lbf4vLyX2PY/ort37bfYr55jXk7CFkkw4UIP02cI0iNQGnkayiPC/A3pQPfnxtQR/PfamPH+8c5ViS0v/PdDQPV7vNjw+sX/wd43wuBrIJPKc1I6cjXvSiQUxqfJ5OAkAQo1vX0fry+ltqsfMXxPTcFbhEPatR/NkosYoRaaHKMIDQ2MgBatrBxPdaWU/xyteGsyzZKMn3MU3VzL8NGFbNxsHKfzjmhBfWYzXkoSscQ9kjxiAlR1FkJfY4MBKMORAb0fFdLnQ/VEpp7M/HMSDJBKSGHCTQeYDa7s8+lMCIfHoAUmWj27i9Id2+Q5xnx7S0e/jjj4Z1HjAZ3hwF/mTq8aZreMyp7mi0h2OpipIRTjjjmiEnyM2e7Zd6QEwyo+N+WmSwNU/w5i4gWBDZYzRKQukTtYgAs5p9kANEArb2k9xfYDK/KXKGL3T+gu/o3SLtXiM5xY8h3yM7CBcDGI8z0UOqEdSxo8QL2AZ4W+EGLB3JzyhVmuZVh9G2jSM+pEA74XEspXX8bFvdXWOP4Bt5v4FwvB5iDvxOpqlUjercBfOMv1rASKUfE+R1iuOeAnSfYsIcxriR50Vh+TsOkWbNqPneVTtuTbiIArD14+BGt2XrrUcg/rz1LTSmSyuObImk9zXvBX20AAv6s9ecSPhWwBHv8qX7FwaCT6ZVnky5a+qa1/klGwOnKvIWwLpfLWsB+gbwzPdwWZk98f4+Hdx4/7jc4ZIsfKOFdGvEgzNFBB5ZYV3yZKuBTg7f05so+Xp4ftYPfyk7OrTYRUy8/L8dRk+9z4SETwZgGwNfHNsdOB1PU6asVBOavXphyA/ruGtvtb+Be/gdMN6+QOo952yFdGMAbxj0nQndKMCnDxQQbA/zpiNbjpw3qXPAJEJynRSDnoipJgP/8Dl2KB1jDTSBrN2XauHoS18EUjRdZU4zmPCGnCT4+SgEYnlqtkDLp8kfjAFE+y9IFmhjw5ElLZo7+Tm8MBAWhqXncsuf/HAsMqLFj8fjmZ2U3pqZ4OMcyOMcuWIPMfA5meHCjwltztgB1MAunpjZN0250ZcU9D38ah6IW+LmAj3p55cdb5NMB4e17PL7zePMw4JAcfsjA2zzjVpisnUjlteG1ZAOnWpyeaRK1n5Ql+K3fqn2ijDjH/DOmeqQ+AeVQgaG1bKk0hhrASnkr6gms/vRa4A39S+x2v2WGj9/B3PwD9t9+g7Dj+OinDBsSbCZA2OPn1ACkILB2+qW4UrBluZ0iNGsKvi+ReBp/CdttgTYOAHCrYVU57pHioaiNQnhYAMNtkwhQNUFlCv3ctfTsfZpfLOIE5SdxgR/fHPkmNtTicXkOmLO/efozAYVxaM5EjQLmyH3KKthzZmkjrQJ+MxJiOR8DqvS4MxYhZ2RXt7IAPW1DGjWf0dhw7rpxRiWe7rPkndo8Tnc/IZ+OCG/fY//W4P3DgGNw+D46/JAn/JROwlisQ6kU/OF4kEsDOQNoLX/apXMsFs2hBuz52PCXNqafe2Q7ZV1BYJV7K9NHcwUe3ON575ahLy/R9y/QddfYXP4bzF//a4zXF8jWIHcG1AGwBmYimENeeoGKJzDlEZQTUtwzoCLgL+cG86L4b2MBW1C48n3XXQO+gsWfs/zlP6DrLgBlHmosCHvk4jsaSw6j3oMpzWUOgQ5j1uYxb/uSzVbWB2LF0qIqP7n+y7cFRGrjxwdAZ6JVznFePF4bN21uWKXj2ugx5vxX/qHaVSnDTwGfc0uBNM2v2MPRApnrr5RHzKIUsARMwghWH9Bz9zmFrezi+vmEgawpnrUuWm6wKIdSQnr/owyAeot8OmF+e8DjO4+39xuEZPCXucN3OeJNnqH2d+pfrktzhSANZG52qYWHguV6j2FPVmXstcqA9vvlsGI8iZuaY+n+aTOUqg6gsp8J4vuuzSuJ915miXT+AsPwGsPFb2GufgvyPebdJU7XW+TBwERCd4xwIZZGMdK0YAHnNCHFPW+DNGFCeFw2iQR4teW84hzfuR6dv4J1A4xJcH5XhlWSvfjw8fzA2r34P6LrtosmEZptfa6BHNOIJA1k3qdaMyybHrrW9/6zcz5Qn/OUlAbgSU1xrsL/cDOq/E0lJfI65bIRazDrGLy1Rryh3XaxzWtgrv1Z47c+ztlhZQ12Ru0s+z6mI0LYlIacPiYngEydy9F63ssn+Gjza20p9aSCyIntHQ73MClyHtHkE/nESsJ0uBcg+Bbx3Q+It+9BIeL044SHdx3HhmzwNnh8Rxm3FJAIMrzSlibO3DBvR4plOGMd6r7eQm4ee9SZLK7JGzISnlstPmFQgeR+9R6KMVRmsp4mwua2HYxx6PwWfXeDYfiKh7xe/BrhxbcYrxmfMylzvdDs2zzfLe63uagGU8EMAJQcoSVzLZtCPcj28OKrzpZVLxgPWFlN+S9QGZZN/8h59Tnrb4zgjyztDFjrJDg7cW2I5QQyxYdUGKMrCTohSnDyMDbBSIdRfXeJEtwqMFc5qG7IednEs39bfIZ1kpdhrHrv8CXJ8q0KGmXTSLipJvsGFbyxArgYtAWc4LSaNxZY8nxwbMFDeasnAKR2kBMIljKyeMZAunAACutPVzvxuF1WANQFu47ofAUD4IuGPOYoA+IOyKcj0ilinj0O2eJE7A2sSdnHtkMtI5YQXLPWRTuwYC19CNBar+duYuu+pk6dB6r8++lW6LYa6Qhzom+th3cDG7w79tnN/QZh6EDOIncMAhtXjSrIMutHfQDJSnqbNTh7yTprp3fNZm1BYL1+P3fpDcMCIBNBJDexHJ8v/iUO6PYam4QNOXNCKXISr6/fJHSf1RD6QDOJiJnFxQ8LCgSZygDIAIypCSNatoAc69Wltr522/7KeQioPk/BICp/X7WhmmvcEEeb6qYqsUlO1Na7C2AW73PXF/DUn6pd565Nej7P+egqE79PBx4Sd0qYJ49DchizxUlAHGUdnWvmtFYR7XX3FOjhK7NdLZvx5yyNDefSBrXo0O8h73qucNa1HkBorbB+3A7W72C7SyTfgawBObm/2A+zkxevL4nYc6yrc/Ghfv/5sQGZJxGjmG16/vkDTGSAmUY5T2ItgxIPlP1ijS0x4XPW2reXv1kWiOX3Ehtq3qDXoN7c67mjDFxTruKaXDatSzx/Aa5+b9rGDwBY8YDTWQ3+iSdx+xmtsUxKhJUMxAHIyCaVxpPazARkDM/IxpebVBvaH2ucAAApm1k8wD/pSsuxxobDI/I8I50SxpPDMTicssWJmOWn7COLvGA0L16Ong7yOSfR1yOz9mNuFRIfWp/y2VrLgTbfa/8Z/c8YAQG8+H/u4NwOcBukziN1PHCoQZNg8vkYA2genipIYLGUtqCCwMtmSULOTAho5aI5fb5aoMSG9TZatqLQWKW2MvzxFNDZwuSp5BoaF/i6rmzOc+t8DrAEihYAkWmAIkhuoNcJ5RV4I48pFg/rJlIziG75qcvnaBm9OrBa/yY7qD6rue7VK1ZZf6Wp+MyAa0PKahO2Zw6w1osCi2ktGWq3Yj5Z8v2x9eQe3sQHvleczxlpnor3Z8kZ9nvkOSAcMsaTxxQtxwagxIYEejo/RdmAtJzhUfPz5n2lpigALszPzhu0CfipWUa1kmvbCKaeF1I3WJkbYN0G2ffIXbdQCZFtzsv0AUCq8QFtV2nUFoCPrcvK77NDJq7lAcEDcioqpM9elhvHRshO/NqAsSw5N/Lazg2LbdEzR68JK3GsgNqrnGHhhXuOPNKQT2r+qNeq3tOfu2e6RU6xiAv6i0U+2l7X9Vi3/uIKAlsB/lpQvl3l81u3+Ll+Xdt7uCc/E6UK3mWxLyyM4vr+REBGXuS3PydOPOedyzOEEucPmb3AEXTYqQecHLvAg2RpPIBS5Niw3yMdJuQ5Yz4ajJPDmNgvnGNDYxVD5gn5TWeDtLaOJTYUH+bKOi8M/8/8rG1c0NdQNnCrKiwqA1PzBKUkWuPFQorrBucvAbcRK4iaP0Is5AAwaeSM1cuHcn7NDdQeQ1fODsakqu6xSV5HbGNzPOtB/Lnrb0DwX2HlHGCtRYxHGDMjmhOsdYjxAB8fSjCydoBVJiDqjaRKQmVquXHiT+OQ8lYekxZfc26LtfOF6bmCLn+wqE2rrxVwfq57eI4tQMASdCzsweXvFsUglXCyWG0euSxUlo+zhOKDGgDETKWDBLD82zqWeyc8HR73KUsZrIt/ZEAJyPPMQVeD8Sde1PHt9wg//B7zn/4ZeZxx92fCHx8u8I85YU8Rb9OMfQqY5Xg7u5y2mZABYsN79fPiICjhtykCyjGTLp1OmAbQgMHLHdsGFE30nFFvah6epTeEdeKXiGV7sT3H9HXPMolF7ikDhobhBS53f4dh+Aq+u0F38z/geH2N+bLjRss6x7AMAKFzoEwweSh+PzZ03PVNg/j/jPAAkgR2k9qOb4Qxqfj3mrOSp09b8/weOfdPpCFcxAg7uDlX1jLQ2l306LpLEPHgSZ8vPxmQepYFJEvZQ+vHP//z02QxL2LB0rvsQ++9iB+NKqE9O9bPNcYKKKGg0/PwLEFilsQgQsCMxIx1Itic0JvIoAYxaNApy759z7Ovvlxl8BI0PhjkbEDzzEXaeEA+PMC9+PDAOBoPoDAi/PQnhO9+h/n7HxD3Abd/NPjD+wv8LgInJLzJM+7SVJgGVgpS3Vhm1vK+G3NqWH+VVcVvqLG7TuxegzwfW2WwhSRo60YRoR3GRQuQB0D1gUYFfJav32EYbnggnNvg4uJXGK7+DejiayTfYb68RJYmEDIWnf3sLIzvYPqNeAH2HGPkuqM0wqahxAK9BnNyT+SXQAUH+L74+Yzg6fB7JD8UIHqdF5T3Kw3lug3qJ+zcBXLeopfmVbuNz63zRe3zucKHcoT28c+9Zm6ucf39h0Dq5xQLH3u8Fl+ugD3N0JJnG36hMCZTPLGUVmYhTIjwOS7Y/xuxnCpyb7FKykA5ac/dM9crETg2pIw8nmDnCflw/8EJ4DpDgMKE+O57TP/0XzB9/x5xJNz94PDP73b4QzSYQXhDM+7SjFHPCQt0qHEtCKMnEVs3RcqsFDAWZZxdW+gjLZg9Oojn3OC81jKnZUibZwo9vvYzZuLIpEzgtPjaKj9sGVDqGnXAsPt7GH+JdPUN4lALPBMJVjBZFzNsyiBrQb4HshNwm4kaJlXJtg54UdUQ/46vM1UL1Gs2CSFgRggPbNnwBWqBcPg9yG8W76Hb1LKSdPHEcs4xeFh1laxrXHh6/q/izEfqhTburR93Lt48BzYv33OZSzx3rddr2XIDBy1w8wFFTgPysK2Qa16L5zQ8t2xSdl+EtT2i7WDTUBiVMR0wUobayGyzZ5spucZ0uHUW2DLDsFTcnI8JQMOazQZ5zshzQB5PyMcHpIdbWJV/NxZT+fDALODHW9A8Ib77AdOffsDxp4QUgPdve/zx/gLfJ4uZCLcU8D4HHEg1T75cz7q9Gh+OKRapdYkNpgXJOc/TnMEZs3gtoBJwdKDU2eOECgaXhpO8RiH0UB1cp57AbCf3VP49iO3SsPkV6OIbhN0lsrNI3nFuMHGOoMpBQIAfN8D4ywL4KDmLawQPJXbwV8cNWfv0PNb7TUpVWWTtEU7wgC+ymxt/gombVa0fF3mC/s3ZAc4Oksds4fO8sDZon6/bzl/r51ljBvq4xcwgwQjq35/GhaeA6s+vwdtlV/d9K+x+vc7bz7Xcdv2s5xm/1jpk42Cpgshauy23n4+xswPQATn3cLnuvxR7Vm/GPU45NUohFPsUzpPZlqUlc6yHpdbveYB8HDPcOMO4PdLDO5huqLGhWelwz1YQD3dASjx/6C8TDu8dYrC4f+zx/XHAG/EC3iPhNgccJAfeWMeqJigjmOPCmNkWYsoJ0cj+MTqar+JBEJstZ7hxu4gLENWBAK/PkUHWanFVUujjY/sVmoYZwdE2cH4Daztshq+xvfg79Lu/52bxjpXF2Rq2iUlsE2NjKANkjdvA9VhYyBVyZ1rmlRoT2rVUDtTrLmVWH9swlHNJ64D4JTOJyvt+8Uv8b/Ka/9LrrwsEU5JiYnkA28Sj/CwyMv157SnUgkTGewyuJoNlKIV55uM27MXWzJp/fnqTeHIzeGYy6nOfmV/jOeB5mYCqt6GCTnoT0RtIzqEBwT4uc1+DRpQDJ1xEmBCRJWFwhh83GIfOWgRkbIwvnlXt+lQTcx3ONhMQyCBGBnvyPMFKN/5DBR3A0k6aJ4Qffo/pD7/H/o8HzEeLP323w39OGf95vseYE/Y54JACRuIbiW/2SbGsEIFFyHUYlFosFFldA+SrZ0+RauDTO/ha+ArlneWahcXDAFAbL1TCBSyTOwCle1eWsICN8fDdBS62v8LNy/8z7OXfI/dbHF+8wOl1D7vVnaivIq/nwDJQzlpBti8DYlxM8FMHGzZlWJTVa4kistXrTBM4TtRSYhbu565peouUll3ptvPcdqfLFG0siz8rjSFjLhbPax/TAknnVpso8s9LEJkoLa7/c8nfz12fBk4v2df6u+fAqOcArueAqeKpnANAmeVbaWQJONjvqpPPrYVbLz5WCqICP58Vy4waIAaDHCIXc+MB+XAP9+Kb55939xPS+x9BYUL4y+9x+t2fcfdnwnS0+O7dBf7XSPhv4YBJkrF9DjjlyEnmmSaRSlVb76xiv1KaRFXi5yD+nx8Ae5QtpMuJJYSXr8ZUH1fdgyTPs20HH0uWcvu1xgVhavsNtptvsN18C+d32F79D0X+DUgDCAz6tJcrM4OtDJKUazwnWN/BdhfMAEgTTDiUWEAUgZmvMyvXRioJYG3Esvzv821j9vvfwbmuXM8fYqi0hYgxDtYP8KtYsZQyfjgWlO/PgMxPflZg/BMbTx9675+7lsN1n4Ja6+KylXjW7Xkq69TvVTZLlBDiAXPYF//1EB9xygHIUfyvDWbqMBT1gKkWKmBQQm9JtWlqFvLOAopAYsM4c+5wuEd6vIXd3cBuzxR0D7eI775HFiB4/v5PePiv7/Du+x5zsPh+v8F/ioQ/xSNmyjhSwDHF0iQCgI0oUJI0iEJmueqUk9ynxf+zaazlHJAzD8ryALwAPdUHtDKD16syBAFHhhtjqwaQfh9BRbXTqoa0QVT9nmWYjx1gXY/Ob7Hd/hKbm/8d5q9+C7IW88WAsHWgDjAJcBPBT1UCbnICOcdNsezYssdpg3gDL5ZUWvQZufbUKsKY6Rm/yCQAz1HOrS+IDY//KFZzy7wAWF5fWjOUprK7ePKY59ZzQPDiPtx4I5/PHZ4SU3RZ227zMqZ9eLs+LfdYMq4+nB88F181tpbHaXMwR3Tq2kUJXZ4Q4yVL6ylhtB1oIrboAqs1TzmWeSTa9OxgC6tW/fR1qQLvCYECQEgWcSS4cWYG38M72Itr5L5pIgsrPD3esl/4+1vQPGP8cY/bPzn8dLtDSAY/zR1+Twk/pGPx9hwpFgDGOVttpATsOeSAScEeSuz/aaqfsgLAmTiPcpIztP6dxRKCznuUl33efG0VBwr8kFhb8b6hMrRuLf+2pkPfX2N38WtsNr+E85fw1/8ap1dfYbwWu4bA80O8+AP7aSoDZAEwcaTbAb4SRhD23CRqGsUpT6UuOFdT1ybMU8DXGPdFsWEa/4LkPz6LRvOE5+5/+pj2bx9sDq1igd4/zz52hQu09Yq+pzZhnmPirtf6NT90/T8HbJ+ra2x5f73nqd/7XOO8cYX5u87FjKuqDKLEcds4xMSN5dMpY4p7mMyEk8E4eIMyPA5AATCpUSe2pA6+Z3PeMAWHcABcJ2Dl+3cwziN3gzCEoyiMEvLhEeHHN5jez8gz4fDe4s3bC7wZe4RscEsGP+QoVhDNwDUkjk8Z6K0t2xEo45jYF5hjQ5bY2nPesG4SaWwQWyrFG6x8llZ1UAfdV8vPVh9mzBKvADhvCJkrtUjUDADlxoDvLtB3l3Bui4uLX6G//h8xv/oVyHJNEAfPhLIsGMHpyI0hvZ91O5huJ5ZyI4zYuIIikvFAXIK9bWNYLWNkzzGxM53KuTbPd2cxgC9pIOv6GyP4r7D4oFsow+S5Lti6a8VSpWGRpHh/UbvV/pL9DxXk6S4BxyzHsvR7OXGtnsAU61R0LfbEG7Vsdz4X+OPZgKxA9Af3Q17eCFoQWn2LNLnkjkjtTqZ0Qmr9dVb7cd1tbMEiyrFM7OTJyUA0EZCgqkPKQuaBU8ksZZJFznTmPF+Dw0kiVEIVvVACS7hE3knhw91eZQbSPCI93CK8P+Hw3mE8ObybPX5IJ/wUThKUUxmUQpVvXbZr3TksTNvnpKio3s5l+uZqsMO59cTvzOgwuVrYrd9ROZ4tEEwCwJ+TjhcJuGUZR9ddwW5/genl10idx3jNILDrCZQZ8F30LqwBLDETKAOpA7L1sJlAIglzwhB2AEwaYJMMcgNg86acc9Y4kFyX+Qn1+NNXTCN4vM3T1RZ4zOSpwwm4COxlPwLe6OAJv/QbbtmE9pkm0SoG6O/WTSMAi2v2udX6GdXP8vNCcPt+7dDMNkask8763KeA0HMgsitNp6E8NlJGygRDFgmxMOkBYJCzsgU6P3RlnGPMclHFiQ4zgiMgMi6ax2cHO+TDPU/6PnJsiO9vcXqXcX/bYwoOPwaPH/IJb+OpbLOy+c5ZtWQpwBQMJpIputrIWRwQvlo1LqyHXfF++IRGEQCIUqCNDbplxSYIKAxgYBl6z6UbGg+6/hV8fwO6+AbT5Rbh2rHkO1UQ2J6RgGviBwA2tZ+9g43CCgSAzIw76yoIlPPESZz8XJlxX2YbM813cM6XOPChWEC2L/cb6yUWyHWvXupoAOGF//h65dW13vgRU15fT0/jwcdA4HV8+FhsaPOKcznEeirzx/b5mkG5XiVm5AjnKuNb938wFiYHpDwhUsBMGWRs8QtumfZAkyMQFvfn5xrL+gmVEUzzDAozKwHGAwOvuq0iWc4P75Af3iG+fwMKM8Lbezy+87h9HDAmi++TxQ/piDcSGzQ+6JDNgXSbpbBtvDY1Piwkt+A8S+X+hDoQ0hdw2z6rGGiHTGoc0EYwQ85Pr3ndo8oCLmoBaH4hOhBpGDuxjeq6a+TdVzi+2IEc2CJGPIF1ApYLEW5eeX47B3IOJlmY7Pg9ooPJEYYirPEyIGZklq1xVeYt54y1QM5YDo2R3PWLwJ75vTSJuE5owRLn+kWsMK6JHTKoztgGXPkAcWTxI8UnucC55vFz5I/1etKsblhP9XcfuVbz023U9103sM+pN9r3bt9vDeastwWNpNxSRBb2F9vxzEjphBgGjldkEBEZoFzkDVpX5FJfGGEEru1Uztk6sfybkOdQrGAYkIjVxignHgD1/hbx/QPynHG6Bd7f9fhh7HEi4A1l/JAmvEmnYoOlccyCB/DmpoRuH1Njgy2xoUC0RfVFcMZyzvCMiqiVcC+Oy+pxZVbL4rn1NTQu1Lkiptw7OSZwPOg237Jl1PYGYduzJ3DiMtlngp9E7ZdzaQ7xGzuur0XKDQBWrgELwEQv7Htm9VnrijUgNfkB/5wXarv2a/rU4X9nFnsUqyLhaYNIgc11nrBeLbnsXC3QrnOxIOcJ3j1PHmlfp224tKrINiZ8KhC8JrWtG/X889N4slY+6kqrprI1Gcawj2tKSc4t3YYE2AEOrX1fjR9lP/UJNnaItsc8PyKmAyIRiAAv92EHA3DJWrdRt6khVy22FUAmgxSAOBKMi3CnE9L+AaYfODaEudhGpPsHTO9nHG8NUjC4u+vx42nAD9kUdcDbPOMhz+XabN+bCTH19zpbgIklTKdhAFgtuFY+0qCKMzwXG2g5QO/capVVi3yLmvkiBUC2gOGGsXcDOs9AsO9ukLcvFuSRtrS3KReSWPkMOtPH6DnC1iuURrkvVBV/VZ5pHFiy4lNz/p1rjCpp9EvyBl1rReu/xPobEPwz1s+VO1QPH8Da6itmTILiR4UJnEa2ltBE6jnQB3gW+FkXWu3X9e+fvPQHbl7PyVn5b8IIVmPt5oLQG2nr1ZWpSmt0Oaw7jg2buHTyIshkGCJmacup2xY8FgY9SXAzT4GcJ2DmKjjq9wmEGcBMFjFapHGCHU+wUsw9u3L8/7L3L7GyNNtZKPrFiMjMqjnnevwPe2/bYB9AR5yji4ADyAg6gIQESDTo0QJkIR4Ni4YbCGhgJCSEZMkyAiTToYWQ6NFBQkIWp4GEhPCR7/W5XLbZZnu/fv+P9ZyzXpkZEeM2Rox4ZGXNuR7/9rbu3SGtVTWrsrKyMjNGjPGNb3wjNXIQ1l94+RyHF4yXrwYcJ4cv2OAuzpnB55MjVmuR1UNLsRUEjuCKTbem6yRBmMU6i2dtqHObg9wV0Kke9V7rAK+0CbhkUkT033XX6LtH6PsPwMMjTFdDDu50QTaUTL5D0sdi8Uv12yMDwYCdBNwCDHVgokYDSP7JfUphBFPR8ZX78P2ZsfWoAYfl32WRcAnonPJ7jV2IcpwxnjIQdG+1wBmosxbQ+TcGezgkdkQFcK/JW1w+B+eBZa2nqAFdvc3yudiNcLag1kCRYcrXUpN1ZAeYMIGMWAcFgqcUGM1sVxfRe3WBq+cBqaEkA5ORMq44BcTjEbQ9IB5uc2OH5Yh3LzK7h+cJ/uUtdq8sXh567IPFC2bcBmEAayCncg81rKJlmHIui13QebiuD6zv1b/5XCbmUlPJNxk16Ks2oAaJl9sW4MeKQ9c9Rjd8BHI3CP0GwaWrkgAfKQVnBGtgggHS+yoToeCwCRHWEmwCS9haSQwBQAxyrZdzhkXrLzMEk8P3WzVkrUv2QcvS9T43LtsC/dvQeYBY9lUzgtcB7ftswX3gj5yn9zsvl9jJmhxaBpj1kGDz/kSssjub13IlVg9Lc9pXhwipDGAuTdVUiz8glXlzKanWsWwiBxS/obYN/hhgr2eY41F0PfevYWZh/XHVJCrcvYB/+QX8sy8QZ4/jc4/Xt1s8nxx2bPCCA+7ijEP0Oan1UDAQa59BzkJjG1p9aIbq8l4sa2deDfQIrf1c+g8RRbM9f3f1XjvEHpAd0LkrdKkhc+y6DALXmsD5O5I8jPYO0Ndy8KdECqKsaSgBn5NyXw8wF5+0lRQNDZjyvR4xCgBtjEWoAGj1maOpbMEiKXPvur5MEF1Yh9c+s/oePAwtSTEjTLx8LGvfs/Yda0niurporVJAjiFtW4H6gALDl9mS9WvKgCPbS8VINPBp3o0c2iQI0JBMNBkbUmJGmcMqKQUAEzN8IMyjgT0GGDsh7HeguxcwK6y/cPsK87PXGF96zKPB6xcdvjj1+CIyJgjYcxdnnGJYNGi7L1nFuWljSeOk34BKBqx6V5Nfb5owXspI1TNd5W9rELh8f3NFUOvEOruR3gHdDdBdg+35NQSQ7UB0bUzQHOM8S2IIkOSQcbAKOFKAiQ4hOAAHABYxliRxc4RpXq7JE73LYIR79xeUzOX3YOvzfFuOZaLmwbm+eF/B14vHudhPPq4Q8nxTm6A3/2U95uIDAOcxQj339VjXKgsvVSQsWcG5wuLC9hw9uAHh26oCrdKwHEC2h4FNVYhFygBmhWC18l1agRwS43UOBO8N3BxhThF0u08N4mwim0yIswdCxPR6wu6Zwd0rBx8ILw89XkTxFyaOeM0e++izbaiZ/M0xVASZOu4ofnpzclCk/sRvWCbG68TQWpJozYJkf6XCIyox0sYuiK+SdKOTNjDRpsx7rSCsbtFoqUhGAWCyeXsBiIVEptUBJnpYl+5DLzIskSYAQ5qfobFhbzL336Th+5uM7wVk+9sfBv4+A8E1m0duAGqD64WmlY7lBff+KDeSv6syDOuZtPq7y/MvtyTz/vfbgOxSKel97IFSIlIY0W8ylqXkdTfUyBF+3sMHK13AWcu/JbjT8u/O1pkYk7XvADHGnEsSW/BVAOCYZ8WOCYe9xfTiBOA5OASYzTVMNwjrb8HuCS8/w/zpN+CffY54POL26zv8z/95g//3yWGHiN/wO3xrusMLP54FcrEKoJTBqzo7Wbg9ZcwJNjN8mCNMNswxMxKyntc9khjKfFoeyyVgTB1CQBeNkr2PACy3gJAGgAyAbI/N5kNshh9C3z/F5ub3YPfxx5g+dDCWYR1AjuHybc5No74YAWzSopC+VKdY9AbT7GBmC0TAjT26YUB33MCEAJoewyUARTuH6z1G5rKO3END9eiWgOYSDFbHt35ff5sxDjN2WJY3LkvHASzYNvfPqYfYOPcN5kP790JWYo2Zs1bKtXz98rG2Gl7AeWnZ+nFq+Xe6ltSnrOsIjh7zHDHyBKSyLWcI2+jQ2VK25QzBm+J81CDrcgQwjhxhDXBki/2pw/H5DA57xNnDdD1AFrS5FkC+YveEV59j/uQ7GD+7RZgZz79l8WufP8LXgtiwT8IJ357u8MKf4BObh6Aso2KnlGkARs7gl4aTiZdnBPThZMvkGnAu43KXHMIqMbYGNBlTGIDNdUj/QuW0BdTMnvTISIksAxibmjwMGPqn2F7/LuDD/w2+63B6dCMsny7tL1UB5CW1AoTy3ZWjSoaZO5jEJLY+wo1buPEKJkbY8RFovIOZXgn4WGuERpuZQMwO76MfTovmRc35qpJCIk9Tg1CHiyBFed5Ky7zNUD9jeSxrYwnSXCojL+Vz7dp9tr81IOiCTAwgv3kpvyWPlYzGoiO4WXyHaig6t01/d1lShtnn8u99lJLIIRRWLcFgIFuSLTE2AUrWxTTAxACSVNWRLXZjh9PrCcAB3WkS3c/oBeyZR8TUAAoAwssXOHznNXbPDOaR8PmLG3zt2OPrYcSRA16EEz6fj3gdJkQwnCGRs6iAmczgreyCJpyzbVjrDM8hVwrU2oY14FMHc6GxQ2JHaxu1lgBSH6YGiWs/IV1twBhYu8Fm+BDbzQ9Jcujqx7B7dIN4TXowMDPn56EziDSAYp9ZQDVgXMvJiC2Y0R2vxS/wM9zxBtbvsi0Ifgdj9ihMtJCYY8rIS1rs5t0Dugw4rsxdAT3krAGAh5SbLqUPdNsva6yxmB7cfzhf9x8Cax5iGa+NpZ3RbZfn8CE7sfydy6onZTEyPwFzwGwHhDBiHD12KcZwhrAxFltyWU98hCaLzv2GCJFjEK8dOBrG3eRwuLUAAsJpBocvEHc7mL7PQE88zuDAOL0KePlphxd3N1kK4mtxxifhhDnJPNyGCcdkq50hkcpT0CtLzCXGH0QuZuSAUywN8UxlHyJ78Rti0g43Wi2gkjEpPkl2cVlBYYyBZUBlpIAW/KkT17x4vRkmaYG6Dawd0PdP0V/9GMLjH0XsOvghAXqzJIIpcuojkpomUuvjcNVMzoSIbpxB/hFonsUW2A1ougbYIyRb4GfpJUDkEWPRlTZGYg0lNrWH/e5+A8eAaAIqz+bhz7yhHbgvySqvrc/9urxdx5pczH3HJ1XDxRaskUDexja0/tA583LNBtS/4ZKPxezl3lRyDoWmKR2RkBac9Qhxi9nvEfwJ3u/gOeDEAQNH9Lpmok166BApNa1ASuQzZuy9xf7WIcwBtmN0dx79yxcwVljC00GSSDEa7HYDPttt8CwQJgAvOOC74YAX4YQAxinKXM8VkWQxGIsN2cYuTCy4x8jiA52SnFRKn6JIQsRc0cRxPrcNtc9wQXR2tb8IpJI5msIeziS5LDOHnBBSm9B3j7OcnBs+wtx1zZzX6kETEs4xbCSpnEDgRkM4xiQvFUDzDHu6Bk2vweEE667zfRTTvRyCRQiH1EAynl1fOV/V2pjPy5eRLPryx7vu85//83+On/u5n8Onn36KP/AH/gD+6T/9p/jJn/zJL/XYdHxfgWBKzoY4f5r9e7iBAVCCnHWmweWxVs5Ul4xdAokuGb/6GOpxFtBdKMNaA3kadt4CvCaylUxGq7uj26x17ywB5ZiPxYcDvD9m/S5LHczsEPwJkWf4cMApBgF0OMIZQrDttKwzYW03+3PnY+Li2OyYq4DuBOAV7PXn8AkMlnNWAJ/w6nOMv/ENHH/zAH8CvvutDf5fJ4f/53yHA894PktAdzRFJ0elHBgMz4WVC2jDOs4BWGb9mfOgTvWUVc9LnbZL4z7Aqz6G+m8ybX5QmzkAwiQIhptSGKCAP5Z6bDdfxfX1j6MbPkJ4+uMYf6jH9QfrARURQMud6ffG87+nqUhKzKNF6IbcPKI7duiSZISWe0gjCI/wngGdPq4Bo5eSQ62+UNl+uV8dNRiyfH+pQ6Tvr5VLNsde6eXVY23uX9IDXzv2h5zSZZl83dylDdJaza41m6hsYz1mleLJiaPo4Vm0rixzaaqmjL8EeGhDqEvZaH1t4pjBlp2JKaATN68PJ1D3qfyu7bUweqYRPEvwMH/xDLtv7fH6c4dpInz39RV+xXt8fb7DKQa8DCOe+xOOLN9qoXq+ouGlIKt+P1Ay7vqbjDFnEj/C8OEM9lCyDfVQJuNaqj4sbBJhPURZMn7ENiQHUqEho19DIONgqIN1GwzDRzCPfzfuvvIxQmfAzoAHk+e/VgTIc0kYWce5dDt/b0QlKyN65mF2mEcLN/YwkeHGLfpdl2VkaN7k+z0CMCnbL/fbu5dx1ff5pVFX7ZQS1FJ6ClwueVwGP+X1y2AIsPQjHi7XrL+7TrooyBPitLAV82oDuTcZTRPKxPiwtV5fE+BZWOorsF3L6kP1/tA02hI7vW2O18wOkWeMfo9D9Liq/BSbdEBnxBygBOaqsRnyazDAkWX9LbZBWDzhNAN4Bp6mAvYcT6IhHBjH5x5ffKfH892AU7D4diD8336Pb053AvYEYf1N6Ri6BEZtjF1PWDEX+YiksWcqbWCuwhbmdbAn/67FaOSrGJk1rUni+ngUEDaLzy7f1y0MDKzbYrv5IVxd/y/CBr75KqabDm4rNiCMaVtfkkRxAAIMQJI8sr3aDJPtAcdiC+ZtD5oDrA/oXQd7uoYJo/QYIAse6/XPNwCnMcIq5vfwGzSmOG+cuMbajfeutdrc7NJY+g3L9bfeTplul8aSzV+/FuKc5ODm6u8ZNfP8EiOq2CzKfm1tx9ZIJto4ci0WW/5O/a01I7C2FUTSvJvs0HxX565T34EJ0/wCxxjgTAQRsE1N2FSeBagSJondptVDkigS3+HIEftgcdjLsTkXEeaAbr+DISDOwHQApoOAPbe3G3znbovvBuAIxqfxhG/NO3wxH0UWL63/Ole3ZNHZovFdD7ULOUHEMduGHE9w4e8yRDvcJv3PZaM4HcvKSvEvUhI65Y7rZFLDHlxITC2Zf5Z6WDvkqiGz/QqOT5+ALeWGkTRXNscStDd0cITYlaQQW5QksmfMo4MbB6kiqmwBwgiad7nZkwKZ3iNXqtWswPxb9LjfwzbEOGUgeenrLhMrsVl7719rl80dqVpL5buomTNrSZZls6x6LI9jKQXpw5h7eSz7BNU9gfL8R7EDxlCKARIImElzdHa8whQdGiLJQ/7OWtV0SK9Z4IwdbO0VjHOwccQmNaE1hhDihNnfyrxiPlvvzEo8HliAWJiIIyL20eLu0MF78X81DiZiTBPh9tjjMFtMbPAyEL7LRR/8Lk544UfcpYRxAR9LZYKzdPb9IQGwpxgwpSSRT36OpWI3o1aigxHZN7ZBKyWafVcktnwO0qP2G8oxlzHwLOA4pecKktd+gl5Pp4mhzQ+DaAMMT+CHIctBqF64VgwyEfyQ5BjJIHYWfqCM0gtgPICifG7Yd3B7iRHMvIdLlXUxjojhvEJVwf61WLhew76M5O1vF43gf/Nv/g1+5md+Br/4i7+IP/pH/yh+4Rd+AX/mz/wZfO1rX8MP//DlXjnvOt4aCP6P//E/4k/9qT+1+t6/+Bf/An/jb/yNdzqQ98nGX+rUe9/31CUNzEXftzBhQjZSFigL3goIVb5zpSx7RbOzBoDq7S+Vdbfft/7dtUFeB4OrhS9t66rvMnFETEwrJi8ZWRACQuk+iwKc1qPORD20TKtDM4ExB9HfiTODp9IYigBh+8WQyzzj/g5hP2ZHbjc6vOaAuygZ+32cUwFJYezFpCN03zQMC/fo8qhLPN98rJ2vS+NcOqIEcfcZE2MI1vZJG/sG87ABdQzn0jWJpgF1dBFcPYYFQOy9gXNAjJzAIICdgR8crI+ws2QBDTkQNuB4kvuP3BlA+rbjPhC4fowo83mNHXMfmKpJqPo787moHCLtlFt3y9ZjCNzqg5Oyqc+Ovcx/AE0X9Uvgjzy24MLasdbNBkxKrlE+h+qMnQPW9yW4DAX5LcYi0gRLXd4/kZPXEWEYCFXAJOe1Lv8+b/gCoGG7ADVrFpjYwM+i6RVOjDiLhlcEpIxrlmZRHEKyC4TTyeI4OdwGwmsecRdEKkbKvqU8DEgJFD3Ge6ZmHUjdN4yCNkYB3YeTRO86lm6fJrpa9l8p+bQ0gF2fHTPuDIxlGGpwwfxosoOMxkaInqdWEpTgnCMQokhKmGARuw40DQIEhFO7rqb7Uv5+Oymo9x1L4EfnYR0ALo/JNMdbJ4rnZBuKM6oMZLUP9/sJ62zfmtkT4tR0Fz8Df4Ac+F0aNdukfjSG2uvAMQWvsQQmHGC4kgOINpfVr3+XsP4kCSh+hLU9OEQEg6K7i7ZJ2pI9XxKz5Y4ujeKShAykYZz3BnYGwjGANidQCIjTjLAf4Y8BcQZOO8JxdHg1OxyTFMRtnLALMzxLAyjPpbzcJuB5OZb2a411l8fimpjKNryJRMxDElJ84fnZdouvyoG8uwa5G/iuk8ZwSS7K2MXepA4dIMBYBjlUSSL1BxIYTPJ3iAYxAf6x60C+l18cveiErq0zpgR/v1VjTYe0JWVI0uXS/KptRZk7lVxVDaLkfZamOO2xnEvI1LZKQeDCtg+pP4DGC6VpqXxpZccYFdurMfT3/rZzgLj4F+3ridVZ/ZbaVjB7GNt2eFcbaTmKH5HmluEyr9akEu6bE6Vpm5ES8Fk8oHmMABjGMsJscNoRplFKxHenDq+jwQv2mBBxG2fsgsjEaFVCLb2wxkpejiIpVeamATUJIpkwJenzps2263EpaVwfB3DJPmh1E4FS/x1KfkLs7BnzLx82iVQcq0Zo8if0gNSviDDgAIRAoLSvNVtAdoMYTvm+UNkyoLYJ5bzJdu8OBNdjWXG7BIHrXjtLO3Bf9Y2urcVfoMY+6O9Ysw/rx3nO+q/9Fh/G3KS1tgP5rm38hZBsg4LEBIJLVa9I30Nwjba6RUsqaRNBy6aRyyEA3noVk/gYAS3ZLekes5eY1m5S3wnhra5d/TV/u2kYx0BIlUVzILhAQAAsMSglBsbZ4jBb3AaLiYHXzHgRJUk8c8BdmLGP0nyeFzYgVlWFNatfwVZAcIbcyLX21is7zOBV2/Au9qE9vspvWdgFBkolISCxQ0paLntoXNx/muOaQApd1WtApSZzvGFFVsb1gJ/kWtMmzf90CHFc4IE6t96MFPY+48uxLu14l4jv53/+5/HX/tpfw0/91E8BAH7xF38R/+7f/Tv8y3/5L/F3/s7f+XIPEO8ABP/ZP/tn8bf+1t/CP/pH/whdJ4yRZ8+e4ad+6qfwn/7Tf3orIDiXeMYiPA6sX/D8mUW2qt7e1jT76jO8cPgAXAjwzjVv1jJeDwd4lxeZS8dTti/ZR7NyLMrWqV9TpsGyU/IaY3h5/FLybcFcB7CUHOEZU9gD0UvZMwxuqMNgYjYuzhCciYgw8BAjpjpZWn7Q6AQnQ6TZ+30q4+Iww/TPYbp+Vbx9/uwZXn4z4tkXG4ze4ptTh2+HO3wxH3HigF2YMRnRJxQPxUNUhQroc8mJWzIUz65FxRjUMo379P4AZGbkpe8DWgMhrpksaiq5XpzvmttTjLcyALvuGpvNV9Fd/wR4eIzxZgvbF7CXqJWCcO4c6Dk7xlg+S5Q0W1Os4YfE8uwsgAF2uoZLGkDCDJayT/s9rjfIoGTFSNFyEiyAYd2+fly+vhxxkcUHgBDauX+JNdN+3/n818faPjAHLJs73jfUKaYUuNVADpBsXCyB3TLhFRcL7iWnTkv0rL1Kn5vhumuEOEmvRwQcOGAfZ3ShlDYCqcMvGJ5DDq4cimZVLZkAIDF7Avahx+HoEKPB1gdQfwLwOahz4BARTxPCMSAGxv6Zwae/ucFnxwG7aPAtDvjUH/DCnzBxxCF6jGBoNi8YYTHzPaCMOnHFZpSkjFyczAnIc9ct7EINYNWTXQPM/B1IDekuHk3luCkbuGIZ6dExABgDMl3u+tv1H2K+vgFvBeghYsUBsLx1DTH6HnCu2I6WFWzgvXQc5ig64yFI0McO8HCwfhBdsCBVAjY1VIsJFM7gxnuCPmtzVpMf+fdUCVHV0BP9a7EPyqwp+4z3/J06TRuVFjoHs4yxIP9mTmnkEtDp71GQR96Pzd+rtqACd9ZktJZgVX2slIK9+xiMS9BKgvSQ5D0CzAqLSf2RvnuEQB0oDIjhhH2cQH6EMwYbcrgit+j+XWneQSqHZq0SAPIEmDhiHzrc7TvEaDCPETEGDPMBtjPwJ8Z4B4xHQowGL1/1+I39Bt/lIhOjUhAq8xCAnCTKc3PJrlsEUy3Ys2CfpoCOOULwErEL3cpaAVQ6gojZHoTqXOh3rgHASw/DoNgC9Q80uBOmzwewm68C3TXm7VaCNTAMMQwZxK5qBOMMqCv2wjqxD+JPmMTiE98iegM4sQUAJ1ZQsgWuk0q2cIJLlSYmOPETrCZBWvDkXUdOYLDoaS6TPA1AAzR+Ai/mZD7XjQ9xnjQ6TyardEA1/ypwZTnWmIc18z/7CDXTrwHIpAqk+X5l+5lzhq/6/PnYFse+bMRdn7d3GSGMzXcI8CjH0PePMfs95nAU6bgwY2NslobIAAuKRMrEER1HBAgzt08++YSIHQO7UXQ9nY3YjgH9EIX1NxLu9h12k0Ngg8+8xTeSFMSJPV77CS/DiH0CgutBMLkMXM5ZYfYHU+Rs5DFWDV2r6kJw6jMRITQbeVf7jpyz/lIScCWOUFB6CS5dkolZrh5S4eTg3DU6dw3rrhGGjSSMdZsofQPy8StArAnljqvKopJINiSAfARSy4BiC4gsDFlQYj1G2iCmRuzin8r8835d7/Z9kkUxztBTfJ70LfFD+T51guYEaC7W4xV/gdO+6j4goVmnWxtH1Rxd7qs8P7cH9TEoCAxU9h66jrcJIK0E0u8k6uHspknSyNxcrxgkGkB2U523tq8CgIv9lLT/kZJfltucxSI0oO8ewxgLb/fw/oBjPMFWlRrGGFC65wFJOJ+iVPZMHLGBVBIFZhwNcOst5lR2RJXMyD5YPAuEFxwxgfE6+hRDjPAccYwex+hxqvzt3MytSlwvYX3FQCJLVXKpPtYqavXz/JltUNlNwnkFwn0J5TMsg4G5sgDKqq59CJOkYgwoaQNfwXZPQHYDdn3W/BWgFznZCyD7CyobpbbBJNsQZwPNUzIZ0NyB/CB9BciCokeXWMHB7+WeMrfpXpkQwgSEY/ptl+P3/1/RCJ6mCb/8y7+Mv/t3/25+jYjwp//0n8Z//s//+cs9uDTeiRH8l//yX8Z/+A//Af/6X/9rfOMb38Bf/at/Fb/39/5e/Mqv/Mpb7UsdAh11yUMNBucgq85S0ZAdlbq8Wh59XvlaBy8229VjWd7xNmMtW9g2DKmdvHNHbnWfiE0Jhz7WTh6QwPQGKKZKOsImI68i7ALmZANPDq6a0JoZDuGYr8V4ChgxYkKEiTOu44wNlcZQnSGAXC6hnlCatGnThLppmpZg7jjgWXB4ejfgNHpc7TxiPIKnb8P0ThjCU4Q/RXAAbj8nfPPTG/z67HDkiF8Pe/yP0yt85o/CEDKApS2cuwYA+HBEDAw2AbwyE3MwxwuAuAJYpPQqgmOA5VLi2ZPNAaqq1AYwLArzUUGkXAqfnwuwuwzs5HrVQa+pAMV66ShBnmzTYeg/wObm9+D4I78bfugwfehw3cdKE7gdXQKCtZKlfg4AIRYAaPYKGHPeFgBiJ7f2TBYm3GAgEv0f4+B08cdu/QDeYNSyMZcMf+1UtcmNUoJp4ghmm8HMWIE/dePE+rW1sdQvX461zGQdwK3t/yFb0Jae0tlragc0ENVryFzYSbwSwGXwx6+DP2or1CEEkINDoJR/kyHM8x4hTBj9a9yFOQc0qpkLg1TiGcGcmqlkAKbKmOscZGBjpMHbZ7sNrk8B26PHPM642Z9gO2X2mMTsIby4G/A/xg7fiCOOHPGpP+A3xju8DMIgDgYwphO7yFF0qBDR4TLLR523AlCVhlA5c5/OtUVb4lkHdPl3pZdmhMJ6a1ERhAABAABJREFUrAAl+beerGKcgztFNiZZgrSRgUXXP8LQP0HfPUF/9WN4/XiL4dH6PVYnhIgEBNZE0XJ4r2xhU7GDAcUDgzUYIbIx1gd01sKlgI/DCSFpBs/zLSxddmQfGhLQaeOkBUOe+uyKZ78h+wl1GVnSl658Dn28ZA8eCkLX5n/7d8sKa0o4c9Lx/DrVjL5lUFcHlLVu8tJnkm1LEqiWsVgbl1jLUtVwnliu9+fcNrP+vD+AOeB0/Ayv4gwL4JojOkPYkkrrtICrdsPWRi9ACXyOHPGCGdcnKePsLONmP+PqNoCIcTo63B063E0OExt8FghfDyO+6/c4xYDn/oRn/pQlpGB0XssM00ZUl+IstQkZ7DHIQXcG65YBXeopsAR7lrZv6ZNELr0LFOwpa396bcn6xaIKyhSpmL57jH77Y/BPfwTRdRivh6wVDgDkkKViFNRRBrDaBgGCBQD2viSIffpcjJWWMPrcUMqNRUKKnEf0uzwHZW1ODZHjiPcr/55hsi59GdLMsDRWrgkUmiAK1QeMiQm4OAdh5Zjf7hjvA7czGLBgjV6qAlPNWbULlHx5jQWEjb/NCXJrr/L8FLBnqNZzBXOqhpnKBANwqYlu3UA3xlOWwQpBAJu20qnU/hANcO5aYhN3ne3LNO8Q/AkH/0r0xCv9cPUntAR75ogTe1gYDHAyj4xIz73miM+nDlsvbL/tKaJL5d+H2eKZt/gigT1fVFIQEwccoyS058yQk4ohQgJxF7ZIh4I9WTImHWMsygnVNQ3pMcLCJCIN5Z4jS4JJTghx+wgUf6D+V3+m+WqgqhBgAeG7Gwz9h3BuC9d/hHG7BQ8m12JzBExAln1QW6FJIeu48R300XtpCB5gwJ0BOwYg6wH1g2gGA9LHgD3ivCtzLXqEOMKYUhm3FsO/y/DhlBwlLPCE88QnGdtUDNRNmVnZt5fW7vuOUf14tL59bR/WEtJvum8yTpqsVck/565TIsgKwGevYO2Q1u1ruP4JDAm4S3YD2I0sBgrwqq+lf5Mtz4GmMZj8tvSxGABleMcAhBE8vUL0EhcGv0cMp8ZWAMiG27krkPkK+jjC+yN8GHE6fopd9DAQ7KE3hI4K/DrGIIkZw9hQwMwSq0+IeM0RNhD6sABrIQzgT3nEZ37EDGEAP5uPuItzwTNQEsaWAceckrul2kcrngDkz00cc78Rn66kbFmDwSqFIH5Dl+xCHVPkikOtLlrIRdWj9RMkXqmTQ60shMQNAr47OLuF656ANh8DdhD938pfZ2cQtyUpBCBXAwDFNkglsdiD6JOsnDOYowNwBesD7OzhyILcAMQAG04I4zOpUGCPEA6Y51toNS2hkEaXCdoY15nnbzO+l0DwOI64vb1t3huGAcPQSkY9e/YMIQR85StfaV7/yle+gv/+3//79+AI3wEI/uN//I/jV37lV/A3/+bfxB/6Q38IMUb8w3/4D/G3//bfxppOy33DkIU2jwHmDP7exwgWA+cWWrlqsOvSknbReJBt845gTVOShRYkkM+JC9+8/4ajqMYqCGSqhaR1BjNQVOn9GEMIdshOobISyF6BowfZIWfeSld3hxD6VLY+JbF2cZZH9hijNELQoQGOhcFkIsClDCKgaALHyiACwJEDdsx4MXYYPWH2lNadGbbzCDPDn0xm9nz+YoNfnx2+Hk7YR49P5j1ehBGjMTCwsNTBuWu4ToDgGD2iqcvs7z/vCvW0L7asv0az50KkWAPfQAsoLb9PHyNSkU5iSJGCTjUQiGVsauQoyMK5G/DNj+D44QbcGXTXEX3fyj8sQd8a/O3sORA8h7I9UDMDGbEHPAEcDQKA2TtQ3MIMA3oAdr6BDacHy+jed7Ss+fPmJTpiHEvpotEOxQUEVu292g5cnO9vANzkfUCZYZfOw9p31A5iSQbIC2W+y/sttTPE9joqILw89uVYln2prXAOsLboIGuJJ0cP7mW/1m4w+wNCOOEUTxhYdDF7Y9vGKnoMKPd8zpYrIJLOx4kDdoh4GSxmNjglxy0GwHXC7NkfHY6TwxwNPpkdvh5GfMvvcAgeL/wJr8IEb4Rzo86xsqYiiyMv2r/n52NZAl6DKuX+ULu+AHsq/cCs+ZkYCfX+azbwcp6s3S3Na5VeMceAFAfnzL6zA/ruCTbDRzD9U4Qrg5tNssNJJkbns4C+NdgjiaKF3Flzb8WoYJAcWSBNiqXgzzrEOQGQ8yOQH2ESiySGE6wdVpNzbzMusQAUdCgAaGG9Wltr5a+XmdVloE3guQBu149pcSyL4K0u19T7516wp1r3S/msJmZknVdGkVRX9Q3wq8nynDivGD61bnh9PuV5qw8u52FCLW1T/1b5rnKenb3K39O5URh/8w7B7+ER0KW5d3b+IPNK9e/UVyCYvPhNiNk2nCJhEyLmYDDOAgQfJ4fPpw4vWIChT3nEN+Y7fDYfMHGU0m/DINM3wbhei1gFTGujJHgTS9e0QHbm5y3AHu2lUBLICxAYrX2oX1tqfebnCbCqE1QqE9O8lwACa69A/VOcrq/hBydNI5u8Ygnmanug9kFtQ6sfXuRiggM4Mng24I7hQSI3lsrLab6GZQ/jZT0mv4cJB1CUdVlKwy+e+jcaNRCcf5fRipi2Ws7k75TqGG1WJ6PyCVCBtRdAn9VS7LVRrSGyX722Aa1RPKMJ6I+BgUozlaSQs0O2Ac5uMvgrwOsVrL0GJVII2QEmPRf03zXAD9vhDOxpjsRPII0BwgjMO+kPwR5mdlXCqMjgqa8m5/wxrLsGR4/NkBqxuWvM8y38fo+RpaFSTdKo/e2a9UcmQFN/AYwjGC+Y0UdZh7eB0Kf74TUbfMoBX8RJkkLhhN+c9niVqgM8pAqMTAdjDCJ7RMz5UkQs+gksRs36ywBLbRuY0zUufQWcAsBv2XOkBnWWdmFtKAhcKocI1m7RdY/QdY9B/VP4oQMNab8RMo/1Fqv0wZe2AWgTx2of1J1mGPhIALSXgCSHLAQgJADW70UjFEhyAfez599lyL045X3rLLQJU8gECY2HmcC8rkEq/mMCnlbX9zc5ztbXb4+1vpL3+wnGWIkNOMJQYnTaAcaQJP/6p3lNdu4xXP8E5G5k/g9PEIdHqdEXYXYdQldgofuaAubX0jYm2XlTZdS0WRgAdMcj3H6AnTbQZvACqh+wHJKwuoa11+gAeH+L0/gFpvElpniUBE1K2LrK3y7NnYWAooz9iRlHRLwA0ONcpu4Fe/ymP+GZP2KMUt34OswYwVVj5sTcZkYwXpqwpRgiN5xO/n9NcpmTvGZA3QS+gMDyqP5ghGVkm9DVvgMoEc3KWMMhSoylx131KgHycRS7YZKPSTmhaN01eHiE6DqEfmiuO3cGNNSVhcUG1EljtQNEBj5VJRsCgjfwwYnmuEu+eUoYGz+JXdAKvslJRQlNDZN8rYrmfWzDb8X4Z//sn+Hnf/7nm9d+9md/Fv/gH/yD788BVeOdird/7dd+Df/1v/5X/I7f8TvwySef4Gtf+xoOhwOur6/faj8ysapSiQdA4Hv3lY04EO7pHFeDwMsgT8cy4LsP7JH3z53AS+DPGdi4KCVoFgRTskZ1JnGNIVz+rsrkV8rRJNhNYDmHPOGaI6IewCSBpe1BcRLwgD2m5KQ9NJbL2Jo25gTGxASKhM5bYfidkr7ULCDwNAoQPHoSOYnoceKAY/SYOebfa4zq0p4zJ+/DHC4Ffao2XJ6j0exZc9y0FPyhfd83lvuVQM6c/QhlMRkYWNuL7k4u12q3rUFgfVQweLmdruFqxEX3L/2exPipB4ekyEwGNgJsbQ4uHmqYdN94qDxUQM46i96WF9VJpSWz+tL+ls/Xtl9j7jTvv9U1X5n7izlPxp0Bv61UTAGD6moAff/8+C/bRpsTa4TCuBQ5iciiF1yYQwl84gBnA4gcfJSMvDJbBtgzR6X+K7J02l4bAcAE4Bhlrvkg7F8gYpoIo7c4BcLEBkdIYumUmjFMrAG9NsOwrd2EebfMb7VeXBr36QMD68we4JztJ8fZPi/Ze7OyjuibygjrhdVlh1T+vTjOReC2ljSqh23An2Ib4oVTEslkpgjIpfpp15Qavs+o/YRSIVC0LSWgJMQYYO26BmltG+TvOhHUsvmXQNDaOPMTHvARgKU/sAgM1RZcYPrU8g42Ab8F9O4z+AsAlFmAaf5Sa58bOasoc97EEcCAEEY4Jw3tyrk575Ku9jZygIXs31CATeBUDBPABjP7BujRuWD0dwNJWknPVdtISW2DZQCREiNfQAmxCciB35Ejxig2YY4hBWcleNZrwpwKqt+Ay3BJSiqfv7OZXErbL+1PflcrjyGP7cgJn+YbTPUeV6CPJBPEVgt5Am5ASDqgbM/nfj7eHNS1muHL6qGz3x7KbzSRG41RedEBFKDMU2Hxiy8KTOleevdGkmfH0zD9i+71Wg8NYwJwZiPuqQRaJHzLd57fG6XaK65sE3Uj3QEa659Z65STQlK9J2Bw57aJ9Sf2oesenbH+rLvJeo8N6w8QANg4AX4TAMzVTcG2spEhAEnfEQAMW8BuhDXLHjbJAGlvFLETUwIECutSy8QBsVXMG8Q4gYyDjx6nBbuLqt4cIn+wPgcDM6bUBEDAE2QUdAIyGUUfPZSwopVD6i8YGA5gGLBhMN/vzy+BpfutQ+pNkEl1714dcyl1sGbHanshTWVtvkdArkg/6EjMYFWiWvYPuK/XyBsNsil5LfICmrDk6HOCRg8j5DX+3X2HS+u3gL3+DHuoYwkylKvrVPah1n4+T/JW+1/cDWXNTyd3ZRhjmv1c9BNUDlKrA2yPzm0z+cvaKzh7BZtY+NpHxiQbwHZA7DqJH4kQLaW14YH4K+lFAwUAfpPBagMIog1L+4qIdu4bmpz4HqRCkTqYOCEaAXmZhf1bz6GYXqtHyPOc0QqCIbF2ixyVMPsTUSMnVKnyxwyY7+/bsxyaQFbPYG3G5+o+IEvGvOuoE0PqK6iNapLJUIyhEAqJBhjaILpO7o2k/avSD5kFvLAJAM58hTc6VqK8xsjpTvgB5PpbOyCEA4AhyxmW+P7+St23H+9+zh8aP/3TP42f/dmfbV5bsoEB4OOPP4a1Fp999lnz+meffYavfvWr35Nje2uk5h//43+Mn/3Zn8Vf/+t/HT/3cz+Hr3/96/hLf+kv4ff//t+Pf/Wv/hX+2B/7Y2+8LwlMpNHVUjemHmqcQwXsxNg2a5FHATW1+yhQ1rKa7RPjnMs7ZP8PlGWdsY7uNwDirBUwx+hpXjB4Fdh5mxLPtlz8zRbF2ukVxvQhPR+bYBEArB0ADOA4IHTCqJ2tBIPj6RlugzjpzhAGYzGQ/LNscEwlGzqVJHMfYCu9JDXYEYwdB3waDXom7AMhsAALzjG8NziODofZIrLBt2eHb8UjPvUHjDHgZRhFEzjpGwkLYoC1GzALMPUQ4HPuvC3+VqeABQh2KCWeQGuosx5oLh0tAV1h+KCwiRbhYmVf816XYI8a9GgUiOvh3BX6/gNMNzfoHknX5c1GyjJqsLcGgzsngbOtgjp9PvkiDRFieT5NhUnoPRCmdGwKBFlCAGBdB+6uQOHmrRyE5cjAJpBZvDpalk5AiDOoKiclusr7kN8/ZPBCJSKafSxtwT1g75pdaBy2lQRBawtqVj9lZt8l/S5LfbYH5x17Ww3wZXnbciybUbbB2jpIrJlWY1LjrFBsbtc9gnNX8P6A2R9xihNe8wQbgdlEsRHWZhDEwiCmuzoyY+QABAnyekPoTAGOd+zxBSR7fxMI87HHHAidjdLUwVu8ZtHT/m6c8EU44tl8FA3R6BEMwWZZHMogGqfkUTTIBKy1AO9hsEcYXGusv7V96VCHMDMLV6oFlntYgXFlrUOEgQWnNpkMgEyHzl1jGD5G13+EsLmG6TjLxGRNzyidk2u9cJtsQ836q2Vi5PPFBqg2aPQJAPIMMwMmIANAsetg/BVMGEF8A/J7EJ1A9OVn74UN2LLggUO+r2v5AmUHSwNE1QuumjElELjW31tW/8hrF+6RS85pTuKg+AWQNXrNFijY6+wWzt3k32BT069sB/Re10BLAR+gAD61bVj0DUANvLAHJzBHy8C1BBwQVncIB4SgJZ01Uzhkm6uj75/gigP6/jGmeYfx9DlehwmdoQx+qva+S+WOh5To7QxhQzaXgQKS9FHb0LPBEybMbECGsQ+ELzjiBXscOeJ5OOFVGKU5HBizAchIlZTaA7X3zAExTG8c3q1ul+4bRgTxm7H+shboIkmkd5ByhWoQWEepDDPpPi2tIw3E7jm7gXVb9P0H4O4KfiCwM4AzDZtHH/V5LROzrCLSIbYg6QV7iA1IyhgmIHUMT/PHWmkSQxYmemEdJe1IY/bZd6+Tme8ylpV/xsTm/gSkUZm128a2yTxrE0wxaYrHpV9Qsf7K+n9fohm4BPqoV5z9BKIM7sifqaKlkn7o3A1U7qXrboTVmRI9AvYIA1g6/G0AO2SgN5I09czHthKxL9nARuX3lLmVy8F7mO4KiAEmBtjwFORu0PkdOAYEv4P3t9lWkLGpKWbqCG8H9OTQ9x+gmx9hmnc4Hj6BDxMIQG9EQkbnfmTGCEn4DsaiI0IwjC7Js+04YEprcg/CFgZbI8miHUe8Zo/bxAjep8Zwo4I9xoldrTRQOUQwvPgLerUW8i62St60+sDL+R7Tms2tBmhiES6Bn0ZCqrI2LUC4DgBnpl9FZtF3lDzS90/QDz+c2X+hO68Q4MTis33pHwAURnA+1lj7BgbBm6wNamYWO1DbAiIBBQHADSB3Axe1j4UtvQSqhsohTngf2ZgQZ6g0RK3fzTaAOMBWYHPdW8ByBBxAqXmrR4kTmkaA70UKqUay5/k2S7gBILZAWZsA4FLMq0kga6+yX26Mg+ueiNZrdyPrvxuEAZzAt+g6+KFvGn4BOGP5AmiYvrWPZ+L6NaG0ffM+WaC7BtinOQBQkqXg7GskoJ00WejA5LHd/BBCOGYZmXl+hZEjOlipqk3VtJR8iDlGBFKWsMEOyLYBaOP3IwccgugAaxNZ6TnU56RxHbtxYESeEdCC0PVQLEAlYxpguSGqJckYMCzLKqENZusKQ5WhVP9g2VR3ebcxxB5EXn8PUHtBINPBui2cHdB1j0D9UxxvbsBE8IOD35I0hiSAutI4FhA7UNuF+jGfC5WG8O29k49HNYhdDxOv5W4PJ5GViz7HqtqjR+ZgywJeVgK923ifzNalIcc1DAMeP3784NZ93+MP/+E/jF/6pV/CX/gLfwEAEGPEL/3SL+Gnf/qnvwfH9w5A8D/5J/8E//bf/lv8uT/35wAAv+/3/T78l//yX/D3/t7fw5/8k38S43gZ0F0OMtL4TIEGMqVT7nLUF1w1AmutUEsDDDmEoBnmQh2vS8CZI2KYpKxjJaN/r5TDJQDYKCNDczmoAj4rbJ6UvdeyjRLgSRlXXcKpRrwO8mRf93cc1qY8dWlWCGNZSEMCdudDOTaa2u82whyCBTaQcxnChBCO4OhxmJ6BwwxrDB5Thy05XJPDKYYczOXrxIxjMuo26+TZDJi+Tt16LRu8NhbT1GG+JXQUcQoW+0jYsTCAvhtnfHfe4/NZgOAdBxjq0blrKXlJC2KWC6GdGHCWjP597kMDCK8yOwrYU0thlM9HEGyzn9qJ07/Prh2KQTYpYGya1KywYvVbyYiWT9ddo+s/wu7xgEdXJXDrLgRwREBvgd61ILBcI3mswWABgZH0AAGOAvyok4dk0IOTDsHBO9h+Axuuq6N9+yH3vwa31TlblF3FmAK2nDRpWYDCiNFGbxNsKg8r+wvZqcui/VV2X7ZZYe9g3dGTaqV8lVoQ+B5boCWdXfcoJ2esu4brnhSAhzbFoQMANxQmz9o5rCRcwB6IoQA+SZtNgZ4YxqzXpX/7cMgsQLERJcGm9tYYi74v3zNPd4hxxCEccc2hyCMkkDRCdLYjEthjYtYZH4zLtmEXA45G5t2NsZiMwzR26A1jxwYvUlA3IeIzP+LT6YDbOGPiiMlAmBDdTXaYFWAPcYanDhyPKRnzdvdo1grkMnu1w/maDihQgB61CZkNidIojtHaiPvA4FzGBQJTgAkENgFIAd4wfIRh+6OwnThztm8dNJnXbbl3bSdUKiYYeW32BQzOiaDk2IXRwIwsKbcI0MypHDCxD4gq8CcIQBFPwuZ8x6Gs2Fx6XNuI9LwJ9FL1gNoCZaBoUiVrldbN4xIIHOP0gD2ox32rTGULUPyCzMKwAzq3hTZR6twNuu4mzzPnHqMbPgK5mwzucHeVG3loUAcgM3uYhN2zFrBRaI+1fs/EAJrn/BolrT8t5cW8RxyfIXgB7/z8GtP0MtsKY6w478km9/0HAkJGj3F6hZfRYz8+Q5e2dykRBFMSxcfocQQwkAUZg0cpmRSYsYOs/wCwNYQJHaYorOHXHPFpnPEyTjixx7P5hLswZ01gMpI87fpHIEMI0WdiQIweEbaRh5AQLQG1DwT2CiZr4WUD9qAFe7R8tJaGqZtnXhp1oj0ywMY0jcJqEoMxLq0p1yKb5R7Db68Qt5QDuiXLr24UOfTFj6hHawtKgjjOpoA+AbA+wiaNKQpR7kfXwUQrwV4K9FR/U5vHvU8jSfENXOPvAwBTh8gRFOeKOCLsJ3leVw4FWI6INEEbRaFmHnEBloHKD1heuzPgP8UrlX8gm7UMdUs9rNvmNcvaDfruCZzbSsyQriXZjTD93Q3M5qMs6SDgzubMDixBntY2pMegc761GVTpapoYAVeA5HqQn0HzU5CfYGKAOz0HnT6Dn1+XhFH0CDxmH6frPxL75/fw/ogYRkzTLXzyTa4BDOnajBwwRZmR3kQM0eJROrTAjD089izPN2RxYyy2sLCAgMBhxms/YeaIuzjjyBGGuqyjLTIaek9IhUmMDEZo/Pl8RVNSV5mEMvM1YVOAo3KfCBu47itgV3yGLB1VSeU8mJyuwGr59roJGecEFWAEgO8/QLf5CtDdYLp+BHYmz3VDqLTCxU/o+/PEECBzf5xae8DCdoGZxS+ws4DANQAkYDCB4gDTP4UFcjVK7kNBHjFa0Z3m8F5AsMrGMMemDi1yhKUZsYrJtXFaPpuGwNRn3eBIDib7A0DLBF6RctD37iOKADlOWAN+jaEk+/U4YwbWChFIE8HWXYuPkJJA3F0hbK/hE+M3dA6hs40NAJAbfpmF6SW0yTyVeqhBXhNDthN1UmkJEJsQJFZxPYA+YxsUn+Z4JMyvkRnXKmOT4p8Ne0gPowOm6TVe3X5d5GTU54NJvU8FnNU5Wa+1U0WV702pNDpxwCF6nKJUPI/JLnTd44pok+ynEpB4BnMLyNa4gPYDmaMCwUjXtaZ9ISWPix55JpYsEkX1qLXDNYYAiu1REFgf14YmkcgQrNug727grCSM4/XHGK8HaR7bITeOBcT97Pq2d0DdV2SNOKIgMAdzttZESwA6mBjz/UMA0F2DptJzSOSbyhqtvX9iStB8KeN7Rwh+q/EzP/Mz+Ct/5a/gj/yRP4Kf/MmfxC/8wi9gv9/jp37qp74n3/fWQPCv/uqv4uOPP25e67oOP/dzP4c//+f//FvtS8ANJ45hKgmrG0TVwd7aEPZA29lWP78cZzIQ6jAvDDigwHCTZ13bo35rWvVNghUiAKW5m8L6S07dUry96x7B2ats8Ky7BtEmN2swdiNlHJeYfixUjNyVM54qx/oE4Db9fim38X5sJo0AP65xhBVwtqnxGpHQ8a3bwkwOEzwcCw8NwJlcQs36LcCHkQZB1URTDZ/0IexA2AaLPkrJ92sGjszSxZM9dmHGGANGjvAGAqDZITOntCGIsv6W41Ip2epprRICNVykQM+a44bEAKq7fwNoAr0M/mD9rrpPK6xk/5NmZK3n40zWBV5j72RmcMUEXgLAOs4bx5kMAnPl5CEFfEwGJnAuB2drJSjxyyKctxu5XPOBsSbrUPZRN5GzSmjNTn4DAmPNJgBn4O8DwXopzU22YMkAvmAL+v4puu4xrJXkhnXXsN3TxqmLC+BHg738G+usfXLS8vNQHDbjJ1B3Dcz79LkTwvQaJrqSka+aOKgubH1OpVxLQLWue4S+uwEABO8wxmNjh5UV7CDVEhFounBv06M6POLE5Q9jawg9LHo22DFjx1HYPxxxFyfJ4GdnS3T+rB2ybIZec0tddrIfGmeNJMs7UHdLgRkFgy+ygi9KQiz3fP59axbhrMs00npDwmoidwN0NwjOZrAHQHMdqbIDSxBYbymdLzUYVOv/QQM+1QGtQGAA4MQ+M4FgvSYP3k825tKo535Q5necoA3kWvaAaxIb9fO2UmiZJAbWAN/7tX7PX8uVQYkF7JKWvwahXXeDvv8wsX4d3PCRgD3dFZgswjDAD0MD8gRHZx2c84jIAB1wfp3OdP2G4SzY0+d27EFVN/AYTslXW68ssPYqB32GHFx3jXF6Jk0kIYSAOoGijWeF5VMaomiSKGv/gRGMRU/C+OthcAQLuyclhVQqhpO2qqEOZPtkc8sJEq6NXJ06nL80zhg2zbpT7IJZ+kYX7MMlXeBL1QJNyigzgrnaIlWlpcoISz3ISrlnzeppJWLOZSCWfkRI9qPOI4g9MM09Rgk8WIIB4htIUsjYDRBOICv3kSEHBLHf7ztqf1/+LpIxags08VsaoooPHMKUE0fGyD265oWcA8D1tapKTvJLhZ15ZhfqasGK2KBJob5/Ks2TaIB1Nw3Lj4fH8NtrhH5ATLqLMcl/AKia96VR23Isrlsq+c5qyWRBkRdrefX5BDTnn9E5WNeBfAcTAix7WL9LBBVhAwdOyWZIpER2gO2eVnbvMWJqGhZ80hA2lH1sr7YB7Xqq8cakiZwIWCoJmIkZY5KlGTlgjkEaupFWWfQ5OQ9AWMyGgGSv44rdB5Y9BWrfvjrnCezJ/sIK+Htp32tVQ/pdl4ZJrMPs/yaZiywpp0mQ7kbAws7ltSPvI4PCnFh/khgC1uMLlY0rQDCXeytyAyIyWbAt9xjIJt1qqUJRMkSErs1S/cbvAQQzc4n96xjYiLwacwH62vLzkjxGRCIXHJHL0g1hKSmz+OL2zzz/14g+iVSWiWSt5q8kiB+hc4/eKEEchg380GfwN5JB7MzaVwMRYKqTQueb6PXLCSI/i1yMvn+PLGf+/YrZVAQBsAdFj5gaCrdfKjIB1t2gB8D8OM9XYYZyiinEPpA+Xwz1Geqha/HM2tg+QtMlubcItUmvgi9clodQXCE3jofaBAJMWZvr+9BU/6g6tkvjIf9k6TnUa05rUSjjJ4KpbEQSYhD5KAWBNSnUagIXn6FzbZL4wkHL0VTxQj4mZQUreST5CIY2IJtiUethwqHEoGmXD0lJvvn43jGC32b8xb/4F/HFF1/g7//9v49PP/0Uf/AP/kH8+3//788ayH1Z462jsSUIXI8/8Sf+xFvt6yFpg0tdtyMHmCRrECMyWFQzhJcBXq0f+IYHV//RvtX8XTSl1JmzoqpfBXjCVBXNnm3D9LH2quh3AUW/p27gsGT96fNUjgVOkgwxiGMdpISTw0kmdTiJ4xVHWFs6+p6fM5dAn1LyaciJW+6AvrvB5K4Q/B4jJIN2jB5DtFk32BoBexQM9hyBKI0dOkiJZF9N2pkjrDE4csQxsf36VPI9JRB4Qmkco/alrgKIHGEyS6N0e+XE2jMMUGIbZeP6BnOzLqeiVPr9ruNN9IL1nBn9bnUy0P5ecfJcksLYwtjUJK4K7JayEAr21iBw/ZoOZeotNUGBAv5wYv6kH7Zq1OWFdw/oHjLskWNy3lqpB732IUw5SVRrfamkRkxlZkRdIw2hciKtRpceSxI2OLsPqkDIFBZIwwCGBDx1gLdkALvuMVz3tDRzcTdAdy2LIpA1m9QWhM6dlXWGXLIZAUuZyaPlnNmB0+MFxI4YmecUkl6XL6VxAFBXHiyHXoMulapPhjDNr3GIHreJ9ec5pvlDWe8vMsNXbNnlyA2VwGIfQAhGwJ5pkWxZHJG8k+ZP3VSwMPYeHgruln0qq4bz38T3J2/uG3UJuOqHXRr3f0MN/gjLyjgJ8GJns0zMctRgjwZ4Z0miCEQqAJB+jqkEew34U7FHLpUMvi8IXEsm3acnKmsACWPAiKb1Ut9WbITahxMsVXq30cOwAedEjiaI1gI4PbYFu0ffMdTYgiXY4+ymaeoijPanoFTxYvqnErAr0891GfABkDVfm6Go1wKgA7AKAtcswDrYq0HgPOwG5G6EWR1GdJVPUWsGl1Mh4D/RgL57hKPZ4JaFGb6NDEcGW+MaQFTnBXA/GzckHyEABQQ6uzYpNHoH5oj2JK9ZOfV8zOtEzcbl8zn7kJ1YgsH3jTe1OLlBcEqaz52rgrp14LdOEC2Zf3UfAdl/AoaBPC2oAn5Wy4PzhyUpylETM61m97uMYhtS5dCKHxE5girNYJEzGc6SnQoQxjiByIPJNwljwxZArSudwN+mQrCcmGV10H2sv87dJPkSIYv0/QewqcETuWtQ/zRXBMVeAH5t8sRZ57MCgJenob6GMzd2wYQI6wuTu04EyTZV0mhFVqKuJgAAYzdw/ZMsFSH+GQq7K4Ycozh3jaF/CmMI07zDKZxwjAG98YjgJnmsa/PMEb2hBujR92pt0NqG2JQoMRHJJqwxNYsmKFj8wprBbyGT3MLkVagtE19J6i7sQi0Z87Z+RFI1v38jvf/rSldjksTIID5Cv5GmTc7AUMxVQ/l7FoAPsN5jhIjPeog0h9IwSdOakpkZ2rRQnhtKbFAuchHvC/ZoJZWmy+o+IxpDyvOApVRlbZuIRIfXh0SqCkA0US4uR6jefPXhs30VckjBDbJkZGULLHWN9IOCwK57LAni1PgN3Q1AQsCJ/UYSbgsG8KqPUA9F1YDGn9OqDhMj7OxBfk7bBAGClfBzT4zw4ND7gWyRtILYBo77dN5E9gYQAlvfP8I0vcCeAwwLw3cwtorWGLMyy6EN11JFzspck21I1geck8SUVMIcpIIAhAjpO6CawiIV8/A8Zma53wzleGJJKgHePbbQfRW6or4CoMwAeYcsLDlYrYhw1wip51CdNF42iqzlINYaTNfraXNsDWlk3deUDVKCSH1Hu0mExgFEU8aqar3g9x0Xe698H8ZP//RPf8+kIJbjy6flvMWo5Q8KWLvCtuFaj6s82sqQGyPlP1pWpmUdIVj4BIzKhinrsBoUqHFeHqdpDLfqTqrRtnbIDBNl9WjHbtHsSfpdKyw/2AHs+lzW6RPQowCPsv3WdLyWJRryGBr2n/MTTBjF0IaTaP8lpyv4ff4XOUjGNXqEWPS7iAYYewXLAVepdFY0eo7YTc+wCVPJ1gPYGJvKGmTsoywaG3LoDMGSlFArs2dK7J9gGC+MQYDLpRwCBMf0PDZOoJwUKf/TAF9Le7X8jHMpHjIzR/d93pQt3RW5xCIk56nk9hs9r0t6f8vSsRzcoSkDZxTmKLhlCMgioMFGzBllgnY7JbjuCkP/FNvND8FsPoLdMob+3BhTAnxrKYjeiTxEkYZondfeAVMQ4z6ntT2qxk8CgWlsG8GYCkSQL7bvBwRTAXsuBYe5JFxLg6qFwFKHGFVqZVuxfgbYdK+HtIBEI0zdGH0DEp7r/VYNhtA6cbLvh/W7hv5pw/533ZM2m586tTKAMGwy2LvU8AJKkFeXeOZjuwD0qM2QEt0BNCfZmRhh/GNQqiaw8x5u3iGm8u8YTo3WH5DYgOl0dd1j2FRmO/s7xDhjf/wUkz/BwmBjROvPkc0Bnc79jbGYqSSSAAF0tOTqFEO+Ry0bTJAmUMoMjCzsIM2kBwVsk8YjUEH5i0BS2Tlavq2BXR3QZSBJmeLM2XmjtO9LJVxrQ6EEDSoVPqrZRKZ6rF245SiOi2zVuS1c9wTx+mP47RX8lrBxnIHeDgXIyZrAtgV+msQQAYGRg0MtAYvEMHpN5gIA112idW0qmf7E+qFdTny+y6BU+aPSAzr/i+arNi2LQKUb7IMGclp2KmCPfFYYrQIKhVxWzkp75ggYC1zQIav9Aj2W2hZYcmcJYee2DfCrzB5jXGZqxX6TbYFq+Sn7d5XZU8efysiqgjoAZ+xf2fa83FOfy2fav7m7grEDDHt0diMl3rWtmG/h/T6Dv1rm2fUf4eb6JwAA4/Qaft7jbn6BjgO2lTuqILBHmee1/n4Nmh41CQ1JKIckr6RMQDImcXd0/tY23qb7Q+kupuj4V2v50jYkDm6afbV2LBdGD9oSz7Wh1UNrlUlryTG1WWIbWEO51X3DECw5dO5aGoh1T+EHh27TAsBAAXpUIxxobQMgUjFqCwBgdoD3DCID6xi+tpkZQGxBRNWYZbKyxi9YgJYGBHp31p8wm+omiMUe6N9qJ6SktJI7sldpHxbAgC75DBpsTii+JYIkyKT+tsnSo2n0mK7DMgkkGuAdtBeASsQBgHPb9cogBXu6K/hhkyuC1sAeduugT9Zvrlh/KuGhc3sN7Mmkk3xi7wF96kSfceKfxqdA9KDpFXACtFJRzu8JnBzNrv8QT9xjAMA4foEvnv8y7o6fAimhrJrbWQs0gT37WIE9lY8eWJpGAshkki7ZaGcoAYKSMOAzu6B9GATiCRzgk9/RkEqAbBPSLVBAGI7V4l3ZhkSY0VHvK7MJ+ZwNTDDCYmZk+yPRQlqaDNqt1XcmADFKngIiN+L6JwiJST5fOdhBdIDLdUkfpcIGXgN8dJv63xKTMUFAxEsVakwWxg1AdKDoQbSBtUJecg4Z9FmyM99mqG3IeMIinpReI3LOPADLId8Dqs2vDQ8t9ehSzDn7A/y8R4xezn/WzE9zbAU/OLcFLifsnN1C9b+t7SUpnOQiiYYM/i79BACIXfdGlUKNbdD4LzLMwl+wc0jXTey4HUfQdESWmpt3iH5XqoFim2hv7oG6hwFQqp3tBogeIFd+FyBydfGUKo4E9HbdR0DyNx5NLzH7I6bxlfgd7NEZgksVRoEZ++hhEdARYQMHa2ye/829keZznwhfpxDgESqJK+3lZAF0IHuE8Z3AwIyiAywTrEkYXRrq9eeeAlDCnMlg8BJnyNXGVYJ8TVLOYM0eVIQRaPIrkUcqIoLtnuJws4XdSsLYLqQf1noHZHm5mOyG4gZViM7B5Cpiva8ASDKh8jObpLFxMHYDslJRIpJuQ6pkL3r/8l1vz7xdji+PWVyP9z+u7/X4vgLBAM7YQaYqsyglmgsdwAQucjbUFsx9BoHr0lNpCNPnrp9voiVySbPHmFLarY0brN2gc9dZs0ezdZq9t/0TmP4ptFlD7DeYKoAndPbcUANrpKPzsaDZ12Wf+ro6eBRi0u+a08QLsKcX8EfpTEhJFzRUE6wjlzsOM3tsgMymPI0v4MMRe3/AJs7ZCerJoocEMZOWa6fA6kaD4hRUnZgxI2QH7TYaTKZk1GpG4Il9yfYbA8Oq1Zn0eqrLKk6+B5LuTg325O9/6KRWGXRl/Wlw+VCW7rz8O4HLKwFmPfS48qXnmNhorZKplAhdYTN8iL7/AGH7BP2GcxM4QAI2oAWB9Z9oBJszSQig3WZCMf4KAsMLCOxGLyWDy07DeujvAQID4qxK52D9zaWJS8x2odgHALmrb13SpcGclpkVXdDUgNKcoIJowhaQ8904iTX4WzF5ansAIJdwlY69wv53iSnruidw/UdF57e7RthcY07Jn9C5pqxTA7qLozaJGoTkxbAOyhMYugCDLpWAmxhB8yPQdATNe4A94iTOlor21+cQAKyttP6m15jnO/j5gNnfYUKA4YhrY3BjO8wcsQ+zBFYoel5Ay3JRfc5TmoqBOCdy6vJwHZShEQFq6y7RSo6UA19fA6wRr6lOyBAKy6fIxSQQmNskU96P3L1n+19qiOtv1MelVViCwDnA1BLHvKGBYS337OGGjzBd32C6GoArNJIxNbNXpSBq+6Cv599CQI/yuZoRMKXGD/U6A2AVUJQ3pLrFUAJ/3nHkRqvpOSUWRz1Kg1nxSmsHTwM8oitoZUUII4gmOLvNDSVDFBagBHjSFMZcsAsK9KjsSy1XpIxf0Z+8avS/rbsGjAP1T8HD48zm0SYul0o6tWTPWE4ONqQU11Zgz0IGYqnRmH9G5R/UrzUln9W1LE2nUuMoO4C6a5AfgXCCH58jhAOiv4MxyuhKDr1x2F79Tjh3hRhGHE+f4fnL/xtzOObvUkmWwBHRtPZgOUKVLJby75jnWQGBJShik9ItK/PfpLJjrQiRzuMFlLEJIM4yWCh+iE7QzOxhNIkpDeYeLPW8KEUjIyeulHHaAJArRAEYWZOcdI5HdwM/EG56ZfJUtnMB9gCtbQBkvuuaE6sgUJv7nh1vuqdMCLkruOqCirzRIPeU8UAK9g25pnnx244i6RDELqAkiHQwR2kcBQCYs22QBJGCwiVBFGOfwaMY55RAjuAod+Tysi6TQpTYjSo5YO3mDPh1KYZomr0lqSX0TxD7LcIwXPYTaGEbammY2jfGw2CPxggAhO0XZF7Lvlq7XTd3AgTYaioabWpO1SWpiL2D9fuGcRnTvo1xkgzbfhXcXWE4fI7T6TM8H1/gEFPzOIiurlYdqhQEkOYFW9H+rC6Kvq+PGQhO67tPhItcFVZJSQlwmDQqjchSzBylOR0z4j0NiuoVvU0cl3m8BvYApa8AUADhejT2By34nP2FSj88AoBJ5BJjJCHpbnDabuEHKQPvHGeWH4DM7tWmsrVtaI41FlsgCSWNYQWxNrPea3Jv6TirEjAOsE4SBqmRpCEHeEDlGd4H7LEJcF3GiwAaP9HEcoxkIqx1ENnBQQhT1Gf74P0hf94khnCMaZ4h5oRQaT5HWW6gZvy6VBlENDTN3lQKJlcGKXCa8AR2fZaJAnC/LExtH/T6VK9X6Qv5KxQGsMQEM2i8Ezm5KAnfML8+0/++pPFOxmZyGQC47ilsn+7XGhw2ac6lviUhHHIyGRtpgGy7a1yNzzHPdzjYAX7eY5yeyX6V5Q3GmHyWARadJdjUhwRATi7rcIbQkwWx9C2ZqviyAPVy3a0dxDYEi2hipRHOD+B+3E5SJZck/0USWJSbTwMFF2j6B+EcR1haEaNfVwxCdRgpzoWRpIa7Rtc9hnOPgeEJ/EDoKk1w7R1QVxDWknJKOCMS8liuIqqSzTqULFLHm0sAmFUyBBD/OGFQHANqScIYQ7Xmfxkg7g+A4N/ykUstFgDOpVGXctSLdukIXOl9pX3Gat/IIuT08LWpM3igwjIw2tFby7i2KWO3zSw/626kPDeVd9cZuzBsMG0HsCUwGYTOnDtxbzpS0FdgwgScWiOOHoDQWZhgspaoXnATlZ1VyWhQSKU459cgZyPdNUJw6NwEMh18YusS0LJf0prCF/StzpmzCdgxBfxd21YYfzqK3jMARKZKIkIBGzTBk7IE3nSoPvAl87A0zsv3Lu/3TQ9gHbQqxs/lIEv1f0PEGchby0HUj8th2cAS5/1dGgoo6KM6HrVG7RqL/W3HWhm5Aj+XKwiK3Ml9kgaZ1a9sMOD8wiwZwChZQ/2cLkK20qmWLGu/CPBScNcJ+BP7bc7gA4AfupwUajL3Vca+ObT6D81fkIFZbMcKDl0Y0VJu5iP7sLmxg7I0kJJrhhwoIoPf9SA7ZD0noiE1muwABsKqymJ7upUlu3TQdGi2Xd9fMuma85HsQs34Kp3fz7X6lnN4GZxdaitXv/YmSaK18Sa24I3KQIFsEyTRWLqA1yDvMghaA4FtMnr19iXYa0tHay3Quszrez0a/e8KDL5UQVBr/y63ocz2oUZ3TP+d2ZnsH7S2QBlLGjRoNYDMB2H2AEh+wnWpBnBS0hkG8RP80MMP7gzoyf5BAoEBCBisd/Ri7tMi8ZMPf9E4bsnKWG5jUsM4+c0l0cck0liIDqAAQHyK+wbZQVjrdEIXDiDTIfDhTA+zTsjHxVzXhJC+VzeEab4LJgMvAKoE0Xkya20sWX9vMta2KkHdSoLoAQD4/nHP5/LaZIu9Tl9Plc7fpcc6eaxgD3AuDaEloGbRAbK5fyowuBkq31QlVB+6f+4bdRWR6vvGKm6oR702yN8+VRHVUlKqJV40gzODHMAqG7v2K9Lflly1D5vXR0kaDVkiTpnz1GnDJwF7YteJNFSlARy6BPbcBwIDqEu+m8OsdJyboDxG1LJzWkkIoAF95QXf+lhcAB3Jvi6upTLBm/NeCDwCBoottLPooRrq4HmC5WquLACRCRE9CDBJbkHBkwvzQ9d8AUukGVxu9ri4L+pxX1IKKAmg+q5YSlGp3/Em46E1X/2CjPXUwI++VsW7er+Sxg5E6f4xTWIIEBsRY2kgV8vJARXZhM7tRz3dciOyZj1Z8dsV/MnNuQoIXwOp7zraBPJlH0Xux1RlCkkNLdcJSk3uBaAUv8GQy4kSA5GUqhsG1v6EJrBrm1AYwENVRbORpFCuIN7kKmLtv6CVAQAaWRg5p60tOAOBV8ZZ/4AM1CUfIIHAHE8Ifie639qXqCKSnZ1XKiQcSbCdQCEBvI29cqgvj7Jyy2+w4CQhYe0VOncljQBBqHu7xCpJ+ybrqwKxMc8SRow++5a0+rsenscK5LZb6p3Vjvo06PE0n3pDP6GF9O/bsCIM6Tk2EjsUOZhzWZg1aZh83JSqZeqvWYLBofUNzhoLNgQSl0Gf5dohZDGRiHtfWSmg9Tn//2n8NmAEa7mmBbOCuDFp+hUDvPRl6iZywVhQmHLzOKIeMKURnTBzOjgAwZB0JkWl/WdQALeKASzHVQTDSUHgqqmLc9JlsSnjGj5uwJ46Y6dgT+xKNq4Be5ajavAif1fnbtH8RV/L71fBXy3SH7tk3P0V7OarMLQBslTEDiEc0m+XY46xSGs49xjWepCxuLr6YdzdHfAsTLAArozFE9tjICnXrZ2dmDLpe56F3ZfMVAeLrprAM8eLqo+dIQxkYRMQdOQJ3u/zNSPj4FPQLr8hoEuf6w1hQ6UpjeXLDkXNKtQsvqmaQa2N0HIOz1nBiQ0cUMq/dQsGGjDKGCMOHZct6m8tDUQ+QNd/hNAPWQd0Ce4umcDymkFfMU3bZjDcAspLg55LCYvzHy1B+z485Oy96ShavgG2KgdTCRBTZWsjF6CmLgfnJAHh/RFsa/aqZvPFoSPqZFpxBHEUwLAO9CrQZ40BrCVDlno4d5OTQtKd/qPC+utuwJsPG9bftB2yzmfoTFvSuQzo6rtA53lVFbDUAH1T7U99r/mmTMUWJ426G3Tss06TaPoVjSY5fQHGSDJuM3yE+WqHrrvGPO8xjs9wF+YcuMTETOkSAzeCsY9zZsKIXUi64ok1o9n2M7DHGPTGYkOSlWeO8HHC7PfZlteAXowTHKcyLP0HmxNYa2CNnmyxCjF3+M1g8sJhC4h5P9r5W15fB32W9iBfh+qRoAzEZWBpE9PHylzpbuAHBz8QbGryApwHa1ot0FeVBPcBxpjUARTWjzp3OSkUWkDh0jDkgPdw2qzdJhBFugiHWhIoJwHVNrTHoXrBwvoVpg9H/VuknFRvTBmABGR2edRkMtqgTjV/iyZrn1nAcswiEeW6J2h0PrvrXCnkt1eYB7F1sbPwA7Xgb2UPjOWFc13AYGX95fOd9Fpr1l/NwjAxCPNPyz2BM+ZfUwpunCSI6iQd+wrU2wizRA+bBvEhkpSgIamOQPcEALDdfow7f4vfnA8gSHnmQBY9hBUTmHEXJpxIbMFgHLZk0VXzdJk4siBYU3yGKcTEHp7h/aEBBfLaEYXVJJIOpQS9M5SBZgWZTGLjGSR7pImnVJuhNutNAZ96LJvK1o+2gh5rcNvw0iYogaHPDBrYAdwZUNIBbRvFFcaf+gm1bQjJHuSkkC9/Kxi8htGIXmw4qxA6W29M0ZB+n2oB0dbtBJyIcwP41wDFkiEc44SoUlGxBmqLpJSzEaGSsLNaebYYa5VCwvrb5qSQVgoBONcDtxugf5LBHo0fgrOrsjBN/FDZh3pkDzL9bKoqBOzsYcdTkYCYD8As5d4cpPl0qMu/8zk9bw6p9xql+IicVApQJ78VfhT70D1NLELxJQRAsgl4HkFefLRh+Bg31z+GcXwF7w84hh0Gjhms9xxxSNdgIAuyBlvYpheI+gsWRmINknV4Sw6DIfjUuI59nSgkxDAhJPkQ5tD0A8ganmilKNR3VyCJk41Q/fDCBEYTT7yRpFQNcq28X4PBwfB55VDeUBduSTTGal1ZNoVVcFj7j/TJ5IdYYKxggOCA2Kt9YHgPCAfALGLWyveMl5NwkhiyIGzAJOXgcr9c/MiDQyp3O0QOsNlXaKuPddQJgZCqVWqCiT4SJb/fDoiGENJ7IUDuZUMNkeySLIwwgK2U5q8lhdL8WWoAR9dhHrqmV8Cqbaiuq9iGiq0eCtHERAbNIdsFdzzAnqQqEPMecXoFP7/Oc3aaXmKe77LfpfOlPo866sR4rX3ukh9AtBHJsMqvUAJNJvVMrwW0CiOsu8b19Y9js/kYx+NnmOcd9vMtbJhBSXpFmbVadRiYQdVvr6t1OiJs2cFxxIkDjmHC7O9AwSHQgNhdoUv3SQjjgvGvfr7gABrHqH64g0o6RQGswXL/k+jMm3QMxojv0elxr1ULrEwCxSe4sneakFI0wywSaPeC2Jn0sSYjdb55JpYlGKRzgCo8eS/2wJAo/ITRIHSulYrxU1txlk+sh8qGmFj8BGsHcCxSbw4SB733+FJYxcvxA0bwvSNn+ahtFJFp5ckYq/arZveV2QWgCfRINXYcsl6lTY6Js1tE6mHCETHOSTqgDm7UuLvGibO5wdM95d61zmf/BGFznZs6KbOnZv5yZaiNTeEbcdFRAdqV/gGwZ43pQ2dRvIya9YftNcj1MIMEbd14Czs+Q0idO7ODFvbZILvuCYzdoPO7XAIyTrfw/oDdfIvrVFYh1yN1x0yBzcgBd2HGTLEJ6BQc0jKvuhyzHoOxiNTlMvIQZ0zxCA17AigbOuYZWxZtUmsI19RhME6aSoAbxkDtYIl2dIFqFfC5L6BTVrAa/2VjGw3sFAQKzRJSRu1cEgNRmyCmhSI7esbCuRv0w1fgtl/B8WrAo56zk1YzdywVTWAFf7edSQHeyiLjgD4w7Hwh6xdTgqFikBFRNt7LLrLvOmzKtDu3Td8RSvkR9VVDwAAT56rUMzE/o4clBx+0u68CPSkwVpZoHAUcok72wRGRfRbyXwI+ZIdGz6tz15kVoNp+CvbYCuzRpJDfXmWtTwV7WHHuZB9KENeCPY19gAFCLfWARutPQbla6++sVP+hQbaEUMpOSHYzjM8wj8/luLjVBTNk0W9+GE9Ted84PsPzF7+K/fgMFKbstIiThuyk7cKMY/RwhvDUEraVnpfqg+a5X82g3oj+MJCa0kWPPYfkwMvMEdAneSo8Y1CwyUiDid4QemMQ+By80aAu/VhoWE1yZuDuySIvSzzXhiaJzsjo6TVlGscKeMrVMYZSFptgqBMgc3gEvyXwYND1sSndAtqE0bZvbQNQtgsEWOLydywB4Vm5V3W/tdp/dWRZJR7eo2Gc6Ov2YO4RwgRbARMakNS+Q6ykpEJQfeAuredFFDEDZgBCOCSAaM5a4hyla7ie+7qjtOqBL0s8rR2S3bluu3t314jDo1zurX6CH9L63CGzfsU/ANYcSkOoeooyYJONCJVPkEo87TRmYM7MB8CP2dFWnT+OLchz9n2q80eb3MSjZiotk0ZA8iPCCX5+Ledl+AiUkuUbd4Mn00v4MGIaX2KKI3ycsYXFte1EJ5gjbsOEEBhX5PCBM/jA9Gm+IvcQyPdHSt4FZlxZh0cx9V/giGMMOOKEeS6JW5N9BmEGulSa6VKSSJk5fXpeg0EZ5MmgAmc5CIei9bc2VqseMuNQRm0bdCbVWqSsGoOmpkqIzaNFA5jYbwEqOt/1UCC4r+Qg9Hk+tlgeNVEUoz4yjs4gkJFyUCAlHFKSITFBeZmEVDZYkk+gMIDoPYDg7gmsJTBv0/xPclKJqcbZd5ySRnBJGs1+l+MQsXMW2qgqs3e5bqZcGtS0+rLrfoLKx2lSSACOcz9Byr03CH3S3B86qQ5QBnCHxlfQ+CF//+LacgLnOAjzU8q8W7CHxjuo5meYX8FPr6ENpr0/iNRLLJWXlwA0Id0UtnPXPUY3fwSbwB5lfrvhIzB7hOl1TiozB8QwgsIJZhb/bHP14/ghe40Q9jgcPsGzF78CH47Sl4Qlphg5JDvhcE1OkkkQPx+mBVC7lNyJYNxQxBPbA2FKSSIhwzAHIQolnVftFyKYWr1OtvNaE8JFogqAzs+V8u9ax/xdR6sfXFaIkFNHMYUyy8QLiU/aWakYs7y6rgPIJJOlPdCh9qAmj3gP+Ckd3ywAZc0qzWzzfEBLicgiIcXsQaoVfE8zuodG33+Q/AZpJl0nMjRpVCeT5R6f0/sTbCi9PjRJZEyAtdt0HiZQnDBDk0toYoe6mlibxGb7XElGaUWxkkdUGoaJMgM4dC5rAPuBcFZBWOEL5FrboLaCo0H0UCVOAICdGdaHnByyx9fg03ORfPB7TONnmKaXCGESIHi+xewPpadCaryd7Wq6//WaUqqMgCH03Q2G/pWw/pOtcO5xbgiXm9VrA98YEKdXwLwTQL1/is32q4AdsN19E9P8Gq9e/TfcxTnhC+LjExtYMphjTPJyibhQzbveEK5MB2tNbjg7xiDkFDOn9SPJ4BhC8KfsK9UjVkQN9dlrOSlBGELS7zWQJpSCM6hGca6sNusScxFln0jJKeLSDi73QULyG1JiCIlIUw+TY6MWtGdb5CDUX1iThQHQVA8BkiAKpvQXmL34B94DEwHzaBBGm+JRC/IH8UeVTU8ukwqaZBGlylSShHFmiTuAuQdMkRd712FWzvf7jx8AwQ+OultwqwkaqhLNou2rNP36po1RaOGcwZ2qNBwe1vaIscsdggsF/vyiL7t2agdf524aJ65h9mw+BndXAFmEYYN5u83Zez+QsPy64rgRLdk85XBidtiAWuevBoEpdfGsmz/lfVSO9pKFUUDgBK70Q2pSdwUTAxwls2NcXqRjHBHDCEMBFqmUdXgCO2+wSc1h+vE5xukV7vwuG6llwyVAArExitM2kMWQGDs9SHT+WPSClU0nTaDKPjpDiGThmDKwrKXeESydW9Oc6xiZWaQBXQ32PDTq8nHd+iGNv3v3l0raLpkEDR4BNCVrq8MQnNvC9k+A7hp+oJy5X2UEm6IJXCQizKo0RO8AjK1hl32XzL7cgwIE6720FHt/K8Bx9SfapN0pDF5l6mQJGCYwCxtQ9QCBqvw/6YARhQwSK8iTtapY9Yb67ACGBP6yKay/OpuvTZ+UAVzLwtQM4CwLU+l+hn7AdDUU+YdkF0yXwFzSx/vODFdgcDpXyS5c1PrLHZqTLp9em2XZpnGtzaga/jFZwCXdRD/BRi/BYvQ5aSaOtZR6uf4jdJuvAACsvcZu/23cTs8xckzMHMoZe7lujGOyOVtyCFYSSltDCAwcEc40gesxpCZ0HZPI1QRldqc4iCVZxODEBi5OV2eodBQ2505idebLqQEyuwdobUOdaHqTUTOBzeL1hhGckmr5/bqKBXK/WiuNR3kwsEPV1GEBAtdSMbVeeN1AMkRGMApHA31oQWAj2aq2tFibC90z3gcElmMbYFMyqDSBUuBX2Vs+BScBWgaqDOGSRA5JYyxpBmsVUU5IHzLQGyJEQzZXEYltaJu8bDLYQ9SnAK9UCj2YFNqS+AkATCcB3DIRtHo+GzAYWAWMk8af0eaxid2j4G+Mp5wAXjL9tGxVhzD+xtzwj9yNsBgB8R3sRvyE5Ecwe4R5D+8PsDagw0eybl0/hiWL7el34mZ8hpMdME23GMfPQTAYjMWMiJEDpih64gDwhHsBZkEIhnFc6G0DhZE7Q3yAmSOikdJRzwEzZmjoxGxSUMawDDjV7kxArjSgarB1UAq2MiuXOdsHZe3WVUTnTV/SMTcsv/Z38Mr6XwNR9XebCgTW36XsU/m3ARNJB/AVwCdXDVUsYHnNNIkhQKqGANluDsL8GRVgqCrbpOpMmObqmhngzC9tGGCaXHjH4dwW1srnQxhhrSaI+gT+iP+gtqOWi1Hgh6hDjH2zX9H6ThWIwYLCKVcS5aScAh4J7KirA5Z+gkrDmKR/iO4a3F1dZgAPJtsGSbac+wqX/Ia8TFhugLScuPOTJIXCCdHv4KfXuTFsjKPo/ddgbcW01hE55opJZTmWXg2l1J/sIHbQbmCiB4UTtARQGcKc9KJBDrT9KobtV+Xadl/D67tfR/CHXL3jY8zADbGAOAKoGAQg2wYAuQeAzsWZLLbk4DnCMwPR4wgBozNzriKF5OTvAgyu+49kTXJookbtQiFzUNquBoBpBfRZqxzShtPL95fehn43kg9031AN2bXkUP18teLQFLsAlGTR0TEoAbdxjain1SeJ7ScOlZYuWWEAsgNH5AQRswfZfmVnbzacvYKzfdb5zRXFYQJwALNNPoEkj0NMvQVWehJZK01fOT2XhJEwgmOccwNqQEH3RQVRAoE1/qg1gckOWSsXdpOrigE0DOCzxpALIkn6WlAC9OprCQg4xzH1GZhN1e9BdIHJz+In+B1iGOHn15iml5imVwhxRgjH1Dj+hMh+kRAt91/xR8pvh6EEGofUpK/0dckSQcaBaFNuGfYIvjSyt/1TzE+/gnm7xZYsrl59Fbe3v445HHPDaMMSYwiuUCTlmjkMg5ASvYBDZ4Rwck1OfGBmjIgIcYQJLhGLKsH8NEIieyk4C6CAtSgNZjmfnUQ642JbdDtr3i1BlMFnFCm5i3u5gGfU67P6Cmv9Q9bG2vubXqtvRWpmdkKKbEkiIkEEcnJaVyptymFXPrrixVwair/PeB9ZqovjfcoYfovG9x0IbjWApgwG5wsNAElbJncxBVLjt/MShFg9mur94ozYbIybLH5mhyw1fLRjpM3Bour3mKRTozpeWqohmbtkqFWvZ2GgHxyL0s4aBLY+AcErpbi1vl/RDar0dSr25ipYlzL2HMuEK4xt0WwyXgAlog2cu84ZVKIB+zjiNkyZyaOllTUDd+YI4sICVl1gmzJbdIHir5kvJBahS/9UI4s4JQ4gpRjdktlzTzb/fKpyVeLVBmBro9YKzt3Ncd71t/0uc/ZK+87aUSlAmQKmSs+nzsoDLeCzHBrknY3A6fUqQG2CB16VFljV//sShjpbAGCtTdl85HvxbMQZIWmA1npiEujVTJYCcljqE6B8bhvqfbT6g7VdcK1dUCcuZTZjl8q9ky64an5mu/AGwdylUTd90cBOQfoM+qjDrWU2qyc6ZVv1OQBt7gWsBO+QgFfBoHKel5puwiR27hpkBpz4BJsWxl4rBxauirL0xWlDdtxiCrhyV21wE4h1hjAjJoDZwDOLnwUgGs7JHQvkhgydIXREq8ewPmowODV9eQ9GzxLsWYLB9aiTUlpidraNsWBr81qjdgE4B4H1tfaxspEJDC6PD/+eXPKdy96+/CGMVNGqzvBXtgdT9h84BXw6Ysz51TMAGUjOJEqPgZKkFlY1c0lD5IDm0jE21U7FVmuyRRtmKasnVvZAPrf2u89fq8Fhfc7BZDkI9RfseJJu36nxU5xeJfZbKc2OYawaQbZ2ou69EGmEXWiD2hq8q5gdxY9w6ZyqeKHPDDGyA/r+ab4W42hxqph+CnjUP1+DrtwYLgVc8sUt21bnudgLAnFIAVn5gEnMHLUN6ju8WfL3fEU/k4phfsN9ne9Z/wHiZ7T7Scy/e6Su8pYra3RJ9haAoEkamcp/iAKGW5I+Aktt0NxYNutTrh/TpSTx+yaIyn7S3FdiCPQYC9HEUpeAh8sJa00S6T5rGTuJBSh1lLfZB373gy52AUh+eu0vZHmY8zjiPp+htgmIgJkZbozoRgF67DjCzAdJCsUkAxH2mOfbzJz04YQQjhksr5NpDSEHAHGEg3Rj0ZjB2X06b+IrGAV6K1+hTjZx9DDsgeChOslIoFDntjiCcdc09CpMXEDk5SZlBEMIJNkeaFIj+es6zwFtEBXgTYBh9cBLmlbJLTm5s5jjF2OEMzbu+wMWze7RJowbj+Ls5qDEAhSwVWUh7ruHzpJG1eFrOfjSp1B7wA6ITta4s3EP2LMcIvPo7p2vD+/jvvW64A06p/WQL63zoWp4WNbHWMBM/X1V1cBSkqY819/V+tP1YLISQyR/QV7T5NCCHHKPbcguWiLr8giYoE3AZ7jjQWKH+YA4S2IoxhHB7+H9ET6cEOMEH0bEkCorNOnAoQCcaeXSOWRQSZUwIxjZhzF7SSD5DtYeCmEnJZfrWOLML1FNc4h9ce4aU5zh4UELvyGyNKcHI8tO6Ryu4wuwVvoROhgYI00iPQdEniE/Ve29AN0Gl4FbXa8NkJjAyLHI2qiriBp5zXdglq6jHJL41uhlXdPJXKwQACpfofIRlk2mAWkwq6xin54by1mSJvsIel2jb5NC+YfIerHWm0ZjgS9jfDkN55bjB0DwvUMmdTLAxmYxcSm3aDN2Qs2POWNnTFsO3nSIjyNilIydZv61xBwAgh0Q7AgTz5vA1Nm6uhmclm647jFc/wS2ewot8QzbJwiDMC7mocN85ZosnbJ7AM3SLYL/BLSd+ZGRYbw4bioB4cYJdjy12n5hLItOAnuYvXSMTQCPnGSXnSrt/H0G8NgBZvOR7Hs6N7x10why19he/y5s2GMzPocPR7y+/ToO8wEEYGMI1+TQp++PYOyDXDPPDhuyuIZrHDaqFjTN4smpIPSpHXdk1tsGnQaLKVOup3BLFtfUYUsOZAwe2T6XeSrrT3WLvYJ+ciNBJy6lf0Uxuh3aqbxcrnJdtanFJeNdZ+kllCvBon4vJ4V04tagS3nSAHQ3CJtrKQGvtP3qeE9YPga91QAO6K3Jz5dD2E98ZthlzZOERO4km0o+lSkKIN+XeEAD7KGRAy8CHLncpCRySDqeylifGvsQ4gST2Cs6lrqg1oa8cAjLf5vZO3UJ+FkjORT7oMCvNoDSbt+2fwLTP5W51V2J7udWbI+WfvNwmfW3tA1y7ot90ICu2AZ/ruelYM+8y2BPretbN9Vsz3eta1g1qYAstjkoAwByIolDm4pB6OGnk5R+dg7GSsMbxx6PH/0eMAecxhfw8wF3/hU6jtiQK5qY6rglZs+c2D2AMvxExzcYKQW3KZHUwWJDwggaqiqCLpV2RhRtXjIGGxIt82vbwcJgkyRj6gZUwIrjlWyDysWsaYCeAzU4e1/3XZt7vvAcQAM2ZxtVMX1U754S6BhdJ/3H+tLtW8u9m4DNlJLP2h60dsFg8iwlc56rIC95tBpwxNCuSYDM/8Y23C878KYjSzjQAKr2JXM3MWdYfAjvjzkBFOIsvkOcUTSAxzwfnIPY1TSslW7KalcAWZNUNmb92FYSxik5JA3hpMQzDJtc8q2sHjgD6jgzeQzxRUc8V06R2IdsGzzDzIzuGDDsjjkxRPtniOOzrPfp/W0D9sQ4wuvavkiWASUYrrXQ6/Jv5/dw/kna2BUA3DpwagoDl0C6GIDxNWxKUNnuKR49+X24YY/T4duY/RG3x08Bf0oSMkVKxkJswz56TAmo7SGVPkis3QBpHgUAGzhEKuu9rtdjAvU1aauB2ZWxuLHiN6h++KVET3tpojB7WNdQ03T+1hEQs+55AGfGkOzvAkMHxUdIsG+zLXPMPg2MAbjoVucSZrKIROKyVtIQNRDc29ZG9FZ6CSybxEkfgVQxkKQh5l6CvbGT9akBfmKQeDO2tq0BhKtg/31YOfWcgwIKuaP9kCRjvMQHNGSZB7UNuZFRtg3rklJdKl+26TM+jJkdDCBXKJ01maok6HJyiKrkUOodEDrbVA5pHAEkl34ljqibeNY+QxwN6BhhAuBGj2F/QHf3Cpj3QDhhPn2Gafw8M4Cn6RVmv8/MXwV8NMbKK9cF/dk5lYDDEDp3ixCOuaKy7z9AF09wndoaD+tuGtCH4wlhPMHQBmQceHiE6Dq4+cfw6OZ/wfH0HF/4HYCILRs8th02ab5GZtzGCUeE3Bdkm+yESMik5tbGoGObJaVmjnDGAwE4KZiFBjrBxlC2C1qafQYGQ4AcZsBolYACP1x8hiwb85agMC18lDpJVPsJnrnyD7TCDYBhKPMUdshJhqUOKNDaiOxDmNpGlEoJm3wDtRHbTdEG5Yika92dVwuyTxmE9TlvyAFc9MPfp/80p+Q0Gdv4XrU8lMq9aCxQv64jxhneH5vEkNjZrayl1foZk7xUnTjJCRUAJo5gLtjE2agr8oDc3K9pILuQmlT7AJz7EDEC0SdSlgewA/pjEAB4HNHdvQIfP0P0EjtMp89xGp9n/2Ca7xD8ETF6RPbgOCc28BL4XSMx6XkBAAP2Ypf9fACRQ1j0Hakrr1dHOMGOpX/R9up34oOndxinFziNL3A6forADEcyX2eOuAszLDw2ZPHUDujTHJ64BNkBIik1cpGUcklubgr7/H0K7Fog24RaOir3CAGXqkNmRE5SDdmHV41gyj6OJKlsG0usQAmXKiQBZFZwJskZocllC6S+amKmlw9amI7R961/sBwaC2gVUb8yhWspGWkrxBhPBqEziNEi+tKTIgaJHRGq+FSBX10rUa2dEH8yxhHGWvEn33P8QBri+zjE+QsXpZ6JBNjVss8QjqhDyaLxk7LR4QTV7dT92+pGl/ePYoir0jDZmJryb6IOXfcIXfdYAOXuqYDAw5Ms3D7d3MAPHZhMBnpMKsEzVEDg5SKbM3PNUo4C9ASIZk8q+SafsnXjndDok7ZfDGMGeziBwKWMpQrKkpRFLr+zGxg3gDX4zczmrQT0AGwoDhsABL+HCaOU7g8fgzcfgvsNNsfX+DAtgKfTc8x+j5Pf4wNj8dQNWefvxCEHX9vg8IhiLoXoQegTEDwlQOWUteTk5OXSh1Ty4Tnm/dVA7EAS0G2MaIZtk0OoMhQ6GhBKUBYAVRkY1pu+KGibGUkrgLDuV/OGbzJCArJEJ1icOSp3hpwKIzpV3F0hDBuYjrOjthyWTNYAVUmI3rUBXvP9cT2zx8FI1jhyk4AwrA2CbOn6qxpg7wUEu8bga1BX24gM8KQAhjnAe2l0GHMDKU0QScmn6t7lIJH6xk5opptWgJ42SWRzh9+6/FvkIB7lEs/x+gp+SImQwYAHk8s6xWFbL9uS35Ae0ZZ0Aii2YaHnFQ+fZWaPn18nsCc5XBUodv7bbHK0xTlw9gque9w2rXCpkzkgDJ3+KSjZGykpPSGEPUx0WeOMuysYsrjC/46u/xDB73E4fBdfPP9lhHDKJZ6lQZKwisYYMCXKp8q6bBUISrNp4ggYye4DDpTYIsr0UUbhkpm/JYfHtseGLCwkWbUM6EKew+nnyt0EBucSLnHeiuO3TAxdGnVZeEQLOC/LOJmRS8tz45namuQklskJotA5kBMQ2DnR6lIgGGgZfzXYk0H3CvjpnQC+ygjuNA9QswFDVY2i2n/KCI5FXgQsrHRdo9511Fq+hq6rU1ESEoAkhImG5v6f/U4+l+a8gp8i89ILG80mxjH16LpH0oQ22ZcQ67W1tRFNtUBaY8mWKgGx10UTeL5yiJoUGgDrWl/hPkZGzerJ9sEzzAy4MaI/jOj2d2Knp9fwx88wnj5BCCNCOGCe7zDNtwnknqX5SdL3k3PYpirqiimyPTq3hbUbOUfzDn1/QJeaM7ruqcgW2U1icWxgXYCJRUImzK9g/E6qJzYfIX70uxD6AdcvfgJPjp/h8/E5dknrb2MI17bLwGpkxp5ndJy0vYlyg6gAxhEBSIzAXuro8+eUAXiMPq/PvvIdrsjhhjo8svKZjXH3JnaEgcfZPihrn9IZexN7UDe2aq4x0rWF2AVmtRXLss+YDEdi+miyMq1Tei8yWRjii0BwSQpVSWMnNgJIzeFYvn/ywJbl7xCBKYimoOkYmCum2vJ8rfkEaguqQO9dRwa5miF/12ufaN/uoVrCFCaEcMwJH9lmhvoNlAAkrYBhV5JaqkGu+vWXGIRm+fs08WpK5RCTRehcloMAkOWjcky8SBIt/QevnJDE+DMjozt4dOMMO41wuxeI++/m5tCn06cYxxcIcUIIJ8z+IBqYVRUVV+BoTZZY+ZUIFdvM+wN8GNG5Kxgjf19V50NtJExqhpUkajh6WBdA/dMst9cDeHT4f8D7A07jc5xOL3CaXuBDQ7hRCR8w7oJct2ty6MwGW2PRGwV7im3YkkVEl/uGDEFk5E7RpxCMEThW5BKHLQmBhYyRBrNGG9kWOTy1AWobuCn/TomtmvX3lmCwMUZY2ShAsO57yQzOPS5AiJDeF1rJxmRzAlLupzZOzb0FKtafxhi13xCivs8ZCD7NwLwBpilpg3YmJzsMWUCbqSkDMDrAJhsVvMwNZYDm+0TkRL7sURPF5F7vYSs9bJGJKE3QIgcg9R4RO1uIYhkcNjZ/ZvYHhDAK8AdJOtWEkkw+ofUkeV0lUJiUCQReVBsrCGxdOz8Vb4g+6QLPBmZm9LsZm7udkMvGO4TDdzAeP8E838L7I8bpBcbptYDZ0cOHIzgD2wxVsM/3HS8TpNV5Rh3HMgI8QgiIiZWqjTdDnKENwlXWaHVEDzMfYCHrSnf9E/hw+AgcTjjc/Q9899P/E9HvsvzcyAE+3aABHa5IiCBbY2FVS9sABMYGDjc2ZoyhjxY2zDilmEJ+QfldA5V+JoCAwIprBMh+XPIJDNJabmKuRNIEkv7TBHSfqhlqwFftRcYZcjK7vKbzX/XKa3sEiA2RPjwif7pcs0xK/pwngcvrVNmFbXehzwina51whRiBrmf4gRCiAc1amefB8QSwrofpOCIKGIySKDYqIYEqDqEvAQj+ASP4+zuU/df8DTHMNr+mGlVjCrhCE7jo9jpqPeAsbxDHZLBTCTjQZLbVQGfNwKqkMbMV7EbA0+y8Uc7eg3DmtF3qtliDwasjIpd8539+AsIJHE4i4F519M0LV9ICLb856RjaDeABsgPYuCS7UcptGMgSF0wEO9u8CDeHFU8gbCBah9LtHAD6zQ9j6D/MGdDZ77NRy8YzGTW/wpa1BqV5gokInAxpLvHQUoaYwB9khiCAM7BHGT1aNr4MyrQz93KoeDsAvKmLdsYOVrBnAVDXo7ht5+/nRXPlo3KPunytTJWhXw4x1AXoacvDF+BXvMdgaZ5EpSFWHJazRhDvAfbUpZjr7zswSzaQjAUS4GPMlD+7ZLZx0ghf7mf5nbV2YHmPFtsUbfOcWDEOcEN2eKPrpLyzkoIwtjCANZi7BAQDqZydCgCgSSK1DSIPk6Rh/JhB4BgkoArhkBtjLB3aehD1qRFOKdEkO4gmVurgzOzb+WDEeTfsgcoGNdlcsmAMMP1T9MYlVrKHpQExHKXJYgW6loQMsrxK1bIuZdVLl249LVLSJTrBvWFEUyawytEoI1ibw2kgJw7b+T12ad6m3b6XJMRDiaG1b9aO5PI+5yTm2qi1vWo9YKAt4SzgsKleK3ZJ+z5qObju+96Rtf/sqlb9+47sCGIxf22SLoJUEEhlkXQXlmqAqZGaAdAEdzGe2wbZR6Vft+Ioyj66s9cbu5BLv22RhCBh+iEBO0tf4b4EkfoOtQ+hGn8mcqnYmPfgcEos4L0kuvwBs99j9scchMboS/IMia3CJWjI96ORKqq6wQgZixi32S+L8QSLBTuYLAyXa8VRhB0o+Rfzdot528Mdn6DrbkDUw8c5h5oAMtCiiZ3ZhKa008rBwrKEPKr9ZyGgTUxR6swRkawAPYZBqjFqTA7oVLMz+yMPjFL+ilw6nuWwKpv2tiODwIvX6sA7Gg3E9VUJrJthnGgEL5K8tRzEeX+BZG8re4CodkKaSNrkkllT9sUWuXQ5j8QKPiv5XIwvTR5ipYS0kVszVtagDPYUCYi8ucpHJdmNTKigABMlESwyVesBaD1P7h0rx3omB5F9hnW/odkdlcAdEJtgfcjVAZj3UuY9v87l3rPfZV3UXO7NdbM05aOXez0d6eLbVWbFAIiiERukgRZRhy4lnWySh7BJS5zsJoEBspcYx5I4IkJwEmu5/gmG4WMAqVn0/CLLzy0TvrVsTJ8SzhObfMz6OXkeKy1xzrGBNyZL3GkiKtuGCwAuwQgDNwPmBSz7XsAMQLkKGVTOtrtInWVmcIpxQTbfY0t2+VL2pSWHtHGEbp/tLpVGUZqMnqgAmu8yDFlwOK9k+7JHYfmikZhaxhMR7bWsk0SRJknKJ8k5MiS498IeCGNY/I5almqtCdnZ0N2sxHz1tVw75VJVKBWFKhtl5oM0ivQiCzPPOyHc+X1mAHNiADN7TU9mVmydgLg06gQJUPOHAwwzIs/wYYS14ofElVillodg9m0FWncN4wYYAP38Gs5uwCnxD7T4gFYBZ/8hxQA2UectJ5tiuFQhmpCrh7TKUH/XfXe2MoNNkrasewuUVM7K59Qnr+KcZYPZ+2KUeuh1KheqamK4GJIwLjYgJhC3XlNqEPhyfJGqCE1JINVJ6LVkscaYObQhwFyAKQ2pn5/8/nvwgjcd2hPkyxxrvR5+u43fRkDwepMIY1xpApecNikNr1idKYCJFRisJV9StrHIKBjKGSftDH6pE0vNFqy7ZBfA1CJ0turoK3qtl0oz1hh/yvbLmbqRQTPDemX27LLeJ5+ew4/PM6ASwiExG5QtXbqhKlhFpItbL1qdiS1NdgPnn2RNU2M3MPEa7Hpoab+WbGnTFwWZmUXcW0XlTYyg7imur38cXXeDU/cFXsw7PPenbIA9R1gjOSqXAKBDnDEb0eey1KFXYwJp+ABYBCMl4NGobqg4fSLqXhYKFYO3CXy+Nl0uyVDgOGsLJg1SZeWdXfd0DGRKGZfcY60WsI6aHZwd0orxlzN2KIUz9YJYG3RlABJzyuqdg06GJLCLVso9l/p++biykTYZ5NF/SztM1mCiViNYO4Or42BCLMy/cAKwkYTMGtjzJZRqAOvBYZ05r/VClbEr22jiqP5cbJJJ9f6VDWurwKyUcsVmn/cNLfGU5yV7DzIZ8FkbayCw6HiZpsTTzqL9OewPcPs7ceLCCf74GabxM0kOxRHzvEsB3gRt8hIuMCrUJmqQEIKUuXXdo9zNuOsDqNL/NHaDmsUlwVzVjLPq/g0A6G5A3Q16v8d2+zFezy/hp73MV5jc2NEZaQa5j7NkxI1DZwmhAmb6VAINU5qzqX0gGJA1maEVmDFUWfUNWQzGYUs2Z92b8145Zq2jVVULZAmX82qB/DkTMyO5thXFNlxKRJ2PWjOsNIEpxy1dztM9mgAfSmvP0kmrHbU6qCuvled6RJLRL2BwdbJyIzJZBxIIDMj8t+5LswM6OIbC/q1qg5ZNzmIUlqv6DQBygAYUoKf5OSy9BXT/tSSC2pZakkp9DqrWX2UWK/NZEnr+vRpoLhPG3gPBJ7ugJZ67+SLrbxy/wDg+z/p+sz8ieNH9jLl0Xo9PVyk9r+V7DRtEE+Fn5A7aGuDWc59oA0qNJFVOamnHWZOF7GFnj+Dks5vNj+D66kdwOr2A9wfs4wkDWwzGZj9iH70EcRaY4BoN3uI7AFZZe4lqf4wGwTK62AJHOj+vyOHKOmECV0DR/YOhLEkNCpefUjvSaTD3ADD8UIBXs5E0nNZfXBjCKGwz9pWWYsvoAdqADjgP8vTbakBoIkbvRAdQ92dIAzzNWC106S+dzveUi9EhsnAAkuQLUCWCky2Q13zlH5R4YfXQOCJGqTzS/ZQkkdgSoh6WZoRYksbFDon0Sggif2eiy/c+R8CEExCvir46UlInVGDwvb+5fR4mgzgK2EMjY3M7YvPqZQJ79pj238Tp+JspdjhgnF5imndNQkjYebGsNdlLvkRq0He1NDw1Z+WAUMnJTXQLa4V9KWxIfxaECkB8LUxA9rDjiAEQPWO7wWb7I+i6xwCA0/FzvA5TVY5dkjBzjJgppsohYdYV22AwVQnmAILKzin5pE4gA5AKQ7KFCXxh7b80Spqm/VwdU9Sjlo3J26JqFrcSSzTfxYzIHgRXKjxU3oMTaSMAmp8jEqBGnzeM4MpW6MhVRMSJDSjNZUMUu1DvizuT9G0tOEopPPL6mDZMTSW/V2MOd2D0Z1KTa4MazKFqgFatcZEDrKEM5JoE7Gp1Xa5MoglEPsUnahtarCJGbThnoZW9IMD4EeTn3GeEkvZ/jCmmiJzB4LWlSqQ5Cr4Qj4A9RLjRw/qAzauXwN23EZIUxPHwbZxOX8CHo1QHzPss2VAqA7QKDVm2cAkEX5oVjaQRODFjIZ5wnBH8CVOKwSx1sPaq+BR2I35FqrICkCujQQ6wQ2646bonGIaneD1+jjgfYRMBZJN8fkASwsdKfhJAaSZPgGhfE0L6vREMiqapXixycw6Dsej0WJWokoYSTupzVU/uuoLoTW1Ko42+sBP6Zx1fmPQGJ1mKZvtUWUs0CnljAfoqGAy0FQJr2sB1DNE7gz4w+jTN5gD0PeM4SJcTP4uUnb2A/8mP8BJHXBj1Wv6+4weM4O/jqEu51jL56nip1peUf9kMevqgrQPnYqSTvhWzdOXUbvZF23MDY6h0wDWtXrC8VrGJs+bdBrBDZgL7oW90P2kQNrB9wxJP1VDiCMRZgJ5hN2cpiFqzJ4YR0/g5pullo+uXtXUWekRAlf0FYMnBuWtY6qHyAkP/FK57nLPztn8Ck/TPRFBOwBtEjzi9AhLbkOxGHudDvon46oex3XyELYBHu28icsDLV/8NR3+EBbAxFtfkSoknGC/8CGsMtqk8e2sL2LOFFV1giKaOAColEzdxBNA1xq4GgrN2YDUmREwsovGeI3wKLKuwV84bkAEqm8o0GobPYtTOXNYeTvsOXEDgdmgYl/aBov2njfDqLcUxZMAQiDYIwwZ+6GAdi/yDagQ3DZ+kjGvbF9Cnswa9o7MsnzhwmoUsr3uP1EigNBnJC7DxwKJhGNhLF+r3KONqdIBqYHaxT8kGqiRAKfEiKmVdHq0D5/0hyyBoMynVKLfUIdoNjBG7EGJy2ioHeq36IOvrGifOLhFCJ804ktRUrhRYlnXeV/5dl3LZXcT29gg7jZLFP3yB+fBdBL9DjCPG8Rmm6TVCnDLYI7IxMQM+EtStMdCNZIlTKWFd/m2MRd89wcbvF7YCYg8BaDMX0QFNUhjTq9IYZniCsH2C2HXo7ICPpucAgHF8hWOSkdnC4VEKrAMzdklP/IpE7+/G2gzYbI3FNt2jgRmTiVnnS7QAYwPwtM4eYZPKRYHCCij2JWaQNpdgJ+YdgOywdWRzSZeOAJYmFQkLaTSHK/BXj+0yH6CE1gaAq9kBSIHcgrFZ2/1VRnAN9laOXK0ZXj/WFQLBAL0t2uF6zyr7lKaTAJ1hrMAf1ZSu0IysZf/+Tlvb/FHBzBb4XVYF1AEaUvKoBo41IJPzWiSl2Aa4uEn9CcRXUDkq5oBoCD6cGgaRY590Ccsx3wcGmzdgXGtyyE8GYTSAF7Dn6uUR/esXMPMBPL3CePgujsfvwPtj6u5924I9PAu7JwN2a4y/9SSFYUJkjxBOMEYYfyHO6PweRH3yywKce5wkNlLw5jbpq05ZziqGEeTFnqlS4/D49+KrdoPgd9jtvoFnz/8vjHHCFbmcvB2T3mAAY2McbqyVxBBkfreJX8r+w8ZYbNliolhVIpTf2WXbIJ/PtmExl/M1q84MJ60/owHaigboQ+zgteRxfe7PksbpDQZyqan6rQpg1gl8BXuWDV7WKoXqxDHQSk9ZggTM6fkURIqGHBDnCsD0Y9sNfDnIniWK3of1F/wBBh4hjrl/QAkUW+BHwZ7mcJI+MFCt71q+zT5XSACtLSm2wWZfXOyxz3J18tum/FmiDQx5cHDCbEs7t7MHDQ4xCnCgfQAvxahNstgDOADD7QTrg+h+vvoM4fAd+Ok1QtjjcPgEp/EL0f6NM/x8yNJaCvwqpFv7wzrM/bewfCo1Z2WewZERo09VRXITzH4HSx2GBMA7IGtDC7NS4jUOJ9D+Gego1UXon6Db/B/oIBWI4/QSr29/DXMCe7bksDHC6p854sQBOw7oEZu4ImsGm5jX/QkOG+NxUgCvSuIuySX1UFLJ+rko5zPbBtMSS0QvFEh10A0QRInJ7FeAnsw1NkBVAFU9cr4X6+NRuyBJW+R5eREINperBSReKP0D5D2xB5MHTgSMvUjGaKXpGTNY4wj5wcjyUkj+PXxOUr6PpNTp9AxElORPjln3ejkoxfvKDrS5Wfr5BGS2DfFMwVzntjkxHJPtCdXn62RyXWEo35+wCpWVmg+wVSPJ0FmYmFJ/VZWh/qvHUgpiuJ2xffVaeonMe/jDd3E6fAuzv8uSK+P4KjOAhUTSMoBtBf4qYQqoEh2m/TufKz2mSr6AIPcuAwiY4f1BkhfGZRsawgFEPfr+Q9jNtUjUASnZLoxfSrhMGDYI/YBh+gk8ffy/YZp3mKZbhHDCGGe4BNoGZpzY4zbOmSx2Yyx6kDBZOWJrCce0kF2bgE202EffSD8uE8j3JY7zvOf02eqsyLkwmQSWK6FT4njpeyhgbGHgsQTYl6n81i74xUJckhHSEDAzrNH6B/l3LOMKU6RiANUSL7IxIUowNKUqgcMJOF0xJpL3wrCBtZtELAPqamJO1HtTscABjfuLj6/H/77jy2AVn48fAMFvPCixUuthSBqLsPGZBl5TwIn6Sgu0lYQIySmTv1sxdmt72FC0QYnjKlMul4ZlQ510i1wvZd9ECJ3oLJnU5EVB4BoApgWLKi70PhUERmoM1x2PsOMImo7g42eYDt9FCHvJ3o/PME4vqzKu1ORFAZ5c0lmKV7RLraEOlu5A2uTFSTlnFw4C9vQfyvlITB7jboCuMIQpnBDm1zLxwkk0Xea9OKt2wPzoKcabLfxAuH7+ET44fYbj6QuMpxcIPMFyRE82B3SeI46qPcyMa+qaci6BEOqArjB6ASAYWg3OACQQmDIEMbE0kNGAThvRRdYmc23IpQucCLifB3Sr35teymVlK/rFrWtdsQIW2UFrCG4FsssGvdKS22gjh5UGcKLrJcFc74QF3DvKrynYIxqgBnNo96HAg2pVa8mxSpMQuWS0++pDKg3xHhrBF8q/QWtgcJGVMRyyE6aawcQhB2mSuSeEcADzkEtEDTkYDilAm1OJ89TYhTqYJCBrltcjN30hKyBwahhZyr8lYM4/Z3G99G8N7ho9r+OMbr8DjXeZ2XM8fDuBPYdzsOeM2aN339qcqe5HY0DBIfiTMJ4MZTvbc8gNtcgOGQg2lBxXbWqRSr8RRtEX3nwEv73CdDUgug7b+ffjY2MxTS+x238Tr179N5AxuLGdZOqjFx3PNH8ecX9W6tkrSGMYU8XwCeBsG8LKT+1ThYBm7IPaBlR6wrzGgSpaW9rUUZs7ACUZlFlFejxc5r8+r+3C+tUoXD8tSwWSA8jCoIDhxLpqWSaRDFy1/pwBPKb8vXxUG7GsGAgR6INB79qyZBMAmmeYMJYqgbpxad0F+8tmBi+kkBT8WUo81EO1vXWbGNptQ5hyZUCpArIgDiCaQNQnx1PLFyWgi7nSYBYGFFeN6GATHefh339JRkq+qzxGD5ijVA71xxn93Wtg/wnm8TmC32G//xaOp08l4E1MG2HmKUC1bFfYBgtmcVPWqx8jplTJDLApdjEl4pmDaFBGD7IDXCe2QquLInsAi8qiqTR98U9/BPjwx2ABfPT513C3/xbm/XfSZxkehaWnTWCkpwAnsAeVbagrdcQ2ZL3QlaGMwSY5tGJHlkybhiVVsRJ1BEVr34Dsoz7J2hHWDECtDqDqvcZaZcZrug/T/XdW0pkTQoskUSMllYgO6fjFdwBCFJBLtYUNseLQWUJKrrGXtaK+5ejLrxYIcYSJfFYNUydu5PgLuFNLQlH6VwPGkQMogSLGlN4bZGwhixhb2QYkP1y+10MIGZTk7Ly3cG5EjCcYdjC0gQkjyPfgGBFdB3OfTBdWqoeUUDIb9Hvf6H763TdxOnwL4/QKIai+7suUDAoJ6AlYgr5r8mgPMf6Q9qLTKxpOAXsAB5JzMVHWARXQTJrSGlYfYpN9P44ePL0C2IPcDeLj34HT06eYth0e9Rs8uv3v2O2/i0PYwzED0cORyXZh5iB9SSDJoRujvQbENvQwAsgYIZZYMtgk8GdJ3NDqoXPbcF8qt02urVUQKeBzHxOwjj9qv0RlY+ojUOZhZgDfA06ZyJn9V/sLa6Xf9dC4oncSQ2x7kwAfOcLtzDgmP3fs01QnkyoHZc1smK/aNA64SCB53yaz43QLIoPgT/D+AOYZy+sjhAiZy2SkQi5qL5CVsnG1DeqL6Mg9DIzI18VUbbdMIFPyrUPSHCay2V7HACFY+NQ00fVga2HnHsGRHHvQ2B7Vd6djSwQzHgEzC7awudvB3n6COL2Cn1/jePg2DsdP4f0ePoyYp7sUGwVoclObI9fgL1BAYDJF5FCZrfLbFziH+tSF45DPPKf3GVPSDVbyWofIAc5uclJe1hEPhkdMzbDBHoSPEPoB09UA8k9xtftf8YG/wzS9xv74KY7HTxBRgOs5RuzNDMvSJwTGZtvQG4sJhD7dlD1RYhW7Snqm+CFdSj5pAnlJQNHzooQuw5zmaFVhWDN807hkW/K1TnITl4Z+Wq9bTvEv9it9IhJmFsazAvl6vVk2lT33IwqxJERgm45PiGqMoRdWMACcvEHoJIOc5YFC6SEin3T32gS1IyFMq9u8zfgBI/j7MDK4qos+F70PAOBQsgCx6mitRvdS0yMda9p9BVwiAXOq7R+6CepuxlqWn7U/F9u+iRxSBnsSCGxmCNg2z7kZV/S7DAKHcIAPp5zJ15tf2GEFAC5ZzggYg9yBKAIxg8OESC431iOyCH4vJVk8SMlazswkkC83nSs6orLfgKwzTAbsZHJ33VP03U1aeAHPp6zNAyybJilQgpwhL6WegJqxgGLIkZ6vZcs0IKzfXzpudYkHsB6n1SVnq9ewloqogJ/leBdToF0/32WsaX+ub9cy/3Ro4BvSPWpQtKqbMs77WL9fUmOH2sGKuUypZAPvK/lcKxm5T7tPg8GQk0DvtzBcapoD3A/2+CqwMzMnRvYEmo7AvEdMel4KAme7EAT85cQaFX2/AgCvwwuAgJzJXUi6gMIIoFw5UWddiVKDSmX8ppH1mshWMjK2uWeiJaC7huueAgC68RlgLDxLk7g1Xe2gSZzMnjk/r2tNl2pmu+p4F10woL4zatZfnSRajlqm4dLIzSTvceTWIPk2FF8fjUMHhqmSfsskiY4lCJxfNy0YrNvq9pF1+/Xfoc0jz36blnxWa8OXNWSO2wwCB2WzpcTPpRIxXbdCWPcfaimZi/qbxmYJGjKEuKgkqveT/34HsGt5DJqQy+y/2cDOUuLpxglmPgjjz+8QwiFVCxU/IfLc2ILaDuTArrrEyztw7e8cQnPMzjibmJmYRDL/I52A7kk6NyvNcFTrL8bMGIuuQ7SEzt2gc1scwDgt7m2df6FK4iyPVn0HmfsAjEHPBK1BDgtbUXyHdk3XESrbtEpwrUDgS02gYgKF1c49FOytjbUAzzBWmk0WkGLtaNZAnvb9Ygs0QQQAMZ24AhLzxTnDiViQG0PpeqElvfr8S5CHiDyleaKM4FOplEvNEHU9owTOkCnN9ZDA3HzsVSVR+1pVrRTHhtF3yd5pAvnLGLU+ePQphoiAGVNz6QQCi+7nDj7bBPETWKsVMiWUz+zAGuj7JkBwPeSeVLGICI5B2MGaQFtoBss/jyY0XdwXmmBna1OF4yCEGONb4oUpcnEEzlUBy6F+QJGNoKbnh67l2TYYrCaYL5FSdKV/03P2JuOSdMzSJ5EGs4v1yWhF0f3zba3se3270kwWUJ9CZKTq6iG21Mimrf+w+4/pXdbSvOvoYWBSckjWw2XSg01KwkWRQFKEVeOAZRPpOtbQeX/WeGvR74QMIXC8l32oWEj+WwkWqb9Afn0Fe6glJ+NsQKPIyblRmkrHedfog4dwLL4Ci42sm8BlYLf6p8kGqpKmBORqmPJby3OPKNVyKa4lY8BcEi4GQERqoGYkYRziDIoTYkrOcS09trx/k/yR0ebFdoO+/wAAMM23OEFiDJGS40wIg7nEui1xvzVAV1UWAQCxqaoE214CD/n+1UG32r1f4rhEIsvv61r4FrKHa2PNLtR+gcYYQNIPdyXpJFJSBKxJS+pxRg9jS2Lw7P0kyfK+iSLgfO5+OeMHQPC9o2b95ewgkCnqenGL9u15eUhdql3r+dWPChaxsUlmomj4OIgzEmlOE+Pc6WsmB7lVo1yXZSxZPTGKbnCMRso6fXHgwh7odkGM9OzRv34B7D9BSEHd6fSbWbMnxhnTvCvBblXu3WY2qxuPiwti8qJlAUMIYYIP0j3ZGELfPUaII/o+df/2T+HiR0X3MXqQu0ZHRVs1zjtg3oG6G7jjFm7oEUnY0u7mJ/DxRz+JaXqJ/eE7ePXq/4O7MBeJBTWoabHQUo2jISn9BuHG2AzWSIfPOkAzeMhsKZN4gugBnWLAxBGH4DFxwJxkIQoYrIZdjLnqAy/Lv2vwOjI3i1/NBq4DxzNzkPbJnLKlygwwJpWCU95fqL7v0qj1gMvfIgtRy0FYMuhc1QRmYT+F6QMcJ2D2QJiA7XFKTPVTakpWBW6Vc2YSK5DD6b0DO2G2ppIVLSWOE+b5LpdW1dpVwLnTdSmoqztiRw6gzIqwOUAMxkJlFdrPhqak/F1HDfYoyBO0lCsC5pax3U1w4wQ7nmBvP8G0/2bS/dzjePoMp/F5duKCPyU2QUkIcZ4h58BPc65R7v30IxHqks5RTpAPJ1jqE2vAw3VPmjK23O05auLOg6MD5r2wmZOeOLse7vHvhvMjyG6wP36Kz3ffxD56OIhecG8sHEmp5MwRL+OEfSrdDrC4MTYz/jXxAyhJ4n7bUFv5AMaRRUtwTjZC5m/MZdr53KWnuXHMAvDJpd9cgrUWPKrkIS4yicrc55S6y4xgI4zggCBl4EiNeRLzKnKAi5zvJ6BOCi2ZwOXvmglcuv/WAV6yuypNkDRq7eyz9qRq/pWTkUo+1cnT93mx3VsOP98hxgPm+Q7T/BohiNatJELGzAyokzjGEAw5WDtk4KduAAkgg8uAzk0PjqXaINuGzMAOoGQflgGijmVyW8DON3M2awZwLQVhZmB7O2Lz6lVTHXDY/wbm+Q4xzjiOzzFPd5kRGVOFRu0f1Iy/mulTj0u2QvMxDCAaKcXnOdlI1eYORxB16LX8uyule7X0D0cPM70GzXvADQCewA8DgrPg7Qd4dPO7cDh8js/8HYCALRs8tT36dB5PMeA5xizr8IRcsg3l6JX5ZwHYSjpCN9Gg7awBFCOVjYtdmGNsKn2g58Jw1ksktAGyAr8KTCk1QQFsLUGfuZakOQd7WHJ0udmMBp+U/YiIOQXwYE7rpwBt5Pfo5znfU0BrF/TvNRuhboL6D/mcOmUBciMbka9xCNkPyCWeJWeFdHLSsfv8L8bT+c7ecGj59zTv0v0v66EkQVTf0hQba+Q5UZ/+OYj0VgebysNjAiKUMUWpcWoEst+g+uHMxf9QC5eB5mVsUQW4qBpJ5ubTeqOcsX8F2lNJORyA7hhyUqh//Rzh7tezFMTx+BlO4xeY/aGSgtCy+ML6q0He2h5YmMYO1AzA5WCgqXJRNj2DE8g2SfzDPnMHBZgfc1Vi138EUhCsifU8jJ/QH0dJQIaAYfOj+ODp/45xeoHT6TkO4+fYcESfEsuHIOBwbwiDEfsv0jEtwUMYwgC4yNHp8a/9WGuAiZF9hilpCXu0Pn85K1WSaFFxoCfLQhorLf380sukrV5cSyTrrSLXTHwCru93ACb5vpj36A4eM5zcU7EAt3UC/QwQNmj8B9mmio+isP+2nby/H9EwVlUCRWMIjhDwv7ELVSl4sgkxnN6r/HueXiGQQeQJPYu8mJ4zSyXWmjliilPmyE/mAPJDtg2Weli3hTEEmzADY8pxqW54ThYZB0t91huW1zSGpmR3uoZkpY3pDaUG1KknUXQdYmcRh6raUO+HVCnEMwFR/IRhN5XqgPkAf/s/cdh/A9P0SuTkplcYx1e5iXSME7Q6wACwXNjAqntr08w1RirV6h46dYVcPXRO+LTGAYBnRoBIKDJEs9cwEExImA8wjSSJInsAUQfnrvI+DdkiI2M3QAzo9ne5Kabpn2J7879iy9JX6nR6gd30Ih/nzBGeRaoyEqMzhC3ZhoCWpSVZXu+pVCEvqwH03Ojr5THmNR0o6/pa4lbvwdwTSb/rLZPFtW1QW14ntqIJObYVH+FY1qd5Bx6B0yRzWYHbNZuwDgKbquK4vB44MYQ7xnYjRzn1InWy1kRWZdVq/1lfr4lgIYypKfrxrc7R2lhj/b/v+EGzuAcGkYh/q5FX5sI0vcQ0vYJX7ds4XyzrAgr4o3qfl0atE6jl2d4fQeHYGOZ629X9JDZwzsxVxviSzp+CwNMEaeaQWMD9bcD21S3scS+GevdNHPbfELArHNYNNfv8fVq2oeMs61P9H1PoIX8aRFjRS6JbGOMwdTuEOMs5IYs+gT02sbHJbkD901TnI5rBMTWjsX4PZzfohiGfl+NXfhz2wx/FNgY8/uLXEcIRu9e/BhvnVO6cOvFCyqkPiQHeGcLJOID6VKphGsBn/ZfKWJaBBqTSb2acYsCe51x6PsYArw7W4hxqOfZFwGcBztZAsCwwC/bxPSAuC5kDM0d06Wr2xsIlh3RKpbwXfFI5LxUIXMtBqCbwtif0jlLplwDBQAIbHACPRibiOImw+zQBOAD9bic6oKkxGarAzQAFDGZJGHA4IYb9xd/80JBFwCH4PcbpFbzfIXLAPN9imu4Q4oSlHIoxJsmfiAY2DOWSLqoayEUgNSqRTL42cgCQShWvUoZfWEWWAyIrc4iahBTXDus7jDOw51iaRV6/uEX36jPw9ArR77A/fBuHw3cxe2ngMM07+HlX5B8y8Fsy7MvyzvsCuObR6P48TDDgOCOyh6U7GHIY/A4hTOj7A6wd4NxjdMNHTffvupIjTq9AewcaB7AdELbXmJ9+gOAsrp99gI9Pn+Mzf8R+eoXIE24i4yuuwzYlCgWEkX09sj1QBXSqQvumtkGet+zfKekJzhwxsiSLPIqObz3WZCGaa1rpgLbVDpxtg+5z3S6YnCQCi8Ot2mN9crzFedbrTNAS/RhHabwVW4dmFQROGn+brjSQFNshdmL2DEAZA4Xxo2Bw9EDvQ2aonw1CKvksQT0vweJ3GNP8CsYzxumlNBQLx+QczgACrLJ7UO5nqVolGFPAHmc3sG6bSpRTyTeX1fQ8SdRnv4GCSlJpElrAnjXZmAICh/xIWoVBgLHlHlg2fgLOE8ZunNC/+ATz3a9jTMyew/ETHE5f5A7fKpOBCuzJAA+3QM8yUED1+tpIaaZybln0/QLPMKAkS+Mxd8fMvtTzqU1qVTcYADieEMbkY7gbUHeV+i84TI+e4PGHfwTGOIzjM+yPn2K//yaeAhiSz6YyMoA0dAK26InQm5IgWvchyggKCC/8B6CAwAr61GDPmd9gTAPQ1klvgrCEQkJDlQ2sALBnAZmXYM/y3Os/gvhKnaGcWPIJBIaJiNHDhyPm+U4kD6aTJBu5JMIugTm1PrD+U59CfAhJFGo5uJSDpmMOBhSkgoiTfJkh1QzHoiGUagH6IlPwHqy/4+kFLJmULD6i4+o8waCjvmkQGBOoP8UJkzFy5QyB7AZddwPiCEsdQiUjwdxWxRnjMvgDoAGrmGMCedr4orxfBbiJLRk6JyBP8tGoaxvMcgTiKJVCxjOG3dwkhca7X8fh8M3cL2CcXgsoztIUuySF5EKslX7XJd9146PCeC+jvpwxARhaBl6DIpLEiIgYwX4GDIFH8TPmpC/OKs+17DuRhpkP6PYW5DcwMcI+/t34ePsVcDhh/+pX8d1P/0+RBEmAXohztg3XtkOfpCGQSsBr+wCY3HcAWKsGWMQUkOqliSNmhLS2lwaxKffT2N4lblInjoNhECJssg11TwG9Wo0sRDkr0BJzk+0PwzLDG5/QJkKWkgIL+WneoT/KvTpet7HzWcl35T8AhfXb2dpm6POI7WwwBcB6Fk1yt/CjKs1fA6n0I2zy2xnoSfYjhpOAPf6wvCXeeJg4gkC4NoQP3IDHts+gfEfJjjJjn9YTvZ53YcYhnuBZE5+9zGvb57UNAGxFFqntgVYbEDrBOKiX+AWATSCwSkloI/cMBtsNuLtCGERSbR66pieR6gPXSaF+7+HGORHLniPuvok5+Qn7/bdwOH6Ced5f9BPqBnCEkgjShmt9ioldWnsGY/N5zBq3FSAKIM8JTaICED87Bvi0dnUwmNO8ZQAzZon74ghPHchQBoKNcXDdE9huIz2MACCcYA4nuAMAu0HcPoX/8EcROofHnzzF/vAdvHz5CrtENtH11qXrPhiHrbEppjAN9mCNwTYxggFkG1D+rh8Njog4VdUJmsy54O2feSQxAcj6gbXqQ5tk6JZDfTP9p/ZNYwjPqmHvEaOsST6UNSvMr2AP/P9l78+eZEmu9E7wp4uZuYfHcvPeTCQKKACNKhZ7Gc6M9EPLPM38s/OHjLTMtEiLcB5ITgtLWMUiC1VYMvNusfhiZrrNw1FVU/PwuAnkBQk+QFNuRoTH4u62HD3nO9/3HeZ5yUE72+YJz99DrSvUeg6REElSzRcgcj0lDvlWn2cYrVgpKm1REZIqdpN5lUZy/rw+nIliIQgpxPs/ewT/0PXfACPYoNLCCo5hwvsTzh/E77JIv7OsCyCaPjPQBJzR+tMnsEz1NM3bLYzgxR/sueSjvKZLS5I2XYdiXPLoufh7Z1YQ/XHCHh5hfiDO98zTtzL0yT0So2Oa7nFuX8HflAvd86TtxffeXIQaKdpS/ktRCfUwxIBCNiZnHgEo/l0ytVO6k5iNdCfNIFJOvyfGkZABP+v2aPca4wPBGvx2IFxtwCpu9L9k++2PeXj8e/HiQj1jSBQ2niOCgUBXWTzk93k+/K1dZSowQOlr1u+VhC1FmSac2X5rjhT1s7IJdnnTe8YUYpF21l8ojzcbwEsF3aVVEj5gXUQmSSVrYnomRT6/3lpQRwo4AYEL+NvKPY2GMKf6OCyMYOfBe4XyMhCqgMDStFkSNdXKNUox95kFHVAZjiEcs9+fY56f8v0g/l6rs5cUKjqSyaBOTru10qSkVzGiTPw9f74lkStel5Lsnd/Sa+l3w+wpj/0+3jBnK3pQeSifnTz2dCSevhHfz8rseV99gH04ZfuFZetvgR54nmRcbhQtj1cguMQJlaNFBnVTCqgo8dKYLcUDrQ78zJv5StZWwAC/l+Fxwx3RvmK8HYhbjY5v2H78Jdv9fwKlcfMDLnd3u+z1G1NiKo08pbjRXU7E5NX3TcJWVmUIl49p+XoNCi8Twl0Gg0vyds66KX/9EtizOpfn1hatZPXsWF9a55yr1o6iAPwybZlaBD57DZe066wbRmuwh1WzCCtNIS0IVz22wjaW4UTG5cZPLMOQ2vvgcnqRYvis2BDCCRQ4f8L7AyGOQMIm2ChNd8FPMZAYU8QzkYIXxj96BThII/qymqC8t4XBH/Lg2W6lFgB4aRL5p9azIS/ZAgIk3CsHXaPKiOM75uk7xvFd9f2cp4eFAXnm+3mJ8UfzsWX9XbI0OI8PhRFcH615RSQxE6IBB1pbnNlj/TVGH5ahuzazQPI+EaN4zlvA5GElyYAbOvqbn3EdPVv3gFL/P47H3wJUANTlfb0oc5yOtSArq+YQdfbAstqzNafytfy+KeAtqYI98UJR1x7PS0PiYAF9YgZqy2Pt0BlYgz3n6zweSUNKzqhTEZVSM6ir+FZP2Ts35GsqVaZOywYuH1tAuKgEyuMlNsQmdvS5SDzf8lSTC1BYf6zZPZXt03j9fU6jKISj5Nhxok+wUwallAwJ1JZBmxqLy7n0KfIUnUyQV56YFCqaqiIM2UbifJh0YQXL+xDvcYkZAzo6UgY2z1VKwIsWPiVvSFqtGkSCXaY6FK6AwGWmiD7dE8d3RH9gmt5yGt8yZ3WAd8es4FnAnvNc4byeKFPuNdQ5GbC2PimrrTGkdSzHVyEs+QJ05ncImZFGijJo0p+YAWsGvL9eCAZnLLGSayo/L3v79o54+yUAV2Gke///Jbin5bXEWJswVmnmFFd7/0r+zRIfgMY4QJbMGcnvIf9ciL9frl9IxucS8lYtoFOiUwKWy/OvgbTmCL5ILCnnpT2fKZ9zGSRZcvyZFEe0dxgvgxzP84WXGX/t958DwZ1RMjzKpMoO1hr8uU3a2X1+ft+398i5BdwPWR3i8bzTlld24JUZqu/zRpsKXt5kwtAYJd5rFIQ5e01DoPiFa1EIV1Xiohhsl9YGGFaPG11YwzrnFZmdXGcTFGBBFMjFKil2htQtAPD5kpjghLjjHen0LdPpt8zzB7w/MU5vmaaiosqvu7nSL2ELJjeELELe6vOxskozaFOPnYDBugKOC6t12esKcz6QMJkOq3MjdAbIdgUhSTPJKU+MCZUSzuempu4xesDYnTCms2dwqU1JHt2/InYdx1c7wpWiO/2M7Xdfca96HCMpJUzD5J+UZkqemQ6SNJFhiQ+Ngai8N9Lz+QOF/LWqLWKtL56dq/rXLi+ZNZI//wPBxAoE59jbYhgmKeZaM8Zq1ROVlkHjQRQX3ssvdzbHBvNyTGhXW0+cV58hQm8jnRFw2dpEMp86CuUNebkXLqgJQx5WXJorn7P+DAT/CVYME1EpvHvAuUeceyKlIDKf6SPeH1mGLhTITjruKowoNFpbtOmxZqisvzbxWoJzlnnmtU5GTfXtKRLPBSBeyzVQlmRMZb2mPAgKlmLuXPLt81MFr/AnhT5E7BQxLtA/PZBO3+LzkJcCAjt/zJT3ArpJb/g8aTsv6M7XecKmIYvjgESdNJ1QxORwXtjRsQxyqECwzRuWld8t7CZlpYuZmXvaOylWbUcymhgMSUuCu9l8SWfv2PsHCf4x0Zu+gq1Alo6oOvF3TqZ273ukULt0q1awh8LiScuAOBJjCkzJV9l38QpqO2clX1VpAWJf8vk7X61XcJFwnRdtn/z9s2SynT5aJo226xKQsnjx5K91kXsv12Mp5i4tYfiIlM+FAgSDcSl7Vi+DoBYv2MyK+WMPfQkHwDLP90zz/QJ++gMxTeiUnt0HkSSFXIigTOZFZBWBKWqCrjJ0ysTfc/uI9mO72k1iNUyqemfbLO804h9udNYJU4s6KVJLHKMWdikCe9g8LlYQ6viWeXqPmz/gMxju/HFpjMUy0GEBgT8l925BzPN1XsTU+6KApyq/yBhA5QIunPDKEKMwGozdYdXS1HvmAR9GkrJoZzHTiJ22OK3E10tv2G6+QinDMUXmcGJKoYK/K6Aks+hmIiSdvT3zO2wB2GYY3ArsycnanJaPpxgYk69NolAtY1rezfLxJbDn0nFtQeBzW4jLMaK0obgoHSvDJhYwWKKXAIDitVrA2nKtrdjA1TpGvVjUrd5DyrEhSWHnc1xITqFiGRya9wMje+T6D/j1x89cs3tCa413h8zYl2u/RwCf/qxCqrK86BkbsIcwotziF2prjJAirVULtFK0l1aRf5ehL3WoVLZNaeWdoVssJ4AcAxYpXfQsvp8u0e8dw+PjYgUxfss8f8T7PSHOi+9nkquWJibAmo2m6teLz1/5eqUueuH6TikRlaqlhEqlmSLP6omiIEBRLDu832drDRlUq8MGcyb5W55AWM9RK7pJGFe6u0Zpy2Z4g9EDh3Cib9hYsADYc40NVNVAPWsp1bhQVjj7PJBqI3kmVqC5tW4osWGVN7Sv5YWMLBYWUeJC0Xg+vu/ssDTPVVaR5xYQvAA/JAF/xNvdZdaXMGtihNam89wiojx2PkhSHs+Sz7MByItKQK5Z4+OqKSzrOcvzGfjzmWqBGOas0IsMGaiwmbVWgGBY9pAKCCNWGgUojHHG+6NIv7Vt7GSMNM/DvMoH2jxCwN91HVGIFUpZrN1i7A5jr0Xe3F1n1t+mDqAGSJmmLi5wOcYHhTqlbAXhsNNE93S/ahjP8700yMLU+IO3V2x6kfVXmH2myX8ty7DSlvm3Ou55PwsqYTMAFFPCqwQxCHuN0jBKufaQhlWIMyoPkgtBZh5ov1lL5FuriDDJda4NZQZM0kY8Qbtrnkg8hBmNqgOc2tz8lM9xjzCD+/z+g5y8VXxo845yv7YqQ7F0CRVQKmz+S3l/e8xe9A/PdUQbF6qtVLoMKK1+n7QGg3PQWBMmck0dZR6N1RrlhKJ3LgE/XysbmTMQ+Lz2WL2uCCo2c0aKkq6Rf8NSV1QQuFEehjxE7YeuPqsCNtqy0YaNErl/l1niffGG1hLDOm1wBKYoAweJQlY6IT74ACraqhSQ1y/3exk6K+/93A5i2fe0HjCmxxphutruFtvfYbpXorztdoRhIHR2saF0gjskoFhAAGiX2D6e6B8+oKZHCCPT8TdM09uqsJ7dPrOAC5EmruqGVhlwbgVhskK2yyreokY5B4EXX125jssws6iWYcqBhIuKkAe8BiU/N2bPG60UIRWAOtVrwocR408kE7B5YLkKl62EVBAFVTJWPjdXdN01zoFnZk6RLcu9GBDVsPgA62agdM6hPwnbPl+rwdBNDXB+By+51/O/H5qMwBSryBJrL7CB20fOa4f1308SB4CEzLkoA49T8tjJM88doLIyML+e0kD+PXlOa1u51OQUL88UKOSA1WriA0y1YVw+yr7xZyD4h64/KRDs3SMxPDKO7zieflvBHuf2xDRiU+lKCTBWbkmXPU0C4BQoLMZsqseXNgM2M4YBdJxIqSd8wl+oJHhVxqF7dO7yF6mSyozY6tOTQeDz7lzrAxy8IszUoU/b++ztd7qHMFZvv3m+J0THOH1gnh9I0dWbEsQ7J2NKtVhrCzm4DPS0iYOAvWv/rpgQqFRBDBkE8SNKaVwvXsR9OCL+XQf65DFNQW/sbil0k0cd32JP4muk4pcEeyu2B0PH9ev/hb9Uhml6x9P+H3na/2e+QLEzXWX8TTHUoFk2mj6DPVtkquel1SZoACcCp1RAncR9nHjwM6fo8SlyqEm/BEyVFnaEpJfS+SybXuvrBU2Qbwu5VcK2sI3rNcZl4CchfklzLkiKHcWgjABJMaFVzEl0c55DREfxnj73+2w9P8u/lhF8vmYfsy9w4uGUeDrC8agY94rrxwOM7wnufknI1QJ+ypvP91benIHVcMU/dB2Pv0YpOE3vGcd3xHAiEekSXCnN1kgBUIoUrUTqM0YBD0P0eBxzki6xqo2NRQ5eCrYQTJVyXQaAdf1YgYw2NhSZs9kQbYcfeqJW2edPobuUj4cAPsEL+BumbAMxJayPbO8fsfe/I07vxAP49FuRcflDZkM/4v2xsYJYuvnl2j1P5M7jw2qQw9n7FOnhAlC217d4d3nx9ksa54Rx5roTRts6aKL3h5X8uxveVHZ48KIcSHHEHDZsjaE/DuLptfspX5j/BzGM7B/+D373zf/KQzjm16lWzaLS2HmIfpFssUz8raskTKwl3wUoKoXcY3A8hIlj9EQSx+iZ0uJdVu+5GoMXWdz6+D2PBUBtOpGPaWkSnceH5oKrIFxMUDymTJHjoQionFiCV1AiTggz2jv8LL70IRZZ59oXGNbxosQIrRuwJy7MwRBh9uL3dzwq3KjQp4g9HbNn9T7bgsi5l7ex9nkszL/PXafTW5RKhHBkkxI73aGV4kpbbk1fGSrtmlNkHxxPYa7KkEMccW5GeYvSHcFssd0u5w7LlXQpNpx7/QlLZZF4GnOVpYt3cjyGO/z2CrfdEjoj8s4mNqSI5AlBilB9itUfXHuHvf8d7vArxvk9MUzVH7w0hnwYz3w/Qy3wSlwoXn4qf26q7RHVoqkFKM6PYXsNt40Nn0G1wtxXKeGYSSHQyr99OKF1zybOWQK7NI0AlLbCFh/f099D9zRAYUO9+QVJG66V5frp77l/+FtGd6RTmittudK2vt4peT4GnQt88RIvzeQA1Trk2bDIDADXBhGRx+h5ijOHnDcUyfC5kqhl/LVSemhigSIXxnJSXIwLIFmKxU8ASUC2OMmNzwz+DkomBs0polNAPISlKeT8qXreMz0IcSoTFZaiTlXpt8QCsXoocaG3EjA6+zxGQFYQpTxPYMpxYRIFUZF1F8sgxRoIqXNB8s+1A0l/0IoTqsi/zcArO2BQXBnLre7Z5Pu1sC2LtP8+TNz7qdoCPYSZKewJeYhZDDMheqwZCEqGGMLLhaPUExI3irelMVdoZbDdLf32p+jNl3J9Dze43TXz1UDSarGcywW4cmCniHZiKdMfDtjHt6T5nhRGyROOv6lNoWl+aGqItTpAwTPfT5vBsNaurci9W8AHllzikkIOnufFUwxMOlTLhDEFTGXwg1O+shNVGHOO1TGEqR4r271CWdlTUhhFgRZGlNnIkOthQ+gs/eYNN9e/ZBw/cHB7Ypq4ipGNHdhqi1GKQ24eaRRbbfhCd3XWQGkmnwMs69xhYf3NKXKMrsaGKYVVzgALEFtzsgsN5AKQxxxzigqhJaysWNdNE7ltP0njPhFVPq+lLZTIdY6QBhQQo8PN79nuv0HPd+jXt5UBuHrvcckZxP5lsZ07Vwu08cDo2IDD+ZWGmGdEhMzenIhRLCGU8ii1WT13AYFjGPH+iPcnvP/h/uG3pmNrOl7ZgTdmwxe6o0fT5xyyqE1PKXLKirMTgY2yDN5UO8GPYeIQZ3xyQjZJolbWYcq58ExndzKLByqZDCSXaElmxVbN2Gu0GdD2mnT1I/x2V5vG89VAsAXLEBWAOiVUiHSTk9kb8wnCRDx9w+n4T8zzR0KYGae3jOP7xmZTBuW1ecEl4BeWfLPkDSUuDA0DeKMNHWYZpqie73+r66nUyCRmHbnJKryAWEOelJf7KEWIkmd5IlFFnNtzGt8Rwogxm1pnPAOxlFhXmvHA5snQnzq0d2yvf8lXccK5PfvjrzkcfgUs8zeKn7hRiivV5YBgq0qgNIyevSfWbOCytzgWOymxxlnfWyU/azGd5W+mqpyuz1kG3DbNy0+RS8qzlfql5HrC8E65llPSVIiemG28vHugPxx4eHqNH+SvDH2iy4zgtibobVEQr1vh56rj8r2YYNtFepuYA1jLaqB6amsFuVBQZiFbRb+v308p4MOR2T1mm8TPtYZQn4VZvLjOFNz/La4/KRA8zx8xxnAav+F4/EbkS0T6BNfacm2kwCuJSGE+TClUQG9OkX30zOEgHkDKVqDSmoHqMRzmlW8PNEXcym94GexQPzcbVP6XzNKdi50Ytuss2yqrne7tT7mDP0l3avvhPen+7xnHbwnhyPH4Gw6nbzK7ycvE7+RQyDRJwzppqyDgJ8Ad9UIx1zJ5yvdKMizJQiTEU+52KvESYxkQ1UpgCzta22uqZ3AYCfO3pOSFHWgG7O4KZyyxMxx/+i+wX/6c3juuf/O/c/xP/0+0StyYjmOQDWCMWW4XxAOww0knV2V2ZbqchBZwJ6QliB6iZ0qeQOLBzzwFAYIjMKaAZymsUOugbBr/o5dWaIIvLEBQ8RAUDsay0a5BYVU/FlDIZTZ0Sb4HbaRQLDLS8hfKtXpB+90OeGlBntVwuPP3kQGf2UdOLnKaBew5HRXswZ6OlbGuzaZKclZAT3kpfyTW32l8Cwqm6QPJH9gpjcGwNYY7M3ClLVqpfG0YdAbGDtGxD64m5g9h5hjn6l+ZUgYnUsRk6wetw8Vu4lo10DKCuvq51gO6SJTskIsSQ7Ca2OVG0TPmn/xTp8Tmsci9J9TDP3J8+jum6V1N4qbpPg/KLPY4joV7x0VmD/nrVt5ZvONK3CiAZrvOBxqUQQ5ALkzKM0cCI97HLJGzhDroc0brnmH4Ctvdiad49AR3j5/uq42EUlZk4N0VyfbMd2/wP/oLQme4/acveXz6ew4Pf0cXvcR9EgOmMgrGfM2JFFzYlWsJ17LOE7U5JU7ZAmJOkac4s89egj5F8Q5nzSJWzb+FJXGhoGOd7JaiuIJmLNLZl8AehXoRYNBK0Wkje0wG4YRlCKQkx9c5ol+akdAw/FSboC3F3LltTNutL0qB2SfGGdyoSHvY7B1qeiL4fbUHqkMDMwv8jxUP2uX9E0rDNim+MD2v7UbsQkzHKz2wVWZhLuVEuoB692GSfSEXdA9hxqWZkGZSlMZQSpEyh0Dr4ZOxoc0hCrun+Iwbu6ue+nG4wQ8D87YjGYjDEhtKnpgmUEEk35vHic2Hd6jxg4A9+//E4fBPzO6BGGcZhuX2pAxstENjS7HfFnuFDVUYpH2zt1mla9FXJ4A3UsJzeXLr9RdJTDEwZwAtIRO5SZEykyB4kX3GMEmxqwx9/0VtGMhxXEDhMD+gcsJvhi9JX/yMw+tbwpXiNv41dx//hsPhd8x+z4zIxa+0rQVduae1UjjVYcwSG4r893xVJVEu/gvgc4h+5Rk51rkC+Zw1f6Mc63Nv4Ha1IHrd80uMOAN7XvIPLz6fiYRVMlhTozhl70Phf2ZWdpgXlZffk5zC+bNmUAMCF7Cn9QVugd/yuXsGGCXcytpoqlJdGQR2aRjM0hhahsUFYfX+wHWV84E70/NVt+WN2WCU4lZb7pRl25TcrXrsg+55p3uOWRJuUXwMMw4v//mYX+faBmbN/F2/x6JQtPaKzt5gu1uUsuKlv/spfndbG8fztpOY0CzlhEXZHT3D4Sg5gp/h8FvGw6+Y54/EOHEaxQrCO6mfYpg/mSe0xBqL7CebDPyWnHfQC7jTKbNqerZA0aUVmjgxJl9z+5ASNnqO0S/5cIo4XFZxadxsGXVHjA5jtmwAk0F3ECC4XHnaXkP2E09aE7Z37K7/Bu9PzO6B4/F3TON3FcCCDEzHgFaKXbJCNEGk4HWYZPtems+rkijXGWMKjFFq0SJ7v2gnVeOwqv/OjxVqPSOkEFhq7nDWIDqvJZIqPyMWE+X8lPkrkHAsCpEQHc490k/vMNHTn/6CGD89KKltFJ2rBdocIsTntUaM0PmACgHlSz47ZvsVT1ULaAshD4irA6LFB9T7Pe4zgODXZsNVJznCl7rntbIYYKsU14o6JHBOWiyCFJywbJH74yk6xuTRToEfmVIk4OuQKmM2RG2JeUMvZDKtl2ayzBnYVS9gY6+xwxvU5g0oS9jsmG5vma67BSDTkAyoAEwwHCbsJHmeOXwgHH/NOL0nxonj8becxm+Z50fxiPdHYhpr87Njzf6HNYGs5AGlOdwygItH8CaDZSUuFAVW+ZkyiFWUemsCVftpS8ZwKbJRkp/ZqAUIJgOMuWkUkEHhKfqsAt/Q96/RerOoBhoFIu6APWS1QAyYq7/kbvNjSJ7+3f/O6fgtohwRwtWUAlMeZOh0FDWRUfRJ3mNrUwkL+ezSKnt88ZkWpXPTIDr/pxZ/5dYSsjyPUapaX4azHKKQS8rzXiKb5cuoWtOYBAK/y0wHpUTdKzOijmxPB8zjK+KgGC1c5Rl9pTHUfqzH40xpBKxyhnI+t53YSfVegOBzFLwFg+s5LblizRNDZgLPOH8U8mhYK8R+yDLfM2fsh6zWUuq/1fUnBYJl4l/IU++F5WYTDJnlUbq4gzIrM3cd5WbxKaKjZ1Z5WnKKRDwqJ5TyT6+eD5bi7SX5d/EMbi0mygVZJqBXK8FmUFx9nsbbjyiSDe2CTFifnnDuAe8eazfDu0O2gJDXrEg1cLeyLXm658G7/Jy8zgXweWYknjtBOi3sP9PYDqQMCEcVABkQFcJEzD6KAkiJpCgR0DYX/MrKC/BLB1cpi40B4wM+CHDuB4sf5JK7ff81Rg/EuEx6LIlMGThRul6BhEEsC8LanLCuUL7PsrGUjlzxgSsgTO2YqfZIptUxveT9qc8K43Y9K+IuJYTPX3bzHQnu1VONJdF+SWbarsL6q183Hbnfx642xJQl4DCHDCJ5uXZL4tb+q1OddQMGt+/oQuH3hywfJrSCFJ10Y3NSssnsrytjqxSpz4lKOQdlA9ZJcYweU6SfOUZI8ikcubKhfEoSIjYSxZ+2jQlmZQ0hfl56lcC1Pn9lpSjMP+NitoGY0POJ4PfVIidEhw8TIcxnvp+Xi7v2n26um/MhL7YBesrjsEgKS8wQha/C5liRVGHSLQ0OabJ5lE55oOdcQbMaW1WeRFjee43LmdWjDeRp6aUYTsMNnb0m5OIopYTVqt4XxW6hDF0Kabn3z2Xf8LxbX+TehYFfZN+SsC2DWYq0qrD9yvEtx6/KTb8nHlz6ui3oXgKEl2ddVpHpZfhBGob1pzLzJgZSUBlgzEVhA/ysP74cW849w6E0OJFOfSPxhHXj5Hyt5J6fvSI6iW9lkXv3SrNT3cIAhcrkAOjRzEoGgpSmwSG6nFNktYUq17MlJt0oci4vpTRUD1Dd5A6NlZS2YIYKViSzMCCUSQsIHFQFgY1L2GkSRuV8TwyTxAW/Z3ZPpKzaWVlmNSAwpIven+pCkVcKj3Mv/Fb+3anG0oAFaNB5z4qqsFJKARSX3D5BVAJKhvyoxIkJGxdroXal5El5cKwuwyY7hRrAD0NmCV4RkwBI5/vxyn5BSWwot1EB/0px2rL9ytcllgiTR+JCHQT1QhOnvYu+T0Iq+czz/Oz72MDr51P1J2u+0uSGBSguU8GLYoM6EPbTf780k+XzdV5x/lhorI6IwvwrseH3kXK3tiufGyMKaaR4V5b8oEezRbNtmdoF0EyJrZKJ8YKkQa8NNubiO0FEWO0pegFmUqQMhjyfLwLr/EfIJIMQSsoAKNsT+qEOnU5mqSlUIMfXhApgvEj4C+sv+D0+5wkxTmID4ceLeYKCZ7GgEEpsaQzl66eVfBc7hVbu/VI+eg4I63qPJUIydFrYfY6IVxK3Q1LlUNfsVyVpaBW/R6X0RU/YZ6yx8rgxaLtj6F+htZFB22qxW2j9uFfDrBoQWK6L9aoxouQRpc5ogJjS0LnExFtz5b5/Xconfu/fbZ6t5MTFSqq8MrlGorDvw4TS40VSSQF7YC0Fb5vJZbXWc5/KKcrztEOWvy9GCBgsc34+Zc30favEgxoTGqZnrxKdao+7qjMltvnni5qgU2VgryottxprVQP6COmkHSq5WE0WO0VtBpS9JpmBZHtiJ7ZRySrShZJEx4RxfmkKuT1uel+bQrN7EHakP+b8YMYkAXrKfW8u1LbAkhc09W8hPLRWMbDUD9+3ngHBzRJrlkhI8vdnFSUfU8u+tvx+ypZTgaAkNoTocszzNW6v6s5iI1MOpBlInSCaff8FWlu5B5q6cckHmntdlTjx/fs6iDqmjQ2X8AJ4Tg67tKpVTGYqX2pi17f7wrO0eYJ8LD8vyqFKAUp5j0seFSaMjzIHq8wVSIIznIPAL+USL+UNbfP5xffye+UNpZYsr/3z7Sn/y1hD/CHR/0+z/qRA8OH4a7TWTNNHUhrZJklCdtry2m64MV1NRIqfT0iJKx04RiceL9ESfSIEhyMQCMSgCDkg6BRroZaSAJoSiNdg8MLw6+nsNdZusx3Ca2z/BjZvSLbHb6/wQ7cK1Kl4oyF1cZqWbv7V47j29jv8isP+HxinD8Qs4wqNrDMRL/p8tpJO1QTyc3Dn3MbgPHAUiRYIc7WVHqkM9EhRLOCOz1Nai6+qnbf1eJnsEauKWfv5cgf6/R7jPElr3NBYamzecH39M/7p47/lw3GiQ4r6G90tBWoj5dro4qloJRidRb12sndEmAj74Jhilp1kVs+cfXGWMTrynnUqbIDcFc0JcdegqCWgv7SxnSdwLxWLCgm9pWBTOSmdU8SjUJmt2DIL1384EuMo0+ddIEbLHGD2id62wXdJzD7FBh7nyGGKzD6xnxL7I4x7JZ61hwxINMyeCnC00z2bxG4Z/PLDA7N3TygFMc3cKFMZX7em584M7HKTSHycMtBDrIwLh7A1pjzwQeVGQIwzITMfXI0NBtNsIm2jSCsDuUtodEfX3VSJZ9e/ptt8jdp+TdKGsN3hho7QqQr2pAmCywV6ZksViefm/h69/4Y43+P8gdPxnzmevsG5R0L0BH8Sf7/qj74Udy17vSR4XQPsXPL2K4UePG8ynLNZC/hROs+eVO+lmBKkhFNBYkUMeH/MIFXAmm1mWg90+ZqIYcpSOPEcTzEQXR4e5yc6LdPSfZS4vbv6S/aHX3OYH4lJpt3fmJ6rBjgaY8BktnwZPHGREZzILB6Jc6cYKvMrpsQ+OrGDiKECw+cNnFKwliEZq6EvpdhsmhGwJJYrj7+mWPwUmNQuj7AVTFJ1eEmX1QLSPJImTlKJEJ0UCF5AxjZJKwXcwupRz+LDOcAze4kLJTZMM3Ake1QK668w+eo6iw01qUue4A+iHPmMCb9dgi6DwFtt2elOcgQtIHBrEdIOD90qzaxtLRpEcaKIpdDI0kkVhBWslcY1Eu8F7C1++QPGUL1vu+4W293Jdd7doa++JmzvSMYQ+oHQGQF5SKgJyIdABRgmt2L9qeN3TIdfVX/wafrAOH2QmJB9Py9N+16uUxb/Pshg+cL6a6d9AyvgB9ZNJFjnEWUATLmuRxU4Rs+Qc4kx+uqnWFmveR9PRGb3xDzfy/Mok/1Sd2i9qddLaRxEv8ceHtneb3FTL0yo4Q13N/9ixfqLKS2NCxLESFAKnTyHpDFpvW8/B4Ll4ykriQoILBPjPWP01QLjErNHjhlVjXWpEV9Ap4LVFFD5XFkEz2NDWao+4/ITJd+zGWQzqewWMigOD153BH9Al3sYsXqBNbuvWkPY53HhUkN5URNJ81i7RDc5tJPzXTz96usvuUNYxwaJCQecf8K507Pn+X1X31zbmzwF3ih5/JztCQvo1wIeJjUASI3pGfIpcp5mFWBnkX2L5Lt+bneLOkaJ76cfFja8jolh74hHtQA9szD+VAyo00fC+A3TLMMgp+ktx9M3F4bBLTSHlwZKn+cJVq3rBZD7llhUARGXVJ1TYdCr2GBq/Mzv5exzYQt2OBMqqAECOK3l34moxG/eO1GXxDhjzBWde1gD66V2ix7tjvRPYh+jZ7GL2Fz9nM4LGHY8/pZj9OiweBu3w6zGFHhIXs55ziNfig2tkiiQeIqiMDxlS6nqNX12jS0A/KK0WA+HTDUmnNvvtD9TWH8vxYaSU5SmflE2lveqyA1DpXJz8Yl5+o4uefr9nsM84DzEC+CvfL22l7qUO+gLvxuyOtY4L7YQL5FGLjQFoRDGjnh/wH9G3lD2t5XSRamsGFsaXyEtQ0NnyrwZIQ6MyWeSUVpUY8ogw8s2aN3Rdzf03V22jhMGcMl7i6KyKmnNhtRdEfsNych8ETs5jAtErTA+VPavilGGQp6+wbsHYhhrLCg1g5uf8OGADNMGm2R2Qgv+fooXJL7eS7PXp7jCFU7RPyOalBrDoCphT75ecJvy3H3zs+fYhAzy6+iVDHUsy2Q1gcSJmRhyc9Y9Ms8f5bXoQay4dGMvEj3Eff4jG+iWOQ22e0U/fMH94Z+ZXKgY0zYrTYvq8JA0p6QyI9jUfaRYzK0AY1KDP4RqU1iIaGW/b1dpzLWg+6VzopuY8VKj6Pvgxva5JU8UCzGSakBgyYGZHhj2J4zrOe2GOueqrHOv4E81li8R0s5t6uQFfg/4e2YlBtRmlvhe/zGA4P8SkOifGcGfXIfjbyWlTSOvMNx1A53SfGEHvjJb7rLvWxn40efgcUI25DklDsnLQAh3rDfePs1ZEuGbIs7I4IdczMUoJ13YgBprtsQU6Ow1ff+KrrsVICPLuOa7NwJUDB1uZ0iDTPVNQdg8IXfxzT5W6YaZJvT+G6anf6gF3csyrsw4bIq5ksC1vjuFGambpKY7+7pIus4DbevfVbrYRQ5dvNJ0BoBSyv5d/kAMM0ovrEjvTxgj8m9tBjSsmBxKy3GN0ztM8pic/OqbV5xe3ZAMzHdv+Oqr/ztGd0zzPY/H3xHDyC+GG16ZgVMMPISJxzATU2KrLdEkgk7PJKul2DxEV8GcY5agla99Ev8/Ga7UrlSTtD53Qzu9DBbZKEsxbDcsHcOWSd3687SMoYRYT1ye2C5gmnQZVZ1AqlNCZQAz6ssBvzBTjHMYH3DeZp++4um5ePu1soxLy/nEYYp8OAROc+LtU+LjvcK+j2wej3SHJ+L4jhAOIu3NHpgosUKQCR95WivQSro+Z7CDDwes0lwrzZ3peWM3dFpzo3u+ND3XWdbV166xbM57E9lrw5wSo178pktsOKSQJ8tGVLTM5EQzNzqgaQrlBlJntlnuvaXvX9P1b1DaYIYvidc/Zry9rUNe/KCrxFM5MFNCx4iKiWF/onu6r4Mc5tNvOB3/mXm+Fw9g9yhWEBngiZVRtRSipcATPrNiUPqZ3LvEgdbHtgzFKIXcS6skC2UASmG6TClwUtJI8TlOCLguqVDwiQkIYULrfWXySPPA1CS4DgNJHj+/l+vYXmOBDRAGub52r/7P/LS7JYQjHz7+Ow6P/5Gr3CA8v9edyiJ0lThnJwGrBB7EC2wfHXO2gHAxrDyBI9Q4Ue5XW0ACVAUbKiuiADttcdfKOtuPvKwWWJhEqXlc4ZOAaxXgV1o2bukoVYDbk4eYhAnlIEzqWQJXQJ4ueycU6fez6yDbG7mQ2E+R05zYZ3/g/lFAS3t4kkFxqyZKUYg0YE9cpJ5iI3H8rIJupy2DsdyZnjvbc5OLhztluVOG60us8HwWy/4xRs3BSBGvUkAnGRAY4iTNuWjkHkwxW8GIP7g1ZajOQNfd0HW3Ehu6V9ghN4y1IfYbTtfXuO1aaqbFlB87ebrTaSnwDu8I4ze4DPaM4zecxreVASyqoVO2gFhYHAph/FnE176AOoUlXeweBm1qbCixoKNlTq+B33Mg+CW/4JASTstg1zGJx94+OKySRktIkTFFRjwxRoiOGc1RaZzfY82GYfgy2w3l4Tp+rNdV8Af06Vu2bz2b7gpiQF3/gjdZ4vnw9v/Db3/3/5KYVJpaBURJ5bUv3n/n763cOyWXOCTHMfjqF37KeURVFpFqfCjHvs3VbBMXCnjW5mEFDF4NkWliQyqPs44Ra+j37Dw1ud+gDCk/z5xiJhgklNO4+QPd0TOOlhgTm3xpVhDYrOcLtLYQl/KIYhczB/H7m2eFnQTEVH6uOUE7bLi+A2VJSb6fogDWzj8xTh8+ywf0Slt6I4qhTW0KKbYotkpR7sa2ZDRQc2uXIp0yde8szE9PKZI9RumGQKIpA+BKzaDNBtu/QXfXAkCYgbDZMedhcACxqYDtNGNPR2H8Jg/TA356j/N7YfnNHxjHt/lrh3OHzAYuA58CtqkbLg2BbMGY4gPckknKagHNcsGtwN2zGkMrhUkt+LN8H8Aow0baUoSUGJRno00d2vwYZnRA9t+UmJllIHD0hAqkLeQTbTZoRApO8sTxHdrtJZJlL3Zz9SMMcKctj/tf8Xj6hpAinRZCQamXYkoco6uxobz2AlaFJi6UBvKUfM2LTtHzFOachxRg6HmTqP5r46laJN7l78unWRJ/Fhvq+bkAAtUh6hTAV56wU8vg1KBkqJ3Ps0Z8GBmn9wB07pFXh/8eP37JNCe6fJueAzWttdSlIZJtrCirDJ+OHvEH9jP4qYLB7cyR8lEpK7Gv5In+sOTGnyH/1pw18MtrBOakJJdCMSc45cdPKXJKYTVsfMyNQpnNoLB6oOtv6OwV1mwZhtdSG+sBY68x/R2qfyXKNzMQ+82LscA4AeX1LEQf5gfc8TfZEmpiHN8xTm9lnlIKOLcn+CMJsVuxCbaoaoVitDQHW8JHa/9WHmutBarX7KpZQf3++pgu4LJSlz2FS65c7q1i5Vfy6HKNdkrzKltouBTZaLGoKbZM2k/sU6jzB8bxI8Zs8P6ItVfZRmaHUpusKhprLWq6O7QdiF1HtB399mtudj/n/fzAPpwgOW4zzlBi2THI8xoUg7LMemkstuSS8noLCByI4nfc4A+tbQysG8glVp/7h7fqpfa+P1cjnJ+PdStqaR75thGHgvx6nPKLPYTS0iA6/Yb+/o6uu2K6/nGtI54R8DyEvKmGyGqIrAyHW0Dg1m6qWlhqLjLfv28VokCxskjJrdj4P3Tp/wKM4HQWb/5bXH9SIDiEI0Zrdmju7MAbu6FXmtdmw4/NwF3u3vUU+QaEpDgBezRBJfbJEEwGAoP4PM5hYsbJFO4kU3+LvYEAPDEzhNsCVmOUxhhh9nT9GwE5hy/xu1um6y1JKxnyMixDXiDVQXBE6E95uvfpHtyecf8P7Pf/mXF6mwc+PYm3X3o+tbPtHMMSIKqEKxd2W22rhKswoV6ScdVjXWVNqQarMU/zLUw/Xaab5p8vrL+YIiponDPYfBxt3OSNbofSm8oCbZP9GCbi6VsATH+H6bfADckqpustu6/+r3zV3xHmB96+/X9z+PBveW02/NQMvFWudtwLa1k2E4NOqr4HkA1tjKGyfgvwd4yeZV4yRKVqz62V2JdBfDYXzDZLC4vlgEY8hMhJ1IoddeHzOjm44ES5irsYDpKgSEXEnNTiKdSyA2BJ8It8Q3uHDpEUFbMXEDgPmq5B9iUmT1nOJ05zAXoSjyeYjord46GClt49SBHUSrPskAGfQPJrFnBrIfFD1yYJW+VaW17ZgTszYJTiC93zWnVcNwyfPn8MQI+hRzGrxClpTmZgSgGNQyfFHGbm5IlRo3SSadVKo/MmIqBPnv6tezq7q539Ehfs9mvp5A83TLe3jLcy5IWyqdWCOWF8zB1+T/d0T3r6J+bx2wr2HI6/YZofIUUZ+BRGysAniQ8LHLBm/C0+0qWo22bbjAL2bJRdxYOFofPpVeLEWNkvktgAkH0oy1JpGfoSwyiAjO5x2jJn0MzoofojarsjRWF/CatBhgPJoIxBkl+Am5/R3/13ALwGHp/+gU5rbnUnvp242m0PeRoxGkx6/v5c050PaQF3piR3mEtx5Rd+idFjlKJD1cnJrYweJF4W4McRV0naAvRIbChntE0K24+wKAVAEZAk0yqNTWAb1sWcxO+wMDhidBBGtEuEQcnA0gKIlXigWBVyLykGKtCTwZ6Tg3lUXJ0m7OkoSoE4vnyfF7CnsP7iWKXM3v9wH9CdtvTacq07bnXPtTb0SNPoWonfX30P+b0Lu0exxdRNdqcth8IQhlzgB/HdVVGsDJQM0NC6wyIxAYQF3HW39JsfofQG3b8i7r5kappCbisNYwDlZCik8REVxBLGHp5Q4weI/llTaJo/Mk0PeZDSeuATPG8Yd7kpZDIrdJOPT1uADXlvLqDXuTrgnDHbTo9/UeKppFjukmaTTPWzi74wiso1uAx9CWHEuQMxRYIZsPZKpn+3Q8SKB5w/oKb3mDwcStlrws2PmG5vxU88jHz39l8Tw/6Z/Buo5zboWGPDRSA4M5wP0dc8svgfX2oSwfr+LaBYUWicN+ILS688Z3ms9QaOy8tdx4fEswngwudpzk9znkOKcg5SYEJUGyGKvch2csyzXQ2LgyU2lCZRGxcu5Q/lsWIbUxjBXbYxUGF6FkflF3OjiNIkChQfUOeePpv1t9GWQdvKBi4Mrj5nWH0+jnPz4oQFvHyus1RZN+xgSPJajaFMWC9LmsSZ9as3Avxsv64ewIVA4ods6BPA+IhxQZpA3gnTb3xHiiNues84flPB3hoL4pSP14xKkeLoWpqUq325aXqUGuKSYvCSxFvyz8vHVyuV7R10veb7VlKvNIZU40WJIwbpnBilMFGxURJrIee30WMQW5mQmxeJmK+HE0YfGv95eSoBeyaCe5Bz192hhp8zvv6SYA3X01+zGb7gfvwGlQKbyCr/CblOmFVcmmPJ4DKQXZopQFUZFr/jmPOIEh9S/nttk6jN+c9Zf+fgrlZqBb6fxwZ5bFmXTk95DUtTSnLCwlTUSfaPQkCa3b7WwXF8R5r+JS5v5SU+tPYQcIHFxxrkkZ95fk2lCCoECAsI/KnVDpOUoVATIYwX/fp/39Wd52zyRASlmAGSWljAmThUhocWoG+xDyv9f4MxGzp7Rd/dYu0Vw/AV/eZHaHsttg/DLW53I0NPjcZt+6oaXOxfJC8wToacMb4nhhE3fsvx+CtO49usIH6szeJEElubDPwqpei1pm/A17JKLtpaHMk1J99TSuU8owGK8z5a2s5l/zsnMZTVqmrbhnSJPcV7vDSkN9qwo1sIFhS7DiU5PQumUV63C0lqJRUIYWSa5d6P0dHZG7luMglB8od9VbLqGKone7d5zW73c6b5A7PbM43vmHPjsuzTLkVc3iRnnY9KthVrPbzLYDiXIi5bnxQS2pzCKu9/dszO8oZL65zQd2l+QFGJv2RDUew2afa5Em5CSiSVo02uQ717wB6/Rfev6I5f4r00j8u+X2ePGOqw2E+tc1awxIv0LJa0hMJiwyRvcA1VFjwixpkYPV26fE3+oUtnfOuPuf7sEfw9S6ccPM66RcXbr37kuaSrnfh8eWiBBLWL38qr9f8tdhHG5CEvdifDTLod0Xbrab6NOixNoKeIcUkGO5xOq6TOZ28/8UF2wvKrKUN+HWm53s+7+iaDDyWZqx22wgLRi6Szeuo0HcB6rJXCIP6YJATcVAmndA66EihsPm5aKVIJdqrI4gIhekyc8UAXJ9mo45rBcT4NHOSmLlYGWitUiCSt0fZa+AL2Gg8comevLWNOtkS+tsi1XAY+YNncijzDN5tcSLEe5cRSvD27BtrjXRJlmoRZPQ+u58ypZ9YNv/dK1FSxsgs1kUWSX95f6x9YmxhRColUi7H0zMAdJGifB9wQkxToGew5OQF6nIfoFGYaUUGk3/W9Fn9cZSEGMJfDR8xy8ZBtRX7IKuBbe0234MSlgR6roWBpSaTb85fqX8/PkxUCunxsBsGZPO27szcobTFG4kJh+Uhc0FXunVB5sKs8S3cK9McMmsWIGj/g5vd4/0jI0jwf5B6KOeFd0i1WMeLcCsKoxreLcxbOBdZDkRflIu33WQJmyN3RaU2XNE7J4La+NpWkSF4aFCH7/Pkc7yRx12US/AtFQEoevCRsqfENBqqs7sHPXKkOxxIbWqlnTLlZc7YKg6ewm31hf6bvT25X/opNx74UuW3X/pJ/1w+KDYWRURpLFPBI7ApgiTtln4Dmqo4e4yPRZRDue7y8isfnpceLZ3iNDS2zJ/o8YE28tl+UVTU2EQL8z3XAyg9Zpcg4BzEChd2zzg/q43n/aws7l0G+UAugxetXa5F4ayWT7Dt7jTFbjOlrnqD0RvIEO9Trtb5Ot9zBMkDLY6cZFYPEhPEDYXpHigE3f8C5PbN7FKaPP4ncrWEAQ6q2US0IXNl/Z4ySAiy4+ip8Bkv1iiFbbVUa8AgWYLgoLkwD+JzHEKOyRDwtTSqX85RZRUxagI6EDPlQ2hKVrsMwWzuhVp1Rm4oFDC4+k1pl6f2Gk3vgMcwrdmzrabiODXoFuJSp5SHHhnJNlJkFJSq/GCNY5xFr2fzSxK3npJyfC0XbJfno8ydUNUacW/pIzqIhM6R1SiSVQcwU0N4R4xbvFTGmF2MCfFpJVHOHkGoTusq//Sz5wdlAxbpe3ANi9of943iJLx6wKt/7qp7AAvaUuLDPrL9D9AL41UI+5iFbpg4o0mbI7L8N1l6hdRMP1BnzOQZ00Bi3kE5MnheivagB7OGROL7DjTJoeZ4/Ms/3ORbEJRaEiQLkWeT6avMkpT5xvvK9V/aMaufQ3Aern38BULBKPDyLX3jx9CxgakATkqnqHF0BnqYhmfOKAkzb3MCSaxZ8uevytRCjSH+BRZF2aaVcY+TaAsCaLQqLw0MKbFMZ7vkcJIOIySxwEs0MgTxAKp7lEaSmQfSyJUT51y79iXzhojy8vEUawsmF033prLXAnC6AEDHnnY4QnRw7R80X2iGz8nHNAC7N5HYVBuBiFyMfnUc88MtMgTPv8O+TYxcfUPn4w+GepSmcrR4yviA+sAIGVxZw/plTirwLE/dhqjYgx+jxSqFVJ4z1bldB4AU/uBbLRL3MFSpLu+JILZhBIYqUvIDxPX56T4xi/TBOHxYbGH/MOXWs3r9iYSimTnW424Xru9RDhZRQa8q0+PvDcg0VVVu797WN0GfnKf8vkVClNojIsUqqev+2yj2jNcQFAyKVwY3LvtkrmQ1Vm08gw86UeMqHMIrKO88vkrz0eS4BkrsarcVyRxk6u5N8Sw/4cHrWfGmPYavoq4obliayiwsBZLGCoOYR5Rip5uMPWT8cb1iWzo25hNiACPFPVKgxzsKkjiOEEePFfhKWuPDHWiX/UPH5PI7V/IjkKxi8AotTluL/kdafPYL/RE/eo9hl9sqN7umUFp8/dGX6XfL1Kt266q2agb+yMa8OfuN/AqB0Jz6fL3n7bb4kbl/hs4xg3g6ELjN7YkLvEzpKEO+PE91hLx7AfiKM33A4/jPz/JEQZqb5A+P4Hl+GwZWhHSxen4aliLBNEWOVos9dtPJYZao2DODzqZ2fAnpaf6w+CUuo+HeV6diTEtmWyWCjL0EwjMzzQ57oK9O/tR6q/Lv4H1X5d/AreaA9vuXqgyEMgwCYxhBufoSKX3Jz/Bvef/i3/PvxA9/ZTX0/t2Xaan5fY574ew6SnqKvcnGfrwlHYQEXsKSkZLKttawqm1lSfTNQoMNUEFKYAVqYYql0KxcwZiW5YQGXhLmzbKbrM5MDusp/TYsc2UfPKQaRzSlV2YtFetYpLexrd8SeesLphuME+0kSr95ENp106B0pT/NdQIrZR1ymfHw8eN7uI7+9h+MIH+8V/QePOXyozYyUvCTgWfa4vHxJ6pSypFwABf9eQI3P9PoblHS2t9qyadjZi38bq48g1/SeyD4FTinmwk6Yo2MKuBiyp5dGaSOJnOnpu2sp5nJc6Lqb6l3Z9W+E4WM2lQXstlekDFSqKAAPcNnPa3xXLRCm6S3T9I7ZPWYrCPGxkynpOdHN0KvKcaFtDJXYUAY+ldhw7tW1eFEGApHi+zlnpthL8eG8oWaUYqvMcr0baUQF5H7TuCx5EquIUXliTJA8btZM2hJTwOTp6caI/LskaDI5WZpwMUyo6R3M93KNbd6A7UjG0G++5urqJ/zH/a/4rTswKMMXduALO9QBotWf6wKoOaXAPrjanZ+iXA8lnXhuF0M9B5oF2CpS+8JoWAZKxlXhfF7IFWsa+bxhV6jleZ6tFEEJI9UTOKWQmYHi9Wr0AoYWMFglGbIY3D3D/gRsGUfNaU6c5kRvn/uIh5jQuXiDBeABOEyRh1Pk7VPiMMH9I6jHhN1/II3vZYJ7jg1lcGIFfSPPAJ8YRpx/Emukz2D9tSBwGRQ4q8gpSWE3NzGi5AgB+BAdj3ny9xgD7/3IQ5gr2BOUpetuMXaDNQNdd8tmeF19/qy9xfaSJyizQfWvSMMNMceC2HWYTKnqTqHGARUDyh1J43vC/ECMIyf3wDS9kynYKTK7R+b5seYJIumXcTTLddiAtGqRfZevS1zQyCDdfZbRXmL9nTMCWwCzZQ2WZugCJuhanJ03nEtxMSjLnYGttiLpDAqdGfw+JUa8eJpmZpoxH+im69xMWGxk2hW8+IZaQE87utOAigOYDTe7n/F+fuDRnzAp8qXp+Wl/zSb7aJfYUG5yo2J9/0UpUMCdU/SMaRkyW66dcHYIL8WHcg6sksZZmydcHGhXwOa0FJht0d3+xsIKztmMUsQkcs8pBXRSWXpv0Fpl/1VPSAGHKIice8KejrjDK1JMjHN6xuRp1QKwBntaqec4Rx5PEh/2E9wfwD9Bl1nuqbCrzCbHiE1uIAtj67zoC2HC+T1ufvos+Xei2J5JjDe52t0reEi6NuxmBOQpDaH7MHHvpzpH4ik6JqWkMaw7Nv0du+2PMWabLaK+qKpBpTdiA9HtRAWRG5nFJ9mejgKOJy8AeRgJ0zuClyHRo3vkNH5b84JlCnqOXsljUqKn3KeaTi3Ab2vx0Mq9gdzwJD9G/V4L9pwDmc+uvebzcr2XWGEpKpkF1C2sP2AZ2tfY0NSPyXCVyQSDNkwxQB5I7XHEFJjnB0Yz5Jpjywa5pozerc97aRa5A/1TT7QdJM/u6i/zkM090/iBxzBxZwaGsn9QZh5QVUVlqKVLsVpYhHyfFa/wYqFRcvJyfFtwtmTdS362to5pJd8rWymezxYoj59bxrRVRZ7pVCucBWQXBuOkMosugcPhwwnl5L1690B3Coyjpu/FHqKwf3uDsLrVWkUErTJAXkeMqaoM91O2kxpBnRJ6eiLO9zUv0HpDUr5aAsnbea4sDGHODWS3UvH+oWtOnoyBi5o4K/9WStkk3s9PQfarKQYewswhBbwSBrDt7rjdfknf3co1Obxh2P5Eat+sWknDba4RljrBzBM2hKWRDuAOxOmdqOOi5+gfOZ2+Zc4qzGl+kJo7jEBCpbgwgHWuWTM5rF2XGMAR6rXcWjtdanTW+FCv51JFKyHPXKghUgZFQ1PxKgKFTGsAG+aaNwzZqmXI5L8y72HTgHFGKQYs2sg17E2ki1ps/qLLqgmPDxOd3dH3X6yup5JHKG3A7bF7g1UW3IFueMPt7f9ACEe0/jvu7x/ZB1cZ+m2eqZF5RaWeOrfOq4zlzBCcS73eXFflOMvRXMh+7ZFsCSXnsbys1jbmfD0jhTTnVYgvqR7XDt28tgKoa6ZZ9iNtBqw/0O9/ztO4YZxTVRq39jG9yf+s2EtdGgJXcofSaJp94jRLk0g5IEw1Zyjkknre6htZlMchK0lTxvb0s3f9w9afPYL/BGunLZ023OQBULe6o1eKO2XZKsW2+Vlzdo6F+bNMgC9sjudDN3KXKwVSWtg+IveWYm+4+jl691OZ5DtsGHc75m23mvCNBqIwe4b9WIc56MM73OFXnKbvCGFiHL/lOL7Fu0NmOEgnP9V0IT2zgSjSLpF3GzbZp6bLNhAlkWolnS2gUz9+z32w+nlVOqOl2EncxMBTnDlETxmiVAq4IhUP/kiKDq87UhKLjRjFO7bvvxB5nL0mhrF2eepkT8CEkS4zrd3tl5xe3RKs5tX0f+HV/b/j7Yd/w8fpkStl+FG35Ufdlo2yK1lWBS2agClAsK8yLZndJ2Af9adTZdKUU9oWcpsirUdV8LGrDEhdweAiqykgzKWErYDACs2y7bLaCBKLe4zWFq17ypTvU/KY6NAoSUhywhlUZmGECdxeJPWnyHGE/QRzSPQ2se0TRsfaoXd+6dbPPjG6SIiJD4fANw+Jb98pTkdFuIdXb9/j97/Cu3t5rXngibzOjQA+ubMvD1o0m+rbM833nMZvPgsI3mhDr0sTxCwWB/mIzc15rMU6iYfkecxAukMAwDH66gMbFBhl0arDZBC4z95+1m4Zhq/ohje1uEtXXzHf3BE6m6d7a4LNTNVs+zAchPFrTgfU8Tv89J4QR9z8oSZ1Mc44f8LNT8TkpPta7TNy9zt3+EtskGbEYgtTPIAL4Fs6/y2wuwLIEPZvYQSWovj8Z+V7ukpiy88WcKNT0CXNFkPQ8neP0TEo8e8KJEyQyfQ+p4I+HJgmLQoCLWBv192iw6bGgpY9Ffye4GWwg+1eiRfrRtQYdvtjXr/6V3wAZndgP3+gD45/MdyxU5ZD8tyHqfp6tqtYQezzcNGYEo6EU6Ca5sg6cYqXm0RqPXW6y5YxEZEX1prsLD+r4G9lqa/l5W2D6DyEKxQJw6yKh3xkx8IaasE/hQz4dNN7hsMTAPvjNYdJGP/SJEo1fobCXvc0TB6JDwD7MfLhEHn7AIcjPN1rdu/3xOO3+Pn98hq1RavNOolqmkQI2UvsUKYPnMZ3BP/DwZ7CeilTlGeEcYqSfaoFe+aGuXEfJh6yp+OUpMA7pZgLPAGBr66+znYwV1xd/ZRh+xMZ7GI2pO0X+O1VlXgmratKSMeEnWYp8kLAjAfS6Vth9oQcCzLYUxi/bn7Ke2OxfvBVot6xqIFQC/jSgj72wn0Psg+Va71cd5W59gKj6nyYTFEhlWur9RsvQE+xpOowbPUSo7XOFhxI86lMaz8EhydBcJyYST4S1Yw2PZ19L4zVnJN19hpthmoPEfxBjlX09GaD7a4EaLMDr774n+n7Vzi35/7hP7CfP7DTHTe6Y0yS0xSvvhbkDoj1wyHmwZFn4E5p1qyJBamCwCV/KzHBKlWb9l2WyJfzUX69FHAr//ASE+pjLwNxUojLsQ1KCv1j9A15QIC46l0YZZq9U57ZPaJOHzGPP8ZHzXz73B6ifFwPflJVQeS8/IIAPZEPBzhM8LSH/jGgjm/x2Q5MaZOllsNKJabimtUDZI/gE94fhaH4A1cpvMcYOChfmavntmjFB9qnKKBCcOwz2JNQGLvjanhNZ7cYs+Vq+2O2Vz+r+S2bN2L9oHUFe4rXp3H+meevG7/NYI9YdEzTB2b3KAxof8qAxpz3nkQHbJTOeYDcay2IuDp2ufYBuV4LC60w/coMjQoIsOw/SuU7vH5UmZggH0nFLzjW4zuv5hYE8ViPWcXFMrCvNIx2plvJwW90z0aJItEksbAqwIpWCvzEmCIesYaQuQkOa2Qgnw23GLtbgYUgahM136PLXJLo2V7/kn7zI2IY+fDx33B//38A0GmNiwt4UxiHQL1mCvtzjL6CaC24E8+O5flqG/hlcG9hPsbMmCzNs5bYUs5pbGPEJ5pEZSUkJigWBdigF0B+mww6yvDZlCIhTNlZFtz8gf44MY5XxAh9L89QAR6rmgGSCxhcB3TGJa9oQeDHU54rsHcwPRCawX9K54w+e4jXgdPNx2oRFGaSGHhdPti/xxpjIEWFU5Fj3gdWBKgM+j9F1+QFQgjZbt4IYcxsuLr6KZurn2G6V5kcckvY7vBZIQjUWKBDXA9+dEfi4TfM0/uV//c0f6wDon04VfY/BDZJSSxQmo3u2JmObZ6fBOu9vwzHrsS4TIipcySaHHTZ3xaQt+42qyZTExdUNjdRF9A+RNXRKhlJSzXsY8AlOYeJiA6BLsw1b9hpy43puTZdtbbb5NgXMRWtmnTgFD0pzOyjzE2IcWa07xmGL/PLl2ZytZMBot+TSk2rN5jhS8z1L/LPG/b7X3PMNjM65/y2qRGIVKDXp1iPdfm65Jkl32oB93PVYa37G1VnW3sVn/ZnQyVZmsjlsfKcnP3tdhWMJ0KNRa1NTowel7UYzj0xTu9RytL3R24PHwinrziNYC11tkBvmmaRVRkEVqtG8vL3AZb64uQWOyk7Rch+zvU9nAOyJSZkPCnGiRDmnCvEiml97vqzR/CfYJWEoRTWvVJ5amtmAr9w/AroI8kdQs1vNs3zTbJ4ehUz6TLxu7D+dP8Kv7sl9ANu6HBXlrjVFfwl+/gIITSJvOB0QIWJOL1jnr7jdMq+n9N75umBEEZall+RdLYdIEmclgKvMEqKl47JgOROdasBDWuJ/O93ka1kng1YZJpEGQ1zsvmjJEij8oQkN5lJKcuyFTpK4uXDiPYnrC00fUBbVCqJf8gMp4kYR5Q3qDCi841ehmv569dsNl9hzBU+nOp03rIZgEwnD3FJeuvrhpW8V4KuEiuD0lFKCqr0/vnxX2QnaiWtKV46l2Rc5Xie+wQvwb4905d/f3kxGq3tAq6ntc3BAh7l7n8eeqbDhHEJ75cp4CLJWhKz9vklEMf6M6c5MToYR/AnJUy26QmXhzpJ08RW0G45np5W8o22UuAlYXs5f8J9xtCXOhRL6WcgcLsE8JH3JqBPYYOHyubwZWMu5yAnVSWxKSCw+Py9wgxfUqb5zjd3nG63xK5pCC2vkv4YF+bf9Iif3jNP3xKDxIJxenvBAzhvahlwbFOwBdTLYOyZx1aZatt2q8+HJ1ZPabVmop1fw+3xjCQ6ZRrW3HmTSYCTTlHtYopvlkuRWYXMVBfmnUysn4mhSIpcTerLKtKfkvDHLP9UymJbxpgZ2Gz/ghv3hPd77h9GfJrZKMN1ZigXjz2X1oVCKZKrpJPCIs9Hu8qsz1s17TlZx4UKwOfYULyB//D1UlzIj1UVQsqs4UWG1ib/Kj+/ao6l8gJKpmwPIbFhSSxbdl/5Wj5m25hETdimWQZBxUksY2IG5ooK5FlsyKy/S0uuiblKfX/IumQFJU1NaK1BTpnRVRL0Qxn8lR+bm2KvWAx0didD4OyNMP62P65Tvec8/K2og9plp4hxGhXErgd3yLFAGsTT9I7T+B3z/HTWIM4N0pQZM839VmYDwAIorIDgNpE/KxgKS6XsR+XaPwcRShNCp7S63g2FibxMny/PX3IF4sKi65OmU+v8QppJct8NyhO1sOpkKnggKPGvjWFe5RGQQQKzqdZEkvhPaC3MEe2OaK4A6DZfs1NWpLTzB07TO2mqK7MUT01hJnu2vMZSwLV+4aXhuuyepSW0MGpoj1XL9qM06UU91MaHlyWn+Vyk9CwKfV921+a9KCrgZhWcoq72AYocg/1ebGMmhfeKl2xhyrrkD9zmECcHY44Pxnmi20uep8R7u3ruNYXd4gO9lnjGopb7DNZffY0skn5Yhp+WIvqUvaCLouWQAk5lqxFl6bobNsNrOnuNtVs2m7+g3/4UhjuSGfC7G6bdFbG7XDiaSUtu5Cei3+PdA+P4DSHMOL9nnD7g5ieEFT8S00yXY3ivZIJ9Uf61Q5fKakECn6+g1v7h/OdalZqo5Azkj1qX/E7yIhnstzyX7OlFVVka2CE/Jk2sqGKGhcXn1+d4EvLfiXph2YXcRanKgrK3Js+VtozaC3CQ87gQxporFI/Yoio6XymORLfkFqbkc8D29Bs+NnWQQ3KZkjNo1rWFS7HuFak0kJs4ep6TX9rLS4xobedeWisWcHtfn7/HF//C8++XPNHnRnbUoMreR6nNhGHXeyf8DrtIwNvmUPn4+1jGSIwQxp/3opaLOf9V2gqh5HxQXH0D/llsEHXMC+qp33OVhohLS14bSByC4yk6XAw4EqcUibrD6gGte7bbL9ld/ZRh+BKtB4bdL2D3E/x2R9IaPwz4oasEkaIWBrGBEQsYUdfiZDbGNL0lhCPz/MBxfMs8fay2aik5bI4FHYqrZvbHlbZcm45Nc8zaWTlRLddz65dfrq1CmlmGIRdwt0KTi8VMy/xVcvVqbdeS/e9bzf1UbAeKxUfCMZNnEAE6rq0tOqMxyorvPYkOwUXIafEhOExTa4ToRGmUbutz1uHFeVhxzDaWxgLmS8L2jth19I9fY+wG7+4JKeYmzdrSybEoiUo9Mec9xp/lW+cM4EsVxvft7e0sAXi5if99q8woauuGAgYDFfuo1l3RZU/uEyH04PYol+oA6eezBWiaQxfeR1NryPDIXGsk+XsqJopdzDkT+BwQbuN+tYwhfUYNtl5/0LX9+66zmvS/xfUnBYIVDYMNAXFQkRMKk4pIevH+BJF6PqTAh+jqpOp3buSjn6qkzymFNVuM2aBNz9DfrVh/ZeiTUhbT35GG28ryEWZPJARIBoxLMgnZeVSMIn07viVM74hhYp6+43j8DdP8sQ6DE5bPMgzufLBLTQ5Y2CSFfVO6xmW5FBkJdWjBpcEu37fOp2WbS+ZSFGB48fUatGGTAV2T8oaSEhFhDPsw4jMgUFjBtrurgbdaCiAdtxR97vpMKLPBTBPd0eODRTtH37/m6urHzPOjSOijSPu2yiybWwE022Q3nXXMVQFhZZOjsiFe7pppWFi+uZCrrGsFsQCRabGpqD6dF4LQp/tzz1dJyMqr8QqOZZgGRZqqMmiRo232TdQuMM+WwyTTu7ddYj8twad08rUCF1IeDBcJET4cEw97cAeNeRS2O+5QC2+TC7naWb3A+pPX77Pn2JQBz4kUf/hgB1jO65g8fcp+k0RhAObjOqfEKS2TWZ/izIOfxUojhnV3Pw91GYYvPjnht0g80QbtHf3JEieVE7yIzjuhPR0xhw+k+Z4UPfP8fjXwqcq9/bFJ8tZy7/IPlqS9BRjaY+EQue9LrKC2kFh9j+e+c+cDY87tJcoQyuo9fhZ3Imnx9QJ6bejz9RpSYkQm1vugMSmK7Nc9AlTwvYCIgnX67AeaVQRujxkPAqqFCa03DP0rYQR115zG73iMDqPVyk+8TdzqMeGMTaNKAiyvvSRKl0DgtlG0AoHRS2xIGlMAyMQSY9U5QLdIcb9vib+9yq9FkZSGlId8JmFEAMxxYXuUvxvjBO6AmXqUS4yzePyGhNhEdAmjEy6kRgouoNDoYvX220+xMnqmo0KfInoecXnoW4ntbWyoiVQsLK2x7gVF3lmBhB+4QhIPujEGDO7igAwBfl1l+rgU2UfHIfpF6q87enuTGalbtpsfcXX1U6y9xdhr7PCG1F2RrFAg7CTgdXcSpk8Z9ASIp/rpY5W+TtN7xvF3TNN7QnSZBViGv4X8/kMt+CwLcwx4JvuW99SAPGkZZAT5/q97ZAE0mwFnnDPX1vEgrK79VIFheQ1gUqwxoIueUXv6DDoOyjCawCYt8aJV00BWsWgZ9DrGgE1Brmfl8eHE7J6qH7A1V8Lua4bHVfuR/DO4Qy6u8/ftDp0GOrvjQcGHDCA7QrVoqAOZWACywp5KLPdma+t0aZXYrViY1C2rx9Q4JHEh5lhABtY/BQhfIjK8vMSy6hh9tRHrjICGpeireWdC/Fb9nv44kfSGeVbMnqwAUMwmsRsWpYCJCucTMW9QxVJK4oQMlz2OohaYR8XVNAsQF8bKxlrFhLOVYpBhkzEz/qIwTf+QI3C+xBIjEFTKx0Cuj6ICmDPz+xTFbqcMCdW6Z+huMXaLNQOb4Q3bzdfY7hZtNnSbrwUE7sQWSsVIf5pIk65xoDSB9Hwinb7FZTWA94+M4zum+UNVBhW5dyKRkqNLYodVaoJiQ9Tu0+W6aX1qy3s+Z6P5Zk9ogR/ZTXQGgeXv1qs+schsc6O8FLHtwBv5fUAZVIqkJIOmFLGyz33OcXwK+ChqQqt0jUsuj7ortlWLGqGoD0pzX0Ae748CDPs93j02gMGiKqqgQbalQ1mUWXJWY67QauBjmCrgW+LXs2uIMkS28VCtDGtZn2QCpzY+LHY77ZDZai+XlhriJf/PlhX8fD2Hlgob1CXxCi8MYZsUWmlmpZkQUF/FGeeeuDkdiac75qiYN1JLnM8XOB8ed24pFaLkFSeXOE7SRHazYut8tZkrQF4bG54BPi3z7zMUAu2Sa4lKGChA6SE4sX5AzqnYPXxB312v1QD9m2pb5nY3+EHyH5kTErEhPlMG6XlETY/E+V5mBs0Pz/IC7w7L7KDksUkAYEWxyGsxAlWHk8l7iqv3MsVQ7W3K+yws4LK3LTZHkuWWimM59jn3TO3VmNs8MdbB2vKza5CrbSCVxlL7dVG9JiIpKlGwqay/SWIN47MyYIqBaBNXulu955JXdNpgQ8hqB493B+b5Idv8DZkVPKzARZUaW6IomI52jgT03TWPoyKkQJ9E2bTRzQySpr4qg+CK5VuZSVRBzuZ4n6+KAanlyLeDPFtripK7tGeiVRNdWpceLcqQlJ5jSDY34kIFtYOoVLwMk4x+j56SkEGagXGXQN+XVrGOKYNlT/NCMDFuPVz+PJ6f5w8phWauxOc3jdv1SQ/6H7j+PCzu+548Jzsgm+4pBU4JTirygKIv0s/C8ssJz0OYeAzzmZ8XKOTG3w5fsN181XTzf0y/+XqReA63xH5DMgavdZ3sC6BiZNhflnim5Dm+IPc+ZwAXiWdrP1Bu7tbPr3T7y3FoJZqBhAueY2YNtSyAVdf/E50i3fw90wSb8nou+XftVCcD5PLPTdoSUsKGCZ2PeUAkm+Oo8WHCFsBQGbrGH87Ya6y+I8VAyMyIctP3yrKLgTBsUH5me/Mv+XF3R/B7vnv7v/G4/1X1jJ51hEBlOp2v6qvVdjq1EeaxQhhoFexpfBebwm0l+26YqHIulnNHgk7LpHQA8sbV2kSkcvaVQiVFyhM7L+aOSYa5BDIjUhsMO9rJ1Dr/XaUNtpHMoizD4cjT4x0fbKLvc1KWIttOrCFE3iXdutnDwynycJLPPzzBu280V7870e/3mNMD/vQtzj0K2JO9P7W9XidrzcCH4u0Tw4T3R2b3hPMHgv88IBjE3/UpOFyKK/8kWGT/heXnSRyj55RilsjJ8Meuv+XKXmHMhqvtj9lsfoztXomtRv8K+rsK9iRtRO5pjNz/04TNMnvljqT5njDLNTznzv4833PJ5zNFR0yugiqWxVMPlWMCa9CnFO/nKyLFVLE/aOVHiSIRutx5bpdqPurm6xqXaqxYF6NFpbDJndrC0O6MXSUuxctaZfl38IGoik+4oe+ehFXRv6I3m7NNX67/lIJMAt97lNkQo0fbHVe3/yNkr8u34ze89SeciQRilZUOyggLPMbaoffpnBVV1ALZNiaKu7wcs8U7vByTXunVtOPC2Grl3wH5PKiEC7GysQujsl1tQZ6INTasfyJmKyMFqqvnKYbIIXrwIxpV98QW6PP+QJzv0drSHX7Efq/5uEnZ10ssY8pgybaLX8Df0yxDoD4c4O0HGL9TdIfA5nEPh9/i3QPeH7AWrLp7Hhvqax0zMDRVf2Dnj8IMeoHR9fusKQVIkpROMWCUxJkC9hQVwDF6RlJlwBl7xXD1Bds84Gm7+YrN5seYbENghi9Jm9fEXnzlvJFrPWmNdg57OtI9vpMX4Q6E6R0+T/Ae/YFxeo/z+zwMb8S5gzSBSJkJI0yfYgfVK1OHvZZc4LyRUfZ5n5ntL8m9y/mvkICSKzh/Ie9fKQF3yI3SF+Sd8qYXSDKkiM/sC4BEkKFMDWtpm62UrBI7q2vdVf9PgCtj2SSzgNee6hl8Ckem8f2q8VisiOTl29XXMUykbD+gzYC21+irrwHY7X7Oh/u/5dfznns9VXutIpF2KdbrBAQcKMDaApplxuRyMFaHphxZg6JjPVtAmJumspgCRVkWa8z3zZ9byb+bhlXxD7+UM5RCXWGYlZeGGIqdTmy1MKhQMESDUdKICySCPzGP37F5+ID2Nzy+esXTKbDfJvqQ6K3GBWkSgWL2gtgELWyg0xxro+jDIfD2SWYKjEdF+pDonu6Z5wdCONZzqLvrpXm8ahyPxDjmfDAI+yiKJ+7nUHtO0WNZpPsgwN4YAxMp5wUanZvAV3k+wHbzFdvtX4oHuN6gN1+ShhvCkGNBrn5Tbg6bacTuP2SW3x4/vce5e2mE+2OdBZBSwIcJ78QP+FOsv032+y9zAFqlTyTh8zCiwlINOe7X4YbNtZPaa1gVyPGFVdi++WdT8M/ieQvoGNOvYseKPVwH38oZCNGxL37nCfow8+Cnqmza6U4YjtnPu1OaW9Oz1XKfxjBxiDMh+comtWZDiBNGD9jutuZy1Vs2A2raiIc4VmLKMHzFZvsV3x3/mY9hZqM0X5iBN3aDVrKXnqKvwNqcPWJLbPCkah0ChWzSHMYmdyjNvXIu20Hf57YxAsKkSipZewJTbT5Wzexy7Fefl6wuETJ56NQQBzql6YzOKqnEHCMzjhAS4/QWnv6Zq7df4LY9h14z3UZOjjpbYAFzWsXhYjc3+0hM8HAUy5jHvTSRi3f4PD/g3SPG7jBcC6j6knIojLUGKc3TZ2nSH7gew4xKutrElXsmKEPXv2bb32B0x9X2J1xf/xXd8AZtr0lXP2K+e81x6Ko1XOyUlHc+0R09/WlCRakX9P4b/OlbvN8TwqEOf0wp5qbnvlpHxuRyQ0hob10SS5ittpW1WfavUv+UPawAv4dse5ZSqu+rbVasvOU59/hdbB8Kw19yz+Warl/k5lFsMtpEOPu+WdlIaGXR2lIUrzKE2xKTWCC28cKHkY9p4iFMaGCjZg7RsdNdxUxkMJ6GCDe6I6ZUrRPn+Z7DqceHE9Zs2QHGXkuoyuS0Vb2RvMx2UpZoBq62PxEmrD8xzvf0KXKlLVZpfG64lkZiBFyuOUFidBuDC+GkXK/PlZ8LEbA0v9omUcF52mH1l2xjoGn0nzWK2thQXpcYzcmjZb4MSGwjFgulgHNi0+fDxHT6LVf3Bw5vrjE96JwPtEzg81UaRivvcIRocnKJpxPsjzAeFbvTiTA/EPyhErJaYomQhRoGfPYH9mGsNjJyjD4nOuRj9meP4P/6qwXaXAocotwIh8Y/TAAQ8Yct7I2HID62cwb+lO7p7XWWdl6x3XzNbvdzjN2Jp9f1L5jv3uCHnqgVfrDEQZEMqAB6aoe/eWH9nj5CGPHTe46H/8w4frti9nh/pAC/nAG/7Y2+sEcF8Clek9W7qdhANAGglXYUw/py40u3fykIP8UgKa+jhO3iNVq+Lp64rX/XTnUV7OmT+GCKHcTyLKcoU7aPSbxAU/IE3WcbAZFryhCNPHzPbIjZAzT4AyFOlCnzHWCnazAD8fYv4au/xgCv3SO/efrP9EpzrTQnFk/I0jFsi+Y2UaqbXZ78nlJsNj5hnLQS/FKEF9+cTpmVBYdpOqYRkZaatADqZVr68xMgG2P63kAg3VbRY2mZTm2v6Ky4ZPswEcNMjD53VQXAEubNIJNm93cces1oU50GvhvA6JRN3AX4mQN8OMDHR5hnSdS6t4Htu29hfE9w97j5ffXgqQO98rA0orCQCwO4ZfuVgTTBn+rXn7Oq1D97+cHChil+4Ifo18we1dP1twwNs+fq6qd5mu813dVPidc/JgwDXhv80Es80ML41S5gfKjeXqURlKLHze8ZT79jmt7loS57pun+GdhjChsE8lAlXe//1tMV1o2alv3TTp+VY7H4fxWvJ18LPok6RZ5fQB5JOtqkrbBWJWr4XDQVa4R2UJ1OAYPEaGEmGK5Nh0/ioT1ow06LZQ1qee0uxQqyhDBL7CDg/YFxsnnoywZjerroUdbUfVIYgFLEefew9gzefk26+oqkDden3/Lu/b/lQ2M9UuSlwLqQykzJCpRnIECS1E4eVVGKu3ysVfP3SmzomiR0ULY2jAoLoEM8D0mhsnvObWOW88ByzliGSarVzwjDCkxNqFOKJOWYmYUZnguDVYGYhIkd/QE1W/rjxOl4xeM+MfRit9SbSMio8eL5J42h/bQ0ie4P4gu8/TAyPD6KZcz0PhdoMymexQYQKX9pEuW4EPw+e2M+Efz4zCLkD10+RWGPpPW5PjVDACUv2NAPrxh6Geqy3XzF1e6/q8yeUuBNbYFX8gIndg/daUaHbP8yPRFP3xDDJLFg/IbT+PZZQ1juKWlNlljQQ20oFH/fbS4yYN0ABup9VJJ+n33+yvXmMiixMPw0Og9eBKrUWz5vrXDKY4uyRCu9+hrWLIaUAqH6NcameBPn4TFMjMljo+ySO22JZrFh2GjDle7ota5AcPH1n5OARS4X+0EPdPYK5x5pB8eVIbTlegrhQEqBrn9N378ibO9IxrDZ/4zN5kvu97/iFAPbfLxvVCcgSyjHs4A9sTaJEtQGohw/Vd9zyxHWLHGxK172BeTRegX2hJTtKbRGp7X0vKzW468UkOXztnGn6qMFDNakZJiVvD6TlTFdvgaKb7FRSiaDx5l5/sD2+B1dDOjDbZ0tsE2iFpiHRFeS2QwGG62YfeIwBfZjZA5JmskHOD4q1GNi8zihxg+EcKgqMaWsxAUzCAjsgdJwy8Ce98dc1GWwB6qN2g9ZLi33ytzslUFpjNmx6a4xZmC3/THX139Fv/mREER2P2F8/SWHrdQIcVCkQaFMIjmFmkQpqF2gP4E9PBIPvyH4Q7V9aGOBAL+n5Z7B1/dlyUw/vfbRPff9LCBAYfmVeFCVj2mxOopneYBZMWUb9UtaWzuUa6luwimAMrWqKLmE5NCLNLwSP3SHzrl/WYWlJQC/NMQKg2sOIy55jkHUfrPJA2xz/tBpTYcAo2VodcgDPT0zbn5k6kRG33U3uc5YbGQSC8u8tR5I2mD7O3bbr+u52ccTNylyZSwdRuajpFQHwoV8jMseKy2K8yYRtNBsS/wpIHBpkK1mC6hULa3KjR65PFQSWNV69e5MJZ9Z1z2iQw11D9FJXsugzYp4NeVr0ykvQ8mOv2Hz4SfY3Q2Pt684jnCzzYBOWmyjWjAYFquY0clj+ylymGC/V7iDpn/0qOmJEKT20ymz7rRd8oZS8xe/58wG9v6ULWOW+PtD1yF6NJopiWpYK7lut5svudn9nO32a4y5YnP917iv/prD7TXBasK1xu4SXS8AmJaUkRQhTJo06cUucvzA9PQP7Pf/Ce/3+HBimh/w7lgZjDHb35SzWWyhFLBRhp227ExXm0ItAWMssSDX4PvgKhayNBCbvZ8zX/ECApe9vt3nlabY8iwAcIMwpPUZWAbCybUof0lmMaGU5KyNt5DWXVViAsSqjJJY4fxR7s1sH7EPB4KfGHXA5qbRKzuwURajA4GOQGKTDMfouY8+Ky1mbLej7+8YWiu6rD5cQt0o7yaDjlIn9nh/4v7hPzBP77FKs9OWp+Cq3/JLJJznfuHLF+KHvjxaGkXF8qviDcgNHZPgCue2EJeYwK0l6sqaskkg2tdV1QFqUW25FNF6sbiY0oT3ipQi0/SWu8MTaX+NGzR+s+RDvw8ruLWfkiFxoiQaR0WYFGaa8FllCKDTBtRuDQKfWUv5MOZ6u1GKf4IQ+fuuP1tD/IlXkfDGtPgglsePQYb9FAnUmKS7X5gb2mzo+huZ9G2v6ftX2O6u+v/GfrsCfGInxR5aUUbqahcECPJOmH9+Twoj3t0zz/fLRN+a4LkCLWBT5d6sAGBYs/6qhPCMAdiudop0AYXLtPvChm0l4OXmf2md9f4ySy2zEKOnDHfRGdwMam1QXqb7uuwBKkyFmIEOMigtm1uILkt5MrPPNMX+6kYO2ctSigENkAdu+GEgaY2xOyIifZlJdTiYYe2NeGmdd+pLEfzizzfnoPVdLYH5JX/gckwv+X6lFzaEF1dKOamL9TUXwFdnxoZKsXZV669lZp2Kiehli/E+4TyMWjz+QgR68aFcJBkiy/CjYjs5sYPw+wrgtpKLaglR/YEtBL96DQUYXgrnP0zk+tIq94Jjmc5aJDkhxwKnoNiAGHNF39+I36/ZMAxf0vWvJRbYa+jv8NsrQmfz9WYJnZKhkC4n8ln2rUJYHZfgDzj3tJruXTckxCuvTerKsDdTARdV/X7zK66PX3zvJSY2x+G867xYhZSO+wUAqJynZkOK0ZO0IuVKImWWJUSiyslGIheA8lqLVYtWSqbUE+kaoLmA2h3CgKn3Tlru+RBdBjAuM0LLtd1KheowGNuRTLaV0JY5iSpE/NNNvWdd4xNbYmO5Es8BV4XOCfDZ66iv53lsOF9FJVC/ZrGNWY79hXvh7Pe+b5XzXMr2RebeFIe14Jf7UXuXB7WJX58L0gyag4DC4t9FBXvKEIc5SJyITmGnSaZcu8NyLlpGb4kNF1i+JZZUQCS1V+/nLV+Y0CVGpIijFEMGYzYM/S1D/wXWXskgyM3XqM0bkhlwN6+Yrwb8oOX+15CqF/jy+lSM2aJkzIPL9jUWeH+oQ16KJVSbF5TGcGGLtr6f7QA2WK6vS36/5fO1Dcji9amVRemO1vJkdf9fAIH12dftvrIGdnS1bYkpknQn8xFi9gTXkRgjXokNVvHcHZIh5ngQkiDirSLK5iLEoLJXoEclI/YhuVm8WsqidIkJOYdoSANJCxhuzUBSAjrbtHhqm7Oi+Dw2NG++ue91RlzyEU9LbKj+yaytc1ruZQX4k+SyJee7ZGeSzj7Wl/PsJ9ffLcqCMk28eEY+f4Kcq53NFhCAZ/kHbfHWMgBlGO2c5xE4D8kprIsY53MD6OycaZOtFAAdJHeIzTls4kPbiPuhKyKszDpDhBwPlMXaqyz33tD3r+j6N5jNj8EOuN0N024gXCnQCtUljE0oDVEnUqNOVzFAmJamxFksiEFy4BjX9nAlLyhM8lYVWActNtdnq/6rjWEWi7Z2oGFpBimUAKOFiVdec8vgTZqFM7islGHOYvMAAg6pFAUMJq5yiDZG6KaRlNIaKA31fNvcVArVusKV5nZucpkm/26Z0SaJb33xkg7RoUP2Gz3bd+qwsbNmo1I2EwI2+XWNNQYUMFqON6uPK/AVJft2fbLn93F7/bZNfzlOTWxYAT8v74fn9V1SVK/c8rGtN1Q+ewnZI0u91PLCS65WGi/SQJ5QYUK7TfUEhQUAluux7FGLhUyI5etUbaWchxQV+IQK8eyez+erZd+VYXHndeJnkklWx42SK0h+IA0MS2e3OR5IncDmDW67xW0NqQOzFRC47xMxKrwH79eZpHYOFcS/PoQDIRzx4UQIYybxyH4mAGtpT1HjQnHpbeNBVe+2LPGUKhlG8oHMAM4vpdQDVe1GefwcDJb7+SIgfBFUu7RXrgenKkoMQerZF3K8EidMbmTK+wpYI/e2UpoQZiIWT26AoelTfLa/lfxJfG4RDEJ1EiPCTAzjSk0kb/+skdPYT1lzJcQL038SVymrzSGWe1Dl/5fWbZNLro7DMnD+pdpi9VxtXtjsDe1r+fQrljNUY95ZXNJJ7CNNOZMF1wkzys8on0ideuYT/NK6NH9A4gjVbxifULHJ5YqVaNPIfGn9sW0hgD8zgv8UyyXxlyJ3uzslfn9lkm+ReI4pNHJvLV274Ys60XczvGYYvsSYXfX2Y/OGZHuC7aq8S7sgifshrDz+7OER5gcJ4vMDh/G3zPNH6US7Bxns4PY5CVkknqWrY9XCRrsE7uj6UR4rbBQQKVvb9fE5OSqFfhl0VZKRKv9UbbD5FDBaAlWBD3KNmzegx+DEm0wp6UZmZgIsXmVFrtQpzU53VSpBgH0KhDiiomNGZ9sCmf6ttEW7DYU1qrRIPItvT4qe4B6I/oAOI0ZZbNcRbYfu7tDdLf/6+B1/Z3oGZbizPX893GGU4j5MfPATT2Gu4JgcD2ohLvYQhREsac+lQJnOAqxRy0CsS6GmtfloA7EvCW0GdcuQiIQipfUmKt38lDfOVqSPFGzR48OEzgW7tluwW5QyDP1ruk58LHXe5IxLuEmTYmIcFdYuiZzWwu4zWga7PD4qTh81akr0e8fmwzvC+A0+Wx4AdPaGmAJddysbZypTJLKPj9mglK9Mb+8fCWGSIXNxZs1d+MOXS6laY7R2CFOKVeIJCmO2DN0NXbdD647N8BVXVz8RJYDerGJB0gY/DBUEFhuYMQM9Ae0c5vRAGt/Xa3OcvquxwPk903xfPb2EtSByVp0kmHaoej8VSeB546LcT1UWnK+/6uuXFvl3O3Rg6TgLk1SGPCxSrHr5pJjB1rZoW1iBAKYUiZUVFJd/WekQo8u+UYmZwBgCXZYhb7XhFPuqJij3RClot9riSZXFfEozzu1lMIndYMwWY65Wib74Mw0LcyI3lILfY5zYlqAsUVu22694u/8n3oU9O6X55XDLz+wVPZqPcRY1RQg15qrmnzywDGdcX6aXr9lqr/MCTLEaHJe/rlPB85+sjJ7mHJ5PlFVJ2AMqxxAJHEvqK5LwTga95MJ9OceSwFYf1eTF/2wPx43CWpF1aV18QRd5FwjA8zFLOr2Hw17Tf/B0T/cwvpepy9Fj9ACWysZav4Hs+ZwPayvxFNZf2c1++JpixEO1xSh/sbD+enuFNgO7rSiD+uFHYv1w9Zf4269w221tAvmhSPdFGWQOARUi3eTonx5Qx7cyAMsfOI2/rUNhfRiZ5gcZ+JQKQ3aGBvTpWFjlXbZOKH6U5Tppve9dXLz+5hSr9DBR5N9wecjLcl8nlut5xeo9S0ZbpYDK90K1jchNyMIUbh8z5AI97/Mx5enz/kjKAyH3acb5kUNwKKW4DsLk2SVbY9qQrRSKPUSIDocjhMg03dN3H0gpiLVPCnTqDSr7vcqwoYGUX1uc7zFPFmMHQvJsNz/G+RPBn3ia3/NFitzqvtq5lEIaJOYW5mUL9rQNKapi4vL859oAU4u8s8QDidByQ/RonIrotABA57fCumS8mK0geVyGmOoL0sxJhh4NXuLmPg9DWwDmhPcngntAaUt3mjkeB+4PMjAWEr2NdbhLK/ucfWYBnyJzgHdPkkf0955hf6I7PIl0XxU29QulRWFl5WNb/F9b1t/nrDmrv2YSQWkBRJWhH77g+uonbDZfY8zAdvdL1O1fMd+8InRWQOBbjRnyuV6wK9IEw6Nje/8gnp/jB+bDrzge/lGOZzgxzR/zfBAvcu/G5qLkBn1mkRc1QJ/l3qtYkBYlVLEoKJ7wJT9YhhmWva2AwE3zhtjMnGgbhDFf07E53guEUDIN6duoDFqVpUlKPN5jmCmD5awZSEYyZa17tDKVxFCugmS3kpdoi3JGznuKPCZPdCcOwaGVqrYyxTJn0IZdsnRJ7D2OcRSv9egJ4VSb/6s8IrNMlbLibznK3RTCxNC/4mb3M2J03D/MTOEELAzeQZscayu/sYJiqRAO6nFeQy9tflGqsgLyLCqBRklEbBjB+kWv+/aZ6r3cgMHPlwB9U76IDQqvBRC+MmLzV4aP2yQ1TPCyT2+nBwxgT6+ZZ8VhEmB32+UGcVYWlldX5o7sR5F8zz7xMCb2R/AHRbcP9KcpqwjPqqnklytEm6WZnJVhIQP90kjIeepLb/n3WC43NKLSWHtNP9xhdMfu6qdc7X6Jvf4FmIHpi68Yb3u4lqFi2i6+qCC5UZgV0Sn0IbK9f0Q//lrUlNN7TqdvmeZ7nD9m8sPcgMCSXxerAA1ZJbyoA2qjUIGLsc6DKCqaU/S4vI+KKloaoKBzE8is9vdPrtQyfovJQP0mwIt1M4iaraS4iQZwVgUEjVXJGpXOFprlR8y6maR7+u6alFVCcqz3POExcdmzp7SA3OW+AsFS9mnG+0BMjtP4LV13LQ0OZaoFWNmbUhirraFYyWzo+tfY5Bn6O+5Pv+XeT0xasCiNYCQo2WfGPH+gvHd5/+X9fPpKrQBw+3kGhkkQmgYyStQCZW8oq5KEWL+GyxD+ch5LfnmMvuY+ndIYLYpOp7L/MQ4C4m1/+A1XH79ingZOg2G6TcyZ2B+6dVOkNI5l7sjydUyiOtpnNvA8KvSUUF7UIjEF9Hnjp7CBi5e4LnnZYlVWVJW/D3D/fUsVhcIfc/2ZEfzpJYkOddhPAUHGDPYUuZOx12yGLxj6V1iz4erqp2x3v0QPX4K2xO0r3O4aN3TMRtg9heWnXcL4iMmSbztNdE/3IvcO4lH2eC73nh/xbs8luXeReHa6eLtkrz+lX+zqtOxmAbeFyVTM/EXCRi5mczBpu/uF6YN00c6ZPmW1jJ+y2s23yDoX0MczxplTYWMkzybMeVOCnem4NT3XRgJvpzV3WrxUXcyd5jykL+Dxfs/ppHH+1EjHFvNtpawMk0MCb/AHvH8kRY/tbtmYDdb2RNuhujtev/of+Xj/H3jnR4Z44P9mv+Z/6a65VvAfzYZ/kz7yMUy4LJOp3W1yZzIXrylFoppZ+FmXE64yXEojkuyyMmm8FnclNdZNsI5pAe1C2RLzRqdyMr0CgllCZ6JYVywdxBi9sE6UFjlNZrgqZdkMb+iHrzH9HcpeyxAeF1CTBgczij0wlrlNcfkXZoV6n7j9cI89HVHTE37/K6bxt1nSaTFGvNeKLLcWdaWwqHINDxkEHsd3hHDEuUdSZsJ8DrPHFQ+stHheRQXojs7eMHS7av2w2/1c2D12h979FHf7JW67zex/U2OBignj0sL+D7GCPW0T6Bzs8e5Q5ZQxTKsCryfLhFUesKbMqsArnf1yjbXAT/HTbb1sK58wF3prybbGlGmqNeFazF9aZ8TS/GiXNn0t0Izu0LpbxYp2yaC3KRfoUQqFMDInScr3YWYfPRtlqmzr1vQiYVMQyA0jLU29+zCzTyPJC4B+Uhqjuzp0rDY2zCBe0+5BJOg5fvn5PTblATDK8uruf2K7+ZH4it3/e3yK/FJvuFOK32jLMTr20TGnIJ33JOmCLkArqsbRmIcaLjzL9Wo91svHlgFY/MNREJPsDS7EFQOnSs/zsxSQrTBEni8JZEmFBfdBYrvJ+0E555VJpyydFWueMpjTjge6wxdMnWXuUo4DiaOEcUxWDYAwgB8eFYePGnVKdKfA9e9+R3j6h9okSilU259iG7M+WOKEjfIkd58nY9+LNUQemvi5sUHkrmkt8dQdm/6Om93P2G6+xtgdw9XPUXe/xO1umM/AnpQPWwoKIqgpMRwmscCYTzA/MD39A6fTr4XtF0Yp7uanGgsE+FzatEUZVPKCbbZeKrGgNE1gYfYUq4BT9KJuyMBdAX4r00dpyMCvgMDqxXu3vqba5MnWQ+ml5pyqbPPyd7Xuc1NBmrtad1izPWMVy7kP4YQPRcIbmOcnnNtzn6QAPnjPnEJtIoutjGVQlqkk/tkzeEqB2T1wOH1Tvf6AnDeUwbMZCM5sIu8eUP5Q383N7b/k+vqviHHid9/+r4zTO77UPXfK0CvFMQ8RBLAqrhhNspahNkonUlhazYozhh9nIDB6ue9zAdeh0UkRVaJTwpwW+nlc/a3F429h+bb3SpGCr86c7pZCKImffmFAl0ZCZRKlSAgn3PwegOHxkY8PX/PRRvo+ZV+/yMllSyy9WMec5sSHY+LjQZrJT3uY3ynu3n+UBp07yMwCCjvUVHafKozNCvZIDI8h28XkKeUQP9sHdM5N0KAM1t5UsOd69zNubv9P2KufQrdjvnvD4c2OuNMokzA9bHuRx8Yow+/ipFAu0Z0iu3fvSPd/zzy9x/tHDod/4ji+zUoAL3Znea+UnWTx0DaIFcRW2wz8mJVvdR30lPeBOvcgA8EzKQ+7baweCrtdvQD4pNYluWKZ+fNAawfxnAFYMmiW7+elkoLosu9/bqbaK0IGe6wJ1TO+DIW19rr+ft/ts4+6I0TPPH3kIRzYhwkD3OqOrhN7CJNjaFHXnKIn+JHZPRDihHdDBoJ7+v4Lipe41huUNnkuyaHmEkpbhu1P2Fz9HJEXnzje/y2GbOeSxOIl6GzhkglK7VHRpWkGGWgv5zs14F4e+tvIr9thX3XOSLGIUAlirENmV0qf9LLv6DpmlVUSBSP2QRl0jDFxY/qqXqjWVko8QX2cxNf69BtsGBn2f8HpeMXxSnKG3sK2L+qhxOzVSkkkllIyYO7j4UKTKDeRX1zZvgMDZKyw+oAW+wD1mbFBiQjYmiuurn7EdvNjrN1yffs/oN78K46vXhE6w3xrsDcwbHKdp5cGuvcQvSLtwUyR4TBh73/H6envmKa3eH/iNH7LOH5YlIKruFAUdnLuij/4lbbPyGTtDJQp15CS82SMIM/AsXoQ326gVf5AbgZXJRak5nPyKxJG/XksaK+ypt5ozsDSPKL52fUVKQD4QkpxKVaFgNEWYzbojClYs0F3d1V9NHc3TPMDwYt//JN/IgXBGyyqktY22fJEyGkzcwrM4cDx9B1ad/TzPV13wzB8xWB/gjIbyY/9odrIlOGmJuMTV9vf8PT0j3wIE5s8jHWjLTf5tR6iwwVRoC0g8NI4X6tiUz0y7b9zZVhrG1OWaxr7ZRXCYMWV0jJIcvWvORWtFV1A7EYPyq3ik9V6UdeFJORLZsbpA9Pxn9i++5Ju+4r77Y84vYZZSo1GTXQOCPNsAPXDKfJ0Em/gcIDh6LPScFEHPVvair0UPKs35DirZqf7vPVnRvCfYJWNLqRYO1yBlAP2hi57SW63P+J69wuG4Sth/N7+FdPrv+B0uyUZiFuN2SZsnyr4rrMpSpgVcW8wLvt+TjJoZDr8KhepHzmevmEc39eELoYRlf3KCsuvMHvOhygtA0IuJ2QuidRaLBmK7+ci6RhrYLegFCZPvCwMHWMGKfzPQN6XZJx6BRzJqj4qldGcwZUwEcJUweEQTpziyJTEHzSG7GHceAh3CLNpVhnE1gEdZYM6IV16ec5AH06Exi+uAD0oS/QHfHrAuUdCECAmuHuMfyMhq7vm5uZv0HrA+z3vP/wbjFL81eC43jjmhyv+PpvFt0HxfLvSSmDdZ8fk05fmJ+0goEw7Dg3Qs9h5SGhqk/TLAPQlWZc8ECtoX/6GzXJGowe6/jXa7lD2GqxYaci02kjUimAUTitCvrvDDMkpiAlzTOw+PNJ9+A1xvif4A/P0LfP8Ee+PWHuFMYNsjDmhVsUbWLOAwKWom4Rp0Q5P/GNINjyLFcLcNEf67o6rqx8z9K+xdsv26mf0t/89Yfea0HXsX93gXhnsdjnWJlPgo1e4g6LbAy5gYxQg/PQt3t3j3SOH4685jm9F3hlmQsjeXjmBM2k5mwZh/3barAq8BRRYT4l2maJduv0xLj50CTKLaZF7mwx4tBLPl1Zhtq6KvyaJOPcDNWaDNZvF01uvu/PlvYcM7oQwMru9yNySz7FCFBw2Fzg701V/yp3O033TAnjPYcYpLzJyd8Tl2KD1jLVXUjzqjRxfb3K8yr5RGWQoG/XV7pdc7X5JSp7j6VtCOPCVUnzZeU7OcvVMGnehaHrWTHv5nm/PZ1mtbczSJFKrny+DoVqJf+WCKC2DJJ892/kjkRQR5rfuJGHOiVHtjGe2izGbyghOSZpJ/XES+wOnmLTKBU1b5MizjKPi+KjoP3j64ySNouN3uOm9TGrPtjSF8afNpoI9z2whdAEJpzoIqgCFn7tCyRkUGL3B2h3a9Fxf/YSbm79h2P0CZa/xr/6C/ZevCNfC+rXbxM1VrGqJcVS4UewvAIzz6MM74nyPn99zPP6K/eGf84C7WcDOMK4AunYISFEHgeybV5nd1l47fb7WxtbvOwlDYyzAHQUAzjLP0hBqGgCw3NPLELe4MHxSbFhIqTavWlCR/LqjbA0CPiagYQGjNFF3WGUwZpvvV1MncwNZBj8To9yvxmxQ2hL8SEyOKRzY5+KvNM0HZbk1HWPUzEZioI0KHQNzcnh3rAVhH47VD7++d20hCugd/eJHb7s7+u1PSVc/QsXA9dPf48fvuFaG10ozY6vHd0xlmKOqx0Led9MkCqXUW8eQNpYYtcT5c+VA2yQiNVYRheWTV1sqKJ5Hq/JIrIVlrIxwpWw+jzNTcqg8IKq1D0tIru3DCe+P0jSanjD7r5h2Ine2NrHpym9kP3Ern8uQWXjYi63UYa/pHxsFTZDhb+XcXCyoymP5Eo4pEKITq7UozYvPaRCBqGaUAqU6+uGOq81XGHPF1dUvsHf/kumLrwidZbztMa9hu5EjbzPrr4A9bpabQvmEnTzq9JHx9Fum6S3OPXEc3zJNH4lBVACpyr1zXG3yhDIorDDSrdJ1OBxILCj+v4GUfUBD9f1MSueaoCVVrMGetiEIa/BWHmhB4ZdA4Bb6bdREtLlq/l4elBxjxAeNRc57yvtuiRMFDNY5pli7xfrrrKYSGTijxJCQlmZYWRttVgDZQTlctjdJMTC7Pb17yg1SOUbKGpTeACNhXvzErb2lu/oatZXBkldP/4H9/d8C1KGwndYMGEwSdtxz2zfdAPIhK/3WDTa1/GTD/FuUAuX+LxZSpMwATEvucG4V0QI95+v8FSqlEKN7ICWiirWpUJpVBYDSuYZxKeCz9ZHWG+zpSJivmPO853nIA+M6lRtG2fM0W8Xsp8R+kjjxdAQ/KnYlh5ieCGG68MqRusIWz+C872hbbcRa5t/nruzIKjZR/RfiCWt3mKu/5PjqFac3PViF3Sa2V2IFAVRlZfuS9ZToT47udCJO7xjHb5jnB5zfM8+Piz/4CliVf21sKABgyRNaW8jiZT+mwJjKQGCF0cDOPXIAAQAASURBVJvchJd5MgUjKKvNsYq3f+18w4Xj2bKCL11lbVW91LHnTOFzNjCZUJWS1LExelSua2s9orOSIMeJrrvG2p0oz0yP0X212DgeHadwQkUvw3a14Vbp7BmsmHSHT5EuRXQMjP7IND9Q7Ei67lZentmQ4p5iTZlSkD1L38nwcG3p+y8wZssYTsSUZH5SBu1BSHwHFr+gohZYGjGla/v8jq0WoSx2LbrJIUis5oy00EHrEXxJLfBp1ELV1xpINSYYrSq+E1JiiIYORRYJSfNt/sBw+gYdPd3pDfOscT6rp8+sIhZQuLCBpZEcUuLkEuOMeAMfRXlXZg5dfsmCNaSiPCxs7tZi5nvf9x+w/uwR/F9/Fbq9I1VWbMxJnLVXdHmK59C/rv5+2myIww3z1SBevx2oLq0a49EroocUVJW/94cDZhpRp4+46X2Wex9z8D7WYQYpOhKh+nmVya+LF83S5W0HPZXV+veeS7yq5LMBfwQ01KDUEkiB4s1ZGHktkAPnQPDyWFJluNDz72sA3dcbqMq2dFefJ6VAxBERSdohuvo+Y0pcGSCBy6YJNgNhRJnAHZJHxRkVtBQd4ZjlGAEVbfUvk9dla8IISGfSHVB5urRSlq67qT87Js8YNIPXBKhSGpDOWWplLiRhAjc3oQx/yZJsVc7T2flLeaqmKtJ8tfrecp4b6Vh9xnaVTVGvvn+pkFx+YwGIWj82YcyMaH8i6lk6l/4gm1eejmwnkTRELVdtQBGtErabS5gpZrDYY0/igV07oimsPD/lnGxW5+pT65LP3+eukEQdEBAQWKkOpQ3Gbum7O4b+lQyD7N+QuivCsCF04verTEJlj88UVf63JHDdacZOkqTG8R1ulgFYzj0JWyWDwIVZV9lgleGzTHw1Slff33NFQB3slC8Mn2K1SqixgFQH2ojXn1piwRnQA8/Bn+UcLJYO9WdR9bXHSGVKKbX+XQFc1vcitGz+rAhIAa909qyWe91lJnyX5attQ6wtZjQSS2NKeCXTkkMY8brHwuJNHcfq+aeVgVxElqRNNZNkVY47WnecnOcBMN5yShGTk7ZOaQjglNgMrblOnF2vqn5XYnNmELOoBcpNXKxjfp/1XGx3vi4ljGn5cEFpIsM2G0ZoVYqcsUSjR8WIcZlV7zTeJ/SFSb/zDBzBTg4zT+h5FH/sOIlsK4IyZgUGX1yNX3CRfLWDHT53Fa9VMkCqTY81A8ZcYbtX0iDrdkTbETtV8wN1NoUqxgwCe2mi2dNRmmPuAe9kIGxoJ1ufgd0tk1SaxOIBLkywhg2eGz+Lh+syAMrnhnABhYsySC4ztdoTztcz64dPHN/CGq0/r/gk+7KoUpTSECaC7nA5r9C6w56demkuSfyI0dFZAQV1FObnlDwmBrxK2RLCCwhcihFKXpUwGVAOPhddeaBYzGBCKRoWMLgZOpNnDxQWqtYDhxj4Js4E3fGQf7cM6gsI60qzngWQnsWFdaH1hzSSLymJXvIEfV5Yv/xMMjCu/J6oisSWswX3SiyjyoZr0RVFGRPa2QJB5ggUy5iQBBA+uWW2wDgqwgybZrZAyj5/z2JCDKKvblct5poBhH+k2FDSNa1NVr0IW06bjVjFdZbQifen0mvJd33JUdVcwU4RO82k7AXs/SnPBXALsHIh8ysxoTC/2n+QZer5LU8prCbSuxwTWhuY1ral/bi88YZQkOL6fv8UCNz+gfroGvBJ5U3VR86y2HL+ip2ZPkmuEciMYKABsSXHkK+tGfBmk+MNTNFxCG5lodM21I3SmBSk/khK1EM5N8aCiRMpBpR6Hq/lpXpUmCDfC17BO3/CpVDvTwFExELGRHUWJ9dMazkKqj1SL96xrX/40jAS25iXLKcur5ynfE8MlzoHyM3mUnc6lmHLZXZNUb8KEDzQe0dyCu/luUYncwNOLq3UAiAAsXxPvIG9hzSB9k7UNZ8CejLwkrS5+O0/LtijcpdIZyA11zfaSN2k17XD+SqqyhQUxgeM85hpFG/wMGcLiHxtKA0pPNt386tYeQLXeRI512xrhDIY0pdysgwP1jILROuuqvvK8WprhDbXTyCxQTW2cW3cXYHA5eP5HnTu/bveZ1T9O8ixTlEayymucNGUiQs+5IZSJrDF2BPCsl9o3WHz+9J6wMUTY4rSXMtD84q9AZDnDojSJxFEyZgxEe8PkkO4PVy6HrOdWpl/Y+yG2clerXN+1mmxvjtGnRsubS3/h12hKzsICrlsWYVAFFKq8aIAxNWbuMGaPv0qVK0jUqJasKIkzu3U0rC2ua41+RqMycvQxjChw4idHN4POE8dQC+Ar5xg8QyXRqoLKceHVOOE94AXpb72bo0fwMuxAp6dN7nWl/zss9cLKrvP/KP/Bf7mH3f9SYHgUwwoLZ2HpKwAXMqw3bxhd/Uzttuv0Xpg2P0Cbn6G291c8PNaaqRQAOBH2DzO2GnGno7ox18zHX7FHA4498g4vuU0vSeEiRhmQjhlebCAPl0SKVcBe1q5dwsCt6sAwGUaa9lo2wm/Caq/l1wbqgb2IsskRUKcVqDwiytLxJRa/mkz5InBEliN2S7DqnSHUdtGvhBWybgPJ2a3J/gTKUWc3/NtnPkY5gqs3JmenVm6j9emY5sskw7gJx6jwydhVstG1RPCjDE9AwjAWLz+lMHaHSEIuOPdPemwFBPabNhe/YwhjNw//h3fzE/8tv+CMWr2KbHTlq+7K1yKPIaZpzAz5oDtC0d3BaIZlJJEOKZZmFe5SC82HaUr3+Wvy2k4H9wBVH/X4mUdMjs51HPbyHhT8bFpGQNt8MpS37KJR0fA1U6qDCp8RCmDc09s/JHeiRyum+/ppy/phltJamxHzF7LKkbMNIq3XRlycvqGefy2FtdluF8r59N2V73W5FqRDVI8dJYpnsXnL4QxM8xnnrFRfsByJIExs8SzDIO82v6E27v/ie7qp2A2hN1rjq/ucFdWhp9tFd0mYq0kbd5L9xEvbOjrd/fYj/9MnO9x7oHj4R85nr6pr//5tG/heKq0SDyLn1eRCw3K1E27XCM1FsRQ5d9liFLxlfKI5HPxjL3g9Zc8qU0QVjnY2t9rJQFvXo/EEvEuVGGsMaNYRSglNg3W7rL6oEg6tyglss4+e7aVoRfTfM803UuzJwY+pJHZHfnop3pcrnVXGVA73RERy48pRY7hwGl8j/MnOivyb6Ut1t7WRMDYXfYklRjl3SOAND46sOYONAz9HW8Pv+Zfz498YXpJ2JTml/0tLkXe5inuPrgK84rNx1yPnbCw5fOoQm4IieSoZWmgpKCqPn8XAJ3zoq61jSlqgQrKEDKAk1bS70VSJlPAhdyTUEk810pDEFidQzl/zbaepFjpThbtDA7LhMZ1OYZlIFQFAT6u7/f0D+8F4JnvmceiFjhh7ZbeDCuvNaUthBHS2sursHuETX4Sm5E/Umwoe6hWA/3wRWb9bdntfo69/gXu1ddE24liaKuwvRR3BbyUuCCDMs1jpD9Jo1g9/COHx79lmsXS4ji+ZZ4eiMnley0P5szFXQv2lDzhStsKXpRhaEAt7uYMTpznBcX/V+UWtMrKgOKJJn6dca0eOW8GPTu2ucTMYAAXwOBlNeBOSnn/EVuVGGdimNFmT7GKWKyKTFaRiJIEQOseaxfW33HcMo3veMzD9I7O41Lk1iyMmq227FQn/ocu8hROzHFCuT7nEQNd9yjsJ3OFyfLzpJqhkhkETmFEOVEQdN01J2353w7fcKM7dqbjK7vl553EtW/8kTkGxhwL5D7Lk93LMVYKlaQDHpXMAVA5xFb2VkqrPaCsMuinDp8trL8L+V2q50TnIlqA3YJLVJgpRcQ2aA2UCEO4EznpqjCUONJl8KP6r7s9w37ksL3Cd4qjldkCLr91rZep4OMMH++zbcyU6B8dw8e3uONvcPP7prmf84eSOxQ5uBariBbwKTM3QpFOp/RcHfUHLwF3rNky9K/YDGIZ1W2+Zt7dMF13JKvQW7BWmMBlFaDHe4gnuP54ojvs0ad7xsOvOJ5+K7EhOoIvkvXLAHbJFYptSI0NCNP0FD2P+f4dCxDc1AhJFSsY0MqiVVfBHznQugI6sm2VYVxFmybDhat8+/dgAT9fzyGOpTHVfC8FfDjJ98JI8CdG9R6UprNbuu6Wzl5TbBxkoO8gkmw9YMwW7w/4MDGe3vJdGHmKji4zJW/zjBCrdLWpcykyJs80fxT1QTjRZQsKsY05nz2QX2scieO7+vjQf8nfzu+wCe50xy+GG37eXWNQ/EYdOATHqfrxZxisAhap3qcSYhPn6UCxYmgZfwW4KrZSIPtE6xEaX4gPpa74FOScMsDbjH3CEdhHx0c/oVF5ANcC66fkmd2ecXpPiBP90z8zvP+SfddhegXEahFjtFhFGJUqEPTuaa0WGD46uvtvieM7UhQLxpieA/NlqRhWsSGmZcDsqpHxGfFBLIX6fE3eYLtXaLsjDjf4wdaGcWsFAUtcKIPiii+wPTzC+J55+o7ZPTTs06zW0Kq5Vpb3YBB7yTI0FSQ/0EpVK4gxSpU55xrImI1UCLrH2A3WDDnWdlmd062epxxrnWuzmCRWRCCVvLcc07ynyOfrveN7jymcqQVK3qrW90IGxhMhs1J0bjyMuBzLXHdkmyLWhkpIKUSwYi8zjhYfToxxxgep4W9iHqqerWR2CEHM+4nR3eP9Ee8OOS/ZYe3t6pqoFlcFKEb2sZvdz6RRFSYOp294lSKv9ECXc/+nMDOrZS5QbK7NMv/jpXtV0zS5WCwES11Rwd6cD3gVv7eBHPl97w/x0CcGFKHOgB/ycXA6ctI2E2Eih3Bimj8wT9+Skmd4/Es+Pn3N4SowzdAZuB6SqAR0YQRLvCizBfaTDKKutjGPgc3jHnt4IswPtZmi9URFl9php4VYUs9bo2BVz2cw/dCl/swI/q+/ZmTDUqpn6F8xDK8wZsvN7hdcf/E/E2//kth1nHY7xlc9XEk8MX1i0xeJp2KeBQROURK4q/uR7dvfkMb3hPmBp/3fsz/8U2b+Tni3z6bli3F7ywDuG7C3zyBGLfDOJMIuZUlniitPn8LwKT6GxctNKYNtAL9zOVeKAZLLHcLSoXupC5fBo9ztURR21IZiK1HYwaWYsnaLyYPcgBWDzPsjzj3VAm52j4zjB3yccNExxrlK2bUSYPjadGwyWxcgZs9gnxzz/Cien3HGmq0kfXZXi9tSLJTErVh1AHTdLcP2J+IDDVzf/zveffi3/FN0nJJlT+RaG37S7XApMmgjUpowo5JcW2Xg1QKUW7TR0jUNi5tvCaI+xVqouRSY0wv+a1CZXQUYrtNb89/TWVa7DOhSq45oARCWnoCqk15TmwSBDOiIEy5fNy4z1Zx7wpge7x/p3ANm3NWNrcvHVqSze5w/ZGbbJFOu/VO15GhXNdXvhFVHDNJBhcz48a19sviwhbnKp5fhOp+3vMoeSna38vPaXf8N5s2/4vTqC4I1uCtL3ElTSGswNuahWJmZEEGdhNkz7Efsx3/meP/vmKZ3OPfE4fQt8/RRGH8EFm89eQ/nEs8+yzpLQ6h4VIE0C6bM6mljQUnqPElsYCqIl+/LM2Znu6qH7IXNpBR3S2HXsFXqKVjkWyos3VOlNCosXuTGbAjR0dkrSZazLUXff7G8tAb8n+ePjOO3OH8gRsc4fuDgHjhGhwFuUqzDV0gLAy8aOS7JT4z+IICTHzPL8Kp6+QnYI9dzDCNu/oDzT8QY6LobjNnlw7Vh6F9zrwz/fvzAlba8sRt+2d3w0+zn1SnNxzCxD67ebyuwBwSYTYqEDMBKGcwvYI9LEZsiMSk6I1LL81X2hjZUl6ZRav4JDJSbRNqQQj5HqySu/F4UX8bsKyqFaLYASFFA8ezhWkAYczYQQ88j3clgbIeOCe8ycz7AMDn60yTsHefQBxkcGbx4fs7zB+YMfgBiz9TdSXxop7NfaBIBOTaIf2x7vD8nQgSlMAgAebX5it3VX2Lsjs31XzO//gmHN7ulKbSL9Nk+bynspKDjCFf3B7rDE+r0kePT3/G4/0/M7mnJE+J0du+1rbtGHYDiOnvqF8uQtoEwRSnESyxwPPf9NDlHWJ7gnPXXyDvL6/jeJLPwjQq7+FKlcP5YATt8DuVKGrteQAtnerpuyrFC9qy+/4Kufy17T+8XUDYF+v6OY3ddm8yn+SPv/Fi9/m5Mz2s7MCjLUYvHLX7MjbORcXyHNQMhHDHmiu32a6zKRXzjDVysZII/QG5SWLvjeveXvDv8jrf+xK0f+cpu+RdmQ5/P3zs/ch/mWtQmQva5z6AKCpRpQLb2Xv7+1dpFXBoym1KB7jIXM+dyzz0Yl/MjvycxoVTiL/mHy7wEg7GbrK4IQoLwe+zpSHcYCFYzac1ex2ob0655FhB4eDvTnybx/dz/itPxn2se0vdf1JhdfMRlyGz+I8aeqQVCtSf7Y8WGAvb0/Q3D8IZh+xOM3ZGufsR0vW08gUX6XRrGBegBsYXo9pH+4QPq+B1+es/p9BsOp2/x7iCAyv+fvT/psSxJ0kPBT4cz3HvNzdzNwzMiMytrSBab5OtuoAGiF80Va1d/gDsualM77rghwEUR4IpAgRsSIMgNfwgBPuChd91oPHSzH1lkElWVrMiMyQcb7nDOURXphYio6rl2PTIywvMFH/ppwMLMbbjDGURFPvnk+/ipuZ0V/Y65GMKZWexV6IrE2pKpmD4lrRFmh1WN4J3tzdq0Vam4dupjZQDXfm0TDA4KBgNYkSKegr9PWYtu9a8SI8rkohAcmLkQSizvyziU301pU8bTnQsY/a1Oe74Es3qD5INKCB3w4CMOxy/wmI8AJ+TMorWuZljXocfWi+HZQ57xRZ4kf8szlniE910ZAbfVEhpEx1piRggDnt/8DZymW6Q84av9X+InzPhtP6B3EsO/WI64J4lJEhtIGcdncZqrXRFBftfryHV0vphGnuuHtyzhgFzZoShD5qszVWP4+1qqVP7SGK8MQk4L9pQQ8wyvv9VK4zgQ0rLHafoSOR8xHj7F9s3vgrqPkAaPe5K/Om2lOdRFYOzk6+MiIPD9vcNycuB74Nmbt8iHv8IyvZZ4k/ZF5utrl04WtCzBDzUt4IPIGcW4E08K9VhZBpkuNr9U33yYLASRkxiRHLrDgnj/Jej4WWMOJ14i5blclHOs8a8aW0HrhoC+yfttavhACQ+UBDOAEKn6uEPsdqpPbcCvJDVepx7aST6iXO5JslhRZDbyihHMbCBwC+JWcBeo4OL5ANyqfoXc/jLZWI1VGdJYhjbNnuqR24M5EKUCaMt9/EzOU9hCpF026LtrpCws7P3+l3iXT1goo/MBzxqfkoGCkPHyjMQnLMuMw7FHF6/Q9xO8C4jqS+JcBNEJWaffLFY9e/bXcX39t0A04Ref/Y+Y5zd4ETpsIIaSr/1JvAYc4BvJhvOjdOluLWbiruoDG8HIa+zpECD85uo3Qho72mNY8pF16fGeTE9id3YZJ8jE46T78UavoQWxGPKdOOORZszLA6bpKzBn7PZfIdy/wuPOoe+Bh55xNapcjANmz+jV3EKAYMabPbBk4O09sDx4XN/fiwn1fIe0vFNpsQlEvR6fM2IJgEtsYJNOI4cP0ER24N+AWdyHkMP7Ta/vVyPYaWfEdzryLTd9P/5AErfra+QYMF91cFdANwrYY518CdSMlJwAcAS4DMRpAqY75PkOy/wa0/RaRcdPhb3ISAXkCagsLuvYmu5lEdPWkYDWEARYU/KrTmzD9HE1OTU9N+vs20gcqYuvLROWPw/OwHmANu2/yjhlDiuXzvOLsCTpruo9rn7mAlI+lL/LtMCniJxnJE6YmDBwRtRkw9gOALD1EY9OQGxmwsJiWJSVoUw0PTEMaJ/fRkDFLVy7+N0O7EWf8MCER87YOJGG6OFx5YHMAXteVPPKFeM4K5xrF8nLYVUGZhs0y+h387UxAIEzWQgDgbn+fjlj+timBCT/MjbWOjivv3aoBZxZStXNmsFwLIIY5IXFntVsywCg9phS2jeGGaKTRllGvHM+iMu7nuM66t1cDxaIkQEfwcsJ71uStLXSHF/HV/hmy1SUvIsIQTv4cYvQ3yBttph2Kg0zOIRB9MEBFBDYeznaTIA3g7i0CMtxflv0vNKyV7Anr167JUMtYB/ONu/2QxapSY+N1NQxzxILYEyfygAvzZizptCT750lUNUAyv6ivvZ6/NuEwZJR11xTDgwPuBme+sLSYk7aQGqkGFSOgTXRtGuP1OxHJismJFQ5HEAA/Q6+aqA50RUW0DUB7Aub3HsxjWGfV916AEWDlHkjhaf+LCiz+UATiBlXvkNwwI0Wa1e+mnk6tqOiCXALtukUiCuSIGjuQhRmHzVx4Zssas6EEDPdGci3frCmX/Te1coFAXYPr3Weywg9SePLAwjeq3yMGEz2R9XxSzPcclB93LsCqCWdDlkxD4uTLyoYfKFJJK9BixLSPe4DNIms+em9xIYQdwhxB3RXSEMPGhzgNS7ECgC3iwhwieHTAreIVE5KB2RltAn7PTWNoXNwpC6vI8tdk9SL7Eu9B1Yj37BYYPdVjQW+NFvO2b4XiuFfp0B2lilXSOHrV3sHyH0juyqByckkVaNL2MoJAUMZy2ZO6NIefSfg0OI8UtpjyUdpmrnKhuudB0FMtAaVfREjo0VHzk+F0SomulVqqs0rWEc8mVCMKPt+j5RPOOlUwRWA3gGbtvhqi6vVdbrW/WuLuvMzcLkYvLwusYJXy7mvCQSWTZCcV204e80v5T1Q+bAxYkDiaAhynEQ2RnO9JA2SeX76uuZZGqrdtIjE2nJQFs8BOR/0+WrM/lpJKTNJo6eMv++6bNKiaMaGQTQhY48cBQT2sQI9wDngo99bssTD9IissYHyVAyg5DW//3V7lYkpE4SojFBAm8KwSRGJBVYj2HlcyUAYqcDep/NlKqTAuzYWft5AwiXY8BIIfJ6hAiX70dfdgsCrv29A5hI3WOIE0QKiGd73IMqlBgFqw9J0hLvuGnF+wEIZzMvKUFOOnS9AamJCl2ecOCHTDEex6NAzr2VKnIuSpzbNS+eC+G6EHikdcDj8AhmMjXPYQGJD1JzAw+ZArAkjmcGl0f9L63yCtDWZbSVjvm61Lchv9Lx2zWgzzyay7NyVcXNIaCNOauInoIyfj4hTAhCxTAEpOUwzr+6bQFUOIs1isNhNGS7NJT60pr/f57LYGHwv0hBhVI+VUEO851VssFVkIQjwxMp83yt4NZVGd6n5DKRir4ffldzHAcVjCKgTZ1YviM55lNaBHxDiBl3cNnGtmjyb9E075dvGM+e+2XFf1T7n6W1zmV1qD136nqEXjhlGYtAXiDZulpqFncjF0QLiDMc2xSwTaMwJnZkVp6PkG+E1Ep2wgAHKyErW61xA5wi9Ez8jMGEClenvnHtAwWUARWLOzMBJ9YRDvEIcXoLzCV3cgCZh8fcFI5I4GLi2Zp7ewV9/T9u0QPvvS9MC32a9/6+qGW12shcBa7kaYyknFqJkLp45E5BPCImQ5oDkZYKo6AJ7B5AAwME7zFkmBpYsU0UpAW5h+GUB8gTOVZqylfd6+ma+Ri7iQ673SNR8p/XdS57f+PpegWDrh9oY1zC8lG7d+DHS7hmm3QAO0PFOeqJLZyOe88mB7mW0ddxP6N59jtPjf8U8v8WyPMg4Vzqps++ZaUrzIYCFFCSjun1bwDZQcCYq7AXTlzsq68+KvVlHMAwcNFCSnQc4Fb3OSyYP8qJqAVCDKgBcGp070xamBVkBDqcjnXN4FCZyGNCna8R4VQxfuu66gIgSXAf0YVgV/ksQl9/jMeGQH5HyjAhXWHEnn8v48+gDPIvpy4IkTFQWp9AYxlW3Xgq5CAdh/XkXkC0oUDU7ciwb4ATGp2mPUxhx7SNeuQ63rkOG6Nh91YCVjiVZKzqHAFq3XwHJa/eeHFd5CCiYF/gi868V8zctp9YqREC+ajgjRZqz3LhstMWkhrmYcFh/3gzDWhF/BgOOkfMJ0/QOSzoi+Igl7bEsj4g6Ym9JtbG+c54KwG5gGumGazp6XfcM3gVxXTYQ3oKvGkNVbcH6mUj08iTZS0+v5W+7nOgChzii727Q9y/gwwjXP8ey2YAGJ34YHcPHtdZfO8aFA7C5b0Y8T59jmt5gXu5lXP09G4zdtw7CBHZAiQ2tFMREuXRUJ666nwRx/z6x6HtZCmjnd/1kT4/ZE03PFTBx+RgbI6n+XVu8YfU9fdDScKAMJBwKI5eUEZfyobBMbSTbiiiLHURTMQNLygzf0wlv0qlMD5ippjFkBhdwIkLCAsqEZX7A3N0JSyhuxTBkxdiN1RkZmrQpG1AaRxvs6YiZCFe0IMDhRSAEAF+yuAt3kI66dO+NnZALKC/JUcKlJlFrHOPZoVuN+tVj2jaJipsv19ZOW2pLodAW1PVnXmNFPZe++T0qcc1A2pQnBB9L3I5xj+Bl/LajhLA8B3xEDAO6fgP2Ho5INPyWPZBPoHxCml8jpXuktC+PFcJGGdsb1dbTTr3l9znVkSpKhfVHJe6c67d/x1WmO3TCRYFg7rbIXQC8ezLmCTSsnpbZ8/gGdPgcaX6NZXmQmEBqDulMU96OfW0iCJTejni6cp2YQeJjXjBzvhgLnI6wFyPIS+APGkCYUff+9zaHLjSS5Jf0O2tm83vjwvpgr/4GUM24fBSJEr3mhLk/wflYJ38UfAlxh75/LvtMFPbfdFrwwAmRM5CkobyEOmY5uoCoRcUdz5inO2makxhLxnhdtMWBKiPjXBCjoRIbErp4JdNmecJxuVdpF6B3jI2yNcck0l/MGXNxIGhAL71XSRuGJW/gmjeAgC7UfOCbrtr2tyPu9NqTf53fN1VgRuM3s8I8ogl/3kQosmElD6qeDGE+Ik5bOIrIB4/Fe2SVXGMCWJk9bmJs3p2EJbscwPM75PSoj28GgkMF+S6BwZwACnAkDcAV46+w0vDdxr9hTLpu1cAk7yVfaEAsWytJCELRP+b5nRhlpnukfFo9B7sGxi9sUDmLQi5Z6z9OnDFliaf7vOBACUclKbAzrc+hAkhKnrDzZyav5TU08cEDkvPrvy1+GRtcvBvaK+z9Op+u+Z3VT8xbQ45eraCaqUV75PXzZKR00GMujYgQ+hVQa0QGDgl9d4M0iP9FSgcc0v0qjxicNIlMcqp3HidekJPsg9P8Fv18gy6Kd0YIdUpOXlFaMVND0FzZST10pITHpkG89RHPfCd1ACUcQYDKOUGPhdemNli9PfQImHRcmQzRrAM40xAvoI9KyaCayAHnzSXXNPXWeSqg00KOAQ7KBqdyvSwA9pwLmcgiXAaLCVmTYxBNQJ4QJ5kaTJPH6STP7z0jJQF2ghft8Id7D3oHdFPG8HiCO72RqaLGJM7qTO8HAd8u6Ik7qnKFUqOs49mHwlRanfTV91XntE4JnMWHxSFOM2iRBlHW+tY1+3fbjPF2LPU+cWe9lqR4wUKSJ5yYwE6IT95FrX+u0MVdIeq0wK81vGzlcm1XSQqLs9ROC1j8XbkSXM4CLgG97ddtQzODi5QRgZFdQvHlOYstq+MO2Y/Ssod3Hql5f0X6SXWCu05+1vc3OOUTHnlGZABpKiawbbyIuq+ndMA0vxWgN86VbAZUIpSP8FS/Z6BkCCMOlPCLdMLOR+wpYfABL8Ige3+esajLg8WGEqPBJRa/b7VNQosBNl240phv4gJzzejWZ3B9LteRnjV+2N0vGMd9nvHGyx5n5qWGbThAcKTlDgCQptcYHo9YdleYFo9DT7jfyrOYPEQf5Ovj8jUms/M75PmuElaMzOLNkP5pfGhrwhoXdOL6vUf3Gy6H3wwQ/OH63L+x9b0CwbJR9xjHWzzb/Q62z/66dO9vfhf722vQCwfnga4njONTPS9Ag/M9cPX5YxnxPL77f+Pd3f+CRcGeZXlEzscm2VwrMFWNFmDwATvVkrOgAtRN/X0F3lIe0DWde1f+YxuPMHDv0lVbxkdcwyxFYbHpL33NETWGcdXey807dS4ixivEbgfnPPruGbabjL5/oUXpgK6/KklTjNcYhn3Rke26axwOv8SS9ki04JRnLJSxC105htehh4doHVE64kGZqD4fYfIU7WhG7J5XHcSGWUI6TuTnd2XzYz/ivxzf4Rehw+8Pz/F/GQb8D68e4D1j89k1fh4H/GLZ13Fs0yqGaCsVTVRa1KV4hphbVgAflGSUix06lm64HMd6N5v2a9F9ZCoaQYXxqXIczkc4SgLsFjEJWRb4PQuLvGhAOtFvrZfFIqOIyAADOWeRNtExPe97hDDCa4IQfCwjRPXc145x+1lYGM8wbn5YxzpVj6kkST4CGLWhkcT8IQm7Ii13BRQwnVp9xq+5Tn/1Cl7ccIf+BpvNx+g3P4bvrpCuX2G66oCtMhJ0vNOaRFbMEYlz8ebNCcPnP0M6fo55eYeHh/+C/fEzpOUA0Te2kUbXbKF1I+0gbqpeP7cyMUdKuM8zZs5IXK8hU6LNrtnc5EB+q2NRj6kWexdjgCvvoX6rAsFP/uZMSoI5g9Mi5iDOYfY95vkeIW4QfIe+u8Y4vsJQHjqi62/RK9jTddfouxssSWLt4fAF3qY7PKSjSEX4Di/igCsncXWt9ZcxL/c4nnrk7iRGiCZzEHcFeI5hW5ocRBOW+XVJDMbxFoAkwnfphB4eP7o6IQbC/Zsr3IYRX/gDHDtkSpjK+Lfco95F+NBrojyDkMs4aIZqu3o5Yp7FZdsS4LaoW5CxEJUkisCFBVqjuyqD2T5xxtY0JjoY1STEWAMGHmgsAABnIIXziGGPlPYSD3yPbnqNcX4jjFmg6Hc6FwXQa5yTiaZimmiSOiFs0XVXCHouYn9TEzQFg10YFQDWUfBFzD5zeqxmax+wSeR9Bx/6oj8Z+5cSGzY7pMHDDwICh7MGUVLmEiWHvAeevbvDcvefMR1/gSU9yFhsMr8AO+4RdaSx6gQHBkYX8Cx0RecPkHwAELDnnpbG7duKjSh3qg/wrquFI3CRzVfBJgV4bI/gjKe6n2ug91Lh5Zp/8er7VTbGvlOjScsOlteSc7JZJGH4piNO05cyytpJzI7xWho4cYeNXn+UTwhhi33cYJ4fkPMJr/Mj8kx4FvpSvF3r15u8IKcj9ukeOZ+w2HUdn5V734ex6IMSSUNjnr4oRdw4vETfPwfRhOPhl1g4o3eMXci4oYiXYcRjXDBxhk+TNKNNTsN5ON/Buwib3mqBCWsGe9Xc7FjY4L+K7ds6xBsbrO46vgDP55G+bRsxcpGNYfYAMuD86vW115blJOW10wlY9uj2PaIPiNOA5bhB7gJcpmKI5CjDLwvCwxdFNobyqWi228Sb94OMW9t45SWgB5Owt5RNV4GJD8MYlFyo189byWW6K1Cn2sDNLbYGeRyWWTxGcAD6hzvMh09xPP4VUjqqb0AFCD18ORnECzgnOAV6AlAan1FZVfu84KT37IEzJiev1XQ+Yxh1Us8X8yfL3/zZeZPr0ED0jJzr1EVlgWclvRiQRhfjASBNx3OAp2191eayto0dnQ12fM21zqIRT3mGc67E135+Vxi5fX8rI9o+YgMBinOekdIjHh5/jrfzazykIzo43IQOH7kNgncYvMRfZM0j0h7H45cIYUTfHdB1zzAMEbG/gfOj6APnU7nuvDa3fT8i5hO67hke5jd4wwkZERmM2zii8x4nyvhqEa37ZHalzlcGOgfkTCBHxWDWJkOj3o9WSz4xkkSjJawgcDEa1eNP4GImbPqjgJhel7Bsda01kW1SAJAYRh6Lq02BlroS/LhutFMCFqmpfRpB3mEKHfIMODWJs0syz0B8TXj27kGmi6YHLIdPMc9vkNIR3gcxco1bqeXiDs5rjDDghRNcTqWBLOZrC8zEvF5n36VLdLa/kkwwOcorsOYpAFxjgzsy4vGANFfDeeIM7ztwoBJnzadnSQcgH+0MQt2Ayv6QmEpTiBwAF9F11xjHWzjn0cUrqdnjRuvgAWZ0d76YxZA9PZFLWpDVZ4ZUHpBtApLzCg8per8XjrjFhdIidaVVevFwExiJrUVWZ1xXaIaltWAwL8IipxnexaId315DXXddSCgAlAh1REoHvEv3cOkkfkX6+m40j+jyjK/yCcfjl1iWPfr+GiH06Ppb2GRCAYNDeHJ8u7jDOwf859Nb7FTm5yb2eBU3yMz4b/MDTssecxsbnPmAMCgzyKUSG86nO23ZhMBKQoZlqiTptbuA0PoZtrrB55rE1XdEGsaGGbSmaBNOeJ1Owv6FK/kIIMazDkDOR5ymNyCacTr8HFdvfgc7/1tYhg4P6OF9xkFr8rEX3eDggdMichB377zEjnsW2ZjHvyyThykdYAaiF6eJmmZNnUadK6PbOTj2HwIKfq9p5Xd6zA/+iB9+fa9AcAgbxDhg6F9g3P42/NXvgPoNDrcvkK89hi0VKYi+r0Vdsmaesv66fUb/7nPQ/lPM02s8PPyXAliydRihXQdc7nDZJty7gF3o8Cx06BCwIONkLp6q4WNafxms2l6iy2t0e240PauOp17M7AQQbkChld4UgCehtfzjfFyUV51+YSoxYpPYhebPZ56xLO+Q81E7bYQu7gRgCYDzwqzy/XMAQKSXoHwCVOLBDGLm5R5LOuB0/AL3+YglsyRpcRCxdt9hT1JYpTRhRkLOubD+ABQml4x4jvAavIns8yRJW3osAbrvr/F2+gKPKePjbsaLmPCj/yPD9wF3DydsF9XYLUdIGETGvnIuoItbYS4uB2TUYS8GyggasZhNLUQI+rpWYI8CPTa2Zs7vtT+qI/++dohbdhk70oKhwoPt4wujpbLD5HWJmaGDNAY8qDgGZ5aRF9N7lcK1K2wzA8D9GcgAWOE0oBs/htPz/vSXQk3YEsAs54XypHIeS73uV9fot0/afBgR4oC+u0bXv4Tffgzutph3O9DGoxvleQwEFr1weU5j/PEEDPf3mPemZfiI/fEzLPN97ZyvmDLrZXFh1ILORpZNE/gI1VDK1guuI99wDh7m7mtslHVssFUhgF99vJ4y/doX3II3zfim83CreIQCT1pCIZuoxSggs45zKiibadF4vStgogFwoITY3SDGa+S81429x37vkdIjMotW8g33RSZi62NptD3Qgtd5xrI8AEwIcUEXd+j7FwXMEaaZ3CtW9C55KmDQ0D8XneN8wv7+Z+idw/PnM7qB8dFDwnXuMPoIUMLsvEr3KHsGOjIYBpDzcLlTYzONC3q0QBnkJDbMTPDN2J2xaVrtcGse2uOUQs41zUJnQ6fNacQ6+a4/kDE3K/DL9VCuYScTIWrO6XxEimJ+6NVEzth758tGswzIJ1oQwliS7xDEPNLHKyCMhfUrryvW7czYJlpwiPaXsf/q6/wuy7sOwfdaJF3LfhUH5H4ADQ4xoox4Amej32oo6ydGON7hePwF9oe/QqZZ5KOaBFOYxwAg77VKRGDVNO6cjO9Zc5DA2FPCgQlQsCdoYbBi/Rad/rXER7uM9W3APCCH0PKJ9vyfG73IXrE+dg5Po50xz9/PEF7zTWTvMk4gY6YjeMqq9R1B4yz7e9gCBMT+BqF7LtdNPklsDz3m+R2WtMfD48/xkPagPIu8RvR4FjpsfYfRBxwpYc4TFpyQcsY032Ga38m5NfPCuJP9NgWk5Q7Lco+cZ3TdM9EvHl5qDvP/wsyEzjGGSLhagBehw0McitfDIWVMysuT602YWUxJZMXcAta9l5URbCazCxGyE/kbW78KFObmw+JD/cs12GPTRAwr8Iyzk3GJBVg+l69rkcuUwOkRblKJjTQjTNPTaQFOoOUR8/wa8+kLmazj3BRiym4Po4DA79PZI2kQQeNDVmBC9sV6vL5L4WRSRsF3og0bRiAMoNgVRrDz62cobD9l/IWJ4KYHTNOXmKY3yDQjmYnQ+ei38+BM5dyYzFyv+UJ0Hkk1gQ+cS44QvOylTpv21rw3ZmoMY8OgrHIXAvyanuJSgB4ADQicpO5BC/pdznMqq6+tGSooafCx7WOyr62vWVrRHNfPUZnJC8AOvCjAkKdibNr3t0UqwvsRsbuR31GDMQGDDjjyhEgJt5A9GB64Dn0B2+/yjMd8xDTflefv+xdSX3RXoFn2pqx5gzSprhC6G4AT+u4Kx9OXeGyaEte+w87Hkuu/yzOWApwZ6NcXJjZxqsfFjhdaLxFG14SDVhO41RA/l+kuwJwTKA5NTHhyvIEiFWh5n2iEDyUmtKxQOF98Y8o1RqIh7pcDAmX0sQN1ASmr1IGxJonRTWqe9u6XYJVSmacvsCymuaqAu+aNIiF0xvizXKJMGeokkbHbAYVPv310aI3V6/M+nQhsZWJWsWFyCAvBTw9Iyx3m+V05ht55cGPaa/dypgVGxKhAal2JRSOcTPYhbDGOtxiHl0X2wXRyATTHr5EAKyzqJK6z2MP7UBpEpPmDkRxq7OZSA5zfvTa5Wo/d09jgIdhFmZRzrgDFwBkQzJJD27R0eR6uGSE5NTGlRSd2Cd55ZJoRfI9xlGZj7G+K9FSMG6QkZmYPDwse8xHMLJrBTjSDO00ED5Swzwc9BoRxeCnvzUUwspK2Yvleu8SXZIuv0h4PtOBlHPGx2+J341Y8IDjhq3TCpNQ7hoPXWE6sUp1N3Ly0Wi8BOFRWMPCkSXSeUzTZmT4/r2VELV8zMFj3FDCBc8SBE3KayvOYlF7JLmjBsjyCmXCaXmN7/Az93RaxH0HdLR4Hj5QYMTKmHhh6BYJn0Q7P74B4FJ8e//gZjqcvsCz3NQZB9jmTI5SaoqkxgHKv2hQRWR3t2t3ruy2O/a/+pV/3Mc+mDv57XN+vNIQz5qJoeXHspXMfVMvrbLTzfeLt/ZKBZa+jKPuaYJaCud4mwNPiyC7+eKbX0ur2WIE3Kyhsup8SxKqpg+2SZt7gcN49r48uy1/oDn09c+oyI/D9G6S9J6ej4HbjUZ6QskhmkI53hrgT121l+jkfRRcpCJssKpAKALMfsNBRRiM0GWu7U143jWDgCM0wUfCcQ0lYnUdl9+gGZgkJKxNP3oAc5wwzrBMQ2HURQ5eK2LqZsSSQaA25Why1q1X9oiK9UM87sAZoc/O9NsGz8yedNmNhrvXcarBan6c2KSiJ29l4Uf3bummuwCIWlobkhk5AC++qBAklsAv1imvYQaY35c4Db3H7bjSDAcAr86RJPi6Bm9911aRNRk05iJYXeVcO2nl8KMeRRBvYLYBLc9E6NVZPK7fxq5Zp+7Vxwa6JrCCAQUTZ1dctTFNrQFQAB+2gX4kR79/AztnA3/R1CxNIweCzptQ3Xszl/iNakPNR2KY+aRKRVom0yYeEkJXh1MNTL8k0zzIe22yKXhOeqHdLVuNBk6agPMnI6AW2GHFeJRG1IJOz0/6Fd4wewtAixwglWWsKWB2/5VZjF3a2TNvYmD6sr4HLdWETA6t4gQoIr+E5/aoFALGW9Wjv7cuj0h71XNb0spiEkID/yQV4f4TnXJhlRJe73ufmLAYatzrRT1+GgOtwwgYuOozt6PcHno1qQZhSUL5Hk7SNDabxx4tDXAhIMumSdV+qT7A+L0BTiKOCce0ySRBrCsq4LRAMeHNr/dZz46fz9/fN1poBvHoMPC3kLn1tf1qliZ4COk+uyfPXq7/DKntF2ozIKitDeYKPSf5Or6MYtuBOrrXgByxuX2SYzGjXVjFYY0ZGlRzJNK0kZNrrc6VpXdg+Gd5HLDxjYYcl18Jr0GaG+QxcLNm0oUv6bcsqStNHf/9c04/AX8Oaqr+zPqaXIY/2HFx6RIPrHKSQtkaCfM7l3ADSbOd8komCDNESpwz2It+AZQ9Oj7rfiyZm1uZOu6yAq984K+Auvc5WkukD5w7A04bK+xa12yoBSIyQqDS0qAG85XHXQHDz1xVUbWuI0hiUPYlgOUK4OMFlGqBmANWOgNtn78PqdQMoMbvmN9TkCU+v5XZ/afPJku+ggjoESWtZf78lLpA+PLnLj38OCws5I5UaomisNhICVTIiIoYRIY4CsOaMRAkTCTnHcnQBToQ1Z/tPzidQ2GhuepanaC58qemWIU284F3RA4XWFNF5ZfDyk7/7dQ3N8jfK4da1SH0+kY1pZ9iA8+rCspd1g6+9fkXEpP78/HgIsDjJdZEW8dnw9bE8MRwxouqGQ4k7WY2p5THa6QQ9r9+QdfebMFmyZol8nVYxtD2FRK6RlNKfEYs+cKtnumqGkdZW6329SMY0p5EgqGCpTK1R7CsmIpMNxgBuvDp89XJZxdHm39TE31aHvXJz68TQxb3kLC60sS2W68U18WIdO8p7BIG0HgfTKvPm9dOV1+fKqxRJSU+2X83l/Zm0jBynjBg2cL5DykdMTAABiwtquoaCC5ghuMUgyieQH5sc4tzkoo0bnQjHaVMowKHXmr8zuUBuQFddLRbQvufz+/o8B/i1m0TvyTFqXGgbdvZDDziJ8ZkZzCKzCX1/bLVLO5FoxEDK0jBeMlLyOo1bn62LIgdBycFPjDglhNl0gdcSPWV/u9Qc+sbrAwDBlwxFvutjXszk/vta3ysQ3Jn+TfcMvn+OZbNFGgYZ74wt0KNj4L6OahwPwuzhe2Dz5jWmh/+K4/GviiawJKvtOJRbBT6D1jrIKOJV6MpmT8x4yKIz+UgLHvKMozKATcw9W2KEIBszSIOAAnkWeJ2vnZiy6o7DOLvYLzIU338hXer0V4C6duWAohpUiv1lecDhAEzzuzL+PUxfrqQijG0DiA7fMHyELj4rhnL7fcKcT5iQQGmChytsWQC48hFJmdTHfMDp9AZEC2I8IYQeIez0bafSEZWEWAq8tLyTI0azdll7MGaRZaB608bI+MgP+CiO2NNSGFnZRqHOxiXFhTmobpeA5AECxK7eQ5McWPJrmoCzAt+1Z22M3NCAFfo1nCZfTpP1ugIc5sJedspk64uGEVMChyxBlhmk72kdsmohz8hgYwQgiGGBGokE34kOd7ySbnN8hq5/edadT80GKCAL9ao/PMnPzGE1paO4QqMdd6mSKN92hTiiixsZifJq9jIMT5pEtnyJDUDaO7iJMd7PcIcvhNkzv9EmxIKqwQysYoSOUBqjvoOMH5q2LQDc5xnvdCd+pEUdfm2zb5LA5tyvzXvWRcMKJOP1a5FNOJ/Fjvd9DY0/6xLsvN4435SEpXoOD9v4kEYQAtJywB6fYUmiN95319gs94jd9SpJjd1zOBcxDC+RaUHqrjAvj5hOX+F1mnCiDK8s642PGFzA4gkjeTzwCZxEBiWGATFeydidapcbQ8oSCDmfLTNNXJaTA+4o4f6uwzhmEDu88h1+q7/CiRP8vMdpOWAGC9itSap1mE0v2GKDVwa+ga+piW/h7BpfiIpkjEwLVFDQ2ci3JvwGDrJOZxj/atXk0WuETQfU+RXQwJxBqLILosduYI0v5md1OqGOLdoxW2tPBgRl9MUwoovPELubxmA0VmafxYyogiEaMmQEd1LmlaGvdHaVffvYUK+32sDi2IPC5STOYkNODvwIhEmYCTR9pbJRp3INGburFItne3XP0DxB7njRAxc28EOecVIQc3GAd6PqK+u5VuafHef22J8XvTbeTU2sKCwusDbirMn9fsYfsC7k2n9XlbimEdqUDO1nAkpDgty60WKFDlGC84x5fgDw3zDNbxB8j2G4xSafRFZElzh27xDCFikf8bhPOKUDjkigdJKJHK+j1U4YwokJj5Qwz/c4Ta81jzhKg7q7WQHCkkPkAlBWGYkBb6Z7/Fkm3FCHzIwbF3HV7XDUc/c2TTie52XlzUrmmBVGyZpfebQgNq28BWzc0/IF0xC3j8ytdIw2gMsUkdecUp/+QhNCzkHz3YYVnLONz/kS46LG8GV5wLLclzFbX1iB6qWgBZs1l0Q2RvZ954KYt4btU2+BIinVFNX2PQXl2qZTHRr+zS5X+tUaVRXsIXLIyQEHIEyM/jCJaWYrCQGZrHof4McgRIgkhBERDpSkhsiLsIGdB1TTs+uvMfQ3MpHVAD8t4HveeGtBHpNPK+w+rtrANTZU3eJLDawaB9Zm2REOnZ47i6hrcKeercS01sXXiqa0KEtuVJ9N8voDvI842bjzcq/X1E6mPJQR3ffPsckn9N0Vpvkep9MX+CIdcaRUNUCdx+CcxIeUMM/vkPJJWMdhI3riCl74MJai12oMSnsQneB9j3sQ/ut0hyvf4aO4we/GLT7xETMz7uMGv5j3eCz3VwPC6v3q2GvWYLGh5goLEWZHCN9QBPv9bb7aKGI7kc05ld/X887WypZrlFqA9qwmWj03zUjzney1aUSkjN10Qh4kN3BZQCAA8PMRfPwc0+HTYkq9pIcVuBaCsoHDe8a/z1aJDavX+d0AFWOnl/uGEhwn+GWBX1hBrMoENq8RJpkuNDAL+VQmnuz9eWUDt8cPMH+WGYEFbAnaWLE8+KSGqTHsEEKPvr/G0N9iHD8qEhDGAi7vQ8kZKzKONa6yTWHpxACZWaOy1WlRAFx9DrhiIZfWuQyEmeEa6NuaYUJ/fm6C1/rpzJRXDd+ZqZiVgSW3sFfDLJrBREthWDsXkPOhxEnxCxDMYLvcY88Zx3zCEeKbYVOHiQmd89gQISEhpXvsj5+h72/Q6+OFsEMwWURA45Sca+cC+uEGJ14w0yz4kHO4dR4BwPPQY+sj7lPSqGu1RJ3EMaNZAhQz4BIbzkHh9vgbCGz/Picr6qHDOaRfZTfs/5orMhSfUkAfAQzC5CSmObBcF9KrkAkWJ/J5RpIwWSnPCf1xi/mxw5SlNp+8K6WBycZs39whHPdw0z3m0+eY57dIavoXQo+ojPcQttIoamQ55Y2/j7zy4eIDgP9dGuL7WEP/HF23xTC8Ao+3mHZbUBdk9DsSYqyAT9cAw/MsYE94JGzvj+C7P8fDw3/B8fS5aDgte02KuCAhTm8S08MxrZ7ByZjydeil+FD2b9Lx/0dacE8J2QXAPnT5kkZhlXy3WkTC8Ayo4jum50bN66vdulVy0Ryr9zHDLgVwWgWAp8vA50wJNE3ApF3vMKIfXmDob2oBt/mtkuDH7qaMbeW0125lLyO16Yjj/AZv8oRZ9TN7H3DjB3TO4z7P+DwdZWSTZsR4RPASAKzYEA1jCQjm4GlGEykdELz8PGeHPS2Y2YEzwY8e4ybjE9/hx/0VHvKM1+mEnE44ghUYzfoctfMkLsZyThIygp6LCEkqp6Y4b5mASTc0E/hPzMiuYdrCqSRAoxOsjCQ532sJBQcgMpAgmqVEcv3ERswegFyDLICxKdHadaFbZ/megNsOcASCV+aUMIP67ga73W8XfeYytru6iMwoLoGHZwLC+oAuSVfWDKVSEiNBrAoPe1ffHuzpdIPvOhn9XgYZ70yDX8l8nQPCeXbo7jO64yyyEMdPcTx9idP0BsziHAsFZ+X+c+UeZJj2pxRznfMYnchBeIgm8KMavWQwFgCsrJVzbU8AlQHYsDBMnsM2sNbZvYxR2utRoOf9jMr3bzEOWGn/nQM7jDZOVN0oV2JaG5OyusOfMJ3ewDmHrnuGeblHr4Zx4/gR+uEH8AoIOB8R4070Q5dHPPgOp+PnOPKMSMC1j7gKHbZBtqDZZ4BEe33OexxPrxHjDmIE16MvbIhYgImUDgVAKyZm8i+8pRmv9xts54zMDq+cRx+v8Kjv622adIzLrQoiOXbCRJeZAsLCdcSS4BA5I5KMpi5np8CkYubGPNRYYHJ8W4at3c8BzmXdqpQ9gmrkIuCwMbwN6FLtcprhcm7O67pxkLJby8Y4GzM2t/ZYQGLvO3Rxi07lP2LcFMDONwlyaRIRxHU7DIAXKEFMpERDNOeD6LyBtakhJel3bRL50GujYLuaFmDvAV+v9rUhlEOeRUZqeDyie3iHeXqNebkTHb/mscvbVP1SeaszPAODq6aH1jAEa1OIM7Iz46EOXdwhxA28HlsBfeTxL7GBK8uIkGlGzicBG0usqBIbUmSvJ13O8wX7Xgv42HXVKbvtfKxT3itWDNeFCRMTkoVLOJiruYCVFj9lgmch0fqTpkWHcXyLnGdsNh/Dpo768WO4MKJPj+IXEDaYl3vM8z0epi8RlyOWKO+tcx4fxREeDm/SCZ/lE47Hr7CkA4b+BjFuRD7IRZkwUrCNOBeGiRXNMQx4nSb8f5d7XPseH/kev+07fBwIC0cc+Qo/9w+4p1zuu3aZGVl2WZtEhA4OSScvFiactFA3uRjzaaAGDK6j4lQ1xFc5hNe8MZUCsj2PAGTU1Flu2+ahdj3ZeVHwLs/w6YBZp1SmeIdpfluYqL4AGk/LAmHwLEU6xfu+KcKr7rg8UdMkclEYxphKA8nAC2N4MWXUvOE3sxxJU99C/TmjNs91dLXbPyLNr5HzoUhCeOdLHkxlz14b3fUNKEKQUWTo5+S8yBD4HrHbYTO8RF+A4KE0Og2crLFAvjbTrRWArlqJ+YIBlJlAnecBwPrrMrVncK0TWYteY5OZsrUATwtMLCyyF6103oES5vaMqiSOLYmpSac6k5gen75E8B0248fYbgX8cj5iGF5JHkAJ0/wO7wA8nr7AIU/oIZrBP+i22On1dqCEe5qRWIyyj3Fb9MHtOu10JJwpg+iEtLyTPMP38H6Dv1oO6BXM/1vdFX7aC3v5DW/wX0OHd8uC7AAwozR3oWAPvGgoowJdXuNBMZZu9ufgnu6D7fQANx/ru9/+jQL0rmVjGK2mfX28dZ76vn04pQOW+Q0K83J6jXDcIYSxmfiR63tOeyzzG5xOXxVwtG3OQ4+N5IVnshCXmkblxVKp4z9EfGBKkieoHwLTCZwjfFoQEiEvEaylO6kfkZlHhoOAwN3xKEZxKl0BCMMcuq/bPWlGd5Qlxg1aTwASkSeWfG8Cw4ctxvEFQhgx9LfYbn+Efvh4xfwtE08G9qq8Cbf3vXripHRA0uZ2yhMozytJCM9cJCNLxu9WonLlmFlMAGRapq2HOifyN73GhgC/iicmhVLziEZmE4zHLCS7ietU5fp8LUiU4VTK0oDtvnuA9wOG/jn68QfiXaG4RAgjUtpjmu7wuLzBkOfSpBp9QNT3cpcXTKc32HefYp7v0Pc32GzU5DaMoPSINN8hpfvCbt+Or9B3z5DSHo8Pfw4A+DgQgmO84h4736HHJBIYmrmvJeC8krjqNKkBweYzlN3T2EBwCOyLZIS/AAQVTykb3cD7TGY1RrTyZz7AN1Agc0bmpAakTuvYobDVAWkS0/wOPo/o9ltsuohlajyJdGxqPEzo796AH34uE0XpEafTL4vkUlSZsNBIDhayCU5y3Ucxn5VQ2zDtC/llHSW/y3ofmeS7LD6XIPiA6y/+4i/wT//pP8W///f/Hp999hl+9KMf4e///b+Pf/yP/zH6/pvLXPx3oBG8hQ8jqB9Fg2jwcB0X8ydgXdABEpzdxOiPSxFun+Y3mKZ3hRG1Ho0C2jLJ2DDBOQQNZjsf0bmAPS04Iom+rSb12Xm5UNUwxFg57TrX+bSyyu7ZwhB+chTWTBzb0NtX7Oqvfu2lzrBCrX3XrSqRFI6tJpBTYJwB5HzAPHtN9KXD2fcvEPlGCj/TgFNDMSv2g+8xLwIMTvmIQFk6hwjY+ljAnrs8Y+IFyB4ZHikfkWmCL53VWFh/zBlLcZ2vIK6xMmY6gJqAGDrGFaQz5+Ewcdbny8LePuu4lQ4jAtgBhIzMXDq2ZdxTT0a7oWVUFrCl3fqo6yaAAn+EtvA3tq4efy3GHcvoEDkqxaeBNoEJFHrIWLdcewL+5AICl1jjJOA7FmdrMwMo14MLUjgPLxGGj/SbcZ2IteM3kC4ZxQ4UPDofwJRLp5uUjfJU3uS7AcExjFUnLwoInLsI9pq4NABw+zUTSsJmWl4p7ZHTqWwcotNck2YD2YAMD2ECB+18W2HnnSQ2E2dMYAVRhT0Z4xam32qGTtBzXmQ+yvlsWQPLamSxHsLK5DlnnpyvS+APgHLXW6JXoW772rZOA+W09+zlL1oNSLC8DoW+JcgsKKCsxPEN+kHkIQDZWKSxc0KM91jSI9Ii+sEJ04pRO3hhBycwOhZduJQFCMuWYFPS5s0Icqfy+jItCJqcVP1LjwMtuE8CXmZ2uHKMHg5XCPiFl6Yf2ByTz46p3qvC0pXhtgyZGPBcQbJLXfzMXBJd00ezq249LRDK9SHxwqPV/SvJeaPx6PRRvI8lDjpKsGFdO6OBpdFp55ycSTRApXICHJKCeAmeJbYwE2IYSpe+JGamtVkAYP0cZFrAdLUKG4nM9bsFSs7ZwN8+NrRGHIUR7L3IxpytNnfg7BAnyRncchD2Es1qZOSLXqd3Xoo4yL5dCj4Ag5PCx1YrH5UcZERRzU1D3JTj2TL/DAC20e8i1UQG8iSVavIrcNhkndaxoR5RYB0DVrEBFQQO6lDdK8gDSJFnAM+KtQoBd5JOvshj1eIAgJhllflZvVqNvYgJ8xzRdXeiG6ymg2biFcKIIYs0VYxX8L7DPN9jogknSsr2k4kta9S/zTOmfIJzHovvViOj5f2q+/dqRJeTPD4YXyxHnELGrou4csBH2wkpe9zmWECw+nfUPnCJ9S27J6h0jMljybHLCpgZIFwfJ5ffaZtydpZUe5Ytn1zLxthvtg2++lp5Dc43MY7ByJTLvU8KJLimad3KRgE1pp4DkPUalqmxouu3OgmxMmxcBDDhfK3z6A9QMF1oyLbjvUwK9DSnlAgiF6Ojq34+Sm7bGlU1x8UxIdOyegoHkTjqNd+ze8e0MZ3rlEE9oO+eIcYrdPFZAYBDvCpAswGUEkfFGNW7gNy8Dzo7H/UzF2C6BYBb1p8BPbbHtCBwPAN+PZzo+fsaHzqEAlIsTBh9WEk1TJxVhs6OjfhWyHtbYE1uZpSmVk4yIRjjrshESNPoqrD0fBgwzW+Q1PxbajQu0i4bT9j6KGxLZiyYsaSDSNS4AETohKNcr5Qeix4t5QnOecS4w0wLDhBAu4fDi62wO2+nLQYXSr5dajunurnOKxDTeI9oDWGTI1miAgCdFPgVEhFtQ+6brrq7NgCq0ABLHbr+g7PZQr22Uj6URppXzxaRClyDj5QnTPM7zMudTDVaM3QVR2oj/2KsaF9OqbM/7JQAl+uukbcjMcN0maSz1uyaJj/J2cEToZsW+GWByV7ZtBqAkoNmazQxKRicADCC3lNZ84qs90d2QO8HMb0NI7ruCrG7EdPNCxMBnGtt1p6HarxZAd8KSK9luiJQ5B1CY/hmV8El3V8A1SfFBdHy9x6ji2UKIjhXvrZlYDAALBzQuYyFc/n+iTOSiueWOlpjS5lqYMA58SBYgjTtY9jIJLkfEbrncH7EoOD3sjxAJl7uMXFGT76wl62JPzPhyBOm+R7MBO872dc033U6DZMVgwCAvn+OjjNS2uHh8c/h4bCLGd4zrpYOgw8qT9PUbNYkau9K5R4l5lUtkc/uczuOuTkXl+IFrfICaxpfMAi366hUfgCY4Lx4bti9TnmGM68Mt55gtJxU7qGTNMOXA+K0Ld4CZjDriBCmE9zhC8ynz4t/zLI8qsH8UmNFCwK/LzZ87STBB2oW/W9MGuI//af/BCLCv/7X/xq///u/j//wH/4D/viP/xj7/R5/+qd/+o0f53vWCDatrAEcwpNC7tI5MV3g7pjRHY8Ipz3mtK+gBexm8NocseK6gq0eQNQRKOsQnShjdtLd3ucFR0pIYCxgoKRK1uEUJ/GL72n1e1DwtmXXAWs28BoEro/z9Z9x4Xcl8ajptBQYLZB0Pjje/J19zVm7mIQl7THPb2EmQ5KUScfMumRiNrZB5AyvmsEnDfQ9eeRQg52HjFkzZmFo5ZMW4tNqJFESgYaN+x6tmMwAZ3nlMTJeBMIn3OPKBUyc8Jk7rN5oTZbNVTQCnsDskBXcJ2Y4hwLyLk0yYolu+fwNb/AW9LEUvABzDfBj7I3SzW+Ogfed6JfqRsPaWbQzKIC1JDKVdSigXgwiwWIstRh3606z/zXCQGPml0un+ez6du6sCfPt10UNzQuNIfnstKCbEY57YNlr53zNTgAUDNZEgworX8E2V/XCDfwFAycFRKoWsAnbV03n1pDvklO7/bwd+V7rlvHF2HDx2AAXmX/2Yazmyu+t16x0pKujrziBEzj7954/G0cUoJhBeUbywoyY53foutfluuKGMWK6h6b1h0yYacZBgR67nyIcvALwCycs6VCOHVny7tYO8/7C9QFno9gOM3kEx7hWduGRPF5Qh955xV2VrdqcgwrgRy3dqMTVS02idgnwW7VD19AN6uOvjqtpORvos44zekDBTuDo9nG8j2COeg8QwElivtV/OL+Czti4rmrthjCU5qy5fHs/rmNFe15bgKV0YozttzaU+j6WjXcWb4HECEsSE6xGDqKe71CAsHO2frvfG1hKYMwafBJzAXwFqB8Qw4DOQIxm/Pt8rYG2tjFEyj6sgPo6NjwFgC/lCwZSGQPYDDB7Hwq4Ywwf+6M2TtiuFZS1soCQ6KRFrr3Yc6C/vDkwE3I+Yp7fwfwgQtwhAEV+IIQBzAld3sGHHhOdsKdUGIlmsmQgNrNolvsUxbC08TUoT90adTaxKDuIsZ/TPMUxdhthKN4cxPA2JCA7jQs2nVEaiQatscQG2H3vSmM4NzegAcImN1VjBJcYweVx7bDVhvI55NvmgLWoI8DiiNPcl/TCKOeGtY8nbDRPoubiqZraUiMbIxIyBNeYYtrkQPC9yEK0496WR3CS28WLdVq7KoBRtcjfl0t/kMUJwKCFqSpQNqxg+wBpbFgWoMkZ7D23Ui4WE0ilb4RlB7imfjGmN0OOsfMduriRxnEYq1lyM51hpjLnIA8g+195SwX8WSqoVdjAtcg//wDWo97Q7wcFSWxiwOQW7PsG+ABV+sJiRZGU8K5o4icmRK2fJibMmMGJvjYvtHss5yNSPsDPr0vdYQCBc1Gvu1FyFgWDD5TQeV9y9U4bNQtIwCMFhgCRt/O0awj0TbxwocYMNh1QqS0AoHfStO70flywjteuHt0SGWznMAmYhQkBIj+XwZU92QBBRX6Da2xYxQfn9TgSLDasIcxvtipInEXWhxa5Vp2Hc/tVk9KY6wYEy+trjL3P9nthV8t0QYwbOf4tkHM++k25kFFWe+BZbPggYA+brEorgQeRjpFLZz0xQIBfBNhyROX1Xco9iw57OoocQ1ZZCK0nSHNnIxI5BJ1wEkJJWE222WOmRnM5nf17fQ3K99rmkE0TVSmpUmteAIFDaQDJqpr5cl9tfMSoeUPnAkYFhe06FkC4vpZcx1XVL8ghcxAGbNBYAYcExpESjkw6GQvUXFUbKwrMWg2V80EaOfkEppOcEz+g64CUT9I4SntESgjOY/Ti2aCtVgAs8cF5MZpO+5U/UrkuzqTTnJvhIPFmIVe0n3c+YuMDAjssDSGo+WNUeYj6UXIGrniDRz1u78MZ1siO1K2VUPK+VnFd1jS2XHfVJHKS39gE1LkmvjXPPAAse8TjVu4PlYxxaS4+A3l5V0BgiRNJj6P5lqz1r+W1JThJaQAM1begOR/t6/lQYGuOHx4SZfp1I/M3X3/4h3+IP/zDPyz//ulPf4o/+7M/w7/6V//qfztAcAgbxLCF8yNy7ECdA3eV4bca+Sb5mGeA7oGbz78AHv4b0nyH0+kzpFxHNcRgykaws+ri6IbGQO88nvmusGGEZSJdnwMlYZIq2INi4tCwPJtx769dxhAsMhUtEFmZwC1Dt13nSVzL6rkUxA18ABS00OSj5RyXD1dLyXYohGnBQhnOOVCWjnoXP4VzoWgXxXitxzah72/Rddfq0n1caQaDFmxyLInO4AO2ZFpBR5xOb9F118hZXMa77hoxXktBcTZiZJtbuzIcODM4E8bnwF/75BHP3w44LAE9rvHpvMddSfSomEjYeQxxRMAowPeSkXmG12JpoYwTAGqlQMqoRjWAWhtBXV4FaGneR6KEmVWQHcbclMeaOSHlE4JuejaybQFQxu33xfSlSApo4Pa+F6Mu1aQc+hcYBjlP3g8yRhuv3u/u7SIAGQm7BBLn9Fj080x/qjDwrcDQYvTbLl/Yc6pRHPzKKK5dlrSlBIRHQn/3GvT4l1gWcZcnptX9WzqblJByw2KDJCUGkhAzTpTwqKDPkTKOjhH8poA+IY6F9dcyFW3xqoCr17IHRBsWqQEbLKmr8EAL9gJoJgwsHujxAladeQ8d8dSk7XyZfl3iOpokurZZu9OiDeXKEJn2tZuTmvIRWROnpMaTXfyFan+LrEeIO3geMAwvwUxIvbh6n46f43U6YVattOg8dqErSecxz5jnOwGbO9H6My3Lc2OHJ6YvcDjkhDsAgTxedgs+fn7Cs+cJy+Tw9i+f43+OA76YJgV7kkgsFMdgjxg2YE8gTsiJkaHjr5BkNnK+iF+0xzVr/CXpLqBGbz1nzoMMiLUmT5ZrQTRINcYzQDYiTg4Im8JczVq8siaeWRO07J4CsJWV4EuTKPjKXA1hxDjcYhw/QeyEkRL6G4kTcZBiTTXT5DitCykAqg18EBZ+PurrOu/Wt7var798m5T+Cq1BIoeUWGLDgdE9vAMfP0eeZVIAMMCwmjbZ9ZTztGLTBKCApgmEo+rdERiTU5ZK/0yP5QZdvELXCfvMF5ChagIzJZybHtrPZOR7kZFwVjmgBoRv84b3gb8tA3hwAWMz0rnxEYMPpYDrtKCz1caMmQkHXgrr70gJDyTNctafLw6o0UhfgZPcgmjG6fQG03yPEAaRE8pT0RcHIDqe8RrBD5iXezw+LnikCZ4SPByuQ48RoTAU5zyrMUzC8aTeBSVnSE9ighXPMgUUcZdnkXDpn+F5l/DRTxI4M37ylvBRN+LTRczrZqe6inbNQ3TITac544RZJweYGTMcJpeLkWQZo2cUrcJJ/SYsRqzYwK2/gDYbiwSUjnkXtpYBzsx1Mkj3JQAgzMJoK91/HRUvDe0M0CyMI6cNZI0LK3PDkoPINe19h657hr5/gW78GC5eoRhyKSjpwghApa18APIkTaKGaWXatnqCLt2+33rZ/SWvSYvTDFBW4IwciFjjA0T/83iAP74Dz+/KfWZ66qY/b+AY0VKkiYgm9EBh054oY1EQlACwixj6G2zGH5QmW9+/KNJcLQBcrtUzxqVJaRCZ4Z9o4BItxfAZbHImvNL+bHcduyaN0Ru18WpMuU6/Hn0o7F+bjLJY0Tu3ig8CYsjXx5Bx6jJOnEDMuMsz3iRp6jADk8aKmldU1nqmGdN8D+c+xTS9gfcd+v45huGVss4DhuG2yOZM0zs8zF/hbZ6Kaa+Hw7Mg7Mx3ecZ+ucfh9CWWtBcZK21CASPOATTnIrq4AeUZOTvMnGVyYiB4z7h1jFdxgzfxhBNlvDMgvmkgezWsJU7IWFQaAiDncaSELntkXwHgTq1rF2QsVPOGhQmZ68g8aXx1ZiDooVR2yRPbse/zdUn+odajGgscgZal3PvL/IBTeFsmQ4N+tthSj1ko+5XJIcQwwPsOw/CRaAP7Qa91M5xuJGRs+VhIJk9frLzPc+nEX3utmrtVUzfmCSFlgDq4hcGdvry2SZQywnSCn49YzhpFAMo1QDRjnkV73WRatpAGgpEeFibMii+EsMFm/Aib8WNpjuqH09qM1YDvkhSEPG9a5RI5z+X+yCRM+6zgG8DoWJrCttefs4BtSshiQdfEht55bH2HnY+rONDDl3girb+2Ebw+BRlVrOSRBzzGLfYkurpv0glv0qmQ8GT/ZXmVmgOl5bFMD5inUK81PQD0/Qt9PwHT/A7Hw4K3PCNSxjUYmygM5tEHDGnBnB6Q8wFMCX13I1ITJeZmaVDT2shMmLIBDzTjPu3QeUbvHF7FDTIYh5yQ50fc29SIkkq8ykmBCVknkE0veaKMg19KTSGTJXJOpEnUTho1H1xbJc7qM5YpZ6kbv9l9c87AF8kby3eM7CREiUxL0XR3LiKkPcL0VdGxZjrpdFsC5ZN49ExfaXxozL3DRj8GeD9WjwFAMbMEj1HiQoBMF7lao9VV51u/6+LfoDTENE24v79f/WwYBgzDcOnPvvW6u7vD7e3tr/U33ysQHONWTSZG1fcD4B28agMDFQyuYI9Dt8/Aw3/D8eE/I6UDTtMb7Y5TAWoN8KE8IxsAC+FT9c7jWegx+ICJMvakRQ7EMXZ2AX13g7XJE5UE3YdhZfrSLkkC6ghK6bLoplu0QBuQpx3bunQpt9386NxqXF3YzU2nphklEhIUNaMZoiybViBww0jQDrcAi1LApXTASZOPeXgA0YRhmIpBiBkJxe6msEPn+R4pHXBMjzhSwqBdntFH1U9jPFLCPu8xze/0uCXVpURhAsh5v8wqM7acMYL764iPuowXPz5gegDe/qcX+H+GHp+mY3NuxIUUkAQ/xK2wYIIm1jyrI7gwwZ0m8saUiPDludtxjjU36+zcOVEKZN+Blc1LnOBoMq5hGeHvnYyYJSawggDsu8Lk7bpnIMqqqzPCnJdthNFGNg3UCcrW3mw+xjD+qI4b+SjgztcJo7+HJew0wAtz46gNmFQ3G7YgLR3Fb7tEJiRobJDRbw4eLHjZE/1PImCZHYb9CbT/FKfDz0WGID2uEvV2/Du7AJfFVBJazLcgyYESZiJNVIDFAcHLSJI9jiS9khzb8TbWnxRtNWnMqnFV17prXDUdtSt8BvQwcFH+oWX5jZpwWgLXgj1A08zQ+8dYKCfK0pEnKeD2lLDnXDWrnEpHlLGtDMraAIADkWizhzjC+w7b8ZUwTCHs876/LZ32Lr5GTic8Lm+Q84zOedyEvmgGB+ewp4THfMSi8gJLX02KfjXL1Is0DGf0CPiBA56/Srj5GzfIpwm/98WMF/OAMEkdJWxoHRM0ZrcCAESL3IuUtPPPRfuvPls9tmYQt3BlCrL+jh27trtuY1fGOnVORotbXCToebdmhVxrVph1ADZ6vS1Y0hFJwbenzHIFfBSgk4Zpr0y1jUwO9C8wbH4kjaI2TriIYhFmQIWXAUO5N2snX7TDj6onqpyoDwj0VFmIrzd2MPNI78UMqj/OcKc3Mqamr9H0fFsd33KNaRy2kUrZA0w+QQDQk9Pz63rE7gpD/7ywe/r+RW1sAiumj8gq7YE8yR3kqgt51f9cik4xUQI4w0SF/FneAKzzhFb3s/Mi0XTlu1Lg7bSgs9/t4dE3GqC984XLmYHCWMtg3FHCm3zCQ15KE/1dnjE7c6B3zR4Aff335dzZvjUMtxBDqBfoBmlOhniFXXoA0aIF9SP2NBXJhc6Jp4M0uQn3tOB0eotp/AqmZxmK3mrDMCOUEXvvOxzyEaRN6evNjN3v3AAAfvgXR7ycR2x9RCBhjmVrFCkzxgoecgmcEjJkUoSdsKYnllzSszbluDaQJ8rycy0CLX8wc06TfilMfRfgOKvMU+UArUkCivZqYebPWOfM5v4tfx/KrUh1b2EguwUu+/LIpECwcxEIBMSNSBp0z0S/f3gJN74Ed1u4NAPLHpweNY6mUsDVi76CLyJ/cj4p92GXgT2OElw+A26oxgcmh7AQ/HwCz+8K8OJLnKkgsHdBHB7yXMBXx2JEFFFHqqU5ImyqELcYh9sV2BO7mxJjC9iTBNAgnVYopqgFaDM5pFm1P6fCOjQDKM/mf4Ine76BwiYLI/WE5DtbHwvYIzILoTaWFfSBPuamfB/le5fS3wzGl7zglwrwTJzxOp1wR6nxJ2CAtTnhSOoGlSsxs+Suu0bAFbzuT94PIJoQwmdIaY+HfAIxIzqH0Udc+75MbRzzhGl6WxoPff9c9FddQjXbUharSlNkzQOW+S0AYNgIEPy8S/g4D/gyjjhSwmnJ2LMatVptqGajYA/KGQlScxETZpZ735CbzknNa9MCNoFoDaOiHQ7oHtPoh1vl4OoezyotZXXl13rSrViitj3X+zA7D5cq1cAAaN8AMeYt8OShlcTR9y+KbIy3KcT3TR+arrgSp6idgvkG03HfZFn+VIBrJTEgTfCZxDCuc+AsTSJAYoRbgDhN8LMYZJ03EFbPwYSUj2CeERV03fqIUcHT2YnZvHe9TAn019iMrzBsfiQNChdFXq1MCSTVVq3Pu2oaN+zsVntddMPFeJk5IbDgDRHiixQunDcjZGx8LNIwOx+x9R0CHEYfcOXko0eNBwFrres25J/PhLRfzy7g6Bg5ADMYX4YRn4Y97vKMhQmv0wlECYtT5jtDiFzOgXiBn+/QRdn3xYDzFrGXuOrDiGWR2i8teyzpASc9Vlbj7XwEUULmLHJU8xuk5W51XJ0LcMEIJ1ITMCV430uNwg4bkmPwyvfYdB6PIeM+z7hrAOoy/Q7BWTJEK9mMIwduvQUcCAEdpElnMl1lYqCRlKqZfUNCcgwQac4gjcEnEoOiOyX3lmNtZFeMC+UxLa5VM0TmjNTgKm5+s5oWaMkNOc/iw7HcI1MS3CWMiEpmqRJ0w6r5Ua51rTEMq2jJFOWtfC0C8+stviAv950fU1/Zv/yX/xL//J//89XP/uRP/gT/5J/8kw/2XD/72c/wL/7Fv/i12MDA9y4NYd1NYfyxZTC61mBP/RyWLGLeqv+0HjNDKebP6ezlcZtCyQKYjXJlAM518KFHCAOKEZZ1L5sb4/y9FNYxnpLFDOSxW9c263NulEO9Xduf2WuOWI9xWfeu6Mm4ql1pIKNp+5lupVNMgOWFN+BOm5Rr8OBFDFgQkI31RxPYhQLyOD/C+4wQtgJAxkUDuDy36esGuMK0DMiAFrtEM/jseJ6vMhqnQHrrnAkAro+IQSTPnZ+x8+vfkdGSc327DjbqZ27gqyNgoLprU6+vCxSE81HI8vqa69BclA1ktuczkNzYRa08RNELDnKdxUDIes2Zvqe9Nxs/NMOnELaSiJnhkz/TBP66deH36mjVWkf2Q66VmZIX2ZhLQdrigtc62WcC06mModQO5IXxb+hmYxsJA95V1p+8LdOCrputjMIaS6LqodWNzQyh6ugcAHhHwgLWc2bLGN2tmMA5y8++Po8NhfWnTSIDgc3IQca4rPtf4x0c1qYl3pXfSQp0epZCxsGXxKFMQnBGBa2dNjdmIAEcREPxfOwyxm1JInzowYvDAoY3cMuJ4UTUolrYa+J2TDSr2Uc7svv121fWD+8Z3Q4INzdw/RHb/h6dsgurmh+wZvZ0VebDEqDm+AMVTIfTe5fXusEXpwXO9qOVjjTLGSh/3/x1bQbwaq+Tx6jAqBSx1ZhyLSFjgFO7P671a70fqiawxYlfcZzrC64JYKsp+mQ5Ab3+11omX+uIBHTJp3JPAjiTczlv7FZGxTmzyu5WBy86a2FojmOjsXzh+DkfC66+fj4qRfDKRFKfzddLrj6WvQ9UwMeYwDYxZDGh876YYJ4DPcbsCQB6nLH+TCtfnggLS4ybWeS0QrN3Gli91qollFJc2bwhHRFCBrMwg10Y4fyjypIIIJNpRqbTKlaZc3lyDiFnjQ+SR3gdJXx6XK2wU4IAavyLkeE20kzp+z02Lsq4qnOSK53tbeWe1cKJWc6OY4BcZe2UgK3xoR3/Lq+rOYvl3myfp5zZOgZ+fudwc22um0wmL2Fmk/ZMTz/b2yQtumvGU8+fxArb68T4qegA++ZqMQD2wjk4B99+E+tJg8hGuYmRSY9g5CIbwyQ/c1l0UCmv84ZLDacq1UKrhozlnG1xLqbIYwGBvVfddf9UD7EdAbd/twDQOr62sjXnmsBrd/kaI2yKcJ0rmAZw54QBPLpQxrzLyHdTN1UgCCVm2L/tc4bDjIhH32EJGR157N2CB6S6tzF0LyAwexSZgsKwXFbXisjryEhxF3dwvkPKRx2p9uUcdE6moXyWxxDDrKUcw0sxQs63TIaQxgh5ToYLQBcYGyd+MlLDuFVsWOf4wnhmYCU3tzCt8jBh9FfN8EurGEE1zyPSh665p9vs8NssBZNLLswaaSTzFUSUkJ0Y7DoXS/wr7715/95bU6qRjTkHgTl989ziN7TKvqCFRJWPqWCwI1ZZCMlH27y2XaUmIpGKMenJ2E6GwC55ydeMSGJA2PvA8ksx81yiQ36vNpLBVleoaSRUE9itY4Ndd8LD0+ZlYQTXiYAeHhsXsIF/731/6evVvx0Q9BoL2ijNAGY4HF3A1nfFYLF3bbUteITVIkyGHci+byQTk5DxXuR3YhgUkDwio+q6lxio903SHKKV2mmXgcBFxkDz/RkojdUNHOAistMmD3jVJEL53tO6oIC9Wmd5EDr4MlVYzlXzl0WHvrzItrbwALLE1m9Qm9uxPQeDnz4uSpMy5+p1wZwrT0QBYEAlJJrGBACEYPtqRAWvYzmH5XlMw9v+3eYYWOftAFYkqW+7KJxnLd99sd5r/+Af/AP8yZ/8yepn72MD/6N/9I/wz/7ZP/vax/2P//E/4m/+zb9Z/v3pp5/iD//wD/H3/t7fwx//8R//Wq/xe43CViihMII1mfUM7+tZTQmYZ2H9nR4dbu7vsUyvMc/vCuPO+668m5ZtBVgxl0swBFC07g6qCfzIWex2nFcwp1s5BdfXvHb/tiBsIFwVa6f15zKSV518gcuAT5v+F8MqBYE3Pq46dr0GawuZbaCwcQIrPg454ZGWonU6ccaRFiS3nL2Cqs1Tvy96W9P8DszisGsmLZFuitZftK4OE5blHo95Ke+pV4aidw4nG0tMJ8x6nrp8KF3Nqk0VKhs8TwrwzdiGiJ0nxKsO4WoHBOncuRAQdnd4PiwYD+edI1KdUSojf3YeYxiR0wGLE+afJTlOEzVytdAu50lHPrlJoiSBbbYvex+umsYJy6YDKSPYzJ3a8594wZL25RoOYVPMeWysom1GtICxjR+2Y1neCg9b7xvDAhQAUuOSMFQReCJhsGlwNxb+JUaPaxoM32YZA8e1hjP22L5ODKRUWT356NDtHzFPr7EsDyU2hOZ9t11NAbQXmKGe/VZxcqWMUxll9HBOnNK7WKUhDHA346dW80/eRwBz3eDOGX+keongCpa0seES4ANU4Lcd29r5rhi7CNgTpaBr2DznMhG2783cF3mIDMa7POHL5YiHPIMAnDhhQoLLNtJpgHUDaHMubsrT/E7uKQXcrGMs166wUBc/ItEEYonD8twSs4Lz6CgjOWGfL+lQzEvyxdE8Y0MsYGQMbsANPK4AXG9mDC96hOev4HcnXF29wfWbDqOy7DIksWRXk6CgTHznFiyugyj7SSRNzFhU084DK7BndQ1/wyRMpkx6vQYSOHtkZeu1BTxDYzrNqp9cC4ngexBndHGjyWxfgIJWyzWobIwVvEP/An1/U+KFSUKsYkWbFCt4YQk3XASHoPt3UPmdudEMvBwfvsuqEixVl9QYyYDEB0Bq15y04D46dMcj8nyHeX5b9hhjBNvKWZgOSzrq6PcssYGl8DENzIWy6il28C4ihg367hmG4SVCo4O7HndrWDvG+mObsJhL40ruI2UDF+CH4MBNblABH+Cp6Uunbt4G9lz5Ds9CX0DUnYuV2acF3TnLr426rUFeQMQmBhy5x8yMnRcjt7d5KgYwEzIcX242ZpoxL48Sm4PF0gFR2aIF5NGm2THdF+kum8TpfUAP4EgJjzRhXoRxHNSsz/bKes3U6S6waH/aiGg/LPCjAMGbq4xXrsNH3QZHSliWAx6g8dkBXq85Y8hkmpCbSSJzAzdjl6BnxfRTje1nQHRt+zWxoykc5RoXeh+zZAw2Ag9IHpmd5LeA6d7bw0TE0iSWgpRoRkKVFzFCgkmFOcjIjUlMxbiVxwkD+u4aw/CRsFn9WKZ1niyLDWEAxx7sPUJSIxrTdDTGe4mPH8bs5eK6ADYJt8NhISBPDpvDBEx3WKbXjY5hHYU3FmFiwrw8igEZZ0Q0WvzKQs0sxpHWDIrdDn3/vEzPOWc6q8oATo/IaV+Oi7Gmz5lVtr/ZpEBuag3PWN+7Z/HARr+jc+idmLOaBrCx/qzW2DiPKxcvxgT5vGYAAuueVo8KAF3B45MwYOMCZiVw0My4zwvELUQqM7nuWJj7Xq5DRx5LesTp9FVl6Nl0hY9KdNhiSo945IyeCdE5XPmu3E4RDieawczwPmJZHpDTo55T8zkZwC7AKako6wSGRbyUHCIYnSe8cj1+HHe49wve5Ql3WViLRc7F+dLkIxdAnEUrmlEko4Txpy+QgOyqfnhhBMMINHZfOhgjVwwLPdh5ibGuSjy09SRBTaPhpPeKRqPXeYB9qQNYY5y1887VicFW36hPhGc5R+xL/mKSEJ0aIZoxH1Dj7+p+XNUjCVAGJTd7njWigPX7+9aLaeXPcXEpfmp+RHHK4jlyeq0Gg2ZmKLE1U/VKmecHEE945oR1anWvrcQkBnFhI7Jy5tlizSFS+RwDeZUN3DanTJu4Yg+1OZRp0WmBWaYFODVTAk/lJIE6URydTNuYMWuAxIadiwgO2CBgA4dNyReaj685MQb8mulZbs6iHZkewJXz+DgM2KnhoxwvmU4sOrouC2AJMY+bl3sQZwT/IMcmjOLgRCd4P2Don8P7DkwJJzriLs9FnsPqpgjGIxLm+R6n01foOp0csiZGc/6KPrOzqUNCdgKM3+rnO+/x827EXy77Ehskf5N7hTzgskeCTGszZ8xwWFwASOsGD604RDZm1rhgzeSkE4eVnOJLfCBODRvRqGWXVm2e2WuT97i+PzjPDUPaI+VJJQHfrbC2lexZuTZJJ2GVUAnZF8XoTyYwQrwqjSJHADtjAdd4D0CmkRt/gdzoMH/XNlh5r79BRvAwDLi+vv5Gf/MP/+E/xB/90R997e/89Kc/LV//4he/wB/8wR/g7/ydv4N/82/+za/9Gr9fjWDtjiMMyJ3oHrnARR+4i6YL7HB8dKAj0D0SwsMXeDh9htP0JQC52GIYJPFkM1eo7C6GdehQRjvNxfVACQ+cQV5GNYLrELut6n76FdgjjxcK6APgadHLGcRT6SxZIWedOSsq29T/HOAx/V8bg7wOvTh1eo/nfsC17wqDZ+O8snf0778GfHtkwhte8EgylvA6n/DLeY97WhQYZ2HBOOl4VTMBGXskkjGrZX6A9xFDekTOM/r+UJ6j75+LXloYkdMRh/krpDwjwuF5cLh2IsmRmGQEREf3mTO6uCuP1eqAitnPjLQctFDPeBmv8NF2QvzoFvHFS/hxB7+7gR93yA9v8Or/8X/H9l1Xj60GXAvMxFRG+UUveIOQBLhiEBbOCCxsRRvu9uBysnRQHs5JQefsOSBOm5dYe8E28NAj0AhkScAyltL1sy5l5oycD9oBlevbGKgiiH9VwDV7/NZcI1hy4YVphU7GjkTLL0vi1QI8bXJWCrhQTKB80m5qPqmTak04ROOuSRrLmMp7L8VfubwfCqBishCiEezgtVFk+n7L3sNNjH6f4PdfiSbR/EZPe9bmTdfcnzoOR6L/6JjQoRY6J0pIzmNPCSfTBPYdYhgxDM8x9C8gI8i9Jrw7fa716FbOgHO5SSSWCvIwaXwQ6QG5ynIZ+QaexghjkjhIHNuFDjtf3Wqf+R47H0UbuIkPbQGH5n3WcU+sPmcAd3GHL7sFb0nGtD5fDvhsOWDPAoaaYR7svTELqA6A3YJpEtfkbnotenH9LcbhJUK3RQxbjMNLZEpIyx4pPWKvmqOmXTb6UEDpPS9Y5gfMRUYmwwwkrYtsx9WaUzexxyvv8CImPHue0P/oJ+h/66+Djo+4efUf8Mlf7fAs9AiURPNKBzGN+RbCiC7ukPIJsTuIsaUWJEkLNaiWenQe0S79X7VWkysCJPsw1GuSRVc+Y4I1BWzfYuiIPk3A8ljGNGPciSQJJO528WrVoLSP8+ZFCL2M5fcv12OJrXb4ecPIRfjuSuJHd1WAHgOEzCjOChIushDW3Xg6ofPrrmpWJYk6NdIxbYVDySFPQsUKj4S4v8dh+hzT9FU5NkFBdNPVS9pkyOmEnI+ITMVoLcKpwSKJ/qfzev+PGPob7LY/xmb7E2H8KSOqjnieGgBYj1Fem+zY9WtgT6YZpNI1jCxgtB0DK+qaXMGY9DLSuW4KXfseOxdXcWEDh/eNdObme8IQbgo+57W488hw+NL3+GEc8TYvOHHGL5c9PlsOOGisIIsVJhWRZ8yaR4TQl2uztwLbR2zGj2Gu7PN8h3dpj4XyE5mLmTIeacI0vUOmpWjpx7iVxzprzBELg3jjZGLiygUMmwnh+hYAcPXRn+P3/sLhs/4Gb2kW6bB0hE1xOOfRRZl8yvmEnATYTE5id5GN0du8le2q+uHVJMZAnnpWa2HFjqRpzAbmMgipgM7QI6oT4QIRc4KxeipDXRzRl3REWvZFNqY0JowF7EQX2CZnuu4KQ38jhVu8wnb7I4zb366yMZ3se2biApOR8BByR+yRBzF68UkbG8rGz/lcNubDgMDSgG4aRdrUahtFIIAWJZ0EhjuyNJCPn+J0+mUBXqXRNqpW9wlLEi3JJe0BmnGtgCqwniKSCbyAfniBLspeN46foBs/ltiqUhB53peYUAy3dLR2JSmlNUZWxpoU4nMjW5PQoTZrLD9owV8zfeqc17whFl3wa9/hShnAvXO4gseVWzeCVjIxzfeFzVfZ9WWiQC/pV87hlgMQAmbI+PTzMBSpiK/SCW/zjMVlBRlZxpohMXGa3gEA5uUOodGmFg+CZxiHF3IP0oQjnRAp4RlndCx5z+g8FpZR7HkGTtNr0RNviBPeD2AOpfEkkhszglNG3uLgPbAZEn4yZWww4M73eNdP+PwgppkeEa1sYPadNg6W4tMyMyEaGMJOzGa9fL2wSMrMKlFomsdV3sGVBpFTgJGJtEPsFDQtv1k+hOnnChjhG2BFTKeNeT2BYPJDDgxqvGsY5DSP0GdwmWDmTh6d5ngv1MvhCv34A8ThJdDpFOI5izYOteY40xc3ogmr7IYB098Z7PlVALAtYrA2ka1J5A5fYD5+KpJO6i1gEiWk2tZMCcvyiIEZP+i22IWusDYN4JdaMWIYbhDjDpvxFbr+Fr5/rsD4CTS9EykI0jwh7ZFyrbF5BUxak6hK9uV0VCN2OZ4WG8pUsU0KNZ+FWOJxFTo890NpGG+csIBtSujGeVwpqzc4oHOMoB/5TIvE/l1yCYYYOJ+dRMsxbp3HjeslpngW6Srn8CadkJjwSAkHJpBT2UaacDq9gff3CFEaud6F0lALYcA4foyBRcphWR5wp3Jzlrfbc+Q04TS/w+H4C8Rlhy5eYRxeout3jQdHKs16B48jzfiSFsw+4hMX8HHMeLGZcZwjfk5X+F/cWxxVzs60dp2PcFkaslkbP945BJ2sSprHyZuRWi1jLSlV/Ee0/UvaoA6+l8cnL+feWzxdyn30TVedREPBr0qzyTnMZa/Rc/6evP6S0VzwXZFNK1iFyaF4wHEUIjWaBpLlGJcmDj/gNDJ1vwEg+FuYxb169QqvXr36Rr/76aef4g/+4A/wt//238a//bf/Ft7/+jXW98sIDgb0hILEOwWB7SOrjhcdgf4+Y3g8Ip8+wzy/w7w8FmZTCGMBXIhmufihQYhFG9gKOqCO6CyUkZzD0F0jxM2KDQYIg6rrnqGLz1bdifIevFDkrWPvVAN07dhZdYFtc12T+JtiTAtO50Tz8zr0+Chuiv7nK9/j1gVsoB13zxg9ITS8eO8sKZOxJgvShyXgPg+488DMjJ972aiwHJDAeMjiGmvFAKiRdjegh5MOC9lYgI3Bh2L4Zueh759hWR4xQ5hCCVz0CScvox8zJ+0ueSTthLbj3+0iXuA4owME9NokhOvnCNcv4bfXCC8+Rri+hX/7BbbX/xM2K2MD1m6wJG3ymj1i3CBnYdYldSNmyiAVc/elVNNxT66sawuFAU5GqVzLCkZh4bRGYgBkXIVMi5mQM9XjrNdAx8YIUCZKlkLAOxJWaneNEHbKjFDgQbULfadGcC0bzTR2CICO3K/NGuyLqAXcWEDg1g2UrZBTVko7mmjLnMu/y6yGdWQr49AV6RiLDTLy7eAmRjwS+sMEmt9hWR6RlE19bvKS86nck8bGtUTJ7sLEjMTShYULiHGnWqpb9N21aATr92O8RlDWg7GdqhREkJ5rw2qvI9/SlGCqbr4AN3CJHstyeiR2dRobjAF8GwcMTsBfK+jMxGEDM3SQ1X6WYk2SOe8kPo4ho9M5p4c54lWWgmcGY3QBkwFkzJiZFeCxUkGgCAFTxcQRTEjLQXWDe4zDSwHQVe96pAUpDJgmj3n6ChNlkLI5BxdAXmLGkmckElka32hTtasF0RwYO9dh5wlXfcL2mhCev0J4+UP40x7Di4gbLeKtGbigjvrKHtAXMCmGAYuPYNVEzhAwBw6IFg/aUbv2XtDPVsjU63s9tRK1UUGhh8/1udgRwCijfEGvTcoz2Gd4Un1qZfmer9IYpQzvw2pSwPsBsb9BGD4qoI788numBYo8UgSCyEawfrTPV+R+uI4m1iaRspu+A7cnqHmryUpZnGq7+UxOXm5i1fhLwCxaZTZp4c/ishRPxrabAGQMWhCVQwAujC3nBnT9M3Rxi6G/FePU8ePC7KnHJAEcwbwvbMNi/qJNDQN+1uOJNkmkuQPWup/2bk0uyuQerKB75vvC8rvxsYI9yuqxHOIc2LHP9nUPYOMYna9xYoyEocvI5PDi1OF2GfDG9TjqHn+khJQmBT9FMqE2SxNyVsYTdfBhUAZwLHE/dNvS5OkOv8Ap7wHOGEhikcneiAHThJRrXOi7SYHbhk3iY9XrYkIHya+uXEC/JfjNDvAB/XXEq3HGj3OPjfP4Mg74LB1VUkv2c69NQWm6PsIlYf6RNoWFEerKc9n5ao1ebBS88Nx0guaJtIOXEWxh9gcgt2I2NZe0aYG22Au+Q4xS1LIWw8GLsWfL3CdOMMah810xiWv3uxi2YjI7fAQeGlZLySvOYoaXSR6KHSh4xNIoMqBtaorTygr+UOu94+i2CAL4JCAsDD89IC13pdloILJcg1SaQ6ItOmGEw00ccOU7mPazjfcyAOc6DP0NuqhGhsNLYLgBhwFuApAekdNjbWKmfZmeacEdACsQuJpyLcL8UjZwRNUENwAYwEr3swDBPuJ5GMq495ULuFGwx+LCLtBFkbOFHbICOoCAwOcxRPKLChRZXkHksJk79HGHL30v+roAHvMCa4U7aF2vOpcpn4DpHXw4FlPevjTihaWexxOWdARmYMrHMgXpnUPnA0aS++2ICYvKCVbGn5p4ohpBEYnnRfFTUJmAvie82MwY54jrFPAyj+jgVBMc8IilFgVOknfmE7ITo7wyLYCm5qMaG4ouMHOZFqjxwes9WqcFhP2nWqA6nViufz2EtSbRCYOWYWdfWN6Tc4FbLa6UCRSu4ZPKBII0WTmI3FqMopFvGtjorkQ/XKenkFSOSaeKiqRMAgDdDwsrXgFg5hXQ8yHGv9t1UbYpW6OIgcQI84S8vMMyv2lyg5q7ES0SG3gB8ST3VxzwMow4ccaDat4aq1UYkdfou5tKJDFgXKVp0nKncWAqjTNAaol2nRPRpE6sDGUHXpnDWUOoBYHNc2jwAaMT7VwjkEjD2Gu9ILFh9KRNYWHJd2ENBJMCX5kBMjCYHWYAYPekyQxUyYhR8YqZHebUY685+ERZp5hJdzkqEyXOC/5ijSIAzcSAeDQwZxwOv8SJpKkrngjVoPrkMw48Y57vS6zt++elviacQMmOs5DJTlk0wgMDcAE3w4KPXk2YDgtena4wuoADLQJuWgNHcSWXAsgtSCwTwRmiIQ6oXIzebJ3zTzyJjMTY8uSl/pfHN54vKSMYrpGYhNVqdiNVOcuWEdwa0Lc+GfILZ/fLKpc/ozc6Na93Hcy7S6S/rhH7G5EVLSCw5GjORTDeLxtD1PhwnWEP33X9JhnBv4n16aef4u/+3b+L3/md38Gf/umf4ssvvyw/++STT77x43zPGsHKmLFkMvCqsWCunUQQV99pQZhOWkStmVX20TKCDewpG5sGPynkFAgGS9fCLlIFgeXitRH8/rJINb+nYAZKAbAesamd2vMx4vb1BedLF3/Q4m70obB/jZ3TX7i+/Ht2SuvaBXBhAl25gGehx4FSGXedtRhd0TnfQ+2U4ysbkRx7A4Wr9ovzAS4LK/tcA8srvApULUniXFlPLpTupxTHi75vSWZlpHMHN+7gN1fw404Kp35A6Liwpr7JWoG1Mp9QiirTN66DFBf+Hnqutftf349qyJ13zJywf1gZVsRSSDhUzSZLxrKyR3M+gn0vm3+ehKVOALsE75SxboneuZzC10lBAA3IYyLtHhQ71caiopHVjmYAqJsDGrDLmQLTtw/Qxqi71Hw5f9kuMeKUEOYJTKev/X3AdOekKcCQUb32nqTmvKPZwH2jo2pGMu9bbWw4NzysiW4F0bkOC8r718+t7mfQ2GDF3RMNL2dan62e31PGr60MZ1UX4BjErgDWgAFADoGBnbLwDl5iBVHCtNqEKzTxBBzWa6Y1tABQdJWd8yCHypywRotziKzHoDRXUkneWzOollUZWBjFY8jYDAlhdHD9ANeNQM7wvYyVG2i20lI8u0/bUUrTA2VHeo+acuelJpFbAcLyOrmEUmIqEwIt8CPxxwo7b4+8fhyFfeTwW1Mhw/t6TNrPwo4wjfEKAjsfi87nip3Trkt6eHZPvi9Razv2HzBJa1fL9JRG0QUQPDu4hREnUlfw1m1bnJ/blU1LkmVSwDPQ6b0m70tAPkBhbR80X+iL6cXq+c90Ps+151pme3lNqLkLUwMCWwPZ1XhQYoNTvq1q+5kZVI0LjRYwLEZUhm+AFG0Za+bfmgUocYAABPLSqCQHIgfvGL2TvAIaKzY+YnTCswcT5rNmQH3PXBnQ+QDWXAuA5lwqwwCRSzG/gdW1IAdZG3uE9+VlJU6A0OkkRQ9h+7lO988+IgZSQMyXAvp8yf21oJriVUsWwRgbIKmJDd+Qk9Y8Rz1qaiUnuVT5XnMM9DjY6Gp7HNqczPuu5lUgeNapn6ZY82o4G+MWZubiw/AUWL2QV5T70nvx/mgYKmIS1+rb2jv8MOvinqwTA9QWecRwInOPkEhID5yfHDNbIhcwK0iYi2lz53xhdU2UK+svqPZ62JZRbgBVZ7SRQDvXo7x0/a4ZUPYh91TNFbQJb/+2uACrK6rup0c1iLRmcf3MBehpV2a51zOLdnB+z2mzeAFmeIeSV2QWsKeH1B6ANHwH56XuAECO4Noru9RxC7Je0+dx1JU8QuYUjH1px6Sa2dljSS7iLh7nGnu9U511lSLzAegCgWLGhlyV3eK1HJy9Jv1COChOYgJrA/2bXPNtRiVfCJhbvtbPjo31eykba57Jrpu20aQ/9y6Kf0WpYajEmLaCrRIyOhPpgzaO1B9D84snq2H0FdjhbM8u+tirnOPDx4gnq2kmt0/LJKCwy9K8MrZ++TMfkLPt15IzACxNWZ3SM1Nh848QvWjJG+x4yS9kRe9ajdS0ei76mhqu9RZoG2y+IRFc8rcJTWwI9ayefVSmv+ULBU9wNU4YGGzTmsEBxFgxhduYsXo3LI/d5h09xKBup0Z7D8439bddkVqrK9iZ8wzvJzi2Scw6yS15hauNWDsGmjeBIRPDKy3xr19lEgLA0GV0A4MzYQNhXjPp3hLOc32nkz3rvKDkCnpMDfw1BrDFtfZuOEc5ZArefuZXv7v+WnEGo982fy/SM/azoE2FZkq8eSSba7J/XQKGi+mc8zJRb9ND7Wo9Zd5T93+Tc/Kd1ncfWPxfdf27f/fv8LOf/Qw/+9nP8Fu/9VurnzF/85j5/QLBfoDvrpCGEblz0ihs2H7GBl4ePK6/fIfu/itgusOszo7WIbZRUdFsUy1Z1WfJ+QTHwuwZXChgw0lp9icwfNyhixsZsfU9YrxCjJvSdbbC2dZKw9aJi3Bl99hoZyoFJSMXQXFLTKyoawu64MRh1DT3Bh/wMoz4KPTYuKAJlEcPAYGL9g67J2MZts6TudEzOgjo0yPiprvGY3eFI2f8VTriLybR48uk+l3OX+iamlGBdCCBe2VdRsSwBfxQCrjgB2XYVg2srGEvOAdPOu6oIzZ2fMs14kxbbgHxjB+EHs9Cj98LI25+OKH74e8hPP+BMnp0TO/ZS3Q7jysfEBX4z860ZGpAkueSBFu6tMKwpTyDloTEIhsg54fsoq1ArW6OBAfPVp4pQEQzKAuQaUWXATVFlzKiADmZE05cdUFbb+Ck+kVECd5HiDi+biw+Iig45oMmLy5J971lVr8P0GlACnmN0qlPw4AcA0LK8GmBS7OYqdCpsFXEyf5s5MQ1zucXOSXfbIUgBagLI3I/IA0y9u073SCtSXQEnr3eo3t4BzfdY5rvlP3U6fupbt9JtVUXPZbMCzquDLOk2lELyQjc7ERzchxeIIaNfv0SXX+72qhIwecKkufCHKgFnBkfVSZ1BctUv5ybwgVPdT+FBSf64IMLuI0jnodeG0Sq7YfW8ElHul0FelaMPwag4E2Aw332q+ZScMANtKjzAzbjC7ylKxxJxr9/seyxp+WsOBBQxCl4y5DkKqV9I+2QFLiUOLfEAzB57POyGqUeXAAcRKLDDONYWe8qbSDHXzSr5uURlGdsnMeP/YAf3j7i+mXG5kc3iC9/JJfnuEO4vsKNI9zEHkjAHUTCwKn+nsUGS7wNEMnwch7zobCCgxFHwGhxhnZawGthBefKfeMbwKplpQYvI152X1EGMlKZYAEAzwzxIk9YlodSTNgoszDWo772YQWamhyTse19dyVslHIxn8nGNOZFzkUZ9dTnM1mI0mQ6Z7ZqfJBUkWFM4O8qGxPCpgBU6Hag2CF3EeQdXKixyE2M8X5Gv98jTCek6fV7QcJMc3GXZpZmwlYZI4MTmZIDJ3WAZywOGOMOm/FjdN2VTGioQ7odL0qPhflL+STXjWndPokNJgdRZSGYJXcwjb9W49sDpSnkAex8V7wDRh/wzPe49l1h9lw5jyvnS1xoGb5AZfoBwvbrIWw/6Oe5Keg2FLDJAaOvsGbnGR+BsZBDxgiML/BlHHGijM+XA17nCZMzVoqCp8qCZUqY5rfINCP4HsOQZVybkuoFbzCFDShPOHHCiXID9Ai4NZsOaIrVqNJ07jlJvagTIR0zPoojXsQBnziP4UWE390AAOL1M9xcv8HHhwF9luMY4XCp/LBGlg+9DNlwQnKpaMx7BkhjM1xt8H6TBH1lPGWxgU02pjYH7LqQnzOIJiyLsKQAKDtRVgwjgk0eNLmqTBp5tP4X3nfo++cYhlei9RkGhO65vJ4VqKPL4kY5OKFoh+dOPjvTvqVJr286yx9WsNW3WhI/zbRVZW6UfdiaUbsJ6I4ZYcnojkfQ6St1NldDG1/Bc+Ks49YHOCYMAG7igBdxwNZ1OPCC4yLX5cKECYw+7jAOt0XGAACwyEg5LY9I8500Pqi6rFv+S1TjArCediEmZQFK/LdroHMewRmg3wDATph+Jh9lwMqVD9ggPJGC6J3UCGPIK7CX2FXWn4ey2ICW4QfIpGF2Nafos8M+e/TFbNLhlQNuXcQREeivsTDhK2XdP9CCSXVAgXrPOorSUFruRRqtqRdi3AkTLk845UccKBWWrTEdiRknIpX8ORRm5bquE9kNic0LxjDI1ETH6AaG9xndQMhLwmaf8GreYOMjHmmBc6ykozol6XW6h7TpLyIeXGoKs6Mr5CQ2+QBzI3i62lxhJRsDhssZWSVqAJSckgFkl7UenmGavjLZIO8/5UliZxZNfNZ9KBWIqoLz4p2jhtRhQAwDNuMnGIZXVQdb447T/a7kFMLcAHdbUOzAQZjobtkDjTZ2Xo2zN6DTd8gbrMluzVuvrx8+SP7QuRofFgYsRhwFc5g0f21ZucyEtOxLbNjC4UUY8NwPuNUa5E0+YU8LJso4gdF3VxiGl+j723r9LY96mB4vGFZaLH9KRLNcy1jAJmsisaNOEVksMOmo8m/FGYoUhA/aHJJcwTSBrXE8ekLvSaYInUwcn6+WESyftSHaAsJY1yMA0LPDFYlkSmYhofzYD7jpIh71WJy0tiIAyWW9IDzAGcuyx8l/iSU9IvgOg00gKugYwwDvBmQsIM4YKQOh1leBxSOCmSSe0Iz3LdbmnwHoGwdcPUu4+iRgvs/45OfAbRzxxXQPghqphRHeebA2rQCnev/SvApcAXvPDp6yMIJhklKqH95ME5mRpE0LBB+RCUU+Rl5rwpMGfNEENzKL5AXFIyXWvCEn1bLnBMdK7sE5z3UNDLd1YPADhuGmyO0ZC961EnR5TeAqP2uIoufHvzS2gA83KfDtIYv3r98cIRh/9Ed/9Cu1hL/J+n4tO/sboNsh9wNocOhiNYECqklceCR0bz7FdP9nEJ1aoT9bF9hr4upcLIVUyscSEAdAGSoBJxaDtJNjNf8Q6QfTN4pxg2F4ha5/WZLpdolbpYyAy5rWP2dSofa5BGpL1gzUMYAHMLmKavz2PAy4jWORgrh1HV75WMY4e4eSVNlauAbeIsiuHTagAsadZ2w8YYhy87xyjL9WOk8Of364wf8cBvx8ecREGZ8tB7zm5SnLohkhkE1wUj26vjB6vQsCnmlASYmw0FINEbRzGmGOuUn1GdddIa9yeylP2LLDbw/P8Cps8H+IwO6nr9D9+K9furIQbwZc6ci8sW3lmmkMhjSpBmSMEt01QhCtyJxPqu+lgY0BD9EZttE720yZuQDO5FiT+gAznDATqqL96rzIQ/i4Yn8l1QU187je1WR4xgnL0gjPF6Zfjy4mcaf3QZIpaD7Dpq9zzqCIVQfUA7ycRMOSshrAeCybHmnw6I4e3fEItxxEHzjpeLM1OgqDgFeP70P/naKzmC1dSXzoIrgDTB8YkGQjJdEM7999jvz4l8hpL+Nb2g0uoLuyvZmz6kxL0haBworvnIj/TzlD4BcAiOj7G4zDKxmPjTIeG7obAfjteKjupyRlU1PcVZOX8yaRnHN5JtMMt+JtZe6myZppAl/5DqMPGFzEi9Dj1nfC8D9L2FrpB0C1/LRos48jszL16jIc7cZ53HrGLmR4x3hBHj/hCOIOR3L4/8QBBMYvl4NIRUCZLq7y8GWsL4O8mG/Ny10FFAGYyV6fTzi6Hiea4PJcTCsGH0ohB5L4EMKCYBJapYh70ObfIzJN+CQM+D3v8NHvZgwfbdH/5HcLEAwA4foGz7sv8XwZgAh8lQJAT91yrRj3vkffXSGHQUf1EjJOAsgyA87DM6043dYkygoEJ2UuAKb3mZEJxciwFnddkShiJiQAOefChHSQTdtpXJrphHm+g2lho38uIKkyIELYFoDS5GN8d4XC5tWRRPZhDfC0DSKLHWEUqKbRD19pb6q0j7kEm67pupjTEdXvBASL1EiIV+AwIHcROQZQ50ojOSWZIhrfvYPffwVOj1jm1yXeny+R3zki0ILReXTO4VnoRZ/fBzzmpTE0BJzrMAzPsd3+qJhnhf6mxFWmJNp+zYjn+8CetUbwUrTLGRmdxgYb77TY0OoB2+j3s9AVmZgXocONi2Wsc+PcSttv9IQxUGHvLOQwk5e4RxIrbOR7ZsYjCEcFKDYuYMMOPZmmKPBRl7Dt5PoZpw63eYM7P+IRhP8UeszHNwLQAsiOCvcIEBB+mu6wLHsd1/bouuvCWu/iFfr+Bmk5IKVHkaiBsZBELkemiljlPeo5tr3AGJhLOmDrAn6ru8JHoccPhwXdRzfwuxsxmn3xEs9efoGP7ydsTh1e5P69vgs2QXbeJDKZGWMLJue0eQO0TMX3rRILnN0rdSrKvAUgrXV4rgVZgOafOKkZjQPRdYm5UfWTRRO1NS/N5fuhkCsGdMNLkY0J47oYe5/PwNkyEDhHiRMOQKYJKUluTgpWrPmLroCA32YJM3FUoEd9Q2IvOUR08B2DFge/MIbHI+LxAD89YJ5fI6Ujcj6WnKG8D85IaY+OCTuVFHoVN3gZRuxcxFcZeI0TTixyUuwihuG56AI3dQQpkJTTHjnvkdK+AXPOJ4bW58c8GUw3lJHQaePY4sI5AGxNksEJ+FslpCJuXNTpQocr53Dlnko5BMfwZdxbjy8zoHGiU37E3AA8s7LXLK8w/5KeJZe5gcSKqz5hSgH9NADDc/wy9jjkhE+XPb7KszaXJX+QxonmsHo/yHnypfnp4hWIFkzTG5w4w5Mci+g8Rm3EnDjjkE9nJswDAnblWBuQBmTRIneMYcOIo6knMZxnjHeET95cYesjmA6QNJjqtWM1qe8EPOGE7MSk23xHksaHCN8YSFKJE7y6J5ySWEQKkdgLg9camwkC3jIhqwxP4BpnCFaXTHp/VwNIOQ4LKG6LNFHKU5FCkZdhrW3ROo3dDkP/HFGb5OP4CYbNj4o5nJFM5MnFCK74vgACvqr8nMtZY1eS2loNh0WbdA0Ef6flfGUv+0El9UbNIYLUGIBKSREcSYzAJJJSSU0G62RgkAZyPpbYsAsdPu62+CSIWfHsBbwTMoPEhnF4gXH8IWJ/U15aXt7JZ40NLfO4aJ1jTUKzf5u/gfgyyHEOui90pYYwEL9OOBnZzNjLZi5tpDOTkLpSzMG7NX5gJDPfYAjl/bD8OzeNonMyysyMIyRWCOgs4GFvDWcAv+0loj1yh9wz3uZJcrDCrldZRSI19yXNGcSEtuuuS0M5xh267kqOV9pjMUzAiYFmBLShnJFTrzrsCezev8cZg3rnCbsXGf2Pfoh4/YhP/uOMj6YNtvMjJqZi0FqkIZyI+ZhsjNe4aYQSz2YqycXcro0RucmqBQSOBQ+z+ogNK6BYJhOAikuanKXEruZ609hgr3V2HmkBwB7Q6QyALpqaS363PkIhjkKg6p6Jtnt/uzZHbIhoxdPIpCJ8wPnk4VMyx4dCgfGbQUR/nTGw72l9v0CwD+AwgIIvIE+r/wnI5zgl0f6c34hLsxZza6Anlq8NZBHhey7drq6MICk/yUVhgsZNGW2JYYsQdwj9zTr4WtIrNM0LLFk0LD/7LLdqy/Jr7xEPYcSYeLt153beArLHjQu4gjB4ABRNT1vUMHkyXAm2QDuGoWMdLH/beSkAhy5j3JB2uR1OyePLqccpbrCnhHd5gjOTsPORaehANBNAohtMZzeoU5YJ+yTJG+YnY50BOlK5GhVsHsNHIMsx7Z0vndbnw4Jw/X4x7TAOyoZ0mswai3etzVlfqwRQr8mVnN867pnBCqhrUedMb0lAH6cFu+ly2RiaddlsrVmAMtaVvYI0WfjFNihifyXmcYzsEsC+ANWmRRuCjstRLkWH6FWjfF2uXxfhQmMMl20cSxoclqyRd+AO4EmvWDVzENCzOVdn56zqmAU49+0joOkew8ViEmcHpI0NfsnAskea75RptNbvsmNtS94fFQOuTpOgwQcsWce4gCLAH8OAGIWBGMJOGJUNkOYarU87zq3btzxnI6VhwL9GIWMBW5OobNJAKWTs8+ACtiFi1ILODJ82DdPPGMAG+Jj+rzF/bYnJC5fCrV1BtcAAYIiiP75VNp/3jCkFfHYQULp3HgvMAMkiTTmKetCdJhAziHo4l0siXRjbPiLRqehyG5un0/dvcityLENl9Liq0yYM9YzBD9gFQn/TI9xcC8gzVg1c1w8YI2HjAvYIzYi9fxLn7DlEg14ZVz4i5Xo4pQEkcUEepwGE0cZ866ZbXAhFOqb8vhZ6cq1kOJrRjmTZtEBQxtMC0fCibACj7o3eRsGjgGutcWQL7JhWX7vOQGD5OotjOSDan123+hNHVdqn3QcvZUEOTnQNv+WSYzRIfHiPURwAeGL4+Qia34FS1ed932JaZBxR5VY2PmIbhGU7UZamn74jB5GNCkH1EN3TUTfKJy1OKthrgM8aBKYmVlQNcdP+dNB9DHV6yKQgqkSML0DP6INMCNjoN6SosmIuAKrtJ8yeBV6a1bJ5SUPnPFYwF1aOzDAoc4gl/ngn+UTxJ5gjrsjjkQI+Cz1GH+BpqVeDsoHtWBAAykkaw8botfOozDVp3J6QaVoxgp1z8CQA8/l4vz1+AVMplRzrxkVs+gmuv4LrBrgQ4ccduq3DZshI2WMz+Scjte3eYpJBCISc5RWZeEVWeQhpFimgdrFoeX8hY5JV9bmiaAWz09F2m0wT6Q5rWtOFYyGg2baOI6PNR4JKQIwlZoTuOdDfgKNKfqW5gsC23jdpZCxc1fZn79f75BM2sL5GuCff+3VWlcRpX0NYjX67wBIb0gI/H4FlX7T9L0mU2XG0mGBxwXJ0a9jL+K42CMJGGkRqJNvG0cL4a5pC9jzyOZ39u9FEvBQbjJRgh79h/JkG6EpCCr4APRYfbDqg91TGvVcycwVRdGVsGYA2O+Sz5REzuIzEZ92rZjB6FrOpIRJ2m4QhZbxIAbccMWNEhwWv0wlt+CkySJB8j23KU2u/4G16zOQhIjJNWCirxJ4AXt45hOxgJnSSL6zjBFGV7AosOVfnWa6XzsEHB997uOBASxKQ2FllV/N254Sh6JzSRZxkc8Rl9wdQ40KRIjvLw87vgjaP9U74xJUYojk3J/07LtcGaZ4pMYELQUMIVDYxNIFcAPl+tRetJxO0dlL98E4nZ61m9vFKJobamNA0iwrYw6nck7mLCLPF5nZvtHPz4UAemwa192C6qjCPojLSxXAkUpQ+LWLsmA/IOonpeJ1oMElskH2lk7hg9xYbo1Nig+xlG5myiFdat0k8AFCMzuQ4NKQJy3PtOXl9rFrZGAbVmsI1euHNPlYNpDU+IKylIPRDpo+5mMJ5/WzrfVKUtlo2cG6evxJSJFZITsuYy+sS0ttOGch9DrgiMYq9dwLCeJVLEEBTjkWmGU6vs0GbGuU9+14ISgDInRTQrEuwCGEZm9FePcdP97n2Kug9IY4OYSeNkE3/RjwbIO87ldggdbHUGhI75bU3sUG/zgrSZnCJLtRIWnwdO/78vjXpmPLaFa9ghj7PWmpV8LANmDNiGMSTJKcnebs7+yBA8w+dAHROH2uLLj5TiSmpRcwczjCItWzMZSawrSqv+AFBYFws//7/Yn2/QLB162OA6yoInBIAiK7UcnLYHSeQmikY01ZYlQJXEGeQdutS2iOlA4gXBNaipwmGVpoaCCxjvzv0/XMEP5TR2RUIbIw/asAeBZxIizvTwKwJmwjqnwdlA3wMQJTCLZZizjaSK03cZExjDQC3t8f7oLZ89nvvW5QBi5XbLuOTuUMOGzz6jD0tuMszHugIK0N9GWvAirlRhcbVXfPCCC4DRUPt6dL0pdngWhZVSgf8IPT4URjxiY94cX1fnL4vLc4ZAQHReQQnovmmsWWdrid/w22w1uEtHbVq+9IEObZtgecVCLIkVq6BhGLs6+voRbsMLPeuA6toHWEp3UE7Ml6/ICeA2rLsS8CW5w8lcfBhQog78JnuJ3PS4J/gdFy2vA4f4CHXPQcdo9TllwXmdP1krPPJudTREh/xXTSCfRgkUYo9qJP4YIcuJ4cTMfLsMEyLjFqm+8JGtCJB3nPGkqTgmpUx2jHECVfvv1bLMetoowA9o3aRxZjPG4taXKjUOM8KyPwEBCaqRS9p8WGJmrAdqDSJLsWHzksMMLDHzBysa3+lheilaYFLseJ8lYTvjPFmyaB3whaE1wZSpPK4t67HJ91WWNSU8SadcMcy/AhYPLA5uzpBQJzlfuAEoBYdgHaTwfBnzQXflIZFR5UyjIyaFHAjPqFjyNj3ZkZ8cYP44iXCs3Wc8P2guqZ+df5Lc0bHgf0THcIenhaYBrZxgFdNIgCiBVynBiRJ4pJk2rknWqRRpsW9sfzbJop3EeQisqbIcruxMoI16VJXeytUYriTvzUjzxQRZLK27EUgM1LKopXpg2wG+anGNrcFswGv3hfw1y9LMZJcg5sXQGCnDdjvEBuCapY6P6osRDWbZZL4QAno1SAuL3fI6bHIMhRzuIY5Oi+PIF6w8QFXoUoztWX+QhmL0JmECRVGYVsbC5gTkGzE09h+axC4LfLWzJ4qp2ETA3ZvGiO4lYKwxpABPaPGCvMSkI/WT6AWc6bt97XHuEFjTD90o/dz0RaFK4w/OZ41Vmy7jJEIXQq4pQ7Pw4ADJWRm7DmLvIG+hnONu5JL6XSFLTFcCWBCYcoYiPJ1b8ceJ+UDUjrgme/wie/xynncXC8I18+LNITf7BB6j34g0Za+kCKvCm9UVj8A5ByRkUouEJrirr4PmSLyTk1mIePirF4JFhcIKDrigIA/Il3TyZQRZ2RkNbI7M5BjGeVclj1CuIcr+YFpJVYiRdVcb4xnjZHDCSB9DS0T2P6NClyWv7HXQRmOGGGRRhFTC1o81Q+33e+7LJOJC1pwUuxXTSsmgBcHv2SE4x6Y70DLY8nnax6bC+t00Xpi6zs80wkBA04Aif8TZ5VScyU2mMdBcZzPZgZnxyusYsCl1TaQiw42eBUbrCl0zgQuILCvzSLb81Za4a7qfl5amd2Tce92rfIII6LocaySNsoONl6Bbg29Y9y6gOx79PD4KvT4Mp1w5FR2zmqUZqCS5MCyv501JJ2rEgywiZ2nx7To2FNlo5nEVGDGAIdnocMuZAzPPMImwAUPBA/nPeKYBTxXEggpmNKeT+98la/iBS4nEITNCIdiKlkMZ8/WuoGMJ/upSVjBeZB52LigsSA3oLOCPiBpSFBGzp2QSZrxbOdEXoQ5AFGuz9yAZfZ83ncy4t1d1b1YjT2d5Q9PWHzrmGHTR2ZEbY0SacjoHnl2TNoa7Nss8wEy8oHTOp9awIkYfmH0hwlhnhCO+5I3yPsQIoLk/BE5n8A8Y+sjbsKAqyATe7YyxEhyBoOdF4whbJoYC4AjnNPpszCW67L1MChSdPlyvCBrvp8TBpqY0DaOi2a4FxB4o4QY8yGSz1JT+LO8IatMjDyvW4HBQUZnhS9HAEBnrOCaL/ROJS1XsaL9YPSe0HlGR4wrJ7nZNfU4UUJWk8nVYioAKSmG4P1aZsNqE8Mjnq6WdFLzD4kPOtHCC0YfcePFeHrbLYijh9/swDmj70lwHR+QiAv5Y0UEQyV+FREUJZlRE7tMW3r9Cpt1Vr85F4yvCPFfsQaGZSNV1deV96sguk7sMQ/rxwsivWryN5RFbsZeTcsIdgjwrlMPjQFd3CLGTdEPdy0uYfFX739QOrfukNdgMeFXeR19x+UuSJ189/WbeMwPu75XIDhtr8DjFmmICD3Q93LADgeHZe/hJkY8yuj3Yfp85ehrnUyiCWk5qj7kpKDAPbbsMPqI6Cob2NgZiwP6+Awhjhj6G+y2P8Z293tlQyv6JD6CF+nWZSvwGtdv+7e5+hLNxeVT9P20swyHwfmSyLR6PbvQ4VoZMx0CPgoDbn0sbJ4bqC5PI8huq+oCt6zgp9o7NuJp4xoLeXQgpOzRG/vUM26ezfgbXcZPs8dxjrhxAqD85fSAhQl7TjLOHERrSTbVCBvXKuPv5RhUXV04CbwmDWE6epbIsgYjoILAy/KAlB5l/CY94Kfbj/F/7R1+cLXHJ38L6H/v//y119fGiZN6coSjZp4hDEUPT55rzb6w5TWxYtUXdgwV+pfzV0wfSrHsVIZCirLZGShZXUaz81rMVWM65ozgI7jbij4vy4jLjBNEw0eWsT+YgRNmTPNbpHSAc1GdkI/o+5vC+onddQEu29Ei2SESgFMtAH0EMMK5BKg0hC1HDJdm5OWdjNMs92X8Vo5Z1V6WxwoIcaMjOd+eEez6W7j+GstmizT4oh9OCciTA8jBHwn9wx2m46c4nb5qNlkZJyaaMM37oh2bdfT7ozDgmSbooW0SMWMCC8svbGT0e/MJ+uHjFbOnHeNa5jerEU+gMnwkNixFjzGbU3uetUmUiwSINYbstUQn8WvroxhGemHDvwgdNrBpAY/bRuvTXHxtldEsTdaCssYA6fTDeYQmwWhBYWMEZ4bSo4G+I/QDgXLG78wRwA4/CSMeOePP5nv859M7PFr7gqOaAnRNcpGL4SEA1avTYlgZLlnvsWK61iQ5BVBrwDSCNf8e8JHrcBU7/A/9DX782/cYfv//hvjyR4gfVVkIAHDdgKHL2DhJ2rXMLKaAJiPSMgaC72BFZwzCIMsQcxAwSnFHkHvVltd/s3bys0sia5LFZAVMqsPuV0liXLH2CMiS2pHMgJYmSwCQOSHlRwAO5vC7pEeVtHjEOEyI3bXsm3l6qs91YVmRQsnA3QSvySF1XTGSjMdD0Q/P6VHGq4t2+Jn+p/NwvkOII+g7xIbYPRO2Xf8ck8YHYx4iO+SZgQMw3N9jOXyKw/7PYTItdi6ZCUuWvIFJtJY3DHzSb/EiPjW7EY3gDG9a4eMtNuPHMjkUr0qjLKc9mFOJlcKCXwPA8nltkErK6s7mmo6ETveUS/p+gw/FSLbzHs98jxehK1rhty7gxlWH7/fp+tHX0EosH984B7A8rjQ9qsGUxAx5nJQ9iKRhtOsS+oFwOnrs317hcXiObYgy/j0/4q1lKC1zBS0IdxD/BW2yed8hAlhcQIaMSs6aR1gzUvZH/Vr375wPmOe3kkvkE1J+xO/ufoj/U8d4sTni9icZ3Q9/r77n5z9AvB4xbI7YTBm960tsrg2tXAASYdX1iJx1UmdGSrOaEWM1Cr6aFNBYLI0ZaxIJYOQpliLOwF9rDoW4URd0lY1JhMUlla6qHwAw8SIu6HmG9yJXUJ9f/C9C2BYWcJkeaGMDZThMFQBuRrzPWVIuNKaTEJAnLBnkHcJ0wqL+AllH2NdLW6BOQJFvu4SlOCLGa6C7Qh6G0iwCoRhIDvsDsP8FpsOnEF3l+3I+LY+1e3Ge7jAw45Nui0/iFsHZ1ICcz4UJ+7yAfY8ubDGOL9D3zytAhsoEtvH8FpiQCcinLPZyCoqZ4lxicRsbzFja4oSBvgYIb10nBo5O2MCmCWwg8OipAD1Ppw0FBG61gltPEu8YG4eibzlrg2hmq1fOGIb6+CnLVbrtMn4C4GN2eJsHHPtneJNOUkeBkZwxOdvmvniTBJNi8LkAyzJ5KPcdQIWtDRiZgtVQNpcJsqBNgHm5R84HPNcR/9+KW3z8/IThRy/gNxucr13I2KgWJ2n90k42mj63DwMoT5hpQeZZ7ndFYsSMya+aWgbsO50oNTqIEQgyKWiruYo8l+plZhnfzjQhYynMPweZCCUdRZe4aNd8Vzwwqu/CWqfaJm7luXp03TVivF5NELDWFfb7pSmkYE8xciZpKDlSkpQ2kSsrv+6NelbhNIp+fcvv65fJbnXxquQPiIPECG0kuwz0xwX9wx3c8e1FSSnx+lByyXyPyIRPui1+3O3QOY9b16HX13lkwgNpbIhXGMdb9P3zcnzEl1z9XTiAKRYQHljHAeaEEAaktI67q2kiEj+i3kklETRvMFNkk4qxr7euw4vQa1PI49ZF3JzFho2Cse2y+z+oyTRQyScxaF5DDl0TQxYSeFrdEjV38CVWWE5hq/OMIRKGmOE945Pc4/e6K2xdhweaQfMjTiojI++/mjEXibJ8kNebDzLlUYxoAzJJFSaSC9qYtfsM9T62mJ3SHsvyiCU9gvIRL8fn+LHvceuAF9cT+o+eITz/AeAjdtd/gdvPNnjmO3gAhzyjNbN1XuQTmZzIYkJkM52T6ayktJiIGhsug8GVxNIur89r14U8N8OBYFOxZYKEAcICztXoLYcBQUkpIrVkeEnGko6imW9ECmPmajwOYUSIG9HrD6PU0P0tYndTYoVcIAr+Kp7GLFKaoHHNYDIwvhCrGnKA0Wzch4Fb/3dG8Pewls2IPA7IW4chMmKULhIlh3BPGPaTGDkcPpdkXrWdzBDH+wHLIonSMj/ADMcGBm7jgF3D/CzjNxAh665/hr57hqG/xTj+EN32x1U39Uz7TAyy9qVTR80GacYNpv9ZDKN0EEIYyR6dD/XGa7pzV17YMjsfJRD7iFsXdJTz/YEYQNHrWs5cfEv3DU8ZgSUoQ8BgMudvz9hdZ9z8ICGOTnwtfnaFN3wNYsaBEj5bDrjDWZJeChWvxyqX4o04ywiTq6MJreg5ANXYBdounDzOhJQeMS/3SHlCz4y/1u3w0x8+4voHhM1f/30Jul+zeog2dGLCg3IELHlqRy7bVZjMClowMRw7mH2DpJfW98I6eYOT7hybu7kEfjOScLQAGqBbiQrv5Uakwg4kcEpYXDUDMZdq0V0lTLwgcZIEya5FZQT23Q2Is2oCqmSKJmyC254AjCvyjYDBEYhSOHFJjEhBHtG7TOmoWs7nrB5X3k8MA2IYy2N8q9XtwMMzpGEADw6xJx0NdHBHRpwI3XGGO3yJeX6LaX6D6sYro4JmwmTascwLXriAj7oNnocBGQIkmPmQjOMAY/cMQ3+NoX8hBhibjyU25BNoFkBcRhT3qh12XG1Otiqzzcz1FhAvZSO2hM2aVO3ot+nk3oR+pft567oydnbrGNdRmCnerws5Yocle+RcTV5Cc90ClelnX68LNpTHAeTxYyQMGzkPP8ARm33C78wR9yki4xk+Xw44pZNKazBMk83iAzHBKZvHubBi3AKSHyYWoKlNegwMronZGlhb0gEDM3407HAbRvwN7/Hs97bof/tvFaZfu1w/ou+pyGrI4+sIU7tn6HMEnYJwLiIwKRu1g8syX0IWHVheq00M2Aoa4+rYVxY5BzOwpEViZNMgskIgBgJ3WUbCdSw247QyH7VpAdEMPmKePZiSAka5FHdmLAlgdeyty24slXOQ2KZgWKVlzJwtLElYf2f64VWm46lsjDcD1u8gGxO7G4S4K/rhNDRxJjE4AWFihOMdTtMXOJ3EU0AalwLOEE1IecKiTSLiE56FHj+IW3wcB8zM6ieQsSCrDAfQ9zcY+mvRDe9vBQTudtIgSnss8+vSyMzKQK3HsS3qWimNLE0ismIhldgwatEm51ryhgBXZGJsrHPnI65clNgA0e29Dhmdjnp7v24SyXO71deXDGefTg2s4wUg4E7WeOM9YxMSnj1PGK8I28nhJ9MJd/sRvXO4CwmPtOBdOhSmnzHs2+MkTaJD0xwRINQ7AUkXJkyNaZwDZOK5eQvOxQLyT/M7LOmADTv8btzit24PuH6ZsP3dV+h+8JP6fq9vEa526Ld79EcqBX37Gts8xYzVvB80X5ExYlKVVMd1WgDMq8Yjo8Y6iZkWFzoxlAr9SjrGmlRQmQw7VpRF6y+rbl9nuRgTFpzAKTWA0ah5QS6s2cIC9qM0jw3AcarzaYCvgjVtbrxiA9vyVW4mLAkueLg0PwV62nFUqKSUr1I932YFrQ1CvAJ322J6W3KRxHCJEY8HLKfPcTr9EswZKR31fei0QD4VTd6cD7jxHX7c7fAjjY3m4g4AC2ccOKPrX2AYnmPon6PrriWO+liMBI1E8qtYwOerMFdZpgUcxF/DYkMbFwzgMeafGUBduar9uXFibmRSMb02kI2t6z2vWH+2zptG9i6Ca6Tr2Gnsqr/bN7/X6ZTRkiRWbPuEq2GB94znxx5fHkb8ZRxxJDHmPDABzsGMvowxX65nNqJFKL+THbCw7bX6nhrOGmsOwgX0n8o590y47Xa4Dj1+7Hpcvzyg+/iH8KMw/UBJRqTnGdvusTTxPQsQZWxjOY7CPA2ckX1ESgcknkG6VzsGpE3QjmVrHt1of+tFoIzjKj/RslvrAwgQzImRczpjiELZx8CCRYgkvmqL9v0NuvhMH2YNDVj+U/KgeAUfd8pgbVh9WXIEeKyk6YyJDACUT/CUKys4zTpdNxUS0XnuAGvW49uvGAbVdN+U/IFjD4qa84l2B+IkdcVy+BSUT1iW+3KN1ekeaQSmdMDOBfy4E1JE0P3X9suZCUdK6PpbjOMthv5FjQ2AgMEcwWRg+zqetrmXEd+Efb3OJWo8rVOGxV+kqTGsSWRTApI3hMIENr1wI5e0euFAI/WgmMF5nGinBhE0r1CMASmgIy4asgFPY8W6NmEMMWMz/P/Y+68vSY4szRP8CVNiZk6DAQGWSNrdW9U909vbc/bsPu3L/vHzsrMzO9U9RTITSPAgzszNVFXIPlwRUTVzDyQKyCzUnFOSJzIcHu5G1FSvXvnuRwJGJ56OlrvU0FvDm+S4CSNvw3gQ5FrVNblOlP5raScqQaCm4hFLhXK1dlyoBsrn4P2Oyd/h/RaVIuem5T2dOHee9WnAnJ3V/UazipzlgRLA2zASFrVfBjmNfFpJE0OoaoGkyKrIQv6YmcsP6RUPr4rH9hDRTlkREAmZobz4mCCVAGqFStPBIKb0OOWcdFaOQ7kGZhV8DgC3K5xdUwK92/YprnlSyVRzRpNf3NckX6QqC5ZvaKFCevz+KdjSTwmSLOt73Ch+9PpLvK6/9vpZgWBJ+S5yk/n7KYL1ETsMmEHk1495v9WfTyV1NwesLIofUNmnMRuMQw75MJ2kCxffRNNWurr8QrmB+dqMyfMdBTkcvbaSqFh8Y5csjaV8qzRuTZ7Uz3JLAWIMqUq0y1qyeUKYJ3FxAfSUtdysFeaOUTNoVB5P64QyYBzYTuHWBqUDfeM528/sSafE+6oU28fuyksZ7IN/K6970UR/3yrpsTEMWCTduNtEmlOD7tff+7sp+72WEI1HfyZPsL5vqUWRiRmkmn9/Zvks2T6aheSzQMcLiZ/46Bw+d5FzoDRBi7l7SgKOzaCP+DcaxIYiZSZRBR6yX6FsOPrDczJ6lClF1uTzOj93TlUt3n4PVgzzNXB0nucXL42qKoEWArg8Zg/yg9cikKpcPKVGqJhE2jn52kDOr+tQKlimoSSx+HBGwhE6ZRjTwp+N4nGrM1Oqr56JNbk0HN68Zpnr8gY/T/KXgMH8gmI+cqlwoB6EvMCh1NPkBq56+y0m9lodgsC1PuTPtiZ951XUAeVrc/R1qRNN9RbOdUMntCn1AoJLtUFjDxsvzGWLwpNysv28YZk/j0Nvs+OmFt4l15o/T/l74cEcPU5pTozj1DjWJqL77s/WiNkTrRzzPz8OrgOcOvRR1ePr8Z+XfyyftcqfffHqe8xCYdnELYdWAgarQkKulajYT8j3Uvb79lmeN2VG4IDKE36dOmGeMN/LAIjM/uE8wvhb1IaoF+yNOEu8HrtHq+UrzSzH+I6a/ENWAayTNpXJg1YQE9ldB+NjrVsV0FeaYp+z9NsUtjMVNOkxoEKtDyWsIyqqd5oxTfYXfBhkMTe3h9YPx+tBfcz2ANTaMNcB8tdV6qnKuatrcnWRYTdK1Xt9AYGX9/si816uIv+s6oHEwb3u+C5ZfMiXv1sfS+c60ShMFO/gDRLMGbRkNuiU36/SlRU3H6tYr+/i2/nw2OWN6Z/pI0oP4cNADGMOt9N0faBZge77A/9wtKV4zjyWiD6/xsA8uMnqh1rrZp5v4lBJNB9vYVkewuv5sZEwvYdgCEc9wwyky7lz9LP5T2Ub5+szhBFjmlkW/66ydzSoOx52Puq3vfD2U1nGrEM8Ao/f1cvnCvkTaDk1M2ThH17/LSYIKteI7NVbGft5QKYMoTA7s4InpUBTcjsQmfOo5j62jMN1ZkCJ//1DVcFjr/XPgcKz+qVs/2UDX2rAMQgM1L2FUYd7jWPZdfELf8wS4rHvlX1G/Zmjnw0U0HfOKqn7DtLB/mP5mE2TM0umQI/L4Xd5cEweoL7jnPjzx+/d1/DSHiLmYZwBWi1Dtl4pXJtQrpMaMQ2kMV+rxkiNU98PTpZ7uYDXc+4IFFLJw9p68PuUPju/j6NaOfcJppJupA9QtdsoayYaJEoPmqLA0Ms929I6Rv6eAeCyV5j9dYXVikZAYKh7i2Uv8eh7i/Egn6BYCj5uK/VYpfznrYNBu+6qf/jhaxLv8EOG8kMG7sz+DjlozbDJhbSAwNKKiN2cBPf2VcksTybWO0V9JXYQFqUPbfuKzv9xssk8EIQZe9CLX12uZb047B0WNUJR60K5ZsuqPUK+hpfkE7keUt0jxOLDqWX/EHPAbEBLHUkp20NwTC87eN7yuI2O9MqyQbND8J0yUn2MLH5oyfXIsVt8/ZBtO/936WsL0TDECQ10ytBpYSzbLqFcg3ItGItxRTU112C/eMxlTy/K2UMjxWo/efC9H855fbiHkEF2UjOm8fgqA6fFPboMf0xDjOFgAJVSkP6NuScq3uPGNLMPeakXjz3jD7V7KAOnv+Iy9ocf4x+6UvzLP+Zfev3MjGBL7A1YRYyJcVR4D+kOVq/fYm6+JE53TMNrebHZEzilwDTdopQk0e/3b/HhjjZv5s5Mw4VpWRnLPgamINKtMUW2KWDdOX33gq59gnWnMh0sKwaSvyP6O0qAVgjb6ldbnn85KSps4Jhi9k/12CRFuDQ1j3n0tNpwohvWymZPYMVGaXo120E4HelslKlO3sDVZsxkcDKpSofpSTS5EWuOZOOdifSNp29FatG0wvCzXfZnbgQE1r3IMC/OR3697YATrq0nkLjfX3Mf7qWolMm3aSoret7AlaKZAQLSg1t4mcaFzNJe+g97v+N+9w3j8IaYJn7TrPmVTZx+3NC8fA/77CMeW2m/JVx9y/R2x4g044XLM0VhDwpr9bDRCJm1Waa9qcqbpWla9sUZ2q0WEXAIBJcb8bHkM4Yxs14sWmlSWjZ0RR4e85S+kRtpikwqYFJCL24LhiLpyEnc0x3k312CbUpJWqpSRtg8yES+FGWtO2z7BLon4tfddgRnZdM0KYwX39CSch3CTo5PSgvwV+WbhcLYjsad0jbnhJ/g5+O7vtrGAJUNzB2sX29xt1eo6Z5peJ0nkU1+z1GCHQJMfss4vIW4p0PknE9txxPTcaotdzFwHya2YWJIgbswoe2KVfeMtn2Sk+s72cR6cnM4VHWA2MAcgeOLr+tGo7CBgySlJzIonTdrRb5olT5g9ayMZZ3tC4rku1fqQC3gzJEdxHGNWJwv9YQp31v8yDEzSGuZxjsjm7Sul1qRB9y0RIxLdJOicZEPhg0fNBthWKfAVRiZ4khQEmVjgKRM6QulNihDmdynFCpwsfRsLmm5yxXjyOTJCcmBYXzLJ27Nf3RnPFOaX7y4oXn5Nw9Auvr7u63IXZk38nLM4oEnpxwXc7ApqZ55SrbXadEyHoA+eYiTUq4T+ViHJMOhlCZpgFREBU3QLjMey2A0b6mVhMeV2hCjF+9P5HWYzCqqYHaCwMDkAwpTPb0mf4fRDudOEJbwqr6n6mVZLSDmyTxQ74/abohNz9Q6ojNEHyi+whKosq1BX3Kep9x0yidbbGOsXf8kawhtz9DtBaHpiE76ByKoCZq7CTdM2N09cf8KH2ZWaYhgtFyjPuyYxltC2OISrJThme15qhueact1UtwhPvm7KCxWrRpW3TO67tlcG8I+s8T2VNYQvoKDKS2A9QWos/xerQ81oKQEuon9A8yAcGGUdtpUpYBTWvzzFpLvLltBPLCBiHNtOBgQKUBHXP65RimWY5Tlhm/JHCz/Zk2UYZGSvqJcRlpD1wWeNxNmcrxJhj+5nq+me7ZxgGwHoI2oB5bHJcYi3xaZfkyRuFRq1SEedVirKPeAAaW2jOMV9/dfMQyvgcBvmjN+6yIXnyiaFxe493+BcgufzGYG8GotZcFYrX+WG60FGJMD3VLMPuAE8T1nGdpE3YVKyFvxBwSxEZgIKtReIC1UCodMn7Z6fCYSMQxMambiJ6gBclF5fNiy233H5O8x2sl9OtwLQ02ZHIa6OQiTOxgMPwb8Ihs5ZTtwG1J7Uhl2yRh0CRv2mSEf9rneH1//wgY2poOf0Dc4dyK2WHZDaLvaPwDYIaLuI26YUPs3lbF/bNOSUiD4HeN4RUoelyJP3Qnv6YYPtOYuwXcpcJcC+xS49iOjgvP2gr57lkNxZnWhyIBbTFofsvvCsFAXjixL4uFrkvO+2P4UlWHpF+CwPpTewSG+4RttOKusP9go6PTs+3lsGVMBmHLNH6FJx73FsZ3EFPSjXsJA7VcKc7BpxG7KtaKau7xVPLM999Gzi57R79lnNuxjYHDt15Morx4bnoQMbhz/S4wj++EN03RLSpFh/4oXpuXT5pRnuuHX/cj6kxPc+5+iuzVxe03YXpP2W3TTyBCcQ0Dp8LjMqsOUSUc+2GwpxawWqESPeR9Rhrsln0SyQfw84IWcOzIHYRb7nDLEiNETGCDXnXzEZGiRZB8w5oDppU9yAX2MWeWhSqiDDUXuE6Il5f1EDaKGOmgtX9elLNrmPYfbPAhwjGFmAz8kkKi6z/gJ82OMaXF2jc2Bz75fk7QmGi2D43uNHTxmt8UPr2s4vSj+5j3V5KV3EMXhjifuhA90wwcGxqS4TnCdRBNyFQYGEpvmlK69xNkTrDsXJZFtgXJcEYb0wn6nHNcYBpKaySc699Fl1Z4rFtswOY+WdjFAtYpZazeD16rUBgGBC/awJJYs+whzNMSxVpSChSRiatZTympjagbROGjWo2aY8h4/aPZeH9jNBKi+w62NtC5gney4N5PnRdRsoqaJDZ+ZhkZpRkLe4Wf4dEE+kZ55qPUhlHvPghxYWLYxs3HrORlHUX8az37/it3+W/b7t8Q48MQ0/Nr0fHh5x/o0sH6/xT59KYzgGNAuq8G1Rsc8LEqxWiIppet9VgVNDCNemEbolMQGDJjNIR9fheUb02w7Uc7TMhSNuS8xtoO8nwrB4xePrii9gpBH/CRM6sLwLT2PfK/FvWOIKXjDCmNWGCNDj3IvfBTEXdo8lADHTMpM2uRrYqjXRLEcTcVmYwnYf++R+mFLPz5v/EnrXz8M/DMDwWmlSZ1Cu0TwkizrR0X/Zo96/X+wvft7mcpn6Y61mwzA7HJDOTKMN0z+mqfKceFaXAaCz01LpwxvGbnyA7dxYkiRSRlOV8/ZbD6l6V6gTCdFuUwGw54wXmeJpxRe77eUhF+AZcpv9e+KvoI9OqUqD5GGbfboaZUkXzqt6ZTl1DgutUy5GqU4UyLp7DIA09ogadx5whajNFryWiXVNuRQvAA4qTiA+AIWjx2jE42LrNYe1yaMA+MSbq3RjUEZhWos2llU06DdyOnzO3473fLspuV2tBgu2IaJL6d7PIEp7mtzJmy1qcoxytcCnI2kOB1MvktonM8cKBbTWhDgYhzesEqelXb8TXfJ7z68YfW3/zfs848PfP3q+bTfMvz+fyVcfcv2u8QuxQPftDFJgdP6IQtRwpamCkwVYLiAwaVglsmhyRLwx+qGRnyZyBs8r4Ich8zeMakRgGzRKC43k872kCIhOGk2wp6R+SZfWOQaAbP2GfyMccx2FqWpK2FURarW1nO6sCCa5gK7+oDx7Alj35KM+G2aSQBwOwzE8YppumGa7vBhVz1uyxhWJuziBetsT9Oc03TP+QlYD8O6x/Q9vtUok8RLyQvQ07z6jGn7R5FtjW+IMVTfzyWgP4w3+LDlqXZc2JZeW96zK16ajg2a7/TE1z5xGyfuo+deJdbdU05OfkPTPacmjxcA3d/hp+ssFSsATgmAmW/w5b+XIE/InlUpTTSZCVak32VDV4ZERca19Pbrc8NWfD+bPNhxOh6CPfHxTVqZ5Ddm/m+nEy4PRKzJTZfNNhBOmjprRS2gtdQLlVEg20Fn5BxZbSOfbke+Syd0ynAbR34/3PBNHGXDoDQqik9wCUEiA6oBmPw9KU7ZBkVVFlBRcvhUzrNiPzNVb9cYPU2c+NvuJf+PzcjF+ch7f2NofvE37zy34vaacdLVN13WbE1T6lBJap4/z0XYQwYuiDEDOIvhEJkIceC/nI8bIgX3KkAKGTg2xCAm2CkPw2bGYfbcYjFkGKnNbWDKG0o5p2x+3pQmIhPTNBGTl/AibWmbM0IYcW5D8QnVupXwSAQULoOi4uelrfws7Rm+l+FMdAo76HpdhBzSGoJ4h6UyLGKubUa3NG5D21z+NLXA6hmpPWHcbMQ/3CXipHC7wOrNW/T2FcnfMey+OPD2EwBYnnfy93h/ywmaMyv9wi+aEz7WjqdGUqq/AG7CyG0YuYuepn+PzeYXtN3LmZW8qA1lKW3REeICtCvPfww4LYdEKQfcVraJMvRlYKfUAejTKUuflQ1lgHypFH3euPV5SHScKXBs/1AknlpLmFxZx5u/xsX6c0Dd+JXHqL+nU+4v8jVrFOvTwPvseDIOXG1bvo4b/mhus41MhnOTRemFl3icgHtCDkIUO6IodYKZaVU2cstmu9Rl72E/fMd++I6nyrIxLf+le8JvPr5l/R//A/bJS9wHvzk4Hsp1KGNIQREDjHmTqKrFTb4mF4Oa+rvKYk2LzxufGCUcqvQ6CkDJAFB+Pnu2K537isSI9B+ZQiy+0dod5BosweCmAR8aUop4ZQj+nlH5CiJZpPakBGOaGMc3TJOEx43uhsnf4exGNnzuhKa5mEGfPCCqXxcm4BKwX7AIk1sxrU8IzqJDRPupBknKMHk4sFwQz8I8JFI5SMn2NYTyxyzXXOLaM1T3hCn3DwBuF2jvdphhj9lv8bvZbm5Za+Vzm5imW3Qc6ZTm3Hb8ojnh10bxot/zZt/wxitu4sRVGHgbBozuWa8+oO8/FPZfHp5V6wzdYV0eamc/daUsepE3AlKrQq5RMS2JCWIplYjVH7hV5iDotfS6nTYHA+RL5bjMBBNDotOJzoQHAx14yPAzWoY8Bdw5XqVXWP6b97pi+cV67rGPVGto2igqvxVo7Xn/euIXSQg/V3EQQHgJFjxQDsRqiVYsy8pAGaRO+AwiS6VZ2tjlPiIFIWmEHb9dv8d/tSue2sAnH23pfvNfa43Qp5fw1e+F4KDNAQBehlDyuma1wJIBamyPCXtiUPl69egkkbPVnmqhMjTMqgLZS2TSUfKyh8gKQDkuprLxSp8Qo89Uy0jCE9IM/JjF+RUS+fyKdUhk7ZrGBaztUUVRY1YLyylPDNS+YblqKPVCcXhgOWM6lhpslQlXEua5kxyJCugLCKyV9Ef6AZz/w5eAwBvxD2/OmPq+gtFmCpgpZFuIbxl2X3K/+zK/n9nuo9hQen8LBE7QfNKc8CsLH57cc7NruBscb9LEXQy88nuisvTde3Tde2Jr1ZyBbUmmzaoFUwMt9TShxx0qDPJZhT1Md6S4l15ae6IeUDFn8pT9RfEPJ9a9RFEULVenxUZqrWy2lxNP4GIV02nZU5TeYRkSLfZwGRw2YG2kWcn9XhmVVcUK3eQ9UEikkIi5yY5TwO8DYZqEiDHBfmfwXlVcY/CGKYiiadV4miZibSTPEHA2MnnNet/w+7jiH/UNuzASldQCqYG2XuPFx7bmMOTzPKVQ9+5THhIVZUexgIpxYvK3qHDPfviO+923hLClSfCr1VP+Y+d5/99F3MWa5qNPsM8+ykCwx21sDvGegztLLS/kDp2B0mhaYvRMPuARIkDK2QJmUXKXWEMdEimggMF5TyUie1cHUVo3OEveI8+1IWQ/b52KWiAfD2RoLFZwOuMITQ3nNqZBqf5AMVD2SkJiayWHZBFCKyfEu9m8Bz9rOmIj16Ye97IfDHtSDmYvYfWVFKAUKv0UQ6l5/RsQ/DMs3SZMm6eqEfyoCIPC7XaMuy+4v/9CLthMMzemqRu70lB6f49LiSeu44VbHfjeGBT7fMMZU2RSoE1H21zQ9B+gVy/khSxZD1H8SoLfVq/bpWzmoYz5kEWaCFgKE3j26CkbuZLwXdg8G2XomRO+Ox3pzGyQvgRnYhTGtCMSk7CotU6YeDjJL6u1kVXj6RYM4G6TcGvBb01jML1Fd3lT0zQoY8AYlDF0T0cuwkC7ipzdGT7+9oT/3ba8DQNTioS8MUvK5QuzNGV6tnUoMvrF5VAncBRvvNLELibEcSSmkUvTc25bPtUtp+/vcB/8RsKfHmH7hatv8d9+jn/7hu2NyS59M7iUiOLRGiMlnCkdbcjrpCmV28LhxKkoUMp3CxhcbCJ0bt5KgnLK/xbyRF9pYempOJHqJmtmAcr5LqEGVfKZZWtlM1mAZqdNZVXHFIlMqCAbQhMGaQxTYBmuuBxsxCg+wmjL2LeMpw4i6CnJhBxpTGRSP1L8P2WiOh8bAc1slUY6d4p1Z4SfIImYektqNclRm8oUodkNhP3X7O4/p7Dxl6wIoLLHgt9jU+LCtTx3PZ2yPDUNZ5k5d5dHE0MMDCmitKNvn9D2L9H9ew+m85WxsAiAWoI7cMj2K/9dE31TyJvz5ZDoMNil1cLi0UqJTD2DwA3CBF56hhe2bpnSh0ck3zCDwcuNizOHQyZrZ2YOFJsY0AdOGwsGYaPRjUYZje08l98NfLBrGG3Pm2h55fe8CqM00EkYaZqZtb0Eg4tiQB88A9mXtUJF8+cbvUzQw44UA5fa8alpefnBW9bPFO0nnz4IiJsf1BP3O0JmBB9+VoGYdG2IDlgF6bD+K6VRSdVXfZxwHWulOGzgTGEAVqZPqT2+DqjkOeYDr3Ujk/3FZgQv9Sx52eTVx0fhijQxSZp9yKy35WZR3oP4aFtbNpKLAVkc5oYuWycl04onr1Mkh1g7xcyMLx5/mZ2VKgheBl0KnZUO1vbC7v+RK3Qr6Fbi/emkeVMmYaaA3l3h77+QjeV0Uwc1y8+usPkhcGY6ntmeM9PyLIPA541nu5NjNMQgqd8KTt2GtnuJXX2A+CHuF6yoUD3OgMwKNmhtau+gjtjlB/eeuombNw9tTvIGqkUMUNk8BQQu4ZG9TpXN4/RDEFjOncePe2H1Ag/AH+uE9VNqQxkMlVVYP+WxCyuo/GyzSigTSEF6mWf7DWvtaBjwJMYHwtD8GcXy9/K+fKgsikf3ZwWLeusZp7vqH35uWj7VlvMPFc0Hv8FcPH/UQ7y8p/J+yjMcsoHLeV1sIeZBrtIWnXKtC2JXVoZE8t5SycspV0f2EY+YlAgqoJKW3kpnP+CsCCi1QH55eR3noXWciNkDkKwUaMtrTRKwF8g+pWMB8ueBcVEQ1fcSFyFRdsNhnM/R0gbfNvjWoqdAEyMqDgL0hLKJmzfj+ajW59JagPT4E/zDjV2jqz+wI7UKYkLdRQGBd9cwbfHTVR5c5c1wOV+Vqa9xk0kll7bjPd1w2U6cnYxMUWO85T5O3AVRDNjmlLZ9hmuf8Ji9VmUIgwyX08wMBtlHKPXQMqP0F9KPCpBX9hVOHe5a5z2G2F+VcDjxwod1rQ0Ph0QPXq+eewZrD8HeYiUHYO1MKoFSC1IFfsMkgE8FhMP8dWEQNiuxpEshsukmLocVd6bBKMWXegthevD6lhZcJXOg1IfD43c0LFoAYyFOEnoU9sToOVOGl7bj437kfD1y8oHBPv94fs5iEbG9ln1SeY53HEMZ4s4SamtafAFqYwbxcgdxbB9TQDyTqK89UAbRs6XU3I+Yg+F1SoFgMxMveUJM0kllEkIdGqMIKTEy5tDjKNZ0CHAktU1YqElnK6+FnUyxg1gOh1QBeXOmgLwhAXjkgdtDS4bcX0vezlDfW328TKApHtA/dgmY1WCyssm3koWip4DxYjVnBlE3Tf6WyW/rsV3+HdOESoEWxZlteGoanrQTp2eTWDQOjl2KXMWBbZjQphXf8OyTquymgsDROqJz+FaGb8Y6jNbo0VQPZZ0VVspYYgncK4eu1gdfzw1TQGBmWymYbRI7VfYVmo3SbFSqCoHvA4G1BusSro2VGNKegFvbQyJZxhAIgThOlNDwNHrcGCs4HPZSO6ZB6sE4yF5mmGTIYk3MhBR5/R3CDo5BWMNnk2Ao4nGL5JIsVukDljkthQ1c6kRVFaVlB1/u06EGskvg+I5VUqwyoejp2Z72o+eY03Psk5eY0yfy290a1dhs66kWjyh7iZng0WO0w4c9xnaits0hlyH7BZMHTKIomvcSddiV33e9/+c9zPIurZWBhZd4KHuNYIBEUjH7lWcSS0p4vIRSYoh6PNhni6J6VQN5K76wUBlr01KsT+R9H4W8HakGqgIx2zAmrUlG7J2kPhQ17pBfS5xBgcMj8pPWvwHBP8MqNT1FiFOWdw5JEobTw6aorBBHJn8vUuswslISrHSinUitF1vvshnOIle0cli7mr0/y1qesAtfweV62KRlG4RaXAQgkwu3FGKqR1f19Vr4fj707qIyb8wjE3igGrDDzOwLiQM/wFLEV72nXUnhdm2iOQHbzwxg07Wopqm+eCqDwCkElLOYbqSLkRREUrbWrkrZTZYZCCBHBQFCtYnIzUqWZhU268LZJ2+I1AEjA+SxTIKNkTC9jVKYppjFPn7a+rff4N++Idzcsd+bmkYKRWqVgWsCAV0LV8zTNGFlFRnezAaG9GiZKZu7ZYE+Bq3K70kTHxFP0SLniAvQ6aHUQimdm1ddj5e83nTQ0M6vLfMSF9NPOZYZwAwzmCQbr1yQtREmsKEGPKgQ0dkvy2e/y4eet8UWQryOlLbY4q1rN4RHGvgfupJWJC1+fmlShAB4eT0lYXQ5oCmr2JEU0LZF0WvLqW5wGVRdsmiGGOqQqJjiV09gEF/go/DI5Zo3JO/evC4b2+U1sPT5M4u6IBs6fVAfmkWd0N+zgVsuZyL6QP49y7yciVWWKRsyqQ+2ZFi4Geyt72Oh9yz1Q2mNDvI4vU5sgmZUImk3ICyUBZK/PH9CkTDnurn0RI3IpL5sVIp1jNZOwtUyw5oUWJmWDQI42U1zIO8+WNETbt4Q7+4YvKSLjxQZdax+eSW4bf78DhUgM3BXuL9HT5NDoep/81A5MP9rqg1qjF58/lJEL67TsrSS1zz7BUsIVIQaeKEz47h4F5bak+KUGYbzUEe8Cw0ptlLzH3jhLbzstCHZDDxlr035oeKHO8z3wsW7rpY52RLHmg5r14TwbnbAn1vRygY1GY3Kaso0Kczkc2jdHcVv8PD9lMDGSAwjJkmY6IlphHmPrr63QLU52ScZHBrTZe9RCyHbZxSfv+yBVhhS2pCff8xgcGZKZUDv8TXfZ5ZMnuXXhRUsljJqkS0gdaHYxCyBnJjmwMgDv+AF88+ZOLN9Fiw/ZQTssV3CuLypKadFPqnjJLWhlHvjsj+wm1+3IxEmhXWJXqkKcsuxWBisLAZnczhPrNfH8norcs6QJIBGLc63QhiIYaRThnPT8sS0XJiI2TSyWeseeoinaU/c7QiTwnvF+MhnVV6TfJaeGM33biDSO74+Xsv7eMrXT8z3uaWtiYTwHnoFA3VjRh5SBeVzaO0MJimooXqJHMqnLTpFtN5jamiasHzKbbAMjVIsfpaP9MfZsztqdVjvYsh1YrkRPzquuT4Iw/HHA8GqhEGWF559w3VM6HEP05Y43XGYK/BIjSfQKkuv7VwblK/HYySxLfYFSYL9lDI1BEotAbD64vLgP8vnl/Y79UeU4cFaSGD1Yev3gPFX7p+SJyBhcY1S4vlf/3D0O3MdAOqA+bEBcRkCqaIscir3CrkPyiBP+XjjGJkGlWtDOgCFC8NQmdxPGJGE90CvDDsVsSq72i4A0PLfD9UW+Z6ZjgbKmRUcClkj398LmzhkH9heNzxTjtN+y/rUY0/X6OMaEQNpGkghCBkn33fT4rM4VhMtP9eqelQxD5LTo0oisaNZgkD5JzPjOZZMnNQ+eI7y9exZXpIbvKgbWNaa+euYPCrv2yZ/LzYtMCsEFudyPYeX3yvgTgy14SmtnzLITTF7+6dHCuYxqeLg+GWmZ/we3/Y/t5Z+peX5VUzoKMpHYePuH7V8K0uGkkL2Kqz8XhmsGeXaUIkR2EbPffDsU0DrXpRVOZwT25JsI7YUzuVwbi11M8QKgCVALXuwCpod1YhcH5ZD0qUlxNKn1pR+YYk9KA5qw7EtRNNk1aBLtH3MDOBU84TMupVA0KYRNXFThqBBfOKzwiGN4wwMh4g3EzFGtJ7rAcz1aNmPxCiMY0skaiVWVMpWNWW5jr5vFZxm2UdEOBgUKUSVpFAVFwAZGOkUOTUNJ6bhmXasT/eY03PM6aXUicVwiBCzzcVcH+Sz04vrsnzPLP4EUoKkcr1KUleWWEN9rPkEkIFX3j8cWkTEg+cpikfKnzQfuUNiTKLkQRVrrmIvVxXGqa3WMUqZetsWG5M5YeJxb+uH36v3TGVJRoYkepoehXePB0WPIzT//GX/Cojo90AD/2rWzwwEJ5SGsFO0r0fa7T16mkjXv8/y6wIUzM12jAPDeM2wf0NMAy4l3m82/LY95WMtad87IrsUs2w+cBsmMD1tc0bfPaXvP4DuCaFbo/0kqefDtTyPL03iHAb10Af0KCxuAUwII1jYmpZ5cm8zQ3gp2+ozI3iZ1NmZUL05y/JeTvIYFcsUTq1FPtA6eW3WRLo+1olds4p05wazaWfLh75Hdz0YmdwVKWR9b6EwwjzKNZjNHeFuS3ez56NXez4MPVduYBc9adpxhVh3KOablDWtsLWnLaEwKhchfgUkmXKHoJXLRvpSZEIYmPw9G2X4dXvGe7rhk3bCXaxQzWGifVnTZ3/H7n/9n3n7d3fstobPbk54k/bCXEYCapoYmNJIUuB9Lm4lwZKUNzcFuBYGhk6lGXt8HYDBdcqYJ/sFK0nkDZlMklWageikJA0dDqdRRjuMdjksTyZyE7koppS9HFMFEW1K2R805qRbU2VchYHjza6yFMpEz7qzzJ7R4rUZhA3shkmujeEWP13j/R2TvxPPZ6LsRlL5vDua5hStHW17SdM9J62ek9KPB4JpFalVqCHhbkKd2turr7gfXzNNd48AV5HJ7xiGN8QwoJLnuVvxq0ZqgzQ9qqZY71LgKgzslcbZE7rugr57IR5mpkWR2YSp+HMVll9T2TvhYa+4qFuZzZantTF5UQugMEpLncjXQ2EEd8rKRq5O7A0bJVzaXkl96Gw+X9Rh8NPya2viwYZOfH4DxmWWX5doTzSmN9LEOYvuOxkKMQ+E6s43CqMvLd5w+Zm423Hy6lvev9rDtmMTHV+6FV9OW8bkiXmHE4Ktk+qEr8cphD0JL8cjXzQxJfbZX3ufAtquhVVhN1kKd4+NE63SfNRu+HQ1sPpwjXv2FHP+/MFn4r/9DP/6S+LtG7Z/vObNcM51HNlnQMMksu+8IegGYwds9vCK9fPM7Hy/r36NBciCOoapYF1pTEt9KMtkeFbUAnIsQtjLBiWVz1ajVBQ2jm4gM4JLfQ2Z7Z+IBB8ZlM/WGuIvJo8h7GORp4+o4MWdcNCU5PVyXzO1cZyvKedO5XvtKbHpiE42LCrIu3XDJN6f2RpCGD3TQeczMwYsjduIbUz7/HtDfP7cGvuG0PcyKPKJdKcwU6S5vWa6/4Jh+E7YhxkMNLohxHG+J2Xvtyfa8Wlzyi9sT4/mmVI0OmDyZu4qDpJKrSzOndJ3z9DVRqoD9mgkNZ3oMVbYECKbLQG35XiOLP2CWTTqBfjUiTr8KbWhbuby4BjAYbK/32wptVE8sINYKgG0TrXZK6DvPARKtL0MgZbyTt1YMLr2DlUxxPJtBNI4yiZv8rMR82LZEElBmEDKeF58HXlme678wD4FfBDvvqicbJIqa7TYZhQ5YFgAIQICjykykNCqq4oUgHG6hkn+/k2z4b+4U55pxW9eXtN+8tsDpt9y+W8/Z3p1ze2V5WrbsjvoQeW11fee/00GrRwMX+c1AzwSsgtRqQPbmHK0DtUCiUhWPpDtrArYqMQj8tjSIKVAsitUsFIXwo6R2X+9PJcomGBiwvu7WnuC3xHjiLMblNI4d4LJoLP0EeK7XL0CTVcBTaUswTmxjWkVMRrYgfIjKjN5Zssw6SGUKooK0MrNtjE/wSOY/rn4FGeptZpE4dRst6j7bxl3X+T+6KaC+fIZToQoXqDTeEObEu81K166NRfG8UyprJ6Re+53ceLr6V688JXlvL3EtU+yzZytoBcwsx9LiN5g0dW+Sxh+xsz19xjoKeB5yR2xiyFyWcsB0Vpbzo7s5orS8DhYtvh6Ly2hXAZ+tRZVkFtrzKZFaT0DPgvloHLlv2VAlkKo/ULc7Qg3d4SdXzABY2UM205hOxk46zGyWgcubiNjMBgNF6blq+meMY4VoNHa1ilUFBaRHKesPrT5GAF4Uj2fRlIGAx2SwTHh/S2rJJL5v+mf8D+sJj7+TxF3cUr7m/8L5smhsiju7gg3bwhv33A/SgZNGfEXybfJ9k5KWWIUxZUo/Rq0abGQA7O8hOrm650K8hdW8LyH4MEeIhHQeC01szxnmdKJxdzqAPzxHiITpVMp55NG9g+eCR8mFFqs8rwwFZUycu92t9j8mKLSnW0vSrByAXOin5mrYpMiLP20YPs9CIorfvBxyoMw6nsxpsPYnp+SLdC2T2maU4w7xy/uY263w91ewXhNnO4Yh2+y1V6p5VN+nwIIxrTnNNvNPXc9z5Shb4P4XCfFmxT403jHd37HVfRsNk9p2hfo/j2SWxH6NVPfi6LJaILVxDw0jc7QZpcpPWUvadOhSgDfQkKvFmqyYu2hE9ijIXLZcxclUY856BuKHYRR0hu0LtSa0PWBthfPf9cmmtMZT9B9j15vMJvTGpKmuzXKtRJMHjKhKnhhjsdAGve5PnjCzVuaN28I2z0pJKZtYLWVwZGcU7PywBixP0u59+x3gTM0p6bhJoyMKcqYYzE4Xq7SS1QLjXLvTqJImioZqK17vBAGdsNrUoqM4xt+6db8x/4Jz7Tj/7n2PP0fL+j//f+UGcBtzRpI40AcAyOwj0FUeSmhjMOa+fGFcS97DGf7SkaLcRT702K/mFIO/2RxH1+ETiZITIQ4iG2MbpiVS3N/ULylxfolZ4SkKD7YTAdTapnzRaKKBL9lt4uM4y1KW1zO+bBGaoN4Ag+YvF/ScUCHmSG8VAs8+t+LOqBNJ1lFjagPtZ8OsiPk/RY9ecr3hDIc+Ql9Q3nfP2HQ9K51rBb917h+ViDYiqEhepdYv3pFuv49Ke4Z9t8yTbeV+TADrrNHj4p7TpTmxDR82pzyH3TLh+3E1hu+CYavgbvk2SfPNgW6/jmb1Yd07RPa9SeEbo3vV9jdPWYIAgBn7654ZAmRHtkkzyyuYtQ+CkOLhFMi7y7TqlabA6Cn+H42HEozmhwMV+wgxApiBn9hBntiUhUEbhoxa3dtZHUaaS8sujGYdY99+gxz8bwWZ+XaCqbWVNd8IaZpkEKdi7den8l/TwPh5i3P//Q5H2/PeevW3MSRIQbu/Y6BCRBQTE26FjTxehJ2hUngsnStMIIDcuFb02NsX60RUvL46Z6XtuN3puelibx8fo+9/FBuOAhzJ+23xN2WNA3s/u5/5vX/b8s/fbZhGwy/D4mrMFYwpsmWIVOS74wpMrHHh0WnlVdhzVgOp+YHTOYF626eRC5uwMufV0ijlRJJiWz6z4XHleA8rV3epAzZaynLRkhVPG4zKzchzeKekI99ZlXl1FOt7zCmp9OXGLuWP058P2MrXt3RCxvY7u7R455U/IH9XU5eH2agRylUtrFom3O0bmnbZ5jVhwxnl4xh92cqwLuXahLKJdQu0d3c47a3qOkef/9F9vaTbknnY6SUJaZ9Hj6IXcxGGT5uTvid6fiF84xRs4+wS4oRGFPiNky07RM26w9p20u61cfQnJFsU6VZlYEcH5HBPdi0hQPWXzG2L0EOyyFRk1lxpU6U4Kc5AMpypnQNh1ubOTgS5lrgg37AEnYm0nWhBje1vagBmrMGjMasV5jTM8zpZd3ELWtDfX/a1HoQ91vITM4DQLjb0r+45unNgNGJk53js9jxj6ZhO0k7E/AiqYu63sgLkyHGMdcHjdMms/wiQ5ZrjQpau65hG/vhO2KaeG4azkzLb+wJL57d0Xz0O+yT96tEq6xw9S3jH/43xs//gL/Z8upzy9dRPB63eVhhgSHuUWhprDNr9HhJWFsBfA79w+s5kP+U7x8zFXQeopSfnohSJ4MHfRgeVybwhd1a0npNmm1J5D6lMnQUatiEvC+Vp/4IIBz2eFQdEsHhOby83xkt8q7YdIybzcxaiUksZPxE8nc5BOq+evulJAxPrZQ0vHUzmeXTqw+Y/MNj+0PXuHbY1qCnJAFQIQdA7d4yDt+y339zAPJo7cSqKAx5gDRiU+Rle8Jv7YpPCxNNB9o8ZBmBt34g6Iaue0rXXtJ171VZp1L5/Fde2FEGUrAHNWKpLpIh9nzNaBUrmFeAHs1iSJTtYsrQtKR8L4dExeKmQWTfKxcehKCWVeweAJom0m8izSpinBIw5qzDnp4IyOMadL+qbDjVdFIb3Mw+q4zQXBfqvXgBAqXx8DOWmnHN09XAy6njyvVVWn9Xhm1odPT4MGC0FUukrPwq0Y6FITelKINepeiaU7FTKudIDoAyceI37Rn/eTNwcT7y7Hea9tN3+4f7bz9j99pztd1wNVm26V5ko1kFoBdyUyigah5oLXIFDt63XILyNbNtzKwGyhvfdDgk8ilJdYiqbl5npt+8yavsw2zxEhaAdPCJsQ6J5oBSAJVirss++4TKe5JjL3ZfTQNJN5BDpOr5VDZ9C/BHGG4ywA1ebGNUGGDa5r567pXLUuSQWdPQuFO69gk/JWQ7rE6gk8A6FSJ2yNLv3ZZx90W2lAp4v6uDtWK95aetHIuw46lp+KQ54VPTcaY0T52vPtlTVLwNI2/DSNANbXPOqn8P485J7SnHvp+FfViAL6uNAMFZSQC5DmRFitaGEJZEEyFSFNsYo+aQOJgZf0BVPZ2hOVNK+oZcG5ZqgbLhtQtlUAF72hNoTm1VDJqzM8zpBWibAQ/pEyTYx0rPsAT1pjxAD55w+wb/9lvCzRXkmhD2A2lcyISNBqOxvTAOL7sR9g0mGM5My0oZRsp+S4alM0t4VhYVpl8ZohUf8bILCErRmq5KslP0tCnxi/aUM9Pwn92GX/3mDZv/6/+EOX/+6LAo3t8Q3r5menvH7bhhSIGohJUmA88Z3DnuDechrrDxYhwIyS/YiNJNLG1kyn0cJb394R5Chjfi2ZtVK8uQWdNVcs1UZeFDZkUOxAphS11wtUYlxrRnmka8F5VBsdAowdOi7JlBYbGXsgIA5kHo0pbJdO8R2q4GSdZjErNNRrWEeIQVrDTaNDRu85OA4KZ7hnMbcJv6OlSImGEg7b5h2n9D8FuG4RWT3xIOwq3kax/2NAmeNz3P7YoXtuVZJlkU1vyb6Pl6uueagLUbNuuPsKsPiP05oW0Z1ivGjRNlhQGsqgx7rzUqtrQxkrRI/FUoGQ77OnQrq6rTUqg1Qi2UhkuLSqfFlnKjcm1gHhA5E6uKuNhCFf/u7kzUgWbTYC/OsRdPUK5D92v06lT67bx/0P36ccVuzGBwCAIQTwPx5jXTt58Tbt6QphF3NDQKE8RxtpkBqmNa1wfOlOLEODbacR89+zhbuMmxOboPx1m5liSxJ9cOjc9ZHdaupS/O+7bRC5FtDfzH/gn/785ysRr4xd+MrP7T/+vBoAik/sUxsstq9CEGPAmtXB1CmcxOL9YxLr9Wn4emiSR9dWV550FRfg7FbOUgXUK2yMFAkpBZGQ6FBXlJY5QmmQ633Kd6TfAJv8gWMOXxE0wEfLgjhB2g8KbDuh3Oik+wDXucHbG5/5J6sELFeX+xVA8cW0RIDyB5PJiO0HY1kNoOLocqUslYtcdKYplVVVDvpOv98PVv1hA/w9JamBIqICDPdE0M4s9bbvIxBcyCRl9Sdg0i61wbx6l2nBrxl2IPTQ5TCwmmGAkKGndC05xj3SnKbkSSYbIPSfSLk2wGfJbrGAQ+/LdyK4+Zyk8Fdx6VgTNLOos0oykp32pm8MmaGcDzMVgAjppq3O5aCX8z6xbdOGngLp5jz5/PQI+x75ROJ2Plz7gH1xLz76Q80Wv7xAYJshmVpdUm++8WKWPI8qJZnlB8zTSLG5SaAdXiqWf0bDhewODWGM6A88bLVNI184sNgbi9kRTfcU+4vmZ7Y7iaLHdJcZ0mphQq80wrhc0b6ZAkoCGmRMgA2hJHU0d/fuhaMgBh3uCphV1ISshzLqeWmRWmFuDFcpI3b/p0nv4d3uCUUjUVOJKTyYmysVORqGxtag4fU0IcfGGqiDYfHRMqxurtVzahS2+/8qkDdbJpjNzcyF6i3vz48lKUK8DM2s8bypCnpvKPjRjFV8+hKMOYPIBZa8uZgk3jmaImjJZdKIMIAROM7WmaM5w7RWf/smPp2vL6X6b2yqYt8JjMcynPKczRcgPXi6HI0jamfK9BVyuIRlGlnVodWsYcDIYWAU9AHg5leXcHbmMx674qA+zFM/Tpk3du6OYnkUk+pTZABcnrc3UNbT/StYHJa/rBVXZjjjl5cM4XyxgO7HSyXAvZ+CQESFHZX7YELCgSa+3YGMeZMjSrhFmfVkZCCjPQmfZbwt0N/mbLeOPZD6IcGVOc60MFYAIkRUzTowrlVK4ripw9HdSOI3HVO+uHXtaGBFFFuaYW4O7M2D3aPC02mFo7tHICkqlcO4+ep/gMAgQWnsTMdj5LD/xyHldPYucINtdmo8UaAlBRmuUyaIqPgGAFtDI5REJnv2HU4Xv6Zy1H3USpIWJ8qKC091t89v0szIi6UszvTQKXpDZoTux0YKtU1hCFxdW4Dc6upbZltt+BbLPMxUyHyuneJVSrBMeF5A9qBZmpWV9atkY5vkeWdcD+O7KEaFSq/cOyNlT7KD33FSCXuHEi7TROYTcOe3qCOT2rzBbdi3VCrQ3dWgbHlfWXa10MqNwroC1ETxwHGGcQoCwF6P4eZyK9kk3pEEPe0MxDlZmtM/cQ5PpRHqcskTpLArc14qdbfWij9IlnynKy3rE5D9iLy4dy7/pgAmr7vWLwmjGparmSUkI9YmtwuPFcWqOUN60ofuDHteDYMqZY46TFvVxYTlm4uZB81t9Rh4GzJTxKK0kij2pPSoqoUu0RbFYoOCUZBGXwHfHVKgLIktDxgHF88Nx60UdqkXyzsA2QNxFqfx0XIE/pHWqPtAiZ4SfaxigrvX19aTGhso+597tc74Z6zCrgmny1DmtUw1muDxsFTh/eWycCkwKbmYrWrGoIVgGBC9hUeoloxEYpaS3XSrGVKSy/RcjkY+tgH7EYEC2XQct+IoPApTaYBQMYlnYQpR5Q1QG2M5i1KAX1ZoNen6DXZ3UYpPtNHQqppq0AMVCBHgF+iiR8X5nC0ewkqOyRHbcySgKsbaTRkSZoem3E8zSG3KsfXn9Lj9yyDyu9RNHqlL8FrNX5mpGfb5Wu9nOXKtE/seL3+Q7/8BR8lrhHplwfymOX13EMAJd7aw1vUrraTykUSUkPcAwYlPsBzEOiSMp7COlDko5yrNXh8Vz2qHL/nYgZMJZMgXKEys+rSnYpALp4CkvvL5k8TSWoRGUIYcSYZgZnlsepDKqjJ5lMHtC6Bkk+Fgi5DFA9UBVltrXWDeqxpuwHLqXbnHcw1y3Z64QaeFuUTUurmPk9Sf21SOi7ZBFZnCo2SvJZjYgXu4TxdhizAtvWmhCdZBugFWjQLtW9TnAq2+KV4dHSQsAesCfnFzar0paM0VIjyh6j4g5I32DUwopyYQVR8IdSD0qWkOlazHpTa4Hu1pjTJ3KdZHXxO1e2DsQt7oPBo9fXc88AYiNhBggRtfOybxgPrwxlRA3dKFFHCZlG1cc93h/Pn91MUihLLFiyOcLCnmjOC8qB1ErzTDuenew4Ofc0T9eYixePv9fgRflAYfHLMxZLmuNhrlg06jookj2s/K/ct8sA+bjeH+AUZUiUweBlbTz4nfq8MuzVyhKVJqXFnj4PjAvpTWpOAJSQHsOIV9muL1vNhSCZGCkHoFbLCDIxomAQjw0KClBc9mxGSCePWcjIZ5ytUBQVBFZ/Acj134Dgn2Hd3yiM0WxutqT9a6bxNTEM+HAPUFkJIU74LLUcJ2EgnWvHU9txYSXk5dSGCkKEwXEdPa/CwE0YQTn67hld/z7WnYFtUTFiJl/lF0CdtiltIVAv0nLPetzrZOF7Rjq8eatZ3lkmc43S2YenFGZw2RZi9sOZfbTkOKSDv0vRLsyebhPRjaI5tbinF5iLJ+imRZ9cYi9eiFTayIbuXf66gBTkzLAleFRhCAdPWp/h1nBqImfZJ67XllZpxhRysyXpu6UIiSQxLVIpC2iVAxwUNLrB5UnSON1IAFQK+LDlafucCxvYtBPGCaMo3r45nCZefUfc7dj+8ZZX1yd8HeGOwHXyB/5+hUkVSUSlcncY8QuJ5vKCfQwEXgK9S1bw8nfmn5sTgMuNuNyCxNtQ/LiUstKS5QZRzsPDaqTqtEtTXnpIEkGjlGIZkKGVQqUZmCcZ5g2kzUyBFU33At2cQ3NGcLZ6baohyXUx7sRPLwyS5LsMeKlNLNXz07mN/N2K5YpvLT7++KoaB4VKiv5uxG5viNsvsln8nPIN5HMlQNhnEGhLnxTnpuHctjzVDRfWs+49u8EQB8d1StwR+Tbs2JO4bJ/Qtk+x7mz2+CsXfUl31aYygwFUCqRoDl5LWQXEW/o+l3ZgORA6BnuKL3Dx9evRNSCuWdaI4vs5o/8PfD6brA7ozkXmbdYt9vICc3ouQM9aJvnm9FKaNGPnGnG0ZPMzoPdbYQWDNDu5TmhAbza49R39LuC9YnPX1vpQrrMCMhYAWECeVJkMThuaLPGZkgD10qhpmc6PV6QU2A9v6ZMSWZ7teaZUZWOkGAT4ff2VAMLTwPjZ3zH88XNuPvPstoZX25Y3yTMkL9LOlLBK4fKmzitp5JJayrwXLuCF0cwhG/iABZxrw2NNwPJ35MpO9X8FrExRUr6Tdmh9aE10OCQSv+CUrAA+xS4iP3+sILuqrzcmL7ha8kzeovUNJk6VXV+YPs6doptzprx5UTFV73AQ6WLKad/LzZO8x7x5M1LftW6kRrgzkW6nH88ILssOkXZ7j93do/yIH68P2IYlTR4mqQ3+HvA0afaev9SJs34iRMVutNx6y5QUX0fPbRhx/Qu69pkMkZuzeVCiDYmW4nWiYoAwCEMYUNGjdJbRa6kXhZ2xrA+w6D+gpn0fN/ww20a4YhuD3I+NSrQ21tpQljYF7EkHrL+2T3TnCnfRoxuH3mywF0/RJ5dVNaTXZ8L6M+KJ/IDpE4sywKP3W8JNh+pEMaCngbhb1IrFMrsdXXdNj6ij9joP+su5k4ofsFiXxDBm2WsO00tUK535wGmRZJtePudpW62DXpiG97Tl5NxLLez7GcQub2V7Tbx9Q9zdMX7+R96+cryaLG+SWIsJOCt+ht7L8x1fj3K+TYQwLOSnoQKt9bmOWH/HllLLvqMkA8h7V5B0ZjVNFNsYoLIA59ez8AzWTgY3KRKUSFR9rkrFWqp0PiFb1Mg5M7N50hKsVPNmTykz3zPdWjZtEdKk0CFJbx32lR1Yh1wVBJ7Npq1pa33Q9sdvnYKzwjAFsa4ZJsw4wHCd5d7yOuYciywZ9vucETFhE5yahktleWrk3qt1Yj9Iwv2ryfJq2qNVR9te0LdPcM0luLX4fRpTpa31c9eZ/KA12jtM9hQn2VoXDj/DQ0BRMe8Zjrsqp2fSiVNawiNZhsOJGsAsAZ8M9liX6NeBZiW+3m5tcRcbzMUlqilgzyXm9Mmh/DsDwA+WO7y/Sd6IRzWd9BF5KKsnqdNp4SGqjMa1tzQu0tpI41Ptk8p1IQDA4UAZIKZRFEeIItMo8dr3iORb/MPl9U7+DqUM3t/xnmn52G54ph3v9SP2tM8DcRlqLd9jeP0l01d/ZPjmhvs3ibuoiMyMvUSstlVLAATkXjun3ceD66AoiOR9pOoJutxDlHNAswC3U2bX5+vd6+FRILqeT1qsuWLUFBb8VPqDlCqLGjLoXGyllMjH1XQvwFENliy2KiHvnbe17j26V84EiwiYGIXgkXt36a3DQ7KJkmPobJ9twX68/Fu5M1RzStISxGaHCTN5sb8brxnHN3Jcwu7A5mcOKo3EONJpw6XteKYleLrRAe81433gfrRchR07lXB2Q9ue07bPCP0ZUy8Bdb7XqJZa54T0kmtyDuGNRmPKHuSR8MmD45rPvdLnHYfTlwDqVtkcEqfqfqIzohQooXClTzAuZXWAxl2sZhuI00vs+fOqEtKnl98PAH/PMhfPScETjEUHT+zWxO4avd+RQkDf3aG3e8KuKDNLjy+DK0OqwdrVS7xcU1Upl5UxB8H1of6kWEeKsaXOjH6jbd733hHTiE3wsj3jU224fDGxulTYp88eDJTTtCfevMG//pLxFnYySsEn4d6b2vO9G5yde0OJchR7Bqrv+UwPfIxMEsR3PFtglMyAYvu29C0vA+OUAvGgT0gE5QUXqQqBfP9J5VzzYvOUPGIjIyHRxuxZqgWEhWyrhUwhS0U/5Of24tmtLNpmpvtj/uExSH0oyvujYXsJqj9g5PzIZf4NCP6XX823E63e0b75it3dP3F//+VB06l1i9gE7NgPb2UK4e9ZA7/sTvnYbjjTll8bxeXJwPpUQIjdFr4K93w77fjG72i752xOfoc7+y0oK7LvEDAhoLJEVU5C6sVTnltWqD/z2A0uLpp+DdUXuMwpZrm3qY1ag6ppvsUXeDmxF19gWVoJknos4+o2kdVzh3vxAt31mM0p9tlH2Kcv54Tbf87S9mAKXuwXymS/fdpx2Y18EDo2SfPWdLzSO4YgVgU+RQIDKTz0oSqAuADAshlJKKxb49wp3m8ZxxsmvyXFiTM0v7RrXp7vOLucaE4g7ndM336Gci3+28/Z/9Mf2H7lGXaKr79e8//dW/4h7NinwH0UyWlZNX1dqwz8aFySsDs4nNzJZzqDtvV41LNhBlcKY2hZmJergLRl8xqTFNsJLwb4KrOmlSYo8Qs2ek7wFumnlsl79kBSQbzFPDPLZ4apMpOARDF7r4zeLC1t22eo018ynF0Kc7e18ov3Aq7Y3X31y/LTFSHcywY3+34JA0vA+6YR78x+9ZEkdq8/4P70lGmjSf7HV1V1H3H7QHd1Rbj9R3Z3v8/y7ntS9kGKuWnz+UY0TXeYOPG+W/Nes+Jct3yqHc9O7ji7nNBXifFO8UUa+MYPfD7coUzPZvMLVqf/gZpsHAMU6brpBDAHdBBpVg2jUkMN9SrWNfPnfiRRylP7Iu+u9eHIA7TIvnsl3uGnJnLSyHksib4C+JShtzYJDAd+XsaBW0P3fCW1Icu8C9NFue7dG7nHPgttpdlbn2GyxCuNA2p7Xe1kzOk57dMrYI/WnmdvFeem5ZXeSahknJhyqGQ9JgUcT9LQdcrQazkXt3g81BCoGD374TXjdMMwvOaXbsXfNme8pwy/WO9pTk2Wo+/x22sBd3b3pGlk/4ev+Oq/af705pR91Pw+JL4Me67DyJSkWWuVOWDDeEIGVfNGTR01YWne8B4PjQrIE9IhUPxYfTAFrM19l1fS7Ijdh0jUvNJiU3PURArTxxGNAEExM3M9IzqHaBV7AZHBiUXNxJSZjBmCjh5tGqxp6bvnOHuCdae49gmpv2BctbJ58Ql3H7HDKN5dwy374TXe78Q/PINIShtIqrJp2+YCa1e07TP0+gN25xdM/v4HnXvvXBGa+wF39Q3h/k/EMDAO3+L9/QGbp2wEpmwZs0FzZhsubccvTM+HJzuevRjYbQ1331m+DJo3KfD3/pYrAs83n3J69u/FRqd9SlooBpKZpa7aTxJs4UdUDALmxn1llQjwQH1dD/uIWL2By0ZOKzmHjFI4zHyNKM2Z0lzYwFkr728p6SyrMBitS6xOA+0JmQHc4F48wz3/QDZ03Rp7/jyDvz+wLhSgMNcGffIk9woZ7Ll5fQgEL6wk1qdvOPtacaodIV/7cpFFkhLvTBnEa0IU9YdOsUrj7eKqEqaNeDg37oxpumGcrumip1Oaf9dd8rt+5OzTBntxhjk9FxuL7bW8nNdfMn7x9/hX3xLutrz633f849sz/nucuEviIW9QqJQNmYIMZXw+fyXEclajFIswURbIBl0vNlRwDPbIo9TDiqr/mfL16pWHJBthX2SQmY1z/EktgSCXe1IfhCEUwp4Jn/tUVcHFIjEliV1W8hMiXZe+oQzqi6Q+RoNzBm06dPuU1J4Smk5A2JhgAjt49LgnjleEPIQpeRGzpFM2cErL59e2z3DrT5geseT5ocs3FlontWF7hx5uwQ+Mu2IptZ3B3ww6CXgn3p8uwYm2vHRrPjWKD0/uiUlxP1pebVvGpPiHLP1ebz7m7PS3NM3lgd1cNFoAn1aLj3lRUITCQGyzV6T0G3N4XB4aRXMAvKesNDRKzTJvdQj+dspiKCoHU/sGo9KDvICmjVg7W0F0Z9A+Xc9DoSfvYZ+8j2o6dLf+SWCPPnlCsz4jbq/l2tlvRcWXa0OxnkvBE7e3NG/vpY8ZAp229MrkfpZ8j8wkhwrMzWn0MQy4BK0RD/XbMOIVGLMWmyPkGh2GKwE048hvVu/zf3cNl+3Ehx/e4178unp+pnGAnBMR91uGf/z/sP0/vuDVHwy3W8fXSaxpdGXoTkz+vrJml7YtMYl0e6lWWLJei33MkmCyBINhVvfkN8KkcrZAHkwVtvEx4xAE+HF2RYgTurDyUyIw5Rolw6KyT1JIQHF5PSPip1z8xGOQvWWpCfJ4i737MRitbbWWMlEGp+V+Gae7PEzei3Ix14cyvv5L2cak9ROik9etp4lmkhyUuPuaYfiOYXgtpDO/xWfgaVnT85SLC7vmI9Pzqbb0GVDd7zQxwHd7x1fTK6w95eTkE9arD2lPfsXd+RnjxpFahekTTbdQ6Czu2btYWMGZPe0fVwfU95SEGV560lLPy/6i15YT3dBruSbOlJHQdyO+wCsX6FtfCSRLyyi31jQvznEv3pfhz9Ee4icvbbHPP8acPsnXf+7b91uIgXDzGv/2NXYnwHCcPHE3kYL4mHdahhetMkxK+qepKnhErebDgMm2YCWLpPTuERiQ/XhUGqulLmvt2O/fouPIS9ux1o7/0j3hb17ccPmf38OcntN88OsH+Ir/9vOcRfI1V99ZrtMcJhrVzPp9cG3kVb2DU5T7orK1hyjM4CX2UA8jSkKOUyIpsZ0k7OW6VrbuD45VxuYo7yEEJ88V9kyMFbsQYsJSLRAJ7PF+DyixsPD3osDLHsLOnValsHMbeZyMqUnmgwx+rFlh7KbeC0t/DVRlchkmhzDnkJQ8J4WtZBPzU4oDck6477/cftSKD7d9/+rWzwoEr95e4cyecPdH9vuvGfJEzhiZ/hnTIAPjPX4qG03Ppen52G74tWk5U/Ci3wvjYxPZ3Qkb6q0feO33bIlc9C9wJ79iuHwflSeReprEwywnGqNke6F1h9Z7tBoeyL8fWyWJcin9LrewJbhTQOCmMINRNc23+ALXx3zkzLGZ7deuIm2fA14uLO1HL3Ef/KrKNB7zrPmxS7kO5TrSJNIue3rC2ckbLnctJmouTMPaOHbRC8sky7xlMjV70ukjJoN4XUUUIoVwdkMIOya/JYYtLsF7zQkfa8vZ5UR/KbJ2QiC8/RaA4U9/4s0/Bb7+esXea/44Ov4h3PP5dFcTgpfT7dIwW6UFCE6aNgmAHfPrGTMolFLCKx6whY/LzBIkriAvHKR8yr+VIio36pQExC2MSJEDLj10DuXgxQNHK5vPSU3MrL+kqDeGYhFhMggV1MJLLZ+jWhlsc8b+8im7y668EWH7LTdw0x3Rb7P/Z2HL+My+avLARGPtmqa5wHUvUHZD6M8YNg6z5oGk55+z3M7j9IjeXXG/+5L73ZcsfT9VZs5NcZoDoMKOU2V4r1nxiV1zpiwvnc9sMJiGwJjgGz/w1bTlbRho+vfo158STz+sfmW1LoDIyExLkXCWkJeUvITyZFBHbrKhBlTV8+aI/VHkv1rNXo1LmWejFL0yMiQC1jawykDw0vph/luep/h5tSdgO4097Wg++hj3/qeymVufPRqi9s9eeeMuIZNWNnjGYtan2NMTCJE4DpyaIF7o2qJTYJ8CIzMgvmTUGqjMhVabeTijQGFAiRxpHG/ks48TH/SX/M5onnUDTy4HzCaz4mIg3Lxh+vJPTG/v8fvI2y8M//R6zT96mdJ/HQa+8zvuwlSv4SbXZpCAmWUNCRlUPT6bHzu7K9jDnAQOufFcKAiqOoJUa2ORfcZi31CYMXHKUtK4kH7PGzxrWjxyTcQ4EJOMLsu9SDHbkRR5XFAxN31ILc5spS6FCgKb9ilTv2LqDakVKYKOCTPs0X6qLDsBgWfVgEJBZQNLQFxVC/RnDOuWyf+EIMm8zDgQd1/XIdE03c4sngz2lA2dD3t0ipzZTljktucDpTk/H1k/U0AgfitM4G/iwNfjPVr3rNcf02x+lYdEkvYNVNbf1DqS0ZipwQ4jZtDSYySP0h3aiCRdqZx3sGT51ca8jEWZQeB3MILn+gAnjSgd5Dw4PBu1TpW83PZSF9qnXfX8dO//Avvso9kC4i+wsVPdWl71+kysqDLYCsze4uOeZpU404lNNIxakr91EmCiwB8RkJZCpPolpV0jHuvlOorF2890OHciz5UmXrgVp6bht27Ne0/vaF5+iDl/hmpa2Wi+/pIUPNPXv2f/93/P3Z9GpkHx+Rdr/iFGPvc7hryRM0r8M1MCTyDEfQ2Nk2tO7s9LJVSBrI6rRPnOshYcW0qVv40iD47ld4IKpJy/oLX0AnFhC3EMPiUjNURpW+1bQhQ/4Ij4iFcJaMqcspQIOYUghPua+VBkpMl0mJzloHVHak/xa/HkjVrVIEnjg9i9+S1+kjohIVDSX4l/uGziBKTa4NonxPVT4k/IFvCtRtl8DQ63xPtvSHHPNL5hmm4zGC3HoUjXi9VUk6BXhlPT8MK0vOgHLp5ODDvN/RvLW2+4Br4M99ymwPPVR6w3v8E0Z6TVc3y/IjhLcGaumRpSVBCTqK6iQk9GyCjaoiJVhTh7Ks5gWt2DQAWB63mSewiDPhgSbZRibTyrxj9gAGudqo2ccWIZ1Vx2uGdPUd1K7uPPP8Y+efnPJ5K8a2mLPsm+/dGjt6fEXQaCs8ooBY9yHfb0Fa7d0bpAZwLNgu1XGX9V5h0p0u1ipGJRdEr6iLuoSEmJ7Zddif+m32WySeBMGX5lV/zycsvZ5cTZp41YQmQbnDgOxNs3Fbge/vCP3Hyl+PZtz9VkeZPGvI+h9tlyPu0rGBsXTL+4AIEf+OBSqDOp7iXm+iBL7g9laEO2tvOkpMR+KLMAxS5KZ8n5DPzIOeAWg9KY/ccTkaEqNct5ZfOeIqSETpEh1wUVNB5VbbqWg1eTQaeU2YBL0EusGDUpAzx63EHyxLgnhAVIXvoepWTfY1qcO6HpnhN+gm3MtNqQmjVmHDDDXkhgYWCarhnHK4asOJMslDLQK8MGuQ+1Cc5ty3va8n4z1YC1YTL4oHmTFG/9wGrzCacnv6LtXhJOXzKeOliBbRJtl2iaxAPiYxTnJe+UZDGgZ3akshSf4oNzJmVALM29XlUik8PptWWjTc0kKp7hRqWaR1RCIkvAvKgIO+zT59gnL+c9xMXzH0wg+aGr9A16fSbD5GkvRJN8HYa7G+nr7+6Ae9LoMS7Q6EifcRWnFgk+KebBSrEzDHX/mnkzcj+lgHQKrSzGdpgcgJaS50QZftmecW4a/tYaXvw20f36bwVnOdpLpf1WmMBffYZ/e8Xt1nEXQ91HyBt9XPEr37O13qs86C35LCopZh3P0e9x2OenDBYnRmKApKbK4i/MYCGQNFSPYFtenljH+BRJIeBVqKC5pexXF3YRZHtFRoIPRCV1r1hARNOh9ZSfryUpUxX/YtEkP9ekrLywLcfWhCoGUgaBJWx2yI+/2FNrh7Xrn+QfXtZfwxri/wzrZwWC1bhH2UgMw0FIDZBv8NlvpMqIAzaJJcFGGfGrzbKGsmJU7EgMMWRrAI3NvkDBWczkH1LPcyMmg8jZx6R4+/2wlepm7vuWePVURenCF3i+zJdA8BLwkSZO0r21U+jeobpVLdJ/scbtaFVvQGPEd1Sl6jl0DEDGvGupgHj1npIVaiOXqBYDpVlIIv20iL9rAygDOnsvpXEk7mWTEO5GhnvN/WTYBsNdEr/XJYATk8TLPCaz/XPrL0Hnf8wDEBbshuIVzJHc7ZHLst4cUhGMfv86+Hcl3kdl2ql0J4m1Lm9Q4pKtkr2B455YGW1Lybeur0VkNDL1U6arPlhwQHb4Ucv4iFF+IRuTIIDl8YwZLCupuaSAU4ZO2cyo1TgdanGPURGgbvDHFGmMvPaodZZtvuvYipxM5LZGwPOsHniXUqCsY8+qx87Hmvpd64OqvqWzn99i8FDZBPO/VX+/3qL7zOZZ/PmLL2OEORN8rQ8YLV5/apZ16qQqYyGpcixSvQ6OJ9whg6/kjUDxoy4gu0F8yjstLEhTUk6iF4bR/p64HxlvAtOguN8atkFzlzw7BJSOi0ERHLJ1dZFMK3nNGR+pP3/M43vXtXgM8MAh22e5oS8y7Rr/EIPIpA7qQmGTBlBHDZMycmxVbQnf9anJzydhIR3/3Bzs0Il65kFjlv39Yrb5KIBK3bzN5t6lThjdSo3QHTGzEJL+CWPyKV8X03TALig+xTXINbNCikxQA60ydFr+NErAEN1olAmEpNjh2UapDyq/bmxblURz4rkwdmKmEBQ/s1RYFovBntI2h708XDNweDgQOl6zlZSuvuHHfUNZBQQ+8PlzCtO1qL5HdStUt/6LgsDHq4bLFe/p+kZs9VI0i/O/rAIGl6srpTIsynY6yDXkiQ9c4UR+LZu9lbacGEePnusDiFfpNAigEAPh5orxemR/p9jvDFtv2KXAJG7a9ddM2QBRlENBrtYFQ2/2L134h/NQMVDWsbVUqQmH6p4lc1hA1MKE1Fn+LtkDD+0F5Nhq0lFtOO5TNYpAqrZSRX4u15BHJysb6gUAIFJzATSjdRXkqY8ZxLu0ZAw8Jule9hDGNCjdCWvwJ/iHqyDnvYoB/ECK++z7OYdR1f1EqQ35Uy1MumK94uyEcQk9pLyvgF2Kcv9QYG2PtmvpH2xTQeBgtTB7XblflA300f7gHeDOg5XK+F/Ng+QjRlhhCNdsgUV9WILAxQ9Y/iR0qQuuQTet1IXM/vurrDJELsSaKAo3AGUMyuhHa9rxmoFg2ReWC/FYdVMsimYbg+wDnQKtNmzQdH3AdgmVrTzSJMqWwl6OWd0Qtvu5RkTFuFADCltZrssQvQxt8/BWKbkfheqnP/uV/rm17BPm93T4N2X/UGyrshT9GNM4sBop+wklVlwqqQqtxKxCKasCjJRBVv5fBreVClnNKCGHFXTOdhTaPMyeWH7+JaRyVs6VH9IUX2d5zI7Ejx8gL33DKVZOR9Y1Yfn5FOY5c9aNyeBqAzgzZwoUK8cx70MlqK9Fm5bgHMkpjE2ofD1ay2JfMr+s8r1k9Hzv1ObR/uFwX5Z/H3XQV4pnuKph1FIb5ryRYg9T6oRxYiWnGitZIstwyH+GivDHrmV+kXYt0bWVna+MQWl9cM8v9+iYjrtyOZ9UyoPl5IFUbbc8Kfe/qlTVg0FujJ5WG06041I51ibIcXEPwUoQxUDcXhPv7gSb8Cum488sP36IYkEwP9esEDv22l5m8SQe9hHlXZd7eOk1xLImkpKmKImXjz1bVRwOkuVrmwfbcp8rHsXLVfYsS9JZPqCLGjjl/5YeXWm76M9nXKEGxeX9xoEvdizqhfI7xxkMZY/RoPjxtjFl/TWsIf5PQAj+eYHgcPMPYCzj8C0xDvVEjHFkSgHYEsKeYXhLiDv6pFhrx4fNht8ZyyebHS7bJUyDIkbN9V3DZ2HPl9M9e2VomnNWqw+ITS8+XflmLyeYQ+ssPdIWFT0JGnvLAAD5c0lEQVTJ32FrAQ6oaPGeB43sYRBUcbNMh4X46BQo4E6P+PT0UP3HDrHpGfy1NmJzQ9n2kfUzRfviFNX3VaLgPvzNX2UzV5e2GUzqZWqoI31U9Av/oahAZ9/dwCxJdhkoBhhTZMxgzjYzv63ps+ecSHDOlWFtHJemo9eJFEQSGe88YXeDenVLConrr+CL12v+cbLsUuTrOHEVB4Z4uIGDAj7DhEi5QLyBxhgobp9TTvYs07vwKJ/nsAl7jLUFh2BP2cwdAMJKYfJmVqb7qoIqVIuI6cHGbm7eSmjc/FzFJiLk2aEkGYv80rkTTtYf0TTiV6VXLyqAAcIGNj5ipoDb7WC8xo/XhLBl8rdHU3qZ0Ddug9YNbfuEpv+AuHmP6By+lRt5HBRh/PElsHv1JU4ZpvsvRDaWvT99nL1IY5yYxlt82JLShEvwvNnwK7vi11rT6chpP6LzeTQOmi9S4I/DLd+FAa8dZ91zVHNOaDsBwJ17EGSRdGYY2SYzcwT4Vd4Qw59RD5TmNksIlV54BOdhSlkl8bvUh06LfMs+4plYfICNy3LPVbGJeYruJAjOvf9L7Huf/ujP4M+twgou9UFlEEwZ2YQ2eVMdlUi4bIpMC/bCkq0Kck3qGNhHz0jC6B5jemJOofZJ5E5PteOpaSoj0tpEuBsZv/wcZQzTq7dc/SHw9lXLMBm+2bX8PgW+iQO7GLhPkzwXMyD70LYhB0ouGAalGCwtZI7/fnCMONzMLZnBy8cpzx9SCdabatijjrZuLottTKxNlMkTd+b/RgtzB+ogrBhxlNdQ363SSEhTJzYO7VOa1Qeo/gWx6WefS5/Q06F/ePCzpNNnj7+qGFA6P94T2v6l2MZ0T5maVpKyf8KgaPNqS6Mn9N3X7IdvmKa73GyKrLMwk0vSuTB6Rs605b1mxYd2xaVyPGl8DlNUpACvvOH30xVfjltehYF+9RLXvSC2JzXoJTibQWCDbzWxVaAVahAgzOZAKGE8dWjTEkNmfJh28bnZBSgl9UExWygVYGepKtoUxh9aPP4WvcFyaZ1o+4jN8tPm1BxIPPXpE9zzj2aW3l9hHVpMDTDuZ3uIxVr6npahu/jh+gy0emyCVmlcVgtMKXIf5Wzeq4QBhvEtPuwZhjc8Mw2/a895ph2/sOJ1GMcxW9mMxN2OuNuRQuT+T1u++azh65uefdR8FuBVHLkPXmxjinWFFlDakvB5wAzi0z9H9cyg0LJPOAZulvXgMTB4uXVYAjCyIZuEKFDYPFCzBQC0buqQqATCKGUISosPLiazCAWaLDCoyiCwKUOkBD4zkD2zD7HN4UfOnWLcOcN6w7ApvvrSR+CFrS/hjTdyTYb7A6af9CViC2ZNR9s+RXdPGfoVU/rxu7FmP9EOe9ztFf7+C4b9l4QwMI5XolzIHsuFuVlC4lxKnJqGE9Pw3PVcKsOq97QnMA2JfdB8ET1fhj2fjbcYs6br3kevXpDciuH0lGHjSFYJ6JPl3wAxJvyoiB5SUPjWEp1D5zR0lTzKb2u/V0KrxRZFQEuDsEGLLUSpCVopem1ybRAl0UYlWhuq3LuAPSDgb7OKtCdaAqDWHfbpM+zzjw5Zf3/Fpbo1Jg+QkzEy8Mz2EMqYCqrFpBgLQ41yjRUAcvZ3LnJvsU9CMktiyr3+DHTEMDD5azYZFPtVd8YvbGJ9EejOBYQON28Y//T3AISrb7Oy6A6/C7z53PDH1xv+4BV3BN7mvYzNcM2EZ/K3hEUQoVb2AISOaapEGGGZzmGNy7Xs7eMj3UWpC6bsA5SwHgOaqEZ0ZuaWDf4DWbh2BNNkRUNWCzBWz+CUCpAo16tG9iwq7zFiGPDZM1gpjc32KkoZnF3j3AmuucTYDaY5I7YnMijVah4mT1sI+xwAfZ8Z03IPKPVG+ogT2vYZtn9B+gmsPx2i9FC7LWy/lD2Ov2O//5pxumHyO9m/hvHI09zjMkFpYxxPTMdL53l6tmccNTe7hqvBsY+Kz+LINgWed89o+5fo9QdsTzfY9cwE7jtYdbK/jxFChCljht4n9q2SYRJgh3mfVmT1MQ45nGusygYLB57ArTI4rbMdhBDnpDbAygVhAmfsxLUxE8wSzanFnq4FX1hv0CfZHzwPjv/qS1tUZzPBJKCnIYdUDxAD/uZWghoHxS5q9ikwpJC9fhfM2xTFNzzvG+XvgMvHqNi+aeWq4taHPff33wiDNu751foZ/4Nd8dRE3r/YYk/XkkEyDfjXX+a9j6k5JLv/9t+5/cJzf2P4anDsk9hHaeTe7f09w3idgUsn7GM/Z93ErMqreTxpuUPI50D+OyLX4kGIcN3PFHWhB5TMPNSeKQ/EynOndDgYMtoSk9hQxjTJgKJaU6UKtheFdQmTM9nusqgTCPcwQjRDZhmHrCq6WjyfWF+UgNjUXxDaroLAZsrkiGkijNc542NXcQClDKSE0Q1tc07XPSOEn84I/qsAwX8JVuFfef2sQPDN9f8mJ10c8onS1Ati8vc1xMH7W84wnFkJgPr3ds1vL+548fFIjLC/0+zuDH6r+HrX8PvxG0bTcXbyC7r2Gf36U/HucoaUfURKgm+0DqM12ucbz9RWtm5KXvxAoyfqUlA4YP/JzULalBpkciT7Xk7wmwzynFWz9pjlGTn0IM5bB2vFD7hZyYauO1d0Hz2l+eQ30rCdXGKff/xX/pRkqW6N2ZyKgbyNdFGziSI7WWsnwIpGZAzVF7fIXMVmYUiBIU+rvVJ0diUypvy5qxR42mx4ajvx5jEZ8JsgTInxXjENEKPm61c9fzca/iHcs0+B2zjy1g9ss2SzshHLhot5rBVJjCkyxVABkrK5W5aS5fW7ZDUXEPj7YM55Qpl/gfmcKKxn0iKcKgfHFUZdygW0PkRm9ajsnZXU/BwpbzwLeF0CtsieQ6v+BWfnf0uz/gTcmvH8Bb7NDXIAM6UanGAG8fWbxjf4cC9yyjhP4bW2NG5D1z7DmIZ+9ZH4Ap+fi9dwecy7SPQ/vjAPb/4XvLGM45saEjZ7+0nzI57hd+g40eYm7ZPmhH9vFR+fbatvLoDfw3Zn+dzv+DoMGHfOprtgs/klsT/Ht82jryMumItumLBaY/YtKgzSiOfGTKWQ2RCHzKw6KEqhnjdlSLK0iNBKNifSrMmQqNdSG5o214YFjmJdqpJv7aA5a2k+/IDmw1+j12d/OSuIP7eyr7gkCTcorVFa2BJF1omGLoqPl8pgQGkmll8XS4ghBoLSdO0FbXPGfnjL4Ld0KdIozctmzce64eL0hvVpwDiYtpHw+RsAbr5S/PGrNX8cHbuU+C55Pvc7XvkdkVQBHhApvjmqFYV9WECSkWwBlK+5Mn1fgsB/7l7/fTYyy6GSzf/mVZCJfErVB7CAP04VT8DZHiIlYc0E3RDUrgLBOj1k+Bx8fMpi3QpnV9JQ9e/DyUcMJ2eV4Sa+nwrjD/3Dp+E103SbpZRDnc5r26OUpm0u6Lr3cbnuhG59EKD0Y5d79QescQzbP7LbfVMtpaoVRCr+cDthJBJoEjxza35pN3yqHWc6cXky4NagGkuMge9S5A/DLd/FEW3XnGx+IZ7Gp6ckrSUAM9fN5ED34BoBWvyoGJ0h3YknqIqRZlijpruZ4RkHjGlJ0TBxNwMZWYJqEeuiUg9KCJRBNnSbrHLogbXxNC7WvmG5jEOsIC4cumswmzXNh5/i3v+lbOjWp3/dwXFeBQxO+62ApfuthNEd20dmwMEXRodMRyv42daBs2EPbOPIoJAxWn6w/f6NDEj9ll+tn/FfbccTN/HsdKA9ETVR4A7/9ordlzu2bzXjoPn27Ql/Pzg+iyNj8ryNI2/8nrs4VUVRo4zUMahKgpi/DikyLQbIcHitP1Yb0uJnjr3Ej4GfUpdi7jFHQt7UyuRdBY2vzL4MeCWxISmeg/J9TbBd7rUTUcUq76zPlYkKBewJJOlLsrUUnGTPvxOsPYXuCcOmYzo1qClhdxG3G9FBwBY/vGYc3+L9vdh+xUkgMyWbTedOWfXvYe2abvUxYX3J7rRn8j+e2dPe3tKogbj9gv39Z9VSavJ3jNNdlghL+FUMA4mATomNMjy1vfwxLS9NZHMRaC8ahtuRm2D4J3/NZ+MtX033rE4+pV1/wnT6FN+27M472GSFaxPpukTXycZyGGG/h2GvSDERW0VoWgnRAVTY54HRfj6H4lQHbDF5WhSNMnVI5PRsN7dWNoM9pTaEg77BWskNgOwJfG5onp5UsMe9/yn2+cd/XSbw8VpYTKHtHFDdyPk6Bc0YNUHGorUvT+Sg5VSADk+bqNJwSwGPpccvFmYgQMwGxe+6c85Ny3+yGz55csf6wx6zXgEQ3r4mvH1NCoHhy7e8+Uzx9qph8B1f7xv+IQa+DDvGFHkT9nVQFEmYlJhStjdQMtCSPlxnxvIBnA2ZvLFUDRzXhuM+oR6+7Bdc+II+iRxcelB1MCRa1oZDz+CeED06E5lSSDmZQYAdS8Khq30VSufw2cSIr3kd5CFT8ftOKbDqX8pAuXtCcqtsm7IAnvxIHK8kbNbfSBh89KJAyGoaY1qMlqD3tn9J3LxH+IkhsyoG1HDDcP8Fu92fCGFkGN8wjDcEX9QLsxWEApoEa2Vw2vDUdnysW56d3HPxnuf+RoDgki3wmb8jaEfff4DefMJ49oTx3HJxGug74aGd9LDphLUfEuxGGL18PYxgGvEJZmkNUdnknpADvOOihhXpvoTCieLJKcOpdpwpw1muDRdWLGNWvUcbIZcVT2CxlOslCK2XoVDxBP5rM4EfLG0lyDp4omsr4xYgjJEwKfZRC7EjelFpwIHtwuwfLgqeNkGn5V4eYmIgYcwqW5COYoOYJN/oQ9vxP7oz/svTO9annpPnCXN2Rhr3Uo+214SbN8TtLXG3Y/f5G779J8s3Vxu2wfD7FCoWofK16sOecXhL8cYvtkhAvV7L8EGCJR8HgcvXZVgE8+i4WnAmGVKLRUYihIxHaUvUi4DiI89gvcAcQnCUQErPVIOnE4lmQXhslBYVdu6NJkZSSDm8UxHDyGR3mKygtXaNs5v89QrdnDOuTxj7tqqSTZ6M6FHyR8bxCh/2cw6JMigF1q3pu2es1p/+JNuYchD/AtuTB+vfPIL/zNoPrzHG1htU8UhJKUoSYRgJccCkxNpYzm3Lpel4pjRnl57+RUvYecIU2d4odoPlOiluwohrzlmvPhAGZPu0bkCTnv13Qmb6QUcyBhUCOopUXJs9KeV05JwCe0zbn1c8uJl/3xL5FjidhNWTA15mtcFiE5BlXK6VRF+7cZiLJ+LZsz6TQvkvuJRr0VpCqxodMUgzWnwNS7dWTvzijSubm0iICZ//XSuHNlkynD3RDJLWfG5azpTF6cy6Dgm/V+zuNPu9YZgMr0fL12nku7BjHwNDDOJVXBsnJKhu4cNXiqYAv7EygBNl4/P9zL7H1tKr8HgVbs/xZiuRgZlUXhckVdLBtUgxUzwIIgMqGKSUkt/hIeMwkqrvkaIENp3R9B8QTl8S2o5h08+UTDKTZ/KS4uvHzKob8gRuZgPLD2u0bnDuBGNarDsjdOvKhlE+YaaEiok0/HggeL//BmsbvN9Jk7iQe1dGTxTfpxaRa6205alueNJOnF36KjFURgY4Pmhu446kHX3/lL57QdM9F7afVlXaupStxyMJu/ZOhkbaoHJ43LGn32Oe4ilPah8LDANEwkX2Doea6ltYPfngy2vK8lfx+FOY3mDWwgI258/rBP9fcinXVkbw/J7K9F3CGW0GAco7KUx5tbiGPAKsKCUDh8adMk53JKIwn7SoBc5UDr3JrCu/V7CXz/nm2vHt6PgiihXE2zDxJuy5OfJvrn69agbnQaq5RtULTCPWNzH/bHjkWn/XOq4BavH98p6NmhUDYqWRKtMnqVilalrbeh3Asi7I/VOGScVgQurMn32lRZ6dmX7WneH7VWX5lfNfaoR4Zxf/8DLALUwendOHJQhJY+0K25yR+gth07bdwWbwx66w/xaMlWGVv6usuaX0tkqAs51UozQb47hUlqcmsraBrg8Yp1B5s3WXIrdhQumOpjmjbZ9KAFTrCFYTnaq+n9olTCNgT/lEw6DxrUZPSfqNYg+RbB0QSfhTkQHOUl4yK7OEilbrpfzfjVI5YBZ6Jf2D1ukBqApkixiFWXfovsecnqGzr92/dF0AUE2LmvYHNiN6QZOYVVQLxnr+52KT02TfzzGUDZ8MkAs8EuIIKdKieGI63uvGGiBsnCKNI4SAvx64fW14/aZl8IY/ZRD4T37HlEK1BRnibNfhFpvLZSMQSIwxYFKszGDh8MwATmEpPQYGw3zvXtaDJehTN3hKbChMSgQVUOjKZi3hTzFpjk+HGfhpKjsYpSVl/EhKKUwispc4EjiZJZ+FvW5MgzEt2nTEpsf3Gt1mXuNOWHfaT6gw5ICXUTIG4sRS9i1WVR1NcylqgeacoV8RW0UyP37npMcBpT3Bi5qpANAH4U/JC7OLgCJhEbu5M9twahyX2rK2QfrurkHrkV2CN37PtR8YFJw0F9A9Yep7fGtJrcJ1EWtF9t1l1p/RhfmXsrIQgtMiU9cGon0UZImLwTfFU1nNORdlWFlzBQ5qQzxgA6tsE6OMeAKb3qI3G/T6BLM+zYPcf5nh0GNL92uSsRIgZ4oqVIS+JcND7oX5F1IiKfFGNbm2l2tUmLZLUoeujPkYPRtt+dhteKYdHxg4OffY0wt03xN3O8LdlrgfiWPk9hv47nXHF7uWXYKvU+DLsOd12DPFWGuEy0CwJi2k6PIaggoP9o11r5gOySVlJR7vE5ZD45j3ECVkNpGYiJA8oIlpwqSmWsfUY11Y51ktII8tKp4UJ1GoEA/USnIU5VWqXKYFeC5DKQ1a7mMqeqLJTHe7qWoaUdKouZ8Ig3gDZ9uWGsiWB+4l+0DrBmMyWNSvmNKP7x9UFI0XQTzDx/GKECfG6VY8gStb2+cBkbzvJg8iO23ZGMeZ0mxOPM2pIUzis3ydIt/FiWs/YnQreQjdmrFvRR3QQNtA5wQE3rQydBvDfJRDFCBK6QRakcxsZyEhmzMYLIqBmUGt1Rw0K4qBkkkkyl0hlsieonGx2kEU2yidLbJ031cQWK9OhQX8Lw0Cl6WtDK7zfxbbiBRzHU0wIT68RTWwXGmxqzeJqqKwSrNDdsjGNDKEK8zqJAqjS9vxsVZcvpjon2jcxRrVrcTKZNwTt9f4b75ientHHCM3Xym+uer4anTsgOusTq5vJb8e6dHn6nSwt06L7z3wVlQklQ7YpcdKwyUWUY5ZSuDLHiJ5UpDQ3WOriANAOEWinvLPWeloQiQqX8kl5T2V16Yy5jADwvm95teXUiRqmzGfnHOicyiq6fBtg29tViaDmrzYO1UG/FRVIPKUmTmsnQTOuTPmJM0fv35C6/HO9Y4t/7+q9bMCwWVVtl/+Wkz995mePtKhWBvHuWm5MA2nJtYmLYVImBLbneV6cLxJkW2YaNenEmLVPAG3romlALhFCMO0uBgyMKxMJ56n0aP1vIEDaepSKrLO4n+XfjD926jZI7j49BwvrcWTrBbqTmF7I+ye9WmWcJ3+ixfoNA3ECDEpQu7KKoCSys1I47Ps+tjLLJCIWRaocjHwXphR07TFoWpTZ5BC773CTDANiv3ecDc4pqC4Tkr82uJ8IxB/4LwpQhFR1WJ96QmaUsqBUKk2PMefwvFGrHgLlYK7ZPGBfK7HHqKPgcPL29XMLC4eX7mRXPx5zFi+fh6Lr6tXEsJEMLpB6xbrRKaF2xCdW0yYAS/olgriC6yCFN4yBSzyKCiTVluDXaxdYcwabTdM2ReY7DVsB48dRuwyNf6fuWIcc1Dkrm6I4mJAJJu5CYg0SkDgjXYigWpGmlUkBcU0KMIA3muuBsd1kEatbc5xbiOv37pDr0/Dox6mMRqideLZBZL4rUsYSPa5OwrPqF5waQ6SNEfXRfUHVuSpPtUfeLmWgPC8qZO6oDebzPb763mFf++KgTSNpMkTp7KRm5sZYT7PnpYF/C3HQQYzQBKLiMJ+LUCjIkkYjrb02mCQGhkmkfV7X/7W3A2OO+AuBXZJPIF9igfDoOJxBfMmy+SaVrzGC/PveGj0Lqnm8uvj//6zh+8dvx8pMtLZF7QyzB9DAY9WqW1lQ11a0GIdo5WkiTfuDOdOst+lOxiAHPiH+7FuRJb3QPlBkZeVwA1jVuILbF31DrfDhAoGNf54rz8/XZOirZYxZVhVAOmYfD1GJRykUZq1dpwpxdp6+hzAGKaE3g4MO811ypYkRmwyrDuTTazVUhNahW4TSoO2srkrti0xKiaXSAMCGGs9A5/KUtLnH35Aswf00tvvQPJXmfPlzwzylLW0ljIuZZ/wHr3eyKauWx/47/1LrzQOIv8e98QxMUXFyBykYvIABA7P//K2fIoQxV4qIMCm0W29D8Q4QIqcZAuN2btR1AK6kWyB/VXi7tbxZt+wj4rrlLiOnn3yTDFf94/ct48HvuV6mh1m57Vk2h73FkuQp/48MwNw+XM88rMzQDRbDhVLqZTvPaWXnl+7IRz4ScqgaH6ty97h+LWW4BqpE85myXe+NsrLkKyBxNJDvEiYDzZvmbkpAS8rjF1j7FqGJjGih4TyP2FDt38LxuGnqxwuM9UQqhDGWrdS8qgMEBgUjTasleNMWXo0zuTAm8kTJsQfOHr2KaKUxdoNyTbiCewUyqUKAjdNwlkBdYyCkP1ArQUvON3DnJJyzKuHogy2Sriq4tA7vKpp1Bz4VwfIeUNc6oO1MjRWRjyBddegu74ygPVfySf8n7NS8JI1EAJhgsEbpjgPXcUbXAgTctKJsUklm6AI+T5d+vpyxk9+l1VkI2vTc6YsZ8rQ6SA9xN2WFAJhe8/4Zs90nwiT4vbK8XpwvEkwpsRdktyZUK1hZgAuZkoG6DmXJMVM9nh8PQb+Lv9+zB8YHvYfhySkKOTjKMNjFSdSto56cL9G+lXpx/R8faYMWmVWIfmdLfdKhRm49L0ujGBjOrmmc2aI9MwaFTMZIuT6UIcz/ug1lT6iF6DHrvI99Kctu7/HqIno74ToEvZ5nzPV4VB5p8tj6lB02rLSlk7Zml2jjJL7S1TcpcBNnNjGCWPyvqLtiM6g7VwPGguNkT8m91ijT1WSrvPgSOyzyhA+VMA3LXqbsr/QSeqAWqgMdd5LN+haF3Qlns0EGa1BOzCNRvcO3feSG9CtxRf4Z64LylhSzihKIZBGj98npsEwMvfqhT07h0mKikWRKqAfs0rAJ6kRZY9RVOgQWOeB86Xp6HRC5VoaJ0+4uaqht/7tG4ZvbthfJaZBcXPtuPWW65TYkdjl60xncN7Ufb58ZirJ6ywBofX9Kj33r9X7fO4iln3FMQnswbFb/F3eJ0Ri1KIE0A9rwZJcknLYfPVYT5rEHKA9E2ce1qNEzCF3aiZxRV9zdWSgvJIMDtPO++5YrGOC9BHZvzsuMACUrpY7WmdCoekIP8E/vKx/s4b4GZacIOpA7p1SxE934t+FBH88sR2fNqf8wop318vNPavnBnt5SQqvGHYD/7jt+CwF/tt0zVsiH538htXFfxYp/NkTxt6Jnx8ykZ93GBo9WMzUoGLCDi0teVrhZfNm/Fq8eZI0t4fvIcrEHg6aksd8JwsI3CjoTDgAe3I2UGUGayPedt0ZdC826M0Ge/EE9/4vMU9e/nU+kD+z4jhI+NJk2Mfc8ChFqwxBJUxSB7LrJRDsgwA91qyxbgPI57/dfQ3AMLzhRQb7N8rQIB5huzuZut7dWr6963jlDTvg6+h5HfZsw8SQG7QhhuoBTDrc1JTN2vEGrbAMlhdrAezK56mQaWIB8IrdhV2AtD5bXpTNYch+DctN5VLqYfIULZFZPoTMYNOgRlS0B+EsMBfnZehLeR+FhZ1QWLOm7Z7QNuc07kxkE+tLhvWqsl7tEIlZ7t3sBswwSIrudIefrhnHayZ/V8FoY6Uh6NpL+v4F3fqXaLchdZf4tq3AabObWH37FXH7BUx333c6fe8apxt00LM8Mku+QxxzAI3cKDdontqOJ67jien4WGsunk6snjvCLjB8Bd+96rgeHH/n4Ytxy+bst5ye/jtc+0Rk8JteJN8akstgz9HrSREmp1GxlQ2rn7B+ROkuS33k58Ij9UG2JLEC/+UcKhs48vdL09bpmBnB8QHgo4wAQW2faE4N7sVTzHqDOb3EPf/4wJvzX3KlcU+4u2N4OzLcwtYb8erL57xTmpW21f5hWRvGFNjGwD5fQ0EprLaEODH5O7y/p0+Kp66XYaB2wqYYJFhmHDS3W8dutExR8eVk+X0c+MJvGVNkFz03YeQ+LjYciXdussqgqDB7CpC6rB3LdQz8LgdGcFQDFs8DRSFw2EwVeZe8Fii+oAX4Ddqh9QwGL/+gFlT//HyemVXlQVjZWTbe90/ZrD+m697HNmewfsnUOqJTmQWc0FNAx1T9w6fhtfiHTzcHgyKtHc6d0rWXaN3Q9eKhOfQrgrPYYaS5u0OPe/x0//iJ9APWbv8lWhnG6ZpxuiX43YPaICyQKD72ynBmGt63HR82Ey+f31eG3P4KhtvA1682fDZdg+k5OfmEVf8ezfoTbk83hJUCq7C9+PwJqCNAsLPSPN7vhfE3TBoiBCdBWlpZCgMYZhZ3YfSEzETSCayeNw3VYqoqBcRSaqMTnY60NuRAuJntV0LR3EphL05xL15WZo998vLnY/aAhC1dfUu4ecP+TnOdVAZgQ5W0FtBneS2Va2ifAjoPfpOyNO6Exm0YhitGv6VJgUZpPmhOeKYcrdthXWIaNLevFdu3wtx6e9XxT7c9n+Uh0Zs48bW/58oPjwTPPL4OQWC5r5frt4BEy+3b8tG+byhUNnXHVhHLDZ2BygL0yi/8SOWz9ZkNtqwN8u+ymVMloEzJaw9pziNf1jvJGZgHyq45Yb36gNXpv0evJXNjXMvAMU1KrCGGCTPs0X4ijVeZlSs5HzH3EdaKBF98/d6rdlXJtGg/0d/sMOHHy7/3N/+NyRiG4RXD+JbJ32ebmP2ib4joJExgi6iJntiOj2zPB8pwphN944V1djey2xq+jhPf+h17pWnbS1arDxhPzpjWhtQq+k1ks5kBn1Wb5d8aTFaqgNQIPyaCk6GyjkH8whfAuXiUjnWwVWxjlt7hMA+UG6XZAKdGlHriDxwr0GO7rBBwGrtx2MtL7NOXwvj7F/AE/nMrBQ/Riwx8t+N+a7maRN05pYhVNc4pK+HkaisDPmFJK5HZp1iDy2RFxkEso/qU+Kg54dfacmEDF/0oIP9X92h3z/4a3nzjuNq2TFHxarL8PgW+izumFNlGzzZODDlbBCR8dGkbUwbIIEOrKcWD3JHHhi0Pjkf+u4Ct5WvSQ0VZHQgkMhM6ZhVRktrgqUqiZS1Y1oeUtIS6KQdK+tVIwCdhOZe1rIsF7ClAlVIdTXOCtWva5pKme07oz5j6vpKwVBCgXPup7jNC9v6MxX5OabRpaJsL+v59jGlp2hdgW1QM6J/gEczVPxG1Yn//Ofv9d8IEjhN+uq+hlgJsy4BIqC+KXlue2I4T3fDCtlxkIloJPb3xhs/9LV9Md7z2A936Y1T/gmHTM200Z6vISQ99A72D3in6Ru7xRgvhCRJjgK6RgdFgFYQkA6PkSXFf/YGLSjJkkMwCrTZYFKts1bjWNucKaM5U4tQGnE60LszBkVrIJM1ZI8OhvsecP8OeP6+Ekp+FVLJYqmlRwYsfb/BMd57dtebuTkDXfZS9f7mHsfAPVynQorDZyzakxF30+d5ZroOY/eJ3PFGO3/XnnOuWX5ueF5sdxmX84npgfPO1zHYCbN8q3r5ueHvfMEbNq6D5OgXeRM9I5DZOREQJqUl02kCUEFrZT3h8KEF1IKzaRd+eZkOcx3R9eRx2AAYv8wZKuG1+MCbliSGD3ySUzzZu2Tpm+dxKaaxpSVqUyZD3DUV5x8SUgWzyayj3oqQEz0gJopL3GqPsqZQ2qCDqg7Z9inVnuO5FVt1ZkhU/Yx1ixSPidMc0Sc6ADxmPMy3O9ihl6NpnQvZsz8D/NNsY+Dcg+GdZhfXoqw1EDgAIAyp5AUWU4YVbSQCUUZzYiSfPRtzTC8zpBeHujv1u4vfR89+nG/443NI2T9ic/Q3D818QnGXsnWzmtEzujU3YJt+cvSK0whxUQZiAOmxwgDKtMPj8lhC2qMIkeMDEmtMav0/+DUXmmGriqFmAPBUMzoXatYnmrMG9eA9zeok+fYJ9/tFf9kP4gStNe9L+njCJSfuY05MM4mWoU6pyteVupxyLbVQEBevuCavuGZPfsh/eMo3XxOQxyXNmTjjV4nfWKMUYNfvBMI6at/cN33jDF3kD9yqIJ/BtnDITOB3cEErDldSysRIA9ZF3R8zTr+LZVSRBhfHcKF092opkt8jRQm4Apyxr8imyJzziG1hAvxlkBkr+eJ3YJRmNVfZk2UQVUFbl/5WGs7D7QKGVo2kvOFl/Qt+/wLoz7OkvuT89Zdy4A3DHZksIM+xRfqxyzmm6YZxu5sKrLcaucnDDGW33EnX2Kb7tCE2Lb+eUb7fbEe/+yN3Nf2Mcb3/MqQbANN1ijD2oDSQJFIxpRCdwwKlxvNeseG56nmnHe93I+mnCvXiKentF+Gzkm13LFwH+0W+5JvDJyW/oLv4Tya3Yn18w9bKZU07qgmuE3RNj2cBlZplWTJPBTI34ik89et+JTDbss/zbAnJDSllmRpbbVan34hxaGu8b5gDJYxBYLUAfkAbOXWxwT1/UQIefa0AEEKeBsL1nuIXd1rCPqvpMaqVoMehHWNaQZbMpZa9Li1EiGRLJoISQrLTlme15ahoulcWpxDjK9bfdWV7dt7wKmhH4Ik78yd/z7SQbuDEPiqaFfOyYjbNk8R1v2Orfi6HREpwpf5ehUf1cyc2aOnycY2uJpeyzNFXy8+L1NxKqLyJKZ4DAHmzsln/L61G5/on1DPm1RKXQqkFri7Ur+u4F681vsKsPZGh6Il7fyQGTTOfdMIlvV/YPLwFQsoGbmy+jLY07o+veE/Coe0HozxhXMiiyw4jZviHuvib+hCHR/f1XtTZIINxIIkr6d64NGuiU5kQ7ei22Uh+ohhfnd5y9H0kBGVjcGLzXfDU4vhq3rFYvOTv9LU37gnD6kqk3qBZMk+hXia4TsEdr2bQ5MzeP45jwYyJ68G3299MWlSxqYYuwlH2nzGgt94Old/ZyNQv/T6eF2SPenxn8zfZRSsvGzpyeYZ68xJxc/nwqgbxS8NXjL9xcM+w0dymxjZ4p8/ZKINtjK6RUB7yFsd21FzTulMnfA4FntuPUNHzUbLhUCpuZT+Og2Q+W+9ESo+JPg+O/x5E/+q2EzgUZEu3z0MoeDHvfUa8KCFxlkHMNqYz78t7L3+rhsHn570sWYFllc3eQN8GsZCAPkGP0KJUHMtqKgqJY8ORNnvSlJWxWZUYlFQzm6Pllk2kk0Net8wD4Q7j4NXeXFySja6CRgMAxB0nuUWE4CJKc/C4/r8jRdekj+peE05c1oFWFgNveoaYfryTabv+AMY5xumGc7rKy0NfaYNLM8rO5h1tpyxPT8YEyfNhMdFZClMKkmLaR+23DN2HglkjXPme1ep929TF3mw5W4LrIapXYrDLrzxzKv41KNRDKWtjvE97qGpQmH6XPIPAshS2eqZAwFfDU2Tt8vlgaZEB00niMErDH5hDZIv12a4NuDOZ0gzkvFlKXUhd+xgFRWSkE4jQQ96OoO7PcfszqwhIouzxHDap+jiL3DngFbXOBsT3B7xina0gTJsFT2/MLu+Lj1cDJaqrKy+1bAXeurhr+eNPzWUyMJN7Ega/CPdd+rOSO4+uz1ebAlq1cS5HEEIMMw5HaMOX3s2TWHoPCj/UnZZXQazgcEAFVlany8NirWZot+6uGoF3eRxwOiYCc1WIzuKtRIYhne4rzUGrxPsteSRjaCa0tbXNRLZVMm4MfeyFYqRzkZKaAnjIrN9u3hHBf9zgkeS1te0nXvy+KAXdOKnYTPwEI3m//gFZiSTmMb/HTlphDI8VKowznZwWoU5oT0/DEdDw1Dc+U46SZMC6hGksKnuuk+Db3mzsFZ917+PUpU2/QvdjEbLoZBN50ik2rMVqxGyMhQojCCr4zMmTWTs7NosxKMUhgsr8nhN0D//AuW0G0yohyTkmwbK80axPYNGKVV2whyuBYLKT66hdecIaf0yrmYGkJjlNOwuOm+8T91nG3d9whJI+QUh2epmyPkoiiJM+A+D4F7pJnVHJfI6tcQCxjVAp81J7yP7lzLpXieTNxejqRf4RpG7l9bbjfGnzQvNq2fO4N3yW5xu/SyNswMiRPQABqEIA+JmlIi2ohkm2lMkmo3Id/yJm9DK1eruLjfRw+K78kQ6KaOxKSDMuCJeb7sjWHarHKtl0oCKKy2V4i4RHLIoUMS5Z1qwTOppSFxyrIa4iBqKQGueYJrnsB7VnO75KQ1eRTDlreQRjqoGjy98QwYmyPsyus6dHa0XVPsa34kL9LZfPPWfYde9SfsmL6yz/mX3r9q2AEV0+/FKp3V0nBNEom9hulWRvPyoU8jTO1gfFBc5cCt2FiFz3G9ujmnKl1JCPefmgFWf2irQA9+VWQoiIERdICDEcjmzil5+coKd/qeyQqGlUlz9+3tErVFuLYGmLp66VMQjmL7mcJ18/WtIUgzVpO8w2Jygg2C/DXZWnU8ZLNi8KaFmNWEkCW/dpIc5qneCNSve4mL6y/KYqvzy4FsYRI4gtcZCE57uAAvCleufL/Gd5dfj5HgEz5KJbMzcoCzq9v6SdamADLqXnI0zmdDlmBj61yrqiUWT7lBSzkwmUi98hvc1hfVL65GYy2WNtjjMguk2nFm1OXkUWapd71T5BJxEJ6JAGOxc/HVUmHtmuRe1uXr5UiYUqS8plTwoux+49ZMUVKQELxDquyGuZGrdGGTtnsg6Vp7ZhtVHqUviFGxS4qrpFAQYWRY+JWxKYjWFM7P6WRIZGVZkyAYJF/aQ1e1DHCbjAz0AOyAWfBBj4cFv2wkWCVgKskG0j98PfKwyoDGCPevE2Hcj+f7BsQyVSQzbOfFIGHXrrFS+94Fc87yOFGGbCgALcp0mgrDS6iFoBETArvFT5o9lFxl2QDVyxjimzM50bxXd6+ZXNZ/rUOkZjB3+/boL0LBFZZAUKaN0/Hr6AGseR/W266yu/IPyZQsxxcvhUetY5R2eOzPObyj0JqhNbijVauZ9ya2PTi5Xc05ywMeOWLJcssr56fswA9JicBb8RmwrkDb0Ci+Hf68eaRI/nDVszev0vGXElYXqo5BCQQ8KTThl4pmjbi1ga/yyGSXjNOcm8ZU8SYDuvOMM0Z3jmSA5N9++xC4qm1gMBNvh2X7xWFLSBAzztWtf9hZnwdJ0Ab5kGkWElJ7/AuWwilQUvhQDUtutSGn9ESApDeYdwTd1vSOOInxcgMpoKoa2Z///k4FHC1AK3iYauz520r51wSj9eNcXTK0CiyL6siRsUwGe4nw5hUtYy5D54pqwXGFBbyUo1V8/V3DAaHxet+rJbBw2v8h+wDyrW/rAHH/1b+Xde+IWXYOUAy8sqqBPT4HvTYenxXWb+jFFpbGQRrh7EbQtvWUNhaJyLZFiLUPiLFkNnuuV7lmm4yGGVMgzIdIUvHtZ/Qk9QYNf74vsHncMgawpge1oZyLG3u6+b6AJ2NFUgFSCFJcFmaUGi0abFGhr/ByeClyLkLCFzk3/lSrH9cJmNX6TfMNlPL45/9mMtrL7Xh+Fw0i9pQ9hS2ZI4cqYiUUShnUcbIH9ei3M8v/QYQD7DMCB4DU3SMUGsEHKpryhHTRQ6/OC7yGTU421eWqU3yWbd5H9m6cQ7gjYo4CBPtfhQW8nXy7FLkJk7cB/EMr3YPi1U+k1qvEnPYY5r7HZ+iXEtHA+RjEPh4vWtovfzvY3DWlL4hCZPwz9nNVcvDMiSax9c5aGp+Dcf1UOUXlFSqwNEs9+6IRuc8HnmlJtswqhizImYgxjnzYD6u0ksYu0bpDkxXf08tE5P/mcv7HcZoAVLzvmI2ETkiczETNFytD4ZGqUzSmB93hAz6RwHVbC92GLl3KNd/Y4UBLEzg/LVWGJ2yTUSqnuL5kMmKc6+Vkq+DZLE/mP3Da8CsygMoxC7G5J7BHPUNIHUBY9BNI32CsbU2/GtaohoIsr/wSqylsvr42G5RFB9zT2WVRqdCxSoDEDm4sy0XrIzlTCkubGDT+jpkT0GsYsZBggGnoLgJhusUeRMnxoJHJM8+hqoYkscVbEQnIZP5YkmXIpbD0GkS7wwWe1cL8ef2JeXveXAjvyVYm6/71+O9xJJcopUmlPqQhK6QmBb7pUVNXtQNqRfldaRaTJSavYGTabNf/vEbE5VIjJmpv6gRgkP0eb8hGVNRi7Lhp67mp0eYPFg/QcPwL7Z+ViB4mu6J0RzItkDSV1slSdllWv/SRF6c7en6gO2QFOibN0yvrvnybsPvpzd8Md5xReBJ94zUnhKzf1dqFaZPFehpGvHx0lo8u/YaJi3qpBgVwZrqaWgmgzZtPelS9DkMKr+JhYdXWUu233FaeznPlhs6rVNlAhsnG07xAFWYjfh+mp8hHK6sePuacPOGcH3Nfids4MIDE4DUoIkYEiPiixVINXTF56ZKK1cLjHhB7yFN2LyRWxlLk6WwAQTcGS1apVx4A9fRZ5nWJAy/LG1cMnOWAM7h3DzWyllm8goBYWf/RfnshAGss7RDmshe2wMGZ2EEF++hsmmtJvFxlpofr9LARlINiPKlAavessvipxcsHysSjxTyO5zPUWs62uaCtn2Ga5+g7YZoG/EB9hoVyqYtoos3sB9hvCaFvci1FtJMkXOuadwZxjQSvpiDXYITX7/2bk9/lVmDt98yjK/r5PrHrhBGSCqnue5Zpr+63Ng3SnNqGl6Ylo91w5mCde+luYmBNHnu7iyfpcA/Tlu+mu4xdp1la2umvmdaWViBbUQpsEz7DlHYqoUZ7D0MTlc/4WQM5LC4Q1DMwCKI5wDsWZyPx/JvkTqmyvjTKi1CJAu7Z2b4mM1GQqAy6+9nW9ETrr5l/2rk9sqx3Vl2+ZSv10g+BmVIVBj0MSXx8AUB4exKZP6Z/QARkwInZsVGC8vBKMWUZOPmdOR2tLxJAvbvslfbDPAkQpFociiyWg6N3rUpW7J/YdFUMYO/JvsElmt6ySqMKRHV7CHq8+s4aBaP5Z6LpkqGSqnKPedUYZ8bs3gk+1xIzSgDsZQryxz06GwvMs72Kbo5J3TrClyqAHoQ5YAdpgrS1Al9uGfKskoQqVZKUepEc4HrXqDdBtwaPU20dwLsuNsrwv5rxuFbpvHHW0PEJEGlMiQSGXVCwjZNmut4qw2npuHMCqPnUie6TcSsV6SwZxoSV9uGq9HyRfTcxomL9hmue4HqnjCsV+heaoP0DLBZzQBPY2cgePTy765JeA3eik/w93obpiiD7yXrSj3sGWBWEnU214UCNgeEbdLkHIHeYdarOQTqX4H/Z7j6lumrPzB+9RXDqz3XdyuRcBPr4FTAuIe2DCNyb/3/s/cnvbYl2Z4v9DOzWay1y1N4dSPyxs2b+eDpiRYIPUQDIdGih4SQeBISEqJPCyHxBWjwFWjQQQKJPh0aNKFBA3hZvbx5b0R4hLufau+zi1XMwgoaY5hNW2uv7cXxiPBshLmO73qVc4457D/+xWCSsGq1ZR3GW+b5gXG85cyIPVAOmQXYj44YYT823IwtD0HA/vfRc6c2MWMKTHFRC4AcWyGBLwP6JTQubzpTWs7nwMIUPMXoy2BJ/nxhzPy0dWrDVzZZCnSmaDRE1WPM9+QLGKtsHkPmJNWsJOmdrFhM9S/o2iv6/jWuu2Zq2gJimgBGw47cHHDjWPqIoNkPuYcxxtG1l7TNOdb29P3nmOZieS7zjN3fEYcPpJ+hFpABdipBStlTkxSLUsBh6I0EQHVGAkivTcPLxnN9Ib1PDDBsLMMGPu47PvgHnDvjbPU569WXsHpN7A1ttwRBrdvKA7QxBfjpAnQ6RAJlBdvsI54BiTz0Hil+5/rYrfY7mYjQKjs4kzA6DJ2JNC4eeIACygo+Co48v/7FVQJ5pXnAv/saf/eO8PEdu3eBu6nhNgU2KTCnUPZSwJPaGFLiMcl1aEgRTKNWICPe7zBx5tq2nNmGL9o1a2OZvWUaLd7LkGiOlhhNCZh9G0amFHmME5so1nPH12qrII5P8QCkrm1jliH0wgJcYqIO+4+8TvUap1Zm/h0wlLVGufzYDuzmREkUihz8EMyUO8x7jEa9Shf5ef4Xq1oRlGhjTUfbnpfw5aa9PmDo5aBZN/vC9puU6Sds4ICzLVHt59r2SkIk2xcCAtsGE0aabSD9DEsp7x+J0RXlcVZZ5tfalo9LD9cYy5lreGVaPjeOawNtI4SHsJkY95bbFPgYRvYm0TRndN0rfN9BY3BNLAMi6RvMSfm5E9RSwVrB51JMS4B1ncsQp6KUTISSkdIYy8o0C6GqHhLZVFQy2RbCtakExJnVmWQPrc4lIO4/khXu3omS6O4d09t3PNw03Gx7PswNmzQcenUnQJV9WZkt6lwYU1A7iLZYpcQwEhD1yWe25bVbifWWExup/caRFOjZPLa8eVjz1os38W0KvIkTd2EicEg8gaeqvzw0ahTszRlGOjMi7xIXsPZ7BkVHUyRT/Y5hqQ0H95//JAlDN8VZWMEa8uxZwMBTSkNrWxnCAzGJxUM0seyPYkoHHLt8HmWzFWd7yRnoLum6F8Li7a+I3UrqRGRRFo0DzFsJpVZc0Bih2znb0DbnrPrXMpRtr6U++AkbDr3GP2X91RriF1jePxKCJaUZCMWXpzeWa9extg1XruPv7Yp/8XrDF//CY53Bdo6w3ROG73j8JvDvPfz74Y6taei711xd/afMly/wa0tqDc25yDolSRfWK5F1WgvjJOy/QX28BmuYx4Z2VCbk1GOUAZCiJ9rToS8LQHBqE7f4yzpt2pYJHSXB0yrrqDsTmWd31eBevqZ5/atfLPFbNnH/RHy8ZfqwZTus2ScJzwhIY7YyjoCV1FogmESIgW2Y+RgmZhLeGLrmQin9TsPA9lxgOXcN167nhe0F6NH73iTDNMshepsS7+PMXRwPmTy6EcsNVjgoRvU86hCwbxQwqD2As9eYRZimZ7YpTOCVdfSmOQjnqNPEs+wLYEie1ls2Zi6+YV4bw5RSAYysyrkygzBLrXLCZ5Z4HjN7rG2wsZHm1BicW9O2F7TNGc6tOD/7Z3TrX2PPf02yMtSwUYqsCREbk4LAUVg44wNh/CBSrem2SLUAnG3pO/HEs7anO/s14fILxgthxKweRvqP74nbb4h+y366Yb9/y1x5+nzKimGA5FS2NWJT0k3c4gu3Mo7PmzX/ie34u35m3XkuX3hMtyJOE2Hvebu55F/P9/zjcM9NmLh48Z/hLv6OxxdXIt++MqwuEp3aQaxz2rfRVNqc9J09/qaEHy0NEJtWLkLWifzbOKxZgijlLxYQ+Lm1sP7MIvs+uaFLtGcG11maq8rP6+rVLwb2xO098fGW+e233L1xfHu3ZoiWe22EVopk1yFLc4yMSQZFPkV20RONY9Vd0XfXTOoLZeNEi+HadXzZnnFtGi6M+ChPyfA4SW34GCzvU+BNGBlS4C6MbEL28tNACZbwGAFHv/955Ze+Zpg+B/x2xtJZt1h/8LQ2ZBZhbVWR+Xw1G7ncv350xuB0SJRA/fTFQzwDPZm1n9fiFXwEHJmGtrvmbP1lCYdbnf2GeP4Z04X6tltLM2oSdUw041isYxb/8DsZ4gHWdnS2A2C9+pzV2d9irv+e0LSFSdzd30rgyfYb9pvfstt/i/efXhsyUBLCRIij9g9LTW+NpcVwqcdNlnR+vpo4e2Vw11ek2TONga/3HV+nwH81PzCZhouLf0G6/ufM6zOmq5aV2kF0HVxfwKvzhTWQGT0g0s5hVnsIb3jszRIWVz/2mBO/J2UkLf7hWWFSH0f5OtNhxBu4DTRqC1FfFpqVpX15sUg8f+G6UK/53dfs/+H3fPy9BLV9s+/ZpFGAE920nNmmAmOXMKYpREYS1p3TNucSBhgnxuGDbBDixFfdBb9pz0sIlCOxGRtG77ibGr4NljdxZiLyIUx88Hvuw7gMiSowF7SHy4/lCOA9Bd4cAzk1gFPXjSznbqqzsr5WFJDlhHUMLCCUhFMpIzRLPhEJYl0bsuzTGldCopZhsiEl2cwF3YwGI4wplHG9Wr3k4vw3MlTuXmPWX4rKzop/uM0BcSHSjBN2fCx9hPcPJegVZANX9xHt6ktSf1XOETds8ZvfM+y+Zpp/zgB5JCWjFgvLOZYIpTbkIdGl6+iN41Wz4ivb8vnlhhefSzjc9sHx8a5j9I7fecebecf6/J9xefkv6de/Yrp+jV1TSCVnK7hei/Q7s/86Z8pAed0mJmUDd10itYaoNTKzsoIG6/mwF5BHweAWRPlkxZqsxRUbNtlPGFYuqv8nRfptNeyouehw19e4qxdCKrl6/csOjqsVbr5j/O2/Yvr2W+aPe9590/FtsLyPA4NeJzMRAw6JY+L/HxhJYo+WAYvoSfOW4He8MI5/sbrihe35zHVcgKgLR8d+arjRIfKUEu/TzO/9jg9eLKXGKEGzc8znjij9agZwfkx1PkgmftTBdXCoNKr+vCxz4uPx9/Lf1eBP/btFVZZyLoAHhPEc9NWLyt7Ne4vFKsJibaNWMw6TLOHIMi9jUEGHcsLuX7FefcH64u9xF39Hcj3+/FLYwFof3Oxp9js53qd7/HyP9xu8kkWsbem7a4xxrFef069/Rbr4G5J1IhMfbgjzHdF/ulpgmh+w1iqxpKq8SQLFcrZDvuZaZG/72q34tW3429bTN5FVL4GG00Ng89jzJozcR0/TXnF+9hX9+lfcX7Q062VI1DXqC2x5wgbunGGygro7K4Mi1+hgr1hDZOsYIcYEPxDiiEtJmKyuozWOcyvqSMkbEUZw65L2DImmleDITCjJwZHu/KqETf/HYBUDsreYv/sn/M13hIc7Hn478N3HS/5xbrhPgY9hKsCr9E+SpQAL8WTSffmYIhhH05xhXcc8P2KT56VtWVnHr7pzfmN7XrSei9XM7C23jz3znSigs1/4m7ATIlqaufcTe80dOVZB1z1cvR/I4bJ5qRnLwX7AfA8zGPScr8Dg45py/KcZZyi1M4m1Qwo6DE4tKlaR37etKneWBtPZpaew0RPNpAxmAYPzQL9epXbpvqNrL+i7F6zP/pZ08TdMl9dEZwmtw86J5CRM2g3bpY+YH0Q9DiWIcr36kvXF30s+T1bkzjv4GUOi5Xn+7Jt4sv4KBP/AEum5zBnbJACPAc7V8PxCw8O+soYXn3vO/vnnYk+wHwjbkTjNbB8cX4eBRyKX579mvfqC/uw3bC/WkvLdSsBL9vZrm2V672xNBdcgBw9TYwrbMQe+WLsiMjzxVvqhVXxzOZxmO5sKKxhy0ybBDm4lYI87Xwmz5/LVLza9jw83pRAPd4nBZxmtPO4OK0Fx9WQa8cgdUmBvEsa0ONvRtOdlI5L9Uy9tx4um58KJwb1IYIURvNd/IBO4bfTsgjB5dtGXBN88oV4egWFx3FwqZmaE5M1YZxaAPoM5uQHotfGWjYOAjisFewQIplx0ACbdUAFskyW6JTRuTCKXjBiiWWRHoJPClM3dxc8zmCX1tDR6OsmPUBo4YwRUFhbwNW1zTtte0q2+wJ59iT+/Kun1JkbcTMUE1guoJnP66Z4Qtni/JcS5YvLY5TabC8z6S6aLCxmyZHnj/i37zT8U39Bpvtcgg0+f0IkEKpLUu6s7Adifu5aXtuPLJvDFyz1dH+kvwSgTIUyRj8HyZtpxEya8bTlbf6UhFuIL3K5iAXraRkDgi16YPZOHycEU1CPYg20SoTWEKDUiU3aNMoOfeTaY9JT5CRSvP9nUCZDVuLgwAyow2LUL68+u19i1NG6/FNiT5oH4eIv/+Bb/8Z7NpilhjhuFXVsd60STQZYIVpjWU4rMysizbk3fXdN3r7RRlwTfc/V3feE6LhCfVBCQfhstIcF9StzqkGiIgU2YlWW8DIkC0lwtG6cM7z55VtKqmXSw+SkBXtrUZV/CXCv6I//wrgKCa8ahAN9GZE9m8Q48biQX25i0DIlAmcGLrKuWgsvfqf9ZBUUZK1scYxr67ko2Wv3nuOYc23/GtD4rPt8mRJxX8Gb2Etow76R+aXCfDwPeb1UKui5NY9te4VZfMV5eE9qGdr+nfbwrLMF5eKv+fHc/CwiG5fqRkqdJC2CfgZ7WCtPvM9fxlel4ZQyXZzPNRYs7vyBuNkzTyJsU+Z3f8d28o2kuaFdfMl5dibfhBaU25Lpw0ZsKCF7O58lLf9F1cgzZNj3xLMup7XXitzBYFmld2cizMP6AAvZ0bSwKIhAFk0OYPQc+f79gXahX3N4TPr5j8yby7btzdrPjfUxs1UsPlCGr5xJIrZirjXo0hrP+Fav+FfP8wH7/nhD32ARXxvFFu+Zz0/JKh0QAQ3AMAR6C5X3F8rsPIw9hYq+BT/UQGRTkqAYzS83Q8/Fos3McIXks/851oynvb7aXWkDgDCA5NCiuqlPHoPCiFsi9gwQbRQPFPil6MJZgHKfcSQxGAyNN8fGLCgJnxpT4ML+WQLf1r7HtBWF1XtQwebk5FP9w5q3YQvncR0xF2SRBkpf0619hmwtoRamUrNUeZGSebn72kCgoA/LQvmYBevL70RlReJ3bhkvbcg1cXHrWry3zNrJ9gM3Y8Ogb3sSZbfRcrr5gdfYb7PordhdrXCfEjb6rakNmATtT6kPXJLpGwqKc+gTTiAWdzYxgfbwhaE5K9gdOoXiVivLOlEH4IgGnkEjk48L2tBaxlzu/LExge371ya/vn3qF7T3z2zfs/rhl92C52fa8j14JJMKyE7bfoW+3NYYYPR5PMg0ue8hi9HWDhOe6OeM3zQWvrAyJ1ka8V0fvePCONxHepIkpJT6Ekbfz7mBI5KszXK7FBnt4Si7nsdaT/OMfyhqQ2zy8re8DgY+BlmPmXzZ2kPvOrOBY7jSzzjGWpEFZB/etYdQCBmf5vFyfolmG41ldJCHJDU17Jr7AZ/+M+eozknX4vitsVkBURWovlVTt5dXrtu4jrO3pupdi7bg+IzYtnZ9IfsM83jD9DEsp6SutEFSOnzty7c17Q+ntxOP13DR85iKvz0c5v9S/dx5hM7bcxS3ROM76l6z6z7Hrr0Qt0AjBpHOqEnAZAF7ud7GEyB8XMDjGtHgEFzbwqLYWMihqUDWtbXEKXHdYOpOVApI3kmtDzQg2DmzXHlhP/uIWc9VKGjDr337H/HHDw03Dt7PU400Sq7+YFgDSmeV985UndyDhjZAWXLOicT1+3tBi+Ko947rp+Bt3xlfGcrEa6NrI7C13U8NHzR15r6rSMiRKgSH6Azur2lKk7mfyylYxda/v0XDCfO1/8iocg6s5JF4ajRwcKxjIUzA230KNPS3ZBh7ZjKEBm3otOsK38vddtpGpiGgGAYNTOhxYL8OyhDVNAYFXqy9pV18yn18yXiz9qVX5gZs9zNsFjwi7A8WjtR2N7jNoepHuRA9hgJ9BPMvL/Rk8gs1fPYK/fyV1NnLVNC4X4QzECQAX1Zy9E7+57Q6/D4QhMQwt2+gxNDTNuUx82gthLbiEzX5+zfIv+3jlaX3292v04+Lflbuppy+THJizPo/0BNw7XqUJhcUf+KijKHfnjGzsnBOPP/fLpn2nYUfa7wmzTNPzOpY/yKYqFonEnCJZjmyNAA0hzjA/MvsdhlQ8HOs05Pq2M8SRzdWfS/Y+vT1LpXAWGwiWwmihXDjyY8hAcP68xVWsLFu8lxyHYA9JmdAkWqRpF4ZXpMXiTVSm0enX+eTkPz2Vd2a/HpFxGQGEbVP55aj/jmmeABHHQQvZ0y8HlcQwVv6CVhkCHc71Mn1rLmRCHyJ2zBO8UaSghYEzVkDHp/t5pRSQlKvKu6u8Z6a8X2tjpdHRSTdAilGsY4Ykw4Tol0bAnYnti+KA4ge8ePiV2mAW2TcIA6L270rVBcOYhoVvevxEftghaAF/DM7EJ0OiehlnMNZiuk6atu/xIf1zr7h9IDzcELcP+M3MOK8JLOesU5n7ci6LFcQcY2HcCAhKkS7mRjcRaU1DZ+U8yrUhIBvfCXBJvp60ucpWE7Gc/Rx8fLqe8vpyrchDIzgEc4wR2WAdHFnqhqmY3dq4BKLWjeV1aI3FGytqAd1g1RvGU/D0MQNIvjh9bNUgdwaBUbZP9laVfyK7rOuE1WS5YhuTvcNzqnaWWuff17rjnNzuweNQgCfOG0m9juOBhcqnrkUqdlQfKE7wBSjrsKyNYW0EIMlFIoVYsgV2cWaIHtdeCODViKVU7h1qn8/n5J3LzyhewdFl9uXp6/ehmZE5uP4d3PaJ7x96gCpU6dzi8/cL9gx5pRwQt90w7i2jtwzRMj1zRmZpc64NUc9pU50RUcFOkctDa11hSAJaf8Q6BmSQPCEbwgwsFeYeHPzjxMcnz+nJT+rx8zKQyMfjD9rGkCXe6h2oc+vaG/W416nvr3yeKBkDdd+Qhw/PL1OGdLlGGNNg9Xy2qoYTP7+jDeKBxVQkqcVb7gFAN5Fad5wTdZ3IvZUJPOnmTf8O+IHH+/0re50ergXKrzfrGVwVG7C0eOnq05yjZR8NewUEm+YM41YqezfFGziXz8L0O9X/24rC9czKr5l4hy9Donws5ePp4HYLCLJYzOWVn4987jCuOcg9+aVXmgetDwPDxjLuLPtoCUe9lGPJ4yjsWlXaJbRX1dchkSDOJB2Q9Orr2uneC2COAubO0aj1TGKfAjOh2DnEqjrn67ZBQNxTV92kjykDMvl79cpHQJ1FUv/MnPjeE0/e517LE987pMGkg9q1HGuHr3Vtl7BMpMzBX2frmNxPSO5LD9aRrHuy78h5JCWDpFi9Vb9jnPoLL/sXoPgCx+QP6sqnrmKx95xtDmitXvaEnRFANYOpIMQQZvGgH2IgB241zVpqmzXld2vl0A+tA4/gZ1ZKoYCB5TpDnbHz/feV84eegIz/kfQNeUm47B3+Ycu8DUxTp97hCw5QW2md8vP3dZeVktjGADFOdGr7cW5a1no8zN5ijWQSzdEU0tsmSbDtmBYLiAiEohzKNSodXK+XvuQQt5D6daggyCvXiOznK6uqb/l6Vv3Zca34vmUpUdL66lgkiN2TwyTl34+hxy73mY+oGhcS4prDuRXOnZUeoK4RJqbq83qvsWQdFDDatlIfbK4RS03hZ2QS5fVXRvAvcecpYVMGR6VhdsZybtsqIb7ldT/Tv5Spdhp2xP3M4zvD413Lb+/P+N30Dav1F7y4/s+WtO8LS6OefWdnietzncjb7OWlrE6XypsfInifGHpDaIVF+QRMqzZ1tkxOBHDMYFW9MjtsZbUhMSL/tkeMv8zsaVZGWUtr3PU19uzqF2MDh5tvmf74Hxh+9w3zNvB41zBEW1g0sISnCPPV8xjEu/c+jGxTpO1e0ffX4r0XRrbbb0gpMvtHzhGP13PbsNLXdSKBgkOZyRdSEr8wbdRqtlDeKOUmn9JkpVI6a7ZYLphygVcPYJWmrjVh1BrDyghbJIO/AigsgFTdWAIEs2xw90SCvq9zCiVBNIb5pOSjWEUU78G0gDxJglasyrlSioX9kLRwy7TtFX33QgKgmvMnsmQ3+8K+EYBHUrqNn/DTPdN0yzxvSMlj1c8vpSC3u/oV5vI3hE4meG4aufgwYkLAPb5jGN6qZ+iID0NJtA0/w7OnVguIz1W2TnCc25beOq5dxyvT8PJsx/nLoFNug78fCZuJxxvHb+PI+zDStC9Yrz/j7Pzv2V9dlLTv1UrSvlfq73fRIxIuI6zTySWmRmrDHOCxg6kXIDg0ju/zAJWLaWYjLXKh8p5Ux2EOonh+SKS14eoce3FRZJ6/pCXE9Nv/kumPvyVsttx/B3djWwLbsk1KDpLM58GcItswc+NFxWFtB1iscYzjndhCTPd0KXHRtFy5jksnbIeJhTkpNUhqxH0KPISZQf3Isy953pjVq5qLl8Yl+1zVQM731YpeE5oz+NsZ+8Q2xh7dU26OhhTK385aywZQxYCCSE9YPqbaXGr40YkhEYiEK9iGlBqtGxnUaXG2oWuvxce3f62gTK9qgYUFnGuEnWfMvCNNd8Lime6FiaJhRs64khJubU/bv4amx02j3OZ+S9y/Ydx/S4wj8/zwrN3NT1kpSX1MMZThcR7u5R6iMZZL2/G5afjSRa6aQH+m1TUE4jDxcbfmD37H78dHbsLE5fXfEC++YrpoSWvDehWLjdSqVdbfSiTfoUIDQhJ557oTewhrYdOlJUwyHD/+ihWMgJqLX3hlC3GwueOI0VP5/FlE4lmx/n5p/8/563/L/O4PhIdbNv/uDW8+nPPt3IhaQBt8OQ/EOoUYyzDnPkzSRyCDEmfXIpn3W/y8JcS9sPus49r1nGdpvf6bEpBEVXSbAh/jzGOcKkupRUlUqwXq9bR3r8DECsipwUVQWfER8JuH3XAIatUrW8eMGlyXpeZzimCeDr7zyvefQOxjYiAZ3dRVgN/hgLcBItY00m9oj+FsT9tdKaAhPnyt+uGmppNQt1mCnE0U/3CpFwE77bWP+Fh6AfEFviClKHWn/wKz/pLUdBADdn+H3QwQPfPwlqCMHvszaoNzK6w1BL+Xjb8GQeUeAv14ZhteuJ6XtuOVbaQ+rBN23WL2gWmyfPCONynyXdjhjWO9/jVc/i3z+SXzheVS7aTaZvEHXrend5Ky15DP2wZsmwiNw82ugOJRh/J1bTAkWr3eOL3W1FZSpTaYJWfEOEqegG0NtmsF4LHuPwqwJz7e4D98S9w9MPy7/x83/xB4+37Nbna8DZZNmsr1rjWWtW1oFHzZRwlv89pjeGNobIdzK1GhhQGb5Bi9si2ftSsujCtAzz4Zgs92c/A+TXwIIzOhSL2zlVNIqTCCC2z2zHn43DoF7tafH2h3jCnfy6s+mmrmMSzgc/7bpaPR21IwPKEqwxgIZsIg9ntBr8Xl8RRGYBSFGxNLdVkGRgaLa85Yr15LzoDuEWJ/KSq5fHshYkJWFg2Y4Zao9lJCGplP9hFN+wKAZq9S7+keP90zzw/MP8M2pmsvseVcm0v4Vb2yL/DxHuO6nzi/UhuA2TCPlhjgbm54CBNNc8F69RWrlSgOjV6XM8lk+af9axQ7qRAXsLiG7UH6iAhQ1AKj5ilJLgIpCJipygaHEVsIs9SF4yWWMRTv8EwoMd0KSbb75YglAERPeLglbu8Z/sP/l82/+4b77yzDvuWPj2vep8BGLVucMZzbliaTKooFow6TU2Q2pkDjicA4fQSgiTNfdBf8ulkspQDux5Z2dtzNDd9EqQ9ZLfDRj2zDrP7fqfTvIMdN/flixHJ65bqSz98asM6r9gs+7kiOlUfHRLJjtcDTuiOlLJkEqkCRH8qjDkc+wfK5XQatqigiZTZyHhdxlDXQsO5fcraWc6PtX0MnisED6xgfsCHS7HeE+Y5p+qiB81PBIwDa9hLXXJShk5k9cbrDz/fM0/Z7XvEftzr348D0n7Iif/rb/FOvX7Qj6I3FGXuwee6M5brp+JVb8Wvb8sokXr8caV+K5DEA8zbw7u2ab3c9/yYEvpt3vP7sv8PZ6/+c1F+yef0Sd16BwBfw+eVT/y6AdZdwNuKsSMFnL2BPymEOORBKfUAhTygaMiMY5MIrKcSHy2ELm1QS7xEP0OY048+1Bnd1gbu6LhLPX2KleWD65h8Y/ulrPv4+Mu4ct489+2gOQOC8AokhBh7CxJBEno1dcXHxt5ytv2Ka7nh4/C3TdItNkTWGz9o1103HuWm10ZXpWzAU9u+koPM2+gIk5UYNFqaofJkOWHyFfQMKDixsnGMG8JlruLRdkd2tjeXCNAXw7TCszXJxzTJ+ee55r58tLQzYTkOtIlvjTzIW62RRSfuVy5VBp5eV/5EwfkX4mtO3s2Si716yWn1G273C2hW2e0FsskiWkrSbP9p5XhJ45y1+vmOa7pjmhxI417Xq17X+kubs1+xffca87ug3A939LWy/JYWBcbxhGN7g/YaYAiHsmf1OmpWwnB8/fQVMsgVAzTViZRznruXStbywPZ8bw9X1zNkXrSR8bwPjY8QPhvc3Z3w9b4luzesX/ynr1Zc01/91pitHfyaS76sLeHleb+TUy8sYppCKNUSI4vG3WiX2ncru+kY2tdUyFfATkwiBGtBj8HBaX4ZEhbXCySERSAPn1k69/l4WwOcXWdEzff1v2f+7f8Xjb3fMo+Hd2xUfguWeUAZFGchCj/scHvkYZx6JrPov6PsXxDgzjvdlEGGS58q2vG5WnFu1jDHysu51SJTB5kDiPnoe47KJm1KoLGNqaad+PPp3qlbkgVBt/fAc8NsqkJ97iGNWRl0n9ykWYDmQ2OmwJAM/sGz08qrBHlhqwylbCGMc1i3HpGvWtM1amTsr1usv6VZfYtdfgXXEbo2JEuQCIuHMygHrZxjv8eMNMQx4/4D3u1KXrO3oupeszv+FhMMpk8fOEi5nhlv2u6/Zbr/WTV8oNevY1/gnrRSJUUAelzgA4BtjJSHeOK5cy1cWvjwbWfeB1UXEWEuaJ8I+8HZu+N30wLswEu2Ky/O/Y3jxAvsCmi5ydiben+tWhsgXveWit3SNKRu5yctxLrUjsc+WUx2MrYI8drGNyUyoGGdSnEu4Xb4OlfdNGYtOh8d1+rd1FLDHWrCdwa5XJSDOnV//ooEv89f/lt2/+n8x/uEd00Pgu9/1/Hbf8XX0TET2evysTFO8eWcoQOhjmBlsI973yjxL0TPNG7zf0if4oltzYVsuXceFzex76R8mkqoEEMsYtYOYU2TQkDhfbVpy6NHptQTK5vMwDx7s0XEHi6ItewLmz2uQ//g6kNekQ6wcTiWWUsKQzSARHDIS8xY3Q0DF6CJxskaUQKgE2BabpD4b42i7K1b9K/UPv2B19hs4/xXz+WVh+tmYYA44HxaAJ8bSR4zjB2YvGzJjHG1zgTG2gMrz5QuRez/eE4cPTPtvihophN0B++dTVtsIq3CaN2SdRW0Jltl+vXG8tB2fW7EUuVrtac/BrXqsGxlnAYG/DgNvph1Nc8nq4l+y+ewz5rOG5lK8fovKUEHgrslATyo1orxXFrnGy4yO5GwBzmoAOERPijMGAfJau2Qi1ABwfv87DodETbOEyrrOHoA98u+Xk3/HxxvG//D/Yfrua+Jmw82/3vLbby/4x7lhSonbJLZOQY/yzlicEzXNXgM9dylIvTBgTa++n734Y6fAa9dxZhteup4v3FqGRkh92KDvDXCbPB/CxG0Y8CkWS6lZmcaFiPK9+/j6h+kAoCnHXPn6qVd4nRdiq9/Lqw6iW0KxhUXojwDh02zxpaeQY8wBkRgtNi2B1CmFYj1nbSseoMXARm7XGKE7GduyXr3m8uKf0/ef0bTXNGe/Zu57QuOKqqhYTE0jZv8Rv39LjAPzdKt9RFDbGO0jzn6DcatyrTTjowCD4wfm6VayCX6GR3DbXuMU6PRhLESaAy8e5Jhb20b2GK7nlbFcX06cv0yEObG/t+y2jnF23EbDfZhYX/yK8/Pf0K1/zXhxgeskeyjXhmNWcK4L9UAZDlVFZRU2tFhCBAWBIdKbljPXcGFc8QtflMdCLMnLKghsnGQQ2VwbuhW27aVG/JJDouiZ//gPzO/+QNzes/t3v+O7/9Dyzf0Z22j5JkbehJG7uFgAXLiWsyT5Aps4M4WZoJYQs4HGnZchkQ9b2pRoMLx0PX/fXfGfuBX1LuqjdwQctynxdRy5CSND8mzCzJ0fyxAqkbM/dJ0YED1PQnn683T0dakbz8yd6v0LHA6Uyst5lC2Q60oyqJ1aIiXwRiwYY5RzPAAmZDVbVPC3AoZVgSEWU3KDmVucQEL5cMoEPuN8/SXnF/8J7dmvoT1nvnxBaB1ainA+0O73smfYf1QLmDtC2KsqWaxjjHFiG9Ock1SBQPLM4w3j+J75rx7Bn7x+USC41Ybm4GKoG6ALTeg8d5F+HTHrtRYqRwqwmx23yfA+TkwG+v4zwvkr/PqMee3EGF2lnZ2rAB67+Hc5C0zysxBTkYcbK948UcHgH7PqE/J4FS8vU03vszfw0QDOOJ3Sdb3++8sz/oqk8+GW6SGwfWiZZpF2Tvo7xwKdoBMyr76fnoR1HV17Td9/rkyyiEmRtTa1Z8oEzt67cruLb59s6oS9k302a2nF8aqZc5kd1uoLXHyftCi2xh74eq5MU0A5h2GNY41KynQjvoYK7Dm8/4ApHsFBpWhrZMgRTFqsL7Q3K5LQPLlLy3MwKYE59u/KhVkA4SzdsLajac5EdtGcY6xKL0G9gSugqLKGKN/XJiMzeZ3+rXOdFvJzUi+emb63NKMk+PrpnuA3GgozlSTeqP7CqWoyP2W5BNaweCGysDPFMqZhbRxrq+GKq44UI2Yf8INhHg272fEYZmEt9J/Rrb4grM6hMVoflkZN0r5NFfJSy7+TvKcaNmlswjY/csqXFvnWk+eILUOATlkap0DgvIyzmLbDrMTT6xfx84p+CYj7uGf3YBn2js3UqIxKAyOr83BOy3k9a30wOLruivXqK6b5nml6JKWZRKBDQuayNVA+d4LCHdkmZq9AcN681ZKtYzC1XhnQye9LY7Lvr7zhmf2bgZveOE2YX9QCxaeRDNQtjL/8vJ9bk3EEk5gJ9Naxj17+OtcDvY2ogy1rspdnKj8BDs6vHAi1+IdbZfk1BQQWadaZeHS6/kDGeVAbQp5kqG1MGAhhq0FMT20hbHsBnbTTpebEIOwfv2P2W2KcfhYLuF6JKG2vnlslbDN/VGBubSwrmwQEXgdcq41wCLKhA3bRE4ylbc5ou1fs1y1Nt3iGZ6uYzi2buUXmvdQIZ5MOmfW1sUnsY04oBmIMOiRKT2wEgOIbDk+HCsfLuISxBuMcuAbb9gV8/iVWmgfC4y3+wy3b95FpZ3nYd9yrqiefu7CoBQ7Y8wpwOLem71+SgwFT9DpQ8nTGcmFbrl3P2rpy7hVGMOmgNtSJ3uL9eWgLAZzYRmV49VAxUA/0Tg2Nch2p/cRr8Ff6DXm8x8C/LUOC7GuesCZik/neepb7niInTXH5eEICXoDWQiAU//DG9ZozcEHTnMuGq+nw/XKdMTHiIpV1jA6UkyeEXekjRIEgSgSxmOjBrYhNS2gbqT1xwM8PxQcwhEkf36fXCbHHiounYPXe1a9Xa/OwX3zn+1brg3MYJ5LvfYo8xpl99LjuEvprfN8U/8/CrDOLLYQMiU6DwPUm01gWe6mqRmTgPun7mYHD1tonA4SavOS0XzBuYf0VawitDWIL8ctaQ8TtA/7je/yHW/xGMl4+zA23Ggy30Y95lUBlY5iV+ScMfmH6WduoNVq+/sKlzUqijgsj5JsOsZMKKbHXQdE+RXZxLgoif6QUyN7ZBQgtr/0xvw6yzDpqtoB8Z6ntQPGgPUVOyc+1thg8eN0QFYzXeunVOqReefBdPzJ3UBtUSWPscpwdWS1YY4vc3WjfgSl6V9mrm5amORdlUfca15xDe05sWpKzROKhxVQIus8YxEM8jIUNLPepfUT3ouxdxPPTS78ZRkIcNSj308klYodlC7PxlMlEvc9ojfSfawNdH2lWehw4UfB69Y+dY8C5NU37Atu9EKa/1odT60BNFE/XddkHHB4Hh0qiiEvQWAmP7ExNmjm0kzplQWlUPSnfcIud1C9ZG/ZbwuMt4eGW8HDPcJe42/a81df5PoXS6wMLgdCKPUcObsv9v0EtCZq1Ml4Tve7xL13HlXrDn7tITEZsgMgDo8g2eh51gJwziWYdxpT6cOJ5JOQ6fAoIPgYFT9nHHls+nFq1Cun7fg+eDomOiTA2iWJAbBYMJrmDAXIEnJJMntvTH/ZT2bKyxblOWLztNXTXRVlUWyvaoKH1agsR46gWgZP2EGK5koFl61YHiuekvUcIn64WyOuvHsG/0DqeiDbGstJ0+CsXuOw8rk3iDTxsidtHxke4mVveRM9tGICGpr0m9CtJNe4XoKfvhM3TNUYZweZgOtc14GZN72SZxgXHYnb/PcUxpVgu7ubEBTwDPUuBfroOA+PEG9h2vcq4/rJSjTQP+JtvNeTlhmkH02yZvWWKVj16MutGiuWQAltl3tyFiTEDZ6bB+w3D8Ib98J553tBjCgicrRjq0LWSFq4g8KzNWZZOwiGTNhfD/NJnqEQuEnnDRRkyPA/uSChABnXWCiR0oIxg6Ewqzbc9qujZrzRg6BKa2GrBRCbdGDbKjjwGg0kL4FMD3Mfyb6eMYMySAi4BCx1WJ+nGNiqbsAcgMFCsIayflwCoeUOsTNZzse26l1KAFeDJktB2v9dQmI1MqfXi27gVIc5EbdRiymKXT1vLxvtwi17bdlyof3hpuEIUX+Btw27r+OhVtrV6Qde9pOle4/sVtpJttVWQQw56qS8Gy9fLoKhpYI4QWvPEgiO/HiUMSo9Id9Tk5495SARPa0Mt9bQ2P5imeP39paf3aR7wOq2fP7xluEvstg3j7NhHWwIkxZMzldTvIXnu/cSNlyTwMUWM7QhxZppF8uf9FpMEBD4zYv/RsoDAkM8vAXImYhkShZSeDIayD5bVk23hxixNVG6O8pCoYVEL1AzgVqWCJYisYgBnED8zMeB0jS/LOCaTiDbhksgte+uKJFwknhRAOHDkgZsSySQFQ49kjcYRFQRefMPbCgTuir9WyqBA/dAU2JHP1ZtPGzPvd8XDMyeOO7cum8As9zZhhFF+LygzsHGrIjVbJOqfXhskRPPEtbaS4WcVzsoFul4yBlJIxGHCuA3zFu5VamyMBJm65oLYmsKsO2TzPGULLKweHXpUv3e8Caz9lZeguCiAQOl/lvqQNznPyb9rb1JbfECbg49/0RW91Ib9hvm73zF8mNh8dEyT5cG74uOdraSyPUOWZD+EiSkF9jEwG2ixBQT2qjBJBEgza9sVYCyfI2IptYDAGQjOqoFY1Ygsm4blOlNfq2q4J9v6fN/QKA+U62yBDP7mnAE4ZK7XqwBF6OQT7XGisHW8iQcBVfWZU4bJWu/yBs6wDIqegMDKCi4DW6J6fLc0zRlNc45zZxjbEK3FKnIRqxPARNm82WkvIM+8KYFncj8O59Z03QuscTSt9hGqOLDTnjmMpY+R31fIzkx86pJB2OHrW5M08jmWMx5yXwcQQ5JsgSkyesdG+9ohBZzrSa4ntgYaU87Bui4scm/Kv/x9kD4iE07kNcyI4aGFVg6RlOuUXJ9qYKer6kJX9Q+nVgrp+R/+BVd8vCHut0x//Aem775j+92IHwyP25YNMkCuvT9BzoEhLr6ce91rZMaZhB0G5ukBjCX4HRdG8mUyixoo5JUJ2Gt9EGWC9CfZbi6Syr/DlZm3y9joFFUvM8/zcK9WulrQfAFbrtr5WlXXfzg9RA4qfc+PczkT48Gjem4ZffwSQp1ITkCdmITxd/C7RlQYIWa/7SqPxDQauLUq5BOr2SFAsZiqvcOf+ocLE7dxPTlI0tpeBiLWlQCoGAapLWGQ+3Xrn+rMcbCaZi3kEs1Sec4nOA9eFlumI9LPbBhnJ8HpCg6ubSvDLtsQWxn12RM9AxyCvyEunqoFbjjxN0v45WKJlfGSUyBwxhqshiOCvKzH6wm+oCHEf8mV5oE0jczf/APTH/+R6du3hH3g4UYCHfcplf4h999RyWEZlB2j1OqdMnZLtpCGloewo01w4RpWtuHCtXTKfq1B4I3e3r4CnXNvHtJiN3c8SD61FrrA4TD58Mkvv1v/Xa4fp1atDnrOF7hWQtbfq+5yGSDn72pfXY6zMhA6cUDmuqCGdtEEwTQMmjEgNaJtzxfwVkFgkGufCQYTUwmRzHlFy/0rxuE62vZK1Y4yKDJeqnrSYHEBnn8+VvZXRvAvsJzKIWsftTPb8NJ2/MpFvrras1pHujOkQXu4xd/ecvOu49+EmX8z3fPNtKHvX9Gd/x0PV2f4taU5F0uIvkr7vl5bLlYKDB5M0mHyhhBF7rlqhQ00NYYQbDlw06kqqsskafLyc6gnvLCABdIYVMBv2dRlXy+wncOulP28Ov+LeoCmYcv42/+S+bvfEbcbdr97z8NNw/2+ZY6Wh2DZ5Kk9kY9h5iYM7KNIJ975geDWtN11CVLb7t+w3b9hnh6wceB1s+KF6+mt47VbcaU+vLAASHnDOERp1CKJIfkSHlMHqbRVS3SYoEv1+eEmTTygJGk1y+0ujBMvMWVmro1hzbJJaG1SIDjf9+HZPUdLSAoYRsOEVXaSJRg4My2DDbhk1Hts2aDmJtEoO9hk+RfZC9RpyFNbZFONAivOdXTdK5r2WibqVdDCqWVCEN/P4UZ8P+f7wsgBAZtXq89YX/zXhOmn07d+uyNZR/t4h9+/FXlXECmGtQ5rL3FRGQbTgxTznzG9z41OPWRpjGFtG167nq9sx7WxXHajBEk6S5ph2FhuPva8Hzr+Qwx88AOXZ/+M1dV/Slq9YvfinHYlab55SHTRGy563dg3NRPY4GJm24jMqm1EEgrgW1EMFE5I8kX+LjIuYbjmhjKzP/IFvh4SdaYKkqxknq5FPyZs22A7YfyZv7CfVy3pTPs9m3+64903Pe82K6Zk+BAse0I5h7fRcxfHMql/M+94JOHsSjb9piH4PbsgIGMKe17ZlgvX0hvHZ+2KK7eEOAQksAHEuzk3atmbPA+KliFRvaFaXu/8swwW5OtPVwG/vXGcuUbfN2EQnNumbMDzoKjT2yvvnd7b8btSB+h1KYFtZHCU5NqQ1Q5Z8eBTJJoM+FhhzhjZMFgkoCIl9RSuJvQ53LFtFg+8rr2i617QOJHPNt01Oawpb94OwN8QxBICVO59zzi+x/u9buAcXXsFUOTeYS1D2Hb7CLt75uFt2fSB+nppbZBJ//yzgOA8YFnGfrrJRupDbxyXruXaOC76kfV5KAFQ04PHbDY83Di+iSMbIqvVK87VAif1hq6LdB1SHyrLmHw8HYI96QDoWbdpSf0+wegJYapqQxTVSsUqLSqBaiAp2QLQNpGmiToYShgn8u/C+gP4BUDgcPeO8d//v5m+/QNxP7D5esvbr6U2DNHyPhr2yS9DHB0OiVVD4J3fcxsmvDEYLM6ukeT6meAHgt/QpaiS3Y4vmjWXtlNLHau1Ici5hPQnQxT2cWb8HYM8+Z1xyBC3Xrk+5wFe9p0GAX47VTCdGihndlZb//4xk/OZzVsgsUqOwchjX8UZp7r0rHTwKWILGmKWYTJgk4T1Zm96YzwheqwNi22MbUnGFbA4r8b19N1LZfm9EnVRc3Hw+GxFZTMx4IYtDGobM92UPiJvzFb9a9YXf49tLsoAqn28kxvQv8tWKWJJJTXK+U9P/7a2wxhwR2BGBuPyXqM3DRdYrk3i3MkwOQyJsB2YHuFmavgQHrnxA9voOe9eELsVqTe4Ph3YQuSgSJCaMHmxjJlCOlEjjh5vWMD6lLwoq6In4Wnztck6CbVjyavI4M8aCbo7lStwMlcrp6z/hcCecPMt09f/lvndN8T9nv0fbvnwO8fHh3MGb3k3tdymUMDZTPxwWGY8D2Hi1g8MSfw/Z2Nwdo1Ra7QYBlCLoHNjed2seNn0nJuWlV7fNinSYdhrbdgowLNVv+EM9NTe4QUsSU8l2/k7uT/NPeopf/A6VDYPlethRGuXQXetFnjyOhKLsiHbxmzVei2lzE48BHry45VjX2pDthRI0chxZltCijgdHItvbiTaGWtaohUmtHOrkjXQNmesVpXFlOtJTadZA3o+V1kkdtqLerBi/1vblz6i615IX6IDZTM+Ev2GebwpwJBzvQyV7NmnHopS11xDiCPjdPvs72WFaCabtLo/BxmsTKNlMzU8eMdtmhlT5Kq9FEC8vyS0huZ7AOBcFw7u00rtqMHgOrh+uY2ZlDxtWiwsVnbZt8LS99Z/GqN5Uh+OVwqeFA695f9sK3r8h2/x7/+A//iONOwY//Atd78L3N82jHPPh13Pt2o3NyXZVzhjWNEwKwntzo9MKQgQnAKTMRhTUsMJYUci0aTEa9fx6+6CS9uV9zYA+2jYIMSA++SZUuJBiW2bOOO1T5lJB5ZS8QTrF6pBclpwiONaUYBcs/QaTe47qvrxHNB7rBqoiTDik7wQ6PI6xVDOYLBNCJiLISaDiVmdo0oLtXLLYYsGK8Cr2kKYBNFEDI7GnbNef6Z7j2vWZ38Lq9eEXkLi8kDZ5pyBcRRiWhgI0z3ebysbOUvXvaRf/UoGLRnbmIVkkjQgzpjnXLF/2mr/6hH8l1+ZpZkZWLmxvrYNr/uZl5/NuBaalSFOM+HhnvnjjpvtOb/3W76ZNtyEiYurL4gXXzFfWOwa1mephLxc9Ortt7KsWvsU8Z8i684QkmHy4hncNInUWpJPByyI3LTWDIuaEZxZnfVENzP+cnJtBhaPQeDs3WPaRiwhVufi2/MX8vPKnsDjb/8t07fv8fvA4zvD/aZjGxxDtGw4nKhv08wmzGzjzDbMzKbh+vKfc3H+G7zfs939gf3+PSGOpDTzyjZ83qyLpPPcNMWHN3t+ZpbfnJak75gSczz0BgYpnDnkpakaLKB4aeUCmUHg3ghb4My2vLSdbrQtawwXFQN4bVIBfwFaGw9A/BoQjsngAos1BI51MExamia9j5V1zNEwK8QT1PvPpswaqCZ0ORCJPJVT+ZR1y+fGCbjTXovcuz0HI761dcL3IWt1Bj9KwZ3vRM7p9xWTx9J2rzCXv8GvzwU4jmLiTgww3DBPN4zTHTGOWNsrm6jHOfB+I/cZMyP201YBSU0t+zasrOPaNHxuLBcmcb6asZ1Ry5jIuLe8Hzq+DvAHv2dnEl+e/Ypw9Sv8+oxwYblYBfpO6sO6lfqw7rR5OgBvBNTJQEHXLIzgGIFsD2EaYNm8xgyIH0mYsmQYcl2obSF0SFT5gIoHqILB+hyxKuH6C4W+pHkgDVumr/8d4z/9V2x/f48f4O59y7vNirfeMSGbrX2KhCSARq4NOx0SPRJZrb7ibP0lMU6M0z1+3hHTTAwDF8byVXvGddPRIv6uF7r5Dao+yEOiXBuG5Atr6GBAhAKDedpeMXGOG6tTDOCVdZyZlrV1WAwX1h34hWelQHbi7Qw40klmlrwei23MZAwkizONsBitBMiNMcj5b5QJmMHODCIptUCYjEmPLVOOsdywWePAdjI4UnZ/216VqXy2hcgDzrxKeKSme2eZVvBb5vmR2W+L52fTrLG2lzrRvRA7pr4Vv1C/Ydx/iy9+n42ykVFmscqffxYQ7JWRcNja5vcx+71fG8u6D/SX+l7MELZy7t4/dtyEPcasOF9/xdn6V6T1S9x6CYDKthDrdlELyGbOHHj8FUaPqa0hdBOXe4YYCqsnWx3kIKhSGypG2JJWbkvfYE3dKywfjcu14S8LBsftvQ6P/xW7f/2vefjaM4+Gm9s1f9yseBOzzDKwJ8sMF4uYIQqYcR8mkluzVisIfcEQK4iZJkU+b1ZcuU76Qw2IK5YQSQJagUqltNSGLPvOR1zu16i/PiHbBg5ICjnora+A4JV1VcbBog7Ijy33fafWMSA8keiw7J0l6Ea/HhJ5fW08kZQyK9CU11W+VtafSdTJ2/mjVUZwbv0z+GOtSDjb7hVN91qYN+35QR8By9DIzjOEkTDfEcMoA2W/XwKgbCvAy8XfEftL8JNs9qZ78f2c7whhW4BjayXktmmvMfbTfUClR0qLp2H9rxrErq1jbQznLrByEWsTYTaEfWDcG+6T4TYMPISJ0cDL9hq/PsP2CdssNaJ1NSN4AX6nIGBwDfg4OdAoAtr8w4oJBUjQH5SBQr42FQWK9qudDpBbEw9AnhSkxv1iuU8K8qRhKzkj//APhQF8867jj49r3gYhStynwG307FMotSGvkBKPceY+BZIR+4dGrdCMbfDzjsCWaxxr51jZhi/aNS9sf+DZv0+RyRj2KXAfPdvomQnsgmQWFGbhScuY5WP97yCwrwJuTtWKeijUGldqTz0wOtgznqgXU4oMRvqcQGQXpL7FmIhG+4V0mEdQB2kbOAB7UrLE6LH5mEu2yL8B9eXsIIC1Da5Z07UXNG5N01zQ959j118R1y9Klk6dRXLQT4RR+gj/iPc7US4aR9tequ/nKwFRlTHoRqSm+Ae5TtpG9xdnWPvpQ6Kme4VzLc10+732MxmwL6rQSjEQI3hv2AbHfTLcR4830DaX0F6I7L1SDNhSGwC3KAVybch2MvC88kjenyCWUkou6XRP2WuPnMkIsADAXfV5jAIGxx9qu0KAnxHf8EMrPt4QPr4jziP+3deMv/stw7sdfkjcv2v45uaCt3OjewrxDM/qnoAoX1bGCQEkBjZxZq9WlN44muZcFGhhwvtHXJKw8XPb8EV7xm/aC65V+btGFM6SPZK4V8/wKUV2SSyBhugPguEkerS2fjjcL+b/L3VCVq38qutHrgVN2aMsQ6J6vwiHPcuxaqFWTc8pMgFjCoWzW/9+DRrnx5j0gRf7mBSIyWOSqAvl2pTB4DwwMmCc/n0AJJy66685W/+KvntB014JWWR1TlAsK1lbgiRtiMLunTdKHhk0SHIqJLimuaJZfyn4hh8hDCQvCqSsZs415eeuv1pD/EKrrnlLqAY0LuJaAUPAkGIssq19tAzJSwEwIj1N1kJjxL9T/fpq6ZY1pwtsfuOdMcVnK6/0Iw+KvJF4bnpTyzvlPo9kzEeP6y8u+R62xGFLGrak/Z55G4hTYh4dc7DMUYCMKS1Sy1wYR5VXidy710bhXE7mJOnVKXmaBJ0VMHStzdExky6vEqbG4seTG5wywTKHfppAKaAAmNNm6YfSW07IavSfyR+XTb61CyNYbrf6XLosZfktqw46y4/FKrCTfU9rj2B96CwXlaOwFxQUNk7l301h2zy3TAyH7D/166qtHcrt2h5rFxmHsVYmdn6CIm8+lDLmxyOf54P5lDjlx6/nzrzFkzUHq8m+NoVACgk/Z5mPMEYNFufOia14E1JLqqum66dcAGoP3+Sed/BchkQ8OU6fv+3D1+zg2vYLsP7SsCXu1TN8u2fawTwahlGGQxNLQFM+T0ttiIFJQVqDmv4rkwdULl9Y0w29ej93RZK3vE4ZYM4bxWwHEZ45xmw1JCpDuur8r3+vbOYySyczNHXTfVgbTLGKWepEKiD+02UgJQ27M0u4WTIKIHPQ/J3yPj/5vqT0RHNUNnHla1u8vkud+IFlMghc7mexM1hYhT3O9QIWWVeGpSZGZbUtXsICBPfltv7cK2/iih//0fkUZtnIjd4xxICxImG3R+D40juYZ2vDc/5+8OMlZnVtOD42a6nnMePvR0YX/FlXBoLj9p554xn3lmm07KeGfTIq9aawebKNy0woAO2YgoST2JYcIChe1GpbEOfC9C5WUhVoDgv4kWtPXRueqw8Zjsus31ot4Ez2/F3k25nJV+xhlMmX7WvyY8ogcD7+Op4Hgo9XhyEYQ0iWYBL7ZEodEq/Pp2HEFlScuTCLZEf3zPPObOC8mcvKIvXiW+ylmie2R+YYRYiepPYx9SC5PDa3UjuFFqc1JYXhYAOXH1P2CRVZ6aeTH6QPOV1nnir1FgVOXmFOpCCS4SzFB4Ot6pwtPcPT+zj0/1zIAfWQ8PvO3fI6JtmzPCGWcFwjOOhJn9zeCWuIPzfrL27v5Z9a+U33E8PGMmtt2AZb5N41Exg4JH/kAY4Baxq1J6j8lBHLlNZaVrbhzDZL7a9epkAqIKkEU4Yn9eFUQKvcx2kQOH+eh3i5VtQ2Mb11T9QexW7AmIP+Iq/jYXJ++zpjl0F3MrQ20kSpTT5FskXO8Tq2mztetf3cKQl4YQDqsEhsHNyBBd3B72cwOFT+4dHLOZ8JEqDkkRx+Lf1J/SilNxSFnStDq+ZJps5PWm4lfvo/ABjVSr1TK+b9MMsup7weLgPpp287pEVN9OkrFeWQPTrWf+zLY59hPqbgf+TV6tNW3D4QtG8ID3f4h4HxEcJs2e0btsFJoGNK7NX+bSrEqXSIDbDkCSkdQq6Q5TiW4WjuGVZWQ7mPFDrZcm4qt1UTz5b7Or1yhTiqH2mpF3DY48Nh3YCnNjG1cgBOD4cOz3cZBOXf9ykuqsd0aNL4QzVBhsmnzNeq55cHyinqxyQdinFY3Xe45lz3CE05L2o2cLSm1IiUvOAL8Rhb0H7ErYRwZYNYGUdf8Ah5Tu5H7W9+aP3VGuIXXPmi2as35AWWvg00K2G7xJAIm4m4n9nfwrfB8mba8ZgCxq7o+9cyrW8Pp/Vd5f95vKE7DHIQENgl+f2mAdMmmGV6UV99FlZw/ihgT/aZfNqoVf7AeXpvEk2jpUtvOk8QTd5UK+vvz73CzbfiCTxsmb/7PePbB3a3hnm03D+03M0N98kwAbcp8CFOPMSJIQa+m7Z8CCOTydK+FdP8wGbzO6b5gXG4gTiw1inetetFlmEanEHCvlTSEhDJmwBK5mBzJ1IxKY7YBeAN5tAb1KeI55kgOXMkwc0y3ySsu6D3O5HlorL5nqKVRjvqPCxvApQJnMGf3BzEZA5CCGoAW6b/YkzvjGzsSM9tW9ITr7+88mbJuXOZlqtkImXAxbol8Cn/TZZ/+4k43TFPt8zzg96eo+9ekZKn617gumuCAqftfsaOj8VKIvgtxjS07SUprQvQY21fpOP66J/djP7UZSrlQKvHzNom1la9C2eIw8S8DTxu13yTIn8IA2/nHdatafvXjH2P7xtcfzipr6fwi6dfxfY7knTKQKBi8GsQxgKY5YRfATJsAmdtCSA7CAjKwEGlFmhdpGlTqQcH6+g9/XNv6OZv/gH/7mvisGX6w+/Z/HHi4aZhmiz3+5ZNNGVDd588H8PMY5SJ+tt5x60f1S8crFkR48w43TH7HdP4kRD3NAnOjOVlrg3K9MtsSFgYlxnkCbqZy6EyeRPZ6GZJ2HGnm7d6OLRM4xelQJYFruwixV0bVwCdDPAcg8CtSac35CYxJZFbOW0aXRkWLSB0W23CotHHnsf05LJjtOWMMudP5kltKP53gLUit3ZO/G/FV/ooaEEbNJnSS8gb81bYwMr2y8vZlra9ZLX+G6xdYZtzAPqHB5K12P0dc/X7EvIg95+X93t9H563WvqhlUjCouOwWc01fvGWrgY2ITHtLPuNZZosN5P4h7fNOV33grZ7TWxbjP2eTZwyefJ7ktnAxxu74gGan6IOQ2OuDykQo8claN1iJVADksUyhrxxWerWUwm4fh0DBE+aPp1R+WNWfLxh+uM/iCfwsGf8wxsevjPc3PbM0XI3N+L7qZurTQp8DBO7NDPHyMcwcu9HRvVXDPpeBU1y934rNZRIm+DadRL+ZLsDFh3kDVwsm0IZSvvC8vM6uM5e4dnbt9HN4zI0WYbFzVFtOLNN6e1W1tHnYZUxGiZkC/hb6gRUYPD3b9DzYTIBJAtGvjcZYYz31uGSKUqBesiVmcEZDDYpEU1CBJsV86di+xmzKt+zhRGs52q2hHgG6AEBe6yfSX5TVEUhjEUxULyBc7I3aF3ZEKZ7YhQw2JiGrnspr7vtcc2FDGSekcf/mBVTwJpD1R5UZIDqfc4emiD92zwajIsM+4b7FNmEWQkOLc6dSY2shsj1mkJiPyc6x8IGTtU+wx4CNrlsH4PrxjgSwmJb63HXGwmtysqh7qAuPAWCS6YAsn8iaF2IQeTf0/gnt5xLw1YyBD58y/TNf8B/eEeaJoa3G+6+sTw8tMzecje2qiyMpTbchYltnIkpsVF1YWbCb1PQIab262GnqrMEBK6M42XTF4n8SsGAXBL3FQSyT0HUAjEsFkxV3kgi0Rjz7Mb9WDXQqiXMKQaw1IamhN3CU5uYemAET8GeoL2TPJ9EZyTAEMBFQ3ALC3BMQYrAkWoy5cetdUKuXvm/p2hkrhMuRZITkCfbQWQ1UOPOsPb08ZPDYrMlBMmTcp6Ien8K2UQs7YxxuOZC9g7zDucbmDfytW2wUfuI9lpqU/h0uznK8Et7Zu3Rn9un1OStLPALs2EOlk0ybNRexKADNdOUeikMXJg9TD73DRUbWGtDHhIWpWClGADtIeKyv4hhoklw7ho6KxZYF6ZhffLxQ2ejWkolmlbUzqIuNAVrSPNYeoY0j6R5+JPVh/h4Q9w+kKYBf/cO/+6PzO8/kGbP+HFi88GUMPqPu457DekMwCYFHpTBn61R9tEXksljmNglyRSQFfD+Ee83JDzrZLh0YiF14dpSG6ZCzJDeHL2vbfLs4qw9RCj1IVU1wuWrauLoLHuqHqgJYNmSss4haatepql6wAIG454Nnc57onyuh2qYNkRRGjdR9kM+RcyRVURNOkiJ0kunJLkEoNaOxulAJpZzoQyGTKM8l1j2EeILfCUqxOZcMkTccizZsCizXERs6MJYsIWUvNrbnZNSVPXhYmVnAsIc1t+V3+/FMtFsv/dY/DHrr4zgX2BFnVS0Rrxuzm3LpW25NobVOtKey0nih8hwFwizSIt+G0be+D22vWK9es3Z+d8znPVYlW33HazaHBIn0ouuMbSNSCNqz64c3uCsKWFxrRIsQ2uKz1+eUNYNZszpnaA+XrZI2PNytbwTKcxdJ2znvJ5499gFBP5zgT05+Gn+5h+Y335L3O8Z3m54+M5wd9cxe8vt0PE+Gk30TbyNI2/mXWnW3oUR077gav2Z+B9GzzQ9MI53+LAn+S2vbFuC4b5sz3ipF67sb7bOjVCCfQWMZJC0XnlqBhTGQNSuLSf/ZnDoeENnyQEAy/t0PBXMHkTZN9BF2XAJSC2TtYpmWMDgoCd6/fnxcsoI0E6SOciGDiMTfrGIkF5OWoG0HGvpkBXsFARuumsBhbMtRAXw1L6f8lEn9fOOeb5nGD7g/UasINpL2kY2bm33GrN6Teh6QuNogTTcMGz+SUBglWn1/efLfenxmaIUZfkicTpT9actyxLk1Rrxa70whstmZtWIJNIPCOvkDt7ue/7Rb/nt9MCbecfq/G+x668Yz3vCmaHvDgdFeUCUG7Ds7wdPp/ZlYGSlzuSVKqa0SFoCIU7E5HHAyroDtggsTUKHLefBygaaJtH2erH+AU+vP7mMK3rCw600be//wPTHf2R++56w92zfRz5813Gz7ZnUL/w2JTbIOfcxzLzxOx7CxBA9N2Eiql94C7JBCRNDuCWEvXoCN5w5qQ1ftGs+cz0XKpWvN0d5MFQHTNV+eVGBnrZizWCWIUzZ9FVDmbwyeLiyjjPbFrAn21I4Y1hjWBflgAI7pvIPN4nOxgNGcPGMTKgv+FIbumSKHU72e8ygN8BsIg1LE1ezfQpTKcXycQl1aGQS786KbUypE3Yl03ll8dYrWavgsIRIxvGDJHX7jbJ7s0+5nPfdxb8k9VdqHzFiN2/kdZ7uCGoNI+FPUk9cey3qhaFhnh+Y5qdp5T9lpRgwRxsmqGTTVsG5qhTHCPuN5cP9isep4euYuPED/eWvWK3/hnb1Jbv1GtdU76FVsF/fmklo6U9WloMff0/uOBzUh/Iccm1QoK83bmGL6LUpS1PXSN+QraQOXot8iQhh8fiLEqxrVuf8SZZKvcOj1oZ3f2D8/ddsvxsJs+HhpuHt3Tk3c0tIsGGxipEsgYl3fscmSPDWXZiYbSsbe2xpQoNXlUrYc2Uca9uxsg2vmxVfNWesTzC5Mgt4SKFshuYoGzlYhkRZdSPMPXcgOamBk8zCyTUi9y7ntsViiqVVBnTk/RGABziwjHEsAbO5NhwDd3lIlD93GFzSgbhxbG0jfsrRgFVWY9RRUBJZeKqAjMIIPgECG+Nwtq0A4RwoKRkEzknwE40GozXtCVbwYh8T1fdz9o/y3FyHc68ARDpehUiZGAjzHdP4lhjGUpusuy6DbZMDb9Onp3/LeaafnxgUwVL/yzDPJFEJ7C1hhsdty22aeQwTk4HWndN1L5lb9+ygKETYT4nJyt5i8Qc+lHsfMINjKoxJeT90KJcCHYZz9cu/dJ0MI/UaVIPAHahaQG+zemz16ZJCIE0DyTrSsIX1+feqyL73NdZwJ4D4eMv87mvCx3ekeWJ+/4HN11sebxr8bNjuVzwMLQ/eETDcJyGUbHRP8TFMfPB7NmFmSoGHMLMzSXw+jcUYZaBitLeaOC/XzI5XzYrPmnXJ+sjvbWb7ZvAjD4m2USTfOXwt263IeyNwcHuihV/qwvJ1Z92TIVHOHQElupjFzzmD+MdDonL/LAMjyRfJbEV5Pnssk5Hn0lVv9JyEHVx6oTwXhIOeJ/9MqsPRAFnVAbU1RAMk22BtW7IG2vZKgJdGbOhMjAX8rFWHIveWgXIsQHBm+ELbXtGtvsBUgHIabuRxq+wbKPuNppd9SQ6J+qTV9AoG5/MsPnkd8qqDWos6MwgQvJ8a7tW24DFMIo+34pOcX4MMBMcoQPBmTHR6ra4zBnJdKPYQeuzlv7UxFcVFjCMhDKyM5YUOP17Yngts6UmhZpGLvWHjIl0fi83ckitgSTokisN2UYIFv1hS2kMLujQP8jd5ac8hD1pqTJxHuc3tPf7mDeH+njjNzB/3PL6F7YOTejtLbdhHUR1vkuE2RTa5b4iSQbQLAv7eh5GHMDPruxaMkqKM1R7Y06WghK+Gl03Pi6YvQc/5vJx4aqOyiYGHOPEY5qcBcdUxUQ+JajC1HhABT+zoOu3xavu5lWmKQqBWFcl79zwrvdQ20mI5p5aaAIMN7OLMNnpRXcWAjZ6BUDCG2k88P6+k308JxIAGjGYN1OFt1liibUrI5KIocDSuZ9W/OrSYcv3BQHnxEQ9qMSUgcCzBbw1d94KUgtSb2hs4elIc8PNdZSl1gW3OMc2n9w3lsf0VCP7lllWwVNgVjs5A00Rs50ghkQJMO8u4t2zGlg9hYDKGy9Vr1qsvaPrX+N7irIA81ioAXNjAHIA9x8w/yAXZFEsJI2cw6Qc8gtGNulMAOEuM6yUbAlM1bU83dMDi9fdnXGketGkTj57p2z8wvb3DD5HdreHhvi3hcB+DFWaENm0PcWIT5eK3jZ5gGq7P/4bLi39BCDu2u2/YTvcysUkzF8YWNs+Za3jhOp1e5k2UWTZNyqYhScOU575Z5gkcsuYyyMMiF89ePoBO3lwpxPnCXkuz6iU+pAIAd0aZwcnQKYsv6Nf1Ji5UX4fEISBc3XaWglu9XJSAl0IWqT5foJ7Cqq2LcGnU3ApjV0U2karwp7yKNAue+H56v2GaH2iaczrjaNorXHNB078mtWeEVtJvQRqzHBjVthd03cLeqcGNGEZseQyHjKRPXaXxNotkpgNaJw2OePtBGJKw2KPhJgx89CP7FLlsL0n9JbE3mF4A3Fr+UQM9sLCAa6+6erlqI5gPx0P/zyXxNGmAUT3tPXxuNSNYfKgbBbcXpcAzL0wGfX7Ki/l9K3r8uz/gP77V2vBHxj+8YfcuMI+Gx7uWm23Ph8q/a09O3hZP4Icw8aAeW944ztZfcL7+ihhn9uMNYbwnxpEYJ9YYXjpp1FYaHHltpTY8tzIInEPhciBC/XrWtTdf3DyxMGdqFuBhiIsrMuzM8MtBdWXzdvAvT9aFCWzN4hFcW8jYpL5sUQCHEJf606WsErHlscRUBQoaio1MvTLYI8OiDAK78lEGRWcCDDcXEtZUpFVPry8HdUNl236+K+9VXs51NN018fwz/PoMNw64xy1xEuZwtpvJj8MoGG27F/q63P9JfLx4prLk97HNDM2asxEM02R5nBo+BsttmtjHwEV7RdO9hv4a3zcl5OU52fexkuh4OWsOQeF4KHfLdSEhKpfMIMvHQLkdc3i81dYQJ1/CanOW/kS1IQM+8fGW+bt/wt+8IU4T89sPPHzt+fihwwdRB0joU1IAIxVfvylJmOMmSN8wpshsLH3/mvVKBsjTvGGeHsUvPM6sMHymnsAr63jheq6PQmXrTZCAwYvX55iWIRGcVgHUWQLAkyFR7dMnmzYBmiTXwJXasD7qY2q/cGtSYWUVINgcDvjaYJijHmzRsk5iD+F0UFRYQ1ZJC4VokKCSeFoOpajSOxyDPdl+Qe0gKtsY5+Sajto51DLnvA68P8ModSLsiu9n217QNOeyIWyvMc0F0VrZBCapK/P8QIwTLQjLLw+Jsr2VyQb8P2/FXBer10Rep0MG3vL7hmm0xACjd2xixQZuZIgWGvvE+zMriaaAqgpNAXqmogg4/N3l9YxP7TYAUizkmHzsLTZqy7Uogz/5uvNcaU1BweYYhPGXWcH5oP0+QDjK76bgy+dx2AqoHAPh4zvm775m/vCRsA/sbhMfvuvLwHhQgGdPlnurHUQS3/+dZglsogAwO5NoGgkZksBhLwGb+iK2CV40XfELv3QdL1y3+IUfgCRLnkDUGlGHss5Pzg9zAObA06Fx3WP0RsCdlZUB/7lpObeNDo1lT3vxPUOiephcD4rkecAcDZPuJaZcE1Ii6O/uVUE7695gTA4fJYha3vhUAOB8Hnxffagt3lDbhpSyJcSiGLB5qHxiZcAn7zViGGSoHMZy7Sv2Uu0LGUwnL5YxGh4Zw3igLrRuJbWkvyT+HLCnspzJ7GR5DY4GyuaQzAWiGEghinIgGu19BTA0OLHBOdFb5TogtaBWEuWfy/7yhyTp+fGmJP7AF67lzLRcFLsDZbkmIJNN9FrTNKkCgSVY2ziDyQB+kL1hHhRFwIQTOtWiKJBzX57AAgSneSxWcikEwsM909u7QuLbPThuPvbcjS1zkmN7n6h8ehcQeEqJfRQf7xzYlodEVguXM06GRTokslG8gC9sS29FKfC5Wx8MkLPFHCxqIoBt9OIZrjVChkSHYwLDct3IdaJWEuVBUT1Mzn1Eb12xtmpV4VGrDusA0NoSrD6iakyhWPHpYTqlWOpCl5aDaVJ8ak4Rm212khxzJY+IpR+SPYjAwCZZklmMN+plbVvtPawOmC3OrSUTpDlfwuab7unfayC18RMp1wkdFrnqPHXubFEx5iFLGAklqL4vewxjnt7PT11tY374l37iis+wuv9jWr84EFxvypdAhHQ0zZYgBz8bRm8Zk8egxuBNPlCWVEx3YjMnzVmqGMHPAT3LBNAcx0lX62BDV1H9nz6/I1D4e44JAb2PKEd/YtZf3D6It988ErYPhO2OeRsJswBp4+wYgmPW5m2jAQtzijxqsMsuem2SO2E/6mZg9nvx/Ewem2QT09ssubZPClw9AS8Tc2OY0hLu1hlbCtxBkIQygTLAk6d3+TciFMZM9nqbUqRNUb06DRMWTFS/TquFNjHpxVSYylUxjlZsKiQiE2sSs76/c7TC+iNfbKp/R16mx15etZXF815EyzH39AdemSWnWXbGT6CS7ZhlV0Xe4cpUzTXnci4BzThJCvA4EOIRCK2MAGMb2WCkQ8+/VJqrnwcELwyeU+eRbuCj0X8J78WzdlS2aDDZP9yRDklgZYlE60glkNLBtP7kY/sx6lW1jSlAzzMT3vo8OF4xHt1X9NJ8WVeYRD97KRM4PNwQH2+J00i4v2feSnBOmA370bGPlj3SuO0RO4hNFC/mez+xCUtwA9oo+CDm/8HvC7AonsDChOxUyl/Xhievjw5SnDGQHLNR6RP2wALiWC6Vz6u6sQMh9Vtl1GFQv0AFlY0oAzojlhdOn+9TTzGjrPdlSFSOd2XvwWIZUw+J8mPNZ+vx0MEZg/+Jp06epH/KWkJeFv/ww02bXICs7Q7uo/y+gsAZ8HSqCrC2F8bPEdBQNmF/pnV8DKWQSp2Y1eYo+8HJY2wWxsEzqwaBc20QNdHzF3Rb9RjH3mekWIYAjbHLNbIGg+vr5I/pJVX+bRS0+eQVhc0T91uIAf/xrdSHzYa4H4of8Dg7fLAMwWldWHw/75NIsKcUS88wpCi1AScKgTgR40zwe4KCAAlPp7VhZd0BsN+Z+lyDQmPJr5dZcgPyJiyrBY4vRccAcLkGm6fXmoOXuAKanJ77+Z9DFQB5Q87h4PiHloBBxyQCURJFvb88EJWHnYpNREo/4X4yc884nB7/ch44siXE8SrKoipQ8tA/XMBckX2L1y/JY/0sv+/Hg6Gx3OeqeAiWlfxCc/+EJcPYp9//odMnaJBSBnpmHWQYjuTkT/7u+T4hHwenfn5Q/o6805Mq045ZY8fAAFQDyR9QD+XhENYV+fdyI76w/gq7T/cheRiUZunv0jQUj88UAuHuPf7hkenBEyex3xln6RViMuyT0aGxnDN5PzGkwKADol30xQoCY1Q9JEqUECdiUNgj+RKQla2csmWG1IZlOARKEqn7g6MiUMAatYf7KYYkda5A9v/NZJPld3j287zPPQaAS71Icl5ntWTHUmPIg2RzGC7lWICoHB6ZLWOSUXbf8RNJcWE0IKBOShFrHKmoCLoSCG3tqtSJU8DncruqgolDOe/zbUngdU5VbfS6tQDAsj9pMCaUYbLcnyWlnzFIjkGO/5JRsZyEp+rDk2FRVFaw7vPyUMFUv3fKSufUytdzIaideKhaj0xM2pMFtZYSe6OVaVhnIPH4tr9n3yXPQdmgMZYhUR4c5/OcE0BwCl5rhw6Ggj/4exkS7UnTJHlO2z3TQ2DYWFKAYW/ZzY5ttBrwKiFtuTbUfUMg8ajEsxzYls/fpHUixcUmJOFZYYqCJ+eNZL/wemicP9ZqgVP77nxepTJQqX6GgMD14DjbPsjPF4JHVrVK7WpK37eE/C2q8QN8xDyt9/LYhbA21V8by1RZZnbGMut+fTbxoG84BoOhHhDV58LTfgR0YMSi93Wa75AVR871T66Xda0wRzhFKtYni+I+g8H5dkzUd66qJYUcl3uI5tOzBdBn+udgBPNXRvD3r3zSZF8/8Yx1tJWvX5wi086weWzYDi0f5oYPfqBpLjhbf8Vq9RXp7HNSn5M600EIFFB8eZwVAHjyiTmkg41dvZwFYxPGmhIYlw/SEEaZUGfWXwy0FbMHMrBQMYdQW4gfcTykELX50uncsMX9TInnc8we/+GWzR8nNncOPxvuNx3vh45b9f58kyZ+77d8mAfGFPjgB7bIlAZjaW3HNG/wj/9ECCPTeAdxYKWF79J1ZXKZ5bpZRpmn44VBkwzBWKBhMjKpc9boZkvlnyz+XmMKxUsskoMlltfdaZELyciFWmvPqP4556lhsrHIRWr/Lnm/bGEuZ5bwATPQHF5wA6YAwJkxmWXzOQxDGtN4IEvLjWpmKx6+cQmMSL9jnAvbLoSRGAY1UpeibCYwQaf0NvtVOUwYYbwvfp8xDHgv0zRXJQC3539H6q+k9PuJ7u6tvmD3BL9RpmEn/j/9a+zZlyTXY+cdcfhASiLtKOfGn4ANnFdudvNgoMtsK5uKt1+Mlt3WcZsCd2FkkwLGdnTdC/z6DNOD66BpDh9XrgeZrbOfI5NfQJ5TKb7OUhjrJkai+gKHMMpHBThSCvTK7Dk1JMos+DVyHrQuyVt3dPXPDWicZuI0YoYtJnji9gHTrkTG9RNlnlkZUIZCD7fM332N/3hPnAL7G8/9u4bHbYsPlpux5dtg1SYm8iFOfDNvhQEcRe69MxRAwRlH8Ht24TtN8N3gkmeNsDY/a1Zcq+9na6yw7NQi4+D9AdbJMBnLZBvmFOmSxVnLnEJp6MYYxA4iLZ55edovieACQlk9T6NV1QCGMQnzAAdOg5qw0BFLLZgUiCnS3Ko2rI0AjJkBKO9tVRt04xAzC4I80ac8xgz2hEodcHAMcCjnql+lhS1SBz9KyILJm666MYsBm3/VL820mXeE8QPzdIv3W70dR6eM3pzuHVF2YPEbvyH4rUzm1c9P2MjKCsjAk27CMgD4qSuRShjH8ToOeolRBhlhNoyz4z6K/PBjnJgNdN0LscJZnRNas9gUxMzmSTh/yOIBwUm6E116PWA2MUEYyma4ZvWkFFjbhmvX0et7U6tW8iZhDayteIc/t+/OA+Q4bDHdihg8Zvsgss6uF5DnuD7EiskzjerxKRu8uL0nPNxqbZgI9/dMHx6fZfbcRsMbBXgmIjdh4MM88BgmPInHMLM3CWNbDKLU8X5HCJOwgMOeNkWt7WIF8Vmz5tyKx+a1abhQm4wpJfaG4pXZYRmowFFrxWqpDF7knM8suRJAVfFc6kFsg6F7xoKCJJuszHQum/mEsngVsElLn2BNKkOg4zDJGE83hI4M+izHg8UQbKJPjmiEFSiy9ojXzZ1DvUATRJMKozLGeVGxGFcGOrVywLqV2EKcUBaBnO9uHLHjo0qA7wh+W673xjja9op+/ati8UD0mN17DKhqYKgeQ4/rrklnX4B1B1Jywqd7XIcwYIz0S3kQm5eFJ+FrIO+XjQYfLDEm9tGyTTMz4NyKrpUheXLLUDZqfbBWpN+LjUzV91vtFe3hICcqEdHNHjvPyogatcebSGnmqmKzZYuYmixReueKYZ5tYut3L4UEIcg53qpkW0HfU6HUGeDJ8u40jxIWO2xVQr4nbjaE7Z4UItODZ3dr2G8c3lsed23ZQ0gfHLlNMxsdzt/FkXfznp3KlvcxMBgdDqmHa4wT0+QV/J3plRjSGcfrZsUX7Zor22ExXFjZMwqBJIEJ7NMSTBl0yFuf462x6hue2fRaK8gWUtV7pYBq/r08uAMKGzh7eeYA7AO/8FotwFPFQFdlC9SqopDARUubQccow/B9PnaTZV96IjnQMpvRZgWUyfaLUrvkbJDO3BPL9YjoiTrsPbaHkI89bXtF077AqR3dscVUDYCaEMCPhEn2Dnnf0jRnhDCJdVVtUzV7ot8WuXf2Da6t71J7RnKOlH4c0HpyzVuwVgkJs+68FsKKgQNQt15+NqRg8N4yRMs+CelhjEGDTiWwPjrLMVada8VErhHyfWfVns6YxRpC9yExQvCGdg5aG0axVEsT180ZX7gVa2O5Nu7QXqR6+Me5FbKPMIQ5YVzE4kn7PWHzgNVeIPcKxrlDkLdYSCjQGwKEQBhG0iR/G/YBPySmndSicW/ZPPbsp4Y5WB6844OqjKejodCsti13fmQfPRFhBA8aJlvTihIek0Qd0GfbQNvx0vW8anrObFuyBDI7HyNAc50zUgPAQ/IH2AF6zfUYIYtov1DXkUP14UIGzHvVWgm6Mk3pZ2rbr7KPINtBLMSgGi86BvcnsmXeMoie9Hf2iIJImMByMI4x4E1UdaT0QzYljofe2ZqyfLe2napUh9BiC1Gko9FrftOsC4sXtYXIIczRWWwFthVlURyUTLjF2b54Cx8Ex85bqV6lh5BrV1ELrF8Qw5/CGuJn38TT9aeDQv5s6xdnBAPFe61ueECB4JCYR8PDvuN2bHmTIh/9yPriK87O/zlN95r5/BLbiy1Eln4fhkAJ8MsUy+eTXxiAdWFe5L0CFgDih5YZK/qvgD0EWus4tw2tcSJR5FCyXMuJrT0EezL5IbMa85QuzSPJNQIIf6p5+5G3X7h7x/ztH5k+PBKmyP4WPn5oedh3zMFwNze8iXBPYJ8Cv/dbfj8+cpfl3rbj8uI3nK1/RUqB/fCWYbhlCh+JccYlz6VxnLuWxjwNgLpQiVsNAq+seCy7JKwMp8zc4hdsBQjeRs+QfJF07dVEfp9CuUjkfwYWpjDifxNMwpPKFH20gclFVtaR03xLQrcxdMmyMctmrONoYpeWid0xs08ucpE9QdNlBRDODWksDerCZo5VW1KvLP8W39lZj5WREMSv16Q8MfMYBYdRuwiTHPgRP94wjW/xfkdKHu/3Or2DplnTrr7Ev/gbpvNz2v2e9u4tYffHAhyHsC2MH+fOsf1nzFefEZuW7tFhpjtySFqMIzF5YPEq+zkrB8UV6xXEsL9tRG4bI0yjhRE2Y8v7KKz1aBq69oq+/5xp3eM6cM1hANspsGfysJ+1IYjpoEGrV/11XRcyyBMyEKyBDg5bPCzzcbKEQcl50KoP6MH7nxVYcyLNvoA2BE/cbzBtj5n7HwaEoxfJ1rAtYI+/+Y5w916GQh/vGN4ObD8KaLbbdtxseu7mhikZ7oE3cS4T+z/OG76btjymIF5ddsXZ+nNW/StinBine6bpXqwFUqBNkReu49JKbXjV9LxwffHbvFbv57qpLXNjY5VtKABZMDI4mnRTkOtC7Qs6xMCotSEmOa8yO9AZIzU9M2qi+IqFoCw/1xBiOhwSVQBjZyxdWmrBhGGdTJGAykYvM3/zc1mSpkUWm4o89vtUAMfraX2IxBSJKYiUS5uzJ+sJEJhZwKGoBdJ0h5/umaaPeL/TDeAlXfdSmrzuGrGhUflnGPF+W2xjuu4Fq/U13frXpQaJP1glzQty3fSVguAnr7SgwLUHfKndZnkvMrMmzLCbXfH2uwsjIOBV7C8J/Yqow+Ta2y+DPMdDY2cV/HumcYwRTIjKigqlLsS0fL6yHa/cStUoy8ZkyRVQEFitR76P9ScsHAFtzDSQMwZMq410DfpkdmAl9QyPCvyGQNw+Mn+4YbodiDNMO9h8dOz2K2Zv2UwNH33DvQ4+b1PgTRh5jDND8ryZdrz3A3tluDq3YtVe0rbnhOiZp0dC2JHSjkTkAsurZs2FeqJeu57PXF/8NS+wpTZMxkCyBB36BCPnbpuVAnp9qF/TGtnJ19yxYqXkH1v9f2MSLbaka5fBvpHaMmEJJsjwGvERc0lrhz5OB3RJFQBZvZJVA9EcvJeuAovL9/JtGFOeS6RhNmKtYQ8qgWzuQlpYgBnyWQYP8uyc6woL2LkzmvaFDIusbKjSkZ9frRaw0x5Gsf4K830Jd8nBj645x66/IvWXMO9Iww1hf6Nyb5F+lj6iOcd0L5guX5CspdnvcGEkTgMpfnptCGGPsVYZ+AvA8yS742gDPEdL1NShbbDsgicaQ99KSJZtLkhNpfqAUieo7SHSAvYs+wpTfcygrRG2tJ80jCfXBqELXLmOX7uedcVTzSyx3Dt3Jj0fUor2Dq0MkNM8yaAoh4PO4wLkVedCmga1fhh1uJSB34EUEvM2MNzBfuuIAYahYzO27GZHSKbKDhDLqPvkuQmj2sIImeRjmPDqvWfditatsa6DFJmzVyQTLsGFcXzWrjh3rdjE2J6XrmWt4Gsdzrg3S45AzQaOFfAjBJEjtYACPXXmwKFKr1KnVVZOrVUCk3Vi88Vi+3RK+XgMAq9tpK1sAl1V54WZnpiD2EV1xuCi1bwBufZc4JiU/Rdiojee2Uaxo8r7CpMBYDlQrb4ONiUdynqs9gbZJib7hi++4j1t90pAYB0K5+v6swzYMBD8Bu8f9HVz4M4ENGrOCss3D6hjHJimj6TkhWziXuP6zxYwqVuJZ3n8GR7Bfku0pthUoNYQ2Uu8KEk4HBaFZHSgLIDwlAybFNgl8bW2di1DbqevhzVPrtWTF7tKdDi07CsEBK6ZiDGCV1GPm71abs06PI9cuY6vbLvkBxw9zVOWRPVtpwBhUpLENGOG/WENyGqAEAq7VwhqnrD3+CGqX3LCD5mIY5hGxzA6dlNDjIYhWLYarCfhb9J73Sfx6H6MM7d+YKNBkY9hYpOW8DeDXpesKIhSFPgzhy2/dB1ftGdcupYWx5VruTZizfJ0Ty51YR9DsZcr/QGUc3+xdZDrfY8rv1vv0w9eb5agyF5779664k1c546sjcOx5CMdDomWQVCu688NiXIeUagGRZNe0zYYoJXrkgLBg5X9kMXIANnY089FXwOTEikrlFJUVcwCBNvyuZU+olnj1KahaV9I4KxT32w9L5JdvJFqZVHUfYT3e0zb0Np+8RdG99fqG14rDKyCxqm/Yj6/YAo/Qy2g66+M4F9o1Ru5hRK/MIJTBO8tc8hsKrEAcG5VGEehbWp1y8kVYsIaiGkBgDLr71je9dy1bZGUVB9TKt6ExT/qqC9bnhcnm7YnzJAiu5DN2qfaQ2TgJ27vZZO4fcQ/bJkehNkz7i37sWE3O724yeu7SZ59iuyCLzYQ3kDjzui7F6zXXxLDyDjdKhtyJuELM7qvpJ3ZAN2Zw8ZIXpdU3u8AxRYCqKbpUuiGvLE/au7UflPejzwsh2KKvlzkc/ASpRjOSWwhZiL5VMiNYiAV2Y3LEtQypJC012PnkDxRzP49WX6cwb9jpniZ1nMo7Tz8zBSwRzZ0lbQperCQYiOG7lGmpZYVGKX8KUApDKydetguMnIp3ivmrsf3DW6WAy34bdnopRSWwq8SjNi04iPctDjTPJU+/8x17LN9/HW9vDdYi9YIYYYLG1KkqhLychiokuWjofoolhAZ8Emgfp+5Rjy3Dj1A62A/BR510CCsjEPWumwaFibpDy4Fb7BNSQEnNIBOSjukwT56PzKAXJg9uweRe2uQg78fGR9RZo9hO7Rsg6uaOPFEG3RKv4ueXQp4YxCbnjP67pquvSbGkWneaKMdgEhv7IFsq9dE7eyPdVwbYGHGdWTQ3DKZCMkUhrVs7uyTuhv0nMsAsLwbco6Ks4vcn9jHJGXSmAL2tCRmRL4vrN3TtUAkm+rjpw0qRjZrjlQAYFgm93UATL1OXTt+yloC5Jam/pSk2cRQ0r1Jvti7CHtwFBlinDWIQ/zvRBK6yLizVDyrALK/V2ELNX1RJWDdwUYj+3f+jGcqj+HEa3Ugzc3Xg6CAcDIFgJ+1Gba2J7ZSy55bNQh8PDxePj/yBj6xYqwlqalSOEhDL8d2/VzyBuD7QeC8ZIA8ACsZINdKolrqmf0A1UoiDblPeBS59/09/n5kuJfXbr917PYNm6Fljkbrgsg6RdIpNWGrPp9DCoxI4JM1Dc6tadtzmuYcqzYx3suVu0nQWfE8zMne2Wdz8dqsFFVpAVZQy5jl9cq01+yRiVg96CBxsY45ZNiXlwWercOZVYfJ7GABeEOp5/LgMkiTa1e2hTnu+55jA59ax6GyTuuEw3DqqmvIrhkCBMckqeHl57ZZQJ8MAtvmWVsIUJbfkdw7DzUADZxbkdozYtNiY6/PcyghME/qkusJrUi+3ZSZEYehij91xRQU5Hq+xpzy/7R2AeNzbTbkAC1b6l7tDwwLK/i5/sBZ8ySHQO40b4azxcaSP2KQgNkMFpyyEMq2Aj/WeiQFsYxJsMi/83AoM/4QpVDc74jDHkIg7vf4hz3zNmhWi9SDzaYhRMPoHY9TU+TeG1h8gImlLsg+IrCPntmAc2uMDolcs6ZxPT6MGC/DoQz2rK0QS164ntZYrqyETZ+UUSvQW79WofiJn2Dy5dNWPz9lS1Xermr4uLwHpvjJZgn6Kfu7g78xC1AHHOYJaJ3PrHKXkvQpRjYzrUnFA9bp4817pmIbw6l8AelDk+6Xlqcs3zmwSKjBHttjjSse3iZnDJgfsIWAQgype2NrhAFVrGPq348LkULuvxokK5gE/GjrheceU0pGa1fulZZh0fetbC0FuaYn5qh7DbWOic88tnqPcSqfxAl2LN/TYVFWDZgYq0FRxCStDRUIfBBAaZY99fHjd67CVZxRfCWKYqACf8vXFeM3q7Nrxq/3lnm0DHsrg4tg2YwN2+DEFiYaqQcp28JI3tBWwxpzcGO2fhhSZDZgjCiHjG2xRrxnY5Ie1cSABQ14brh0LS9sLwNj45QhbQpDNhgllOjLcQwCFxzhyB7i2BucJMNWDmeBB79T27RkUln5qCSWXLdqQhwswX7AAYj/fbkjNqUSRI1VMl2ikFQKaaYiU+W6YFPOSzm6Fi5za8VODp9sBoHrgDhrXQGBs2fvc9Yx0dlFjairJlCl5GXfnhnFSbGwskc5tKnMuSfRWdKfAHD9c3gEfx928R/L+sWBYFheqIMp3GyIIRKnhJ8NQ9l8BMYUOc9Stvac0DhN832e8Tf5ejOXqt9ZfP6y/DODROX6+CTsRf3tVJrXqI9XZyxE8WRRUuETGVq5nVNWr8FAiKR5kmbNNcL6W53LFse5H2QGp3ko/l3x4QZ/8y3+43vSPOFvPzJ+9OwepIBvNg33Y8sH75iA9ynwhzBwEwaGGHgz77hX2ZDVRPrZb9ntviWEPcP4UeQqeFyCxshkrNHid7xk07Qw/aZkIKJgi6k2l7BH/IIeYp4eTtz7iccwFdlIBqiXVR0/RpsefR+iAkMDAWeMbFZTKIm/GcDOG61sV9JpwTtO9Vyavrx5WI6pzPTLXkchSWDOoEUsJ5IeW0IkpOFcnkWCMrnPssGAmSXAocionDRRWUYhz1tAmeg3RZ4VwiRBLs26NHlt90rYwzFi54CbRpg3BQjOm0bXngES8JJcT3SWqOdNZvsEvy1M2D936QvqwxqzW34QVk/29rNWpK/WrYjW0NhlExe1IQt64TysDT/mvuWfNGrLUGhh/MUiPetULbCkWcfStJdAKB0QnWID5+ZTrCECcZowrTI4hy2p7QXYsQ4zjZi5CsTIfuMq8Qzbe+L2HoJ4AvsP75k/7ghTZHqExzuxgpij5W5qeFusIBLv48S3agUxJrGCGA1Y06v9gGWaH4vsf5ruCXHQzRnl/FrAL1vA3VM1Mpz4vPb3yoB00PPsIUwiKUtJz+3IzMKwr1/ZDJDMSbyzQhC5+F7rVm8dgw1F1tWqJ1ve+LVqcZPP/z1psZHRO5Pn9PR5TWoZs1dbCwnOWdQCP7SWW02F0VJqg3GEMBHCiLUjJkmgJ6ZZeGVuBTaIWkADXXJQS/boA5GFOtfhmnOa9lpl4zo8GsQ2gvFe6o51pNQXWRft+RIQoRYSi5fwqOfHn3ZwdGqFJEOiGCVfYIqWHBAidTaHvNjC5KmPlFwf6ppwDAAfWFBVQ+ac+J03uPK8xRYjaG1Y24Zr9YzLjJXsPVszyZxZwIF6xSgDzjBDnL30DYXx1xO395i2X4JdoAyYU5Z+q6VEeLgj3D+QYsTfj+xuE7sHsYwaRsfHXceDdwfqgFsFfu/iyM088KihLtsobMo8No3JM02PzPOWGD2zf8QkT4+hMYuv35kRSedagxszCz8zbPPqjKHLfvxY9cOzZega0xICM0YBn8YUVCGUiof86bMtEGNiMjI0Ho1jTpHeiqRzl2x5nLkWTFUt6IwEvuX3cMIwBWXzVWxAV+5N30u1jZnQ8JyUONEiAgswHBELjBwel4fcQYffCyM4HrLRdYD89IDyGD9hQQdFUYGXWcJd5u0TuXfbXmLDRNtcLjJO5LoY48IEBrT3yFYUC6Mw9xE5yDaoLc2nLGHNmWJPlZl+sAD/eRibmVTWJEJY+jqx8RGUsGZC/RR7UpF9m/I5UHIIgmiM5TXV0L0YJ0LY48OIS3BmWq4zCx7x0wQFOIvyRFbN+ktBGX+zDJjDDG6YiHu5BeMcMXiYxkX+Xbw+pb9I+z1hGCFEwt4zPQSmncF7w7izPG5bNmNDTDIUuo2G+xQJwH3yfAgTd3EkpFRCIvfR4xGwxxirTEzwQfzBJ2NJan/WpkRvLC2Gc9ty6VpVXFoFwEwJa6xfh3wOrjXYUcLgGsDrUDYVhn/2Bs2EkGwLkRnFpw8u/WBSUQsEEoMRf/fBOCabSt2ajNTL2lKq1AY9zsJsaK3ccOuSgL8xVYy//L6L/VQ9WD443owp/5QdQmRhPVvDwd8ZFARNkYgvVmZ5T5FDZ3O4ZAFuY9DacXgy2HkmG6a5YbvsCVQFUN+WzcG1MQ8/DnsBYxrJKmnPilWNCQFjbQmZ+pSV4khMRvdRWX8pQ9l65WNDFCeJOS2qIu/V5uuZq0e0ptTWOlCyXsUSwhoNs6/2rVojojekWVQDU9gSwp4QRhrg3LRcI2qhY8WZAMNPQeAYDcz1ICuRAthuJtgtthO7hxSigsORFGKxe8g5TfMoBLKoQPB+dIzeFQbwQ3BFKbRJsoe/V6uHbfTcBbF+mFNkKtdmeTXn/Jrq1ykEIlkdImFnZ0Y8wjtjuXIdL6wEyTpMCXHNftqk7KOblt4dsVayRByyT8+e2nnvmI+BmriVrRyf2x7aJPu6jGcoyrp8jQL2eW+gRIRlyGdEEY1YuhAtnZVjs4DB9ftqEdQ2k4rS4mGca01nJNMo77l6644CMmP1f11J8DiTkt726eP8UD3QVSBwFUp9ZDNlYix2SHYaxLZyFqZvrT6wdrWQSXJpOBoQL9Z3zdM+4mesvzKCf4H13GwvJNm4hUFsIYbR8aDeMuJDl3iZvf3WmvbdHKb5hgjBZBDYsDfpCQhc7i8uo+FSiPXsMPr7uYE+BfasbcOVbYV1YhLjCZlfl2U/J4t0/hzC3kvTZh02SIiDUYsI4xoBhdfnhfVXEn2hsH/D9h5iIDzcML/9jvnDPXGKDHeJhxvH/WNXwJ7s+7lPgT/6Pb8bH7gNoxRqY+lXX7BavZbXJgyM0z3DcFM2dDbO0vgYI2w/czoFXWTRqXhjyuZXClg2Phc7BdnEbVLgY5i418eyiTMPYWIbhdUQEOaNwZXG2JwAXpLJhVzSdPPF38bIY/Rl85QLZTZ8z6zmDBRblWjC4YTHnTiKawuAWlaSJWtZxu61KJ/yB84bOUOUdGY/MMGBSbr3e6x1tM1I015VhXLZSMUwqNR7Twh7ZWdd0a9+hW3OpXC351g/028Dbr8VK4npFu/3RRrerb4UQGn1GX4tw5ekHU6KA/P8UHx+Ugwn2Xo/deVN3HHSe2CZzmemX0iGbRBvPw+0bkWrKcexNTRNOvAHzud4toJYguLkY2by1Ev8hBfpVpqNSDuVTSnMyAkfhAlhE5zZhittVFwyhKDybzIQWsmAKq+/8tyq2hCnSNxs5LWYF4lcLf82euFNMW/wltrgP74nbjekacI/bNm9m9nfW7x37LYC9jx6sYJ4HxNfx5F3YWBOge/mHW/nPXsDBmFS9s25SDqBGCbG8SODbihimlgno6xfy7XrOLMNZ66hJQPCpkrKrV7nEx8LCJzEV3ebZh6DAE+76HkIE4MGCnitMYeku6oWkZjJAxexMHEhlOPtVC3IPs+5DvSmORgS1UExtQIir3pglMFfWAJH5qoWHG9ErTFqs6IWKSkRjHB7BGyZmP0OZ1tmbagyO7fVKXsOeTFhtUzbw0D0G/x8X1h7MYw4fU/b5pJu9QX24u8IK6kRZnwk7d+SFLQRubcroLHtXjBfvhClwDTi9tvi/Rn8RsIDw/jzJJ5axS25RixrCfOSQeMcLPMo3n5zMoW9OqYg/uquZ+p7Qusw7WEPketDeQ8rBs8i99b7rVg/U5D64GZhTwpretTN3EDwe9oE103H57bBIXK+hV2a2V7CDGltegL2ZDZH0B1P3M8L2DPrpm7YChCsXn9xyhYgo0jF9ffDdsd0OzA9ynMeNpbNo1hGhQSPvilgz0TkTZz43fTIrR/kWq0ewJgWgwW7wllXrsdRjxXhx4tlwrltOLNNsZB64fpiIXVtG67Jnv0L60ksH2TDu9ZNjmymHMEu582QPHsdIO+j16C6hQl0oCI6OrJmZSblY6o1li7OOtyG7qgWHAd6ZbbWk6wB7QnrrIFyXOnHDALvFVTL7PUMTPzQMkZssLI9BCQdQkhNdm4ihAlrRxwU25KCqSUPYSxD5HK8WVf8w6fxLfP8UNQCrnspAK8Oi8rGL2XfzwdCHHG2p2mvcM2FAEP9Z4RuVTZvJgTiLLXIz58OBIcwEJP4zMLTcKxcX8XiA6ZoD4CTGQFdxxTIaejW9jpAW3JIYGEDxwhOFXu5RnQuS74pv5v3HjGCmVFfZBnUz/Mjs98T/MDKWD5zPV82gdZGuSZHGTg6Zbvl4XEGEeV25fF5n1mFBhcTrg2YbkeaJrGGcG6xiFD5d5zFGytOgXkr4E8GfvablmF0hGjYTw13c8O9egDfp8ibOPIxTMwEPvqRD37gMcwCriL7MDnixUYFY8hB29InpdIDrIzj3PWstTa8anpeu5XYyiGeqBkgP+wPUE91ecEnJAw6Qy0BJWOwhEyPOkweYyg7g9yj12RhkFqbr9M7Vdt1xrKKTfHw7iuLwGx3uFI7PIdhjSsD4w7DOljWBlyQkPQ2pAM5f+5rQa5l0vugtWHpiZwRlmD2JbVHVS2SNBxqWXk0EqMXW4OYWXm+gDzOnZXztQx5wgBR2MH5Fk2MGD8JsBMDzBvm8YZ5fsD7vdjPtVd0qy9EVQTSg2S2n9oulmAo4zBuJfWhbeX2g3iUFzb7J6x5vMVa8H6nPUioqALLyvVhT5BBf5QAxG6MjLPjuHMxxhaWdHIW45Y+4gkIbKQ2rDtTvIFzP5Hrw+whjAa7j7j9lnl+OKgNL13LZ62ntanYL2QlrQPaTCwxSYFvsbQ4IMnNYByk4GmniHFDseKMMxqwC9NOSGN5mD6MjlFtYEZv2QbHPqpqELGJuo0zgcRdmPjg99z5sZC39ingEWwsc7GzL3Mq/5dztknQKrbQYDhvVly5jrVtWFnHa7fic9txoSPntcl5K0lIZqqcmZBzdY0laM5IwDITy0AnA8IkCig8afB1Hhylo316fjnz449JgvysMUoGjAwabH1uW3kNNJx+bSwXuGXYbQzrpHsHbW6d5o7IcbNcdywJGw0z0pPErGbV11OYxjJ0yhYyW9syRCG+tSlKVlI1IC2M6KqHEG/mVAbK9fFubY9zXckGaNrrxde3vXiiGjAx4mLEegWBh1shn/hNOfebZi2Asuuh6Umul0foNwckFfENlzpi3IqoIPDPUQuADMbG3Zazi4ufdTvHa/fw6f3MX2r94ozgknhaptyyIcohUPMoIS8bBCh8jDPecNLb7wkbOHt3ZcZfyidVtUGvpvX1StHI0CbEMo2IKRRpvTAfIzZJaEBu/ifr2B4DwSrv+T5CQZ7kp5CkMXO6qWtX4gOaQWFN7czTfPEQlotjHLbEhxvCw20JeRnfPrC7laZu+9Bw+9hzO7ZMyXCbFmbPkALfTBve+D2zNr/r1WdcXfw9Z2e/JsaRh8d/ZBh+j/cb8oQu+/hJkqmAp3WSLlBYTkGB4OwJLO+3rOyru1Gm3EOcuQ8jH8NYwJ5N9EwKRIHFGouxi2fGARCcpQv6GEoJz4BL9HiCTh+jyNZCKOCPNHmuFPZaevV9y5lagpobuoWNkL9fTxdru4vy8JOA2NqeEuOECRZjbAkqs2HA2U6fbrVx04YOIIaReX5UtslemX5nNGe/Jq1fljZIJvrIhs9v8H4vAV+uE2l4/5lYQvSXhK4ntq5iBI+EsGOeHwUEJTw75PlTrahs8jna4qO2SaZ4+1nX0bi1Bk3wZFAElWLAQw0JPDcVzIqB2QvQgyb6Hnt/CkPTq7SxKVLGzB6Zqf2OF7CnPLcCci+gsAReJeLsMfs9MQSwTmpCezotNc1jAX/i9hF/+xH/MBQG8MNNU4ZCu9nx0TvuEdbqmzTxjd/ywQ/so+e9H/Buzfn6C5xttRmQRiDGiWG4IfgdIAD4hbFcuIZVZvIoCJyZtWuzJB53Vf0/3tzBUrfzxid7AG+DMBJ36hc+1c2lOF3JDfyANCcSdfMnE/ApBYYQDgZA++jplBUo7OZAqwdTBnmLsoXFazz/PEtIC9uExRN2TuGkdUy9jBEA2OrHlNBAKC9gsF6PjLGEEvKyXHGSVcmV1XZRhxd+vmeebgnZJ1jrhpz3Pa4VYHc8P6Pf7mj3H/HjDcFvCnCcp/nW9tBdM56fEVtHv0GAYG34xJpm0pCwT2cEZ6bf9y1h84APVtjAs2UfTQnulLTvBmNXhMYRGnvSXirXB2fBuaVfEMAnMz0EeAkxMQV0WGQkSFJZ0DGOeGX8xehpMFzZjmtk4xKwdEna74URLHLB1sUDAAqU9RdkM2fykGiv9jBOGFSpYv2leSohL2maiMNE2Ivk0w+J/b1h+yC2MPtRlEIPwTEl2eC9j5775JlS5Nt5yx+njTB9DBjb0Xcv6PsXAPgwEvxejkutj00KrBQwOXcNl64rAbuXtuNKPQ8zcJr987Jioit6xVSknzlYcdJN3sRiw5RZv9nGZsxnd1Uj6mVYpNP1tWBOkTEtllKdEfCoq8CfdaUeWKWGwSzBwadCaE/J2vMxWw/Lp4qhlFeWeZIoUtS8gc1fm5QZwTnQWKyEpEZo6HEccceytOgBAXrITCzbYAIwb4p/+Dw/0jRnuO4lbfcKa1fY5hzaagMVAzEO+CChgKZVb+D2ugyfYyt1KjmrEmgZKM/z7umJ+COXDyNWvdKPV7YDyTVYLGIW64W8Jq3FUtNaqaPWwVH/AIu6CA4/OiueoLkfrAfNISrBpMpgyAOyEEc6o8OQfqZtInFnuI2NPs4FonQqHbZHvYMlSW+m9+mHhHETrJ9KG9LkCfsgvcWU1DLOMO6E5TdNtngAT8kwRMttgntVCt2mmTd+x0c/MsbAfZi4J4j1g3FY09C6rvSnwQ+EsC9+p01KXOpwJQMmZwr0tMbxwnW8Mm0JVrowhguVURcWvT79DlhjQH83hyctfsEO8CWkeUqHjMRjDlxdIYxec3wKCpQI2DOluAyJomO0oagHxuTKwNgZw97EUuM6BaonBYUldBbAnvQMz8+12Eqlp3UhkwvQIXRkqQ2ggJX2ECblaidTxTrENFvBueYC114f7C3IagKV6dd5AVkhFKZ7vH+oyCedAEftC6kRWeatwU/HTL9cH0K/IrQNzThiZ/HTNtPPCZLcCSgaBmJUukA6DJTMezZhhmu+ixHW69oHfLAnX39hJi7FIeMRp7CprjGsW1sA4NpDPCjJxIwJNyfMvJPX0e+JcRQPfdNwtZpoXYR9xzZUzFIWlmhePsho0FpDLgrWZiAYYoxloJWDdXPI7rB3TLNl9rbsEwa1gdlr8PHmhBpgjpGPYeTGD+xSVFKGwzbntG6NMfZAGZaIGoY34xSIXBunaoAWZwzXruOF68tw5do0vDKONQvZbqUWCm0yhGCFbEYOeNbBi9Zkh5xT0Sz7inIcqKoo54zk79W1wRrZYdgke+5obLGQikaYx7M5VDzmgXHQ3jwrItcp1y19vEkIkU5zBVrA2QXcB2iJ8rlFBn5qV+XSEmgd9D5WxnHmBASfVU2bvcQDQpKTJ5fKzimT0aheF6AQP7Kq2DkJd7M6NMKtxM7lVNZACJh5p+Gx46H1ZLaNcSvJKmi68ncxDsIcto30G3kw5Valj/g568svv+S/+d/77/K//p/8z/nf/Z/+D7z47PXPvk2A23fv+d/+z/6X/Of/g/8+n3322Z/kNv8c6xcHgo9XoeZXdK5QLoCSAAvKjMySTnh2AlenfT/x6HkGrSrWEFl2/sQaQhjB+SJizSJxdkcX8J+6oiaAm7x5mxegN8WAdQ1oGEyWeCa9OGYP0JzsGYYRr6zqMEtTN/q8IRbmySaFEvKS/bus7bCmxdlGZb/+YGKc2+mFkfX9zzlLbDIQnEExOASCJ+LBRn1MoUzlZr3YZBAYYwSAKGDPIfALFB+bg+8baXqKT6wxkAzReD1OUtlIZeAme/Plj/U69hWLmCcS72MPogII68fT/sDVSodTueNNTozKVrfZpsCXDWCsfneRczQHHj4my7cBwpJwv/yd/r4GyUQ9cWxMsoFLvqSHF4+v557Lz1wCoOnzTobnvBYPArNOALvHHsF5LeDO4dfftxZ/P1/qQtLasEicl4v+970wMT595aJKhlJAJVuKAsVAnMaToHtO+k2TsDTSNJFmCXqIU2IeLdNkC5A+RFuGbROJTQw8hpltkCGRB4xtaVz/JIwsh45kdm1dF47Pj5DEs2phbprSWIcKDD6wkEGD1VL23paJdmbVBx2qLCCwtDHmANn7ntGEMfp+KeBsQvHYrGsBUcFelX3l4WEGjEnSZEaydDQPwhYgqAaA5Wex1Ie6TjwHCB887Pz6Vz5/B1LwCNZm7z0nGz6TvbaEyS8BDIeyK2v75eOx19dBKOIyoQeKTAtYmH510Gqs6spRc/nTloAhP/ZKe9hLLN83J46JH+PFW7OBT9qaqNrA1QEsVd8Qk6czOWVewJyuDEarIfXRTZ+qDSlAskb6huz3BzBpPY9uAX+VARxnT5wCYYqSwTDAPEp/MAfL6GWzt0mLxHOTAg9qBbGJs9ge6VDW2PYQLIDyPIX5J71Co+yfbL9UPNK/Z1CTJZ71RndiqQ+T1oMp5Y9L/5DlnAGRW1Zj1uroMQff1Ue/vObq25yQrsekiNXz34LUBEyRi+dDKg+/o45Faxup57IGcn80VYOvXC9CBWAe+xmWx/pMzUhJPIJroEe+r+e91gMsGBph6pU3IA+UT/UFrmzK6vdfQmCeDnqylLMOiQIhW4iVRHhyHz91Zbk7cOIdfrqkHuRB3o/rWGqA5xjoqcEdZ4TtF048HRNYALEyQPagwGKHoW0ijYsHViIHj+OEujDXr6hs5UIuCYk4Ve+dU0LEFDX0KZGCBGKFWRQU3gsJR5h/loDYt+V6MCWRe2+0T/B6LholaIhyqCm9eX1tqvcQTokkWUnYWltYtd/n23u8lr4hVR8z6B+ZtV9YrCDytfgQAK6zRkBJGVDAEaOPXn4hklIqrEBb2d3lPiHi5PtW67uJ6huu574qH1z9t8fPLT3tiw5/rmxB7UPij33dUgJz6BP85FcUgCnX+yPYwETpRVNa2L3lZ3lfduxBnpVqcfH9tMYd7FeOGX4l0+ATV4oBbKr279oxpsM97NKb5Y+H6rysaH3O+/N4oFxbRBziD+bAH7hWDBDBzqrkUTutlAKNKkpaF5XcIv2DZFL88KqfRx4YhRnSARBMYQDnGhCSWXKalAGcQeCNXmM3KbBNM7vglawhg+PSJyhhQBjUttTphOyZKL32Qp44qAumUhIeDFSzQuLp883nWDh6T/PnUTGl6ahfyPuKxAIAH3sIl/17nrmluAxfKiWCS4uPeEAsJ10y7BEFeZcszkjgLNkOKBlaKt/6ZJi9req7KYDwc3vgAngfKJiFJWzTQl6RkFnzpH8QMpp8/tw1OV/3i4KoOseztZSpLoC5N6gD1sUupidnF9Vqg5xdcvrO/3Tw5Wq14v/5f/9/8D/8n/6P+V/9j/4L/vf/l/8jX/3tP/tZt/nt737P/+a/+F/w3/hv/7f4v/2f/6+0fwLA+s+1flEgOB+epdlVMGCOUoCEESzg5ZREUjsnPdVMQ3JqEt2aJxO4zOTpGordQ5mkuyW1M6/jQJjoAZ9wXi5wNbMn5Ol9mGiAS9dyrWmQk3F8xOHU3GQJLxDJRl7HrL9coOOciINs4kwIwu5xchE1zpGGbWECFiBYPRvD5oHw8Rb/sCVOkekh8HjjeHhomb3lfmx56x3vkwQ/vY0jv58e+eAH5hi4TwHXXnG2/gJrW4xxDOOt+n1O7PfvCHFE2MDL+7dMwdKBxFne20iLYzDimbU38Sk4pA3kNnoe40RMiV303IexGMvPyLFhjUSvGuuKkXz+Jy+aNh6mCvqAJ41OjLMCE1Enk6ME3ylDeCKyjwvYXbP6gPJ5SRPmeUA8skhKyuuSXyf9eR1s9dx2JDP+8gW1casCyoU4Fj+dEEf1ag0a4uLo+1eAMOnb/jWpPSP0PW4cRe493ZHCgPdbQtgVeXjjzjSZ85LYtMS2xYZIu5dj1I6PzNMt03yvsucBUqjkqZ+2Tk3pM1i2B3azK9PRKWY5IFofzHJMPBPycmplO4ha0nm8Zi8YyzQZ7JjAZ+/PkRhnfBiV3TNxrmy3z00GBOFe/eSOU4lr6d4yiMp1QdjAYU6EvV8eSAiYaSJ13eIHrCun/cZpJsVI2EwMd+GJFcTN3DIluE2Jb+LIhzAyE3gz7fhu3rEzEppj3ZqmEZ/ozHr2YSTqAEBUAiGPacq5EHJtSOLrG01iVlA12NwEoUxAuygHVK6VP3+IM49xYo7xZG2YjWxQ5HyX+lAPiU4NiMzxBlUb0hg9AU8WjIrf98IKbNQuQth4FF/0DAhniSY8ZQvDchznz/PG9CCdONvIAHMMB3XicKmHeJgwxuKNw7mp1IkYHd7vcC7o18JCM7ZRO5MtQf1rs8zLObGMsU4k0W4c6GOg2T4Spzvm6Rbvt8X7r7USSta01xrsoq9vjDBv8dMNMQyM0x2z3xPTzM/1CM4b8oPXVQeG+yQhf3tg8JZzL010Lek8Ff6T13GtqBl+69aUDZz4+y2/EyLsp8Uaop1ngvoDhyCWMSJLHVgps+dF63EG9mOrtgfpoGcoj1frQN03LD8D18o5XqfZGWsxzpJCVAZwUMBY3Dok7Zvi+/kwtEzR8hAsb1LkNs1MKfEhjHw3b7kPY7lOT8bRNOfai1mCHxi0FuTrjwACiTahrDhbcgTqa2cGamSTIoxoUqSrrrVoAMrisS21YZ8iH8MktSFF9tFzHyZ26he+1AatByaDwLaAN8sQ+ekBkUE6qWOJGWEEW7WSaTGFDdyoOqpYR+jPVqqScsrMyb8PFIA4b+Zr8CrLaXPATQ1yw+JbmNVFSUHidPD4k7DvI4To8crCy36dQKkHAuoOywar8uXL/W8JkbKdMIG6a0kIB4ges/+ISZ443R14/QrD8BzTvSAHQAG046JE8vMd87xhnjdP3ocfu1KcCMkQk9ehpCl1GigesVOKGmpmJXjLUD7W772oewToOl65LrQu1wbU91O+rvuIyWe1QGL24HwkqeTV+y3TvFGm7MhZs+LaWM7WHuug3dcgxlMGM2h9kCQxAYSjgKGZ+QcRM1SEg7CATln+7RUA3o+O/dSUYMjaFuY+ed76kdsw4FPkIUzchYl9Zv0ZizFduZ8QBpLXAQSiYHEp0SDl98xIqHRvXTlf8rmTrZcOeiWEiTgpSad4aiO14T6FoiocUuAujDyqcmhUdcBe7eXmFIt1haxliJy/hmNguMDFai8lAV5GgbgueukDkFyETs/3Ru2mzm1Dr77wORSzS0so5jrlviGzfJfnnQfhGeTe6wAsA1rH6yDw6rmLncnQ27JHSskT4oif78my7RIsqcHQFmXvxoAJI2m6w483B57gbXtBSmIL4ZpzsVcxjTz6MBCm+2UYBSILB/EI1RpUiF7THoYbmB5PP48fsab5Dmsd3m+JSRjpNaEpL7Hu8wxJmN0T4iXugwxK8+vZ6fUsJQl0M9VFOZPSZFis9cBlNrDhYmUP+CkhJmISm7ppMrT7QLcfieMHpvlB+oY0c9mcS204D1ibOJs9d1PzZE9dB42V56UYiJ9zf2OwHuwogHKMhmmUAZAPwgLezY5tcMzRlHyAQhZJno9hLgzgXfR8DGO59kpYm8XZvhoGBbzfSS3IChUdWzQJ8QY3BmckXPrCtnoeybUzh66V6yZLzc5DvaDvVyGYkEloy6B4SIHH3Cew2MTkXjuwkM9gGRQtPL9qrJyHMPrtGszOrOHeOFZhsZpc///bO/9Q27arvn/nnGvtvc895977kvvSpNGXVqRYFAIilWJRbBtFaoWHvjQ0j2BIo5QIUmzBNhZKFSqxBCxFtBYxPmxpsVIIldBUiqW2UWntH6X+0V/Exhdf3nv3x7nnnL3XWvPH6B9jjLnm2mef+967Lzf39XZ8yMk97/zaa6+911hzfscY3yGD7lTc3riAm76T/ZDDCTx2uakQTtwFUf3QmyRg9Q8nSZSTxMWm87D1RwZ4jlWP2UN4pNx0GmERBdu5WF47kBu//0sdA3K/dJgrgZHm+zwlnkFUdC0SNgiyhggd2566koE08f66GTjrAfh+Pc8sCWu2nUgZNL25PcVqtcKv/+qn8dwPfhg//D0fwE/+01/A1379n3yov/U//ut/w9/84F/Bdzz3LP7Zz/w8/Ju0rXjUvGUqgucBDoSJ2JNn3GZMk8eueOzAA3Z44JZM++565E5btgh911o9zP/qR7tpa4XgWShGbc0o0cFFQjeOfNOSzVwWAUQnpV9zAU/5Nd7heDG/KwFHPuCsHK50KeQWa8p9sScNQDqPCLnADRN0gqcLQQRgCQWhW3r95Yx8scN4d8Jwj03td+f9JSuIF8uEV/OEiQq+MJ3hC/FCrCBWWK/fhuvHz+Data8ClYTd8CVc7F5CnM5QKCHnHUARHc3iKCCbDccbk1HEHu8cSuFgGpBqi3XfVBPqgKQMnsB6XriyQAPzljIiwO2n8PBuBR9WtdKANy+cZVE/t3aapX4cfL/J4DXNtOaSpFWh1KBHlJFkAQupbHKQRR9JhROaFhEcqjHT9/csaGoIrxnFve9dXtJJlYubxWDeiLEw531onk+WgVE7FMoIvsd6fQvr9Tu41as7hj96F9LRMU/3jhE03cNw/r8R4/15UeZX8H6Frr8Bv34a8ega0noNnwtcKeinkavWh9uYprsYp1NkaQXjGoi26urhWGTpiWqiYUeEnYi/pWZMIa2eXIbhRQhj4/pZ3HmteKwLtYW3355IO00OcXLoxgxU/8+JB5+knYijE459h6fDCk+HguAIUwq44zzuq8BRBR/xDy4cG1qP4BRV/PFc3X9RQDnCBQeaEtwwwnnP1YBywJQLt3zvcvX7Gs49zu6tcLbtEbPHRQoyDI4XdS9lTQrtMBF7sbvuBDeuvateYwpRRowXmKb7IJpAYA+6Xp7TvLWQQ5JFFQovQAIciicMtGyhrllz4k3cQKkKyOwPHpFI3wMZk4MIO5wU0uqjGh+k8mA/KeTd5SRRm/E+FAtytZIhEHgSui6YOuh0YFSxayVCsdJ6BOv7GcDCn6tNFrWeZK0ArHHCAZJ8K6ASpVuCEyBZFljtBPCrYGsJThp13RFCOMb6+I/Nbd4+IAwXCAOA6RTj8CXxHN+i667xR3+TN3Grp5CarLdPkTcyw8tIecvJorSrsephCYRFIlJhUT2Lv5/DjghR/P3GFC51FdXjbGyh2q6i9vNVYBH4ZO0XawcVgAERejIwTkCaeNBLzIMI7jukeFHbH0+6a3iH6/C2a9wGf5ECQlq+RxStCikZyOIL1IrCnAR3cKEgT5e9l7nql5AGXWeAWz6lAlh9P+9Ip9AdyvhC2uGVtEOkglfTDq/mCVmmePv+BNfWN7HqrwNATRbzwp7vZir+Okmc9I3ntvrralWwCvjafZMd2z3UzW1zOiZwbDorERkF28z+4DqobqKCgXiILF/f3J7udbPSxAcAixjB/81xwTtfJ8tzGzvqhj83a4ddidhKXPCFF9Q6CDOoxdSeMNzOT9BzoF6F7et/aKq5DsMD0FQ9z/GDsFxDEKTaFKiiIyd9BkleTvD+vnj08bWs1T0q6rQdRtoW2nXH6Ne34I7eibI6qkJNGm+zkCSbPX5/csWP705Qjp6qrZyuFARZR2Bk24kpnr4pa4hcRtnQZonHy1WI7jMiMnbEA0K1FXclrfN6/glUh98qWnASPNB3HCNUBD7q2fNT/YGPVnI9a3xQMXgCujGKP/s9TNM9jg1lQEeEt4U13u4IxzcyXACunSeE3arGL2CuBm4rgNtqv1rl7Hn4WI6z2MPFJ80QzcljN3a1O+gsdTiXWHBOhJdoxKuZEy338oiX4xanmX1AJwd4t0G/Oqnt3m1ilWP9hF7ide88ViLseDismiGy3jn0fk6Ut777gBaMAFkE0n1xdEcsVKtf8TazMHU/T40vNNUB05o09rWEU5JDTWJo9q29vHBsk8cEQioRUfYJACHkjE6eswPbhG0aYbi1wFBhUddDwblqI9E+/+W5mIditraHwYnfLGkFMkTgme2prkLF4JR2AO6gE1HXyyDY2lEIwLsOrlvXIZLT+PIyQdzf4M+lbVwTQC7LnroZOumkxRwAfMfDZkubUJ5OkcbbSG8iSTTF+/DeczK6TNCCpoBlQrktTIIHzqnHrnispw5DnterbPsR2GaiDNxZmQuAsNhvzEkiVBH4eO2rL/BuKoiZNYhdBIatw/H9c3QXZxiHL2GcTlFoQE/ADdlPXLuR4T0wjRmri+XrGQ6KwFXWk8/dpe8X4urfQWwgJnK4n7lTcCLCDhl3SsL9EjFRwVmZ8Erc4VRiAyddHQ+QDrz3XvlVnSOS01AFbYC7a47ARRXOOay8x8rNSaH9xMnGz37bOj9gOVuExdBAqINXW6s57WDQ2HA7DTiXLqdabAbM9lGO/29ODtXAwf/oo8uXG2MJJN2zs+SNc4roUqwC8cYHXMs8U0ljwVlYyUwVh2PXsS+6Pl9yCMXV5NAK8+yEtlsA2BOB9T0h8UVjSO/EIkTWFO36w0nFsAN3eJJjL3ddBwHHMtRtzckg8f2en34Sv/A5oVxFr3gu1/EpzyPpjuH9Bt36FieKABZ488hdM7XocssJqNWa9/S9xBMZJNmNIzA9vH+44r3Hr/7jX8JHP/438CPf+zx+4lM/h/f+6T/1hv7Gf/nNz+HvfORjeP6vfQz/6Mc/8aaP6SvBW0YIVvQNHYvn9qTsJRs1V01x6xF78rTm7Iu/sycE8+e0bOuUQMwi8WzWXgqARPCRqs9f21bHCx32vwvO4cQHHEur1VG52kd2f+s7D4Jy9V9dtAEZfkVAGNEOd0BoQl/OKLsdyjCBckE8TxjuQbz+PC52He5Nyw3e3cIZvKFk3M0jogtYr2+h746wWd/C8fF7sFq/E0QJ43QPOe0Q05kIIAkdzRV/c0Uw4EUMroJ+rXyl2g4fnUdAXkzc1YFpY2FxZVdyFY4iAJKNG4ufHYJf1c2b92xfoZu3Vvz1zdcOQb6vi55CGaFMKNKeUIgHAZZqd1BQKEoGs4BcQdSWMHBGkAUwqguK9h1wSPjl80aXfuZBkDSeAEDwfa3a5coV2SZQrn7A7QYmdCfo1rfYf0eqe3PfodsBlAdM0x1M0z1ZxLHI7HXCb7dGWq856QLwDS1GbueUQSc57ZDLVCtx9qv1vhzUrgEAg0xhB3gBALBIoIb3AKqlxaH4cIg66EUqeXQDhzL7PmvbNxVuaZ1bXOb2Ts1yr1zAiQs47jh7f5RC3djMwuBMK+60/63VPiziFK7wiYSQCb4pG6RMyJO8p+Pc8l0KT/u+2HW4N/aI5HAuVT7s+0m4V0bcSQNOc0QEgfwKx9fehRvXvxbOdY0H9NA8zwmBSl0iqfjB+qzENOJrQq9z9a7TiuAodiuRfI2bBYSLEusQl7GwfY0OgKpVfq6XzVqA8z1vTFT4beLCvvBbJ902sUFbEokyAuWDsYB95YpMN4+1YpirzMRTGOxPVjzQugxcnlzfvO6N8Nt+T7sD2iq/y4kisYwpGXA8PC6XWMV7TQwtfqOJC2Wv0s2HDbC+ibK+PlvG5JFbFOO5DITcIuWhbghDdwwnvn5s1yTXX2YP4ZS31S8wl0laMh++X2BvWb5AN3G9LHon4uqWebH8eiLtXMlTP5e4oB/18Qotugdk4DbvAWSeQJEPfu65DpE8cg6bDZ//1UXBocGj9e/utQEWSRqV4tD1nPgNA8eE9lgAyNAnGfqSl9O+Y56r/jQpdKdE3M4D7uYRU8k4zRHFr7DZPI0urBHCBn13jL6/jlIyUrrAKPcfT7yo1HkBAGrVPH8++6Pvv26QilhdLywrfZidWFmd5csVwPOQSE4aq6ijXqUAmtgwxwJdQ+j31fscmK8V/TfngRNFJQJUakGAWmBMSMgk3QOy5ilAFcG11XW/s+jga94Iwvrf+8KwJoroCrsIPnhpcS0JuSQ4F+FcRnYBLm3hfa5+4ryxW8tzvai+tfo9/VAvv7I6Ql6vOVYAVdzhDqulvZQLG+S+R16tefBkKYt1RM5b5Dwg5Yff0FHJIO9q0n5xPonq2lMHBO2IBxAClyuC69+khH2ri9ru7fbig3QJ8BrCwTtg8lT3GTpsNsS2yzCyIE9c8bWR/US3WYq+s63S/NiH2F9DaKxlO7RZAC7SebmbOvYALjxQ87Q4nMr77JQy7uaIO2moQvDdPGGUBGwIG6xWN7Fe3YRzATkPmOJ5s3bO6Ak4VrFnLzHSdtZplZ9v/22rJsFWMEHEO/1vFTwmsHi3pVgrFM8z7ymSXCvZsbi76ApoOwKa/cahWMH/Xk4gX0oSlYyCiBFsR+EB5ByRPFt/dHBiU9Ghd/w3WASf56sMUi19yB7jssWUCMHgjipdi8l4nFrtp1y1Mi+SQOE13sSzMAB0HeAyVwTPg97EklAHwaYLxHgu+4f1orPIhQ0PU/OBh9NJp4x2GfAarqt/v3i2fizeccGJPEbbZfBGYY90QskTQHNX6+GEMluJTCTe84UHpmlStnaIOtek8C8zD5edrSA4PniOIYm/zkIw1W7kMI7SJXEfOQ3wxN0nx77HkS9YXeNK/+4eLapDQ/Mi+70hs3wO2uIaKT6Rr8Wi1pG+VgCfY/YD34HtobQC+H6ecDePuJBuAAdOJvb9SV1/anGWXh+qEDgAPXgddE38wXvna1II4DjYemzP3TP7c6Wo7gG1KrZd1baVwRG5dgcMlPdig4q7om00+9dDXUTtumKfQqkmiEBsk8VjzLloJpcEIsLkC7omORMlMZQdccck5tkCanMR4OochdlWail671vI1PMl5yc4sZZw8j2SfZkkjRYQSadXmmOglzhQT1BzHiixCFzbcLhgCiVxcrnxw/e05gHn/QmovzbbvySZbSM/rzaXRGxToyIwfKjrCJ8ivhw45/ALP/lJPPX0Lfyt5z+Kj//MJ/Fnvut9r+t3/92/+gx+6od/FD/3sz+L7//+7/+yHM9XgreMENwO0Mluzm7n4uTCvnpyspPMW682JX4ZgFfdcqHWLtLqxSNBOBMv1FzmSiGXl1vH6r0qfl4rz+0KRzK9NxwIDGp50T9gE1ry7OlVdPoBClxIKH6A0+xoIwSXKS5aPuOWMO4ChiEgZm3r8DiXNo3TknA7D7gdB4yUcVESfHeMVX+CEDZcZZ1HpHgPpYxI6ZxFBNJaE6334TyXVqVVj5yS2RNLNy5SGRxE7NE2BD0NbUt0bCtbaB7sso+Kt05ei0L+0vaZKINcQPCrWkF76O/ogK/6OyL8HEJkXkjRCAD2PXaymCggaQ05PMiIDny+/7X6qu9lImdxu6vCFskmVI+d/1XPTo8uHAEAQphbs5y2U5SMMA7wKSIMF4hSJaQePVxtvIZ6AAKAzwW5C/BZgu60A/KInC6QZTgaUa7Pv80wPgz7m+MMbidUH0X2Db9iOXvF42pc8HuxgePDst2bE0ZzpwAwi8BqgegLLXxPNUFEIoisfcARPNYd36BWi03Ng31g932ftJIvRz4ujRW+sYTQ6l8AdeK3CsHDEDgeFJ4wfEqEOzLcYaKCu2lksVWsIDge9I0AMiGmi1kIUV/k9hhFzOElEyE5yYrTLATNHlpgMbiKPqURx6l6AHObnnoB8zl7I+8qkrZpjQDzJm6uC22F0Tbhp7Hgkn+ebBLZXaDUOFBkkVfA9675MR+cEGmnER/qGiDMorB+qOepg+eq6Cp6+b2/PXuDHkKTSU5a/X1YLxd1eQQiT/Yt6aL6dflmYARE5FF8lBauFBHLMHcoiHimVRIPi27elsnIZv3QJIx08nosPFCFNxN+3sARt3RyK7VbVPLU+BCa+NC0e+8nkHNhx5aYJFFUPU9TUwVd0EEGzALo+stiD9xyEa+0HsEqArOowxt19fZT9CVnmy2PafTgYTlcBXwhVdL3s8cpzVYQt/OIe2nEaRoRQRhB3B0S1nWDl0sETacolBHTjrdizUtamiSvlzukl42G+nTW61/Ii7ggA2YbEVQtJC5KZOFXhGBu8RZRVO+dej3AVWEHWFb2tcmhlv1r5UHXD/8hz/c9B4A8sisgDoVIJIPrgCqEpUYI1g2wcsirsq0Ubv2B1UJGE0j7VxSvz4qs1cqlWHDoOamf+BwDs5yrThLDLBJrdSBKFt+/XCuISxlrnFgMknR7A5V0AFQea1dNliTbw7OMLDVOuMvribkDcbYf0GFLLJwVEY8Ov/Z9aNYRod1bYOH9WR+TtOPQITR+yLlwkpEHHnGlYe8LgnjJadWvJkvg5sQQ0CaM9b/nr3tPSMmDV+j8O+r/W8R3Utu/J3LYNWuDCQX3Zc+gQ5vPcpT3cscShdqLlAhgtovKZYQOYgaWxSKJSu0EAPwsPjhUm4MsAgoLcaWKtfoaKzsRqdQK4qxMOBcrCB4ElxGb2FBl5losEBoheGkzN9vOzXsuXX/rcwIg62Y/349RAB/Yk5Z4fcBhnWQIGSFJx2QGzd0CNFcE6yDaXGaroKWd2LLgRgUu7SJQCxmNGUn2Wpegwvs3Sjxo0fegveIZ50KdQeIcewWXPPJ9f88XeFGMoyKwWD0s273l/V+SVI9erix0pSAUXkeQDFXM+eG7BUqJ8N7Jeo4urSO0wKme43Y9AbewGwBmWx8dmutjREgZU+kP7DXEMiYsh8NFyJDZpB8ARScJeO5ELpSqVQh7aBPaJr0s1a8AV8JumqRxcSz2tpvkvF9somuk7LAr7AeuliunlGuxyIXEgvuShD3PEQMVLtaS/akKo3VwcdNNU8SK0QELX+bSxjW59q/yBm+9ficiTGIb1Yqf+hqdYx4+v6OC23nAaeJjv5DCkmVs0Him139zDLKWaGOFb5JE+zjyrBFJ3PXQ+3hBcQWJwJ1LhdA1z3WkjM55HPsOGTR3TjhfRWG20PLIpLMGlutF3SPXmSrSTa/dAxG5dkhol1G1pMO8nmhp5xOVEpHzCJ8uZmG4BIA6kOvgsQGcZJCawZAklfN8OjuW3GVgM3Qgq9owafJV44rv4MucjFYRmB87w5UMn5bJ2jfLJ//6x/GtX/v1+MvPP4+P/fiP4buf/0sP/PlP/9I/wc//xN/Hv/iVX8F3f/d3f1mP5VHzlhCCq2cXcfv7DtwquR47jIknV9eW2uZmpp48zvNGqO/aqj5doC1bOoMHjlYem76mK2rln073TYn9P/vdBD8NiGWADsfhioUdCo3wRLgejvB21+HGZkApDiexk2zLHLA4MM2b0uWibRmUU3LAFnAjLwC7IcH3Cf5A+j9Hql5/POGzw+n5qlb9nRaHlyjjlcIDn16KW3x+vI9TyigO6LoTXD95BifH74FzHUoZMU73sBu+hFIiLnYvyY03V8GTMAcdByChHagE9GUersSteXMbZFsZpK+7LhV1c7jf5si/qcPSMgolOJIKYUAqYuZNna+LuCDtP6j/3VIHBui51GrfRtSbf9eDJPDzAKkCog4qS+k2LC0yw1cJHbIAXdzoZEnidNs6D9k4bIMRePMQTy8NWGCB5gh9f4Ig7Vzro3fDH38VV/mlCS5uEbYvQ1s4uaVrV59z8Os6DTysboIaH54wjQgXd1B2L6HkEcPuDxHjfajHMiHN/khX1h28NvzekYUC8bkNcDzUkArOtYUOc3vQ1JzzIqIsMCeKtJ1TE0abnlu2ODbw451sPDbiAxoz37h3k4o0LPKkwYFGoBunemMjWUjnPKAnwtp5vK1b4+3O4foxL4Y2wwohO0RkgILcpIFIDii+Dr+bq4DRxAonQg4hqHjk500iwHHrUMtnIYezqcOr6g8Orvr7P/Ecr8QdJsrcTulXONqr+tNkwxRPMYx3keI5CMTCFggavlgI5c2OA5Ap102MxoFVEwtaT919WvG3gD1yR2k9W27oJOpckegBZBPTiMG8aSsA4mIR117vKgLvW0Y4TWLpw1KRRVNGrukxlmo95brR0Nipz9TvXf2XxPTma7T/0QjAujDVCkYe3NXVGKhCjpP2bn4Oc/VjCCt04Rq62sJ5grB+uk78dWkCTfcQhy8hpwuod6C2hIVwDV3/FPzm6dr26WPE+oI3a253F9PwMsbpDnIeEOOFvG8yro6Pr40uhvU+U8+dboCRMZDjOFE6bGTStQ7h0ooz3cCFmJDWfV1HbFYs8pxsgJM1b+COVryGaFs6Y+bNG4Ba7TdM3PpNI6CDoEqZENMWJe9wDPaMfUd3hKf7hM0Jv+82twvC2NVNEa8buJLZY968tRXBKWk1D//bjaXO4tHYAaAZ+sQVwEMOLP5CfTUTvpgHvJS2SFRwJw2NFUSH4NdYrW+i72/Au4CYzrEbXqlVf2x3keYCEECGr8iG2Tn0JIPiZEr3QgBxHr3LVfzY0tJKJZZZ0NBN3FAyssSEkQqixiEE7hQQgecqmxi+Fg5X+gFtcjUvN0FtTJAuJRTUKvhSvBy1TuPOGCQx6OS11OpgJ58HrZZ2rn6vfU/zOdV/sfheFhG8RX/bEVBc5mS9TCUveeJKYFcWib5SMpwbEWOqlf7t4DbnOnQyX8D5jVTlbODShFAy3HgfKZ4ixvvIecvJZL9G6G9wkml1UzoG5kEyfjwDDewrOo1fmq1j3kxFMGU4ctLy7RabbO9craCOhfcb5yjcfksek3M40p+FAyEjp4ET5el8cfL7DjhazW3fJxteO2i3wNL/ky1jzgdgiBwfru+2GNKF+AOfodCAp6Q67p3dGjePIvpjfl90XbuXOFwQw2sHmoWdPesYjCrYulr5l8nV9u9TqZA+J54dcjsPtervThpwRlm8dD13l/VLKwi2iSrIZarxgO+DfHx1dojciLU6O4OHKXVNgQg8wAMWPYtkrsxCPc1zSCYq7OUqXYRjYd/Pi5IudRVWuzCZfbKo+tXrfiECNx0Ce1/DfJiL69H5TtYYfF6cdygl8DvOsW3RJHYEhzyF+8YywztumV83FcFqp6PnYX/WgCbLtJimXUMVmr9XlzA1PhSUPCBOHqXwuqjvrqGjjFL66ifuac1JoswCbk5s08D7Yr7n65qiX91Cv3knt3BrNf10yinBeI4ie2o+r1xd6LvjOa4UafcG4MYzTCNb0E3Tw1tDxLSF954TVZi9gQ8lixIVxOIQQxYhDdhIpSzANjIbH3DkO5S4RZxu49ruFF3fgzJHEV/1B11H6P7Co+9mQThmwvnI+4yzHRDOC9xwB3l8FdN0DznvcCLi4Nv8CiebiP5EZ58UrtzVvZvzOCIWrb2TQedXCL9c4cyVwOozO/uB8/C3u9IdpNaNbKfAO93kuNBoJa/b/rWT81iL5gj8HtOuYj3vmjD2kGHs4K66y0khzAPn5blmx8K3dgfsqGCHXC1TzkqsnYUjzbEhEfEAegcZasl2DPMw9b24AFwqstjXG9qv7+8fiArP8ND7rVQI74iFYgfgPGfcyxPPGgDbYrSdE/s2MuwvHg52hWTi7ojcxISBMqKI4rFwRbTaTEUqmChX7SVBfceXxXiaoE15h2m6V6v5u+4YJQ/wYcMibRng6aQmjUgqgFs/8BCuAYE7lb1UA5euZ8/xyN2H7A08W8e4IB3KMpCOfKiJZBbCdocv/DfBs88+i3/9mc/gL3zPX8S9V2/jgz/8Vy8llYkIL3zyH+Jf/sIL+PXPfhbf8i3f8mU/jkfNYxWCa9WTXPA6MGRHBUNxPL1aslMPqp5zIvAcSZZMhWBgHtqgizTvuC1jtQjE+ZJH8GoX0Ul7Blc6SNt94eqeQFy2f+J7vN05HB/xG/xou67tOaAmcwtedKnIc1WBSRy9WEPwAi6MQOhp4QUGcLVPStzyPQwBhRy2U4c7Y7+wgvhiHnA7DxgKC8F3UbDZ/BH4sMa1zTtwcvLHsbn2DABg2H4Bu+F/YRjvoOQRMZ6h0FQnmmdAFoOHZQwWgOZWcQcgUFnYJahAvF8BN0/Gloq3A+eGJ0Jn1PrbwmIMC7WJNzp7wXr+XDdbs/ffvvhT//tAVbB3XX3adWPYHqW2gTS/fyizxseiu1bNLrpLNyAf1otj3q9eUpF7/21EfoXV6iY2mz+KbnUTzm/gr70T6eTtyKs1wjSiG+5g2r1YfXpiOqutnAFc7dOtbsH3J4C0dLmSESIQxgFleBXj7oucOBhfxTSdceVMbQ3mBStdkS19PbimZVDFkYgi/p8Z56QDA1D9orgCkCWzVsTT+FCFYKnkOVrxAq16+3UOm97haMViD6aCyWv6Y44NFB38WLhSoTQVpCWCkLBxPDDoKb/G20LB8Y2MUoCju7IZIkJ0WsnCN27vIIuzpdjTev+V4rlVT+53GhPU+0+Fof1Kn3IgKfRy2uH3xzPcKxHZAT4c4frJM7hx/U8ghDUP1CgTD3agjCmesQVIrcjYEyzb5Dlkk0HzgLUAFi1m0WP+HrAUOlqBg4BmWKQ+npMoMrdqXeXOrUPQiEod0Ojc1a18rehzKB6oGOycBzlpP27jCIgrgZxU4EgVQBsrPNEDTACWEikBKItzO7euAhBLjH7hedrGPb5nAUDkij7d86oYLF6fvjvhqt7VTW7hlM6Tks4x7P5wUYnDbeQBIazZz0+sZgAWeLrdlisEx1cxTvfY404GpRHNotjDoj6Ih9JMurAN4DixQ8cVLuSgNeA85MWDckQp0hkRV8gIdfjT0Wq5gVt1Dsdrj5MNn8OYiONDFYK5miclvi+7CKl8SiglcwUFFdwIa1wPK7wzrHFjE7G+zre0dS+V91IRfIh5IBQWA128J8QMhKhVZM1QOXKI2WPIXsRwrvq7Q4Wr/oiHwb0Yz3Fb2r8vqMD3N3Dj2rsQwpG8b1gQIMqIiQd65XRR79jL4bF6/xYhWKrkNTlYwL6lUyN4ROfRk1baLT2xx5JrtUqSTc1EHDHYCoLb1CH/et81Q00ut3cf3sBdFoH58/LA7gC1rCLSv9/N13rdCBJI4kEWMciBqhjkKdc2+dpyvBcXD60lVNSs62jS6Mh4aAIpA3BsaeN6OBF79itdWwsZtYpoCd0JwuZdoPWNuYVTvPzKdE+E4DMZNnsN3ea4+oeH/qmaYCrBo48RGE8Rhy/xIMnxVUxiPZTLdOmxXy+8k9AhQq6uIxbnTWLEUDLOvVRaOW63VRuS3nm+h5WJB56VBIjQqvNIjnpOEB31Dkf9nCSq57NQ/ZgSYYicKMqTg4tb5HTBljlpx/6f3Qo3wgpvdz2uHY3obmxApaDreQOuiazsZruUturPu/ner63s9Vj054mr/gbpDOJ9wmwRdb9EfDFe1FkBu5Kxc+AkgOvgwwqr/oS7R1zAFO9jmu7X2M5iQap7BqUmK6jAF7B9C7hgpnN+rgLUfZjjq3vlPKIrNW4MIvzqa7grCUPTMVRnB2DupAt+9cCkULvOBg7vG+b/bu+tHiiR9x3EiZUC3pPw9zt4P/slt/GggJO0kwhBnoAu58WshM55rMrcPdB6i+v7+NDMAUAHSV6eNUDNzwbwfZhAKIhAZv9WrQAGAAobBCoIYbVIjrGNyzJhU21jAhegYHMLZXXEYs14HyWeAzp4vWn3DgB7iMt+QysDgwjBJANqx/EOYhrwsPCAcB6eqTNe5vkujO43eM1ZRCTjAdUnYpcAEHcBO+1wzTxfZbiNrr8GpJu1Q1kHzGoh2qZvOpLlQadEOB8Iu0jYDqw9lOke4ngbU7wPoohjv8L1sMJN32GznuA3fH/zfodYHM7ltVlJDKtzBQoQ4RE0dkjlr4rBk4jG6qnL64KIHbHNyitph3tpxCQdxOco8OEIzvfYhA36/rgmiLPEyqRWmiVx0ZzYgRFytXXRc00iynoHeGJLr5oMJ0J2BV4sDKLoQ5D1e5bXBRD/X0q4XyYMhUXO+3nuDohUMIJYH/DczdCF1cJqso0Hh/bcy7hwuWqen1OoncatlWgOXEWLKhCXhX1ELhGJdMdT0OWMPse6JjjyAce+5wIax8Pm2DZGYtfePU4HzAKHk+laeKdCvHYqAJC40RSd1O65ItXAA6Z4WoXgUib0XYIvIxeI0DGoZPiwlmKzi1pIorZSoWOh2HfHQH88D6JPkSvhZVAlidWi2lU5x4mi0vWgEBDSxB7l46sobyI2PIhv+7Zvw3/897+JP/sd78PdV17Bx378b9fhbzln/MOP/1187t/8W3zuN/8DvuEbvuGRHMOj5i1REQygbtJqBW0T0B7QlFdpB8HVz93ya961Pj1uMQwGQPUT1rZepz3gmIUBbX/XbCL7OnGLZ8mXfbtKfT7yGA/YAJcs98BmAecKAdGBqhA8B/gsU35jZi9l9vfhITmTCOuTLHh1kJtzHfr+GCFs0HUn6LobbOSPJpslbXrUVLW1XK5mrTW7tQFNb64Z2hY132RrSxXmRcl+5duDqFW5KLUqQY/ktX63YCn21L+5J/pcagdvn3HTHjIf07z9hQv8dx6gdhxsM/Ga5V16H/NjLsWdhdB54KbkfFfFHQrr6gmsPjq8CdlCJ9ovK6D593nQWmiqeLhtg8ogvzdK66TK97MtxJvlSp9tIo4LrMBJ0mVeXLTn6CqWvl1LX2COD/NHfdy27bIQXAZ7oFLTjiJJkE4qkXgwShHBljP0V7U87aPWrSrsejcPevFNLJh9/6TaR4ZZxOLlY17kTY2IMspiKTmIeLLGqr/BizqpAJmmu3IuZfFSuJLzta6z9jrWOlmuTmODlfpDKvJjuZHRxWEWWwS1g9DH5Gvn9b/HVAye//vqa1t//kFozKnX/2KzyJVAGjt1UroeLYFbMa/IEcnPNJ/Xp+nmf928dWlj8VWe6Pr8C2XpplDRWL35NiwCVx8/+dsl1xbOlLa1mtj70PxuV4Vjl3ONEU7Ez+qfWhNlh61z3ghtFc/yzM8VENmVxhe48dV8jUdv1wRLTz/XrBnYA5p/Zo4NAKp1jCvEm159L0lSZOXZA2/lPIKnQ8XsAJYJvkM2McDhKuH6M3tVP5Ns+lT82UGnznNV3VhynahdnMMqbLDqbywGkurzA+QeJI30WvHeQuD3LgsNbTxg0TiB0EkgiSiLDbhWtAHzQDSdEaGtunq35e4ABx38tPD8PFDh92a4Km5cEosgaxLdYMp730l1noovJJYyfL7kRDmt1JvF36ui1b6wszwG1NeGnD4C1Q0dmnXT5eeZ6+sMzK+9cx3QceU/Spbuz4za/im+n203Rh0u5S9vNXSj165BtGLq4ZGTqMf+gOt9tod40F8jTgLQsu20egO7dh3BIk87fFrXEO36gQo4UdYIBR6ogwRXcPAB1Q6utYaoRSYHnldrF1GfIy2/N9U1AWr7t7YRTygYiKvnNBZEEJzr0Umbf/Ad7x3ECsjLrI3ZcqTUamxgfo/WhDH4/RwgVaxOyzpctf9q7U+yI3iUmuSPZRYxtJItis9nIk15aCzQCuA2SerrOntf9FEeJP7uo3um9ncJ4LVgE4eqGAwAjuDILWKB2ktlIlBdYJVZoJTzud8B03bItnGgCr9XiMD1eOtnzawBj8VrWohnkKg9BD+9eTbGfC71vLJVFHUrlL5H0MVsnaeRsL/Gcm7eb6g1lSvzY5V6HG/CNobKwXXjwXOr77/GgiO7y1oEW0xRFT71mFsu+wTPIjCAakmZ69qh1HOk60jtnAngeDBbRer6Zn5dW8s87Siqz6upCM7En0+isbSxoIqnJWOiLMlYAnfBrBG6DUJYo+uO0UklqHMepUzLJCOVWgzRrv2u9MUXsaBdA+jrsP8r/Lrw5xM4aTWUXPc2g1jDaAVwdhB7xTlB5MM8D2C/+t9L94ByVRzwze8DXJVNFBYJTe+8zCXi+5ujAkdzR0XR6ji+OSC7AkdqBcX2mp1U9Pbw8PI+U0u9/T232sToOVXRF1BNal5nLbqMXlNBQe2KyiUieKDIvczRfL1yDEm8fyj71zx3FDo/6wwUlue2FYFb3IEENQo/zpvpJHot3vve9+I//dZv41vf9+dw74d+BD/6D34KVAh/74d+BL//3/8n/vNv/Q7e8573PLLHf9Q8FiFYF7i5FCSXkVxGzBkTJZDzGMhjSx4bnzBmwi57jCVhygmpZJRSkNIATBdIY0YZAuKuYGoWZV4WaRSAAR47Ckjiz5M6hxTYrH2IBbtdxrArmDJh2hakwQFThJ+2oLhFSiNyjvKRUEpBocK+QTljlxPOIy+etzlhzAkxZxQ4TD5hQMLOeZADNj7hKCWUqC15S6sIv1iAEwLYD9TJYpD2hOAhEYZE7PuXCbsMDCIEj5QxybFkFOTCpu45JwAJOU9IaYSXkvr5efKNv5QilXR8PPPG68Brqss9mjch8/dYriB3uSW6FYJbSwhaPJbT/zVyiJNMVSOEgBbia1v55+TrrXC8FILnigU+nqurgw+xWOjJ7z3IB5PFLKrHTXBwslgnScU5R81icv5bl4Xg9nEiUpqQ0gAXd0AhIGyRph7JTXDTAMQdUhqR0iQVL/zeLpThXURKI0LcAcTZbvIeWT1/4hYlDfJe4d+t7xUUXsw6/iDxzryqMvrweZxjA8DvGV1GwBFizhh9wiAtQUVughngyhA5lpwTco6IcYs0nCPu5GYbAC8TfH0CBnJYFw9MHsED1HvQirOuO40NYxMbdkAePWgkpHjB5yJPzXXDcSGBr71t9jiLGVQcLnLCmDlmeOcwImGHgK0j9EToU4JPCSlSFZSm5EHkFq9xawehC0oVgpMIwWMi7DJhm3kAzA7gGFoSb/JK5niAAgcnVYv82nvPbV0p6eurcY8r415PwkV/QK/ZDO7G0IU4wYGuaIGmZvHdxoVqQwH+O/zn5Dpyns+RoxoHDl3/r4e58mWOCVVAqT9zhYjSVP7o3yBqayS1ivgBj99+7vS/3fz/ixg8x0GOIwkOgWMI5hhYzwUBRB7OcfokhBE+7eAQqspXXAblAIpbmfTM7wOORxmFxGnXj0hxB4oXKNTPPl0iBuc0NPfM+Z4CKiC9vt9MbJjTCnCOr7nkMiLxEI35+gIisSebXgNJjielAX66QOoJaVjVdQQ6YITDUBxKcMDk4aNHlwPbxiTCbswYIlcFDxcZ05aQdkCKDmkEYtzJuZtqbEglI8JjyAkXKeFsyqACXKSEIfMaJziHAQlbImx8QnBASQk5ZHTg2JCSw5R0AvhlSrPRywRsM2EoHpG4oWCgjFH8dWPmuJkLV80X55AzxwOI+2AhGZ5WcvN6zn5/7b25Cr9u/l6WBAb/nNzPpVUfjsQv7rIQnEQIbtscs2xq2vUIv78Jzkm3gMQFjQXUiGRczd9W+sz32cvvubkieNkt8OD1wqJrSNcCVERUbJIiTZzUJI+2KT+MEKzxcv68iZuuwLmMLFZf3qXFa9w+Z+ca73kKIOqQ0gCKW7aNKYX9PmWQJNU1QZT2cllbhgGeCM7tgLhFmjqU4BHiBZysQ9gfOC7eV3wcbzw26O+Wug5ppK7m81j4/jwS34cG57CT98Ag98dSiiS0ElIakMdzpB0hEmHqgdEDvndw0WGVPdbUITVCcJH1z3CRMG4z4haII5AGz+sSiauZfVwkNmQMsp+4PyYgF5xH3mOMOYk9lsOWHDaZ12Q9FXRUEGRdUCuCaa5wpkYIHgr/DRWCayxAwbQfC4jXCDmz0QmvSyO8k4KCnJAllqqoAdkb6XtU34uAiFZuts6Y79/8E0EDCuqB1++xEJw5zmtcKPLRJpHq3wanAJs1NJGbrzm57knXDtCv7wvBh9+H7Tp82QpOB+NC/f4VsaAQnx9+n3IsyPJcNE7uVwRfJQRzp1m5Ughuk+vzXouvewcgu1z3iUQO2U9IaRKpHshpqoPx+ByFZq3B6wLELbLLoDgCcQtK7CXM3UEjcppYQHIjQhrg/BagPAvCIvpQ2s3XStbCrIeJDZnvObK4bs81gU85OYfkeBXlJSnH+42ALTlZR/DeegTrFqxHTEhpx5X+I+83Js+WMENw2LmA3DlQ7+FjAEn3znaXsTuPGC8yxkiIOyBNEb7GU9YbEvi6HHLCeZLYAOA85qo5AMDggC05dMgIjuBkb6ED5WLxSGUWgiPxGidjuS6YKGMqTSxo1galZCBnAAnZcyxwjuo+gY95b80nd+yil3Vzr2vPe3BNxTCA2KzxAvHzaeO4xjeNXbGwBcIiNrRxwRWOCw6A45i20Ab2Y8ViD3HFmr++79uuorKwm9RBrW18mPcKMq+o6BqDPwrNa3/dU0JeU31vFufqHrjlkhDc9A5p7NQZAxor2jWWni/Cct3AwTPBu1R1CmCCcxOHasdrBQILvVQystzj5+7M+fueAtBtkScpQIk70SeGWoTS4sKAErcocV33KIg72adIB8EbiA1vhK/5mq/B737ut/Gt3/Hn8WMf+kGklDANA373t34Ht27deiSP+ZXC0aM6aw/gD/7gD/DMM898pR/WMIzHwBe+8AV89Vd/9ev6WYsNhvH/DxYbDMM4hMUGwzAOYbHBMIxDvJHY8DCcnZ3hu97/vQhdwGf++a/i+Pj4kT3WV4rHIgSXUvDFL34R169fx2tNVDcM4/9NiAhnZ2d497vfXT11XguLDYbx5GOxwTCMQ1hsMAzjEBYbDMM4xMPEBoN5LEKwYRiGYRiGYRiGYRiGYRiG8ZXDZHPDMAzDMAzDMAzDMAzDMIwnHBOCDcMwDMMwDMMwDMMwDMMwnnBMCDYMwzAMwzAMwzAMwzAMw3jCMSHYMAzDMAzDMAzDMAzDMAzjCceEYMMwDMMwDMMwDMMwDMMwjCccE4INwzAMwzAMwzAMwzAMwzCecEwINh4ZL7zwAm7duoVxHBdff/bZZ/GhD33oMR2VYRiPG4sNhmEcwmKDYRiHsNhgGMYhLDYYxsNhQrDxyHj/+9+PnDM+/elP16+9/PLL+LVf+zV85CMfeYxHZhjG48Rig2EYh7DYYBjGISw2GIZxCIsNhvFwmBBsPDKOjo7wwQ9+EL/4i79Yv/bLv/zLeM973oNv//Zvf3wHZhjGY8Vig2EYh7DYYBjGISw2GIZxCIsNhvFwmBBsPFJ+4Ad+AJ/97Gfx4osvAgA+9alP4cMf/jCcc4/5yAzDeJxYbDAM4xAWGwzDOITFBsMwDmGxwTDeOI6I6HEfhPFk803f9E147rnn8J3f+Z345m/+Znz+85/HM88887gPyzCMx4zFBsMwDmGxwTCMQ1hsMAzjEBYbDOON0T3uAzCefD760Y/ip3/6p/Hiiy/ife97nwVlwzAAWGwwDOMwFhsMwziExQbDMA5hscEw3hhWEWw8ck5PT/Hud78bKSW88MIL+MAHPvC4D8kwjLcAFhsMwziExQbDMA5hscEwjENYbDCMN4Z5BBuPnJs3b+L7vu/7cHJygmefffZxH45hGG8RLDYYhnEIiw2GYRzCYoNhGIew2GAYbwwTgo2vCC+++CKef/55rNfrx30ohmG8hbDYYBjGISw2GIZxCIsNhmEcwmKDYbx+zBrCeKTcvXsXv/Ebv4HnnnsOv/d7v4ev+7qve9yHZBjGWwCLDYZhHMJig2EYh7DYYBjGISw2GMYbx4bFGY+Ub/zGb8Tdu3fxiU98woKyYRgViw2GYRzCYoNhGIew2GAYxiEsNhjGG8cqgg3DMAzDMAzDMAzDMAzDMJ5wzCPYMAzDMAzDMAzDMAzDMAzjCceEYMMwDMMwDMMwDMMwDMMwjCccE4INwzAMwzAMwzAMwzAMwzCecEwINgzDMAzDMAzDMAzDMAzDeMIxIdgwDMMwDMMwDMMwDMMwDOMJx4RgwzAMwzAMwzAMwzAMwzCMJxwTgg3DMAzDMAzDMAzDMAzDMJ5wTAg2DMMwDMMwDMMwDMMwDMN4wjEh2DAMwzAMwzAMwzAMwzAM4wnn/wJneRqeOO7f6wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -496,8 +503,8 @@ ], "source": [ "idx = np.random.randint(0, Ntest)\n", - "plot_contour_trajectory(preds[idx], num_snapshots=5, T_start=4.5, dt=5.5/100)\n", - "plot_contour_trajectory(gt_solns[idx], num_snapshots=5, T_start=4.5, dt=5.5/100)" + "plot_contour_trajectory(preds[idx], num_snapshots=5, T_start=4.5, dt=5.5 / 100)\n", + "plot_contour_trajectory(gt_solns[idx], num_snapshots=5, T_start=4.5, dt=5.5 / 100)\n" ] } ], diff --git a/fno/data_gen/data_gen_Kolmogorov2d.py b/fno/data_gen/data_gen_Kolmogorov2d.py index fab31a0..a81aac8 100644 --- a/fno/data_gen/data_gen_Kolmogorov2d.py +++ b/fno/data_gen/data_gen_Kolmogorov2d.py @@ -7,9 +7,7 @@ # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -import os, sys - -import dill +import os import torch import torch.fft as fft @@ -20,11 +18,9 @@ from torch_cfd.finite_differences import * from torch_cfd.forcings import * -from tqdm import tqdm from data_utils import * -from solvers import * -import logging +from solvers import get_trajectory_imex from fno.pipeline import DATA_PATH, LOG_PATH @@ -69,7 +65,7 @@ def main(args): random_state = args.seed peak_wavenumber = args.peak_wavenumber # 4 diam = args.diam # "2 * torch.pi" default - diam = eval(diam) if isinstance(diam, str) else diam # + diam = eval(diam) if isinstance(diam, str) else diam # force_rerun = args.force_rerun logger = logging.getLogger() @@ -96,7 +92,7 @@ def main(args): if data_exist and not force_rerun: logger.info(f"File {filename} exists with current data as follows:") data = torch.load(data_filepath) - + for key, v in data.items(): if isinstance(v, torch.Tensor): logger.info(f"{key:<12} | {v.shape} | {v.dtype}") @@ -114,7 +110,9 @@ def main(args): device = torch.device("cuda:0" if cuda else "cpu") torch.set_default_dtype(torch.float64) - logger.info(f"Using device: {device} | save dtype: {dtype} | computge dtype: {torch.get_default_dtype()}") + logger.info( + f"Using device: {device} | save dtype: {dtype} | computge dtype: {torch.get_default_dtype()}" + ) grid = Grid(shape=(n, n), domain=((0, diam), (0, diam)), device=device) @@ -131,7 +129,7 @@ def main(args): drag=0.1, smooth=True, forcing_fn=forcing_fn, - solver=RK4CrankNicolsonStepper, + solver=RK4CrankNicolsonStepper(), ).to(device) num_batches = total_samples // batch_size @@ -183,7 +181,9 @@ def main(args): f"variable: {field} | shape: {value.shape} | dtype: {value.dtype}" ) if subsample > 1: - assert value.ndim == 4, f"Subsampling only works for (b, c, h, w) tensors, current shape: {value.shape}" + assert ( + value.ndim == 4 + ), f"Subsampling only works for (b, c, h, w) tensors, current shape: {value.shape}" value = F.interpolate(value, size=(ns, ns), mode="bilinear") result[field] = value diff --git a/fno/data_gen/data_gen_McWilliams2d.py b/fno/data_gen/data_gen_McWilliams2d.py index 38a8eb9..8247faa 100644 --- a/fno/data_gen/data_gen_McWilliams2d.py +++ b/fno/data_gen/data_gen_McWilliams2d.py @@ -7,9 +7,7 @@ # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -import os, sys - -import dill +import os import torch import torch.fft as fft @@ -20,10 +18,8 @@ from torch_cfd.finite_differences import * from torch_cfd.forcings import * -from tqdm import tqdm from data_utils import * -from solvers import * -import logging +from solvers import get_trajectory_imex from fno.pipeline import DATA_PATH, LOG_PATH @@ -117,7 +113,7 @@ def main(args): drag=0, smooth=True, forcing_fn=None, - solver=RK4CrankNicolsonStepper, + solver=RK4CrankNicolsonStepper(), ).to(device) num_batches = total_samples // batch_size diff --git a/fno/data_gen/data_gen_fno.py b/fno/data_gen/data_gen_fno.py index 83bf6d2..9c1b84b 100644 --- a/fno/data_gen/data_gen_fno.py +++ b/fno/data_gen/data_gen_fno.py @@ -17,13 +17,14 @@ import torch.nn.functional as F from grf import GRF2d -from solvers import * +from solvers import get_trajectory_imex from data_utils import * from torch_cfd.grids import * from torch_cfd.equations import * from torch_cfd.forcings import * from fno.pipeline import DATA_PATH, LOG_PATH + def main(args): """ Generate the original FNO data @@ -73,7 +74,7 @@ def main(args): f"Grid size {n} is larger than the maximum allowed {n_grid_max}" ) scale = args.scale - visc = args.visc if args.Re is None else 1/args.Re # 1e-3 + visc = args.visc if args.Re is None else 1 / args.Re # 1e-3 T = args.time # 50 T_warmup = args.time_warmup # 30 T_new = T - T_warmup @@ -88,7 +89,7 @@ def main(args): alpha = args.alpha # 2.5 tau = args.tau # 7 peak_wavenumber = args.peak_wavenumber - + dtype = torch.float64 if args.double else torch.float32 normalize = args.normalize filename = args.filename @@ -107,11 +108,11 @@ def main(args): dtype_str = "_fp64" if args.double else "" if filename is None: filename = ( - f"fnodata{extra}{dtype_str}_{ns}x{ns}_N{total_samples}" + f"fnodata{extra}{dtype_str}_{ns}x{ns}_N{total_samples}" + f"_v{visc:.0e}_T{int(T)}_steps{record_steps}_alpha{alpha:.1f}_tau{tau:.0f}.pt" ).replace("e-0", "e-") args.filename = filename - + filepath = args.filepath if args.filepath is not None else DATA_PATH for p in [filepath]: if not os.path.exists(p): @@ -123,7 +124,7 @@ def main(args): if data_exist and not force_rerun: logger.info(f"File {filename} exists with current data as follows:") data = torch.load(data_filepath) - + for key, v in data.items(): if isinstance(v, torch.Tensor): logger.info(f"{key:<12} | {v.shape} | {v.dtype}") @@ -141,13 +142,15 @@ def main(args): device = torch.device("cuda:0" if cuda else "cpu") torch.set_default_dtype(torch.float64) - logger.info(f"Using device: {device} | save dtype: {dtype} | computge dtype: {torch.get_default_dtype()}") + logger.info( + f"Using device: {device} | save dtype: {dtype} | computge dtype: {torch.get_default_dtype()}" + ) # Set up 2d GRF with covariance parameters # Parameters of covariance C = tau^0.5*(2*alpha-2)*(-Laplacian + tau^2 I)^(-alpha) # Note that we need alpha > d/2 (here d= 2) grid = Grid(shape=(n, n), domain=((0, diam), (0, diam)), device=device) - + forcing_fn = SinCosForcing( grid=grid, scale=scale, @@ -156,7 +159,7 @@ def main(args): vorticity=True, ) # Forcing function: 0.1*(sin(2pi(x+y)) + cos(2pi(x+y))) - + grf = GRF2d( n=n, alpha=alpha, @@ -165,14 +168,12 @@ def main(args): device=device, dtype=torch.float64, ) - + step_fn = IMEXStepper(order=2) ns2d = NavierStokes2DSpectral( viscosity=visc, grid=grid, smooth=True, forcing_fn=forcing_fn, - solver=IMEXStepper, - order=2, ).to(device) if os.path.exists(data_filepath) and not force_rerun: @@ -187,12 +188,16 @@ def main(args): num_batches = total_samples // batch_size for i, idx in enumerate(range(0, total_samples, batch_size)): logger.info(f"Generate trajectory for batch [{i+1}/{num_batches}]") - logger.info(f"random states: {args.seed + idx} to {args.seed + idx + batch_size-1}") + logger.info( + f"random states: {args.seed + idx} to {args.seed + idx + batch_size-1}" + ) # Sample random fields seeds = [args.seed + idx + k for k in range(batch_size)] n0 = n_grid_max if replicate_init else n - vort_init = [grf.sample(1, n0, random_state=s) for _, s in zip(range(batch_size), seeds)] + vort_init = [ + grf.sample(1, n0, random_state=s) for _, s in zip(range(batch_size), seeds) + ] vort_init = torch.stack(vort_init) if n != n0: vort_init = F.interpolate(vort_init, size=(n, n), mode="nearest") @@ -230,7 +235,9 @@ def main(args): f"variable: {field} | shape: {value.shape} | dtype: {value.dtype}" ) if subsample > 1: - assert value.ndim == 4, f"Subsampling only works for (b, c, h, w) tensors, current shape: {value.shape}" + assert ( + value.ndim == 4 + ), f"Subsampling only works for (b, c, h, w) tensors, current shape: {value.shape}" value = F.interpolate(value, size=(ns, ns), mode="bilinear") result[field] = value logger.info(f"{field:<15} | {value.shape} | {value.dtype}") @@ -250,7 +257,7 @@ def main(args): try: verify_trajectories( data_filepath, - dt=T_new/record_steps, + dt=T_new / record_steps, T_warmup=T_warmup, n_samples=1, ) diff --git a/fno/data_gen/data_utils.py b/fno/data_gen/data_utils.py index e339ed3..8e4f6fd 100644 --- a/fno/data_gen/data_utils.py +++ b/fno/data_gen/data_utils.py @@ -13,9 +13,8 @@ import numpy as np import seaborn as sns import torch -import torch.fft as fft import xarray -from tqdm import tqdm +from tqdm.auto import tqdm feval = lambda s: eval("lambda x, y:" + s, globals()) diff --git a/fno/data_gen/solvers.py b/fno/data_gen/solvers.py index 6775d06..ed548eb 100644 --- a/fno/data_gen/solvers.py +++ b/fno/data_gen/solvers.py @@ -190,7 +190,7 @@ def imex_crank_nicolson_step( def get_trajectory_imex( equation: ImplicitExplicitODE, - w0: Array, + w0: torch.Tensor, dt: float, num_steps: int = 1, record_every_steps: int = 1, diff --git a/fno/datasets.py b/fno/datasets.py index 4d91506..6659519 100644 --- a/fno/datasets.py +++ b/fno/datasets.py @@ -14,10 +14,8 @@ from einops import repeat from tensordict import TensorDict from torch.utils.data import Dataset -try: - from .utils import * -except: - from utils import * + +from .utils import * class UnitGaussianNormalizer(nn.Module): @@ -46,9 +44,9 @@ def _set_params(self, **params): setattr(self, k, v) return self - def _fit_transform(self, x): - mean = torch.as_tensor(x.mean(0)) - std = torch.as_tensor(x.std(0)) + def _fit_transform(self, x: torch.Tensor): + mean = torch.as_tensor(x.mean(0), dtype=torch.float32) + std = torch.as_tensor(x.std(0), dtype=torch.float32) x_transformed = (x - mean) / (std + self.eps) self.register_buffer("mean", mean) self.register_buffer("std", std) @@ -57,7 +55,7 @@ def _fit_transform(self, x): def fit_transform(self, *args, **kwargs): return self._fit_transform(*args, **kwargs) - def _transform(self, x, align_shapes=False, **kwargs): + def _transform(self, x: torch.Tensor, align_shapes=False, **kwargs): if hasattr(self, "mean"): mean, std = self.mean, self.std if align_shapes: @@ -70,7 +68,9 @@ def _transform(self, x, align_shapes=False, **kwargs): def transform(self, *args, **kwargs): return self._transform(*args, **kwargs) - def inverse_transform(self, x, sample_idx=None, align_shapes=True, **kwargs): + def inverse_transform( + self, x: torch.Tensor, sample_idx=None, align_shapes=True, **kwargs + ): std = (self.std + self.eps).to(x.device) mean = self.mean.to(x.device) if align_shapes: @@ -90,7 +90,7 @@ def forward(self, *args, **kwargs): return self.inverse_transform(*args, **kwargs) @staticmethod - def _align_shapes(x, mean, std, **kwargs): + def _align_shapes(x: torch.Tensor, mean: torch.Tensor, std: torch.Tensor, **kwargs): """ x: (bsz, m, m, C) or (bsz, m, m) or (bsz, C, m, m) mean: (n, n, C) or (n, n) or (C, n, n) @@ -113,7 +113,7 @@ def __init__(self, eps=1e-7): """ self.device = None - def _fit_transform(self, x): + def _fit_transform(self, x: torch.Tensor): mean = x.mean((0, -1)).unsqueeze(-1) std = x.std((0, -1)).unsqueeze(-1) self.register_buffer("mean", mean) @@ -188,6 +188,7 @@ def __init__( PyTorch dataset overhauled for the Navier-Stokes turbulent regime data using the vorticity formulation from Li et al 2020 https://github.com/zongyi-li/fourier_neural_operator + For (2+1)D tasks x: input (N, n, n, T_0:T_1) pos: x, y coords flattened, (n*n, 2) @@ -369,10 +370,10 @@ def __getitem__(self, idx): ) -class BochnerDataset(Dataset): +class SpatioTemporalDataset(Dataset): def __init__( self, - datapath: PathLike, + data_path: PathLike, n_samples: int = 1024, train=True, fields=["vorticity", "stream"], @@ -390,7 +391,7 @@ def __init__( input is (N, n, n, T_0:T_1) output is (N, n, n, T_1+1:T_2) """ - self.datapath = datapath + self.data_path = data_path self.n_samples = n_samples self.train = train self.fields = fields @@ -409,7 +410,7 @@ def _initialize(self): torch-cfd generates time dimension in dim = -3 """ - data = torch.load(self.datapath) + data = torch.load(self.data_path) N = data[self.fields[0]].size(0) self.total_steps = data[self.fields[0]].size(1) data = {key: val for key, val in data.items() if key in self.fields} @@ -424,34 +425,38 @@ def _initialize(self): for key, val in data.items(): data[key] = val.permute(0, 2, 3, 1) self.data = data - self.data_input = data.clone() + self.data_input = data.clone() # this is the transformed data def __getitem__(self, idx, start_steps=None): if start_steps is None: if self.T_start is None: - start_steps = np.random.randint(0, self.total_steps - (self.out_steps + self.steps + 1)) + start_steps = np.random.randint( + 0, self.total_steps - (self.out_steps + self.steps + 1) + ) else: start_steps = self.T_start inp_slice = slice(start_steps, start_steps + self.steps) - out_slice = slice(start_steps + self.steps, start_steps + self.steps + self.out_steps) + out_slice = slice( + start_steps + self.steps, start_steps + self.steps + self.out_steps + ) inp = dict() out = dict() for field in self.fields: - inp[field] = self.data_input[field][idx, ..., inp_slice].to( - self.dtype - ) + inp[field] = self.data_input[field][idx, ..., inp_slice].to(self.dtype) out[field] = self.data[field][idx, ..., out_slice].to(self.dtype) - inp['time_steps'] = torch.arange(start_steps, start_steps+self.steps) - out['time_steps'] = torch.arange(start_steps+self.steps, start_steps+self.steps+self.out_steps) + inp["time_steps"] = torch.arange(start_steps, start_steps + self.steps) + out["time_steps"] = torch.arange( + start_steps + self.steps, start_steps + self.steps + self.out_steps + ) return inp, out -class BochnerDatasetFixed(BochnerDataset): +class SpatioTemporalDatasetFixedTime(SpatioTemporalDataset): def __init__( self, - datapath: PathLike, + data_path: PathLike, n_samples: int = 1024, train=True, fields=["vorticity", "stream"], @@ -461,18 +466,18 @@ def __init__( out_steps=10, inp_normalizer: Union[bool, nn.ModuleDict] = None, normalize_space_only: bool = False, - out_normalizer= True, + out_normalizer=True, dtype=torch.float32, ): """ - BochnerDatasetFixed for the Bochner space-like dataset + SpatioTemporalDatasetFixedTime for the Bochner space-like dataset but with fixed time steps used by FNO3d - since this pipeline needs + since this pipeline needs - add 3d grid to the data - add the normalizer """ super().__init__( - datapath=datapath, + data_path=data_path, n_samples=n_samples, train=train, fields=fields, @@ -497,12 +502,14 @@ def _slicing_in_time(self): T_start = self.T_start steps = self.steps T = self.out_steps - data_input = self.data_input # (N, n, n, T) - data_out = self.data # (N, n, n, T) + data_input = self.data_input # (N, n, n, T) + data_out = self.data # (N, n, n, T) for field in self.fields: - inp = data_input[field][..., T_start : T_start + steps] - self.data_input[field] = inp.permute(0, 3, 1, 2) # (N, T, n, n) - self.data[field] = data_out[field][..., T_start + steps: T_start + steps + T] + inp = data_input[field][..., T_start : T_start + steps] + self.data_input[field] = inp.permute(0, 3, 1, 2) # (N, T, n, n) + self.data[field] = data_out[field][ + ..., T_start + steps : T_start + steps + T + ] # output is (N, n, n, T) def normalize(self, data, normalizer): @@ -527,20 +534,22 @@ def normalize(self, data, normalizer): return data, normalizer def _normalize(self): - self.data_input, self.inp_normalizer = self.normalize(self.data_input, self.inp_normalizer) + self.data_input, self.inp_normalizer = self.normalize( + self.data_input, self.inp_normalizer + ) self.data, self.out_normalizer = self.normalize(self.data, self.out_normalizer) def _add_grid(self): """ preset a 3D PE (3, n, n, T) """ - n, n, n_t = self.data[self.fields[0]].shape[1:] # output shape + n, n, n_t = self.data[self.fields[0]].shape[1:] # output shape # (*, n, n, T) T is already the sliced data gridx = torch.linspace(0, 1, n, dtype=self.dtype) gridy = torch.linspace(0, 1, n, dtype=self.dtype) gridt = torch.linspace(0, 1, n_t, dtype=self.dtype) gridx, gridy, gridt = torch.meshgrid(gridx, gridy, gridt, indexing="ij") - self.grid = torch.stack((gridx, gridy, gridt)) # (3, n, n, T) + self.grid = torch.stack((gridx, gridy, gridt)) # (3, n, n, T) def __getitem__(self, idx): inp = dict() diff --git a/fno/sfno.py b/fno/sfno.py index a95e73d..d7fc4b8 100644 --- a/fno/sfno.py +++ b/fno/sfno.py @@ -13,7 +13,7 @@ import torch.nn.functional as F from einops import rearrange, repeat from .base import * -from torch_cfd.equations import ( +from torch_cfd.spectral import ( fft_expand_dims, fft_mesh_2d, spectral_div_2d, diff --git a/fno/sfno_pytest.py b/fno/sfno_pytest.py index b26e114..7855ff9 100644 --- a/fno/sfno_pytest.py +++ b/fno/sfno_pytest.py @@ -11,7 +11,7 @@ SpectralConvS, SpectralConvT, ) -from torch_cfd.equations import * +from torch_cfd.spectral import * from contextlib import contextmanager diff --git a/fno/train.py b/fno/train.py index 82fe9a7..160295c 100644 --- a/fno/train.py +++ b/fno/train.py @@ -21,7 +21,7 @@ from pipeline import * from data_gen import * import matplotlib.pyplot as plt -from datasets import BochnerDataset +from datasets import SpatioTemporalDataset from losses import SobolevLoss from torch.utils.data import DataLoader @@ -102,15 +102,15 @@ def main(args): logger.info(f"Training: first {Ntrain} samples at {train_path}") logger.info(f"Validation: last {Nval} samples at {val_path}") logger.info(f"Training and validating on {n}x{n} grid") - train_dataset = BochnerDataset( - datapath=train_path, + train_dataset = SpatioTemporalDataset( + data_path=train_path, n_samples=Ntrain, fields=[fs], steps=time_steps, out_steps=out_steps, ) - val_dataset = BochnerDataset( - datapath=val_path, + val_dataset = SpatioTemporalDataset( + data_path=val_path, n_samples=Nval, fields=[fs], steps=time_steps, @@ -212,8 +212,8 @@ def main(args): logger.info(f"Testing data: {test_path}") logger.info(f"Testing on {n_test}x{n_test} grid") logger.info(f"Testing dtype is {torch.get_default_dtype()}") - test_dataset = BochnerDataset( - datapath=test_path, + test_dataset = SpatioTemporalDataset( + data_path=test_path, n_samples=Ntest, fields=[fs], T_start=30, diff --git a/torch_cfd/README.md b/torch_cfd/README.md index 2a62819..3ea7e1e 100644 --- a/torch_cfd/README.md +++ b/torch_cfd/README.md @@ -1,12 +1,30 @@ ## TODO -- [ ] add native PyTorch implementation for applying `torch.linalg` and `torch.fft` function directly on `GridArray`. +- [x] add native PyTorch implementation for applying `torch.linalg` and `torch.fft` function directly on `GridArray`. - [x] add discrete Helmholtz decomposition in both spatial and spectral domains. - [x] adjust the function to act on `(batch, time, *spatial)` tensor, currently only `(*spatial)` is supported. - [x] add native vorticity computation, instead of taking FDM for pseudo-spectral. ## Changelog +### 0.1.0 +- Implemented the FVM method on a staggered MAC grid (pressure on cell centers). +- Added native PyTorch implementation for applying `torch.linalg` and `torch.fft` functions directly on `GridArray` and `GridVariable`. +- Added native implementation of arithmetic manipulation directly on `GridVariableVector`. +- Added several helper functions `consistent_grid` to replace `consistent_grid_arrays`. +- Removed dependence of `from torch.utils._pytree import register_pytree_node` +- Minor notes: + - Added native PyTorch dense implementation of `scipy.linalg.circulant`: for a 1d array `column` + ```python + # scipy version + mat = scipy.linalg.circulant(column) + + # torch version + idx = (n - torch.arange(n)[None].T + torch.arange(n)[None]) % n + mat = torch.gather(column[None, ...].expand(n, -1), 1, idx) + ``` + + ### 0.0.8 - Starting from PyTorch 2.6.0, if data are saved using serialization (for loop with `pickle` or `dill`), then `torch.load` will raise an error, if you want to load the data, you can either add this in the imports or re-generate the data using this version. ```python @@ -32,7 +50,7 @@ - The padding of `torch.nn.functional.pad()` is different from `jax.numpy.pad()`, PyTorch's pad starts from the last dimension, while Jax's pad starts from the first dimension. For example, `F.pad(x, (0, 0, 1, 0, 1, 1))` is equivalent to `jax.numpy.pad(x, ((1, 1), (1, 0), (0, 0)))` for an array of size `(*, t, h, w)`. - A handy outer sum, which is usefully in getting the n-dimensional Laplacian in the frequency domain, is implemented as follows to replace `reduce(np.add.outer, eigenvalues)` ```python - def outer_sum(x: Union[List[Array], Tuple[Array]]) -> Array: + def outer_sum(x: Union[List[torch.Tensor], Tuple[torch.Tensor]]) -> torch.Tensor: """ Returns the outer sum of a list of one dimensional arrays Example: diff --git a/torch_cfd/boundaries.py b/torch_cfd/boundaries.py new file mode 100644 index 0000000..17dccce --- /dev/null +++ b/torch_cfd/boundaries.py @@ -0,0 +1,661 @@ +# Copyright 2021 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications copyright (C) 2025 S.Cao +# ported Google's Jax-CFD functional template to PyTorch's tensor ops + + +import dataclasses +import math +from functools import reduce +from typing import Any, Optional, Sequence, Tuple + +import torch +import torch.nn.functional as F + +from torch_cfd import grids + +BoundaryConditions = grids.BoundaryConditions +Grid = grids.Grid +GridArray = grids.GridArray +GridVariable = grids.GridVariable +GridVariableVector = grids.GridVariableVector + + +class BCType: + PERIODIC = "periodic" + DIRICHLET = "dirichlet" + NEUMANN = "neumann" + + +class Padding: + MIRROR = "mirror" + EXTEND = "extend" + + +@dataclasses.dataclass(init=False, frozen=True) +class ConstantBoundaryConditions(BoundaryConditions): + """Boundary conditions for a PDE variable that are constant in space and time. + + Example usage: + grid = Grid((10, 10)) + array = GridArray(torch.zeros((10, 10)), offset=(0.5, 0.5), grid) + bc = ConstantBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC), + (BCType.DIRICHLET, BCType.DIRICHLET)), + ((0.0, 10.0),(1.0, 0.0))) + u = GridVariable(array, bc) + + Attributes: + types: `types[i]` is a tuple specifying the lower and upper BC types for + dimension `i`. + """ + + types: Tuple[Tuple[str, str], ...] + _values: Tuple[Tuple[Optional[float], Optional[float]], ...] + + def __init__( + self, + types: Sequence[Tuple[str, str]], + values: Sequence[Tuple[Optional[float], Optional[float]]], + ): + types = tuple(types) + values = tuple(values) + object.__setattr__(self, "types", types) + object.__setattr__(self, "_values", values) + + def shift( + self, + u: GridArray, + offset: int, + dim: int, + ) -> GridArray: + """Shift an GridArray by `offset`. + + Args: + u: an `GridArray` object. + offset: positive or negative integer offset to shift. + dim: axis to shift along. + + Returns: + A copy of `u`, shifted by `offset`. The returned `GridArray` has offset + `u.offset + offset`. + """ + padded = self._pad(u, offset, dim) + trimmed = self._trim(padded, -offset, dim) + # print(u.shape, offset) + # print(padded.shape, trimmed.shape) + return trimmed + + def _count_bc_components(self) -> int: + """Counts the number of components in the boundary conditions. + + Returns: + The number of components in the boundary conditions. + """ + count = 0 + ndim = len(self.types) + for axis in range(ndim): # ndim + if len(self.types[axis]) != 2: + raise ValueError( + f"Boundary conditions for axis {axis} must have two values got {len(self.types[axis])}." + ) + count += len(self.types[axis]) + return count + + def _is_aligned(self, u: GridArray, dim: int) -> bool: + """Checks if array u contains all interior domain information. + + For dirichlet edge aligned boundary, the value that lies exactly on the + boundary does not have to be specified by u. + Neumann edge aligned boundary is not defined. + + Args: + u: torch.Tensor that should contain interior data + dim: axis along which to check + + Returns: + True if u is aligned, and raises error otherwise. + """ + size_diff = u.shape[dim] - u.grid.shape[dim] + if self.types[dim][0] == BCType.DIRICHLET and math.isclose(u.offset[dim], 1): + size_diff += 1 + if self.types[dim][1] == BCType.DIRICHLET and math.isclose(u.offset[dim], 1): + size_diff += 1 + if self.types[dim][0] == BCType.NEUMANN and math.isclose(u.offset[dim] % 1, 0): + raise NotImplementedError("Edge-aligned neumann BC are not implemented.") + if size_diff < 0: + raise ValueError("the GridArray does not contain all interior grid values.") + return True + + def _pad( + self, + u: GridArray, + width: int, + dim: int, + ) -> GridArray: + """Pad a GridArray by `padding`. + + Important: _pad makes no sense past 1 ghost cell for nonperiodic + boundaries. This is sufficient for jax_cfd finite difference code. + + Args: + u: a `GridArray` object. + width: number of elements to pad along axis. Use negative value for lower + boundary or positive value for upper boundary. + dim: axis to pad along. + + Returns: + Padded array, elongated along the indicated axis. + """ + if width < 0: # pad lower boundary + bc_type = self.types[dim][0] + padding = (-width, 0) + else: # pad upper boundary + bc_type = self.types[dim][1] + padding = (0, width) + + full_padding = [(0, 0)] * u.grid.ndim + full_padding[dim] = padding + + offset = list(u.offset) + offset[dim] -= padding[0] + + if bc_type != BCType.PERIODIC and abs(width) > 1: + raise ValueError( + "Padding past 1 ghost cell is not defined in nonperiodic case." + ) + + if bc_type == BCType.PERIODIC: + # self.values are ignored here + pad_kwargs = dict(mode="circular") + elif bc_type == BCType.DIRICHLET: + if math.isclose(u.offset[dim] % 1, 0.5): # cell center + # make the linearly interpolated value equal to the boundary by setting + # the padded values to the negative symmetric values + data = 2 * expand_dims_pad( + u.data, full_padding, mode="constant", constant_values=self._values + ) - expand_dims_pad(u.data, full_padding, mode="reflect") + return GridArray(data, tuple(offset), u.grid) + elif math.isclose(u.offset[dim] % 1, 0): # cell edge + pad_kwargs = dict(mode="constant", constant_values=self._values) + else: + raise ValueError( + "expected offset to be an edge or cell center, got " + f"offset[axis]={u.offset[dim]}" + ) + elif bc_type == BCType.NEUMANN: + if not ( + math.isclose(u.offset[dim] % 1, 0) + or math.isclose(u.offset[dim] % 1, 0.5) + ): + raise ValueError( + "expected offset to be an edge or cell center, got " + f"offset[axis]={u.offset[dim]}" + ) + else: + # When the data is cell-centered, computes the backward difference. + # When the data is on cell edges, boundary is set such that + # (u_last_interior - u_boundary)/grid_step = neumann_bc_value. + data = expand_dims_pad( + u.data, full_padding, mode="replicate" + ) + u.grid.step[dim] * ( + expand_dims_pad(u.data, full_padding, mode="constant") + - expand_dims_pad( + u.data, + full_padding, + mode="constant", + constant_values=self._values, + ) + ) + return GridArray(data, tuple(offset), u.grid) + + else: + raise ValueError("invalid boundary type") + data = expand_dims_pad(u.data, full_padding, **pad_kwargs) + return GridArray(data, tuple(offset), u.grid) + + def _trim( + self, + u: GridArray, + width: int, + dim: int, + ) -> GridArray: + """Trim padding from a GridArray. + + Args: + u: a `GridArray` object. + width: number of elements to trim along axis. Use negative value for lower + boundary or positive value for upper boundary. + dim: axis to trim along. + + Returns: + Trimmed array, shrunk along the indicated axis. + """ + if width < 0: # trim lower boundary + padding = (-width, 0) + else: # trim upper boundary + padding = (0, width) + + limit_index = u.data.shape[dim] - padding[1] + data = u.data.index_select( + dim=dim, index=torch.arange(padding[0], limit_index, device=u.data.device) + ) + offset = list(u.offset) + offset[dim] += padding[0] + return GridArray(data, tuple(offset), u.grid) + + def values( + self, dim: int, grid: Grid + ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: + """Returns boundary values on the grid along axis. + + Args: + dim: axis along which to return boundary values. + grid: a `Grid` object on which to evaluate boundary conditions. + + Returns: + A tuple of arrays of grid.ndim - 1 dimensions that specify values on the + boundary. In case of periodic boundaries, returns a tuple(None,None). + """ + if None in self._values[dim]: + return (None, None) + bc = tuple( + torch.full(grid.shape[:dim] + grid.shape[dim + 1 :], self._values[dim][-i]) + for i in [0, 1] + ) + return bc + + def _trim_padding(self, u: GridArray, dim: int = 0, trim_side: str = "both"): + """Trims padding from a GridArray along axis and returns the array interior. + + Args: + u: a `GridArray` object. + dim: axis to trim along. + trim_side: if 'both', trims both sides. If 'right', trims the right side. + If 'left', the left side. + + Returns: + Trimmed array, shrunk along the indicated axis side. + """ + padding = (0, 0) + if u.shape[dim] >= u.grid.shape[dim]: + # number of cells that were padded on the left + negative_trim = 0 + if u.offset[dim] <= 0 and (trim_side == "both" or trim_side == "left"): + negative_trim = -math.ceil(-u.offset[dim]) + # periodic is a special case. Shifted data might still contain all the + # information. + if self.types[dim][0] == BCType.PERIODIC: + negative_trim = max(negative_trim, u.grid.shape[dim] - u.shape[dim]) + # for both DIRICHLET and NEUMANN cases the value on grid.domain[0] is + # a dependent value. + elif math.isclose(u.offset[dim] % 1, 0): + negative_trim -= 1 + u = self._trim(u, negative_trim, dim) + # number of cells that were padded on the right + positive_trim = 0 + if trim_side == "right" or trim_side == "both": + # periodic is a special case. Boundary on one side depends on the other + # side. + if self.types[dim][1] == BCType.PERIODIC: + positive_trim = max(u.shape[dim] - u.grid.shape[dim], 0) + else: + # for other cases, where to trim depends only on the boundary type + # and data offset. + last_u_offset = u.shape[dim] + u.offset[dim] - 1 + boundary_offset = u.grid.shape[dim] + if last_u_offset >= boundary_offset: + positive_trim = math.ceil(last_u_offset - boundary_offset) + if self.types[dim][1] == BCType.DIRICHLET and math.isclose( + u.offset[dim] % 1, 0 + ): + positive_trim += 1 + if positive_trim > 0: + u = self._trim(u, positive_trim, dim) + # combining existing padding with new padding + padding = (-negative_trim, positive_trim) + return u, padding + + def trim_boundary(self, u: GridArray) -> GridArray: + """Returns GridArray without the grid points on the boundary. + + Some grid points of GridArray might coincide with boundary. This trims those + values. If the array was padded beforehand, removes the padding. + + Args: + u: a `GridArray` object. + + Returns: + A GridArray shrunk along certain dimensions. + """ + for axis in range(u.grid.ndim): + _ = self._is_aligned(u, axis) + u, _ = self._trim_padding(u, axis) + return u + + def pad_and_impose_bc( + self, + u: GridArray, + offset_to_pad_to: Optional[Tuple[float, ...]] = None, + mode: Optional[str] = "extend", + ) -> GridVariable: + """Returns GridVariable with correct boundary values. + + Some grid points of GridArray might coincide with boundary. This ensures + that the GridVariable.array agrees with GridVariable.bc. + Args: + u: a `GridArray` object that specifies only scalar values on the internal + nodes. + offset_to_pad_to: a Tuple of desired offset to pad to. Note that if the + function is given just an interior array in dirichlet case, it can pad + to both 0 offset and 1 offset. + mode: type of padding to use in non-periodic case. + Mirror mirrors the flow across the boundary. + Extend extends the last well-defined value past the boundary. + + Returns: + A GridVariable that has correct boundary values. + """ + if offset_to_pad_to is None: + offset_to_pad_to = u.offset + for axis in range(u.grid.ndim): + _ = self._is_aligned(u, axis) + if self.types[axis][0] == BCType.DIRICHLET and math.isclose( + u.offset[axis], 1.0 + ): + if math.isclose(offset_to_pad_to[axis], 1.0): + u = self._pad(u, 1, axis, mode=mode) + elif math.isclose(offset_to_pad_to[axis], 0.0): + u = self._pad(u, -1, axis, mode=mode) + return GridVariable(u, self) + + def impose_bc(self, u: GridArray) -> GridVariable: + """Returns GridVariable with correct boundary condition. + + Some grid points of GridArray might coincide with boundary. This ensures + that the GridVariable.array agrees with GridVariable.bc. + Args: + u: a `GridArray` object. + + Returns: + A GridVariable that has correct boundary values and is restricted to the + domain. + """ + offset = u.offset + u = self.trim_boundary(u) + return self.pad_and_impose_bc(u, offset) + + trim = _trim + pad = _pad + + +class HomogeneousBoundaryConditions(ConstantBoundaryConditions): + """Boundary conditions for a PDE variable. + + Example usage: + grid = Grid((10, 10)) + array = GridArray(torch.zeros((10, 10)), offset=(0.5, 0.5), grid) + bc = ConstantBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC), + (BCType.DIRICHLET, BCType.DIRICHLET))) + u = GridVariable(array, bc) + + Attributes: + types: `types[i]` is a tuple specifying the lower and upper BC types for + dimension `i`. + """ + + def __init__(self, types: Sequence[Tuple[str, str]]): + + ndim = len(types) + values = ((0.0, 0.0),) * ndim + super(HomogeneousBoundaryConditions, self).__init__(types, values) + + +def is_periodic_boundary_conditions(c: GridVariable, dim: int) -> bool: + """Returns true if scalar has periodic bc along axis.""" + if c.bc.types[dim][0] != BCType.PERIODIC: + return False + elif c.bc.types[dim][0] == BCType.PERIODIC and c.bc.types[dim][0] != c.bc.types[dim][1]: + raise ValueError( + "periodic boundary conditions must be the same on both sides of the axis" + ) + return True + + +# Convenience utilities to ease updating of BoundaryConditions implementation +def periodic_boundary_conditions(ndim: int) -> BoundaryConditions: + """Returns periodic BCs for a variable with `ndim` spatial dimension.""" + return HomogeneousBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC),) * ndim) + + +def consistent_boundary_conditions_grid(grid, *arrays: GridVariable) -> Tuple[int, ...]: + """Returns the updated boundary condition if the number of components is inconsistent + with the grid + """ + bc_counts = [] + for array in arrays: + bc_counts.append(array.bc._count_bc_components()) + bc_count = bc_counts[0] + if any(bc_counts[i] != bc_count for i in range(1, len(bc_counts))): + raise Exception("Boundary condition counts are inconsistent") + if any(bc_counts[i] != 2 * grid.ndim for i in range(len(bc_counts))): + raise ValueError( + f"Boundary condition counts {bc_counts} are inconsistent with grid dimensions {grid.ndim}" + ) + return arrays + + +def consistent_boundary_conditions_gridvariable(*arrays: GridVariable) -> Tuple[str, ...]: + """Returns whether BCs are periodic. + + Mixed periodic/nonperiodic boundaries along the same boundary do not make + sense. The function checks that the boundary is either periodic or not and + throws an error if its mixed. + + Args: + *arrays: a list of gridvariables. + + Returns: + a list of types of boundaries corresponding to each axis if + they are consistent. + """ + bc_types = [] + for axis in range(arrays[0].grid.ndim): + bcs = {is_periodic_boundary_conditions(array, axis) for array in arrays} + if len(bcs) != 1: + raise Exception(f"arrays do not have consistent bc: {arrays}") + elif bcs.pop(): + bc_types.append("periodic") + else: + bc_types.append("nonperiodic") + return tuple(bc_types) + +def get_pressure_bc_from_velocity_bc(bcs: Sequence[BoundaryConditions]) -> HomogeneousBoundaryConditions: + """Returns pressure boundary conditions for the specified velocity BCs. + if the velocity BC is periodic, the pressure BC is periodic. + if the velocity BC is nonperiodic, the pressure BC is zero flux (homogeneous Neumann). + """ + # assumes that if the boundary is not periodic, pressure BC is zero flux. + pressure_bc_types = [] + for velocity_bc in bcs: + if isinstance(velocity_bc, HomogeneousBoundaryConditions): + velocity_bc_types = velocity_bc.types + else: + raise NotImplementedError( + f"Pressure boundary condition is not implemented for velocity with {velocity_bc}" + ) + if velocity_bc_types[0][0] == BCType.PERIODIC and velocity_bc_types[1][0] == BCType.PERIODIC: + pressure_bc_types.append((BCType.PERIODIC, BCType.PERIODIC)) + else: + pressure_bc_types.append((BCType.NEUMANN, BCType.NEUMANN)) + + return HomogeneousBoundaryConditions(pressure_bc_types) + + + +def get_pressure_bc_from_velocity( + v: GridVariableVector, +) -> HomogeneousBoundaryConditions: + """Returns pressure boundary conditions for the specified velocity.""" + # assumes that if the boundary is not periodic, pressure BC is zero flux. + velocity_bc_types = consistent_boundary_conditions_gridvariable(*v) + pressure_bc_types = [] + for velocity_bc_type in velocity_bc_types: + if velocity_bc_type == "periodic": + pressure_bc_types.append((BCType.PERIODIC, BCType.PERIODIC)) + else: + pressure_bc_types.append((BCType.NEUMANN, BCType.NEUMANN)) + return HomogeneousBoundaryConditions(pressure_bc_types) + + +def has_all_periodic_boundary_conditions(*arrays: GridVariable) -> bool: + """Returns True if arrays have periodic BC in every dimension, else False.""" + for array in arrays: + for axis in range(array.grid.ndim): + if not is_periodic_boundary_conditions(array, axis): + return False + return True + + +def get_advection_flux_bc_from_velocity_and_scalar( + u: GridVariable, c: GridVariable, flux_direction: int +) -> ConstantBoundaryConditions: + """Returns advection flux boundary conditions for the specified velocity. + + Infers advection flux boundary condition in flux direction + from scalar c and velocity u in direction flux_direction. + The flux boundary condition should be used only to compute divergence. + If the boundaries are periodic, flux is periodic. + In nonperiodic case, flux boundary parallel to flux direction is + homogeneous dirichlet. + In nonperiodic case if flux direction is normal to the wall, the + function supports 2 cases: + 1) Nonporous boundary, corresponding to homogeneous flux bc. + 2) Pourous boundary with constant flux, corresponding to + both the velocity and scalar with Homogeneous Neumann bc. + + This function supports only these cases because all other cases result in + time dependent flux boundary condition. + + Args: + u: velocity component in flux_direction. + c: scalar to advect. + flux_direction: direction of velocity. + + Returns: + BoundaryCondition instance for advection flux of c in flux_direction. + """ + # only no penetration and periodic boundaries are supported. + flux_bc_types = [] + flux_bc_values = [] + if not isinstance(u.bc, HomogeneousBoundaryConditions): + raise NotImplementedError( + f"Flux boundary condition is not implemented for velocity with {u.bc}" + ) + for axis in range(c.grid.ndim): + if u.bc.types[axis][0] == "periodic": + flux_bc_types.append((BCType.PERIODIC, BCType.PERIODIC)) + flux_bc_values.append((None, None)) + elif flux_direction != axis: + # This is not technically correct. Flux boundary condition in most cases + # is a time dependent function of the current values of the scalar + # and velocity. However, because flux is used only to take divergence, the + # boundary condition on the flux along the boundary parallel to the flux + # direction has no influence on the computed divergence because the + # boundary condition only alters ghost cells, while divergence is computed + # on the interior. + # To simplify the code and allow for flux to be wrapped in gridVariable, + # we are setting the boundary to homogeneous dirichlet. + # Note that this will not work if flux is used in any other capacity but + # to take divergence. + flux_bc_types.append((BCType.DIRICHLET, BCType.DIRICHLET)) + flux_bc_values.append((0.0, 0.0)) + else: + flux_bc_types_ax = [] + flux_bc_values_ax = [] + for i in range(2): # lower and upper boundary. + + # case 1: nonpourous boundary + if ( + u.bc.types[axis][i] == BCType.DIRICHLET + and u.bc.bc_values[axis][i] == 0.0 + ): + flux_bc_types_ax.append(BCType.DIRICHLET) + flux_bc_values_ax.append(0.0) + + # case 2: zero flux boundary + elif ( + u.bc.types[axis][i] == BCType.NEUMANN + and c.bc.types[axis][i] == BCType.NEUMANN + ): + if not isinstance(c.bc, ConstantBoundaryConditions): + raise NotImplementedError( + "Flux boundary condition is not implemented for scalar" + + f" with {c.bc}" + ) + if not math.isclose(c.bc.bc_values[axis][i], 0.0): + raise NotImplementedError( + "Flux boundary condition is not implemented for scalar" + + f" with {c.bc}" + ) + flux_bc_types_ax.append(BCType.NEUMANN) + flux_bc_values_ax.append(0.0) + + # no other case is supported + else: + raise NotImplementedError( + f"Flux boundary condition is not implemented for {u.bc, c.bc}" + ) + flux_bc_types.append(flux_bc_types_ax) + flux_bc_values.append(flux_bc_values_ax) + return ConstantBoundaryConditions(flux_bc_types, flux_bc_values) + + +def expand_dims_pad( + inputs: Any, + pad: Tuple[Tuple[int, int], ...], + dim: int = 2, + mode: str = "constant", + constant_values: float = 0, +) -> Any: + """ + wrapper for F.pad with a dimension checker + note: jnp's pad pad_width starts from the first dimension to the last dimension + while torch's pad pad_width starts from the last dimension to the previous dimension + example: for torch (1, 1, 2, 2) means padding last dim by (1, 1) and 2nd to last by (2, 2) + + Args: + inputs: torch.Tensor or a tuple of arrays to pad. + pad_width: padding width for each dimension. + mode: padding mode, one of 'constant', 'reflect', 'symmetric'. + values: constant value to pad with. + + Returns: + Padded `inputs`. + """ + assert len(pad) == inputs.ndim, "pad must have the same length as inputs.ndim" + if not isinstance(inputs, torch.Tensor): + raise ValueError("inputs must be a torch.Tensor") + if dim == inputs.ndim: + inputs = inputs.unsqueeze(0) + pad = reduce(lambda a, x: x + a, pad, ()) # flatten the pad and reverse the order + if mode == "constant": + array = F.pad(inputs, pad, mode=mode, value=constant_values) + elif mode == "reflect" or mode == "circular": + # periodic boundary condition + array = F.pad(inputs, pad, mode=mode) + else: + raise NotImplementedError(f"invalid mode {mode} for torch.nn.functional.pad") + + return array.squeeze(0) if dim != array.ndim else array diff --git a/torch_cfd/equations.py b/torch_cfd/equations.py index d3ea42b..05db3a2 100644 --- a/torch_cfd/equations.py +++ b/torch_cfd/equations.py @@ -20,105 +20,18 @@ import torch import torch.fft as fft import torch.nn as nn -from einops import repeat -from tqdm import tqdm -from . import grids +from torch_cfd import grids +from torch_cfd.spectral import ( + brick_wall_filter_2d, + spectral_curl_2d, + vorticity_to_velocity, +) -Array = torch.Tensor Grid = grids.Grid Params = Union[nn.ParameterDict, Dict] -def fft_mesh_2d(n, diam, device=None): - kx, ky = [fft.fftfreq(n, d=diam / n) for _ in range(2)] - kx, ky = torch.meshgrid([kx, ky], indexing="ij") - return kx.to(device), ky.to(device) - - -def fft_expand_dims(fft_mesh, batch_size): - kx, ky = fft_mesh - kx, ky = [repeat(z, "x y -> b x y 1", b=batch_size) for z in [kx, ky]] - return kx, ky - - -def spectral_laplacian_2d(fft_mesh, device=None): - kx, ky = fft_mesh - lap = -4 * (torch.pi**2) * (abs(kx) ** 2 + abs(ky) ** 2) - # (2 * torch.pi * 1j)**2 - lap[..., 0, 0] = 1 - return lap.to(device) - - -def spectral_curl_2d(vhat, rfft_mesh): - r""" - Computes the 2D curl in the Fourier basis. - det [d_x d_y \\ u v] - """ - uhat, vhat = vhat - kx, ky = rfft_mesh - return 2j * torch.pi * (vhat * kx - uhat * ky) - - -def spectral_div_2d(vhat, rfft_mesh): - r""" - Computes the 2D divergence in the Fourier basis. - """ - uhat, vhat = vhat - kx, ky = rfft_mesh - return 2j * torch.pi * (uhat * kx + vhat * ky) - - -def spectral_grad_2d(vhat, rfft_mesh): - kx, ky = rfft_mesh - return 2j * torch.pi * kx * vhat, 2j * torch.pi * ky * vhat - - -def spectral_rot_2d(vhat, rfft_mesh): - vgradx, vgrady = spectral_grad_2d(vhat, rfft_mesh) - return vgrady, -vgradx - - -def brick_wall_filter_2d(grid: Grid): - """Implements the 2/3 rule.""" - n, _ = grid.shape - filter_ = torch.zeros((n, n // 2 + 1)) - filter_[: int(2 / 3 * n) // 2, : int(2 / 3 * (n // 2 + 1))] = 1 - filter_[-int(2 / 3 * n) // 2 :, : int(2 / 3 * (n // 2 + 1))] = 1 - return filter_ - - -def vorticity_to_velocity( - grid: Grid, w_hat: Array, rfft_mesh: Optional[Tuple[Array, Array]] = None -): - """Constructs a function for converting vorticity to velocity, both in Fourier domain. - - Solves for the stream function and then uses the stream function to compute - the velocity. This is the standard approach. A quick sketch can be found in - [1]. - - Args: - grid: the grid underlying the vorticity field. - - Returns: - A function that takes a vorticity (rfftn) and returns a velocity vector - field. - - Reference: - [1] Z. Yin, H.J.H. Clercx, D.C. Montgomery, An easily implemented task-based - parallel scheme for the Fourier pseudospectral solver applied to 2D - Navier-Stokes turbulence, Computers & Fluids, Volume 33, Issue 4, 2004, - Pages 509-520, ISSN 0045-7930, - https://doi.org/10.1016/j.compfluid.2003.06.003. - """ - kx, ky = rfft_mesh if rfft_mesh is not None else grid.rfft_mesh() - assert kx.shape[-2:] == w_hat.shape[-2:] - laplace = spectral_laplacian_2d((kx, ky)) - psi_hat = -1 / laplace * w_hat - u_hat, v_hat = spectral_rot_2d(psi_hat, (kx, ky)) - return (u_hat, v_hat), psi_hat - - def stable_time_step( dx: float = None, dt: float = None, @@ -179,7 +92,7 @@ def implicit_terms(self, *, u): def implicit_solve( self, *, - u: Array, + u: torch.Tensor, step_size: float, ): """Solves `u - step_size * implicit_terms(u) = f` for u.""" @@ -187,8 +100,8 @@ def implicit_solve( def residual( self, - u: Array, - u_t: Array, + u: torch.Tensor, + u_t: torch.Tensor, ): """Computes the residual of the PDE.""" raise NotImplementedError @@ -197,26 +110,27 @@ def residual( class IMEXStepper(nn.Module): """ Implicit-Explicit (IMEX) time stepping with configurable order. - + Supports: - order=1: Forward-Backward Euler, implicit for the diffusion (first-order accuracy) - order=1.5: Standard IMEX Crank-Nicolson, CR for the diffusion. - order=2: RK2 Crank-Nicolson (second-order accuracy) - With alpha=0.5: Heun's method (midpoint rule) - With alpha=2/3: Ralston's method (minimizes truncation error) - + Args: order: Order of accuracy (1, 1.5, or 2) alpha: RK weight parameter (default: 0.5 for Heun's method) beta: Weight for implicit step (default: 0.5 for standard CN, 1.0 for order=1) requires_grad: Whether parameters should be trainable - + References: - (RK) Chandler, G. J. & Kerswell, R. R. Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554-595 (2013). https://doi.org/10.1017/jfm.2013.122 (Section 3) - https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods """ + def __init__( self, order: float = 2, @@ -224,28 +138,28 @@ def __init__( beta: Optional[float] = 0.5, requires_grad: bool = False, *args, - **kwargs + **kwargs, ): super().__init__(*args, **kwargs) self.order = order - + # Set default beta based on order params = { - 'alpha': torch.tensor(alpha), - 'beta': torch.tensor(beta), - } + "alpha": torch.tensor(alpha), + "beta": torch.tensor(beta), + } if order == 1 or order == 1.5: # Order 1: Forward-Backward Euler (no parameters needed) # alpha = 1.0 # Order 1.5: Standard IMEX Crank-Nicolson # alpha = 0.5 - self.stepper = self._imex + self.stepper = self._imex elif order == 2: # Order 2: RK2 Crank-Nicolson self.stepper = self._rk2_crank_nicolson - + self._set_params(params, requires_grad=requires_grad) - + def _set_params(self, params: Params, requires_grad: bool = False): """Set the RK coefficients.""" for k, v in params.items(): @@ -259,15 +173,15 @@ def _set_params(self, params: Params, requires_grad: bool = False): def _imex( self, - u: Array, + u: torch.Tensor, dt: float, equation: ImplicitExplicitODE, - params: Optional[Params] = None - ) -> Array: + params: Optional[Params] = None, + ) -> torch.Tensor: """Standard first order IMEX with Crank-Nicolson or Forward-Backward Euler.""" params = self.params if params is None else params - alpha = params['alpha'] - + alpha = params["alpha"] + F = equation.explicit_terms G = equation.implicit_terms G_inv = equation.implicit_solve @@ -275,14 +189,14 @@ def _imex( g = u + dt * F(u) + (1 - alpha) * dt * G(u) u = G_inv(g, alpha * dt) return u - + def _rk2_crank_nicolson( self, - u: Array, + u: torch.Tensor, dt: float, equation: ImplicitExplicitODE, - params: Optional[Params] = None - ) -> Array: + params: Optional[Params] = None, + ) -> torch.Tensor: """Time stepping via Crank-Nicolson and 2nd order Runge-Kutta (Heun). Args: @@ -298,9 +212,9 @@ def _rk2_crank_nicolson( (2013). https://doi.org/10.1017/jfm.2013.122 (Section 3) """ params = self.params if params is None else params - alpha = params['alpha'] - beta = params['beta'] - + alpha = params["alpha"] + beta = params["beta"] + F = equation.explicit_terms G = equation.implicit_terms G_inv = equation.implicit_solve @@ -308,24 +222,24 @@ def _rk2_crank_nicolson( g = u + beta * dt * G(u) h = F(u) u = G_inv(g + dt * h, beta * dt) - + h = alpha * F(u) + (1 - alpha) * h u = G_inv(g + dt * h, beta * dt) return u - + def forward( self, - u: Array, + u: torch.Tensor, dt: float, equation: ImplicitExplicitODE, params: Optional[Params] = None, - ) -> Array: + ) -> torch.Tensor: """ Perform a time step using the configured IMEX scheme. - + Input: u^{t_i}: (B, *, n, n) - + Returns: u^{t_{i+1}} (B, *, n, n) """ @@ -334,9 +248,9 @@ def forward( class RK4CrankNicolsonStepper(IMEXStepper): """ - RK4CrankNicholsonStepper is ported from jax functional programming to follow + RK4CrankNicholsonStepper is ported from jax functional programming to follow the standard tensor2tensor format of nn.Module - Time stepping via + Time stepping via - either "low-storage" Runge-Kutta and Crank-Nicolson steps. https://github.com/google/jax-cfd/blob/main/jax_cfd/spectral/time_stepping.py#L117 - or standard RK4 coefficients (classic 4-stage RK4) @@ -364,18 +278,21 @@ class RK4CrankNicolsonStepper(IMEXStepper): Fluid Dynamics. (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-30728-0 (Appendix D.3) """ - def __init__(self, - order: float = 4, - requires_grad: bool = False, - weights: Optional[Params] = None, - low_storage: bool = True, - *args, - **kwargs): + + def __init__( + self, + order: float = 4, + requires_grad: bool = False, + weights: Optional[Params] = None, + low_storage: bool = True, + *args, + **kwargs, + ): super().__init__(order, *args, **kwargs) if low_storage: # Carpenter-Kennedy coefficients weights = { - 'alphas': [ + "alphas": [ 0, 0.1496590219993, 0.3704009573644, @@ -383,36 +300,40 @@ def __init__(self, 0.9582821306748, 1, ], - 'betas': [ - 0, -0.4178904745, -1.192151694643, -1.697784692471, -1.514183444257 + "betas": [ + 0, + -0.4178904745, + -1.192151694643, + -1.697784692471, + -1.514183444257, ], - 'gammas': [ + "gammas": [ 0.1496590219993, 0.3792103129999, 0.8229550293869, 0.6994504559488, 0.1530572479681, - ] + ], } else: # Standard RK4 coefficients (classic 4-stage RK4) weights = { - 'alphas': [0, 0.5, 0.5, 1.0, 1.0], - 'betas': [0, 0, 0, 0], - 'gammas': [1/6, 1/3, 1/3, 1/6], + "alphas": [0, 0.5, 0.5, 1.0, 1.0], + "betas": [0, 0, 0, 0], + "gammas": [1 / 6, 1 / 3, 1 / 3, 1 / 6], } params = {k: torch.tensor(v) for k, v in weights.items()} self._set_params(params, requires_grad=requires_grad) - + def forward( self, - u: Array, + u: torch.Tensor, dt: float, equation: ImplicitExplicitODE, params: Optional[Params] = None, - ) -> Array: - """ - Input: + ) -> torch.Tensor: + """ + Input: - w^{t_i} (B, n, n) - dt: time step - params: RK coefficients optional to override @@ -458,9 +379,8 @@ def __init__( drag: float = 0.0, smooth: bool = True, forcing_fn: Optional[Callable] = None, - solver: Optional[Callable] = RK4CrankNicolsonStepper, - requires_grad: bool = False, - **solver_kwargs, + solver: IMEXStepper = None, + **kwargs, ): super().__init__() self.viscosity = viscosity @@ -468,8 +388,7 @@ def __init__( self.drag = drag self.smooth = smooth self.forcing_fn = forcing_fn - self.solver = solver(requires_grad=requires_grad, - **solver_kwargs) + self.solver = solver self._initialize() def _initialize(self): @@ -485,8 +404,8 @@ def _initialize(self): def residual( self, - vhat: Array, - vt_hat: Array, + vhat: torch.Tensor, + vt_hat: torch.Tensor, ): residual = vt_hat - self.explicit_terms(vhat) - self.implicit_terms(vhat) return residual @@ -530,7 +449,7 @@ def implicit_solve(self, vort_hat, dt): def step(self, *args, **kwargs): return self.forward(*args, **kwargs) - def forward(self, vort_hat, dt, steps=1): + def forward(self, vort_hat, dt, steps=1) -> Tuple[torch.Tensor, torch.Tensor]: """ vort_hat: (B, kx, ky) or (n_t, kx, ky) or (kx, ky) - if rfft2 is used then the shape is (*, nx, ny//2+1) diff --git a/torch_cfd/fast_diagonalization.py b/torch_cfd/fast_diagonalization.py index c436b2f..e2adc31 100644 --- a/torch_cfd/fast_diagonalization.py +++ b/torch_cfd/fast_diagonalization.py @@ -25,10 +25,8 @@ import torch.fft as fft -Array = torch.Tensor - -def outer_sum(x: Union[List[Array], Tuple[Array]]) -> Array: +def outer_sum(x: Union[List[torch.Tensor], Tuple[torch.Tensor]]) -> torch.Tensor: """ Returns the outer sum of a list of one dimensional arrays Example: @@ -43,14 +41,14 @@ def _sum(a, b): def transform( - func: Callable[[Array], Array], - operators: Sequence[Array], + func: Callable[[torch.Tensor], torch.Tensor], + operators: Sequence[torch.Tensor], dtype: torch.dtype, *, hermitian: bool = False, circulant: bool = False, implementation: Optional[str] = None, -) -> Callable[[Array], Array]: +) -> Callable[[torch.Tensor], torch.Tensor]: """Apply a linear operator written as a sum of operators on each axis. Such linear operators are *separable*, and can be written as a sum of tensor @@ -146,10 +144,10 @@ def transform( def _hermitian_matmul_transform( - func: Callable[[Array], Array], - operators: Sequence[Array], + func: Callable[[torch.Tensor], torch.Tensor], + operators: Sequence[torch.Tensor], dtype: torch.dtype, -) -> Callable[[Array], Array]: +) -> Callable[[torch.Tensor], torch.Tensor]: """Fast diagonalization by matrix multiplication along each axis.""" eigenvalues, eigenvectors = zip(*map(torch.linalg.eigh, operators)) @@ -167,7 +165,7 @@ def _hermitian_matmul_transform( f"{diagonals.shape} vs {shape}" ) - def apply(rhs: Array) -> Array: + def apply(rhs: torch.Tensor) -> torch.Tensor: if rhs.shape != shape: raise ValueError(f"rhs.shape={rhs.shape} does not match shape={shape}") if rhs.dtype != dtype: @@ -186,10 +184,10 @@ def apply(rhs: Array) -> Array: def _circulant_fft_transform( - func: Callable[[Array], Array], - operators: Sequence[Array], + func: Callable[[torch.Tensor], torch.Tensor], + operators: Sequence[torch.Tensor], dtype: torch.dtype, -) -> Callable[[Array], Array]: +) -> Callable[[torch.Tensor], torch.Tensor]: """Fast diagonalization by Fast Fourier Transform.""" # https://en.wikipedia.org/wiki/Circulant_matrix#Eigenvectors_and_eigenvalues eigenvalues = [fft.fft(op[:, 0]) for op in operators] @@ -203,7 +201,7 @@ def _circulant_fft_transform( f"{diagonals.shape} vs {shape}" ) - def apply(rhs: Array) -> Array: + def apply(rhs: torch.Tensor) -> torch.Tensor: if rhs.shape != shape: raise ValueError(f"rhs.shape={rhs.shape} does not match shape={shape}") return fft.ifftn(diagonals * fft.fftn(rhs)).to(dtype) @@ -212,10 +210,10 @@ def apply(rhs: Array) -> Array: def _circulant_rfft_transform( - func: Callable[[Array], Array], - operators: Sequence[Array], + func: Callable[[torch.Tensor], torch.Tensor], + operators: Sequence[torch.Tensor], dtype: torch.dtype, -) -> Callable[[Array], Array]: +) -> Callable[[torch.Tensor], torch.Tensor]: """Fast diagonalization by real-valued Fast Fourier Transform.""" # https://en.wikipedia.org/wiki/Circulant_matrix#Eigenvectors_and_eigenvalues if operators[-1].shape[0] % 2: @@ -236,7 +234,7 @@ def _circulant_rfft_transform( f"{diagonals.shape} vs {summed_eigenvalues.shape}" ) - def apply(rhs: Array) -> Array: + def apply(rhs: torch.Tensor) -> torch.Tensor: if rhs.dtype != dtype: raise ValueError(f"rhs.dtype={rhs.dtype} does not match dtype={dtype}") return fft.irfftn(diagonals * fft.rfftn(rhs)).to(dtype) @@ -245,15 +243,15 @@ def apply(rhs: Array) -> Array: def pseudoinverse( - v: Array, - operators: Sequence[Array], + v: torch.Tensor, + operators: Sequence[torch.Tensor], dtype: torch.dtype, *, hermitian: bool = False, circulant: bool = False, implementation: Optional[str] = None, cutoff: Optional[float] = None, -) -> Callable[[Array], Array]: +) -> Callable[[torch.Tensor], torch.Tensor]: """Invert a linear operator written as a sum of operators on each axis. Args: diff --git a/torch_cfd/finite_differences.py b/torch_cfd/finite_differences.py index 2eadfcd..9d3dd9b 100644 --- a/torch_cfd/finite_differences.py +++ b/torch_cfd/finite_differences.py @@ -34,13 +34,15 @@ c_new = GridVariable(c_new, c_boundary_condition) # assocaite BCs """ +import math import typing -from typing import Optional, Sequence, Tuple -from . import grids -import numpy as np +from typing import Any, List, Optional, Sequence, Tuple + import torch -Array = torch.Tensor +from torch_cfd import boundaries, grids + +ArrayVector = Sequence[torch.Tensor] GridArray = grids.GridArray GridVariable = grids.GridVariable GridArrayTensor = grids.GridArrayTensor @@ -49,14 +51,14 @@ def stencil_sum(*arrays: GridArray) -> GridArray: """Sum arrays across a stencil, with an averaged offset.""" - offset = grids.averaged_offset(*arrays) + offset = grids.averaged_offset_arrays(*arrays) # pytype appears to have a bad type signature for sum(): # Built-in function sum was called with the wrong arguments [wrong-arg-types] # Expected: (iterable: Iterable[complex]) # Actually passed: (iterable: Generator[Union[jax.interpreters.xla.DeviceArray, numpy.ndarray], Any, None]) result = sum(array.data for array in arrays) # type: ignore - grid = grids.consistent_grid(*arrays) - return grids.GridArray(result, offset, grid) + grid = grids.consistent_grid_arrays(*arrays) + return GridArray(result, offset, grid) @typing.overload @@ -121,9 +123,9 @@ def backward_difference(u, axis=None): return diff / u.grid.step[axis] -def divergence(v: Sequence[GridVariable]) -> GridArray: +def divergence(v: GridVariableVector) -> GridArray: """Approximates the divergence of `v` using backward differences.""" - grid = grids.consistent_grid(*v) + grid = grids.consistent_grid_arrays(*v) if len(v) != grid.ndim: raise ValueError( "The length of `v` must be equal to `grid.ndim`." @@ -133,9 +135,9 @@ def divergence(v: Sequence[GridVariable]) -> GridArray: return sum(differences) -def centered_divergence(v: Sequence[GridVariable]) -> GridArray: +def centered_divergence(v: GridVariableVector) -> GridArray: """Approximates the divergence of `v` using centered differences.""" - grid = grids.consistent_grid(*v) + grid = grids.consistent_grid_arrays(*v) if len(v) != grid.ndim: raise ValueError( "The length of `v` must be equal to `grid.ndim`." @@ -145,16 +147,175 @@ def centered_divergence(v: Sequence[GridVariable]) -> GridArray: return sum(differences) -def laplacian_matrix(n: int, step: float) -> Array: +def laplacian(u: GridVariable, scales: Tuple[float] = None) -> GridArray: + """Approximates the Laplacian of `u`.""" + if scales is None: + scales = tuple(1/s**2 for s in u.grid.step) + + result = -2 * u.array * sum(scales) + for axis in range(u.grid.ndim): + result += stencil_sum(u.shift(-1, axis), u.shift(+1, axis)) * scales[axis] + return result + +def set_laplacian_matrix(grid: grids.Grid, bc: Sequence[boundaries.BoundaryConditions], device: Optional[torch.device] = None) -> ArrayVector: + """Initialize the Laplacian operators.""" + + offset = grid.cell_center + return laplacian_matrix_w_boundaries(grid, offset=offset, bc=bc, device=device) + + +def laplacian_matrix(n: int, step: float, sparse:bool = False) -> torch.Tensor: """ Create 1D Laplacian operator matrix, with periodic BC. modified the scipy.linalg.circulant implementation to native torch """ - column = torch.zeros(n) - column[0] = -2 / step**2 - column[1] = column[-1] = 1 / step**2 - idx = (n - torch.arange(n)[None].T + torch.arange(n)[None]) % n - return torch.gather(column[None, ...].expand(n, -1), 1, idx) + if sparse: + values = torch.tensor([1.0, -2.0, 1.0]) / step**2 + idx_row = torch.arange(n).repeat(3) + idx_col = torch.cat( + [ + (torch.arange(n) - 1) % n, # left neighbor (wrap around) + torch.arange(n), # center + (torch.arange(n) + 1) % n, # right neighbor (wrap around) + ] + ) + + indices = torch.stack([idx_row, idx_col]) + data = torch.cat( + [values[0].repeat(n), values[1].repeat(n), values[2].repeat(n)] + ) + return torch.sparse_coo_tensor(indices, data, size=(n, n)) + else: + column = torch.zeros(n) + column[0] = -2 / step**2 + column[1] = column[-1] = 1 / step**2 + idx = (n - torch.arange(n)[None].T + torch.arange(n)[None]) % n + return torch.gather(column[None, ...].expand(n, -1), 1, idx) + + +def _laplacian_boundary_dirichlet_cell_centered( + laplacians: ArrayVector, grid: grids.Grid, axis: int, side: str +) -> None: + """Converts 1d laplacian matrix to satisfy dirichlet homogeneous bc. + + laplacians[i] contains a 3 point stencil matrix L that approximates + d^2/dx_i^2. + For detailed documentation on laplacians input type see + array_utils.laplacian_matrix. + The default return of array_utils.laplacian_matrix makes a matrix for + periodic boundary. For dirichlet boundary, the correct equation is + L(u_interior) = rhs_interior and BL_boundary = u_fixed_boundary. So + laplacian_boundary_dirichlet restricts the matrix L to + interior points only. + + This function assumes RHS has cell-centered offset. + Args: + laplacians: list of 1d laplacians + grid: grid object + axis: axis along which to impose dirichlet bc. + side: lower or upper side to assign boundary to. + + Returns: + updated list of 1d laplacians. + """ + # This function assumes homogeneous boundary, in which case if the offset + # is 0.5 away from the wall, the ghost cell value u[0] = -u[1]. So the + # 3 point stencil [1 -2 1] * [u[0] u[1] u[2]] = -3 u[1] + u[2]. + if side == "lower": + laplacians[axis][0, 0] = laplacians[axis][0, 0] - 1 / grid.step[axis] ** 2 + else: + laplacians[axis][-1, -1] = laplacians[axis][-1, -1] - 1 / grid.step[axis] ** 2 + # deletes corner dependencies on the "looped-around" part. + # this should be done irrespective of which side, since one boundary cannot + # be periodic while the other is. + laplacians[axis][0, -1] = 0.0 + laplacians[axis][-1, 0] = 0.0 + return laplacians + + +def _laplacian_boundary_neumann_cell_centered( + laplacians: List[Any], grid: grids.Grid, axis: int, side: str +) -> None: + """Converts 1d laplacian matrix to satisfy neumann homogeneous bc. + + This function assumes the RHS will have a cell-centered offset. + Neumann boundaries are not defined for edge-aligned offsets elsewhere in the + code. + + Args: + laplacians: list of 1d laplacians + grid: grid object + axis: axis along which to impose dirichlet bc. + side: which boundary side to convert to neumann homogeneous bc. + + Returns: + updated list of 1d laplacians. + """ + if side == "lower": + laplacians[axis][0, 0] = laplacians[axis][0, 0] + 1 / grid.step[axis] ** 2 + else: + laplacians[axis][-1, -1] = laplacians[axis][-1, -1] + 1 / grid.step[axis] ** 2 + # deletes corner dependencies on the "looped-around" part. + # this should be done irrespective of which side, since one boundary cannot + # be periodic while the other is. + laplacians[axis][0, -1] = 0.0 + laplacians[axis][-1, 0] = 0.0 + return laplacians + + +def laplacian_matrix_w_boundaries( + grid: grids.Grid, + offset: Tuple[float, ...], + bc: grids.BoundaryConditions, + laplacians: Optional[ArrayVector] = None, + device: Optional[torch.device] = None, + sparse: bool = False, +) -> ArrayVector: + """Returns 1d laplacians that satisfy boundary conditions bc on grid. + + Given grid, offset and boundary conditions, returns a list of 1 laplacians + (one along each axis). + + Currently, only homogeneous or periodic boundary conditions are supported. + + Args: + grid: The grid used to construct the laplacian. + offset: The offset of the variable on which laplacian acts. + bc: the boundary condition of the variable on which the laplacian acts. + + Returns: + A list of 1d laplacians. + """ + if not isinstance(bc, boundaries.ConstantBoundaryConditions): + raise NotImplementedError(f"Explicit laplacians are not implemented for {bc}.") + if laplacians is None: + laplacians = list(map(laplacian_matrix, grid.shape, grid.step)) + for axis in range(grid.ndim): + if math.isclose(offset[axis], 0.5): + for i, side in enumerate(["lower", "upper"]): # lower and upper boundary + if bc.types[axis][i] == boundaries.BCType.NEUMANN: + _laplacian_boundary_neumann_cell_centered( + laplacians, grid, axis, side + ) + elif bc.types[axis][i] == boundaries.BCType.DIRICHLET: + _laplacian_boundary_dirichlet_cell_centered( + laplacians, grid, axis, side + ) + if math.isclose(offset[axis] % 1, 0.0): + if ( + bc.types[axis][0] == boundaries.BCType.DIRICHLET + and bc.types[axis][1] == boundaries.BCType.DIRICHLET + ): + # This function assumes homogeneous boundary and acts on the interior. + # Thus, the laplacian can be cut off past the edge. + # The interior grid has one fewer grid cell than the actual grid, so + # the size of the laplacian should be reduced. + laplacians[axis] = laplacians[axis][:-1, :-1] + elif boundaries.BCType.NEUMANN in bc.types[axis]: + raise NotImplementedError( + "edge-aligned Neumann boundaries are not implemented." + ) + return list(lap.to(device) for lap in laplacians) if device else laplacians def _linear_along_axis(c: GridVariable, offset: float, axis: int) -> GridVariable: @@ -169,8 +330,8 @@ def _linear_along_axis(c: GridVariable, offset: float, axis: int) -> GridVariabl # If offsets differ by an integer, we can just shift `c`. if int(offset_delta) == offset_delta: - return grids.GridVariable( - array=grids.GridArray( + return GridVariable( + array=GridArray( data=c.shift(int(offset_delta), axis).data, offset=new_offset, grid=c.grid, @@ -178,15 +339,15 @@ def _linear_along_axis(c: GridVariable, offset: float, axis: int) -> GridVariabl bc=c.bc, ) - floor = int(np.floor(offset_delta)) - ceil = int(np.ceil(offset_delta)) + floor = int(math.floor(offset_delta)) + ceil = int(math.ceil(offset_delta)) floor_weight = ceil - offset_delta ceil_weight = 1.0 - floor_weight data = ( floor_weight * c.shift(floor, axis).data + ceil_weight * c.shift(ceil, axis).data ) - return grids.GridVariable(array=grids.GridArray(data, new_offset, c.grid), bc=c.bc) + return GridVariable(array=GridArray(data, new_offset, c.grid), bc=c.bc) def linear( @@ -194,7 +355,7 @@ def linear( offset: Tuple[float, ...], v: Optional[GridVariableVector] = None, dt: Optional[float] = None, -) -> grids.GridVariable: +) -> GridVariable: """Multi-linear interpolation of `c` to `offset`. Args: @@ -231,7 +392,7 @@ def gradient_tensor(v: Sequence[GridVariable]) -> GridArrayTensor: ... def gradient_tensor(v): """Approximates the cell-centered gradient of `v`.""" if not isinstance(v, GridVariable): - return GridArrayTensor(np.stack([gradient_tensor(u) for u in v], axis=-1)) + return GridArrayTensor(torch.stack([gradient_tensor(u) for u in v], dim=-1)) grad = [] for axis in range(v.grid.ndim): offset = v.offset[axis] @@ -252,7 +413,7 @@ def curl_2d(v: Sequence[GridVariable]) -> GridArray: """Approximates the curl of `v` in 2D using forward differences.""" if len(v) != 2: raise ValueError(f"Length of `v` is not 2: {len(v)}") - grid = grids.consistent_grid(*v) + grid = grids.consistent_grid_arrays(*v) if grid.ndim != 2: raise ValueError(f"Grid dimensionality is not 2: {grid.ndim}") return forward_difference(v[1], axis=0) - forward_difference(v[0], axis=1) diff --git a/torch_cfd/forcings.py b/torch_cfd/forcings.py index 9d07306..d1d33a5 100644 --- a/torch_cfd/forcings.py +++ b/torch_cfd/forcings.py @@ -20,17 +20,39 @@ import torch import torch.nn as nn -from . import grids +from torch_cfd import grids + -Array = torch.Tensor Grid = grids.Grid GridArray = grids.GridArray def forcing_eval(eval_func): + """ + A decorator for forcing evaluators. + This decorator simplifies the conversion of a standalone forcing evaluation function + to a method that can be called on a class instance. It standardizes the interface + for forcing functions by ensuring they accept grid and field parameters. + Parameters + ---------- + eval_func : callable + The forcing evaluation function to be decorated. Should accept grid and field parameters + and return a torch.Tensor representing the forcing term. + Returns + ------- + callable + A wrapper function that can be used as a class method for evaluating forcing terms. + The wrapper maintains the same signature as the decorated function but ignores the + class instance (self) parameter. + Examples + -------- + @forcing_eval + def constant_forcing(field, grid): + return torch.ones_like(field) + """ def wrapper( - cls, grid: Grid, field: Optional[Union[Tuple[Array, Array], Array]] - ) -> Array: + cls, grid: Grid, field: Optional[Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]] + ) -> Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]: return eval_func(grid, field) return wrapper @@ -42,13 +64,20 @@ class ForcingFn(nn.Module): Args: vorticity: whether the forcing function is a vorticity forcing + + Notes: + - the grid variable is the first argument in the __call__ so that the second variable can be velocity or vorticity + - forcing term does not have boundary conditions, when being evaluated, it is simply added to the velocity or vorticity (with the same grid) + + TODO: + - [ ] MAC grid the components of velocity does not live on the same grid. """ def __init__( self, grid: Grid, scale: float = 1, - k: int = 1, + wave_number: int = 1, diam: float = 1.0, swap_xy: bool = False, vorticity: bool = False, @@ -59,7 +88,7 @@ def __init__( super().__init__() self.grid = grid self.scale = scale - self.k = k + self.wave_number = wave_number self.diam = diam self.swap_xy = swap_xy self.vorticity = vorticity @@ -67,19 +96,19 @@ def __init__( self.device = grid.device if device is None else device @forcing_eval - def velocity_eval(grid: Grid, velocity: Optional[Tuple[Array, Array]]) -> Array: + def velocity_eval(grid: Grid, velocity: Optional[Tuple[torch.Tensor, torch.Tensor]]) -> Tuple[torch.Tensor, torch.Tensor]: raise NotImplementedError @forcing_eval - def vorticity_eval(grid: Grid, vorticity: Optional[Array]) -> Array: + def vorticity_eval(grid: Grid, vorticity: Optional[torch.Tensor]) -> torch.Tensor: raise NotImplementedError def forward( self, - grid: Optional[Grid], - velocity: Optional[Tuple[Array, Array]] = None, - vorticity: Optional[Array] = None, - ) -> Tuple[Array, Array]: + grid: Optional[Union[Grid, Tuple[Grid, Grid]]] = None, + velocity: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + vorticity: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: if not self.vorticity: return self.velocity_eval(grid, velocity) else: @@ -129,8 +158,8 @@ def __init__( def velocity_eval( self, grid: Optional[Grid], - velocity: Optional[Tuple[Array, Array]] = None, - ) -> Tuple[Array, Array]: + velocity: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: offsets = self.offsets grid = self.grid if grid is None else grid domain_factor = 2 * torch.pi / self.diam @@ -138,24 +167,22 @@ def velocity_eval( if self.swap_xy: x = grid.mesh(offsets[1])[0] v = GridArray( - self.scale * torch.sin(self.k * domain_factor * x), offsets[1], grid + self.scale * torch.sin(self.wave_number * domain_factor * x), offsets[1], grid ) u = GridArray(torch.zeros_like(v.data), (1, 1 / 2), grid) - f = (u, v) else: y = grid.mesh(offsets[0])[1] u = GridArray( - self.scale * torch.sin(self.k * domain_factor * y), offsets[0], grid + self.scale * torch.sin(self.wave_number * domain_factor * y), offsets[0], grid ) v = GridArray(torch.zeros_like(u.data), (1 / 2, 1), grid) - f = (u, v) - return f + return tuple((u, v)) def vorticity_eval( self, grid: Optional[Grid], - vorticity: Optional[Array] = None, - ) -> Array: + vorticity: Optional[torch.Tensor] = None, + ) -> torch.Tensor: offsets = self.offsets grid = self.grid if grid is None else grid domain_factor = 2 * torch.pi / self.diam @@ -164,9 +191,9 @@ def vorticity_eval( x = grid.mesh(offsets[1])[0] w = GridArray( -self.scale - * self.k + * self.wave_number * domain_factor - * torch.cos(self.k * domain_factor * x), + * torch.cos(self.wave_number * domain_factor * x), offsets[1], grid, ) @@ -174,9 +201,9 @@ def vorticity_eval( y = grid.mesh(offsets[0])[1] w = GridArray( -self.scale - * self.k + * self.wave_number * domain_factor - * torch.cos(self.k * domain_factor * y), + * torch.cos(self.wave_number * domain_factor * y), offsets[0], grid, ) @@ -184,7 +211,7 @@ def vorticity_eval( def scalar_potential(potential_func): - def wrapper(cls, x: Array, y: Array, s: float, k: float) -> Array: + def wrapper(cls, x: torch.Tensor, y: torch.Tensor, s: float, k: float) -> torch.Tensor: return potential_func(x, y, s, k) return wrapper @@ -215,30 +242,30 @@ def __init__( *args, scale=scale, diam=diam, - k=k, + wave_number=k, offsets=offsets, vorticity=vorticity, **kwargs, ) @scalar_potential - def potential(*args, **kwargs) -> Array: + def potential(*args, **kwargs) -> torch.Tensor: raise NotImplementedError @scalar_potential - def vort_potential(*args, **kwargs) -> Array: + def vort_potential(*args, **kwargs) -> torch.Tensor: raise NotImplementedError def velocity_eval( self, grid: Optional[Grid], - velocity: Optional[Tuple[Array, Array]] = None, - ) -> Tuple[Array, Array]: + velocity: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + ) -> Tuple[torch.Tensor, torch.Tensor]: offsets = self.offsets grid = self.grid if grid is None else grid domain_factor = 2 * torch.pi / self.diam - k = self.k * domain_factor - scale = 0.5 * self.scale / (2 * torch.pi) / self.k + k = self.wave_number * domain_factor + scale = 0.5 * self.scale / (2 * torch.pi) / self.wave_number if self.swap_xy: x = grid.mesh(offsets[1])[0] @@ -246,25 +273,23 @@ def velocity_eval( rot = self.potential(x, y, scale, k) v = GridArray(rot, offsets[1], grid) u = GridArray(-rot, (1, 1 / 2), grid) - f = (u, v) else: x = grid.mesh(offsets[0])[0] y = grid.mesh(offsets[1])[1] rot = self.potential(x, y, scale, k) u = GridArray(rot, offsets[0], grid) v = GridArray(-rot, (1 / 2, 1), grid) - f = (u, v) - return f + return tuple((u, v)) def vorticity_eval( self, grid: Optional[Grid], - vorticity: Optional[Array] = None, - ) -> Array: + vorticity: Optional[torch.Tensor] = None, + ) -> torch.Tensor: offsets = self.offsets grid = self.grid if grid is None else grid domain_factor = 2 * torch.pi / self.diam - k = self.k * domain_factor + k = self.wave_number * domain_factor scale = self.scale if self.swap_xy: @@ -316,9 +341,9 @@ def __init__( ) @scalar_potential - def potential(x: Array, y: Array, s: float, k: float) -> Array: + def potential(x: torch.Tensor, y: torch.Tensor, s: float, k: float) -> torch.Tensor: return s * (torch.sin(k * (x + y)) - torch.cos(k * (x + y))) @scalar_potential - def vort_potential(x: Array, y: Array, s: float, k: float) -> Array: + def vort_potential(x: torch.Tensor, y: torch.Tensor, s: float, k: float) -> torch.Tensor: return s * (torch.cos(k * (x + y)) + torch.sin(k * (x + y))) diff --git a/torch_cfd/fvm.py b/torch_cfd/fvm.py new file mode 100644 index 0000000..043ccb8 --- /dev/null +++ b/torch_cfd/fvm.py @@ -0,0 +1,580 @@ +# Copyright 2021 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications copyright (C) 2025 S.Cao +# ported Google's Jax-CFD functional template to PyTorch's tensor ops + + +from typing import Callable, Dict, List, Optional, Sequence, Tuple + +import torch +import torch.nn as nn + +import torch_cfd.finite_differences as fdm +import torch_cfd.interpolation as interpolation +from torch_cfd import boundaries, forcings, grids, pressure + + +Grid = grids.Grid +GridArray = grids.GridArray +GridArrayVector = grids.GridArrayVector +GridVariable = grids.GridVariable +GridVariableVector = grids.GridVariableVector +InterpolationFn = Callable[ + [GridVariable, Tuple[float, ...], GridVariableVector, float], GridVariable +] +ForcingFn = forcings.ForcingFn + + +def _advect_aligned(cs: GridVariableVector, v: GridVariableVector) -> GridArray: + """Computes fluxes and the associated advection for aligned `cs` and `v`. + + The values `cs` should consist of a single quantity `c` that has been + interpolated to the offset of the components of `v`. The components of `v` and + `cs` should be located at the faces of a single (possibly offset) grid cell. + We compute the advection as the divergence of the flux on this control volume. + + The boundary condition on the flux is inherited from the scalar quantity `c`. + + A typical example in three dimensions would have + + ``` + cs[0].offset == v[0].offset == (1., .5, .5) + cs[1].offset == v[1].offset == (.5, 1., .5) + cs[2].offset == v[2].offset == (.5, .5, 1.) + ``` + + In this case, the returned advection term would have offset `(.5, .5, .5)`. + + Args: + cs: a sequence of `GridArray`s; a single value `c` that has been + interpolated so that it is aligned with each component of `v`. + v: a sequence of `GridArrays` describing a velocity field. Should be defined + on the same Grid as cs. + + Returns: + An `GridArray` containing the time derivative of `c` due to advection by + `v`. + + Raises: + ValueError: `cs` and `v` have different numbers of components. + AlignmentError: if the components of `cs` are not aligned with those of `v`. + """ + # TODO(jamieas): add more sophisticated alignment checks, ensuring that the + # values are located on the faces of a control volume. + if len(cs) != len(v): + raise ValueError( + "`cs` and `v` must have the same length;" f"got {len(cs)} vs. {len(v)}." + ) + flux = GridArrayVector(tuple(c.array * u.array for c, u in zip(cs, v))) + bcs = tuple( + boundaries.get_advection_flux_bc_from_velocity_and_scalar(v[i], cs[i], i) + for i in range(len(v)) + ) + flux = GridVariableVector(tuple(bc.impose_bc(f) for f, bc in zip(flux, bcs))) + return -fdm.divergence(flux) + + +def advect_general( + c: GridVariable, + v: GridVariableVector, + u_interpolation_fn: InterpolationFn, + c_interpolation_fn: InterpolationFn, + dt: Optional[float] = None, +) -> GridArray: + """Computes advection of a scalar quantity `c` by the velocity field `v`. + + This function follows the following procedure: + + 1. Interpolate each component of `v` to the corresponding face of the + control volume centered on `c`. + 2. Interpolate `c` to the same control volume faces. + 3. Compute the flux `cu` using the aligned values. + 4. Set the boundary condition on flux, which is inhereited from `c`. + 5. Return the negative divergence of the flux. + + Args: + c: the quantity to be transported. + v: a velocity field. Should be defined on the same Grid as c. + u_interpolation_fn: method for interpolating velocity field `v`. + c_interpolation_fn: method for interpolating scalar field `c`. + dt: unused time-step. + + Returns: + The time derivative of `c` due to advection by `v`. + """ + if not boundaries.has_all_periodic_boundary_conditions(c): + raise NotImplementedError( + "Non-periodic boundary conditions are not implemented." + ) + target_offsets = grids.control_volume_offsets(c) + aligned_v = GridVariableVector( + tuple( + u_interpolation_fn(u, target_offset, v, dt) + for u, target_offset in zip(v, target_offsets) + ) + ) + aligned_c = GridVariableVector( + tuple( + c_interpolation_fn(c, target_offset, aligned_v, dt) + for target_offset in target_offsets + ) + ) + return _advect_aligned(aligned_c, aligned_v) + + +def advect_van_leer_using_limiters( + c: GridVariable, v: GridVariableVector, dt: float +) -> GridArray: + """Implements Van-Leer advection by applying TVD limiter to Lax-Wendroff.""" + c_interpolation_fn = interpolation.apply_tvd_limiter( + interpolation.lax_wendroff, limiter=interpolation.van_leer_limiter + ) + return advect_general(c, v, interpolation.linear, c_interpolation_fn, dt) + + +def convect(v, dt): + return GridArrayVector(tuple(advect_van_leer_using_limiters(u, v, dt) for u in v)) + + +def diffuse(w: GridVariable, nu: float) -> GridArray: + """Returns the rate of change in a concentration `c` due to diffusion.""" + return nu * fdm.laplacian(w) + + +def diffuse_velocity(v, *args): + return GridArrayVector(tuple(diffuse(u, *args) for u in v)) + + +def wrap_field_same_bcs(v, field_ref): + return GridVariableVector( + tuple(GridVariable(a, w.bc) for a, w in zip(v, field_ref)) + ) + + +class ProjectionExplicitODE(nn.Module): + r"""Navier-Stokes equation in 2D with explicit stepping and a pressure projection (discrete Helmholtz decomposition by modding the gradient of a Laplacian inverse of the extra divergence). + + \partial u/ \partial t = explicit_terms(u) + u <- pressure_projection(u) + """ + + def explicit_terms(self, *, u): + """ + Explicit forcing term as du/dt. + * allows extra arguments to be passed. + """ + raise NotImplementedError + + def pressure_projection(self, *, u): + raise NotImplementedError + + def forward(self, u: GridVariableVector, dt: float) -> GridVariableVector: + """Perform one time step. + + Args: + u: Initial state (velocity field) + dt: Time step size + + Returns: + Updated velocity field after one time step + """ + raise NotImplementedError + + +class RKStepper(nn.Module): + """Base class for Explicit Runge-Kutta stepper. + + Input: + tableau: Butcher tableau (a, b) for the Runge-Kutta method as a dictionary + method: String name of built-in RK method if tableau not provided + + Examples: + stepper = RKStepper.from_name("classic_rk4", equation, ...) + """ + + _METHOD_MAP = { + "forward_euler": {"a": [], "b": [1.0]}, + "midpoint": {"a": [[1 / 2]], "b": [0, 1.0]}, + "heun_rk2": {"a": [[1.0]], "b": [1 / 2, 1 / 2]}, + "classic_rk4": { + "a": [[1 / 2], [0.0, 1 / 2], [0.0, 0.0, 1.0]], + "b": [1 / 6, 1 / 3, 1 / 3, 1 / 6], + }, + } + + def __init__( + self, + tableau: Optional[Dict[str, List]] = None, + method: str = None, + dtype: Optional[torch.dtype] = torch.float32, + requires_grad=False, + **kwargs, + ): + super().__init__() + + self._tableau = None + self._method = None + self.dtype = dtype + self.requires_grad = requires_grad + + # Set the tableau, either directly or from method name + if tableau is not None: + self.tableau = tableau + else: + self.method = method + # print("Using Butcher tableau:") + # print("\n".join([f"{k}: {v}" for k, v in self._tableau.items()])) + self._set_params(self._tableau) + + @property + def method(self): + """Get the current Runge-Kutta method name.""" + return self._method + + @method.setter + def method(self, name: str): + """Set the tableau based on the method name.""" + if name not in self._METHOD_MAP: + raise ValueError(f"Unknown RK method: {name}") + self._method = name + self._tableau = self._METHOD_MAP[name] + + @property + def tableau(self): + """Get the current tableau.""" + return self._tableau + + @tableau.setter + def tableau(self, tab: Dict[str, List]): + """Set the tableau directly.""" + self._tableau = tab + self._method = None # Clear method name when setting tableau directly + + def _set_params(self, tableau: Dict[str, List]): + """Set the parameters of the Butcher tableau.""" + a, b = tableau["a"], tableau["b"] + if a.__len__() + 1 != b.__len__(): + raise ValueError("Inconsistent Butcher tableau: len(a) + 1 != len(b)") + self.params = nn.ParameterDict() + self.params["a"] = nn.ParameterList() + for a_ in a: + self.params["a"].append( + nn.Parameter( + torch.tensor(a_, dtype=self.dtype, requires_grad=self.requires_grad) + ) + ) + self.params["b"] = nn.Parameter( + torch.tensor(b, dtype=self.dtype, requires_grad=self.requires_grad) + ) + + @classmethod + def from_method( + cls, method: str = "forward_euler", requires_grad: bool = False, **kwargs + ): + """Factory method to create an RKStepper by name.""" + return cls(method=method, requires_grad=requires_grad, **kwargs) + + def forward( + self, u0: GridVariableVector, dt: float, equation: ProjectionExplicitODE + ) -> GridVariableVector: + """Perform one time step. + + Args: + u0: Initial state (velocity field) + dt: Time step size + equation: The ODE to solve + + Returns: + Updated velocity field after one time step + """ + alpha = self.params["a"] + beta = self.params["b"] + num_steps = len(beta) + + u = [None] * num_steps + k = [None] * num_steps + + # First stage + u[0] = u0 + k[0] = equation.explicit_terms(u0, dt) + + # Intermediate stages + for i in range(1, num_steps): + u_star = GridVariableVector(tuple(v.clone() for v in u0)) + + for j in range(i): + if alpha[i - 1][j] != 0: + u_star = u_star + dt * alpha[i - 1][j] * k[j] + + u[i] = equation.pressure_projection(u_star) + k[i] = equation.explicit_terms(u[i], dt) + + u_star = GridVariableVector(tuple(v.clone() for v in u0)) + for j in range(num_steps): + if beta[j] != 0: + u_star = u_star + dt * beta[j] * k[j] + + u_final = equation.pressure_projection(u_star) + + return u_final + + +class NavierStokes2DFVMProjection(ProjectionExplicitODE): + r"""incompressible Navier-Stokes velocity pressure formulation + + Runge-Kutta time stepper for the NSE discretized using a MAC grid FVM with a pressure projection Chorin's method. The x- and y-dofs of the velocity + are on a staggered grid, which is reflected in the offset attr. + + Original implementation in Jax-CFD repository: + + - semi_implicit_navier_stokes in jax_cfd.base.fvm which returns a stepper function `time_stepper(ode, dt)` where `ode` specifies the explicit terms and the pressure projection. + - The time_stepper is a wrapper function by jax.named_call( + navier_stokes_rk()) that implements the various Runge-Kutta method according to the Butcher tableau. + - navier_stokes_rk() implements Runge-Kutta time-stepping for the NSE using the explicit terms and pressure projection with equation as an input where user needs to specify the explicit terms and pressure projection. + + (Original reference listed in Jax-CFD) + This class implements the reference method (equations 16-21) from: + "Fast-Projection Methods for the Incompressible Navier-Stokes Equations" + Fluids 2020, 5, 222; doi:10.3390/fluids5040222 + """ + + def __init__( + self, + viscosity: float, + grid: Grid, + bcs: Optional[Sequence[boundaries.BoundaryConditions]] = None, + drag: float = 0.0, + density: float = 1.0, + convect: Callable = convect, + forcing: Optional[ForcingFn] = None, + solver: RKStepper = None, + **kwargs, + ): + """ + Args: + tableau: Tuple (a, b) where a is the coefficient matrix (list of lists of floats) + and b is the weight vector (list of floats) + equation: Navier-Stokes equation to solve + requires_grad: Whether parameters should be trainable + """ + super().__init__() + self.viscosity = viscosity + self.density = density + self.grid = grid + self.bcs = bcs + self.drag = drag + self.convect = convect + self.forcing = forcing + self.solver = solver + self._set_pressure_bc() + self._projection = pressure.PressureProjection( + grid=grid, + bc=self.pressure_bc, + ) + + def _set_pressure_bc(self): + + if self.bcs is None: + self.bcs = [ + boundaries.HomogeneousBoundaryConditions( + ( + (boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC), + (boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC), + ) + ) + ] * self.grid.ndim + self.pressure_bc = boundaries.get_pressure_bc_from_velocity_bc(bcs=self.bcs) + + def _explicit_terms(self, v, dt, **kwargs): + dv_dt = self.convect(v, dt) + grid = self.grid + viscosity = self.viscosity + density = self.density + forcing = self.forcing + dv_dt += diffuse_velocity(v, viscosity / density) + if forcing is not None: + dv_dt += GridArrayVector(forcing(grid, v)) / density + dv_dt = wrap_field_same_bcs(dv_dt, v) + if self.drag > 0.0: + dv_dt += -self.drag * v + return dv_dt + + def explicit_terms(self, *args, **kwargs): + return self._explicit_terms(*args, **kwargs) + + def pressure_projection(self, *args, **kwargs): + return self._projection(*args, **kwargs) + + def forward(self, u: GridVariableVector, dt: float) -> GridVariableVector: + """Perform one time step. + + Args: + u: Initial state (velocity field) + dt: Time step size + + Returns: + Updated velocity field after one time step + """ + + return self.solver(u, dt, self) + + +def advect_van_leer( + c: GridVariable, + v: GridVariableVector, + dt: float, + mode: str, +) -> GridArray: + """ + TODO: + - [ ] NOT YET IMPLEMENTED in Jax_CFD original + + + Computes advection of a scalar quantity `c` by the velocity field `v`. + + Implements Van-Leer flux limiting scheme that uses second order accurate + approximation of fluxes for smooth regions of the solution. This scheme is + total variation diminishing (TVD). For regions with high gradients flux + limitor transformes the scheme into a first order method. For [1] for + reference. This function follows the following procedure: + + 1. Shifts c to offset < 1 if necessary. + 2. Scalar c now has a well defined right-hand (upwind) value. + 3. Computes upwind flux for each direction. + 4. Computes van leer flux limiter: + a. Use the shifted c to interpolate each component of `v` to the + right-hand (upwind) face of the control volume centered on `c`. + b. Compute the ratio of successive gradients: + In nonperiodic case, the value outside the boundary is not defined. + Mode is used to interpolate past the boundary. + c. Compute flux limiter function. + d. Computes higher order flux correction. + 5. Combines fluxes and assigns flux boundary condition. + 6. Computes the negative divergence of fluxes. + 7. Shifts the computed values back to original offset of c. + + Args: + c: the quantity to be transported. + v: a velocity field. Should be defined on the same Grid as c. + dt: time step for which this scheme is TVD and second order accurate + in time. + mode: For non-periodic BC, specifies extrapolation of values beyond the + boundary, which is used by nonlinear interpolation. + + Returns: + The time derivative of `c` due to advection by `v`. + + #### References + + [1]: MIT 18.336 spring 2009 Finite Volume Methods Lecture 19. + go/mit-18.336-finite_volume_methods-19 + [2]: + www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/Chapter_4.pdf + + """ + # TODO(dkochkov) reimplement this using apply_limiter method. + c_left_var = c + # if the offset is 1., shift by 1 to offset 0. + # otherwise c_right is not defined. + for ax in range(c.grid.ndim): + # int(c.offset[ax] % 1 - c.offset[ax]) = -1 if c.offset[ax] is 1 else + # int(c.offset[ax] % 1 - c.offset[ax]) = 0. + # i.e. this shifts the 1 aligned data to 0 offset, the rest is unchanged. + c_left_var = c.bc.impose_bc( + c_left_var.shift(int(c.offset[ax] % 1 - c.offset[ax]), axis=ax) + ) + offsets = grids.control_volume_offsets(c_left_var) + # if c offset is 0, aligned_v is at 0.5. + # if c offset is at .5, aligned_v is at 1. + aligned_v = tuple(interpolation.linear(u, offset) for u, offset in zip(v, offsets)) + flux = [] + # Assign flux boundary condition + flux_bc = [ + grids.get_advection_flux_bc_from_velocity_and_scalar(u, c, direction) + for direction, u in enumerate(v) + ] + # first, compute upwind flux. + for axis, u in enumerate(aligned_v): + c_center = c_left_var.data + # by shifting c_left + 1, c_right is well-defined. + c_right = c_left_var.shift(+1, axis=axis).data + upwind_flux = grids.applied(torch.where)( + u.array > 0, u.array * c_center, u.array * c_right + ) + flux.append(upwind_flux) + # next, compute van_leer correction. + for axis, (u, h) in enumerate(zip(aligned_v, c.grid.step)): + u = u.bc.shift(u.array, int(u.offset[axis] % 1 - u.offset[axis]), axis=axis) + # c is put to offset .5 or 1. + c_center_arr = c.shift(int(1 - c.offset[ax]), axis=ax) + # if c offset is 1, u offset is .5. + # if c offset is .5, u offset is 0. + # u_i is always on the left of c_center_var_i + c_center = c_center_arr.data + # shift -1 are well defined now + # shift +1 is not well defined for c offset 1 because then c(wall + 1) is + # not defined. + # However, the flux that uses c(wall + 1) offset gets overridden anyways + # when flux boundary condition is overridden. + # Thus, any mode can be used here. + c_right = c.bc.shift(c_center_arr, +1, axis=axis, mode=mode).data + c_left = c.bc.shift(c_center_arr, -1, axis=axis).data + # shift -2 is tricky: + # It is well defined if c is periodic. + # Else, c(-1) or c(-1.5) are not defined. + # Then, mode is used to interpolate the values. + c_left_left = c.bc.shift(c_center_arr, -2, axis, mode=mode).data + + numerator_positive = c_left - c_left_left + numerator_negative = c_right - c_center + numerator = grids.applied(torch.where)( + u > 0, numerator_positive, numerator_negative + ) + denominator = grids.GridArray(c_center - c_left, u.offset, u.grid) + # We want to calculate denominator / (abs(denominator) + abs(numerator)) + # To make it differentiable, it needs to be done in stages. + + # ensures that there is no division by 0 + phi_van_leer_denominator_avoid_nans = grids.applied(torch.where)( + abs(denominator) > 0, (abs(denominator) + abs(numerator)), 1.0 + ) + + phi_van_leer_denominator_inv = denominator / phi_van_leer_denominator_avoid_nans + + phi_van_leer = ( + numerator + * ( + grids.applied(torch.sign)(denominator) + + grids.applied(torch.sign)(numerator) + ) + * phi_van_leer_denominator_inv + ) + abs_velocity = abs(u) + courant_numbers = (dt / h) * abs_velocity + pre_factor = 0.5 * (1 - courant_numbers) * abs_velocity + flux_correction = pre_factor * phi_van_leer + # Shift back onto original offset. + flux_correction = flux_bc[axis].shift( + flux_correction, int(offsets[axis][axis] - u.offset[axis]), axis=axis + ) + flux[axis] += flux_correction + flux = tuple(flux_bc[axis].impose_bc(f) for axis, f in enumerate(flux)) + advection = -fdm.divergence(flux) + # shift the variable back onto the original offset + for ax in range(c.grid.ndim): + advection = c.bc.shift( + advection, -int(c.offset[ax] % 1 - c.offset[ax]), axis=ax + ) + return advection diff --git a/torch_cfd/grids.py b/torch_cfd/grids.py index bbec738..d9e2eb8 100644 --- a/torch_cfd/grids.py +++ b/torch_cfd/grids.py @@ -13,7 +13,7 @@ # limitations under the License. # Modifications copyright (C) 2024 S.Cao -# ported Google's Jax-CFD functional template to PyTorch's tensor ops +# ported Google's Jax-CFD functional template to torch.Tensor operations from __future__ import annotations @@ -21,29 +21,16 @@ import math import numbers import operator -from functools import partial, reduce -from typing import Any, Callable, Optional, Sequence, Tuple, Union +from typing import Callable, Optional, Sequence, Tuple, Union -import numpy as np import torch import torch.fft as fft -import torch.nn as nn -import torch.nn.functional as F -try: - from torch.utils._pytree import register_pytree_node -except: - from torch.utils._pytree import _register_pytree_node as register_pytree_node -from .tensor_utils import split_along_axis +from torch_cfd import tensor_utils -Array = torch.Tensor - -class BCType: - PERIODIC = "periodic" - DIRICHLET = "dirichlet" - NEUMANN = "neumann" +_HANDLED_TYPES = (numbers.Number, torch.Tensor) @dataclasses.dataclass(init=False, frozen=True) @@ -133,17 +120,19 @@ def cell_faces(self) -> Tuple[Tuple[float, ...]]: offsets = (torch.eye(d) + torch.ones([d, d])) / 2.0 return tuple(tuple(float(o) for o in offset) for offset in offsets) - def stagger(self, v: Tuple[Array, ...]) -> Tuple[Array, ...]: + def stagger(self, v: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor, ...]: """Places the velocity components of `v` on the `Grid`'s cell faces.""" offsets = self.cell_faces return tuple(GridArray(u, o, self) for u, o in zip(v, offsets)) - def center(self, v: Tuple[Array, ...]) -> Tuple[Array, ...]: + def center(self, v: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor, ...]: """Places all arrays in the pytree `v` at the `Grid`'s cell center.""" offset = self.cell_center return lambda u: GridArray(u, offset, self), v - def axes(self, offset: Optional[Sequence[float]] = None) -> Tuple[Array, ...]: + def axes( + self, offset: Optional[Sequence[float]] = None + ) -> Tuple[torch.Tensor, ...]: """Returns a tuple of arrays containing the grid points along each axis. Args: @@ -167,7 +156,7 @@ def axes(self, offset: Optional[Sequence[float]] = None) -> Tuple[Array, ...]: ) ) - def fft_axes(self) -> Tuple[Array, ...]: + def fft_axes(self) -> Tuple[torch.Tensor, ...]: """Returns the ordinal frequencies corresponding to the axes. Transforms each axis into the *ordinal* frequencies for the Fast Fourier @@ -183,7 +172,7 @@ def fft_axes(self) -> Tuple[Array, ...]: def mesh( self, offset: Optional[Sequence[float]] = None, - ) -> Tuple[Array, ...]: + ) -> Tuple[torch.Tensor, ...]: """Returns an tuple of arrays containing positions in each grid cell. Args: @@ -199,21 +188,21 @@ def mesh( x, y = torch.meshgrid(*axes, indexing="ij") return x.to(self.device), y.to(self.device) - def fft_mesh(self) -> Tuple[Array, ...]: + def fft_mesh(self) -> Tuple[torch.Tensor, ...]: """Returns a tuple of arrays containing positions in Fourier space.""" fft_axes = self.fft_axes() kx, ky = torch.meshgrid(*fft_axes, indexing="ij") return kx.to(self.device), ky.to(self.device) - def rfft_mesh(self) -> Tuple[Array, ...]: + def rfft_mesh(self) -> Tuple[torch.Tensor, ...]: """Returns a tuple of arrays containing positions in rfft space.""" fft_mesh = self.fft_mesh() k_max = math.floor(self.shape[-1] / 2.0) return tuple(fmesh[..., : k_max + 1] for fmesh in fft_mesh) def eval_on_mesh( - self, fn: Callable[..., Array], offset: Optional[Sequence[float]] = None - ) -> Array: + self, fn: Callable[..., torch.Tensor], offset: Optional[Sequence[float]] = None + ) -> torch.Tensor: """Evaluates the function on the grid mesh with the specified offset. Args: @@ -229,8 +218,115 @@ def eval_on_mesh( return GridArray(fn(*self.mesh(offset)), offset, self) +def _binary_method(name, op): + """ + Implement a forward binary method with an operator. + see np.lib.mixins.NDArrayOperatorsMixin + + Notes: because GridArray is a subclass of torch.Tensor, we need to check + if the other operand is a GridArray first, otherwise, isinstance(other, _HANDLED_TYPES) will return True as well, which is not what we want as + there will be no offset in the other operand. + """ + + def method(self, other): + if isinstance(other, GridArray): + if self.offset != other.offset: + raise ValueError( + f"Cannot operate on arrays with different offsets: {self.offset} vs {other.offset}" + ) + return GridArray(op(self.data, other.data), self.offset, self.grid) + elif isinstance(other, _HANDLED_TYPES): + return GridArray(op(self.data, other), self.offset, self.grid) + + return NotImplemented + + method.__name__ = f"__{name}__" + return method + + +def _reflected_binary_method(name, op): + """Implement a reflected binary method with an operator.""" + + def method(self, other): + if isinstance(other, GridArray): + if self.offset != other.offset: + raise ValueError( + f"Cannot operate on arrays with different offsets: {self.offset} vs {other.offset}" + ) + return GridArray(op(other.data, self.data), self.offset, self.grid) + elif isinstance(other, _HANDLED_TYPES): + return GridArray(op(other, self.data), self.offset, self.grid) + + return NotImplemented + + method.__name__ = f"__r{name}__" + return method + + +def _inplace_binary_method(name, op): + """Implement an in-place binary method with an operator.""" + + def method(self, other): + if isinstance(other, GridArray): + if self.offset != other.offset: + raise ValueError( + f"Cannot operate on arrays with different offsets: {self.offset} vs {other.offset}" + ) + self.data = op(self.data, other.data) + return self + elif isinstance(other, _HANDLED_TYPES): + self.data = op(self.data, other) + return self + + return NotImplemented + + method.__name__ = f"__i{name}__" + return method + + +def _numeric_methods(name, op): + """Implement forward, reflected and inplace binary methods with an operator.""" + return ( + _binary_method(name, op), + _reflected_binary_method(name, op), + _inplace_binary_method(name, op), + ) + + +def _unary_method(name, op): + def method(self): + return GridArray(op(self.data), self.offset, self.grid) + + method.__name__ = f"__i{name}__" + return method + + +class GridArrayOperatorsMixin: + + __slots__ = () + + __lt__ = _binary_method("lt", operator.lt) + __le__ = _binary_method("le", operator.le) + __eq__ = _binary_method("eq", operator.eq) + __ne__ = _binary_method("ne", operator.ne) + __gt__ = _binary_method("gt", operator.gt) + __ge__ = _binary_method("ge", operator.ge) + + __add__, __radd__, __iadd__ = _numeric_methods("add", lambda x, y: x + y) + __sub__, __rsub__, __isub__ = _numeric_methods("sub", lambda x, y: x - y) + __mul__, __rmul__, __imul__ = _numeric_methods("mul", lambda x, y: x * y) + __truediv__, __rtruediv__, __itruediv__ = _numeric_methods( + "div", lambda x, y: x / y + ) + + # # Unary methods, ~ operator is not implemented + __neg__ = _unary_method("neg", operator.neg) + __pos__ = _unary_method("pos", operator.pos) + __abs__ = _unary_method("abs", operator.abs) + + @dataclasses.dataclass -class GridArray(torch.Tensor): +class GridArray(GridArrayOperatorsMixin): """ the original jax implentation uses np.lib.mixins.NDArrayOperatorsMixin and the __array_ufunc__ method to implement arithmetic operations @@ -248,11 +344,16 @@ class GridArray(torch.Tensor): offset=(1, 0.5) is centered on the right-side edge. Attributes: - data: array values. + data: torch.Tensor values. offset: alignment location of the data with respect to the grid. grid: the Grid associated with the array data. dtype: type of the array data. shape: lengths of the array dimensions. + + Porting note: + - defining __init__() or using super().__init__() will cause a recursive loop not sure why. + - Mixin defining all operator special methods using __torch_function__. Some integer-based operations are not implemented. + The implementation refers to that of np.lib.mixins.NDArrayOperatorsMixin """ # Don't (yet) enforce any explicit consistency requirements between data.ndim @@ -261,19 +362,28 @@ class GridArray(torch.Tensor): # Also don't enforce explicit consistency between data.shape and grid.shape, # but similarly they should probably match. - data: Array = None + data: torch.Tensor = None offset: Tuple[float, ...] = None grid: Grid = None - def tree_flatten(self): - """Returns flattening recipe for GridArray JAX pytree.""" - children = (self.data,) - aux_data = (self.offset, self.grid) - return children, aux_data - - @staticmethod - def __new__(cls, x, offset, grid, *args, **kwargs): - return super().__new__(cls, x, *args, **kwargs) + # def __init__( + # self, data: torch.Tensor = None, + # offset: Tuple[float, ...] = None, + # grid: Grid = None + # ): + # super().__init__() + # self.data = data + # self.offset = offset + # self.grid = grid + + # def tree_flatten(self): + # """Returns flattening recipe for GridArray JAX pytree.""" + # children = (self.data,) + # aux_data = (self.offset, self.grid) + # return children, aux_data + # @staticmethod + # def __new__(cls, data, offset, grid, *args, **kwargs): + # return super().__new__(cls, data, *args, **kwargs) @property def dtype(self): @@ -283,41 +393,227 @@ def dtype(self): def shape(self) -> Tuple[int, ...]: return self.data.shape + @property + def ndim(self) -> int: + return self.data.ndim + + @property + def device(self) -> torch.device: + return self.data.device + def clone(self, *args, **kwargs): - return super().clone(*args, **kwargs) + return GridArray(self.data.clone(*args, **kwargs), self.offset, self.grid) def to(self, *args, **kwargs): return GridArray(self.data.to(*args, **kwargs), self.offset, self.grid) - _HANDLED_TYPES = (numbers.Number, Array) + @staticmethod + def is_torch_fft_func(func): + return getattr(func, "__module__", "").startswith("torch._C._fft") + + @staticmethod + def is_torch_linalg_func(func): + return getattr(func, "__module__", "").startswith("torch._C._linalg") @classmethod def __torch_function__(self, ufunc, types, args=(), kwargs=None): - """Define arithmetic on GridArrays using NumPy's mixin.""" + """Define arithmetic on GridArrays using an implementation similar to NumPy's NDArrayOperationsMixin.""" if kwargs is None: kwargs = {} - if not all(issubclass(t, self._HANDLED_TYPES + (GridArray,)) for t in types): + if not all(issubclass(t, _HANDLED_TYPES + (GridArray,)) for t in types): return NotImplemented try: - # get the corresponding torch function to the NumPy ufunc - func = getattr(torch, ufunc.__name__) - except AttributeError: + # get the corresponding torch function similar to numpy ufunc + if self.is_torch_fft_func(ufunc): + # For FFT functions, we can use the original function + processed_args = [ + x.data if isinstance(x, GridArray) else x for x in args + ] + result = ufunc(*processed_args, **kwargs) + offset = consistent_offset_arrays(*[x for x in args if (type(x) is GridArray)]) + grid = consistent_grid_arrays(*[x for x in args if isinstance(x, GridArray)]) + return GridArray(result, offset, grid) + elif self.is_torch_linalg_func(ufunc): + # For linalg functions, we can use the original function + processed_args = [ + x.data if isinstance(x, GridArray) else x for x in args + ] + return ufunc(*processed_args, **kwargs) + else: + ufunc = getattr(torch, ufunc.__name__) + except AttributeError as e: return NotImplemented + arrays = [x.data if isinstance(x, GridArray) else x for x in args] - result = func(*arrays) - offset = consistent_offset(*[x for x in args if isinstance(x, GridArray)]) - grid = consistent_grid(*[x for x in args if isinstance(x, GridArray)]) + result = ufunc(*arrays, **kwargs) + offset = consistent_offset_arrays(*[x for x in args if isinstance(x, GridArray)]) + grid = consistent_grid_arrays(*[x for x in args if isinstance(x, GridArray)]) if isinstance(result, tuple): return tuple(GridArray(r, offset, grid) for r in result) else: return GridArray(result, offset, grid) -GridArrayVector = Tuple[GridArray, ...] +@dataclasses.dataclass(init=False, frozen=True) +class BoundaryConditions: + """Base class for boundary conditions on a PDE variable. + + Attributes: + types: `types[i]` is a tuple specifying the lower and upper BC types for + dimension `i`. + """ + + types: Tuple[Tuple[str, str], ...] + + def shift( + self, + u: GridArray, + offset: int, + dim: int, + ) -> GridArray: + """Shift an GridArray by `offset`. + + Args: + u: an `GridArray` object. + offset: positive or negative integer offset to shift. + dim: axis to shift along. + + Returns: + A copy of `u`, shifted by `offset`. The returned `GridArray` has offset + `u.offset + offset`. + """ + raise NotImplementedError( + "shift() not implemented in BoundaryConditions base class." + ) + + def values( + self, + dim: int, + grid: Grid, + offset: Optional[Tuple[float, ...]], + time: Optional[float], + ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: + """Returns torch.Tensors specifying boundary values on the grid along axis. + + Args: + dim: axis along which to return boundary values. + grid: a `Grid` object on which to evaluate boundary conditions. + offset: a Tuple of offsets that specifies (along with grid) where to + evaluate boundary conditions in space. + time: a float used as an input to boundary function. + + Returns: + A tuple of arrays of grid.ndim - 1 dimensions that specify values on the + boundary. In case of periodic boundaries, returns a tuple(None,None). + """ + raise NotImplementedError( + "values() not implemented in BoundaryConditions base class." + ) + + +def _gridvar_binary_method(name, op): + """Implement a forward binary method for GridVariable with an operator.""" + + def method(self, other): + if isinstance(other, GridVariable): + if self.bc != other.bc: + raise ValueError( + f"Cannot operate on grid variables with different boundary conditions" + ) + return GridVariable(op(self.array, other.array), self.bc) + elif isinstance(other, _HANDLED_TYPES + (GridArray,)): + return GridVariable(op(self.array, other), self.bc) + + return NotImplemented + + method.__name__ = f"__{name}__" + return method + + +def _gridvar_reflected_binary_method(name, op): + """Implement a reflected binary method for GridVariable with an operator.""" + + def method(self, other): + if isinstance(other, GridVariable): + if self.bc != other.bc: + raise ValueError( + f"Cannot operate on grid variables with different boundary conditions" + ) + return GridVariable(op(other.array, self.array), self.bc) + elif isinstance(other, _HANDLED_TYPES + (GridArray,)): + return GridVariable(op(other, self.array), self.bc) + + return NotImplemented + + method.__name__ = f"__r{name}__" + return method + + +def _gridvar_inplace_binary_method(name, op): + """Implement an in-place binary method for GridVariable with an operator.""" + + def method(self, other): + if isinstance(other, GridVariable): + if self.bc != other.bc: + raise ValueError( + f"Cannot operate on grid variables with different boundary conditions" + ) + self.array = op(self.array, other.array) + return self + elif isinstance(other, _HANDLED_TYPES + (GridArray,)): + self.array = op(self.array, other) + return self + + return NotImplemented + + method.__name__ = f"__i{name}__" + return method + + +def _gridvar_numeric_methods(name, op): + """Implement forward, reflected and inplace binary methods for GridVariable with an operator.""" + return ( + _gridvar_binary_method(name, op), + _gridvar_reflected_binary_method(name, op), + _gridvar_inplace_binary_method(name, op), + ) + + +def _gridvar_unary_method(name, op): + def method(self): + return GridVariable(op(self.array), self.bc) + + method.__name__ = f"__i{name}__" + return method + + +class GridVariableOperatorsMixing: + """Mixin class for GridVariable""" + + __slots__ = () + + __lt__ = _gridvar_binary_method("lt", operator.lt) + __le__ = _gridvar_binary_method("le", operator.le) + __eq__ = _gridvar_binary_method("eq", operator.eq) + __ne__ = _gridvar_binary_method("ne", operator.ne) + __gt__ = _gridvar_binary_method("gt", operator.gt) + __ge__ = _gridvar_binary_method("ge", operator.ge) + + __add__, __radd__, __iadd__ = _gridvar_numeric_methods("add", lambda x, y: x + y) + __sub__, __rsub__, __isub__ = _gridvar_numeric_methods("sub", lambda x, y: x - y) + __mul__, __rmul__, __imul__ = _gridvar_numeric_methods("mul", lambda x, y: x * y) + __truediv__, __rtruediv__, __itruediv__ = _gridvar_numeric_methods( + "div", lambda x, y: x / y + ) + + # Unary methods, ~ operator is not implemented + __neg__ = _gridvar_unary_method("neg", operator.neg) + __pos__ = _gridvar_unary_method("pos", operator.pos) + __abs__ = _gridvar_unary_method("abs", operator.abs) @dataclasses.dataclass -class GridVariable: +class GridVariable(GridVariableOperatorsMixing): """Associates a GridArray with BoundaryConditions. Performing pad and shift operations, e.g. for finite difference calculations, @@ -334,7 +630,7 @@ class GridVariable: grid: the Grid associated with the array data. dtype: type of the array data. shape: lengths of the array dimensions. - data: array values. + data: torch.Tensor values. offset: alignment location of the data with respect to the grid. grid: the Grid associated with the array data. """ @@ -353,16 +649,16 @@ def __post_init__(self): f"{self.grid.ndim}, bc dimension = {len(self.bc.types)}" ) - def tree_flatten(self): - """Returns flattening recipe for GridVariable JAX pytree.""" - children = (self.array,) - aux_data = (self.bc,) - return children, aux_data + # def tree_flatten(self): + # """Returns flattening recipe for GridVariable JAX pytree.""" + # children = (self.array,) + # aux_data = (self.bc,) + # return children, aux_data - @classmethod - def tree_unflatten(cls, aux_data, children): - """Returns unflattening recipe for GridVariable JAX pytree.""" - return cls(*children, *aux_data) + # @classmethod + # def tree_unflatten(cls, aux_data, children): + # """Returns unflattening recipe for GridVariable JAX pytree.""" + # return cls(*children, *aux_data) @property def dtype(self): @@ -373,9 +669,21 @@ def shape(self) -> Tuple[int, ...]: return self.array.shape @property - def data(self) -> Array: + def ndim(self) -> int: + return self.array.ndim + + @property + def data(self) -> torch.Tensor: return self.array.data + @data.setter + def data(self, value: torch.Tensor): + self.array.data = value + + @property + def device(self) -> torch.device: + return self.array.device + @property def offset(self) -> Tuple[float, ...]: return self.array.offset @@ -384,6 +692,13 @@ def offset(self) -> Tuple[float, ...]: def grid(self) -> Grid: return self.array.grid + def clone(self, *args, **kwargs): + """Returns a copy of the GridVariable with cloned array data.""" + return GridVariable(self.array.clone(*args, **kwargs), self.bc) + + def to(self, *args, **kwargs): + return GridVariable(self.array.to(*args, **kwargs), self.bc) + def shift( self, offset: int, @@ -412,15 +727,15 @@ def _interior_grid(self) -> Grid: continue # nothing happens if the offset is not 0.0 or 1.0 # this will automatically set the grid to interior. - if torch.isclose(self.array.offset[axis], 1.0): + if torch.isclose(self.offset[axis], 1.0): shape[axis] -= 1 domain[axis] = (domain[axis][0], domain[axis][1] - grid.step[axis]) - elif torch.isclose(self.array.offset[axis], 0.0): + elif torch.isclose(self.offset[axis], 0.0): shape[axis] -= 1 domain[axis] = (domain[axis][0] + grid.step[axis], domain[axis][1]) return Grid(shape, domain=tuple(domain)) - def _interior_array(self) -> Array: + def _interior_array(self) -> torch.Tensor: """Returns only the interior points of self.array.""" data = self.array.data for axis in range(self.grid.ndim): @@ -429,9 +744,9 @@ def _interior_array(self) -> Array: continue # nothing happens if the offset is not 0.0 or 1.0 if torch.isclose(self.offset[axis], 1.0): - data, _ = split_along_axis(data, -1, axis) + data, _ = tensor_utils.split_along_axis(data, -1, axis) elif torch.isclose(self.offset[axis], 0.0): - _, data = split_along_axis(data, 1, axis) + _, data = tensor_utils.split_along_axis(data, 1, axis) return data @@ -453,7 +768,7 @@ def interior(self) -> GridArray: """ interior_array = self._interior_array() interior_grid = self._interior_grid() - return GridArray(interior_array, self.array.offset, interior_grid) + return GridArray(interior_array, self.offset, interior_grid) def enforce_edge_bc(self, *args) -> GridVariable: """Returns the GridVariable with edge BC enforced, if applicable. @@ -467,7 +782,7 @@ def enforce_edge_bc(self, *args) -> GridVariable: """ if self.grid.shape != self.array.data.shape: raise ValueError("Stored array and grid have mismatched sizes.") - data = torch.tensor(self.array.data) + data = torch.as_tensor(self.data) for axis in range(self.grid.ndim): if "periodic" not in self.bc.types[axis]: values = self.bc.values(axis, self.grid, *args) @@ -479,38 +794,136 @@ def enforce_edge_bc(self, *args) -> GridVariable: ] * self.grid.ndim all_slice[axis] = -boundary_side data = data.at[tuple(all_slice)].set(values[boundary_side]) - return GridVariable( - array=GridArray(data, self.array.offset, self.grid), bc=self.bc - ) + return GridVariable(array=GridArray(data, self.offset, self.grid), bc=self.bc) -GridVariableVector = Tuple[GridVariable, ...] +# GridArrayVector = Tuple[GridArray, ...] +class GridArrayVector(tuple): + """ + A tuple-like container for GridArray objects, representing a vector field. + Supports elementwise addition and scalar multiplication. + """ + def __new__(cls, arrays): + if not all(isinstance(a, GridArray) for a in arrays): + raise TypeError("All elements must be GridArray instances.") + return super().__new__(cls, arrays) -class GridArrayTensor(Array): - """A numpy array of GridArrays, representing a physical tensor field. + def __add__(self, other): + if not isinstance(other, GridArrayVector): + return NotImplemented + if len(self) != len(other): + raise ValueError("GridArrayVectors must have the same length.") + return GridArrayVector([a + b for a, b in zip(self, other)]) - Packing tensor coordinates into a numpy array of dtype object is useful - because pointwise matrix operations like trace, transpose, and matrix - multiplications of physical tensor quantities is meaningful. + def __iadd__(self, other): + # Tuples are immutable, so __iadd__ should return a new object using __add__ + return self.__add__(other) - Example usage: - grad = fd.gradient_tensor(uv) # a rank 2 Tensor - strain_rate = (grad + grad.T) / 2. - nu_smag = np.sqrt(np.trace(strain_rate.dot(strain_rate))) - nu_smag = Tensor(nu_smag) # a rank 0 Tensor - subgrid_stress = -2 * nu_smag * strain_rate # a rank 2 Tensor + __iadd__ = __radd__ = __add__ + + def __sub__(self, other): + if not isinstance(other, GridArrayVector): + return NotImplemented + if len(self) != len(other): + raise ValueError("GridArrayVectors must have the same length.") + return GridArrayVector([a - b for a, b in zip(self, other)]) + + def __rsub__(self, other): + return GridArrayVector([b - a for a, b in zip(self, other)]) + + def __mul__(self, x): + if not isinstance(x, _HANDLED_TYPES + (GridArray,)): + return NotImplemented + return GridArrayVector([v * x for v in self]) + + __imul__ = __rmul__ = __mul__ + + def __truediv__(self, x): + if not isinstance(x, _HANDLED_TYPES + (GridArray,)): + return NotImplemented + return GridArrayVector([v / x for v in self]) + + def __rtruediv__(self, x): + """ + __rdiv__ does not really make sense for GridArrayVector, but is + implemented for consistency. + """ + if not isinstance(x, _HANDLED_TYPES + (GridArray,)): + return NotImplemented + return GridArrayVector([x / v for v in self]) + + @property + def device(self) -> torch.device: + return self[0].data.device + + def to(self, *args, **kwargs): + return GridArrayVector([v.to(*args, **kwargs) for v in self]) + + def clone(self, *args, **kwargs): + return GridArrayVector([v.clone(*args, **kwargs) for v in self]) + + +# GridVariableVector = Tuple[GridVariable, ...] +class GridVariableVector(tuple): + """ + A tuple-like container for GridVariable objects, representing a vector field. + Supports elementwise addition and scalar multiplication. """ - def __new__(cls, arrays): - return torch.asarray(arrays).view(cls) + def __new__(cls, variables): + if not all(isinstance(v, GridVariable) for v in variables): + raise TypeError("All elements must be GridVariable instances.") + return super().__new__(cls, variables) + + def __add__(self, other): + if not isinstance(other, GridVariableVector): + return NotImplemented + if len(self) != len(other): + raise ValueError("GridVariableVectors must have the same length.") + return GridVariableVector([a + b for a, b in zip(self, other)]) + + __radd__ = __add__ + + def __sub__(self, other): + if not isinstance(other, GridVariableVector): + return NotImplemented + if len(self) != len(other): + raise ValueError("GridVariableVectors must have the same length.") + return GridVariableVector([a - b for a, b in zip(self, other)]) + + __rsub__ = __sub__ + + def __mul__(self, x): + if not isinstance(x, _HANDLED_TYPES + (GridVariable,)): + return NotImplemented + return GridVariableVector([v * x for v in self]) + __rmul__ = __mul__ -register_pytree_node( - GridArrayTensor, - lambda tensor: (tensor.ravel().tolist(), tensor.shape), - lambda shape, arrays: GridArrayTensor(torch.asarray(arrays).reshape(shape)), -) + def __truediv__(self, x): + if not isinstance(x, _HANDLED_TYPES + (GridVariable,)): + return NotImplemented + return GridVariableVector([v / x for v in self]) + + def __rtruediv__(self, x): + """ + __rdiv__ does not really make sense for GridVariableVector, but is + implemented for consistency. + """ + if not isinstance(x, _HANDLED_TYPES + (GridVariable,)): + return NotImplemented + return GridVariableVector([x / v for v in self]) + + @property + def device(self) -> torch.device: + return self[0].array.device + + def to(self, *args, **kwargs): + return GridVariableVector([v.to(*args, **kwargs) for v in self]) + + def clone(self, *args, **kwargs): + return GridVariableVector([v.clone(*args, **kwargs) for v in self]) def applied(func): @@ -523,7 +936,7 @@ def applied(func): func: function being wrapped. Returns: - A wrapped version of `func` that takes GridArray instead of Array args. + A wrapped version of `func` that takes GridArray instead of torch.Tensor args. """ def wrapper(*args, **kwargs): # pylint: disable=missing-docstring @@ -531,14 +944,14 @@ def wrapper(*args, **kwargs): # pylint: disable=missing-docstring if isinstance(arg, GridVariable): raise ValueError("grids.applied() cannot be used with GridVariable") - offset = consistent_offset( + offset = consistent_offset_arrays( *[ arg for arg in args + tuple(kwargs.values()) if isinstance(arg, GridArray) ] ) - grid = consistent_grid( + grid = consistent_grid_arrays( *[ arg for arg in args + tuple(kwargs.values()) @@ -555,637 +968,128 @@ def wrapper(*args, **kwargs): # pylint: disable=missing-docstring return wrapper -def averaged_offset(*arrays: Union[GridArray, GridVariable]) -> Tuple[float, ...]: - """Returns the averaged offset of the given arrays.""" - offsets = torch.as_tensor([array.offset for array in arrays]) - offset = torch.mean(offsets, dim=0) - return tuple(offset.tolist()) - - -def consistent_offset(*arrays: Array) -> Tuple[float, ...]: - """Returns the unique offset, or raises InconsistentOffsetError.""" - offsets = {array.offset for array in arrays} - if len(offsets) != 1: - raise Exception(f"arrays do not have a unique offset: {offsets}") - (offset,) = offsets - return offset - - -def consistent_grid(*arrays: GridArray): - """Returns the unique grid, or raises InconsistentGridError.""" - grids = {array.grid for array in arrays} - if len(grids) != 1: - raise Exception(f"arrays do not have a unique grid: {grids}") - (grid,) = grids - return grid - - -@dataclasses.dataclass(init=False, frozen=True) -class BoundaryConditions: - """Base class for boundary conditions on a PDE variable. +# Aliases for often used `grids.applied` functions. +where = applied(torch.where) - Attributes: - types: `types[i]` is a tuple specifying the lower and upper BC types for - dimension `i`. - """ - types: Tuple[Tuple[str, str], ...] - - def shift( - self, - u: GridArray, - offset: int, - dim: int, - ) -> GridArray: - """Shift an GridArray by `offset`. - - Args: - u: an `GridArray` object. - offset: positive or negative integer offset to shift. - dim: axis to shift along. - - Returns: - A copy of `u`, shifted by `offset`. The returned `GridArray` has offset - `u.offset + offset`. - """ - raise NotImplementedError( - "shift() not implemented in BoundaryConditions base class." - ) - - def values( - self, - dim: int, - grid: Grid, - offset: Optional[Tuple[float, ...]], - time: Optional[float], - ) -> Tuple[Optional[Array], Optional[Array]]: - """Returns Arrays specifying boundary values on the grid along axis. - - Args: - dim: axis along which to return boundary values. - grid: a `Grid` object on which to evaluate boundary conditions. - offset: a Tuple of offsets that specifies (along with grid) where to - evaluate boundary conditions in space. - time: a float used as an input to boundary function. - - Returns: - A tuple of arrays of grid.ndim - 1 dimensions that specify values on the - boundary. In case of periodic boundaries, returns a tuple(None,None). - """ - raise NotImplementedError( - "values() not implemented in BoundaryConditions base class." - ) +class GridArrayTensor(torch.Tensor): + """An array of GridArrays, representing a physical tensor field. + Packing tensor coordinates into a torch tensor of dtype object is useful + because pointwise matrix operations like trace, transpose, and matrix + multiplications of physical tensor quantities is meaningful. -@dataclasses.dataclass(init=False, frozen=True) -class ConstantBoundaryConditions(BoundaryConditions): - """Boundary conditions for a PDE variable that are constant in space and time. + TODO: + Add supports to operations like trace, transpose, and matrix multiplication on physical tensor fields, without register_pytree_node. Example usage: - grid = Grid((10, 10)) - array = GridArray(np.zeros((10, 10)), offset=(0.5, 0.5), grid) - bc = ConstantBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC), - (BCType.DIRICHLET, BCType.DIRICHLET)), - ((0.0, 10.0),(1.0, 0.0))) - u = GridVariable(array, bc) - - Attributes: - types: `types[i]` is a tuple specifying the lower and upper BC types for - dimension `i`. + grad = fd.gradient_tensor(uv) # a rank 2 Tensor + strain_rate = (grad + grad.T) / 2. + nu_smag = np.sqrt(np.trace(strain_rate.dot(strain_rate))) + nu_smag = Tensor(nu_smag) # a rank 0 Tensor + subgrid_stress = -2 * nu_smag * strain_rate # a rank 2 Tensor """ - types: Tuple[Tuple[str, str], ...] - _values: Tuple[Tuple[Optional[float], Optional[float]], ...] - - def __init__( - self, - types: Sequence[Tuple[str, str]], - values: Sequence[Tuple[Optional[float], Optional[float]]], - ): - types = tuple(types) - values = tuple(values) - object.__setattr__(self, "types", types) - object.__setattr__(self, "_values", values) - - def shift( - self, - u: GridArray, - offset: int, - dim: int, - ) -> GridArray: - """Shift an GridArray by `offset`. - - Args: - u: an `GridArray` object. - offset: positive or negative integer offset to shift. - dim: axis to shift along. - - Returns: - A copy of `u`, shifted by `offset`. The returned `GridArray` has offset - `u.offset + offset`. - """ - padded = self._pad(u, offset, dim) - trimmed = self._trim(padded, -offset, dim) - # print(u.shape, offset) - # print(padded.shape, trimmed.shape) - return trimmed - - def _is_aligned(self, u: GridArray, dim: int) -> bool: - """Checks if array u contains all interior domain information. - - For dirichlet edge aligned boundary, the value that lies exactly on the - boundary does not have to be specified by u. - Neumann edge aligned boundary is not defined. - - Args: - u: array that should contain interior data - dim: axis along which to check - - Returns: - True if u is aligned, and raises error otherwise. - """ - size_diff = u.shape[dim] - u.grid.shape[dim] - if self.types[dim][0] == BCType.DIRICHLET and np.isclose(u.offset[dim], 1): - size_diff += 1 - if self.types[dim][1] == BCType.DIRICHLET and np.isclose(u.offset[dim], 1): - size_diff += 1 - if self.types[dim][0] == BCType.NEUMANN and np.isclose(u.offset[dim] % 1, 0): - raise NotImplementedError("Edge-aligned neumann BC are not implemented.") - if size_diff < 0: - raise ValueError("the GridArray does not contain all interior grid values.") - return True - - def _pad( - self, - u: GridArray, - width: int, - dim: int, - ) -> GridArray: - """Pad a GridArray by `padding`. - - Important: _pad makes no sense past 1 ghost cell for nonperiodic - boundaries. This is sufficient for jax_cfd finite difference code. - - Args: - u: a `GridArray` object. - width: number of elements to pad along axis. Use negative value for lower - boundary or positive value for upper boundary. - dim: axis to pad along. - - Returns: - Padded array, elongated along the indicated axis. - """ - if width < 0: # pad lower boundary - bc_type = self.types[dim][0] - padding = (-width, 0) - else: # pad upper boundary - bc_type = self.types[dim][1] - padding = (0, width) + # def __new__(cls, arrays): + # return torch.asarray(arrays).view(cls) + @staticmethod + def __new__(cls, data, *args, **kwargs): + return super().__new__(cls, data, *args, **kwargs) - full_padding = [(0, 0)] * u.grid.ndim - full_padding[dim] = padding + def clone(self, *args, **kwargs): + return super().clone(*args, **kwargs) - offset = list(u.offset) - offset[dim] -= padding[0] - if bc_type != BCType.PERIODIC and abs(width) > 1: - raise ValueError( - "Padding past 1 ghost cell is not defined in nonperiodic case." - ) +def applied(func): + """Convert an array function into one defined on GridArrays. - if bc_type == BCType.PERIODIC: - # self.values are ignored here - pad_kwargs = dict(mode="circular") - elif bc_type == BCType.DIRICHLET: - if np.isclose(u.offset[dim] % 1, 0.5): # cell center - # make the linearly interpolated value equal to the boundary by setting - # the padded values to the negative symmetric values - data = 2 * expand_dims_pad( - u.data, full_padding, mode="constant", constant_values=self._values - ) - expand_dims_pad(u.data, full_padding, mode="reflect") - return GridArray(data, tuple(offset), u.grid) - elif np.isclose(u.offset[dim] % 1, 0): # cell edge - pad_kwargs = dict(mode="constant", constant_values=self._values) - else: - raise ValueError( - "expected offset to be an edge or cell center, got " - f"offset[axis]={u.offset[dim]}" - ) - elif bc_type == BCType.NEUMANN: - if not ( - np.isclose(u.offset[dim] % 1, 0) or np.isclose(u.offset[dim] % 1, 0.5) - ): - raise ValueError( - "expected offset to be an edge or cell center, got " - f"offset[axis]={u.offset[dim]}" - ) - else: - # When the data is cell-centered, computes the backward difference. - # When the data is on cell edges, boundary is set such that - # (u_last_interior - u_boundary)/grid_step = neumann_bc_value. - data = expand_dims_pad( - u.data, full_padding, mode="replicate" - ) + u.grid.step[dim] * ( - expand_dims_pad(u.data, full_padding, mode="constant") - - expand_dims_pad( - u.data, - full_padding, - mode="constant", - constant_values=self._values, - ) - ) - return GridArray(data, tuple(offset), u.grid) + Since `func` can only act on `data` attribute of GridArray, it implicitly + enforces that `func` cannot modify the other attributes such as offset. - else: - raise ValueError("invalid boundary type") - data = expand_dims_pad(u.data, full_padding, **pad_kwargs) - return GridArray(data, tuple(offset), u.grid) + Args: + func: function being wrapped. - def _trim( - self, - u: GridArray, - width: int, - dim: int, - ) -> GridArray: - """Trim padding from a GridArray. + Returns: + A wrapped version of `func` that takes GridArray instead of torch.Tensor args. + """ - Args: - u: a `GridArray` object. - width: number of elements to trim along axis. Use negative value for lower - boundary or positive value for upper boundary. - dim: axis to trim along. + def wrapper(*args, **kwargs): # pylint: disable=missing-docstring + for arg in args + tuple(kwargs.values()): + if isinstance(arg, GridVariable): + raise ValueError("grids.applied() cannot be used with GridVariable") - Returns: - Trimmed array, shrunk along the indicated axis. - """ - if width < 0: # trim lower boundary - padding = (-width, 0) - else: # trim upper boundary - padding = (0, width) - - limit_index = u.data.shape[dim] - padding[1] - data = u.data.index_select( - dim=dim, index=torch.arange(padding[0], limit_index, device=u.data.device) + offset = consistent_offset_arrays( + *[ + arg + for arg in args + tuple(kwargs.values()) + if isinstance(arg, GridArray) + ] ) - offset = list(u.offset) - offset[dim] += padding[0] - return GridArray(data, tuple(offset), u.grid) - - def values(self, dim: int, grid: Grid) -> Tuple[Optional[Array], Optional[Array]]: - """Returns boundary values on the grid along axis. - - Args: - dim: axis along which to return boundary values. - grid: a `Grid` object on which to evaluate boundary conditions. - - Returns: - A tuple of arrays of grid.ndim - 1 dimensions that specify values on the - boundary. In case of periodic boundaries, returns a tuple(None,None). - """ - if None in self._values[dim]: - return (None, None) - bc = tuple( - torch.full(grid.shape[:dim] + grid.shape[dim + 1 :], self._values[dim][-i]) - for i in [0, 1] + grid = consistent_grid_arrays( + *[ + arg + for arg in args + tuple(kwargs.values()) + if isinstance(arg, GridArray) + ] ) - return bc - - def _trim_padding(self, u: GridArray, dim: int = 0, trim_side: str = "both"): - """Trims padding from a GridArray along axis and returns the array interior. - - Args: - u: a `GridArray` object. - dim: axis to trim along. - trim_side: if 'both', trims both sides. If 'right', trims the right side. - If 'left', the left side. - - Returns: - Trimmed array, shrunk along the indicated axis side. - """ - padding = (0, 0) - if u.shape[dim] >= u.grid.shape[dim]: - # number of cells that were padded on the left - negative_trim = 0 - if u.offset[dim] <= 0 and (trim_side == "both" or trim_side == "left"): - negative_trim = -math.ceil(-u.offset[dim]) - # periodic is a special case. Shifted data might still contain all the - # information. - if self.types[dim][0] == BCType.PERIODIC: - negative_trim = max(negative_trim, u.grid.shape[dim] - u.shape[dim]) - # for both DIRICHLET and NEUMANN cases the value on grid.domain[0] is - # a dependent value. - elif np.isclose(u.offset[dim] % 1, 0): - negative_trim -= 1 - u = self._trim(u, negative_trim, dim) - # number of cells that were padded on the right - positive_trim = 0 - if trim_side == "right" or trim_side == "both": - # periodic is a special case. Boundary on one side depends on the other - # side. - if self.types[dim][1] == BCType.PERIODIC: - positive_trim = max(u.shape[dim] - u.grid.shape[dim], 0) - else: - # for other cases, where to trim depends only on the boundary type - # and data offset. - last_u_offset = u.shape[dim] + u.offset[dim] - 1 - boundary_offset = u.grid.shape[dim] - if last_u_offset >= boundary_offset: - positive_trim = math.ceil(last_u_offset - boundary_offset) - if self.types[dim][1] == BCType.DIRICHLET and np.isclose( - u.offset[dim] % 1, 0 - ): - positive_trim += 1 - if positive_trim > 0: - u = self._trim(u, positive_trim, dim) - # combining existing padding with new padding - padding = (-negative_trim, positive_trim) - return u, padding - - def trim_boundary(self, u: GridArray) -> GridArray: - """Returns GridArray without the grid points on the boundary. - - Some grid points of GridArray might coincide with boundary. This trims those - values. If the array was padded beforehand, removes the padding. - - Args: - u: a `GridArray` object. - - Returns: - A GridArray shrunk along certain dimensions. - """ - for axis in range(u.grid.ndim): - _ = self._is_aligned(u, axis) - u, _ = self._trim_padding(u, axis) - return u - - def pad_and_impose_bc( - self, - u: GridArray, - offset_to_pad_to: Optional[Tuple[float, ...]] = None, - mode: Optional[str] = "extend", - ) -> GridVariable: - """Returns GridVariable with correct boundary values. - - Some grid points of GridArray might coincide with boundary. This ensures - that the GridVariable.array agrees with GridVariable.bc. - Args: - u: a `GridArray` object that specifies only scalar values on the internal - nodes. - offset_to_pad_to: a Tuple of desired offset to pad to. Note that if the - function is given just an interior array in dirichlet case, it can pad - to both 0 offset and 1 offset. - mode: type of padding to use in non-periodic case. - Mirror mirrors the flow across the boundary. - Extend extends the last well-defined value past the boundary. - - Returns: - A GridVariable that has correct boundary values. - """ - if offset_to_pad_to is None: - offset_to_pad_to = u.offset - for axis in range(u.grid.ndim): - _ = self._is_aligned(u, axis) - if self.types[axis][0] == BCType.DIRICHLET and np.isclose( - u.offset[axis], 1.0 - ): - if np.isclose(offset_to_pad_to[axis], 1.0): - u = self._pad(u, 1, axis, mode=mode) - elif np.isclose(offset_to_pad_to[axis], 0.0): - u = self._pad(u, -1, axis, mode=mode) - return GridVariable(u, self) - - def impose_bc(self, u: GridArray) -> GridVariable: - """Returns GridVariable with correct boundary condition. - - Some grid points of GridArray might coincide with boundary. This ensures - that the GridVariable.array agrees with GridVariable.bc. - Args: - u: a `GridArray` object. - - Returns: - A GridVariable that has correct boundary values and is restricted to the - domain. - """ - offset = u.offset - u = self.trim_boundary(u) - return self.pad_and_impose_bc(u, offset) - - trim = _trim - pad = _pad - - -class HomogeneousBoundaryConditions(ConstantBoundaryConditions): - """Boundary conditions for a PDE variable. - - Example usage: - grid = Grid((10, 10)) - array = GridArray(np.zeros((10, 10)), offset=(0.5, 0.5), grid) - bc = ConstantBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC), - (BCType.DIRICHLET, BCType.DIRICHLET))) - u = GridVariable(array, bc) - - Attributes: - types: `types[i]` is a tuple specifying the lower and upper BC types for - dimension `i`. - """ - - def __init__(self, types: Sequence[Tuple[str, str]]): - - ndim = len(types) - values = ((0.0, 0.0),) * ndim - super(HomogeneousBoundaryConditions, self).__init__(types, values) - + raw_args = [arg.data if isinstance(arg, GridArray) else arg for arg in args] + raw_kwargs = { + k: v.data if isinstance(v, GridArray) else v for k, v in kwargs.items() + } + data = func(*raw_args, **raw_kwargs) + return GridArray(data, offset, grid) -def is_periodic_boundary_conditions(c: GridVariable, dim: int) -> bool: - """Returns true if scalar has periodic bc along axis.""" - if c.bc.types[dim][0] != BCType.PERIODIC: - return False - return True + return wrapper -# Convenience utilities to ease updating of BoundaryConditions implementation -def periodic_boundary_conditions(ndim: int) -> BoundaryConditions: - """Returns periodic BCs for a variable with `ndim` spatial dimension.""" - return HomogeneousBoundaryConditions(((BCType.PERIODIC, BCType.PERIODIC),) * ndim) +def averaged_offset(*offsets: Tuple[Tuple]) -> Tuple[float, ...]: + """Returns the averaged offset of the given arrays.""" + n = len(offsets) + assert n > 0, "No offsets provided" + m = len(offsets[0]) + return tuple(sum(o[i] for o in offsets) / n for i in range(m)) -def consistent_boundary_conditions(*arrays: GridVariable) -> Tuple[str, ...]: - """Returns whether BCs are periodic. +def averaged_offset_arrays( + *arrays: Union[GridArray, GridVariable] +) -> Tuple[float, ...]: + """Returns the averaged offset of the given arrays.""" + offsets = tuple([array.offset for array in arrays]) + return averaged_offset(*offsets) - Mixed periodic/nonperiodic boundaries along the same boundary do not make - sense. The function checks that the boundary is either periodic or not and - throws an error if its mixed. - Args: - *arrays: a list of gridvariables. +def control_volume_offsets( + c: Union[GridArray, GridVariable], +) -> Tuple[Tuple[float, ...], ...]: + """Returns offsets for the faces of the control volume centered at `c`.""" + return tuple( + tuple(o + 0.5 if i == j else o for i, o in enumerate(c.offset)) + for j in range(len(c.offset)) + ) - Returns: - a list of types of boundaries corresponding to each axis if - they are consistent. - """ - bc_types = [] - for axis in range(arrays[0].grid.ndim): - bcs = {is_periodic_boundary_conditions(array, axis) for array in arrays} - if len(bcs) != 1: - raise Exception(f"arrays do not have consistent bc: {arrays}") - elif bcs.pop(): - bc_types.append("periodic") - else: - bc_types.append("nonperiodic") - return tuple(bc_types) - - -def get_pressure_bc_from_velocity( - v: GridVariableVector, -) -> HomogeneousBoundaryConditions: - """Returns pressure boundary conditions for the specified velocity.""" - # assumes that if the boundary is not periodic, pressure BC is zero flux. - velocity_bc_types = consistent_boundary_conditions(*v) - pressure_bc_types = [] - for velocity_bc_type in velocity_bc_types: - if velocity_bc_type == "periodic": - pressure_bc_types.append((BCType.PERIODIC, BCType.PERIODIC)) - else: - pressure_bc_types.append((BCType.NEUMANN, BCType.NEUMANN)) - return HomogeneousBoundaryConditions(pressure_bc_types) - - -def has_all_periodic_boundary_conditions(*arrays: GridVariable) -> bool: - """Returns True if arrays have periodic BC in every dimension, else False.""" - for array in arrays: - for axis in range(array.grid.ndim): - if not is_periodic_boundary_conditions(array, axis): - return False - return True - - -def get_advection_flux_bc_from_velocity_and_scalar( - u: GridVariable, c: GridVariable, flux_direction: int -) -> ConstantBoundaryConditions: - """Returns advection flux boundary conditions for the specified velocity. - - Infers advection flux boundary condition in flux direction - from scalar c and velocity u in direction flux_direction. - The flux boundary condition should be used only to compute divergence. - If the boundaries are periodic, flux is periodic. - In nonperiodic case, flux boundary parallel to flux direction is - homogeneous dirichlet. - In nonperiodic case if flux direction is normal to the wall, the - function supports 2 cases: - 1) Nonporous boundary, corresponding to homogeneous flux bc. - 2) Pourous boundary with constant flux, corresponding to - both the velocity and scalar with Homogeneous Neumann bc. - - This function supports only these cases because all other cases result in - time dependent flux boundary condition. - Args: - u: velocity component in flux_direction. - c: scalar to advect. - flux_direction: direction of velocity. +def consistent_offset_arrays(*arrays: GridArray) -> Tuple[float, ...]: + """Returns the unique offset, or raises InconsistentOffsetError.""" + offsets = {array.offset for array in arrays} + if len(offsets) != 1: + raise Exception(f"arrays do not have a unique offset: {offsets}") + (offset,) = offsets + return offset - Returns: - BoundaryCondition instance for advection flux of c in flux_direction. - """ - # only no penetration and periodic boundaries are supported. - flux_bc_types = [] - flux_bc_values = [] - if not isinstance(u.bc, HomogeneousBoundaryConditions): - raise NotImplementedError( - f"Flux boundary condition is not implemented for velocity with {u.bc}" - ) - for axis in range(c.grid.ndim): - if u.bc.types[axis][0] == "periodic": - flux_bc_types.append((BCType.PERIODIC, BCType.PERIODIC)) - flux_bc_values.append((None, None)) - elif flux_direction != axis: - # This is not technically correct. Flux boundary condition in most cases - # is a time dependent function of the current values of the scalar - # and velocity. However, because flux is used only to take divergence, the - # boundary condition on the flux along the boundary parallel to the flux - # direction has no influence on the computed divergence because the - # boundary condition only alters ghost cells, while divergence is computed - # on the interior. - # To simplify the code and allow for flux to be wrapped in gridVariable, - # we are setting the boundary to homogeneous dirichlet. - # Note that this will not work if flux is used in any other capacity but - # to take divergence. - flux_bc_types.append((BCType.DIRICHLET, BCType.DIRICHLET)) - flux_bc_values.append((0.0, 0.0)) - else: - flux_bc_types_ax = [] - flux_bc_values_ax = [] - for i in range(2): # lower and upper boundary. - - # case 1: nonpourous boundary - if ( - u.bc.types[axis][i] == BCType.DIRICHLET - and u.bc.bc_values[axis][i] == 0.0 - ): - flux_bc_types_ax.append(BCType.DIRICHLET) - flux_bc_values_ax.append(0.0) - - # case 2: zero flux boundary - elif ( - u.bc.types[axis][i] == BCType.NEUMANN - and c.bc.types[axis][i] == BCType.NEUMANN - ): - if not isinstance(c.bc, ConstantBoundaryConditions): - raise NotImplementedError( - "Flux boundary condition is not implemented for scalar" - + f" with {c.bc}" - ) - if not np.isclose(c.bc.bc_values[axis][i], 0.0): - raise NotImplementedError( - "Flux boundary condition is not implemented for scalar" - + f" with {c.bc}" - ) - flux_bc_types_ax.append(BCType.NEUMANN) - flux_bc_values_ax.append(0.0) - # no other case is supported - else: - raise NotImplementedError( - f"Flux boundary condition is not implemented for {u.bc, c.bc}" - ) - flux_bc_types.append(flux_bc_types_ax) - flux_bc_values.append(flux_bc_values_ax) - return ConstantBoundaryConditions(flux_bc_types, flux_bc_values) - - -def expand_dims_pad( - inputs: Any, - pad: Tuple[Tuple[int, int], ...], - dim: int = 2, - mode: str = "constant", - constant_values: float = 0, -) -> Any: - """ - wrapper for F.pad with a dimension checker - note: jnp's pad pad_width starts from the first dimension to the last dimension - while torch's pad pad_width starts from the last dimension to the previous dimension - example: for torch (1, 1, 2, 2) means padding last dim by (1, 1) and 2nd to last by (2, 2) +def consistent_grid_arrays(*arrays: GridArray): + """Returns the unique grid, or raises InconsistentGridError.""" + grids = {array.grid for array in arrays} + if len(grids) != 1: + raise Exception(f"arrays do not have a unique grid: {grids}") + (grid,) = grids + return grid - Args: - inputs: array or a tuple of arrays to pad. - pad_width: padding width for each dimension. - mode: padding mode, one of 'constant', 'reflect', 'symmetric'. - values: constant value to pad with. +def consistent_grid(grid: Grid, *arrays: GridArray): + """Returns the unique grid, or raises InconsistentGridError.""" + grids = {array.grid for array in arrays} + if len(grids.union({grid})) != 1: + raise Exception(f"arrays' grids {grids} are not consistent with the grid {grid}") + (grid,) = grids + return grid - Returns: - Padded `inputs`. - """ - assert len(pad) == inputs.ndim, "pad must have the same length as inputs.ndim" - if not isinstance(inputs, torch.Tensor): - raise ValueError("inputs must be a torch.Tensor") - if dim == inputs.ndim: - inputs = inputs.unsqueeze(0) - pad = reduce(lambda a, x: x + a, pad, ()) # flatten the pad and reverse the order - if mode == "constant": - array = F.pad(inputs, pad, mode=mode, value=constant_values) - elif mode == "reflect" or mode == "circular": - array = F.pad(inputs, pad, mode=mode) - else: - raise NotImplementedError(f"invalid mode {mode} for torch.nn.functional.pad") - - return array.squeeze(0) if dim != array.ndim else array diff --git a/torch_cfd/initial_conditions.py b/torch_cfd/initial_conditions.py index e4c188b..8fdaaea 100644 --- a/torch_cfd/initial_conditions.py +++ b/torch_cfd/initial_conditions.py @@ -22,33 +22,32 @@ import torch import torch.fft as fft -from . import grids, pressure +from torch_cfd import grids, pressure, boundaries -Array = torch.Tensor +Grid = grids.Grid GridArray = grids.GridArray -GridArrayVector = grids.GridArrayVector GridVariable = grids.GridVariable GridVariableVector = grids.GridVariableVector BoundaryConditions = grids.BoundaryConditions def wrap_velocities( - v: Sequence[Array], - grid: grids.Grid, + v: Sequence[torch.Tensor], + grid: Grid, bcs: Sequence[BoundaryConditions], device: Optional[torch.device] = None, ) -> GridVariableVector: """Wrap velocity arrays for input into simulations.""" device = grid.device if device is None else device - return tuple( - GridVariable(GridArray(u, offset, grid).to(device), bc) + return GridVariableVector(tuple( + GridVariable(GridArray(u.data, offset, grid).to(device), bc) for u, offset, bc in zip(v, grid.cell_faces, bcs) - ) + )) def wrap_vorticity( - w: Array, - grid: grids.Grid, + w: torch.Tensor, + grid: Grid, bc: BoundaryConditions, device: Optional[torch.device] = None, ) -> GridVariable: @@ -60,8 +59,6 @@ def wrap_vorticity( def _log_normal_density(k, mode: float, variance=0.25): """ Unscaled PDF for a log normal given `mode` and log variance 1. - - """ mean = math.log(mode) + variance logk = torch.log(k) @@ -80,7 +77,7 @@ def McWilliams_density(k, mode: float, tau: float = 1.0): return (k * (tau**2 + (k / mode) ** 4)) ** (-1) -def _angular_frequency_magnitude(grid: grids.Grid) -> Array: +def _angular_frequency_magnitude(grid: grids.Grid) -> torch.Tensor: frequencies = [ 2 * torch.pi * fft.fftfreq(size, step) for size, step in zip(grid.shape, grid.step) @@ -90,13 +87,13 @@ def _angular_frequency_magnitude(grid: grids.Grid) -> Array: def spectral_filter( - spectral_density: Callable[[Array], Array], - v: Array, - grid: grids.Grid, -) -> Array: - """Filter an Array with white noise to match a prescribed spectral density.""" + spectral_density: Callable[[torch.Tensor], torch.Tensor], + v: torch.Tensor, + grid: Grid, +) -> torch.Tensor: + """Filter a torch.Tensor with white noise to match a prescribed spectral density.""" k = _angular_frequency_magnitude(grid) - filters = torch.where(k > 0, spectral_density(k), 0.0) + filters = torch.where(k > 0, spectral_density(k), 0.0).to(v.device) # The output signal can safely be assumed to be real if our input signal was # real, because our spectral density only depends on norm(k). return fft.ifftn(fft.fftn(v) * filters).real @@ -113,19 +110,23 @@ def streamfunc_normalize(k, psi): def project_and_normalize( v: GridVariableVector, maximum_velocity: float = 1 ) -> GridVariableVector: - v = pressure.projection(v) + grid = grids.consistent_grid_arrays(*v) + pressure_bc = boundaries.get_pressure_bc_from_velocity(v) + projection = pressure.PressureProjection(grid, pressure_bc).to(v.device) + v = projection(v) vmax = torch.linalg.norm(torch.stack([u.data for u in v]), dim=0).max() - v = tuple(GridVariable(maximum_velocity * u.array / vmax, u.bc) for u in v) + v = GridVariableVector(tuple(GridVariable(maximum_velocity * u.array / vmax, u.bc) for u in v)) return v def filtered_velocity_field( - grid: grids.Grid, + grid: Grid, maximum_velocity: float = 1, peak_wavenumber: float = 3, iterations: int = 3, random_state: int = 0, -) -> GridArray: + device: torch.device = None, +) -> GridVariableVector: """Create divergence-free velocity fields with appropriate spectral filtering. Args: @@ -144,19 +145,18 @@ def filtered_velocity_field( # Log normal distribution peaked at `peak_wavenumber`. Note that we have to # divide by `k ** (ndim - 1)` to account for the volume of the # `ndim - 1`-sphere of values with wavenumber `k`. - def spectral_density(k): - return _log_normal_density(k, peak_wavenumber) / k ** (grid.ndim - 1) + spectral_density = lambda k: _log_normal_density(k, peak_wavenumber) / k ** (grid.ndim - 1) random_states = [random_state + i for i in range(grid.ndim)] - rng = torch.Generator() + rng = torch.Generator(device=device) velocity_components = [] boundary_conditions = [] for k in random_states: rng.manual_seed(k) - noise = torch.randn(grid.shape, generator=rng) + noise = torch.randn(grid.shape, generator=rng, device=device) velocity_components.append(spectral_filter(spectral_density, noise, grid)) - boundary_conditions.append(grids.periodic_boundary_conditions(grid.ndim)) - velocity = wrap_velocities(velocity_components, grid, boundary_conditions) + boundary_conditions.append(boundaries.periodic_boundary_conditions(grid.ndim)) + velocity = wrap_velocities(velocity_components, grid, boundary_conditions, device=device) # Due to numerical precision issues, we repeatedly normalize and project the # velocity field. This ensures that it is divergence-free and achieves the @@ -168,10 +168,10 @@ def spectral_density(k): def vorticity_field( - grid: grids.Grid, + grid: Grid, peak_wavenumber: float = 3, random_state: int = 0, -) -> GridArray: +) -> GridVariable: """Create vorticity field with a spectral filtering using the McWilliams power spectrum density function. @@ -184,9 +184,7 @@ def vorticity_field( Returns: A vorticity field with periodic boundary condition. """ - - def spectral_density(k): - return McWilliams_density(k, peak_wavenumber) + spectral_density = lambda k: McWilliams_density(k, peak_wavenumber) rng = torch.Generator() rng.manual_seed(random_state) @@ -195,7 +193,7 @@ def spectral_density(k): psi = spectral_filter(spectral_density, noise, grid) psi = streamfunc_normalize(k, psi) vorticity = fft.ifftn(fft.fftn(psi) * k**2).real - boundary_condition = grids.periodic_boundary_conditions(grid.ndim) + boundary_condition = boundaries.periodic_boundary_conditions(grid.ndim) vorticity = wrap_vorticity(vorticity, grid, boundary_condition) return vorticity diff --git a/torch_cfd/interpolation.py b/torch_cfd/interpolation.py new file mode 100644 index 0000000..b381b1c --- /dev/null +++ b/torch_cfd/interpolation.py @@ -0,0 +1,331 @@ +# Copyright 2021 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications copyright (C) 2024 S.Cao +# ported Google's Jax-CFD functional template to PyTorch's tensor ops + +"""Functions for interpolating `GridVariables`s.""" + +from typing import Callable, Optional, Tuple, Union + +import torch +import math + +from torch_cfd import grids +from torch_cfd import boundaries + + +GridArray = grids.GridArray +GridArrayVector = grids.GridArrayVector +GridVariable = grids.GridVariable +GridVariableVector = grids.GridVariableVector +InterpolationFn = Callable[ + [GridVariable, Tuple[float, ...], GridVariableVector, float], GridVariable +] +FluxLimiter = Callable[[grids.torch.Tensor], grids.torch.Tensor] + + +def _linear_along_axis(c: GridVariable, offset: float, axis: int) -> GridVariable: + """Linear interpolation of `c` to `offset` along a single specified `axis`.""" + offset_delta = offset - c.offset[axis] + + # If offsets are the same, `c` is unchanged. + if offset_delta == 0: + return c + + new_offset = tuple(offset if j == axis else o for j, o in enumerate(c.offset)) + + # If offsets differ by an integer, we can just shift `c`. + if int(offset_delta) == offset_delta: + return grids.GridVariable( + array=grids.GridArray( + data=c.shift(int(offset_delta), axis).data, + offset=new_offset, + grid=c.grid, + ), + bc=c.bc, + ) + + floor = int(math.floor(offset_delta)) + ceil = int(math.ceil(offset_delta)) + floor_weight = ceil - offset_delta + ceil_weight = 1.0 - floor_weight + data = ( + floor_weight * c.shift(floor, axis).data + + ceil_weight * c.shift(ceil, axis).data + ) + return grids.GridVariable(array=grids.GridArray(data, new_offset, c.grid), bc=c.bc) + + +def linear( + c: GridVariable, + offset: Tuple[float, ...], + v: Optional[GridVariableVector] = None, + dt: Optional[float] = None, +) -> grids.GridVariable: + """Multi-linear interpolation of `c` to `offset`. + + Args: + c: quantitity to be interpolated. + offset: offset to which we will interpolate `c`. Must have the same length + as `c.offset`. + v: velocity field. Not used. + dt: size of the time step. Not used. + + Returns: + An `GridArray` containing the values of `c` after linear interpolation + to `offset`. The returned value will have offset equal to `offset`. + """ + del v, dt # unused + if len(offset) != len(c.offset): + raise ValueError( + "`c.offset` and `offset` must have the same length;" + f"got {c.offset} and {offset}." + ) + interpolated = c + for a, o in enumerate(offset): + interpolated = _linear_along_axis(interpolated, offset=o, axis=a) + return interpolated + + +def upwind( + c: GridVariable, + offset: Tuple[float, ...], + v: GridVariableVector, + dt: Optional[float] = None, +) -> GridVariable: + """Upwind interpolation of `c` to `offset` based on velocity field `v`. + + Interpolates values of `c` to `offset` in two steps: + 1) Identifies the axis along which `c` is interpolated. (must be single axis) + 2) For positive (negative) velocity along interpolation axis uses value from + the previous (next) cell along that axis correspondingly. + + Args: + c: quantitity to be interpolated. + offset: offset to which `c` will be interpolated. Must have the same + length as `c.offset` and differ in at most one entry. + v: velocity field with offsets at faces of `c`. One of the components + must have the same offset as `offset`. + dt: size of the time step. Not used. + + Returns: + A `GridVariable` that containins the values of `c` after interpolation to + `offset`. + + Raises: + InconsistentOffsetError: if `offset` and `c.offset` differ in more than one + entry. + """ + del dt # unused + if c.offset == offset: + return c + interpolation_axes = tuple( + axis + for axis, (current, target) in enumerate(zip(c.offset, offset)) + if current != target + ) + if len(interpolation_axes) != 1: + raise grids.InconsistentOffsetError( + f"for upwind interpolation `c.offset` and `offset` must differ at most " + f"in one entry, but got: {c.offset} and {offset}." + ) + (axis,) = interpolation_axes + u = v[axis] + offset_delta = u.offset[axis] - c.offset[axis] + + # If offsets differ by an integer, we can just shift `c`. + if int(offset_delta) == offset_delta: + return grids.GridVariable( + array=grids.GridArray( + data=c.shift(int(offset_delta), axis).data, + offset=offset, + grid=grids.consistent_grid_arrays(c, u), + ), + bc=c.bc, + ) + + floor = int(math.floor(offset_delta)) + ceil = int(math.ceil(offset_delta)) + array = grids.applied(torch.where)( + u.array > 0, c.shift(floor, axis).data, c.shift(ceil, axis).data + ) + grid = grids.consistent_grid_arrays(c, u) + return grids.GridVariable( + array=grids.GridArray(array.data, offset, grid), + bc=boundaries.periodic_boundary_conditions(grid.ndim), + ) + + +def lax_wendroff( + c: GridVariable, + offset: Tuple[float, ...], + v: Optional[GridVariableVector] = None, + dt: Optional[float] = None, +) -> GridVariable: + """Lax_Wendroff interpolation of `c` to `offset` based on velocity field `v`. + + Interpolates values of `c` to `offset` in two steps: + 1) Identifies the axis along which `c` is interpolated. (must be single axis) + 2) For positive (negative) velocity along interpolation axis uses value from + the previous (next) cell along that axis plus a correction originating + from expansion of the solution at the half step-size. + + This method is second order accurate with fixed coefficients and hence can't + be monotonic due to Godunov's theorem. + https://en.wikipedia.org/wiki/Godunov%27s_theorem + + Lax-Wendroff method can be used to form monotonic schemes when augmented with + a flux limiter. See https://en.wikipedia.org/wiki/Flux_limiter + + Args: + c: quantitity to be interpolated. + offset: offset to which we will interpolate `c`. Must have the same + length as `c.offset` and differ in at most one entry. + v: velocity field with offsets at faces of `c`. One of the components must + have the same offset as `offset`. + dt: size of the time step. Not used. + + Returns: + A `GridVariable` that containins the values of `c` after interpolation to + `offset`. + Raises: + InconsistentOffsetError: if `offset` and `c.offset` differ in more than one + entry. + """ + # TODO(dkochkov) add a function to compute interpolation axis. + if c.offset == offset: + return c + interpolation_axes = tuple( + axis + for axis, (current, target) in enumerate(zip(c.offset, offset)) + if current != target + ) + if len(interpolation_axes) != 1: + raise grids.InconsistentOffsetError( + f"for Lax-Wendroff interpolation `c.offset` and `offset` must differ at" + f" most in one entry, but got: {c.offset} and {offset}." + ) + (axis,) = interpolation_axes + u = v[axis] + offset_delta = u.offset[axis] - c.offset[axis] + floor = int(math.floor(offset_delta)) # used for positive velocity + ceil = int(math.ceil(offset_delta)) # used for negative velocity + grid = grids.consistent_grid_arrays(c, u) + courant_numbers = (dt / grid.step[axis]) * u.data + positive_u_case = c.shift(floor, axis).data + 0.5 * (1 - courant_numbers) * ( + c.shift(ceil, axis).data - c.shift(floor, axis).data + ) + negative_u_case = c.shift(ceil, axis).data - 0.5 * (1 + courant_numbers) * ( + c.shift(ceil, axis).data - c.shift(floor, axis).data + ) + array = grids.where(u.array > 0, positive_u_case, negative_u_case) + grid = grids.consistent_grid_arrays(c, u) + return grids.GridVariable( + array=grids.GridArray(array.data, offset, grid), + bc=boundaries.periodic_boundary_conditions(grid.ndim), + ) + + +def safe_div(x, y, default_numerator=1): + """Safe division of `Array`'s.""" + return x / torch.where(y != 0, y, default_numerator) + + +def van_leer_limiter(r): + """Van-leer flux limiter.""" + return torch.where(r > 0, safe_div(2 * r, 1 + r), 0.0) + + +def apply_tvd_limiter( + interpolation_fn: InterpolationFn, limiter: FluxLimiter = van_leer_limiter +) -> InterpolationFn: + """Combines low and high accuracy interpolators to get TVD method. + + Generates high accuracy interpolator by combining stable lwo accuracy `upwind` + interpolation and high accuracy (but not guaranteed to be stable) + `interpolation_fn` to obtain stable higher order method. This implementation + follows the procedure outined in: + http://www.ita.uni-heidelberg.de/~dullemond/lectures/num_fluid_2012/Chapter_4.pdf + + Args: + interpolation_fn: higher order interpolation methods. Must follow the same + interface as other interpolation methods (take `c`, `offset`, `grid`, `v` + and `dt` arguments and return value of `c` at offset `offset`). + limiter: flux limiter function that evaluates the portion of the correction + (high_accuracy - low_accuracy) to add to low_accuracy solution based on + the ratio of the consequtive gradients. Takes array as input and return + array of weights. For more details see: + https://en.wikipedia.org/wiki/Flux_limiter + + Returns: + Interpolation method that uses a combination of high and low order methods + to produce monotonic interpolation method. + """ + + def tvd_interpolation( + c: GridVariable, + offset: Tuple[float, ...], + v: GridVariableVector, + dt: float, + ) -> GridVariable: + """Interpolated `c` to offset `offset`. + TODO: + [ ] change this implementation to PyTorch style tensor ops. + """ + for axis, axis_offset in enumerate(offset): + interpolation_offset = tuple( + [ + c_offset if i != axis else axis_offset + for i, c_offset in enumerate(c.offset) + ] + ) + if interpolation_offset != c.offset: + if interpolation_offset[axis] - c.offset[axis] != 0.5: + raise NotImplementedError( + "tvd_interpolation only supports forward " + "interpolation to control volume faces." + ) + c_low = upwind(c, offset, v, dt) + c_high = interpolation_fn(c, offset, v, dt) + + # because we are interpolating to the right we are using 2 points ahead + # and 2 points behind: `c`, `c_left`. + c_left = c.shift(-1, axis) + c_right = c.shift(1, axis) + c_next_right = c.shift(2, axis) + # Velocities of different sign are evaluated with limiters at different + # points. See equations (4.34) -- (4.39) from the reference above. + positive_u_r = safe_div(c.data - c_left.data, c_right.data - c.data) + negative_u_r = safe_div( + c_next_right.data - c_right.data, c_right.data - c.data + ) + positive_u_phi = grids.GridArray( + limiter(positive_u_r), c_low.offset, c.grid + ) + negative_u_phi = grids.GridArray( + limiter(negative_u_r), c_low.offset, c.grid + ) + u = v[axis] + phi = grids.applied(torch.where)( + u.array > 0, positive_u_phi, negative_u_phi + ) + c_interpolated = c_low.array - (c_low.array - c_high.array) * phi + c = grids.GridVariable( + grids.GridArray(c_interpolated.data, interpolation_offset, c.grid), + c.bc, + ) + return c + + return tvd_interpolation \ No newline at end of file diff --git a/torch_cfd/pressure.py b/torch_cfd/pressure.py index 7aa20fb..ea0e13c 100644 --- a/torch_cfd/pressure.py +++ b/torch_cfd/pressure.py @@ -17,115 +17,363 @@ """Functions for computing and applying pressure.""" -from typing import Callable, Optional +from functools import reduce +from typing import Callable, List, Optional, Sequence, Tuple, Union import torch +import torch.fft as fft +import torch.nn as nn -from . import grids, fast_diagonalization as solver, finite_differences as fd +from torch_cfd import ( + boundaries, + finite_differences as fdm, + grids, +) - -Array = grids.Array GridArray = grids.GridArray GridArrayVector = grids.GridArrayVector GridVariable = grids.GridVariable GridVariableVector = grids.GridVariableVector BoundaryConditions = grids.BoundaryConditions - -def _rhs_transform( - u: GridArray, - bc: BoundaryConditions, -) -> Array: - """Transform the RHS of pressure projection equation for stability. - - In case of poisson equation, the kernel is subtracted from RHS for stability. - - Args: - u: a GridArray that solves ∇²x = u. - bc: specifies boundary of x. - - Returns: - u' s.t. u = u' + kernel of the laplacian. - """ - u_data = u.data - for axis in range(u.grid.ndim): - if ( - bc.types[axis][0] == grids.BCType.NEUMANN - and bc.types[axis][1] == grids.BCType.NEUMANN - ): - # if all sides are neumann, poisson solution has a kernel of constant - # functions. We substact the mean to ensure consistency. - u_data = u_data - torch.mean(u_data) - return u_data - - -def solve_fast_diag( - v: GridVariableVector, - q0: Optional[GridVariable] = None, - pressure_bc: Optional[grids.ConstantBoundaryConditions] = None, - implementation: Optional[str] = None, -) -> GridArray: - """Solve for pressure using the fast diagonalization approach. - - To support backward compatibility, if the pressure_bc are not provided and - velocity has all periodic boundaries, pressure_bc are assigned to be periodic. - - Args: - v: a tuple of velocity values for each direction. - q0: the starting guess for the pressure. - pressure_bc: the boundary condition to assign to pressure. If None, - boundary condition is infered from velocity. - implementation: how to implement fast diagonalization. - For non-periodic BCs will automatically be matmul. - - Returns: - A solution to the PPE equation. - """ - del q0 # unused - if pressure_bc is None: - pressure_bc = grids.get_pressure_bc_from_velocity(v) - if grids.has_all_periodic_boundary_conditions(*v): - circulant = True +def _set_laplacian(module: nn.Module, grid: grids.Grid, bc: Sequence[BoundaryConditions]): + """Initialize the Laplacian operators.""" + if module.laplacians is None: + laplacians = fdm.set_laplacian_matrix(grid, bc) + laplacians = torch.stack(laplacians, dim=0) + module.register_buffer("laplacians", laplacians, persistent=True) else: - circulant = False - # only matmul implementation supports non-circulant matrices - implementation = "matmul" - grid = grids.consistent_grid(*v) - rhs = fd.divergence(v) - laplacians = list(map(fd.laplacian_matrix, grid.shape, grid.step)) - laplacians = [lap.to(grid.device) for lap in laplacians] - rhs_transformed = _rhs_transform(rhs, pressure_bc) - pinv = solver.pseudoinverse( - rhs_transformed, - laplacians, - rhs_transformed.dtype, - hermitian=True, - circulant=circulant, - implementation=implementation, - ) - return GridArray(pinv, rhs.offset, rhs.grid) - - -def projection( - v: GridVariableVector, - solve: Callable = solve_fast_diag, -) -> GridVariableVector: - """ - Apply pressure projection (a discrete Helmholtz decomposition) - to make a velocity field divergence free. - - Note by S.Cao: this was originally implemented by the jax-cfd team - but using FDM results having a non-negligible error in fp32. - One resolution is to use fp64 then cast back to fp32. - """ - grid = grids.consistent_grid(*v) - pressure_bc = grids.get_pressure_bc_from_velocity(v) - - q0 = GridArray(torch.zeros(grid.shape), grid.cell_center, grid) - q0 = pressure_bc.impose_bc(q0) - - q = solve(v, q0, pressure_bc) - q = pressure_bc.impose_bc(q) - q_grad = fd.forward_difference(q) - v_projected = tuple(u.bc.impose_bc(u.array - q_g) for u, q_g in zip(v, q_grad)) - return v_projected + # Check if the provided laplacians are consistent with the grid + for laplacian in module.laplacians: + if laplacian.shape != grid.shape: + raise ValueError("Provided laplacians do not match the grid shape.") + +def _set_laplacian(module: nn.Module, laplacians: torch.Tensor, grid: grids.Grid, bc: Sequence[BoundaryConditions]): + """ + Initialize the Laplacian operators. + Args: + laplacians have the shape (ndim, n, n) + """ + if laplacians is None: + laplacians = fdm.set_laplacian_matrix(grid, bc) + laplacians = torch.stack(laplacians, dim=0) + else: + # Check if the provided laplacians are consistent with the grid + for laplacian in laplacians: + if laplacian.shape != grid.shape: + raise ValueError("Provided laplacians do not match the grid shape.") + module.register_buffer("laplacians", laplacians, persistent=True) + + +class PressureProjection(nn.Module): + def __init__( + self, + grid: grids.Grid, + bc: Sequence[BoundaryConditions], + dtype: Optional[torch.dtype] = torch.float32, + implementation: Optional[str] = None, + laplacians: Optional[torch.Tensor] = None, + initial_guess_pressure: Optional[GridArray] = None, + ): + """ + Args: + grid: Grid object describing the spatial domain. + bc: Boundary conditions for the Laplacian operator (for pressure). + dtype: Tensor data type. For consistency purpose. + implementation: One of ['fft', 'rfft', 'matmul']. + circulant: If True, bc is periodical + laplacians: Precomputed Laplacian operators. If None, they are computed from the grid during initiliazation. + initial_guess_pressure: Initial guess for pressure. If None, a zero tensor is used. + """ + super().__init__() + self.grid = grid + self.bc = bc + self.dtype = dtype + self.implementation = implementation + _set_laplacian(self, laplacians, grid, bc) + + self.solver = Pseudoinverse( + grid=grid, + bc=bc, + dtype=dtype, + hermitian=True, + implementation=implementation, + laplacians=self.laplacians + ) + if initial_guess_pressure is None: + initial_guess_pressure = GridArray( + torch.zeros(grid.shape), grid.cell_center, grid + ) + self.q0 = bc.impose_bc(initial_guess_pressure) + + def forward(self, v: GridVariableVector) -> GridVariableVector: + """Project velocity to be divergence-free.""" + _ = grids.consistent_grid(self.grid, *v) + pressure_bc = boundaries.get_pressure_bc_from_velocity(v) + + rhs = fdm.divergence(v) + rhs_transformed = self.rhs_transform(rhs, pressure_bc) + rhs_inv = self.solver(rhs_transformed) + q = GridArray(rhs_inv, rhs.offset, rhs.grid) + q = pressure_bc.impose_bc(q) + q_grad = fdm.forward_difference(q) + v_projected = GridVariableVector( + tuple(u.bc.impose_bc(u.array - q_g) for u, q_g in zip(v, q_grad)) + ) + # assert v_projected.__len__() == v.__len__() + return v_projected + + + @staticmethod + def rhs_transform( + u: GridArray, + bc: BoundaryConditions, + ) -> torch.Tensor: + """Transform the RHS of pressure projection equation for stability.""" + u_data = u.data # (b, n, m) or (n, m) + for axis in range(u.grid.ndim): + if ( + bc.types[axis][0] == boundaries.BCType.NEUMANN + and bc.types[axis][1] == boundaries.BCType.NEUMANN + ): + # Check if we have batched data + if u_data.ndim > u.grid.ndim: + # For batched data, calculate mean separately for each batch + # Keep the batch dimension, reduce over grid dimensions + dims = tuple(range(1, u_data.ndim)) + mean = torch.mean(u_data, dim=dims, keepdim=True) + else: + # For non-batched data, calculate global mean + mean = torch.mean(u_data) + + u_data = u_data - mean + return u_data + + +class Pseudoinverse(nn.Module): + def __init__( + self, + grid: grids.Grid, + bc: Optional[Sequence[boundaries.BoundaryConditions]] = None, + dtype: torch.dtype = torch.float32, + hermitian: bool = True, + circulant: bool = True, + implementation: Optional[str] = None, + laplacians: Optional[torch.Tensor] = None, + cutoff: Optional[float] = None, + ): + r""" + This class applies the pseudoinverse of the Laplacian operator on a given Grid. + This class re-implements to Jax-cfd's function_call type implementations + - _hermitian_matmul_transform() + - _circulant_fft_transform() + - _circulant_rfft_transform() + in the fast_diagonalization.py: + https://github.com/google/jax-cfd/blob/main/jax_cfd/base/fast_diagonalization.py + to PyTorch's tensor ops using nn.Module. + + The application of a linear operator (the inverse of Laplacian) + can be written as a sum of operators on each axis. + Such linear operators are *separable*, and can be written as a sum of tensor + products, e.g., `operators = [A, B]` corresponds to the linear operator + A ⊗ I + I ⊗ B, where the tensor product ⊗ indicates a separation between + operators applied along the first and second axis. + + This function computes matrix-valued functions of such linear operators via + the "fast diagonalization method" [1]: + F(A ⊗ I + I ⊗ B) + = (X(A) ⊗ X(B)) F(Λ(A) ⊗ I + I ⊗ Λ(B)) (X(A)^{-1} ⊗ X(B)^{-1}) + + where X(A) denotes the matrix of eigenvectors of A and Λ(A) denotes the + (diagonal) matrix of eigenvalues. The function `F` is easy to compute in + this basis, because matrix Λ(A) ⊗ I + I ⊗ Λ(B) is diagonal. + + The current implementation directly diagonalizes dense matrices for each + linear operator, which limits it's applicability to grids with less than + 1e3-1e4 elements per side (~1 second to several minutes of setup time). + + Example: The Laplacian operator can be written as a sum of 1D Laplacian + operators along each axis, i.e., as a sum of 1D convolutions along each axis. + This can be seen mathematically (∇² = ∂²/∂x² + ∂²/∂y² + ∂²/∂z²) or by + decomposing the 2D kernel: + + [0 1 0] [ 1] + [1 -4 1] = [1 -2 1] ⊕ [-2] + [0 1 0] [ 1] + + Args: + grid: Grid object describing the spatial domain. + bc: Boundary conditions for the Laplacian operator (for pressure). + dtype: Tensor data type. + hermitian: hermitian: whether or not all linear operator are Hermitian (i.e., symmetric in the real valued case). + circulant: If True, bc is periodical + implementation: One of ['fft', 'rfft', 'matmul']. + cutoff: Minimum eigenvalue to invert. + laplacians: Precomputed Laplacian operators. If None, they are computed from the grid during initiliazation. + + + implementation: how to implement fast diagonalization. Default uses 'rfft' + for grid size larger than 1024 and 'matmul' otherwise: + - 'matmul': scales like O(N**(d+1)) for d N-dimensional operators, but + makes good use of matmul hardware. Requires hermitian=True. + - 'fft': scales like O(N**d * log(N)) for d N-dimensional operators. + Requires circulant=True. + - 'rfft': use the RFFT instead of the FFT. This is a little faster than + 'fft' but also has slightly larger error. It currently requires an even + sized last axis and circulant=True. + precision: numerical precision for matrix multplication. Only relevant on + TPUs with implementation='matmul'. + + Returns: + The pseudoinverse of the Laplacian operator acting on the input tensor. + + TODO: + - [x] change the implementation to tensor2tensor + - [x] originally the laplacian is implemented as + laplacians = array_utils.laplacian_matrix_w_boundaries(rhs.grid, rhs.offset, pressure_bc), needs to add this wrapper to support non-periodic BCs. (May 2025): now this is passed by fdm.set_laplacian_matrix + - [x] add the precomputation to the eigenvalues + + References: + [1] Lynch, R. E., Rice, J. R. & Thomas, D. H. Direct solution of partial + difference equations by tensor product methods. Numer. Math. 6, 185-199 + (1964). https://paperpile.com/app/p/b7fdea4e-b2f7-0ada-b056-a282325c3ecf + + """ + super().__init__() + self.grid = grid + self.bc = bc + + if self.bc is None: + self.bc = boundaries.HomogeneousBoundaryConditions( + ( + (boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC), + (boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC), + ) + ) + + self.cutoff = cutoff or 10 * torch.finfo(dtype).eps + + self.hermitian = hermitian + self.circulant = circulant + self.implementation = implementation + _set_laplacian(self, laplacians, grid, bc) + + + if implementation is None: + self.implementation = "rfft" + self.circulant = True + if implementation == "rfft" and self.laplacians[-1].shape[0] % 2: + self.implementation = "matmul" + self.circulant = False + + if self.implementation == "rfft": + self.ifft = fft.irfftn + self.fft = fft.rfftn + elif self.implementation == "fft": + self.ifft = fft.ifftn + self.fft = fft.fftn + if self.implementation not in ("fft", "rfft", "matmul"): + raise NotImplementedError(f"Unsupported implementation: {implementation}") + + self.eigenvalues = self._compute_eigenvalues() + + if self.implementation in ("fft", "rfft"): + if not self.circulant: + raise ValueError( + f"non-circulant operators not yet supported with implementation='fft' or 'rfft' " + ) + self._forward = self._apply_in_frequency_space + elif self.implementation == "matmul": + if not self.hermitian: + raise ValueError( + "matmul implementation requires hermitian=True. " + "Use fft or rfft for non-hermitian operators." + ) + self._forward = self._apply_in_svd_space + + def forward(self, value: torch.Tensor) -> torch.Tensor: + """ + Apply the pseudoinverse (with a cutoff) Laplacian operator to the input tensor. + + Args: + value: right-hand-side of the linear operator. This is a tensor with `len(operators)` dimensions, where each dimension corresponds to one of the linear operators. + """ + return self._forward(value, self.inverse) + + @staticmethod + def outer_sum(x: Union[List[torch.Tensor], Tuple[torch.Tensor]]) -> torch.Tensor: + """ + Returns the outer sum of a list of one dimensional arrays + Example: + x = [a, b, c] + out = a[..., None, None] + b[..., None] + c + + The full outer sum is equivalent to: + def _sum(a, b): + return a[..., None] + b + return reduce(_sum, x) + """ + + return reduce(lambda a, b: a[..., None] + b, x) + + def _compute_eigenvalues(self): + """ + Precompute the Laplacian eigenvalues on the Grid mesh. + """ + eigenvalues = torch.tensor([1.0] * self.grid.ndim) + eigenvectors = torch.tensor([1.0] * self.grid.ndim) + if self.implementation == "fft": + eigenvalues = [fft.fft(op[:, 0]) for op in self.laplacians] + elif self.implementation == "rfft": + eigenvalues = [fft.fft(op[:, 0]) for op in self.laplacians[:-1]] + [ + fft.rfft(self.laplacians[-1][:, 0]) + ] + elif self.implementation == "matmul": + eigenvalues, eigenvectors = zip(*map(torch.linalg.eigh, self.laplacians)) + else: + raise NotImplementedError( + f"Unsupported implementation: {self.implementation} and eigenvalues are not precomputed." + ) + summed_eigenvalues = self.outer_sum(eigenvalues) + inverse_eigvs = torch.asarray( + self._filter_eigenvalues(summed_eigenvalues) + ) + + + if inverse_eigvs.shape != summed_eigenvalues.shape: + raise ValueError( + "output shape from func() does not match input shape: " + f"{inverse_eigvs.shape} vs {summed_eigenvalues.shape}" + ) + self.register_buffer("inverse", inverse_eigvs, persistent=True) + self.register_buffer("eigenvectors", eigenvectors, persistent=True) + + def _filter_eigenvalues(self, eigenvalues: torch.Tensor) -> torch.Tensor: + """ + Apply a cutoff function to the eigenvalues. + """ + return torch.where(torch.abs(eigenvalues) > self.cutoff, 1 / eigenvalues, 0) + + def _apply_in_frequency_space( + self, value: torch.Tensor, multiplier: torch.Tensor + ) -> torch.Tensor: + """ + Apply the inverse in frequency domain and return to real space. + """ + + return self.ifft(multiplier * self.fft(value), s=self.grid.shape).real + + def _apply_in_svd_space( + self, value: torch.Tensor, multiplier: torch.Tensor + ) -> torch.Tensor: + """ + Apply the inverse in SVD space and return to real space. + """ + assert self.implementation == "matmul" + out = value + for vectors in self.eigenvectors: + out = torch.tensordot(out, vectors, dims=(0, 0)) + out *= multiplier + for vectors in self.eigenvectors: + out = torch.tensordot(out, vectors, dims=(0, 1)) + return out diff --git a/torch_cfd/spectral.py b/torch_cfd/spectral.py new file mode 100644 index 0000000..08211af --- /dev/null +++ b/torch_cfd/spectral.py @@ -0,0 +1,115 @@ +# Copyright 2021 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Modifications copyright (C) 2025 S.Cao +# ported Google's Jax-CFD functional template to PyTorch's tensor ops + +from typing import Optional, Tuple + +import torch +import torch.fft as fft + +from torch_cfd import grids +from einops import repeat + +Grid = grids.Grid + + +def fft_mesh_2d(n, diam, device=None): + kx, ky = [fft.fftfreq(n, d=diam / n) for _ in range(2)] + kx, ky = torch.meshgrid([kx, ky], indexing="ij") + return kx.to(device), ky.to(device) + + +def fft_expand_dims(fft_mesh, batch_size): + kx, ky = fft_mesh + kx, ky = [repeat(z, "x y -> b x y 1", b=batch_size) for z in [kx, ky]] + return kx, ky + + +def spectral_laplacian_2d(fft_mesh, device=None): + kx, ky = fft_mesh + lap = -4 * (torch.pi**2) * (abs(kx) ** 2 + abs(ky) ** 2) + # (2 * torch.pi * 1j)**2 + lap[..., 0, 0] = 1 + return lap.to(device) + + +def spectral_curl_2d(vhat, rfft_mesh): + r""" + Computes the 2D curl in the Fourier basis. + det [d_x d_y \\ u v] + """ + uhat, vhat = vhat + kx, ky = rfft_mesh + return 2j * torch.pi * (vhat * kx - uhat * ky) + + +def spectral_div_2d(vhat, rfft_mesh): + r""" + Computes the 2D divergence in the Fourier basis. + """ + uhat, vhat = vhat + kx, ky = rfft_mesh + return 2j * torch.pi * (uhat * kx + vhat * ky) + + +def spectral_grad_2d(vhat, rfft_mesh): + kx, ky = rfft_mesh + return 2j * torch.pi * kx * vhat, 2j * torch.pi * ky * vhat + + +def spectral_rot_2d(vhat, rfft_mesh): + vgradx, vgrady = spectral_grad_2d(vhat, rfft_mesh) + return vgrady, -vgradx + + +def brick_wall_filter_2d(grid: Grid): + """Implements the 2/3 rule.""" + n, _ = grid.shape + filter_ = torch.zeros((n, n // 2 + 1)) + filter_[: int(2 / 3 * n) // 2, : int(2 / 3 * (n // 2 + 1))] = 1 + filter_[-int(2 / 3 * n) // 2 :, : int(2 / 3 * (n // 2 + 1))] = 1 + return filter_ + + +def vorticity_to_velocity( + grid: Grid, w_hat: torch.Tensor, rfft_mesh: Optional[Tuple[torch.Tensor, torch.Tensor]] = None +): + """Constructs a function for converting vorticity to velocity, both in Fourier domain. + + Solves for the stream function and then uses the stream function to compute + the velocity. This is the standard approach. A quick sketch can be found in + [1]. + + Args: + grid: the grid underlying the vorticity field. + + Returns: + A function that takes a vorticity (rfftn) and returns a velocity vector + field. + + Reference: + [1] Z. Yin, H.J.H. Clercx, D.C. Montgomery, An easily implemented task-based + parallel scheme for the Fourier pseudospectral solver applied to 2D + Navier-Stokes turbulence, Computers & Fluids, Volume 33, Issue 4, 2004, + Pages 509-520, ISSN 0045-7930, + https://doi.org/10.1016/j.compfluid.2003.06.003. + """ + kx, ky = rfft_mesh if rfft_mesh is not None else grid.rfft_mesh() + assert kx.shape[-2:] == w_hat.shape[-2:] + laplace = spectral_laplacian_2d((kx, ky)) + psi_hat = -1 / laplace * w_hat + u_hat, v_hat = spectral_rot_2d(psi_hat, (kx, ky)) + return (u_hat, v_hat), psi_hat \ No newline at end of file diff --git a/torch_cfd/tensor_utils.py b/torch_cfd/tensor_utils.py index 41ca749..bc40956 100644 --- a/torch_cfd/tensor_utils.py +++ b/torch_cfd/tensor_utils.py @@ -22,8 +22,6 @@ import torch import torch.utils._pytree as pytree -Array = torch.Tensor - def _normalize_axis(axis: int, ndim: int) -> int: """Validates and returns positive `axis` value.""" if not -ndim <= axis < ndim: @@ -39,7 +37,7 @@ def slice_along_axis( """Returns slice of `inputs` defined by `idx` along axis `axis`. Args: - inputs: array or a tuple of arrays to slice. + inputs: tensor or a tuple of tensors to slice. axis: axis along which to slice the `inputs`. idx: index or slice along axis `axis` that is returned. expect_same_dims: whether all arrays should have same number of dimensions. diff --git a/torch_cfd/tests/__init__.py b/torch_cfd/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/torch_cfd/tests/test_grids.py b/torch_cfd/tests/test_grids.py new file mode 100644 index 0000000..a287640 --- /dev/null +++ b/torch_cfd/tests/test_grids.py @@ -0,0 +1,910 @@ +import numpy as np +import pytest +import torch + +from torch_cfd import boundaries, grids + + +def test_gridarray_basic_ops(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + c = a + b + d = a * b + e = a - b + f = a / b + assert isinstance(c, grids.GridArray) + assert torch.allclose(c.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(d.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(e.data, torch.tensor([-3.0, -3.0, -3.0])) + assert torch.allclose(f.data, torch.tensor([0.25, 0.4, 0.5])) + + +def test_gridarray_scalar_addition(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + c = a + 2.0 # __add__ + d = 2.0 + a # __radd__ + assert torch.allclose(c.data, torch.tensor([3.0, 4.0, 5.0])) + assert torch.allclose(d.data, torch.tensor([3.0, 4.0, 5.0])) + + +def test_gridarray_scalar_multiplication(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + e = a * 2.0 # __mul__ + f = 2.0 * a # __rmul__ + assert torch.allclose(e.data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(f.data, torch.tensor([2.0, 4.0, 6.0])) + + +def test_gridarray_scalar_subtraction(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([5.0, 6.0, 7.0]), offset=(0,), grid=grid) + c = a - 2.0 # __sub__ + d = 10.0 - a # __rsub__ + assert torch.allclose(c.data, torch.tensor([3.0, 4.0, 5.0])) + assert torch.allclose(d.data, torch.tensor([5.0, 4.0, 3.0])) + + +def test_gridarray_scalar_division(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([4.0, 8.0, 12.0]), offset=(0,), grid=grid) + e = a / 2.0 # __truediv__ + f = 24.0 / a # __rtruediv__ + assert torch.allclose(e.data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(f.data, torch.tensor([6.0, 3.0, 2.0])) + + +def test_gridarray_offset_check(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(1.0,), grid=grid) + with pytest.raises(ValueError): + _ = a + b + + +def test_gridarray_fft(): + grid = grids.Grid((4,)) + a = grids.GridArray(torch.arange(4, dtype=torch.float32), offset=(0,), grid=grid) + fa = torch.fft.fft(a) + assert isinstance(fa, grids.GridArray) + assert torch.allclose(fa.data, torch.fft.fft(a.data)) + + +def test_gridarray_to_and_clone(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = a.to(dtype=torch.float64) + c = a.clone() + assert b.data.dtype == torch.float64 + assert torch.allclose(c.data, a.data) + + +def test_gridarray_shape_dtype_properties(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + assert a.shape == (3,) + assert a.dtype == torch.float32 or a.dtype == torch.float64 + + +def test_gridarray_consistent_offset(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + assert grids.consistent_offset_arrays(a, b) == (0,) + + +def test_gridarray_averaged_offset(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(1.0,), grid=grid) + avg = grids.averaged_offset_arrays(a, b) + assert np.allclose(avg, (0.5,)) + + +def test_gridarray_control_volume_offsets(): + data = torch.zeros((5, 5)) + grid = grids.Grid((5, 5)) + a = grids.GridArray(data, offset=(0, 0), grid=grid) + offsets = grids.control_volume_offsets(a) + assert offsets == ((0.5, 0), (0, 0.5)) + + +def test_gridarray_with_batch_dim_2d(): + # Create a 2D grid with batch dimension + grid = grids.Grid((4, 5)) # 4x5 spatial grid + batch_size = 3 + + # Create a GridArray with batch dimension [batch, x, y] + data = torch.randn(batch_size, 4, 5) + a = grids.GridArray(data, offset=(0, 0), grid=grid) + + assert a.shape == (3, 4, 5) + assert a.ndim == 3 + assert a.data.shape == (3, 4, 5) + + # Test basic operations with batch dimension + b = a + 1.0 + assert b.shape == (3, 4, 5) + assert torch.allclose(b.data, a.data + 1.0) + + # Test multiplication with another tensor of the same shape + c = a * a + assert c.shape == (3, 4, 5) + assert torch.allclose(c.data, a.data * a.data) + + # Test operations between batched arrays + d = grids.GridArray(torch.ones_like(data), offset=(0, 0), grid=grid) + result = a + d + assert result.shape == (3, 4, 5) + assert torch.allclose(result.data, a.data + 1.0) + + +def test_gridarray_applied(): + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + result = grids.applied(torch.add)(a, b) + assert isinstance(result, grids.GridArray) + assert torch.allclose(result.data, a.data + b.data) + + +def test_gridarray_fft1d(): + grid = grids.Grid((8,)) + a = grids.GridArray(torch.arange(8, dtype=torch.float32), offset=(0,), grid=grid) + fa = torch.fft.fft(a) + assert isinstance(fa, grids.GridArray) + assert torch.allclose(fa.data, torch.fft.fft(a.data)) + + +def test_gridarray_ifft1d(): + grid = grids.Grid((8,)) + a = grids.GridArray(torch.arange(8, dtype=torch.float32), offset=(0,), grid=grid) + fa = torch.fft.fft(a) + ia = torch.fft.ifft(fa) + assert isinstance(ia, grids.GridArray) + # Should recover original (within numerical tolerance) + assert torch.allclose(ia.data.real, a.data, atol=1e-6) + + +def test_gridarray_fft2d(): + grid = grids.Grid((4, 4)) + a = grids.GridArray( + torch.arange(16, dtype=torch.float32).reshape(4, 4), offset=(0, 0), grid=grid + ) + fa = torch.fft.fft2(a) + assert isinstance(fa, grids.GridArray) + assert torch.allclose(fa.data, torch.fft.fft2(a.data)) + + +def test_gridarray_ifft2d(): + grid = grids.Grid((4, 4)) + a = grids.GridArray( + torch.arange(16, dtype=torch.float32).reshape(4, 4), offset=(0, 0), grid=grid + ) + fa = torch.fft.fft2(a) + ia = torch.fft.ifft2(fa) + assert isinstance(ia, grids.GridArray) + assert torch.allclose(ia.data.real, a.data, atol=1e-6) + + +def test_gridarray_rfft_irfft(): + grid = grids.Grid((8,)) + a = grids.GridArray(torch.arange(8, dtype=torch.float32), offset=(0,), grid=grid) + ra = torch.fft.rfft(a) + assert isinstance(ra, grids.GridArray) + ira = torch.fft.irfft(ra, n=a.data.shape[0]) + assert isinstance(ira, grids.GridArray) + assert torch.allclose(ira.data, a.data, atol=1e-6) + + +def test_gridvariable_basic_ops(): + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArrays + a_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + # Create GridVariables + a = grids.GridVariable(a_array, bc) + b = grids.GridVariable(b_array, bc) + + # Test operations + c = a + b + d = a * b + e = a - b + f = a / b + + assert isinstance(c, grids.GridVariable) + assert torch.allclose(c.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(d.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(e.data, torch.tensor([-3.0, -3.0, -3.0])) + assert torch.allclose(f.data, torch.tensor([0.25, 0.4, 0.5])) + + # Verify boundary conditions are preserved + assert c.bc == a.bc + assert d.bc == a.bc + assert e.bc == a.bc + assert f.bc == a.bc + + +def test_gridvariable_tensor_ops(): + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArray and GridVariable + a_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a = grids.GridVariable(a_array, bc) + + # Test operations with torch.Tensor + tensor = torch.tensor([4.0, 5.0, 6.0]) + + c = a + tensor + d = tensor + a + e = a * tensor + f = tensor * a + g = a / tensor + h = tensor / a + + assert isinstance(c, grids.GridVariable) + assert isinstance(d, grids.GridVariable) + assert torch.allclose(c.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(d.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(e.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(f.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(g.data, torch.tensor([0.25, 0.4, 0.5])) + assert torch.allclose(h.data, torch.tensor([4.0, 2.5, 2.0])) + + # Verify boundary conditions are preserved + assert c.bc == a.bc + assert d.bc == a.bc + + +def test_gridvariable_gridarray_ops(): + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArray and GridVariable + a_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + a = grids.GridVariable(a_array, bc) + + # Test operations with GridArray + c = a + b_array + d = b_array + a + e = a * b_array + f = b_array * a + g = a / b_array + h = b_array / a + + assert isinstance(c, grids.GridVariable) + assert isinstance(d, grids.GridVariable) + assert torch.allclose(c.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(d.data, torch.tensor([5.0, 7.0, 9.0])) + assert torch.allclose(e.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(f.data, torch.tensor([4.0, 10.0, 18.0])) + assert torch.allclose(g.data, torch.tensor([0.25, 0.4, 0.5])) + assert torch.allclose(h.data, torch.tensor([4.0, 2.5, 2.0])) + + # Verify boundary conditions are preserved + assert c.bc == a.bc + assert d.bc == a.bc + + +def test_gridvariable_scalar_ops(): + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridVariable + a_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a = grids.GridVariable(a_array, bc) + + # Test operations with scalar + c = a + 2.0 + d = 2.0 + a + e = a * 2.0 + f = 2.0 * a + g = a / 2.0 + h = 2.0 / a + + assert isinstance(c, grids.GridVariable) + assert isinstance(d, grids.GridVariable) + assert torch.allclose(c.data, torch.tensor([3.0, 4.0, 5.0])) + assert torch.allclose(d.data, torch.tensor([3.0, 4.0, 5.0])) + assert torch.allclose(e.data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(f.data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(g.data, torch.tensor([0.5, 1.0, 1.5])) + assert torch.allclose(h.data, torch.tensor([2.0, 1.0, 2.0 / 3.0])) + + # Verify boundary conditions are preserved + assert c.bc == a.bc + assert d.bc == a.bc + + +def test_gridvariable_bc_check(): + grid = grids.Grid((3,)) + bc1 = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + bc2 = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.DIRICHLET, boundaries.BCType.DIRICHLET),) + ) + + # Create GridVariables with different boundary conditions + a_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + a = grids.GridVariable(a_array, bc1) + b = grids.GridVariable(b_array, bc2) + + # Test that operations between GridVariables with different BCs raise errors + with pytest.raises(ValueError): + _ = a + b + + +def test_gridarray_unary_ops(): + """Test unary operations for GridArray.""" + grid = grids.Grid((3,)) + + # Create test GridArray + a = grids.GridArray(torch.tensor([-1.0, 2.0, -3.0]), offset=(0,), grid=grid) + + # Test negation (__neg__) + neg_a = -a + assert isinstance(neg_a, grids.GridArray) + assert torch.allclose(neg_a.data, torch.tensor([1.0, -2.0, 3.0])) + assert neg_a.offset == a.offset + assert neg_a.grid is a.grid + + # Test absolute value (abs) + abs_a = abs(a) + assert isinstance(abs_a, grids.GridArray) + assert torch.allclose(abs_a.data, torch.tensor([1.0, 2.0, 3.0])) + assert abs_a.offset == a.offset + assert abs_a.grid is a.grid + + # Test positive (__pos__) + pos_a = +a + assert isinstance(pos_a, grids.GridArray) + assert torch.allclose(pos_a.data, a.data) + assert pos_a.offset == a.offset + assert pos_a.grid is a.grid + + # Test ceil/floor + b = grids.GridArray(torch.tensor([1.2, 2.7, 3.5]), offset=(0,), grid=grid) + ceil_b = torch.ceil(b) + floor_b = torch.floor(b) + + assert isinstance(ceil_b, grids.GridArray) + assert isinstance(floor_b, grids.GridArray) + assert torch.allclose(ceil_b.data, torch.tensor([2.0, 3.0, 4.0])) + assert torch.allclose(floor_b.data, torch.tensor([1.0, 2.0, 3.0])) + + # Test round + round_b = torch.round(b) + assert isinstance(round_b, grids.GridArray) + assert torch.allclose(round_b.data, torch.tensor([1.0, 3.0, 4.0])) + + # Test sqrt + c = grids.GridArray(torch.tensor([4.0, 9.0, 16.0]), offset=(0,), grid=grid) + sqrt_c = torch.sqrt(c) + assert isinstance(sqrt_c, grids.GridArray) + assert torch.allclose(sqrt_c.data, torch.tensor([2.0, 3.0, 4.0])) + + # Test exp + exp_a = torch.exp(a) + assert isinstance(exp_a, grids.GridArray) + assert torch.allclose(exp_a.data, torch.exp(a.data)) + +def test_gridvariable_unary_ops(): + """Test unary operations for GridVariable.""" + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create test GridVariable + array = grids.GridArray(torch.tensor([-1.0, 2.0, -3.0]), offset=(0,), grid=grid) + a = grids.GridVariable(array, bc) + + # Test negation (__neg__) + neg_a = -a + assert isinstance(neg_a, grids.GridVariable) + assert torch.allclose(neg_a.data, torch.tensor([1.0, -2.0, 3.0])) + assert neg_a.bc is a.bc + + # Test absolute value (abs) + abs_a = abs(a) + assert isinstance(abs_a, grids.GridVariable) + assert torch.allclose(abs_a.data, torch.tensor([1.0, 2.0, 3.0])) + assert abs_a.bc is a.bc + + # Test positive (__pos__) + pos_a = +a + assert isinstance(pos_a, grids.GridVariable) + assert torch.allclose(pos_a.data, a.data) + assert pos_a.bc is a.bc + + +def test_gridarray_torch_functions(): + """Test various torch functions on GridArray.""" + grid = grids.Grid((3,)) + a = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + b = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + # Test sin/cos/tan + sin_a = torch.sin(a) + cos_a = torch.cos(a) + tan_a = torch.tan(a) + + assert isinstance(sin_a, grids.GridArray) + assert isinstance(cos_a, grids.GridArray) + assert isinstance(tan_a, grids.GridArray) + assert torch.allclose(sin_a.data, torch.sin(a.data)) + assert torch.allclose(cos_a.data, torch.cos(a.data)) + assert torch.allclose(tan_a.data, torch.tan(a.data)) + + # Test max/min + max_ab = torch.maximum(a, b) + min_ab = torch.minimum(a, b) + + assert isinstance(max_ab, grids.GridArray) + assert isinstance(min_ab, grids.GridArray) + assert torch.allclose(max_ab.data, torch.maximum(a.data, b.data)) + assert torch.allclose(min_ab.data, torch.minimum(a.data, b.data)) + + # Test pow + pow_a = torch.pow(a, 2) + assert isinstance(pow_a, grids.GridArray) + assert torch.allclose(pow_a.data, torch.pow(a.data, 2)) + +def test_gridarrayvector_error_cases(): + """Test error cases for GridArrayVector operations.""" + grid = grids.Grid((3,)) + + # Create GridArrays + a1 = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2 = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + b1 = grids.GridArray(torch.tensor([2.0, 3.0, 4.0]), offset=(0,), grid=grid) + + # Create GridArrayVectors of different lengths + avec = grids.GridArrayVector([a1, a2]) + bvec = grids.GridArrayVector([b1]) + + # Test addition with vectors of different lengths + with pytest.raises(ValueError): + _ = avec + bvec + + # Test subtraction with vectors of different lengths + with pytest.raises(ValueError): + _ = avec - bvec + + +def test_gridarrayvector_add_operations(): + """Test addition operations (add, radd, iadd) for GridArrayVectors.""" + grid = grids.Grid((3,)) + + # Create GridArrays + a1 = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2 = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + b1 = grids.GridArray(torch.tensor([2.0, 3.0, 4.0]), offset=(0,), grid=grid) + b2 = grids.GridArray(torch.tensor([5.0, 6.0, 7.0]), offset=(0,), grid=grid) + + # Create GridArrayVectors + avec = grids.GridArrayVector([a1, a2]) + bvec = grids.GridArrayVector([b1, b2]) + + # Test __add__ + cvec = avec + bvec + assert isinstance(cvec, grids.GridArrayVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(cvec[1].data, torch.tensor([9.0, 11.0, 13.0])) + + # Test __radd__ (should be the same as __add__ since it's commutative) + cvec_r = bvec + avec + assert isinstance(cvec_r, grids.GridArrayVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([9.0, 11.0, 13.0])) + + # Test __iadd__ + avec_copy = grids.GridArrayVector([a1.clone(), a2.clone()]) + avec_copy += bvec + assert isinstance(avec_copy, grids.GridArrayVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([9.0, 11.0, 13.0])) + + +def test_gridarrayvector_sub_operations(): + """Test subtraction operations (sub, rsub, isub) for GridArrayVectors.""" + grid = grids.Grid((3,)) + + # Create GridArrays + a1 = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2 = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + b1 = grids.GridArray(torch.tensor([2.0, 3.0, 4.0]), offset=(0,), grid=grid) + b2 = grids.GridArray(torch.tensor([5.0, 6.0, 7.0]), offset=(0,), grid=grid) + + # Create GridArrayVectors + avec = grids.GridArrayVector([a1, a2]) + bvec = grids.GridArrayVector([b1, b2]) + + # Test __sub__ + cvec = avec - bvec + assert isinstance(cvec, grids.GridArrayVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([-1.0, -1.0, -1.0])) + assert torch.allclose(cvec[1].data, torch.tensor([-1.0, -1.0, -1.0])) + + # Test __rsub__ + cvec_r = bvec - avec + assert isinstance(cvec_r, grids.GridArrayVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([1.0, 1.0, 1.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([1.0, 1.0, 1.0])) + + # Test __isub__ + avec_copy = grids.GridArrayVector([a1.clone(), a2.clone()]) + avec_copy -= bvec + assert isinstance(avec_copy, grids.GridArrayVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([-1.0, -1.0, -1.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([-1.0, -1.0, -1.0])) + + +def test_gridvariablevector_add_operations(): + """Test addition operations (add, radd, iadd) for GridVariableVectors.""" + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArrays + a1_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + b1_array = grids.GridArray(torch.tensor([2.0, 3.0, 4.0]), offset=(0,), grid=grid) + b2_array = grids.GridArray(torch.tensor([5.0, 6.0, 7.0]), offset=(0,), grid=grid) + + # Create GridVariables + a1 = grids.GridVariable(a1_array, bc) + a2 = grids.GridVariable(a2_array, bc) + b1 = grids.GridVariable(b1_array, bc) + b2 = grids.GridVariable(b2_array, bc) + + # Create GridVariableVectors + avec = grids.GridVariableVector([a1, a2]) + bvec = grids.GridVariableVector([b1, b2]) + + # Test __add__ + cvec = avec + bvec + assert isinstance(cvec, grids.GridVariableVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(cvec[1].data, torch.tensor([9.0, 11.0, 13.0])) + + # Test __radd__ (should be the same as __add__ since it's commutative) + cvec_r = bvec + avec + assert isinstance(cvec_r, grids.GridVariableVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([9.0, 11.0, 13.0])) + + # Test __iadd__ (since tuples are immutable, this creates a new object) + avec_copy = grids.GridVariableVector( + [ + grids.GridVariable(a1.array.clone(), a1.bc), + grids.GridVariable(a2.array.clone(), a2.bc), + ] + ) + avec_copy += bvec + assert isinstance(avec_copy, grids.GridVariableVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([3.0, 5.0, 7.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([9.0, 11.0, 13.0])) + + +def test_gridvariablevector_sub_operations(): + """Test subtraction operations (sub, rsub, isub) for GridVariableVectors.""" + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArrays + a1_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + b1_array = grids.GridArray(torch.tensor([2.0, 3.0, 4.0]), offset=(0,), grid=grid) + b2_array = grids.GridArray(torch.tensor([5.0, 6.0, 7.0]), offset=(0,), grid=grid) + + # Create GridVariables + a1 = grids.GridVariable(a1_array, bc) + a2 = grids.GridVariable(a2_array, bc) + b1 = grids.GridVariable(b1_array, bc) + b2 = grids.GridVariable(b2_array, bc) + + # Create GridVariableVectors + avec = grids.GridVariableVector([a1, a2]) + bvec = grids.GridVariableVector([b1, b2]) + + # Test __sub__ + cvec = avec - bvec + assert isinstance(cvec, grids.GridVariableVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([-1.0, -1.0, -1.0])) + assert torch.allclose(cvec[1].data, torch.tensor([-1.0, -1.0, -1.0])) + + # Test __rsub__ (b - a, opposite of a - b) + cvec_r = bvec - avec + assert isinstance(cvec_r, grids.GridVariableVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([1.0, 1.0, 1.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([1.0, 1.0, 1.0])) + + # Test __isub__ (since tuples are immutable, this creates a new object) + avec_copy = grids.GridVariableVector( + [ + grids.GridVariable(a1.array.clone(), a1.bc), + grids.GridVariable(a2.array.clone(), a2.bc), + ] + ) + avec_copy -= bvec + assert isinstance(avec_copy, grids.GridVariableVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([-1.0, -1.0, -1.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([-1.0, -1.0, -1.0])) + +def test_gridarrayvector_mul_operations(): + """Test multiplication operations (mul, rmul, imul) for GridArrayVectors.""" + grid = grids.Grid((3,)) + + # Create GridArrays + a1 = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2 = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + # Create GridArrayVector + avec = grids.GridArrayVector([a1, a2]) + + # Test scalar multiplication + # Test __mul__ + scalar = 2.0 + cvec = avec * scalar + assert isinstance(cvec, grids.GridArrayVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(cvec[1].data, torch.tensor([8.0, 10.0, 12.0])) + + # Test __rmul__ + cvec_r = scalar * avec + assert isinstance(cvec_r, grids.GridArrayVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([8.0, 10.0, 12.0])) + + # Test __imul__ + avec_copy = grids.GridArrayVector([a1.clone(), a2.clone()]) + avec_copy *= scalar + assert isinstance(avec_copy, grids.GridArrayVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([8.0, 10.0, 12.0])) + + # Test tensor multiplication + tensor = torch.tensor(2.0) + tvec = avec * tensor + assert isinstance(tvec, grids.GridArrayVector) + assert torch.allclose(tvec[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(tvec[1].data, torch.tensor([8.0, 10.0, 12.0])) + + +def test_gridarrayvector_div_operations(): + """Test division operations (truediv, rtruediv, itruediv) for GridArrayVectors.""" + grid = grids.Grid((3,)) + + # Create GridArrays + a1 = grids.GridArray(torch.tensor([2.0, 4.0, 6.0]), offset=(0,), grid=grid) + a2 = grids.GridArray(torch.tensor([8.0, 10.0, 12.0]), offset=(0,), grid=grid) + + # Create GridArrayVector + avec = grids.GridArrayVector([a1, a2]) + + # Test scalar division + # Test __truediv__ + scalar = 2.0 + cvec = avec / scalar + assert isinstance(cvec, grids.GridArrayVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(cvec[1].data, torch.tensor([4.0, 5.0, 6.0])) + + # Test __rtruediv__ (scalar / vector elements) + # For rtruediv, we're testing 24.0 / vector elements + scalar = 24.0 + cvec_r = scalar / avec + assert isinstance(cvec_r, grids.GridArrayVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([12.0, 6.0, 4.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([3.0, 2.4, 2.0])) + + # Test __itruediv__ + avec_copy = grids.GridArrayVector([a1.clone(), a2.clone()]) + avec_copy /= 2.0 + assert isinstance(avec_copy, grids.GridArrayVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([4.0, 5.0, 6.0])) + + # Test tensor division + tensor = torch.tensor(2.0) + tvec = avec / tensor + assert isinstance(tvec, grids.GridArrayVector) + assert torch.allclose(tvec[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(tvec[1].data, torch.tensor([4.0, 5.0, 6.0])) + + +def test_gridvariablevector_mul_operations(): + """Test multiplication operations (mul, rmul, imul) for GridVariableVectors.""" + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArrays + a1_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + # Create GridVariables + a1 = grids.GridVariable(a1_array, bc) + a2 = grids.GridVariable(a2_array, bc) + + # Create GridVariableVector + avec = grids.GridVariableVector([a1, a2]) + + # Test scalar multiplication + # Test __mul__ + scalar = 2.0 + cvec = avec * scalar + assert isinstance(cvec, grids.GridVariableVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(cvec[1].data, torch.tensor([8.0, 10.0, 12.0])) + assert cvec[0].bc == a1.bc # Verify boundary conditions are preserved + assert cvec[1].bc == a2.bc + + # Test __rmul__ + cvec_r = scalar * avec + assert isinstance(cvec_r, grids.GridVariableVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([8.0, 10.0, 12.0])) + assert cvec_r[0].bc == a1.bc + assert cvec_r[1].bc == a2.bc + + # Test __imul__ (since tuples are immutable, this creates a new object) + avec_copy = grids.GridVariableVector([ + grids.GridVariable(a1.array.clone(), a1.bc), + grids.GridVariable(a2.array.clone(), a2.bc), + ]) + avec_copy *= scalar + assert isinstance(avec_copy, grids.GridVariableVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([8.0, 10.0, 12.0])) + assert avec_copy[0].bc == a1.bc + assert avec_copy[1].bc == a2.bc + + # Test tensor multiplication + tensor = torch.tensor(2.0) + tvec = avec * tensor + assert isinstance(tvec, grids.GridVariableVector) + assert torch.allclose(tvec[0].data, torch.tensor([2.0, 4.0, 6.0])) + assert torch.allclose(tvec[1].data, torch.tensor([8.0, 10.0, 12.0])) + + +def test_gridvariablevector_div_operations(): + """Test division operations (truediv, rtruediv, itruediv) for GridVariableVectors.""" + grid = grids.Grid((3,)) + bc = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + + # Create GridArrays + a1_array = grids.GridArray(torch.tensor([2.0, 4.0, 6.0]), offset=(0,), grid=grid) + a2_array = grids.GridArray(torch.tensor([8.0, 10.0, 12.0]), offset=(0,), grid=grid) + + # Create GridVariables + a1 = grids.GridVariable(a1_array, bc) + a2 = grids.GridVariable(a2_array, bc) + + # Create GridVariableVector + avec = grids.GridVariableVector([a1, a2]) + + # Test scalar division + # Test __truediv__ + scalar = 2.0 + cvec = avec / scalar + assert isinstance(cvec, grids.GridVariableVector) + assert len(cvec) == 2 + assert torch.allclose(cvec[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(cvec[1].data, torch.tensor([4.0, 5.0, 6.0])) + assert cvec[0].bc == a1.bc + assert cvec[1].bc == a2.bc + + # Test __rtruediv__ (scalar / vector elements) + # For rtruediv, we're testing 24.0 / vector elements + scalar = 24.0 + cvec_r = scalar / avec + assert isinstance(cvec_r, grids.GridVariableVector) + assert len(cvec_r) == 2 + assert torch.allclose(cvec_r[0].data, torch.tensor([12.0, 6.0, 4.0])) + assert torch.allclose(cvec_r[1].data, torch.tensor([3.0, 2.4, 2.0])) + assert cvec_r[0].bc == a1.bc + assert cvec_r[1].bc == a2.bc + + # Test __itruediv__ (since tuples are immutable, this creates a new object) + avec_copy = grids.GridVariableVector([ + grids.GridVariable(a1.array.clone(), a1.bc), + grids.GridVariable(a2.array.clone(), a2.bc), + ]) + avec_copy /= 2.0 + assert isinstance(avec_copy, grids.GridVariableVector) + assert len(avec_copy) == 2 + assert torch.allclose(avec_copy[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(avec_copy[1].data, torch.tensor([4.0, 5.0, 6.0])) + assert avec_copy[0].bc == a1.bc + assert avec_copy[1].bc == a2.bc + + # Test tensor division + tensor = torch.tensor(2.0) + tvec = avec / tensor + assert isinstance(tvec, grids.GridVariableVector) + assert torch.allclose(tvec[0].data, torch.tensor([1.0, 2.0, 3.0])) + assert torch.allclose(tvec[1].data, torch.tensor([4.0, 5.0, 6.0])) + +def test_gridvariablevector_bc_consistency(): + """Test error cases for GridVariableVector with mismatched boundary conditions.""" + grid = grids.Grid((3,)) + + bc1 = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.PERIODIC, boundaries.BCType.PERIODIC),) + ) + bc2 = boundaries.HomogeneousBoundaryConditions( + ((boundaries.BCType.DIRICHLET, boundaries.BCType.DIRICHLET),) + ) + + # Create GridArrays + a1_array = grids.GridArray(torch.tensor([1.0, 2.0, 3.0]), offset=(0,), grid=grid) + a2_array = grids.GridArray(torch.tensor([4.0, 5.0, 6.0]), offset=(0,), grid=grid) + + # Create GridVariables with different boundary conditions + a1 = grids.GridVariable(a1_array, bc1) + a2 = grids.GridVariable(a2_array, bc1) + b1 = grids.GridVariable(a1_array, bc2) + b2 = grids.GridVariable(a2_array, bc2) + + # Create GridVariableVectors + avec = grids.GridVariableVector([a1, a2]) + bvec = grids.GridVariableVector([b1, b2]) + + # Test that operations between vectors with different BCs raise errors + with pytest.raises(ValueError): + _ = avec + bvec + + with pytest.raises(ValueError): + _ = avec - bvec