3. Multivariate Autoregressive Modeling

Assume we have an M-dimensional time-series of length T (e.g., M channels of EEG data,
with T time points per channel): X :=x,...x, wherex, =[x, ...x,,]. We can represent the

multivariate process at time ¢ as a stationary, stable vector autoregressive (VAR, MVAR,
MAR) process of order p (Henceforth we will denote this as a VAR[p] process):

P
X, =v+ZAkxt_k +u, (Eq 3.1)

k=1
Here v=[v,...v,, 1" is an (M x 1) vector of intercept terms (the mean of X), 4; are (M x M)
model coefficient matrices andu,is a zero-mean white noise process with nonsingular

covariance matrix 2.

3.1.  Stationarity and Stability

We assume two basic conditions regarding the data X and its associated VAR[p] model:
stationarity and stability. A stochastic process X is weakly stationary (or wide-sense
stationary (WSS)) if its first and second moments (mean and covariance) do not change

with time. In other words E(x,)= g for all t and E[(x, — )(x,_, — 1)']=T(h) = T'(=h) for
all t and h=0,1,2, ... where E denotes expected value. A VAR[p] process is considered stable if
its reverse characteristic polynomial has no roots in or on the complex unit circle. Formally,
x, is stable if

det(/,, —Az) #0 for ‘Z‘ <1 where
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Equivalently, x;is stable if all eigenvalues of A have modulus less than 1 (Liitkepohl, 2006).
A stable process is one that will not diverge to infinity (“blow up”). An important fact is that
stability implies stationarity - thus it is sufficient to test for stability to ensure that a VAR[p]
process is both stable and stationary. SIFT performs a stability test by analyzing the
eigenvalues of A.

3.2. The Multivariate Least-Squares Estimator

A parametric VAR model can be fit using a number of approaches including multivariate
least-squares approaches (e.g., MLS, ARFIT), lattice algorithms (e.g., Vieira-Morf), or state-



space models (e.g., Kalman filtering). Here we will briefly outline the multivariate least-
squares algorithm (multichannel Yule-Walker) and encourage the interested reader to
consult (Schlogl, 2000; Liitkepohl, 2006; Schlégl, 2006) for more details on this and other
algorithms (several of which are implemented in SIFT).

To derive the multivariate least-squares estimator, let us begin with some definitions:

X =(x,....,x,) (M x T),
b’:z(V,AI,...,Ap) (M x (Mp+1)),
_ 1 .

*

((Mp+1) X D),

'r/—/ﬁ—l

Z = (_ZO,...,Z,_I) (Mp+1) x 7),
U=u,...,u,) (M x T)

Our VAR[p] model (Eq 3.1) can now be written in compact form:
X=BZ+U (Eq 3.2)

Here B and U are unknown. The multivariate (generalized) least-squares (LS, GLS)

estimator of B is the estimator B that minimizes the variance of the innovation process
(residuals) U. Namely,

B= argmin S(B)
B

where S(B)=tr[(X —BZ)'X ™' (X - BZ)].
It can be shown (Liitkepohl, 2006) that the LS estimator can be obtained by
B=XZ'(2Z")" (Eq 3.3)

This result can be derived in several ways, however a simple approach follows from post-
multiplying

X, =BZ _, +u,
by Z:_l and taking expectations:
E(x,Z,)=BE(Z,_Z,) (Eq3.4)

Estimating E(x,Z, ) by



we obtain the normal equations

l)(Z’:f}?lzz’
T T

and thus, B = XZ'(ZZ')™".

The reader may note that B is simply the product of X and the Moore-Penrose
pseudoinverse of Z: B=XZ"where Z! =pinv(Z). The reader familiar with univariate

autoregressive model fitting might also note that (Eq 3.4) is very similar to the well-known
system of Yule-Walker equations. Hence, this can be considered an extension to the
multivariate case of the Yule-Walker algorithm for univariate AR model fitting.

Although asymptotically optimal, the LS algorithm often suffers from sub-optimal
performance when even moderate sample sizes are available, as compared to more robust
modified LS algorithms (e.g., the stepwise least-squares ARFIT algorithm) or non-LS
algorithms (e.g., the Vieira-Morf lattice algorithm). A detailed empirical performance
comparison of these and other algorithms can be found in (Schlégl, 2006). For this reason,
SIFT abandons the LS algorithm in favor of these more robust algorithms. The SIFT
functions pop_est fitMVAR() and est_fitMVARKalman () provide access to various
model-fitting approaches.

3.3. Frequency-Domain Representation

Electrophysiological processes generally exhibit oscillatory structure, making them well
suited for frequency-domain analysis (Buzsaki, 2006). A suitably fit autoregressive model
provides an idealized model for the analysis of oscillatory structure in stochastic time series
(Burg, 1967; Zetterberg, 1969; Burg, 1975; Neumaier and Schneider, 2001). From the AR
coefficients, we can obtain a number of useful quantities including the spectral density
matrix and the transfer function of the process. From these and related quantities we can
obtain power spectra, coherence and partial coherence, Granger-Geweke causality, directed
transfer function, partial directed coherence, phase-locking value, and a number of other
quantities increasingly being used by the neuroscience community to study synchronization
and information flow in the brain (Pereda et al., 2005; Schelter et al., 2006).

To obtain our frequency-domain representation of the model, we begin with our VAR[p]
model from (Eq 3.1). For simplicity, we will assume the process mean is zero:

P
X = ZAkxt—k Tu,
k=1

Rearranging terms we get



p ~ ~ ~
u,= ZAkx[_k where 4, =—4, and 4, =1
k=0

Z-transforming both sides yields:

U= AHX(F) where
A=Y A"

Premultiplying by A(f)_l and rearranging terms we obtain:

X(f)=A)' U =H(NU)

Here X(f) is the (M x M) spectral matrix of the multivariate process, U(f) is a matrix of
random sinusoidal shocks and A(f)-1 = H(f) is the transfer matrix of the system. Note that H(f)
transforms the noise input (U) into the structured spectral matrix. This should give us a hint
that analysis of H(f) (and A(f)) will help us in identifying the structure of the modeled
system (including information flow dynamics). The spectral density matrix of the process
(which contains the auto-spectrum of each variable (at frequency f) on the diagonals and
the cross-spectrum on the off-diagonals) is given by:

S = XX =H(ZH(f)*

As we shall see in Section 4.3., from S(f), A(f),H(f) and X, we can derive a number of

frequency-domain quantities relevant to the study of oscillations, information flow, and
coupling in neural systems.

3.4. Modeling non-stationary data using adaptive VAR models

In section 3. we stated that data stationarity is a necessary precondition for accurate VAR
estimation. However, it is well-known that neural data, including EEG and Local Field
Potentials (LFPs), can be highly non-stationary, exhibiting large fluctuations in both the
mean and variance over time. For instance, a record of EEG data containing evoked
potentials (EPs) is a classic example of a non-stationary time series (both the mean and
variance of the series changes dramatically and transiently during the evoked response).
Another example would be EEG data collected during slow-wave sleep, which exhibits slow
fluctuations in the mean EEG voltage over time. A number of algorithms have been
proposed for fitting VAR models to non-stationary series. In the neuroscience community
the most popular approaches include segmentation (overlapping sliding-window)
approaches (Jansen et al., 1981; Florian and Pfurtscheller, 1995; Ding et al., 2000), state-
space (Kalman filtering) approaches (Schlogl, 2000; Sommerlade et al., 2009), and non-
parametric methods based on minimum-phase spectral matrix factorization (Dhamala et al.,,
2008). All of these approaches are currently - or soon to be made - accessible in SIFT. Here
we will briefly outline the concepts behind each modeling approach.
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3.4.1. Segmentation-based Adaptive VAR (AMVAR) models

A segmentation-based AMVAR adopts an approach rather similar to the concept behind
short-time fourier transforms or other windowing techniques. Namely, we extract a sliding
window of length W from the multivariate dataset, and fit our VAR[p] model to this data. We
then increment the window by a (small) quantity Q and repeat the procedure until the start
of the window is greater than T-W. This produces floor((T-W)/Q+1) VAR coefficient
matrices which describe the evolution of the VAR[p] across time. The concept here is that by
using a sufficiently small window, the data will be locally stationary within the window and
suitable for VAR modeling. By using highly overlapping windows (small Q) we can obtain
coefficients that change relatively smoothly with time. Figure 1 shows a schematic of the
sliding-window AMVAR approach.

One concern here is whether sufficient data points are available to accurately fit the model.
In the general case, we have M?p coefficients (free parameters) to estimate, which requires a
minimum of M?p data samples. However, in practice, we would like to have at least 10 times
as many data points as free parameters (Schlégl and Supp, 2006; Korzeniewska et al., 2008).
When multiple realizations (e.g., experimental trials) are available, we can assume that each
trial is a random sample from the same stochastic process and average covariance matrices
across trials to reduce the bias of our model coefficient estimator (Ding et al., 2000). For the
LS algorithm, explained in section 3., this yields the modified estimator:

B=EX"Z'NEZ"Z'")" (Eq 3.5)

Where X and Z() denote matrices X and Z for the ith single-trial and the expected value is
taken across all trials. This approach effectively increases the number of samples available
for a sliding window of length W from W to WN, where N is the number of
trials/realizations. This allows us to potentially use very small windows (containing as few
as p+1 sample points) while still obtaining a good model fit.

When using short windows with multi-trial data, an important preprocessing step is to
pointwise subtract the ensemble mean and divide by the ensemble standard deviation
(ensemble normalization). This ensures that the ensemble mean is zero and the variance is
one, at every time point. This can dramatically improve the local stationarity of the data
(Ding et al, 2000). An important result of this is that we are essentially modeling
dependencies in the residual time-series after removing the event-related potential (ERP)
from the data. The fact that this preprocessing step has become common practice in
published applications of AMVAR analysis to neural data suggests that there is, in fact, rich
task-relevant information present in the so-called “residual noise” component of the EEG
which cannot be inferred from the ERP itself (Ding et al.,, 2000; Bressler and Seth, 2010).
This fits under the model that mean-field electrophysiological measures such as LFPs and
EEG measure a sum of (potentially oscillatory) ongoing activity and evoked responses
where the amplitude and phase of the evoked response depends largely on the phase of the
ongoing oscillations (Kenet et al.,, 2005; Wang et al,, 2008). Analyzing the phase structure of
the stationary ongoing oscillations may provide a deeper insight into the state of the
underlying neural system than the analysis of the evoked responses themselves.
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Figure 1. Schematic of sliding-window AMVAR modeling. W is the window length, T is the length of each
trial in samples, N is the number of trials.

3.5. Model order selection

Parametric VAR model fitting really involves only one parameter: the model order. The
most common approach for model order selection involves selecting a model order that
minimizes one or more information criteria evaluated over a range of model orders.
Commonly used information criteria include, Akaike Information Criterion (AIC), Schwarz-
Bayes Criterion (SBC) - also known as the Bayesian Information Criterion (BIC) - Akaike’s
Final Prediction Error Criterion (FPE), and Hannan-Quinn Criterion (HQ). A detailed
comparison of these criteria can be found in Chapter 4.3 of (Liitkepohl, 2006). In brief, each
criterion is a sum of two terms, one that characterizes the entropy rate or prediction error
of the model, and a second term that characterizes the number of freely estimated
parameters in the model (which increases with increasing model order). By minimizing
both terms, we seek to identify a model that is both parsimonious (does not overfit the data
with too many parameters) while also accurately modeling the data. The criteria
implemented in SIFT are defined in Table 2.

Table 2. Information criteria for model order selection implemented in SIFT. Here T = TN is the total
number of samples (data points) used to fit the model

Estimator Formula

Schwarz-Bayes Criterion ~ In( 7 ) )
(Bayesian Information Criterion) SEC(p)= ln|2(p)| + 7 oM

Akaike Information Criterion - 2 )
AIC(p)=In[E(p)|+ Z oM

12



Akaike’s Final Prediction Error A V74
7+ Mp+1 }

fPEuo=huw+(f_A¢_l

and its logarithm (used in SIFT)

. 7+ Mp+1
In(FPE =In|Z +MIn| ————
(FPE(p))=1n[Z(p) (T_&@_J
Hannan-Quinn Criterion - 21n(In( 7
HO(p) =S p)|+ 220D 0

For a given information criterion, IC, we select the model order that minimizes IC:

Py =argmin IC(p)
V4

Here, the first term, ln‘i(p)‘ is the logarithm of the determinant of the estimated noise

covariance matrix (prediction error) for a VAR model of order p fit to the M-channel data,
where TN is the total number of datapoints used to fit the model (T samples per trial x N
trials). The key difference between the criteria is how severely each penalizes increases in
model order (the second term). AIC and SBC are the most widely used criteria, but SBC
more heavily penalizes larger model orders. For moderate and large TN, FPE and AIC are
essentially equivalent (see Lutkepohl (2006) p. 148 for a proof); however, FPE may
outperform AIC for very small sample sizes. HQ penalizes high model orders more heavily
than AIC but less than SBC. Both SBC and HQ are consistent estimators, which means that
lim, . Pr{p =p,.}=1.This cannot be said of AIC and FPE. However, under small sample

conditions (small N), AIC/FPE may outperform SBC and/or HQ in selecting the true model
order (Liitkepohl, 2006). When modeling EEG data, it is common for AIC and FPE to show
no clear minimum over a reasonable range of model orders. In this case, there may be a
clear “elbow” in the criterion plotted as a function of increasing model order, which may
suggest a suitable model order.

When selecting a model order for neural connectivity analysis, it is important to consider
the dynamics of the underlying physiological system. In particular, one should consider the
maximum expected time lag between any two variables included the model. If we have
reason to expect a time lag of 7 seconds between any two brain processes, we should make
sure to select a model order of p > 7 Fs where F; is the process sampling rate in Hz.
Additionally, we should consider that the multivariate spectrum of a M-dimensional VAR[p]
model has Mp/2 frequency components (peaks) distributed amongst the M variables (there
are Mp complex-conjugate roots of the characteristic equation of the model). This means
that we can observe p/2 frequency peaks between each pair of variables (Florian and
Pfurtscheller, 1995; Schlégl and Supp, 2006). Thus a reasonable lower bound on the model
order might be twice the number of expected frequencies plus one (for the zero-Hz peak).
Tests performed by Jansen (1981) and Florian and Pfurtscheller (1995) demonstrated that
a potentially optimal model order for modeling EEG spectra was p=10, although little
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spectral differences were identified for model orders between 9 and 13. A key point,
however, is that this was identified for a sampling rate of 128 Hz and it is known that the
optimal model order depends significantly on the sampling rate of the process (Zetterberg,
1969).

The principle motivation behind heavy penalization of high model orders in an information
criterion is to improve forecasting performance by reducing over-fitting. However,
forecasting is not necessarily the ultimate goal of our neural modeling approach.
Furthermore, selecting a too-small model order can severely impair our frequency
resolution (merging peaks together) as well as our ability to detect coupling over long time
lags. Where there is a question as to a suitable model order, it is often better to err on the
side of selecting a larger model order. As such, a criterion such as HQ, which often shows a
clear minimum but affords intermediate penalization between AIC and SBC may represent
an optimal choice for neural data.

In general, it is good practice to select a model order by examining multiple information
criteria and combining this information with additional expectations and knowledge
specific to the physiological properties of the neural system being analyzed. When possible
spectra and coherence obtained from fitted VAR models should be compared with those
obtained from non-parametric methods (such as wavelets) to validate the model. Model
order selection is often an iterative process wherein, through model validation, we
determine the quality of our model fit, and, if necessary, revise our model specification until
the data is adequately modeled.

Model order selection is implemented in SIFT using pop_est_selModelOrder () .

3.6. Model Validation

There a number of criteria which we can use to determine whether we have appropriately
fit our VAR model. SIFT implements three commonly used categories of tests: (1) checking
the residuals of the model for serial and cross-correlation (whiteness tests), (2) testing the
consistency of the model, and (3) check the stability/stationarity of the model. These can be
accessed through the SIFT GUI using pop_est_validateMVAR()

3.6.1. Checking the whiteness of the residuals

Recall the compact model definition from (Eq 3.2): X =BZ+U . Here we can regard the
VAR[p] model coefficients B as a filter which transforms innovations (random white noise),
U, into observed, structured data X. Consequently, for coefficient estimates 1:3, we can obtain
the residuals U = X — BZ. If we have adequately modeled the data, the residuals should be
small and uncorrelated (white). Correlation structure in the residuals means there is still
some correlation structure in the data that has not been described by our model. Checking
the whiteness of residuals typically involves testing whether the residual autocorrelation
coefficients up to some desired lag h are sufficiently small to ensure that we cannot reject
the null hypothesis of white residuals at some desired significance level.
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3.6.1.1. Autocorrelation Function (ACF) Test

A AL

The (M x M) lag I autocovariance matrix of the residuals is given by C, =E[uu, ,]. We
denote the autocovariances up to lag las C, =(C,,...,C,). The lag  autocorrelation matrix is
given by R, =D_]CID_1Where D is a (M x M) diagonal matrix, the diagonal elements being
the square root of the diagonal elements of C,. We are generally interested in testing the
(white noise) null hypothesis H, : R, =(R,,...,R,) =0against the alternative H, : R, #0. A
simple test, based on asymptotic properties of univariate white noise processes, involves
rejecting the hypothesis that U is white noise at the 5% level if |Rl| >iZ/\/¥ for any lag I
(excluding the diagonal elements of Ry which are always 1). T =TN is the total number of
samples used in estimating the covariance. However, since this is a pointwise significance
test at the 5% level, in practice we expect one in twenty coefficients to exceed Z/ﬁin

absolute value even if U is white. A reasonable corrected statistic is thus the probability of a
coefficient exceeding the 5% significance bounds:

count(|Rh|>i2/\/?) count(|R,l|>i2/\/¥)
P comt(R,) | MA(hiD-M

If p < 0.05, or equivalently 1-p > 0.95, then we cannot reject the null hypothesis at the 5%
level and we accept that the residuals are white.

Due to its simplicity, this sort of test enjoys much popularity. However, it is important to
bear in mind that the 5% confidence intervals apply to individual coefficients (i.e., for
univariate models) and although the R; and R;are asymptotically uncorrelated for i # j this

is not necessarily true for the elements of R As such, this test may be misleading when
considering the coefficients of a multivariate model as a group. Additionally, in small sample

conditions (small T ), this test may be overly conservative such that the null hypothesis is
rejected (residuals indicated as non-white) less often than indicated by the chosen
significance level (Lutkepohl, 2006).

3.6.1.2. Portmanteau Tests

In the previous section, we noted that the simple asymptotic ACF test may yield misleading
results when the coefficients are considered independently rather than as a group, derived
from a multivariate process. In contrast, portmanteau tests are a powerful class of test
statistics explicitly derived to test Hyp up to some lag h. SIFT implements three portmanteau
test statistics: Box-Pierce (BPP), Ljung-Box (LBP), and Li-McLeod (LMP). Under the null
hypothesis, for large sample size and h, each of these test statistics approximately follow a
Zz-distribution with M?(h—p) degrees of freedom. A p-value can thus be obtained by

comparing the test statistic with the c.d.f. of this distribution. If 1-p is greater than some
value « (e.g., 0.05 for a 5% significance level), we cannot reject the null hypothesis and we
accept that the residuals are white. Table 3 lists the three tests implemented in SIFT along
with their test statistics and practical notes.
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Table 3. Popular portmanteau tests for whiteness of residuals, implemented in SIFT. Here T = TN is the
total number of samples used to estimate the covariance

Portmanteau Test Formula (Test Statistic) Notes

, The original portmanteau

. A 1 -1 test.  Potentiall overly-
Box-Pierce (BPP) Q= TZtr(C,CO GG ) conservative. P(})Ior smaI};-
=1

sample properties.

Modification of BPP to

improve small-sample

. i R 1 ( 1 1) properties. Potentially

. 0, =T(T+2)Y (T-D"'tr(C/C;'C,C;")| inflates the variance of the
Ljung-Box (LBP) =1 test statistic. Slightly less

conservative than LMP with
slightly higher (but nearly
identical) statistical power.

Further modification of BPP
to improve small-sample

h 2 roperties without variance

A yo i\ M?h(h+1) | Prop
Li-McLeod (LMP) 0, = TZtr(CZCOIC, C01)+ (A ) inflation.  Slightly  more
I=1 2T conservative than  LBP.

Probably the best choice in
most conditions.

BPP is the classical portmanteau test statistic. It can be shown that in small sample
conditions (small T ) its distribution under the null hypothesis diverges from the
asymptotic Zz distribution. This can render it overly-conservative leading us to reject the
null hypothesis of white residuals even when the model was appropriately fit.

The LBP statistic attempts to improve the small-sample properties of the test statistic. By
adjusting each covariance coefficient by its asymptotic variance, it can be shown that under
the null hypothesis, the LBP statistic has a small-sample distribution much closer to the
asymptotic distribution than the BPP statistic. However, it can also be shown that the
variance of the LBP statistic can be inflated to substantially larger than its asymptotic
distribution.

Like LBP, the LMP statistic has better small-sample properties than BPP. However, unlike
LBP, it does so without inflating its variance. Although less popular than LBP, it has been
demonstrated that the variance of LMP is closer to its asymptotic variance whereas LBP is
more sensitive with significance levels somewhat larger than expected when 7 is large. LMP
is slightly conservative but the statistical power for LMP and LBP are nearly identical. Since,
in practice, it is preferable to select the more conservative test among tests with
comparable power, LMP may represent an ideal choice of test statistic for most applications.

The interested reader should consult (Lutkepohl, 2006) and (Arranz, n.d.)for additional
details and references concerning checking the whiteness of residuals. The whiteness of
residuals can be tested in SIFT using est _checkMVARWhiteness ()
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3.6.2. Checking the consistency of the model

To address the question of what fraction of the correlation structure of the original data is
captured by our model, we can calculate the percent consistency (Ding et al., 2000). We
generate an ensemble, of equal dimensions as the original data, using simulated data from
the VAR model. For both the real and simulated datasets, we then calculate all auto- and
cross-correlations between all variables, up to some predetermined lag. Letting R, and Rs
denote the vectorized correlation matrices of the real and simulated data, respectively, the
percent consistency index is given by

[R,-R,
pC=|1-12 A
IR,

A PC value near 100% would indicate that the model is able to generate data that has a
nearly identical correlation structure as the original data. A PC value near 0% indicates a
complete failure to model the data. While determining precisely what constitutes a
sufficiently large PC value is an area for future research, a rule of thumb is that is a value of
PC > 85% suggests the model is adequately capturing the correlation structure of the

original data. The percent consistency can be calculated in SIFT using
est_checkMVARConsistency () .

]XIOO where |||| denotes the Euclidean (Lz) norm.

3.6.3. Checking the stability and stationarity of the model

In section 3.1. we provided a condition for the stability of a VAR[p] process. Namely, an M-
dimensional VAR|[p] process is stable if all the eigenvalues of the (Mp x Mp) augmented
coefficient matrix A have modulus less than 1. Thus, a useful stability index is the log of the
largest eigenvalue A,,,, of A:

SI=1In|A,

ax

A VAR[p] process is stable if and only if SI < 0. The magnitude of the SI can be loosely
interpreted as an estimate of the degree to which the process is stable. As mentioned in
section 3.1., a stable process is a stationary process. Thus it is sufficient to test for stability
of the model to guarantee that the model is also stationary. If the model is not stable,
additional tests such as the Augmented Dickey-Fuller test may be used to separately
evaluate the stationarity of the data. However, since we are generally interested modeling
stable processes, these additional stationarity tests are not implemented in SIFT. The

stability index of a fitted model can be calculated in SIFT using
est_checkMVARStability() .

3.6.4. Comparing parametric and nonparametric spectra and coherence

Another approach sometimes used to validate a fitted VAR model is to compare the spectra
and/or pairwise coherence estimated from the parametric models with those derived from
a robust nonparametric approach such as multitapers or wavelets. Using an equation
similar to percent consistency, we can estimate the fraction of the nonparametric spectrum
or coherence that is captured by our VAR model. Of course, here we assuming the
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nonparametric spectra are optimal estimates of the true spectra (“ground truth”), which
may not be the case (interestingly, Burg (1967; 1975) demonstrated that, if the data is
generated by an AR process and the true model order is known, AR spectral estimation is a
maximum-entropy method which means that it represents an optimal spectral estimator).
Nevertheless, if the nonparametric quantities are carefully computed, this can be a useful
validation procedure. An upcoming release of SIFT will include routines for computing this
spectral consistency index.

4. Granger Causality and Extensions

Granger causality (GC) is a method for inferring certain types of causal dependency
between stochastic variables based on reduction of prediction error of a putative effect
when past observations of a putative cause are used to predict the effect, in addition to past
observations of the putative effect. The concept was first introduced by Norbert Wiener in
1956 and later reformulated and formalized by C.W. Granger in the context of bivariate
linear stochastic autoregressive models (Weiner, 1956; Granger, 1969). The concept relies
on two assumptions:

1. Causes must precede their effects in time

2. Information in a cause’s past must improve the prediction of the effect above
and beyond information contained in the collective past of all other measured
variables (including the effect).

Assumption (1) is intuitive from basic thermodynamical principles: the arrow of causation
points in the same direction as the arrow of time - the past influences the future, but not the
reverse. Assumption (2) is also intuitive: for a putative cause to truly be causal, removal of
the cause should result in some change in the future of the putative effect - there should be
some shared information between the past of the cause and the future of the effect which
cannot be accounted for by knowledge of the past of the effect.

The theory and application of GC (and its extensions) to neural system identification has
been elaborated in a number of other articles and texts (Kaminski, 1997; Eichler, 2006;
Blinowska and Kaminski, 2006; Ding et al., 2006; Schlégl and Supp, 2006; Bressler and Seth,
2010). As such, here we will only briefly introduce the theory and focus primarily on
multivariate extensions of the granger-causal concept, including the partial directed
coherence (PDC) and direct directed transfer function (dDTF).

4.1. Time-Domain GC

Suppose we wish to test whether a measured EEG variable j Granger-causes another
variable i conditioned on all other variables in the measured set. Let V represent the set of

18



all measured variables (e.g., all available EEG sources/channels): V = {1, 2, ... , M}. Our
complete (zero-mean) VAR[p] model is specified as:

Y
) — )
X, 0= ZAA'X/—A' + “,
=1

We fit the full model and obtain the mean-square prediction error when x@ is predicted
from past values of x(¥) up to the specified model order:

(7) |

)
var(r,” | .x

o £ €{l,..., p}} denotes the past of x(")

)= Var(u[(")) =2 where x((j) = {xfy,

Now, suppose we exclude j from the set of variables (denoted V\j) and re-fit the model
X/(V\/) — ZAVV/(Q/) +Z7/
#=1

and again obtain the mean-square prediction error for x(.

) =var(z ") =%,

var(x,” | x)

I3

In general, X, > iii and X = iii if and only if the best linear predictor of x' based on the

full past x) does not depend on x‘. This leads us to the following definition for
multivariate GC (Eichler, 2006):

Let I and J be two disjoint subsets of V. Then x0) Granger-causes x( conditioned on x(V)
if and only if the following two equivalent conditions hold:

1. = >3

2. A4, ,>0forsome ke {l,..., p}

Here >» means “significantly greater than.” In other words, inferring conditional GC
relationships in the time domain amounts to identifying non-zero elements of a
VAR|p] coefficient matrix fit to all available variables.

Granger (1969) quantified DEFINITION 1 for strictly bivariate processes in the form of an F-
ratio:
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Here, Fj denotes the GC from process j to process i. This quantity is always non-negative and
increases away from zero proportionate to the degree to which the past of process j
conditionally explains (“granger-causes”) the future of process i.

4.2. Frequency-Domain GC

In the frequency domain a very similar definition holds for GC as in the time domain. If we
obtain the Fourier-transform of our VAR[p] coefficient matrices A(f) as in section 3.3.,
based on the time-domain definition of GC we can derive the following definition for GC in
the frequency-domain (Eichler, 2006):

Let I and J be two disjoint subsets of V. Then x0) Granger-causes x( conditioned on x(V)
if and only if the following condition holds:

A4,(/)> 0 for some frequency f

DEFINITION 2 suggests a simple method for testing multivariate (conditional) GC at a given
frequency f: we simply test for non-zero coefficients of |A(f)|. This approach yields a class of
GC estimators known as Partial Directed Coherence (PDC) measures (Baccald and
Sameshima, 2001).

A slightly different approach, due to Granger (1969) and later refined by Geweke (1982),
provides an elegant interpretation of frequency-domain GC as a decomposition of the total
spectral interdependence between two series (based on the bivariate spectral density
matrix, and directly related to the coherence) into a sum of “instantaneous”, “feedforward”
and “feedback” causality terms. However, this interpretation was originally derived only for
bivariate processes and, while this has been recently been extended to trivariate (and block-
trivariate) processes (Chen et al,, 2006; Wang et al., 2007), it has not yet been extended to
the true multivariate case. An implementation of the Granger-Geweke formulation for
bivariate processes is provided in SIFT as the “GGC” connectivity estimator. The interested
reader should consult (Ding et al.,, 2006) for an excellent tutorial on the Granger-Geweke
approach.

There is a direct relationship between bivariate time-domain and frequency-domain GC. If
Fj is the time-domain GC estimator ((Eq 4.1) and W(f); is the frequency-domain Granger-
Geweke estimator, then the following equivalency holds:

E =W, df
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It is unknown whether a similar equivalency exists for other multivariate GC estimators,
such as the PDC and dDTF. However, in practice, integrating these estimators over a range
of frequencies provides a simple way to obtain a general time-domain representation of the
estimator.

4.3. A partial list of VAR-based spectral, coherence and GC estimators

Table 4 contains a list of the major spectral, coherence, and GC/information flow estimators
currently implemented in SIFT. Each estimator can be derived from the quantities
S(f), A(f),H(f), and Zobtained in section 3.3., with the exception of the renormalized

PDC (rPDC). The rPDC requires estimating the [(Mp)? x (Mp)?] inverse cross-covariance
matrix of the VAR[p] process. SIFT achieves this using an efficient iterative algorithm
proposed in (Barone, 1987) and based on the doubling algorithm of (Anderson and Moore,
1979). These estimators and more can be computing using the SIFT’s functions
pop_est_mvarConnectivity () or the low-level function est_mvtransfer() .

Table 4. A partial list of VAR-based spectral, coherence, and information flow / GC estimators
implemented in SIFT.

Estimator Formula Primary Reference and Notes

(Brillinger, 2001)

S =X(AHAX * Si(f) is the spectrum for
Spectral ()= XX variable i. Sy(f) = Si(f)" is the
Density Matrix =H(f)ZH(f)*

cross-spectrum between
variables i and j.

Spectral M.

(Brillinger, 2001)

Complex quantity. Frequency-
domain analog of the cross-
correlation. The magnitude-
squared coherency is the
S, () coherence Cohy(f) = |Cij(f)|> The
Cij (f)=—F—7—7—= phase of the coherency can be
Coherency Sii(f)Sjj () used to infer  lag-lead
2 relationships, but, as with cross-
OS|C,,(]{)| <1 correlation, this should be
treated with caution if the
coherence is low, or if the
system under observation may
be open-loop.

Coherence Measures

Imaginary (Nolte et al., 2004)

Coherence iCoh; () =Im(C, (1))

The imaginar art of the
(iCoh) gy P

coherency. This was proposed
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Partial Directed Coherence Measures

as a coupling measure invariant
to linear instantaneous volume-
conduction. iCoh;j(f) > 0 only if
the phase lag between i and j is
non-zero, or equivalently,

0 <angle(C,(f)) <27

Partial
Coherence
(pCoh)

P(f)= S0
JS.(NS, ()
S(ES)!
0<|p (| <1

(Brillinger, 2001)

The partial coherence between i

and j is the remaining
coherence which cannot
explained by a linear
combination  of coherence

between i and j and other
measured variables. Thus, Pj(f)
can regarded as the conditional
coherence between i and j with
respect to all other measured
variables.

Multiple
Coherence
(mCoh)

det(S(f))
G(f)= 1-——————
) \/ S (IM, (1)
M. (f)is the minor of S(f) obtained

by removing the ith row and column of
S(f) and returning the determinant.

(Brillinger, 2001)

Univariate  quantity = which
measures the total coherence of
variable [ with all other

measured variables.

Normalized
Partial
Directed
Coherence
(PDCQ)

A4;(f)
V4,00
0<|z, (N <1

§|zry<f)|2 =1

7, (f) =

(Baccala and Sameshima, 2001)

Complex measure which can be
interpreted as the conditional
granger causality from j to i
normalized by the total amount
of causal outflow from j
Generally, the  magnitude-

squared PDC |”,-,- (f)|2 is used.

Generalized
PDC (GPDC)

21 ()
7(f) =i

Jzk = 4,0
0<|7,(n)| <1

(Baccala and Sameshima, 2007)

Modification of the PDC to
account for severe imbalances
in the wvariance of the
innovations. Theoretically
provides more robust small-
sample estimates. As with PDC,

the squared-magnitude |7z' (f)|
is typically used
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Renormalized
PDC (rPDC)

A, =0,(N*V, () 0,(f)
where

Re[ 4,
0,(7)<[ R4

fm[4,(f)] ]
V()= SR kD, ZQrf kD)

k=1

Z(w,k,])
_ [ cos(wk)cos(wl) cos(wk)sin () ]

nd

- sin(wk)cos(wl) sin(wk)sin (awl)

R is the [(Mp)? x (Mp)?] covariance
matrix of the VAR[p] process
(Litkepohl, 2006)

(Schelter et al., 2009)

Modification of the PDC. Non-
normalized PDC is
renormalized by the inverse
covariance matrix of the
process to render a scale-free
estimator (does not depend on
the unit of measurement) and

eliminate normalization by
outflows and dependence of
statistical significance on

frequency. To our knowledge
SIFT is the first publically
available toolbox to implement
this estimator.

Normalized
Directed
Transfer
Function
(DTF)

H,(f)
LRG]S
0sly, () <1
> () =1

}/ij(f):

(Kaminski  and Blinowska,
1991; Kaminski et al,, 2001)

Complex measure which can be
interpreted as the total
information flow from j to i
normalized by the total amount
of information inflow to i
Generally, the magnitude-

squared DTF |7’,-,-(f)|2 is used
and, in time-varying

applications the DTF should not
be normalized.

Full-
Frequency
DTF (ffDTF)

|, (|
>, 2l

n,(f)=

(Korzeniewska, 2003)

A different normalization of the
DTF which eliminates the
dependence of the denominator
on frequency allowing more
interpretable comparison of
information flow at different
frequencies.

Direct DTF

(dDTF)

&, () =m;(NHE (f)

(Korzeniewska, 2003)

The dDTF is the product of the
ffDTF and the pCoh. Like the
PDC, it can be interpreted as
frequency-domain conditional
GC.
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(Geweke, 1982; Bressler et al,,

% 2007)

§ glefkeer_ (2 o (2% /2))‘1_](]0)‘2 For bivariate models (M = 2),
= " i F.(f)= s v i this is identical to Geweke’s
) “ausality / Si(f) 1982 formulation. However, it
§ (GGC) is not yet clear how this extends
5 to multivariate models (M > 2).

4.4. Time-Frequency GC

In section 3.4. we discussed using adaptive VAR models to model nonstationary time series.
These methods allow us to obtain a sequence of time-varying VAR coefficient matrices. A
time-frequency representation of the spectrum, coherence or information-flow/GC can thus
easily be obtained by computing one or more of the estimators in Table 4 for each
coefficient matrix. Figure 2 shows an example of a time-frequency image of dDTF
information flow between two neural processes. Each column of the image corresponds to
the dDTF “spectrum” at a given point in time.

erdDTF: ACZp (24) — RCZa (16)
1

Frequency (Hz)

.
24515_
X103 -

07 05 025

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0

0.25 0s 075
Time (sec)

Figure 2. A time-frequency image showing the dDTF between two processes for a selected range of
frequencies and times. Frequency is on the y-axis and Time on the x-axis. Red (blue) indicates more
(less) information flow, relative to a baseline period (purple shaded region).

4.5. (Cross-) correlation does not imply (Granger-) causation

An important result of the definition of granger causality is that it provides a much more
stringent criterion for causation (or information flow) than simply observing high
correlation with some lag-lead relationship. A common approach for inferring information
flow is to compute the cross-correlation (or cross-partial-correlation) between two
variables for a range of time lags and determine whether there exists a peak in the
correlation at some non-zero lag. From this we might infer that the leading variable “causes”
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- or transmits information to - the lagged variable. However, using such an approach to
infer causation, or even a direction of information flow, can be quite misleading for several
reasons.

Firstly, the cross-correlation is a symmetric measure and is therefore unsuitable for
identifying lag-lead relationships in systems with feedback (closed-loop systems) (Chatfield,
1989). It is currently understood that many neural systems exhibit feedback, albeit
potentially on a large enough time scale that they system may appear locally open-loop.

Secondly, even if the system under observation is open-loop, a clear peak in the cross-
correlation at some non-zero lag would satisfy Assumption 1 of GC (causes must precede
effects in time) but not Assumption 2 (the past of a cause must share information with the
future of the effect that cannot be explained by the past of all other measured variables,
including the effect). In this regard it is fundamentally different than GC. As it turns out, the
ability for GC to test Assumption 2 is what makes it such a powerful tool for causal
inference, in contrast to simple correlative measures.

To illustrate: suppose we are observing two ants independently following a pheromone trail
towards some tasty morsel. Ant 1 started the journey two minutes before Ant 2 and so he
appears to be “leading” Ant 2. If we compute the cross-correlation between the two ants’
trajectories for a range of time lags we would find a high correlation between their
trajectories and, furthermore, we would find the correlation was peaked at a non-zero lag
with Ant 1 leading Ant 2 by a lag of two minutes. But it would be foolish to say that Ant 1
was “causing” the behavior of Ant 2. In fact, not only is there no causal relationship
whatsoever between the two, but there is not even any information being transmitted
between the two ants. They are conditionally independent of each other, given their own
past history and given the fact that each is independently following the pheromone trail
(this is the “common (exogenous) cause” that synchronizes their behavior). If we were to
intervene and remove Ant 2 (Ant 1), Ant 1 (Ant 2) would continue on his way, oblivious to
the fact that his comrade is no longer in lock-step with him. Consequently, if we calculate
the Granger-causality between the two trajectories we will find that the GC is zero in both
directions: there is no information in the history of either ant that can help predict the
future of the other ant above and beyond the information already contained in each ant’s
respective past.

Because the spectral coherence is simply the Fourier transform of the cross-correlation
(and therefore the frequency-domain representation of the cross-correlation), the same
limitations hold for coherence as for cross-correlation regarding inference of directionality
of information flow or causation. Namely, using the phase of coherence to infer
directionality of information flow in some frequency (as is often done in the neuroscience
community) may be highly misleading if there is even moderate feedback in the system (or
if the coherence is low). Coherence is not necessarily a measure of information flow, but
rather correlation between two processes at a particular frequency (a useful analogy here,
similar to the ants, is to consider two pendulums on opposite sides of the globe swinging in
synchrony at the same frequency, with one pendulum started % cycle before the other -
their behavior is coherent, but is there information flow between them?). In contrast,
frequency-domain extensions of Granger-causality condition on the past history of the
processes and, assuming all relevant variables have been included in the model, can
correctly distinguish between such spurious forms of information flow or causation and
“true” information flow.

25



