-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathpop_select.m
758 lines (698 loc) · 31.9 KB
/
pop_select.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
% POP_SELECT - given an input EEG dataset structure, output a new EEG data structure
% retaining and/or excluding specified time/latency, data point, channel,
% and/or epoch range(s).
% Usage:
% >> OUTEEG = pop_select(INEEG, 'key1', value1, 'key2', value2 ...);
%
% Graphic interface:
% "Time range" - [edit box] RETAIN only the indicated epoch latency or continuous data
% time range: [low high] in ms, inclusive. For continuous data, several
% time ranges may be specified, separated by semicolons.
% Example: "5 10; 12 EEG.xmax" will retain the indicated
% stretches of continuous data, and remove data portions outside
% the indicated ranges, e.g. from 0 s to 5 s and from 10 s to 12 s.
% Command line equivalent: 'time' (or 'notime' - see below)
% "Time range" - [checkbox] EXCLUDE the indicated latency range(s) from the data.
% For epoched data, it is not possible to remove a range of latencies
% from the middle of the epoch, so either the low and/or the high values
% in the specified latency range (see above) must be at an epoch boundary
% (EEG.xmin, EEGxmax). Command line equivalent: [if checked] 'notime'
% "Point range" - [edit box] RETAIN the indicated data point range(s).
% Same options as for the "Time range" features (above).
% Command line equivalent: 'point' (or 'nopoint' - see below).
% "Point range" - [checkbox] EXCLUDE the indicated point range(s).
% Command line equivalent: [if checked] 'nopoint'
% "Epoch range" - [edit box] RETAIN the indicated data epoch indices in the dataset.
% This checkbox is only visible for epoched datasets.
% Command line equivalent: 'trial' (or 'notrial' - see below)
% "Epoch range" - [checkbox] EXCLUDE the specified data epochs.
% Command line equivalent: [if checked] 'notrial'
% "Channel range" - [edit box] RETAIN the indicated vector of data channels
% Command line equivalent: 'channel' (or 'nochannel' - see below)
% "Channel range" - [checkbox] EXCLUDE the indicated channels.
% Command line equivalent: [if checked] 'nochannel'
% "..." - [button] select channels by name.
% "Scroll dataset" - [button] call the EEGPLOT function to scroll the
% channel activities in a new window for visual inspection.
% Commandline equivalent: EEGPLOT - see its help for details.
% Inputs:
% INEEG - input EEG dataset structure
%
% Optional inputs
% 'time' - [min max] in seconds. Epoch latency or continuous data time range
% to retain in the new dataset, (Note: not ms, as in the GUI text entry
% above). For continuous data (only), several time ranges can be specified,
% separated by semicolons. Example: "5 10; 12 EEG.xmax" will retain
% the indicated times ranges, removing data outside the indicated ranges
% e.g. here from 0 to 5 s and from 10 s to 12 s. (See also, 'notime')
% 'rmtime' - [min max] in seconds. Epoch latency or continuous dataset time range
% to exclude from the new dataset. For continuous data, may be
% [min1 max1; min2 max2; ...] to exclude several time ranges. For epoched
% data, the latency range must include an epoch boundary, as latency
% ranges in the middle of epochs cannot be removed from epoched data.
% 'point' - [min max] epoch or continuous data point range to retain in the new
% dataset. For continuous datasets, this may be [min1 max1; min2 max2; ...]
% to retain several point ranges. (Notes: If both 'point'/'nopoint' and
% 'time' | 'notime' are specified, the 'point' limit values take precedence.
% The 'point' argument was originally a point vector, now deprecated).
% 'rmpoint' - [min max] epoch or continuous data point range to exclude in the new dataset.
% For epoched data, the point range must include either the first (0)
% or the last point (EEG.pnts), as a central point range cannot be removed.
% 'trial' - [integer array] array of trial indices to retain in the new dataset
% 'rmtrial' - [integer array] array of trial indices to exclude from the new dataset
% 'sorttrial' - ['on'|'off'] sort trial indices before extracting them (default: 'on').
% 'checkchans' - ['on'|'off'] check that channels are present before
% rejecting them (default: 'on')
% 'channel' - vector of channel indices to retain in the new
% dataset. Can also be a cell array of channel names.
% 'rmchannel' - vector of channel indices to exclude from the new
% dataset. Can also be a cell array of channel names.
% 'chantype' - [string|cell] list of channel types to keep
% 'rmchantype' - [string|cell] list of channel types to remove
%
% Outputs:
% OUTEEG - new EEG dataset structure
%
% Note: This function performs a conjunction (AND) of all its optional inputs.
% Using negative counterparts of all options, any logical combination is
% possible. Legacy input 'notrial', 'notime', 'nochannel', 'nopoint'
% are still supported.
%
% Author: Arnaud Delorme, CNL/Salk Institute, 2001; SCCN/INC/UCSD, 2002-
%
% see also: EEGLAB
% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 01-25-02 reformated help & license -ad
% 01-26-02 changed the format for events and trial conditions -ad
% 02-04-02 changed display format and allow for negation of inputs -ad
% 02-17-02 removed the event removal -ad
% 03-17-02 added channel info subsets selection -ad
% 03-21-02 added event latency recalculation -ad
function [EEG, com] = pop_select( EEG, varargin)
com = '';
if nargin < 1
help pop_select;
return;
end
if isempty(EEG(1).data)
disp('Pop_select error: cannot process empty dataset'); return;
end
if nargin < 2
geometry = { [1 1 1] [1 1 0.25 0.23 0.51] [1 1 0.25 0.23 0.51] [1 1 0.25 0.23 0.51] [1 1 0.25 0.23 0.51] ...
[1 1 0.25 0.23 0.51] [1] [1 1 1]};
enabletype = ~isempty(EEG(1).chanlocs) && isfield(EEG(1).chanlocs, 'type') && ~isempty(EEG(1).chanlocs(1).type);
if isequal(inputname(1), 'EEG')
enableScroll = 'on';
else
enableScroll = 'off';
end
uilist = { ...
{ 'Style', 'text', 'string', 'Select data in:', 'fontweight', 'bold' }, ...
{ 'Style', 'text', 'string', 'Input desired range', 'fontweight', 'bold' }, ...
{ 'Style', 'text', 'string', 'on->remove these', 'fontweight', 'bold' }, ...
{ 'Style', 'text', 'string', 'Time range [min max] (s)', 'fontangle', fastif(length(EEG)>1, 'italic', 'normal') }, ...
{ 'Style', 'edit', 'string', '', 'enable', 'on' }, ...
{ }, { 'Style', 'checkbox', 'string', ' ', 'enable', 'on' },{ }, ...
...
{ 'Style', 'text', 'string', 'Point range (ex: [1 10])', 'fontangle', fastif(length(EEG)>1, 'italic', 'normal') }, ...
{ 'Style', 'edit', 'string', '', 'enable', 'on' }, ...
{ }, { 'Style', 'checkbox', 'string', ' ', 'enable', 'on' },{ }, ...
...
{ 'Style', 'text', 'string', 'Epoch range (ex: 3:2:10)', 'fontangle', fastif(length(EEG)>1, 'italic', 'normal') }, ...
{ 'Style', 'edit', 'string', '', 'enable', 'on' }, ...
{ }, { 'Style', 'checkbox', 'string', ' ', 'enable', 'on' },{ }, ...
...
{ 'Style', 'text', 'string', 'Channel(s)' }, ...
{ 'Style', 'edit', 'string', '', 'tag', 'chans' }, ...
{ }, { 'Style', 'checkbox', 'string', ' ' }, ...
{ 'style' 'pushbutton' 'string' '...', 'enable' fastif(isempty(EEG(1).chanlocs), 'off', 'on') ...
'callback' 'pop_chansel(get(gcbf, ''userdata''), ''field'', ''labels'', ''handle'', findobj(''parent'', gcbf, ''tag'', ''chans''));' }, ...
...
{ 'Style', 'text', 'string', 'Channel type(s)' }, ...
{ 'Style', 'edit', 'string', '', 'tag', 'chantype' }, ...
{ }, { 'Style', 'checkbox', 'string', ' ' }, ...
{ 'style' 'pushbutton' 'string' '...', 'enable' fastif(enabletype, 'on', 'off') ...
'callback' 'pop_chansel(get(gcbf, ''userdata''), ''field'', ''type'', ''handle'', findobj(''parent'', gcbf, ''tag'', ''chantype''));' }, ...
...
{ }, { }, { 'Style', 'pushbutton', 'string', 'Scroll dataset', 'enable', fastif(length(EEG)>1, 'off', 'on'), 'enable', enableScroll, 'callback', ...
'eegplot(EEG.data, ''srate'', EEG.srate, ''winlength'', 5, ''limits'', [EEG.xmin EEG.xmax]*1000, ''position'', [100 300 800 500], ''xgrid'', ''off'', ''eloc_file'', EEG.chanlocs);' } {}};
% 'callback' 'tmplabels = get(gcbf, ''userdata''); [~, tmpvalchan] = pop_chansel(tmplabels, ''withindex'', ''on''); set(findobj(gcbf, ''tag'', ''chans''), ''string'',tmpvalchan); clear tmplabels tmpvalchan' }, ...
chanlocs = eeg_mergelocs(EEG.chanlocs);
results = inputgui( 'geometry', geometry, 'uilist', uilist, 'helpcom', 'pophelp(''pop_select'');', 'title', 'Select data -- pop_select()', 'userdata', chanlocs );
if isempty(results), return; end
% decode inputs
% -------------
args = {};
if ~isempty( results{1} )
if ~results{2}, args = { args{:}, 'time', eval( [ '[' results{1} ']' ] ) };
else args = { args{:}, 'rmtime', eval( [ '[' results{1} ']' ] ) }; end
end
if ~isempty( results{3} )
if ~results{4}, args = { args{:}, 'point', eval( [ '[' results{3} ']' ] ) };
else args = { args{:}, 'rmpoint', eval( [ '[' results{3} ']' ] ) }; end
end
if ~isempty( results{5} )
if ~results{6}, args = { args{:}, 'trial', eval( [ '[' results{5} ']' ] ) };
else args = { args{:}, 'rmtrial', eval( [ '[' results{5} ']' ] ) }; end
end
if ~isempty( results{7} )
[ chaninds, chanlist ] = eeg_decodechan(chanlocs, results{7});
if isempty(chanlist)
if length(EEG) > 1 && length(unique([EEG.nbchan])) > 1
error([ 'Cannot use channel indices when processing multiple datasets' 10 ...
'with some channels already removed' ])
end
chanlist = chaninds;
end
if ~results{8}, args = { args{:}, 'channel' , chanlist };
else args = { args{:}, 'rmchannel', chanlist }; end
end
if ~isempty( results{9} )
[ ~, chantypes ] = eeg_decodechan(chanlocs, results{9}, 'type');
if ~results{10}, args = { args{:}, 'chantype' , unique(chantypes) };
else args = { args{:}, 'rmchantype', unique(chantypes) }; end
end
else
args = varargin;
end
% process multiple datasets
% -------------------------
if length(EEG) > 1
if nargin < 2
[ EEG, com ] = eeg_eval( 'pop_select', EEG, 'warning', 'on', 'params', args);
else
[ EEG, com ] = eeg_eval( 'pop_select', EEG, 'warning', 'off', 'params',args);
end
return;
end
%----------------------------AMICA---------------------------------
if isfield(EEG.etc,'amica') && isfield(EEG.etc.amica,'prob_added')
for index = 1:2:length(args)
if strcmpi(args{index}, 'channel')
args{index+1} = [ args{index+1} EEG.nbchan-(0:2*EEG.etc.amica.num_models-1)];
end
end
end
%--------------------------------------------------------------------
g = finputcheck(args, { 'time' 'real' [] []; ...
'notime' 'real' [] []; ...
'rmtime' 'real' [] []; ...
'trial' 'integer' [] [1:EEG.trials]; ...
'notrial' 'integer' [] []; ...
'rmtrial' 'integer' [] []; ...
'point' 'integer' [] []; ...
'nopoint' 'integer' [] []; ...
'rmpoint' 'integer' [] []; ...
'channel' { 'integer','cell' } [] [];
'nochannel' { 'integer','cell' } [] [];
'rmchannel' { 'integer','cell' } [] [];
'chantype' { 'string','cell' } [] {};
'rmchantype' { 'string','cell' } [] {};
'trialcond' 'integer' [] []; ...
'notrialcond' 'integer' [] []; ...
'sort' 'integer' [] []; ...
'sorttrial' 'string' { 'on','off' } 'on' }, 'pop_select');
if ischar(g)
error(g);
end
if ~isempty(g.rmtrial)
g.notrial = g.rmtrial;
end
if ~isempty(g.rmtime)
g.notime = g.rmtime;
end
if ~isempty(g.rmpoint)
g.nopoint = g.rmpoint;
end
if ~isempty(g.rmchannel)
g.nochannel = g.rmchannel;
end
if ~isempty(g.sort)
if g.sort, g.sorttrial = 'on';
else g.sorttrial = 'off';
end
end
if strcmpi(g.sorttrial, 'on')
g.trial = sort(setdiff( g.trial, g.notrial ));
if isempty(g.trial), error('Error: dataset %s is empty',EEG.filename); end
else
g.trial(ismember(g.trial,g.notrial)) = [];
% still warn about & remove duplicate trials (may be removed in the future)
[p,q] = unique_bc(g.trial);
if length(p) ~= length(g.trial)
disp('Warning: trial selection contained duplicated elements, which were removed.');
end
g.trial = g.trial(sort(q));
end
% decode channels
% ---------------
if ~isempty(g.channel) || ~isempty(g.nochannel)
% find channels by name
if ~isempty(g.channel)
if ~isempty(g.chantype) || ~isempty(g.rmchantype)
error('You can select channels by name or by type but not both');
end
inds = eeg_decodechan(EEG, g.channel, 'labels', true);
chanFlag = zeros(1, EEG.nbchan);
chanFlag(inds) = 1;
else
chanFlag = ones(1, EEG.nbchan);
end
if ~isempty(g.nochannel)
if ~isempty(g.chantype) || ~isempty(g.rmchantype)
error('You can select channels by name or by type but not both');
end
inds = eeg_decodechan(EEG, g.nochannel, 'labels', true);
chanFlag(inds) = 0;
end
else
% find channels by type
if ~isempty(g.chantype)
inds = eeg_decodechan(EEG, g.chantype, 'type', true);
chanFlag = zeros(1, EEG.nbchan);
chanFlag(inds) = 1;
else
chanFlag = ones(1, EEG.nbchan);
end
if ~isempty(g.rmchantype)
inds = eeg_decodechan(EEG, g.rmchantype, 'type', true);
chanFlag(inds) = 0;
end
end
g.channel = find(chanFlag);
% time selection
% --------------
if ~isempty(g.time) && (g.time(1) < EEG.xmin*1000) && (g.time(2) > EEG.xmax*1000)
error('Wrong time range');
end
if min(g.trial) < 1 || max( g.trial ) > EEG.trials
error('Wrong trial range');
end
if size(g.point,2) > 2
g.point = [g.point(1) g.point(end)];
disp('Warning: vector format for point range is deprecated');
end
if size(g.nopoint,2) > 2
g.nopoint = [g.nopoint(1) g.nopoint(end)];
disp('Warning: vector format for point range is deprecated');
end
if ~isempty( g.point )
g.time = zeros(size(g.point));
for index = 1:length(g.point(:))
g.time(index) = eeg_point2lat(g.point(index), 1, EEG.srate, [EEG.xmin EEG.xmax]);
end
g.notime = [];
end
if ~isempty( g.nopoint )
g.notime = zeros(size(g.nopoint));
for index = 1:length(g.nopoint(:))
g.notime(index) = eeg_point2lat(g.nopoint(index), 1, EEG.srate, [EEG.xmin EEG.xmax]);
end
g.time = [];
end
if ~isempty( g.notime )
if size(g.notime,2) ~= 2
error('Time/point range must contain 2 columns exactly');
end
if g.notime(2) == EEG.xmax
g.time = [EEG.xmin g.notime(1)];
else
if g.notime(1) == EEG.xmin
g.time = [g.notime(2) EEG.xmax];
elseif EEG.trials > 1
error('Wrong notime range. Remember that it is not possible to remove a slice of time for data epochs.');
end
end
if g.notime(end) > EEG.xmax, g.notime(end) = EEG.xmax; end
if g.notime(1) < EEG.xmin, g.notime(1) = EEG.xmin; end
if floor(max(g.notime(:))) > EEG.xmax
error('Time/point range exceed upper data limits');
end
if min(g.notime(:)) < EEG.xmin
error('Time/point range exceed lower data limits');
end
end
if ~isempty(g.time)
if size(g.time,2) ~= 2
error('Time/point range must contain 2 columns exactly');
end
for index = 1:length(g.time)
if g.time(index) > EEG.xmax
g.time(index) = EEG.xmax;
disp('Upper time limits exceed data, corrected');
elseif g.time(index) < EEG.xmin
g.time(index) = EEG.xmin;
disp('Lower time limits exceed data, corrected');
end
end
end
% select trial values
%--------------------
if ~isempty(g.trialcond)
try
tt = struct( g.trialcond{:} ); catch
error('Trial conditions format error');
end
ttfields = fieldnames (tt);
for index = 1:length(ttfields)
if ~isfield( EEG.epoch, ttfields{index} )
error([ ttfields{index} 'is not a field of EEG.epoch' ]);
end
tmpepoch = EEG.epoch;
eval( [ 'Itriallow = find( [ tmpepoch(:).' ttfields{index} ' ] >= tt.' ttfields{index} '(1) );' ] );
eval( [ 'Itrialhigh = find( [ tmpepoch(:).' ttfields{index} ' ] <= tt.' ttfields{index} '(end) );' ] );
Itrialtmp = intersect_bc(Itriallow, Itrialhigh);
g.trial = intersect_bc( g.trial(:)', Itrialtmp(:)');
end
end
if isempty(g.trial)
error('Empty dataset, no trial');
end
if length(g.trial) ~= EEG.trials
fprintf('Removing %d trial(s)...\n', EEG.trials - length(g.trial));
end
if length(g.channel) ~= EEG.nbchan
fprintf('Removing %d channel(s)...\n', EEG.nbchan - length(g.channel));
end
try
% For AMICA probabilities...
%-----------------------------------------------------
if isfield(EEG.etc, 'amica') && ~isempty(EEG.etc.amica) && isfield(EEG.etc.amica, 'v_smooth') && ~isempty(EEG.etc.amica.v_smooth) && ~isfield(EEG.etc.amica,'prob_added')
if isfield(EEG.etc.amica, 'num_models') && ~isempty(EEG.etc.amica.num_models)
if size(EEG.data,2) == size(EEG.etc.amica.v_smooth,2) && size(EEG.data,3) == size(EEG.etc.amica.v_smooth,3) && size(EEG.etc.amica.v_smooth,1) == EEG.etc.amica.num_models
EEG = eeg_formatamica(EEG);
%-------------------------------------------
[EEG, com] = pop_select(EEG,args{:});
%-------------------------------------------
EEG = eeg_reformatamica(EEG);
EEG = eeg_checkamica(EEG);
return;
else
disp('AMICA probabilities not compatible with size of data, probabilities cannot be rejected')
disp('Resuming rejection...')
end
end
end
% ------------------------------------------------------
catch
warnmsg = strcat('your dataset contains amica information, but the amica plugin is not installed. Continuing and ignoring amica information.');
warning(warnmsg)
end
% recompute latency and epoch number for events
% ---------------------------------------------
if length(g.trial) ~= EEG.trials && ~isempty(EEG.event)
if ~isfield(EEG.event, 'epoch')
disp('Pop_epoch warning: bad event format with epoch dataset, removing events');
EEG.event = [];
else
if isfield(EEG.event, 'epoch')
keepevent = [];
for indexevent = 1:length(EEG.event)
newindex = find( EEG.event(indexevent).epoch == g.trial );% For AMICA probabilities...
%-----------------------------------------------------
try
if isfield(EEG.etc, 'amica') && ~isempty(EEG.etc.amica) && isfield(EEG.etc.amica, 'v_smooth') && ~isempty(EEG.etc.amica.v_smooth) && ~isfield(EEG.etc.amica,'prob_added')
if isfield(EEG.etc.amica, 'num_models') && ~isempty(EEG.etc.amica.num_models)
if size(EEG.data,2) == size(EEG.etc.amica.v_smooth,2) && size(EEG.data,3) == size(EEG.etc.amica.v_smooth,3) && size(EEG.etc.amica.v_smooth,1) == EEG.etc.amica.num_models
EEG = eeg_formatamica(EEG);
%-------------------------------------------
[EEG, com] = pop_select(EEG,args{:});
%-------------------------------------------
EEG = eeg_reformatamica(EEG);
EEG = eeg_checkamica(EEG);
return;
else
disp('AMICA probabilities not compatible with size of data, probabilities cannot be rejected')
disp('Resuming rejection...')
end
end
end
catch
warnmsg = strcat('your dataset contains amica information, but the amica plugin is not installed. Continuing and ignoring amica information.');
warning(warnmsg)
end;
% ------------------------------------------------------
if ~isempty(newindex)
keepevent = [keepevent indexevent];
if isfield(EEG.event, 'latency')
EEG.event(indexevent).latency = EEG.event(indexevent).latency - (EEG.event(indexevent).epoch-1)*EEG.pnts + (newindex-1)*EEG.pnts;
end
EEG.event(indexevent).epoch = newindex;
end
end
diffevent = setdiff_bc([1:length(EEG.event)], keepevent);
if ~isempty(diffevent)
disp(['Pop_select: removing ' int2str(length(diffevent)) ' unreferenced events']);
EEG.event(diffevent) = [];
end
end
end
end
% performing removal
% ------------------
if ~isempty(g.time) || ~isempty(g.notime)
if EEG.trials > 1
% select new time window
% ----------------------
try, tmpevent = EEG.event;
tmpeventlatency = [ tmpevent.latency ];
catch, tmpeventlatency = [];
end
alllatencies = 1-(EEG.xmin*EEG.srate); % time 0 point
alllatencies = linspace( alllatencies, EEG.pnts*(EEG.trials-1)+alllatencies, EEG.trials);
[EEG.data, tmptime, indices, epochevent]= epoch(EEG.data, alllatencies, ...
[g.time(1) g.time(2)]*EEG.srate, 'allevents', tmpeventlatency);
tmptime = tmptime/EEG.srate;
if g.time(1) ~= tmptime(1) && g.time(2)-1/EEG.srate ~= tmptime(2)
fprintf('pop_select(): time limits have been adjusted to [%3.3f %3.3f] to fit data points limits\n', tmptime(1), tmptime(2)+1/EEG.srate);
end
EEG.xmin = tmptime(1);
EEG.xmax = tmptime(2);
EEG.pnts = size(EEG.data,2);
alllatencies = alllatencies(indices);
% modify the event structure accordingly (latencies and add epoch field)
% ----------------------------------------------------------------------
allevents = [];
newevent = [];
count = 1;
if ~isempty(epochevent)
newevent = EEG.event(1);
for index=1:EEG.trials
for indexevent = epochevent{index}
newevent(count) = EEG.event(indexevent);
newevent(count).epoch = index;
newevent(count).latency = newevent(count).latency - alllatencies(index) - tmptime(1)*EEG.srate + 1 + EEG.pnts*(index-1);
count = count + 1;
end
end
end
EEG.event = newevent;
% erase event-related fields from the epochs
% ------------------------------------------
if ~isempty(EEG.epoch)
fn = fieldnames(EEG.epoch);
EEG.epoch = rmfield(EEG.epoch,{fn{strmatch('event',fn)}});
end
else
if isempty(g.notime)
if length(g.time) == 2 && EEG.xmin < 0
disp('Warning: negative minimum time; unchanged to ensure correct latency of initial boundary event');
end
g.notime = g.time';
g.notime = g.notime(:);
if g.notime(1) ~= 0, g.notime = [EEG.xmin g.notime(:)'];
else g.notime = [g.notime(2:end)'];
end
if g.time(end) == EEG.xmax, g.notime(end) = [];
else g.notime(end+1) = EEG.xmax;
end
for index = 1:length(g.notime)
if g.notime(index) ~= 0 && g.notime(index) ~= EEG.xmax
if mod(index,2), g.notime(index) = g.notime(index) + 1/EEG.srate;
else g.notime(index) = g.notime(index) - 1/EEG.srate;
end
end
end
g.notime = reshape(g.notime, 2, length(g.notime)/2)';
end
nbtimes = length(g.notime(:));
[points,flag] = eeg_lat2point(g.notime(:)', ones(1,nbtimes), EEG.srate, [EEG.xmin EEG.xmax]);
points = reshape(points, size(g.notime));
% fixing if last region is the same
if flag
if ~isempty(find((points(end,1)-points(end,2))== 0)), points(end,:) = []; end
end
EEG = eeg_eegrej(EEG, points);
end
end
% performing removal
% ------------------
if ~isequal(g.channel,1:size(EEG.data,1)) || ~isequal(g.trial,1:size(EEG.data,3))
eeglab_options;
if ~isequal(g.channel,1:size(EEG.data,1))
if ~isempty(EEG.dipfit)
warning('erasing dipole information since channels have being removed')
EEG.dipfit = [];
EEG.roi = [];
end
end
if option_memmapdata
% this code below is preferred for memory mapped files
diff1 = setdiff_bc([1:size(EEG.data,1)], g.channel);
diff2 = setdiff_bc([1:size(EEG.data,3)], g.trial);
if ~isempty(diff1)
EEG.data(diff1, :, :) = [];
end
if ~isempty(diff2)
EEG.data(:, :, diff2) = [];
end
else
EEG.data = EEG.data(g.channel, :, g.trial);
end
end
if ~isempty(EEG.icaact), EEG.icaact = EEG.icaact(:,:,g.trial); end
if ~isempty(EEG.chanlocs)
if ~isfield(EEG.chaninfo, 'removedchans')
EEG.chaninfo.removedchans = [];
end
try
diff1 = setdiff_bc([1:EEG.nbchan], g.channel);
fields = fieldnames(EEG.chanlocs);
for iChan = diff1(:)'
EEG.chaninfo.removedchans(end+1).(fields{1}) = EEG.chanlocs(iChan).(fields{1});
for iField = 1:length(fields)
EEG.chaninfo.removedchans(end).(fields{iField}) = EEG.chanlocs(iChan).(fields{iField});
end
end
catch
disp('There was an issue storing removed channels in pop_select');
end
EEG.chanlocs = EEG.chanlocs(g.channel);
end
EEG.trials = length(g.trial);
EEG.pnts = size(EEG.data,2);
EEG.nbchan = length(g.channel);
if ~isempty(EEG.epoch)
EEG.epoch = EEG.epoch( g.trial );
end
if ~isempty(EEG.specdata)
if length(g.point) == EEG.pnts
EEG.specdata = EEG.specdata(g.channel, :, g.trial);
else
EEG.specdata = [];
fprintf('Warning: spectral data were removed because of the change in the number of points\n');
end
end
% ica specific
% ------------
if ~isempty(EEG.icachansind)
rmchans = setdiff_bc( EEG.icachansind, g.channel ); % channels to remove
% channel sub-indices
% -------------------
icachans = 1:length(EEG.icachansind);
for index = length(rmchans):-1:1
chanind = find(EEG.icachansind == rmchans(index));
icachans(chanind) = [];
end
% new channels indices
% --------------------
count = 1;
newinds = [];
for index = 1:length(g.channel)
if any(EEG.icachansind == g.channel(index))
newinds(count) = index;
count = count+1;
end
end
EEG.icachansind = newinds;
else
icachans = 1:size(EEG.icasphere,2);
end
if ~isempty(EEG.icawinv)
flag_rmchan = (length(icachans) ~= size(EEG.icawinv,1));
if isempty(EEG.icaweights) || flag_rmchan
EEG.icawinv = EEG.icawinv(icachans,:);
EEG.icaweights = pinv(EEG.icawinv);
EEG.icasphere = eye(size(EEG.icaweights,2));
end
end
if ~isempty(EEG.specicaact)
if length(g.point) == EEG.pnts
EEG.specicaact = EEG.specicaact(icachans, :, g.trial);
else
EEG.specicaact = [];
fprintf('Warning: spectral ICA data were removed because of the change in the number of points\n');
end
end
% check if only one epoch
% -----------------------
if EEG.trials == 1
if isfield(EEG.event, 'epoch')
EEG.event = rmfield(EEG.event, 'epoch');
end
EEG.epoch = [];
end
if isfield(EEG.reject, 'gcompreject') && isequal(g.channel,1:size(EEG.data,1))
tmpgcompreject = EEG.reject.gcompreject;
EEG.reject = [];
EEG.reject.gcompreject = tmpgcompreject;
else
EEG.reject = [];
end
EEG.stats = [];
EEG.reject.rejmanual = [];
% for stats, can adapt remove the selected trials and electrodes
% in the future to gain time -----------------------------------
EEG.stats.jp = [];
EEG = eeg_checkset(EEG, 'eventconsistency');
% generate command
% ----------------
if nargout > 1
com = sprintf('EEG = pop_select( EEG, %s);', vararg2str(args));
end
return;
% ********* OLD, do not remove any event any more
% ********* in the future maybe do a pack event to remove events not in the time range of any epoch
if ~isempty(EEG.event)
% go to array format if necessary
if isstruct(EEG.event), format = 'struct';
else format = 'array';
end
switch format, case 'struct', EEG = eventsformat(EEG, 'array'); end
% keep only events related to the selected trials
Indexes = [];
Ievent = [];
for index = 1:length( g.trial )
currentevents = find( EEG.event(:,2) == g.trial(index));
Indexes = [ Indexes ones(1, length(currentevents))*index ];
Ievent = union_bc( Ievent, currentevents );
end
EEG.event = EEG.event( Ievent,: );
EEG.event(:,2) = Indexes(:);
switch format, case 'struct', EEG = eventsformat(EEG, 'struct'); end
end