-
Notifications
You must be signed in to change notification settings - Fork 247
/
spectopo.m
993 lines (927 loc) · 41.2 KB
/
spectopo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
% SPECTOPO - Plot the power spectral density (PSD) of winsize length segments of data
% epochs at all channels as a bundle of traces. At specified frequencies,
% plot the relative topographic distribution of PSD. If available, uses
% PWELCH from the Matlab signal processing toolbox, else the EEGLAB SPEC
% function. Plots the mean spectrum for all of the supplied data, not just
% the pre-stimulus baseline.
% Usage:
% >> spectopo(data, frames, srate);
% >> [spectra,freqs,speccomp,contrib,specstd] = ...
% spectopo(data, frames, srate, 'key1','val1', 'key2','val2' ...);
% Inputs:
% data = If 2-D (nchans,time_points); % may be a continuous single epoch,
% else a set of concatenated data epochs, else a 3-D set of data
% epochs (nchans,frames,epochs)
% frames = frames per epoch {default|0 -> data length}
% srate = sampling rate per channel (Hz)
%
% Optional 'keyword',[argument] input pairs:
% 'freq' = [float vector (Hz)] vector of frequencies at which to plot power
% scalp maps, or else a single frequency at which to plot component
% contributions at a single channel (see also 'plotchan')
% 'chanlocs' = [electrode locations filename or EEG.chanlocs structure]
% For format, see >> topoplot example
% 'limits' = [xmin xmax ymin ymax cmin cmax] axis limits. Sets x, y, and color
% axis limits. May omit final values or use NaNs.
% Ex: [0 60 NaN NaN -10 10], [0 60], ...
% Default color limits are symmetric around 0 and are different
% for each scalp map {default|all NaN's: from the data limits}
% 'title' = [quoted string] plot title {default: none}
% 'freqfac' = [integer] ntimes to oversample (to adjust frequency resolution) {default: 1}
% 'nfft' = [integer] Data points to zero-pad data windows to (overwrites 'freqfac')
% 'winsize' = [integer] window size in data points {default: Sampling Rate}
% 'overlap' = [integer] window overlap in data points {default: 0}
% 'percent' = [float 0 to 100] percent of the data to sample for computing the
% spectra. Values < 100 speed up the computation. {default: 100}
% 'freqrange' = [min max] frequency range to plot. Changes x-axis limits {default:
% 1 Hz for the min and Nyquist (srate/2) for the max. If specified
% power distribution maps are plotted, the highest mapped frequency
% determines the max freq}.
% 'wintype' = ['hamming','blackmanharris'] Window type used on the power spectral
% density estimation. The Blackman-Harris windows offers better attenuation
% than Hamming windows, but lower spectral resolution. {default: 'hamming'}
% 'blckhn' = [integer] Parameter to scale the windows length when Blackman-Harris
% windows is used in 'wintype' {default: 2}
% 'reref' = ['averef'|'off'] convert data to average reference {default: 'off'}
% 'mapnorm' = [float vector] If 'data' contain the activity of an independent
% component, this parameter should contain its scalp map. In this case
% the spectrum amplitude will be scaled to component RMS scalp power.
% Useful for comparing component strengths {default: none}
% 'boundaries' = data point indices of discontinuities in the signal {default: none}
% 'plot' = ['on'|'off'] 'off' -> disable plotting {default: 'on'}
% 'rmdc' = ['on'|'off'] 'on' -> remove DC {default: 'off'}
% 'plotmean' = ['on'|'off'] 'on' -> plot the mean channel spectrum {default: 'off'}
% 'plotchans' = [integer array] plot only specific channels {default: all}
% 'verbose' = ['on'|'off'] 'on' shows information on command line {default: 'on'}
%
% Optionally plot component contributions:
% 'weights' = ICA unmixing matrix. Here, 'freq' (above) must be a single frequency.
% ICA maps of the N ('nicamaps') components that account for the most
% power at the selected frequency ('freq') are plotted along with
% the spectra of the selected channel ('plotchan') and components
% ('icacomps').
% 'plotchan' = [integer] channel at which to compute independent conmponent
% contributions at the selected frequency ('freq'). If 0, plot RMS
% power at all channels. {defatul|[] -> channel with highest power
% at specified 'freq' (above)). Do not confuse with
% 'plotchans' which select channels for plotting.
% 'mapchans' = [int vector] channels to plot in topoplots {default: all}
% 'mapframes'= [int vector] frames to plot {default: all}
% 'nicamaps' = [integer] number of ICA component maps to plot {default: 4}.
% 'icacomps' = [integer array] indices of ICA component spectra to plot ([] -> all).
% 'icamode' = ['normal'|'sub'] in 'sub' mode, instead of computing the spectra of
% individual ICA components, the function computes the spectrum of
% the data minus their contributions {default: 'normal'}
% 'icamaps' = [integer array] force plotting of selected ICA component maps
% {default: [] = the 'nicamaps' largest contributing components}.
% 'icawinv' = [float array] inverse component weight or mixing matrix. Normally,
% this is computed by inverting the ICA unmixing matrix 'weights' (above).
% However, if any components were removed from the supplied 'weights'mapchans
% then the component maps will not be correctly drawn and the 'icawinv'
% matrix should be supplied here {default: from component 'weights'}
% 'memory' = ['low'|'high'] a 'low' setting will use less memory for computing
% component activities, will take longer {default: 'high'}
%
% Replotting options:
% 'specdata' = [freq x chan array ] spectral data
% 'freqdata' = [freq] array of frequencies
%
% Topoplot options:
% other 'key','val' options are propagated to TOPOPLOT for map display
% (See >> help topoplot)
%
% Outputs:
% spectra = (nchans,nfreqs) power spectra (mean power over epochs), in dB
% freqs = frequencies of spectra (Hz)
% speccomp = component spectra (ncomps,nfreqs). Warning, only the function
% only computes the spectrum of the components given as input using
% the 'icacomps' parameter. Other component spectrum are filled
% with 0.
% contrib = contribution of each component (if 'icamode' is 'normal', relative
% variance, if 'icamode' is 'sub', percent variance accounted for)
% specstd = spectrum standard deviation in dB
%
% Notes: The original input format is still functional for backward compatibility.
% PSD has been replaced by PWELCH (see Matlab note 24750 on their web site)
%
% Non-backward compatible change (Nov 15 2015):
% Default winsize was set to the sampling rate (giving a default window
% length of 1 sec). Also, the y-axis label in the plot was corrected
% to read, "Log Power Spectral Density 10*log_{10}(\muV^{2}/Hz)'
% Finally, when winsize is not a power of 2, it is no longer promoted to
% the next higher power of 2. Thanks to Andreas Widmann for his comments.
%
%
% Authors: Scott Makeig, Arnaud Delorme & Marissa Westerfield,
% SCCN/INC/UCSD, La Jolla, 3/01
%
% See also: TIMTOPO, ENVTOPO, TFTOPO, TOPOPLOT
% Copyright (C) 3/01 Scott Makeig & Arnaud Delorme & Marissa Westerfield, SCCN/INC/UCSD,
% scott@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
% 3-20-01 added limits arg -sm
% 01-25-02 reformated help & license -ad
% 02-15-02 scaling by epoch number line 108 - ad, sm & lf
% 03-15-02 add all topoplot options -ad
% 03-18-02 downsampling factor to speed up computation -ad
% 03-27-02 downsampling factor exact calculation -ad
% 04-03-02 added axcopy -sm
% Uses: MATLAB PWELCH, CHANGEUNITS, TOPOPLOT, TEXTSC
function [eegspecdB,freqs,compeegspecdB,resvar,specstd] = spectopo(data,frames,srate,varargin)
% formerly: ... headfreqs,chanlocs,limits,titl,freqfac, percent, varargin)
icadefs;
LOPLOTHZ = 1; % low Hz to plot
FREQFAC = 1; % approximate frequencies/Hz (default)
allcolors = { [0 0.7500 0.7500]
[1 0 0]
[0 0.5000 0]
[0 0 1]
[0.2500 0.2500 0.2500]
[0.7500 0.7500 0]
[0.7500 0 0.7500] }; % colors from real plots };
if nargin<3
help spectopo
return
end
if nargin <= 3 || ischar(varargin{1})
% 'key' 'val' sequence
fieldlist = { 'freq' 'real' [] [] ;
'specdata' 'real' [] [] ;
'freqdata' 'real' [] [] ;
'chanlocs' '' [] [] ;
'freqrange' 'real' [0 srate/2] [] ;
'memory' 'string' {'low','high'} 'high' ;
'plot' 'string' {'on','off'} 'on' ;
'plotmean' 'string' {'on','off'} 'off' ;
'title' 'string' [] '';
'limits' 'real' [] [nan nan nan nan nan nan];
'freqfac' 'integer' [] FREQFAC;
'percent' 'real' [0 100] 100 ;
'reref' 'string' { 'averef','off','no' } 'off' ;
'boundaries' 'integer' [] [] ;
'nfft' 'integer' [1 Inf] [] ;
'winsize' 'integer' [1 Inf] [] ;
'overlap' 'integer' [1 Inf] 0 ;
'icamode' 'string' { 'normal','sub' } 'normal' ;
'weights' 'real' [] [] ;
'mapnorm' 'real' [] [] ;
'plotchan' 'integer' [1:size(data,1)] [] ;
'plotchans' 'integer' [1:size(data,1)] [] ;
'nicamaps' 'integer' [] 4 ;
'blckhn' 'integer' [] 2 ;
'icawinv' 'real' [] [] ;
'icacomps' 'integer' [] [] ;
'icachansind' 'integer' [] [1:size(data,1)] ;
'icamaps' 'integer' [] [] ;
'rmdc' 'string' {'on','off'} 'off';
'verbose' 'string' {'on','off'} 'on';
'wintype' 'string' {} 'hamming';
'mapchans' 'integer' [1:size(data,1)] []
'mapframes' 'integer' [1:size(data,2)] []};
[g, varargin] = finputcheck( varargin, fieldlist, 'spectopo', 'ignore');
if ischar(g), error(g); end
if ~isempty(g.freqrange), g.limits(1:2) = g.freqrange; end
if ~isempty(g.weights)
if isempty(g.freq) || length(g.freq) > 2
if ~isempty(get(0,'currentfigure')) && strcmp(get(gcf, 'tag'), 'spectopo'), close(gcf); end
error('spectopo(): for computing component contribution, one must specify a (single) frequency');
end
end
else
if ~isnumeric(data)
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if ~isnumeric(frames) || round(frames) ~= frames
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if ~isnumeric(srate) % 3rd arg must be the sampling rate in Hz
error('spectopo(): Incorrect call format (see >> help spectopo).')
end
if nargin > 3, g.freq = varargin{1};
else g.freq = [];
end
if nargin > 4, g.chanlocs = varargin{2};
else g.chanlocs = [];
end
if nargin > 5, g.limits = varargin{3};
else g.limits = [nan nan nan nan nan nan];
end
if nargin > 6, g.title = varargin{4};
else g.title = '';
end
if nargin > 7, g.freqfac = varargin{5};
else g.freqfac = FREQFAC;
end
if nargin > 8, g.percent = varargin{6};
else g.percent = 100;
end
if nargin > 10, g.reref = 'averef';
else g.reref = 'off';
end
g.weights = [];
g.icamaps = [];
end
if g.percent > 1
g.percent = g.percent/100; % make it from 0 to 1
end
if ~isempty(g.freq) && isempty(g.chanlocs)
error('spectopo(): needs channel location information');
end
if isempty(g.weights) && ~isempty(g.plotchans)
data = data(g.plotchans,:);
if ~isempty(g.chanlocs)
g.chanlocs = g.chanlocs(g.plotchans);
end
end
if strcmpi(g.rmdc, 'on')
data = data - repmat(mean(data,2), [ 1 size(data,2) 1]);
end
data = reshape(data, size(data,1), size(data,2)*size(data,3));
if frames == 0
frames = size(data,2); % assume one epoch
end
%if ~isempty(g.plotchan) & g.plotchan == 0 & strcmpi(g.icamode, 'sub')
% if ~isempty(get(0,'currentfigure')) & strcmp(get(gcf, 'tag'), 'spectopo'), close(gcf); end
% error('Cannot plot data component at all channels (option not implemented)');
%end
if ~isempty(g.freq) && min(g.freq)<0
if ~isempty(get(0,'currentfigure')) && strcmp(get(gcf, 'tag'), 'spectopo'), close(gcf); end
fprintf('spectopo(): freqs must be >=0 Hz\n');
return
end
g.chanlocs2 = g.chanlocs;
if ~isempty(g.specdata)
eegspecdB = g.specdata;
freqs = g.freqdata;
else
epochs = round(size(data,2)/frames);
if frames*epochs ~= size(data,2)
error('Spectopo: non-integer number of epochs');
end
if ~isempty(g.weights)
ncompsori = size(g.weights,1);
if isempty(g.icawinv)
g.icawinv = pinv(g.weights); % maps
end
if ~isempty(g.icacomps)
g.weights = g.weights(g.icacomps, :);
g.icawinv = g.icawinv(:,g.icacomps);
else
g.icacomps = [1:size(g.weights,1)];
end
end
compeegspecdB = [];
resvar = NaN;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute channel spectra using pwelch()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
epoch_subset = ones(1,epochs);
if g.percent ~= 1 && epochs == 1
fprintf('Selecting the first %2.1f%% of data for analysis...\n', g.percent*100);
frames = round(size(data,2)*g.percent);
data = data(:, 1:frames);
g.boundaries(find(g.boundaries > frames)) = [];
if ~isempty(g.boundaries)
g.boundaries(end+1) = frames;
end;
end
if g.percent ~= 1 && epochs > 1
epoch_subset = zeros(1,epochs);
nb = ceil( g.percent*epochs);
while nb>0
index = ceil(rand*epochs);
if ~epoch_subset(index)
epoch_subset(index) = 1;
nb = nb-1;
end
end;
epoch_subset = find(epoch_subset == 1);
fprintf('Randomly selecting %d of %d data epochs for analysis...\n', length(epoch_subset),epochs);
else
epoch_subset = find(epoch_subset == 1);
end
if isempty(g.weights)
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute data spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%
myfprintf(g.verbose, 'Computing spectra')
[eegspecdB freqs specstd] = spectcomp( data, frames, srate, epoch_subset, g);
if ~isempty(g.mapnorm) % normalize by component map RMS power (if data contain 1 component
myfprintf(g.verbose, 'Scaling spectrum by component RMS of scalp map power\n');
eegspecdB = sqrt(mean(g.mapnorm.^4)) * eegspecdB;
% the idea is to take the RMS of the component activity (compact) projected at each channel
% spec = sqrt( power(g.mapnorm(1)*compact).^2 + power(g.mapnorm(2)*compact).^2 + ...)
% spec = sqrt( g.mapnorm(1)^4*power(compact).^2 + g.mapnorm(1)^4*power(compact).^2 + ...)
% spec = sqrt( g.mapnorm(1)^4 + g.mapnorm(1)^4 + ... )*power(compact)
end
tmpc = find(eegspecdB(:,1)); % > 0 power chans
tmpindices = find(eegspecdB(:,1) == 0);
if ~isempty(tmpindices)
zchans = int2str(tmpindices); % 0-power chans
else zchans = [];
end
if length(tmpc) ~= size(eegspecdB,1)
myfprintf(g.verbose, '\nWarning: channels [%s] have 0 values, so will be omitted from the display', ...
zchans);
eegspecdB = eegspecdB(tmpc,:);
if ~isempty(specstd), specstd = specstd(tmpc,:); end
if ~isempty(g.chanlocs)
g.chanlocs2 = g.chanlocs(tmpc);
end
end
eegspecdB = 10*log10(eegspecdB);
specstd = 10*log10(specstd);
myfprintf(g.verbose, '\n');
else
% compute data spectrum
if isempty(g.plotchan) || g.plotchan == 0
myfprintf(g.verbose, 'Computing spectra')
[eegspecdB freqs specstd] = spectcomp( data, frames, srate, epoch_subset, g);
myfprintf(g.verbose, '\n'); % log below
else
myfprintf(g.verbose, 'Computing spectra at specified channel')
g.reref = 'off';
[eegspecdB freqs specstd] = spectcomp( data(g.plotchan,:), frames, srate, epoch_subset, g);
myfprintf(g.verbose, '\n'); % log below
end
g.reref = 'off';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select channels and spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isempty(g.plotchan) % find channel of minimum power
[tmp indexfreq] = min(abs(g.freq-freqs));
[tmp g.plotchan] = min(eegspecdB(:,indexfreq));
myfprintf(g.verbose, 'Channel %d has maximum power at %g\n', g.plotchan, g.freq);
eegspecdBtoplot = eegspecdB(g.plotchan, :);
elseif g.plotchan == 0
myfprintf(g.verbose, 'Computing RMS power at all channels\n');
eegspecdBtoplot = sqrt(mean(eegspecdB.^2,1)); % RMS before log as for components
else
eegspecdBtoplot = eegspecdB;
end
tmpc = find(eegspecdB(:,1)); % > 0 power chans
zchans = int2str(find(eegspecdB(:,1) == 0)); % 0-power chans
if length(tmpc) ~= size(eegspecdB,1)
myfprintf(g.verbose, '\nWarning: channels [%s] have 0 values, so will be omitted from the display', ...
zchans);
eegspecdB = eegspecdB(tmpc,:);
if ~isempty(specstd), specstd = specstd(tmpc,:); end
if ~isempty(g.chanlocs)
g.chanlocs2 = g.chanlocs(tmpc);
end
end
specstd = 10*log10(specstd);
eegspecdB = 10*log10(eegspecdB);
eegspecdBtoplot = 10*log10(eegspecdBtoplot);
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute component spectra
%%%%%%%%%%%%%%%%%%%%%%%%%%%
newweights = g.weights;
if strcmp(g.memory, 'high') && strcmp(g.icamode, 'normal')
myfprintf(g.verbose, 'Computing component spectra: ')
[compeegspecdB freqs] = spectcomp( newweights*data(:,:), frames, srate, epoch_subset, g);
else % in case out of memory error, multiply conmponent sequentially
if strcmp(g.icamode, 'sub') && ~isempty(g.plotchan) && g.plotchan == 0
% scan all electrodes
myfprintf(g.verbose, 'Computing component spectra at each channel: ')
for index = 1:size(data,1)
g.plotchan = index;
[compeegspecdB(:,:,index) freqs] = spectcomp( data, frames, srate, epoch_subset, g, newweights);
end
g.plotchan = 0;
else
myfprintf(g.verbose, 'Computing component spectra: ')
[compeegspecdB freqs] = spectcomp( data, frames, srate, epoch_subset, g, newweights);
end
end
myfprintf(g.verbose, '\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% rescale spectra with respect to projection (rms = root mean square)
% all channels: component_i power = rms(inverseweigths(component_i)^2)*power(activation_component_i);
% one channel: component_i power = inverseweigths(channel_j,component_i)^2)*power(activation_component_i);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmpi(g.icamode, 'normal')
for index = 1:size(compeegspecdB,1)
if g.plotchan == 0 % normalize by component scalp map power
compeegspecdB(index,:) = 10*log10( sqrt(mean(g.icawinv(:,index).^4)) * compeegspecdB(index,:) );
else
compeegspecdB(index,:) = 10*log10( g.icawinv(g.plotchan,index)^2 * compeegspecdB(index,:) );
end
end
else % already spectrum of data-components
compeegspecdB = 10*log10( compeegspecdB );
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% select components to plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isempty(g.icamaps)
[tmp indexfreq] = min(abs(g.freq-freqs));
g.icafreqsval = compeegspecdB(:, indexfreq);
[g.icafreqsval g.icamaps] = sort(g.icafreqsval);
if strcmp(g.icamode, 'normal')
g.icamaps = g.icamaps(end:-1:1);
g.icafreqsval = g.icafreqsval(end:-1:1);
end
if g.nicamaps < length(g.icamaps), g.icamaps = g.icamaps(1:g.nicamaps); end
else
[tmp indexfreq] = min(abs(g.freq-freqs));
g.icafreqsval = compeegspecdB(g.icamaps, indexfreq);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute axis and caxis g.limits
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if length(g.limits)<1 || isnan(g.limits(1))
g.limits(1) = LOPLOTHZ;
end
if ~isempty(g.freq)
if length(g.limits)<2 || isnan(g.limits(2))
maxheadfreq = max(g.freq);
if rem(maxheadfreq,5) ~= 0
g.limits(2) = 5*ceil(maxheadfreq/5);
else
g.limits(2) = maxheadfreq*1.1;
end
end
g.freq = sort(g.freq); % Determine topoplot frequencies
freqidx = zeros(1,length(g.freq)); % Do not interpolate between freqs
for f=1:length(g.freq)
[tmp fi] = min(abs(freqs-g.freq(f)));
freqidx(f)=fi;
end
else % no freq specified
if isnan(g.limits(2))
g.limits(2) = srate/2;
end
end
[tmp maxfreqidx] = min(abs(g.limits(2)-freqs)); % adjust max frequency
[tmp minfreqidx] = min(abs(g.limits(1)-freqs)); % adjust min frequency
if length(g.limits)<3|isnan(g.limits(3))
reallimits(1) = min(min(eegspecdB(:,minfreqidx:maxfreqidx)));
else
reallimits(1) = g.limits(3);
end
if length(g.limits)<4|isnan(g.limits(4))
reallimits(2) = max(max(eegspecdB(:,minfreqidx:maxfreqidx)));
dBrange = reallimits(2)-reallimits(1); % expand range a bit beyond data g.limits
reallimits(1) = reallimits(1)-dBrange/7;
reallimits(2) = reallimits(2)+dBrange/7;
else
reallimits(2) = g.limits(4);
end
if length(g.limits)<5 % default caxis plotting g.limits
g.limits(5) = nan;
end
if length(g.limits)<6
g.limits(6) = nan;
end
if isnan(g.limits(5))+isnan(g.limits(6)) == 1
fprintf('spectopo(): limits 5 and 6 must either be given or nan\n');
return
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot spectrum of each channel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if strcmpi(g.plot, 'on')
mainfig = gca; axis off;
if ~isempty(g.freq)
specaxes = sbplot(3,4,[5 12], 'ax', mainfig);
end
if isempty(g.weights)
%pl=plot(freqs(1:maxfreqidx),eegspecdB(:,1:maxfreqidx)'); % old command
if strcmpi(g.plotmean, 'on'), specdata = mean(eegspecdB,1); % average channels
else specdata = eegspecdB;
end
for index = 1:size(specdata,1) % scan channels
tmpcol = allcolors{mod(index, length(allcolors))+1};
command = [ 'disp(''Channel ' int2str(index) ''')' ];
pl(index)=plot(freqs(1:maxfreqidx),specdata(index,1:maxfreqidx)', ...
'color', tmpcol, 'ButtonDownFcn', command); hold on;
end
else
for index = 1:size(eegspecdBtoplot,1)
tmpcol = allcolors{mod(index, length(allcolors))+1};
command = [ 'disp(''Channel ' int2str(g.plotchan(index)) ''')' ];
pl(index)=plot(freqs(1:maxfreqidx),eegspecdBtoplot(index,1:maxfreqidx)', ...
'color', tmpcol, 'ButtonDownFcn', command); hold on;
end
end
set(pl,'LineWidth',2);
set(gca,'TickLength',[0.02 0.02]);
try,
axis([freqs(minfreqidx) freqs(maxfreqidx) reallimits(1) reallimits(2)]);
catch, disp('Could not adjust axis'); end
xl=xlabel('Frequency (Hz)');
set(xl,'fontsize',AXES_FONTSIZE_L);
% yl=ylabel('Rel. Power (dB)');
yl=ylabel('Log Power Spectral Density 10*log_{10}(\muV^{2}/Hz)');%yl=ylabel('Power 10*log_{10}(\muV^{2}/Hz)');
set(yl,'fontsize',AXES_FONTSIZE_L);
set(gca,'fontsize',AXES_FONTSIZE_L)
box off;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot component contribution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
colrs = {'r','b','g','m','c'}; % component spectra trace colors
if ~isempty(g.weights)
if strcmpi(g.plot, 'on')
if strcmpi(g.icamode, 'sub')
set(pl,'LineWidth',5, 'color', 'k');
else
set(pl, 'linewidth', 2, 'color', 'k');
end
hold on;
for f=1:length(g.icamaps)
colr = colrs{mod((f-1),5)+1};
command = [ 'disp(''Component ' int2str(g.icamaps(f)) ''')' ];
pl2(index)=plot(freqs(1:maxfreqidx),compeegspecdB(g.icamaps(f),1:maxfreqidx)', ...
'color', colr, 'ButtonDownFcn', command); hold on;
end
othercomps = setdiff_bc(1:size(compeegspecdB,1), g.icamaps);
if ~isempty(othercomps)
for index = 1:length(othercomps)
tmpcol = allcolors{mod(index, length(allcolors))+1};
command = [ 'disp(''Component ' int2str(othercomps(index)) ''')' ];
pl(index)=plot(freqs(1:maxfreqidx),compeegspecdB(othercomps(index),1:maxfreqidx)', ...
'color', tmpcol, 'ButtonDownFcn', command); hold on;
end
end
if length(g.limits)<3|isnan(g.limits(3))
newaxis = axis;
newaxis(3) = min(newaxis(3), min(min(compeegspecdB(:,1:maxfreqidx))));
newaxis(4) = max(newaxis(4), max(max(compeegspecdB(:,1:maxfreqidx))));
axis(newaxis);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% indicate component contribution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxdatadb = max(eegspecdBtoplot(:,freqidx(1)));
[tmp indexfreq] = min(abs(g.freq-freqs));
for index = 1:length(g.icacomps)
if strcmp(g.icamode, 'normal')
% note: maxdatadb = eegspecdBtoplot (RMS power of data)
resvar(index) = 100*exp(-(maxdatadb-compeegspecdB(index, indexfreq))/10*log(10));
myfprintf(g.verbose, 'Component %d percent relative variance: %6.2f\n', g.icacomps(index), resvar(index));
else
if g.plotchan == 0
resvartmp = [];
for chan = 1:size(eegspecdB,1) % scan channels
resvartmp(chan) = 100 - 100*exp(-(eegspecdB(chan,freqidx(1))-compeegspecdB(index, indexfreq, chan))/10*log(10));
end
resvar(index) = mean(resvartmp); % mean contribution for all channels
stdvar(index) = std(resvartmp);
myfprintf(g.verbose, 'Component %d percent variance accounted for: %6.2f ± %3.2f\n', ...
g.icacomps(index), resvar(index), stdvar(index));
else
resvar(index) = 100 - 100*exp(-(maxdatadb-compeegspecdB(index, indexfreq))/10*log(10));
myfprintf(g.verbose, 'Component %d percent variance accounted for: %6.2f\n', g.icacomps(index), resvar(index));
end
end
end
% for icamode=sub and plotchan == 0 -> take the RMS power of all channels
% -----------------------------------------------------------------------
if ndims(compeegspecdB) == 3
compeegspecdB = exp( compeegspecdB/10*log(10) );
compeegspecdB = sqrt(mean(compeegspecdB.^2,3)); % RMS before log (dim1=comps, dim2=freqs, dim3=chans)
compeegspecdB = 10*log10( compeegspecdB );
end
end
if ~isempty(g.freq) && strcmpi(g.plot, 'on')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot vertical lines through channel trace bundle at each headfreq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isempty(g.weights)
for f=1:length(g.freq)
hold on;
plot([freqs(freqidx(f)) freqs(freqidx(f))], ...
[min(eegspecdB(:,freqidx(f))) max(eegspecdB(:,freqidx(f)))],...
'k','LineWidth',2.5);
end
else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot vertical line at comp analysis freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mincompdB = min([min(eegspecdB(:,freqidx(1))) min(compeegspecdB(:,freqidx(1)))]);
maxcompdB = max([max(eegspecdB(:,freqidx(1))) max(compeegspecdB(:,freqidx(1)))]);
hold on;
plot([freqs(freqidx(1)) freqs(freqidx(1))],[mincompdB maxcompdB],'k', 'LineWidth',2.5);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%
% create axis for topoplot
%%%%%%%%%%%%%%%%%%%%%%%%%%
tmpmainpos = get(gca, 'position');
headax = zeros(1,length(g.freq));
for f=1:length(g.freq)+length(g.icamaps)
headax(f) = sbplot(3,length(g.freq)+length(g.icamaps),f, 'ax', mainfig);
axis([-1 1 -1 1]);
%axis x coords and use
tmppos = get(headax(f), 'position');
allaxcoords(f) = tmppos(1);
allaxuse(f) = 0;
end
large = sbplot(1,1,1, 'ax', mainfig);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% compute relative positions on plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(g.weights)
freqnormpos = tmpmainpos(1) + tmpmainpos(3)*(freqs(freqidx(1))-g.limits(1))/(g.limits(2)-g.limits(1));
for index = 1:length(g.icamaps)+1
[realpos(index) allaxuse] = closestplot( freqnormpos, allaxcoords, allaxuse );
end
% put the channel plot a little bit higher
tmppos = get(headax(realpos(1)), 'position');
tmppos(2) = tmppos(2)+0.04;
set(headax(realpos(1)), 'position', tmppos);
else
realpos = 1:length(g.freq); % indices giving order of plotting positions
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot connecting lines using changeunits()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for f=1:length(g.freq)+length(g.icamaps)
if ~isempty(g.weights)
if f>length(g.freq) % special case of ICA components
from = changeunits([freqs(freqidx(1)),g.icafreqsval(f-1)],specaxes,large);
%g.icafreqsval contains the sorted frequency values at the specified frequency
else
from = changeunits([freqs(freqidx(f)),maxcompdB],specaxes,large);
end
else
from = changeunits([freqs(freqidx(f)),max(eegspecdB(:,freqidx(f)))],specaxes,large);
end
pos = get(headax(realpos(f)),'position');
to = changeunits([0,0],headax(realpos(f)),large)+[0 -min(pos(3:4))/2.5];
hold on;
if f<=length(g.freq)
colr = 'k';
else
colr = colrs{mod((f-2),5)+1};
end
li(realpos(f)) = plot([from(1) to(1)],[from(2) to(2)],colr,'LineWidth',PLOT_LINEWIDTH_S);
axis([0 1 0 1]);
axis off;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot selected channel head using topoplot()
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
myfprintf(g.verbose, 'Plotting scalp distributions: ')
for f=1:length(g.freq)
axes(headax(realpos(f)));
topodata = eegspecdB(:,freqidx(f))-nan_mean(eegspecdB(:,freqidx(f)));
if isnan(g.limits(5)),
maplimits = 'absmax';
else
maplimits = [g.limits(5) g.limits(6)];
end
%
% If 1 channel in g.plotchan
%
if ~isempty(g.plotchan) && g.plotchan ~= 0
% if ~isempty(varargin) % if there are extra topoplot() flags
% topoplot(g.plotchan,g.chanlocs,'electrodes','off', ...
% 'style', 'blank', 'emarkersize1chan', 10, varargin{:});
% else
topoplot(g.plotchan,g.chanlocs,'electrodes','off', ...
'style', 'blank', 'emarkersize1chan', 10);
% end
if isstruct(g.chanlocs)
tl=title(g.chanlocs(g.plotchan).labels);
else
tl=title([ 'c' int2str(g.plotchan)]);
end
else % plot all channels in g.plotchans
if isempty(g.mapframes) || g.mapframes(1) == 0
g.mapframes = 1:size(eegspecdB,1); % default to plotting all chans
end
if ~isempty(varargin)
topoplot(topodata(g.mapframes),g.chanlocs2,'maplimits',maplimits, varargin{:});
else
topoplot(topodata(g.mapframes),g.chanlocs2,'maplimits',maplimits);
end
if f<length(g.freq)
tl=title([num2str(freqs(freqidx(f)), '%3.1f')]);
else
tl=title([num2str(freqs(freqidx(f)), '%3.1f') ' Hz']);
end
end
set(tl,'fontsize',AXES_FONTSIZE_L);
axis square;
drawnow
myfprintf(g.verbose, '.');
end
myfprintf(g.verbose, '\n');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot independent components
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(g.weights)
% use headaxe from 2 to end (reserved earlier)
if realpos(1) == max(realpos), plotcolbar(g); end
% make the line with the scalp topoplot thicker than others
set(li(realpos(1)), 'linewidth', 2.5);
if isempty(g.mapchans) || g.mapchans == 0
g.mapchans = 1:size(g.icawinv,1); % default to plotting all chans
end
for index = 1:length(g.icamaps)
axes(headax(realpos(index+1)));
compnum = g.icamaps(index);
topoplot(g.icawinv(g.mapchans,compnum).^2,g.chanlocs,varargin{:});
tl=title(int2str(g.icacomps(compnum)));
set(tl,'fontsize',16);
axis square;
drawnow
try,
if strcmpi(g.icamode, 'normal')
set(gca, 'userdata', ['text(-0.6, -0.6, ''Rel. Var.: ' sprintf('%6.2f', resvar(g.icacomps(compnum))) ''');'] );
else
set(gca, 'userdata', ['text(-0.6, -0.6, ''PVAF: ' sprintf('%6.2f', resvar(g.icacomps(compnum))) ''');'] );
end
catch, end
if realpos(index+1) == max(realpos), plotcolbar(g); end
end
else
plotcolbar(g);
end
end
%%%%%%%%%%%%%%%%
% Draw title
%%%%%%%%%%%%%%%%
if ~isempty(g.title) && strcmpi(g.plot, 'on')
tl = textsc(g.title);
set(tl,'fontsize',15)
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% return component spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(g.weights) && nargout >= 3
tmp = compeegspecdB;
compeegspecdB = zeros(ncompsori, size(tmp,2));
compeegspecdB(g.icacomps,:) = tmp;
end
%%%%%%%%%%%%%%%%
% Turn on axcopy (disabled to allow to click on curves)
%%%%%%%%%%%%%%%%
if strcmpi(g.plot, 'on')
disp('Click on each trace for channel/component index');
axcopy(gcf, 'if ~isempty(get(gca, ''''userdata'''')), eval(get(gca, ''''userdata'''')); end;');
% will not erase the commands for the curves
end
%%%%%%%%%%%%%%%%
% Plot color bar
%%%%%%%%%%%%%%%%
function plotcolbar(g)
cb=cbar;
pos = get(cb,'position');
set(cb,'position',[pos(1) pos(2) 0.03 pos(4)]);
set(cb,'fontsize',12);
try
if isnan(g.limits(5))
ticks = get(cb,'ytick');
[tmp zi] = find(ticks == 0);
ticks = [ticks(1) ticks(zi) ticks(end)];
set(cb,'ytick',ticks);
set(cb,'yticklabel',strvcat('-',' ','+'));
end
catch, end; % in a single channel is plotted
%%%%%%%%%%%%%%%%%%%%%%%
% function closest plot
%%%%%%%%%%%%%%%%%%%%%%%
function [index, usedplots] = closestplot(xpos, xcentercoords, usedplots);
notused = find(usedplots == 0);
xcentercoords = xcentercoords(notused);
[tmp index] = min(abs(xcentercoords-xpos));
index = notused(index);
usedplots(index) = 1;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function computing spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [eegspecdB, freqs, specstd] = spectcomp( data, frames, srate, epoch_subset, g, newweights);
usepwelch = license('checkout','Signal_Toolbox') && exist('pwelch');
if exist('newweights') == 1
nchans = size(newweights,1);
else
nchans = size(data,1);
end
%fftlength = 2^round(log(srate)/log(2))*g.freqfac;
if isempty(g.winsize)
% winlength = max(pow2(nextpow2(frames)-3),4); %*2 since diveded by 2 later
% winlength = min(winlength, 512);
% winlength = max(winlength, 256);
winlength = min(round(srate), frames);
else
winlength = g.winsize;
end
if strcmpi(g.wintype,'blackmanharris')
if usepwelch
winlength = blackmanharris(round(winlength/g.blckhn));
else
g.wintype = 'hamming';
fprintf('\nSignal processing toolbox (SPT) absent: unable to use Blackman-Harris window\n');
fprintf(' using pwelch function from Octave\n');
end
end
if isempty(g.nfft) && strcmp(g.wintype,'hamming')
%fftlength = 2^(nextpow2(winlength))*g.freqfac;
fftlength = winlength*g.freqfac;
elseif ~isempty(g.nfft) && strcmp(g.wintype,'hamming')
fftlength = g.nfft;
elseif strcmp(g.wintype,'blackmanharris')
fftlength = 2^(nextpow2(length(winlength)))*g.freqfac;
end
if ~usepwelch
myfprintf(g.verbose, '\nSignal processing toolbox (SPT) absent: spectrum computed using the pwelch()\n');
myfprintf(g.verbose, 'function from Octave which is supposedly 100%% compatible with the Matlab pwelch function\n');
end
myfprintf(g.verbose,' (window length %d; fft length: %d; overlap %d):\n', winlength, fftlength, g.overlap);
for c=1:nchans % scan channels or components
if exist('newweights') == 1
if strcmp(g.icamode, 'normal')
tmpdata = newweights(c,:)*data; % component activity
else % data - component contribution
tmpdata = data(g.plotchan,:) - (g.icawinv(g.plotchan,c)*newweights(c,:))*data;
end
else
tmpdata = data(c,:); % channel activity
end
if strcmp(g.reref, 'averef')
tmpdata = averef(tmpdata);
end
for e=epoch_subset
if isempty(g.boundaries)
if usepwelch
[tmpspec,freqs] = pwelch(matsel(tmpdata,frames,0,1,e),...
winlength,g.overlap,fftlength,srate);
else
[tmpspec,freqs] = spec(matsel(tmpdata,frames,0,1,e),fftlength,srate,...
winlength,g.overlap);
end
%[tmpspec,freqs] = psd(matsel(tmpdata,frames,0,1,e),fftlength,srate,...
% winlength,g.overlap);
if c==1 && e==epoch_subset(1)
eegspec = zeros(nchans,length(freqs));
specstd = zeros(nchans,length(freqs));
end
eegspec(c,:) = eegspec(c,:) + tmpspec';
specstd(c,:) = specstd(c,:) + tmpspec'.^2;
else
g.boundaries = round(g.boundaries);
for n=1:length(g.boundaries)-1
if g.boundaries(n+1) - g.boundaries(n) >= winlength % ignore segments of less than winlength
if usepwelch
[tmpspec,freqs] = pwelch(tmpdata(e,g.boundaries(n)+1:g.boundaries(n+1)),...
winlength,g.overlap,fftlength,srate);
else
[tmpspec,freqs] = spec(tmpdata(e,g.boundaries(n)+1:g.boundaries(n+1)),...
fftlength,srate,winlength,g.overlap);
end
if exist('eegspec') ~= 1
eegspec = zeros(nchans,length(freqs));
specstd = zeros(nchans,length(freqs));
end
eegspec(c,:) = eegspec(c,:) + tmpspec'* ...
((g.boundaries(n+1)-g.boundaries(n)+1)/g.boundaries(end));
specstd(c,:) = eegspec(c,:) + tmpspec'.^2 * ...
((g.boundaries(n+1)-g.boundaries(n)+1)/g.boundaries(end));
end
end
end
end
myfprintf(g.verbose,'.');
end
n = length(epoch_subset);
eegspecdB = eegspec/n; % normalize by the number of sections
if n>1 % normalize standard deviation by the number of sections
specstd = sqrt( (specstd + eegspec.^2/n)/(n-1) );
else specstd = [];
end
return;
function myfprintf(verbose, varargin)
if strcmpi(verbose, 'on')
fprintf(varargin{:});
end