BCI the Wrong Way: A single monolithic script

- while continue == True:
 - data = acquire_from_device(n_samples)
 - buffer = add_to_buffer(data)
 - filtered_data = filter(buffer)
 - features = extract_features(filtered_data)
 - control_signal = apply_model(features)
 - update_cursor_position(control_signal)
 - stim_events = update_stimulus() # e.g. targets, cues
 - render_scene()
 - stream_to_file(data, stim_events)

BCI the Right Way: Modular, Separate Processes

- Separate process for each signal acquisition.
 - (almost) Always has its own buffer or queue.
- Separate process for signal buffering and processing.
 - Fetches data from acquisition buffer or queue.
 - Processes signals, extracts features, updates model if necessary, applies model
- Separate process for stimulus presentation and feedback Relative to monolithic script:
- Reduced time between feedback updates
- \rightarrow Fewer samples \rightarrow Slightly faster processing \rightarrow Slightly reduced "brain input" lag

BCI the Better Way: Decoupled Processing and Feedback

- When control signal follows dynamical rules
- State space model updated with new feature input.
- Model gets new timestamp on update.
- Feedback at time t + t_delta asks for state *prediction* (t_delta) from model.
 - t_delta can include feedback latency (e.g., display latency) if known.