

Radboud University

Forward and Inverse Models - The DIPFIT tools

Robert Oostenveld

Donders Institute, Radboud University, Nijmegen, NL NatMEG, Karolinska Institute, Stockholm, SE

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

Motivation 1

Strong points of EEG and MEG

Temporal resolution (~1 ms)

Characterize ERP components, like N100 or P300

Oscillatory activity

Disentangle dynamics of cortical networks

Weak points of EEG and MEG

Measurement on outside of brain

Overlap of ERP components

Low spatial resolution

Motivation 2

If you find a ERP component like the N100, you want to characterize it in physiological terms

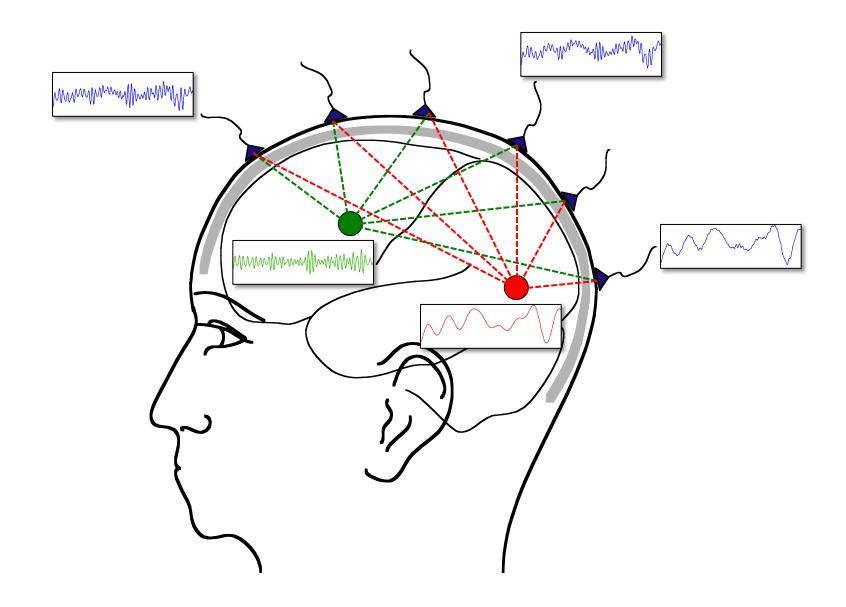
Time and amplitude or frequency are the "natural" characteristics

"Location" requires interpretation of the scalp topography

Forward and inverse modeling helps to interpret the topography

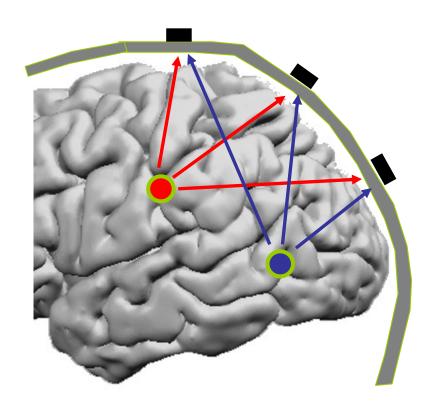
Forward and inverse modeling helps to disentangle overlapping source timeseries

Superposition of source activity



Superposition of source activity

Mixture of Brain source activity



Different source analysis methods

Blind source separation, such as ICA
Assumption on temporal independence
Spatially stationary over time

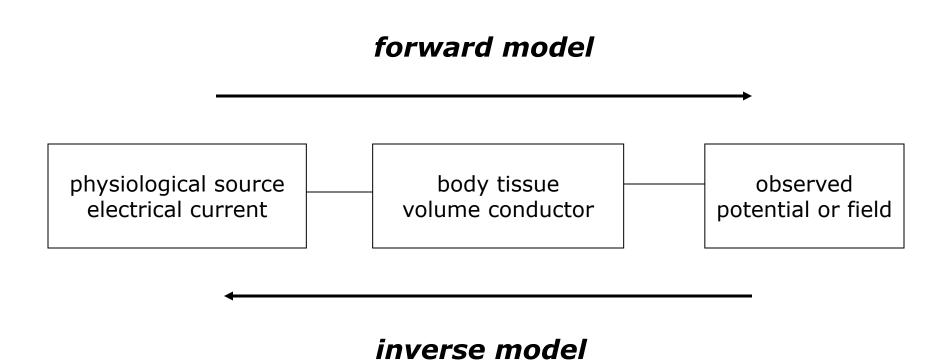
Biophysical source models

Assumption on geometry and conductivity

Maxwell equations for electromagnetism

Not mutually exclusive, can be applied in succession

Biophysical source modelling: overview



Overview

Motivation and background

Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

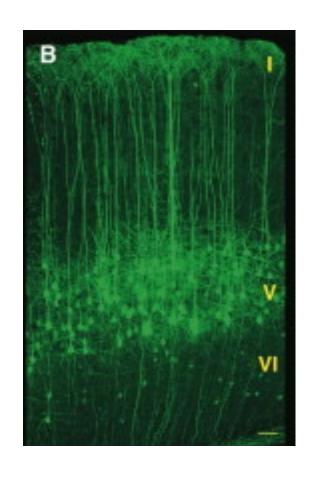
Single and multiple dipole fitting

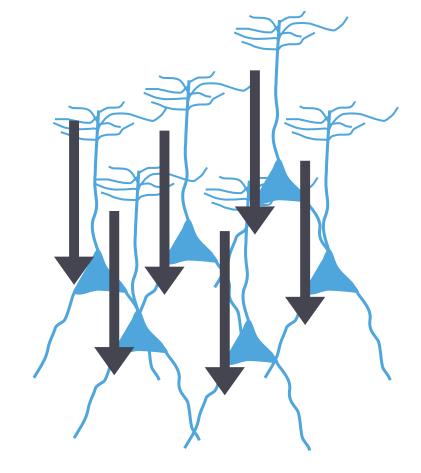
Distributed source models

Beamforming methods

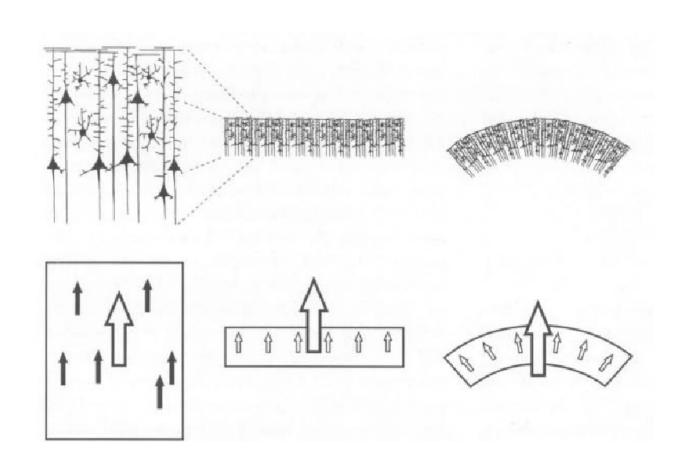
Summary

What produces the electric current





Equivalent current dipoles



Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

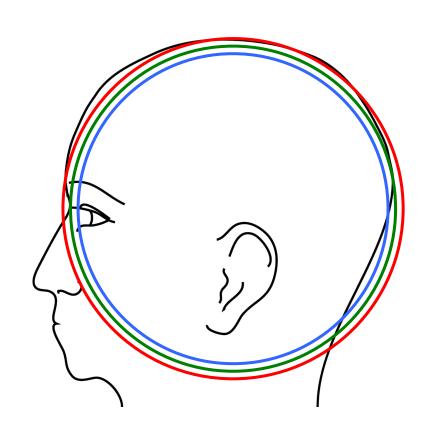
Volume conductor

described electrical properties of tissue

describes geometrical model of the head

describes **how** the currents flow, not where they originate from

same volume conductor for EEG as for MEG, but also for tDCS, tACS, TMS, ...



Volume conductor

Computational methods for volume conduction problem that allow for realistic geometries

BEM Boundary Element Method

FEM Finite Element Method

FDM Finite Difference Method

Volume conductor: Boundary Element Method

Each compartment is

homogenous isotropic

Important tissues

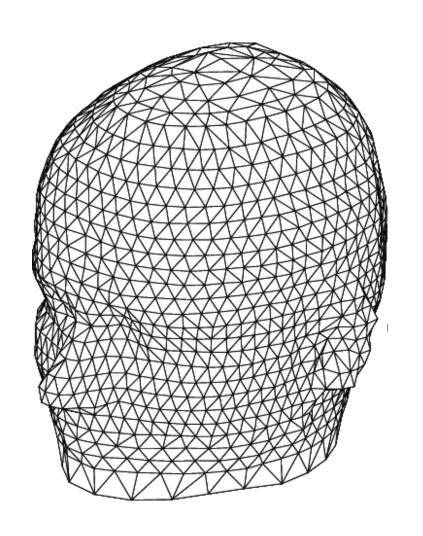
skin

skull

brain

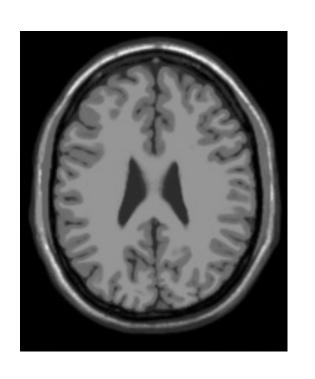
(CSF)

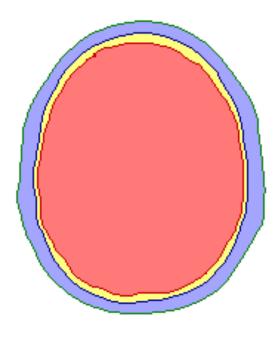
Triangulated surfaces describe boundaries

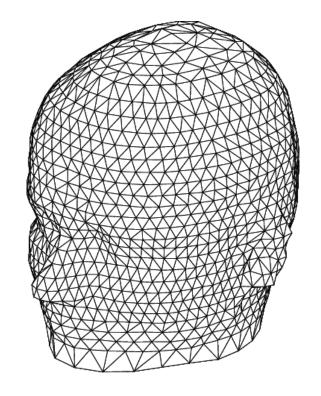


Volume conductor: Boundary Element Method

Construction of geometry from anatomical MRI segmentation in different tissue types extract surface description downsample to reasonable number of triangles







Volume conductor: Boundary Element Method

Construction of geometry

segmentation in different tissue types extract surface description downsample to reasonable number of triangles

Computation of model

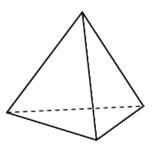
independent of source model only one lengthy computation fast during application to real data

Can also include more complex geometrical details ventricles

holes in skull

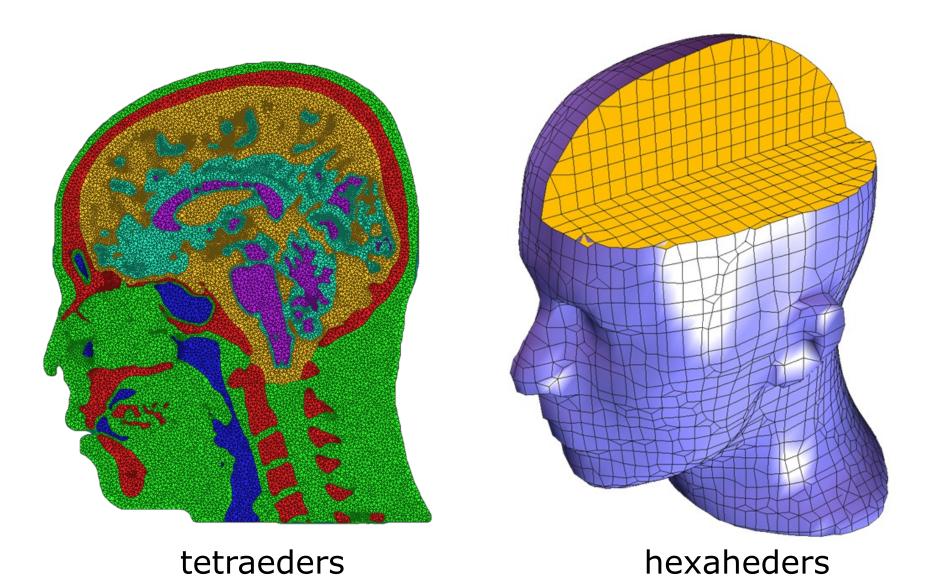
Volume conductor: Finite Element Method

Tesselation of 3D volume in tetraeders or hexaheders



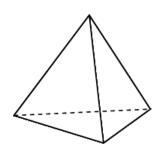


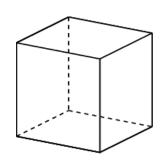
Volume conductor: Finite Element Method



Volume conductor: Finite Element Method

Tesselation of 3D volume in tetraeders or hexaheders



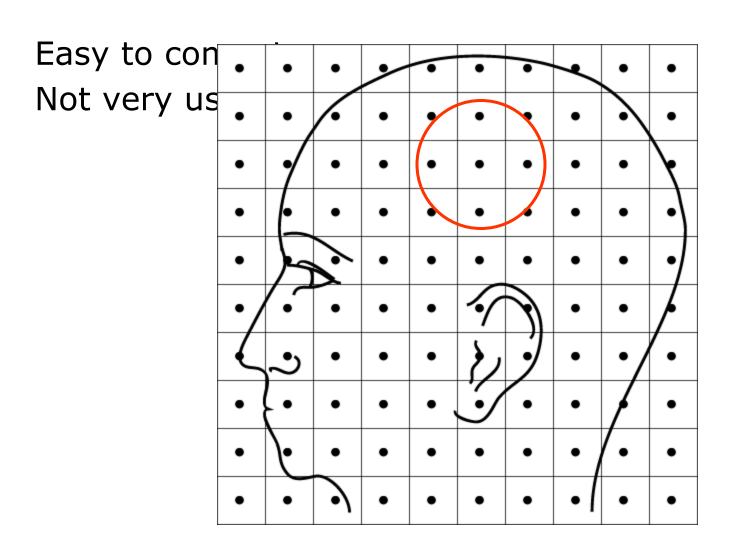


Each element can have its own conductivity

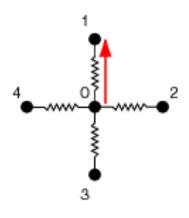
FEM is the most accurate numerical method but computationally quite expensive

Geometrical processing not as simple as BEM

Volume conductor: Finite Difference Method



Volume conductor: Finite Difference Method



$$I_1 + I_2 + I_3 + I_4 = 0$$
 $V = I*R$

$$\Delta V_1/R_1 + \Delta V_2/R_2 + \Delta V_3/R_3 + \Delta V_4/R_4 = 0$$

$$(V_1-V_0)/R_1 + (V_2-V_0)/R_2 + (V_3-V_0)/R_3 + (V_4-V_0)/R_4 = 0$$

Volume conductor: Finite Difference Method

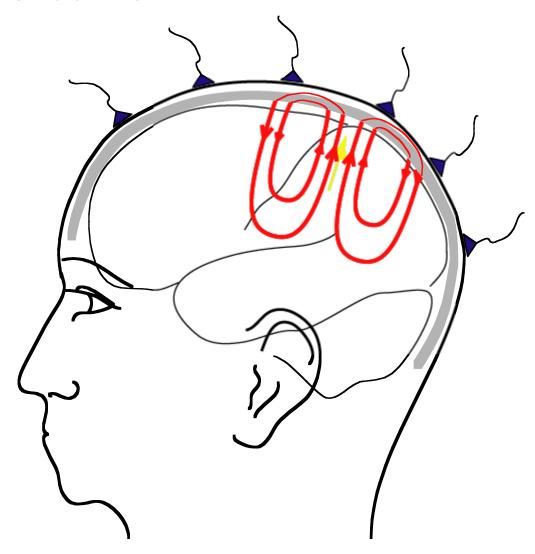
Unknown potential Vi at each node
approx. 100x100x100 = 1.000.000 unknowns
Linear equation for each node
approx. 100x100x100 = 1.000.000 linear equations

Add a source/sink

sum of currents is zero for all nodes, except sum of current is I+ for a certain node sum of current is I- for another node

Solve for unknown potential

EEG volume conduction



EEG volume conduction

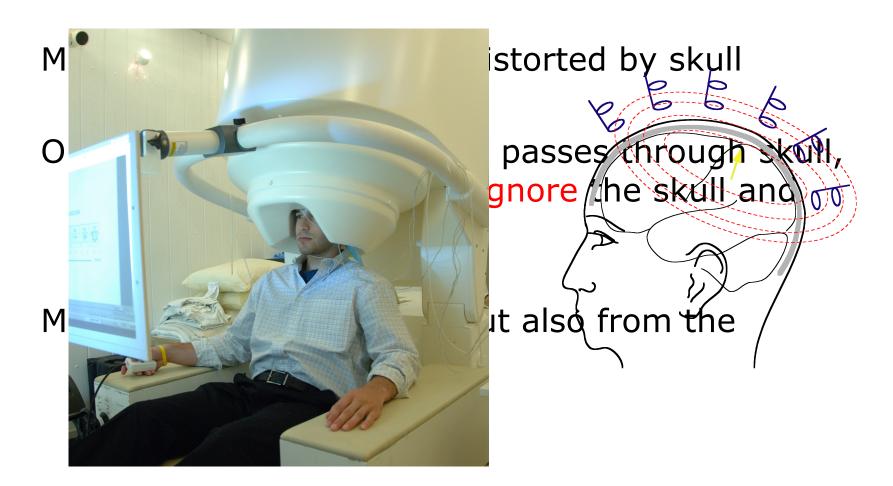
Potential difference between electrodes corresponds to current flowing through skin

Only tiny fraction of current passes through skull

Therefore the model should describe the skull and skin as accurately as possible

MEG volume conduction

MEG measures magnetic field over the scalp



Practical considerations for EEG/MEG head models

Best is to make model for each participant based on individual MRIs

Use a template MRI and/or a template head model

EEG electrodes scale with the head size (since different caps), same head model for all participants

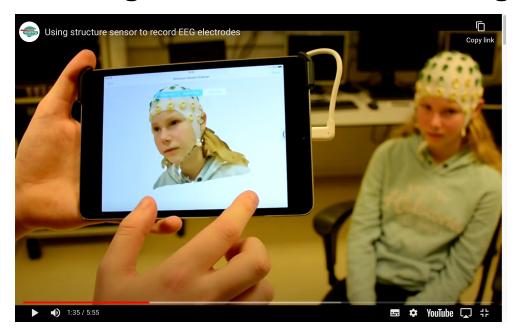
MEG sensors are fixed in a helmet, so the model needs to be scaled to the subject's head size

With a template head model, you still need to get the electrodes in the right position

Use a Polhemus or 3D optical scanner

Use template electrode positions

Getting the EEG electrodes right with a 3D scanner



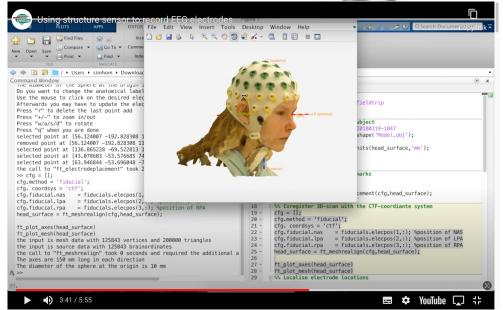
Structure Sensor, http://structure.io/ Alternatively an iPhone 13 pro or iPad pro

See https://www.fieldtriptoolbox.org/tutorial/electrode/ and https://eeglab.org/tutorials/09 source/Custom head model.html

Simon Homölle, Robert Oostenveld.

Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions.

J Neurosci Methods. 2019



Overview

Motivation and background Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - biophysical models

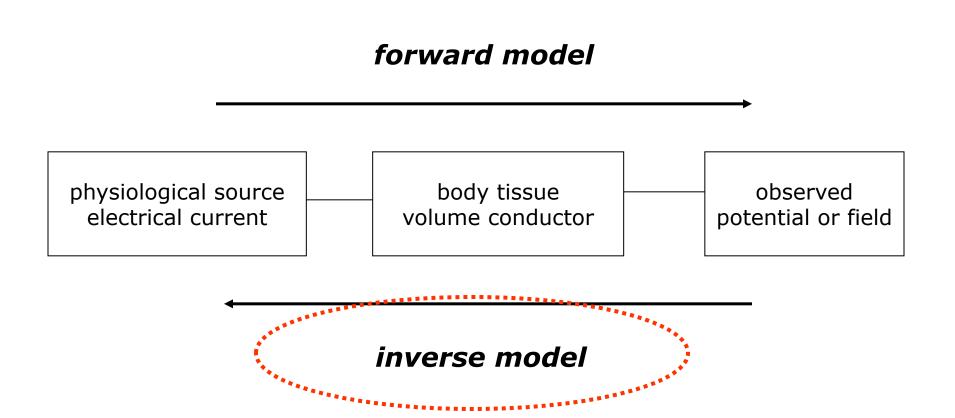
Single and multiple dipole fitting

Distributed source models

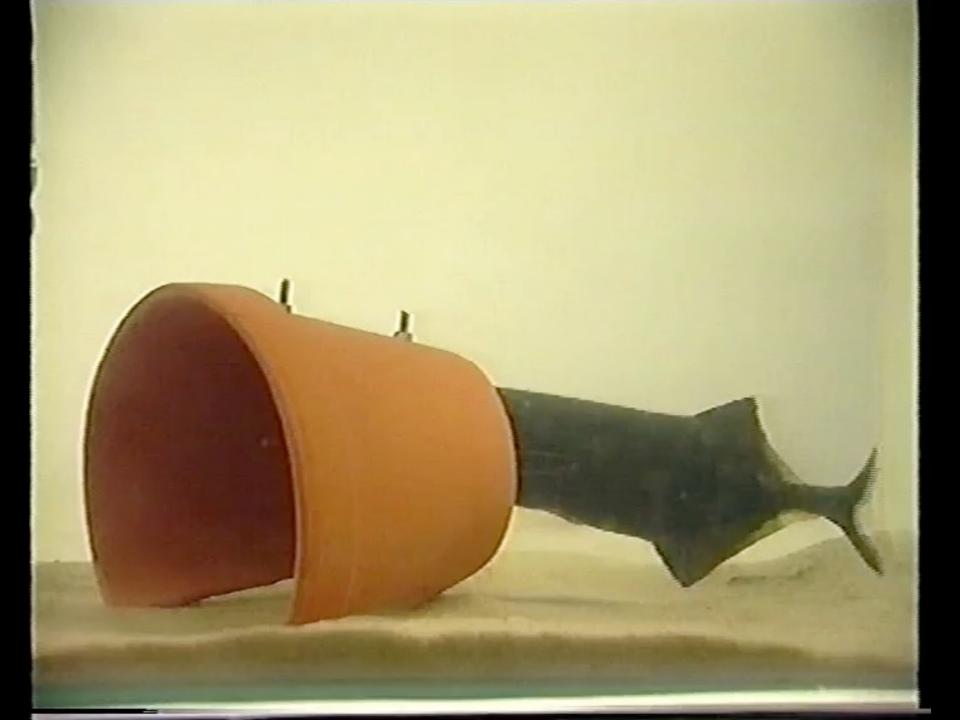
Beamforming methods

Summary

Biophysical source modelling: overview



Inverse localization: demo



Inverse methods

Single and multiple dipole models

Minimize error between model and measured potential/field

Distributed source models

Perfect fit of model to the measured potential/field Additional constraint on source smoothness, power or amplitude

Spatial filtering

Scan the whole brain with a single dipole and compute the filter output at every location

Beamforming (e.g. LCMV, SAM, DICS)

Multiple Signal Classification (MUSIC)

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

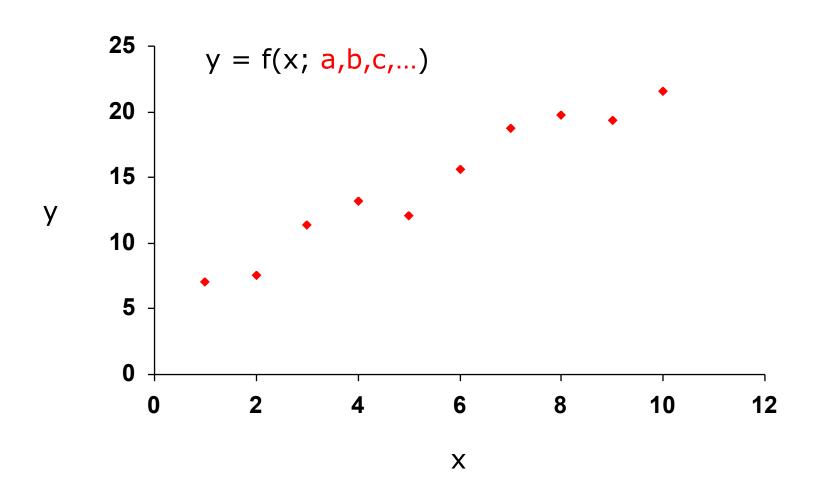
Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

Single or multiple dipole models - Parameter estimation

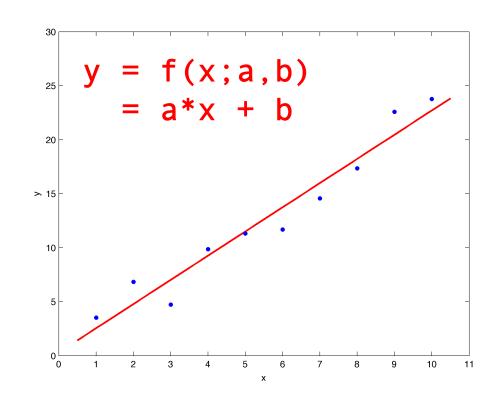


Parameter estimation: dipole parameters

source model with few parameters position orientation strength

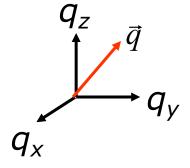
compute the model data

minimize difference between actual and model data



Linear parameters: estimation just like GLM

$$Y = G_{x}q_{x} + G_{y}q_{y} + G_{z}q_{z} = \begin{bmatrix} G_{x,1} & G_{y,1} & G_{z,1} \\ G_{x,2} & G_{y,2} & G_{z,2} \\ \vdots & \vdots & \vdots \\ G_{x,N} & G_{y,N} & G_{z,N} \end{bmatrix} \cdot \begin{bmatrix} q_{x} \\ q_{y} \\ q_{z} \end{bmatrix} = \mathbf{G} \cdot \vec{q}$$



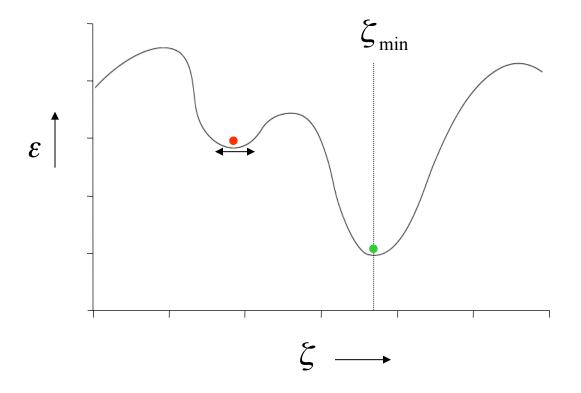
$$Y = G \cdot \vec{q}$$
$$= G(\zeta) \cdot \vec{q}$$

$$\vec{q} = \mathbf{G}^{-1} \cdot Y$$

Non-linear parameters

$$\varepsilon rror(\zeta) = \sum_{i=1}^{N} (Y_i(\zeta) - V_i)^2 \implies \min_{\zeta} (\varepsilon rror(\zeta))$$

$$\zeta = a, b, c, \dots$$



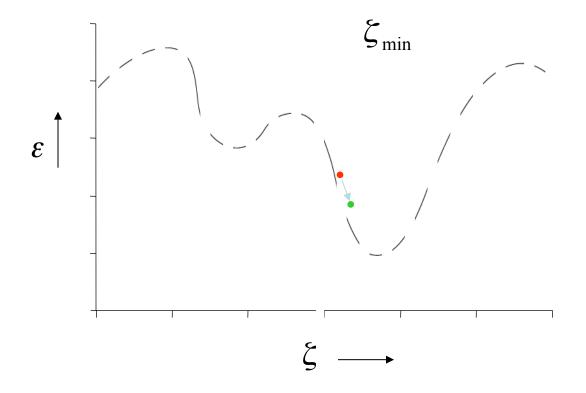
Non-linear parameters: grid search

- One dimension, e.g. location along medial-lateral 100 possible locations
- Two dimensions, e.g. med-lat + inf-sup $100 \times 100 = 10.000$
- Three dimensions $100 \times 100 \times 100 = 1.000.000 = 10^6$
- Two dipoles, each with three dimensions $100 \times 100 \times 100 \times 100 \times 100 \times 100 = 10^{12}$

Non-linear parameters: gradient descent optimization

$$\varepsilon rror(\zeta) = \sum_{i=1}^{N} (Y_i(\zeta) - V_i)^2 \implies \min_{\zeta} (\varepsilon rror(\zeta))$$

$$\zeta = a, b, c, \dots$$



Single or multiple dipole models - Strategies

Single dipole:

scan the whole brain, followed by iterative optimization

Two dipoles:

scan with symmetric pair, use that as starting point for iterative optimization

More dipoles:

sequential dipole fitting, add dipoles to the model one-by-one

Fitting dipoles to ERP timecourses – Sequential fit

Assume that activity starts "small" explain earliest ERP component with single equivalent current dipole

Assume later activity to be more widespread add ECDs to explain later ERP components estimate position of new dipoles re-estimate the activity of all dipoles

Iterative and interactive (hence subjective) process, difficult to determine how many dipoles are needed

Fitting dipoles to ICA component topographies

ICA unmixes the sources and gives topographies and timeseries

Use a single dipole (or two) to explain each of the ICA topographies

Arnaud Delorme, Jason Palmer, Julie Onton, Robert Oostenveld, Scott Makeig **Independent EEG Sources Are Dipolar** PLOS One (2012) doi: 10.1371/journal.pone.0030135

Note: You can also fit distributed source models to ICA topographies

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

Distributed source model

Position of the source is not estimated as such Pre-defined grid (cortical sheet or 3D volume)

Strength is estimated

In principle easy to solve, however...

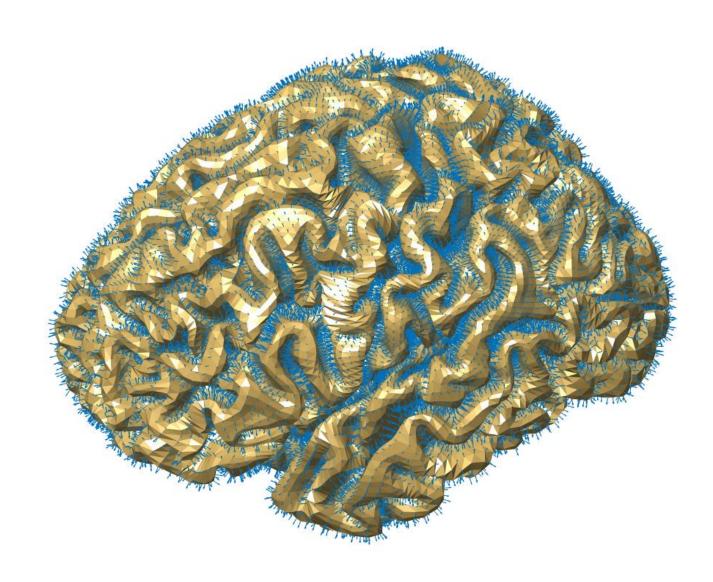
More "unknowns" than "knowns"

Infinite number of solutions can explain the data perfectly

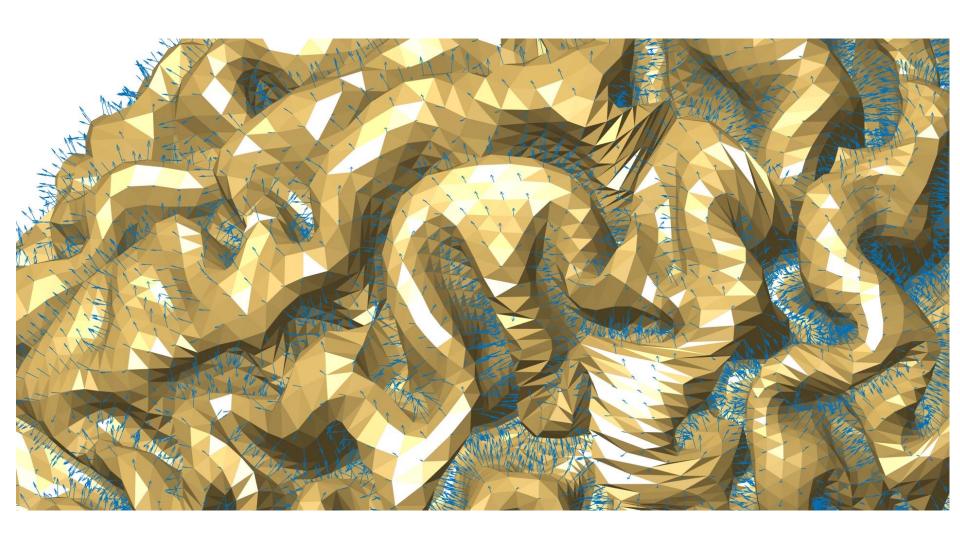
Additional constraints required

Linear estimation problem

Distributed source model



Distributed source model



Distributed source model: linear estimation like GLM

$$Y = G_1 q_1 + G_2 q_2 + \dots = \begin{bmatrix} G_{1,1} & G_{2,1} & \cdots \\ G_{1,2} & G_{2,2} & \cdots \\ \vdots & \vdots & \ddots \\ G_{1,N} & G_{2,N} & \cdots \end{bmatrix} \cdot \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix} = \mathbf{G} \cdot \vec{q}$$

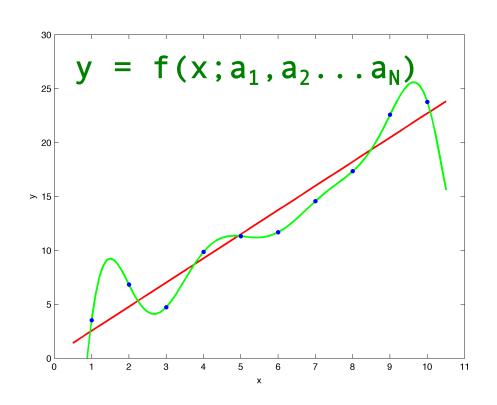
$$\vec{q} = \mathbf{G}^{-1} \cdot Y$$

Distributed source model: linear estimation

distributed source model with **many dipoles** throughout the whole brain

estimate the strength of all dipoles

data and noise can be perfectly explained



Distributed source model: regularization

$$V = G \cdot q + Noise$$

$$\min_{q} \{ \|V - G \cdot q\|^2 \} = 0 !!$$

Regularized linear estimation:

$$\rightarrow \min_{q} \{ \| V - G \cdot q \|^2 + \lambda \cdot \| D \cdot q \|^2 \}$$

$$\text{mismatch with data} \qquad \text{mismatch with prior assumptions}$$

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Beamforming methods

Summary

Spatial filtering with beamforming

Position of the source is not estimated as such Loop over a pre-defined grid

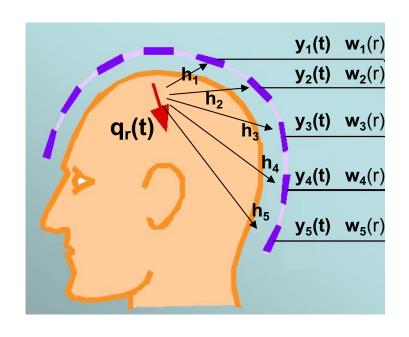
Manipulate filter properties, not source properties

No explicit assumptions about source constraints (implicit: single dipole)

Assumption that sources that contribute to the data should be uncorrelated

Beamformer: the question

What is the timecourse of activity of a source **q**, at a location **r**, given the data **y**?
We estimate **q** with a spatial filter **w**



$$\hat{q}_{r}(t) = \mathbf{w}(r)^{T} \mathbf{y}(t)$$

Beamformer: the solution

Two simultaneous constraints on the spatial filter:

- 1) The source in the region of interest should be visible with 1x gain, i.e., no amplification, no attenuation
- 2) All other contributions to the data should be filtered out as much as possible

Spatial filter is computed from the data covariance matrix and the leadfield. Assumes reasonably uncorrelated sources (not independent).

Overview

Motivation and background Forward modeling

Source model

Volume conductor model

EEG versus MEG

Inverse modeling - biophysical models

Single and multiple dipole fitting

Distributed source models

Spatial filtering

Summary

Summary 1

Forward modelling

Required for the interpretation of scalp topographies Different methods with varying accuracy

Inverse modelling

Estimate source location and timecourse from data

Assumptions on source locations

Single or multiple point-like source Distributed source

Assumptions on source timecourse

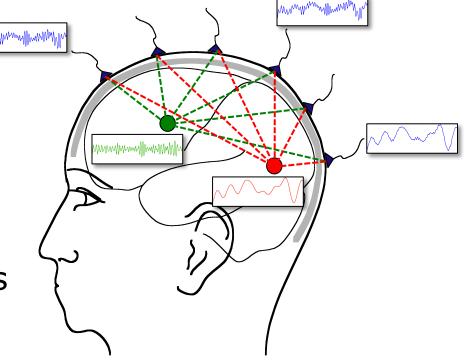
Uncorrelated (and dipolar) Independent

Summary 2

Source analysis is not only about the "where" but also about untangling the "what", "when" and "how".

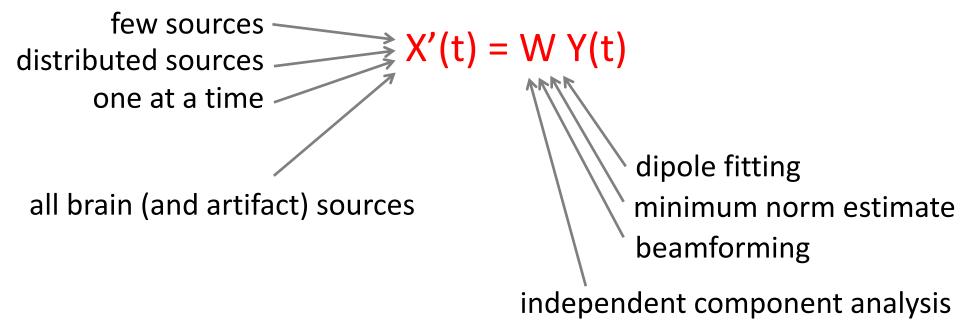
Source analysis gives you locations

The source timecourses can come from ICA, or from source analysis on the ERPs



Estimating source timecourse activity

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$



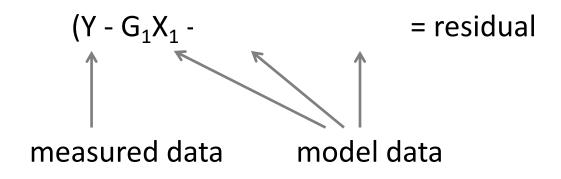
Estimating source timecourse activity

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

Estimating source timecourse activity using dipole fitting

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

n is typically small



$$X' = W Y$$
, where $W = G^T (G G^T)^{-1}$

Estimating source timecourse activity using distributed source models

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

n is typically large (> # channels)

$$Y = (G_1X_1 + G_2X_2 + ... + G_nX_n) + noise$$

$$Y = GX + noise$$

$$X' = W Y$$
, where W ensures $\min_{X} \{ ||Y - G \cdot X||^2 + \lambda \cdot ||X||^2 \}$

Estimating source timecourse activity using spatial filtering

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

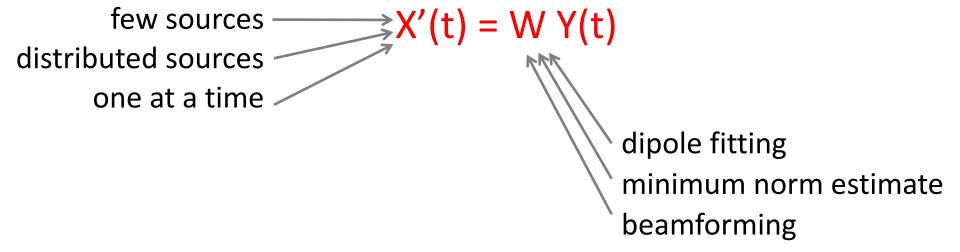
any number of n

$$Y = (G_1X_1 + G_2X_2 + ...) + G_nX_n + (noise)$$

$$X'_{n} = W_{n} Y$$
, where $W^{T} = [G_{n}^{T} C_{Y}^{-1} G_{n}]^{-1} G_{n}^{T} C_{Y}^{-1}$

Estimating source timecourse activity

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$



Estimating source timecourse activity using independent component analysis

$$Y = G_1X_1 + G_2X_2 + ... + G_nX_n + noise$$

n typically the same as the number of channels

$$Y = G(X + noise)$$

includes line-noise, EOG, ECG and other noise that is visible on all channels

X' = W Y, where W maximizes the independence of X' rows of W⁻¹ correspond to G_1 , G_2 , ...