

**Radboud University** 



# Statistical inference with cluster permutation testing

# **Robert Oostenveld**

Donders Institute, Radboud University, Nijmegen, NL NatMEG, Karolinska Institute, Stockholm, SE



# Talk outline

Types of statistics descriptive inferential

**Parametric statistics** 

Non-parametric randomization test

**Clustering-based statistics** 

#### What types of statistics do we have?



"Data don't make any sense, we will have to resort to statistics."

How do large distributions of "something" behave? Binomial, Normal, Poisson
How can I describe (or summarize) a distribution? Mean, standard deviation, variance, kurtosis
How can I make a decision or draw a conclusion? Inferential statistics, hypothesis testing Inferential parametric statistics

You make N observation and want to find whether some hypothesis "H1" holds

Step 1: Gathering data

| Observation | Value |
|-------------|-------|
| 0           | 2.5   |
| 1           | -3.2  |
|             |       |
| :           |       |
| Ν           | 2.4   |



Inferential parametric statistics



Determine probability of *t* under "H0"

 $t = \frac{\mu - \mu_{H0}}{\sigma / \sqrt{N}}$ 

If the observed t sufficiently unlikely, reject H0 in favour of H1

#### Inferential parametric statistics





# Talk outline

Types of statistics descriptive inferential

#### **Parametric statistics**

Non-parametric randomization test Clustering-based statistics Problem 1: Distribution of the data and test statistic

You make N observation and want to find whether some hypothesis H1 is true.

The first problem is that this requires a *known distribution* of the test statistic.





## Problem 2: Multiple comparisons

**Typical ERPs** 

64 channels, 250 timepoints 16.000 datapoints, repeated over conditions and subjects Thousands of parameters and t-values

Chance of false alarm is 5% for every test

With 16.000 data points we expect 800 false alarms in an ERP!

Similar problems for time-frequency ERSPs, connectivity, etc.

### Solutions to control the FWER

#### Bonferroni correction

Reduce the alpha threshold by a factor N, for example from 5% to 2.5% when N=2.

#### Use the false discovery rate (FDR)

Sort the probabilities and adjust the threshold such that the expected proportion of false alarms is controlled Slightly less conservative than Bonferroni

Use a Monte Carlo approximation of the randomization distribution of the maximum statistic

# Talk outline

Types of statistics descriptive inferential

**Parametric statistics** 

#### Non-parametric randomization test

**Clustering-based statistics** 

Randomization test: general principle

- Independent variable: condition
- Dependent variable: data

H0: the data is **independent** from the condition in which it was observed

The data in the two conditions is **not** different









### Distribution of "x" can take any shape



Randomization of independent variable

Hypothesis is about data, not about the specific parameter

The distribution of the statistic of interest "x" is approximated using the Monte-Carlo approach, i.e. by random sampling

H0 is tested by comparing the observed statistic against the randomization distribution

Avoid the multiple comparison problem



The statistic "x" can be anything

- Rather than testing everything, only test the most extreme observation (i.e. the max statistic)
- Compute the randomization distribution for the most extreme statistic over all channels/times/frequencies
- Note that often we compute **two** extrema, one for each tail



# Talk outline

Types of statistics descriptive inferential

**Parametric statistics** 

Non-parametric randomization test

**Clustering-based statistics** 

### Increasing the sensitivity

Conventional is univariate parametric Our approach is to consider the data Many channels, timepoints, frequencies Massive univariate Multiple comparison problem

EEG is relatively blurry over channels, time, and frequency, so there is quite some structure in the data

Increasing the sensitivity

channel/time/frequency points are not independent and are expected to show similar behaviour

avoid the MCP by comparing the largest observed cluster versus the randomization distribution of the largest clusters

Avoid multiple comparisons

Increase sensitivity

# Clustering in time



## Clustering in time and frequency



# Clustering in time, frequency and space



# Toy example

# Toy example: Original observation

null hypothesis: condition A = condition B

| Condition A | Condition B |
|-------------|-------------|
| S1_a        | S1_b        |
| S2_a        | S2_b        |
| S3_a        | S3_b        |
| S4_a        | S4_b        |
| S5_a        | S5_b        |
| S6_a        | S6_b        |
| S7_a        | S7_b        |
| S8_a        | S8_b        |
| S9_a        | S9_b        |
| S10_a       | S10_b       |

# Toy example: 1<sup>st</sup> permutation

null hypothesis: condition A = condition B



# Toy example: 2<sup>nd</sup> permutation

null hypothesis: condition A = condition B



# Toy example: Original observation



Toy example: 1<sup>st</sup> permutation



Toy example: 1<sup>st</sup> permutation



# Toy example: 2<sup>nd</sup> permutation



# Toy example: 3<sup>rd</sup> permutation



Toy example: N<sup>th</sup> permutation



Assess the likelihood of the *observed max cluster size* given the randomization distribution



# General summary

#### A formal hypothesis can be tested with randomization test

control the chance of false positives

reduce the false negative rate

#### Multiple comparison problem

ERP - one hypothesis per channel-time

ERSP - one hypothesis per channel-time-frequency

Solution: use one hypothesis for all datapoints

#### Increase sensitivity

using clusters to capture the structure in the data