
How to make irregular and missing 
sampling points uniform in LSL data

Makoto Miyakoshi
09/15/2016

Presentation at Loo lab at UCLA



Background and Problem
• LSL-time-stamped raw data do not have perfectly regular 

intervals between sampling points.
• load_xdf() has ‘HandleJitterRemoval’ option with default 

being ‘true’—that makes global linear interpolation on all 
sampling points.

• The assumption of this solution is that the raw data have 
more or less regular sampling intervals and their irregular 
deviation is infrequent and minor.

• However, real data showed that sampling intervals are 
much irregular and sometimes even fluctuates structurally. 
When the default linear interpolation is applied, the time 
stamps are severly distorted, up to +/- 150 sec in one of the 
past cases (see next slide).



An example from tic data

Interval of time stamps in 
one of LSL streams. It 
oscillates between two 
states, 40ms and 120 ms.

A result from a linear interpolation. 
Although global error is minimized 
successfully, the result showed maximum 
150 second deviation locally. 



Technical detail of this problem

LSL Stream A

LSL Stream B

1. The sampling rates (vertical bars) are different across streams.
2. The data jitters and are not in pefect sync with sampling points.
3. There are missing data points (i.e. when jitters are too large).



Suggested solution

LSL Stream A
Upsampled and 
interpolated

LSL Stream B
Upsampled and 
interpolated

New Sampling Points



Matlab code to efficiently perform this interpolation (demo)

% 09/15/2016 Makoto. Created. UCLA visit today (I'm in David's car, Toyota '85 Driving I-5 north)

% In read data, perform the following first

% 1. Round up time stamps into millisecond

% 2. Prepare the same length (ms) of NaN data sampled with 1000Hz 

% 3. Map the data onto the NaN data prepared 

% 4. Perform the following interp1(..., 'linear')

% Prepare data with 20% of NaN

nanRate = 0.70;

data = randn(100, 1);

replaceNanIdx = randi(100, 100*nanRate, 1);

dataWithNan = data;

dataWithNan(replaceNanIdx) = NaN;

% Obtain data length

datapointIdx = 1:length(dataWithNan);

% Interpolate NaN using interp1

nanIdx = ~isnan(dataWithNan);

dataNoNan = dataWithNan;

dataNoNan(~nanIdx) = interp1(datapointIdx(nanIdx), dataWithNan(nanIdx), datapointIdx(~nanIdx), 'linear');

% Visualize results

figure; set(gcf, 'color', [0.93 0.96 1])

subplot(2,1,1)

plot(dataWithNan, 'r')

title(sprintf('Data with %.0f %% of NaN', 100*nanRate))

subplot(2,1,2)

plot(dataNoNan, 'b')

hold on

plot(dataWithNan, 'ro')

title('After linear interpolation')

set(findall(gcf, '-property', 'fontsize'), 'fontsize', 14)



Conclusion
1. The sampling rates (vertical bars) are different across 

streams.
-> Updample all streams to 1000Hz.

2. The data jitters and are not in pefect sync with sampling 
points.

-> Map the upsampled data onto 1000Hz regular grid.
Empty grid points will remain as NaN. 

3. There are missing data points (i.e. when jitters are too large).
-> Perform linear interpolation for all NaNs.

• After these processes, one can safely crop a same time 
window from different streams for analysis.

• This approach fundamentally address the LSL time-stamp 
issues. This method must be implemented as a default 
import option, and the current global linear interpolation 
should be removed.


