-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathobjfcn77.f
338 lines (338 loc) · 8.05 KB
/
objfcn77.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
subroutine objfcn(n,x,f,nprob)
integer n,nprob
double precision f
double precision x(n)
c **********
c
c subroutine objfcn
c
c This subroutine defines the objective functions of eighteen
c nonlinear unconstrained minimization problems. The values
c of n for functions 1,2,3,4,5,10,11,12,16 and 17 are
c 3,6,3,2,3,2,4,3,2 and 4, respectively.
c For function 7, n may be 2 or greater but is usually 6 or 9.
c For functions 6,8,9,13,14,15 and 18 n may be variable,
c however it must be even for function 14, a multiple of 4 for
c function 15, and not greater than 50 for function 18.
c
c The subroutine statement is
c
c subroutine objfcn(n,x,f,nprob)
c
c where
c
c n is a positive integer input variable.
c
c x is an input array of length n.
c
c f is an output variable which contains the value of
c the nprob objective function evaluated at x.
c
c nprob is a positive integer input variable which defines the
c number of the problem. nprob must not exceed 18.
c
c Subprograms called
c
c FORTRAN-supplied ... abs,atan,cos,dble,exp,log,sign,sin,sqrt
c
c Argonne National Laboratory. MINPACK Project. march 1980.
c Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
c
c **********
integer i,iev,j
double precision ap,arg,c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,
* c2p25,c2p625,c3p5,c25,c29,c90,c100,c10000,
* c1pd6,d1,d2,eight,fifty,five,four,one,r,s1,s2,
* s3,t,t1,t2,t3,ten,th,three,tpi,two,zero
double precision fvec(50),y(15)
data zero,one,two,three,four,five,eight,ten,fifty
* /0.0d0,1.0d0,2.0d0,3.0d0,4.0d0,5.0d0,8.0d0,1.0d1,5.0d1/
data c2pdm6,cp0001,cp1,cp2,cp25,cp5,c1p5,c2p25,c2p625,c3p5,c25,
* c29,c90,c100,c10000,c1pd6
* /2.0d-6,1.0d-4,1.0d-1,2.0d-1,2.5d-1,5.0d-1,1.5d0,2.25d0,
* 2.625d0,3.5d0,2.5d1,2.9d1,9.0d1,1.0d2,1.0d4,1.0d6/
data ap /1.0d-5/
data y(1),y(2),y(3),y(4),y(5),y(6),y(7),y(8),y(9),y(10),y(11),
* y(12),y(13),y(14),y(15)
* /9.0d-4,4.4d-3,1.75d-2,5.4d-2,1.295d-1,2.42d-1,3.521d-1,
* 3.989d-1,3.521d-1,2.42d-1,1.295d-1,5.4d-2,1.75d-2,4.4d-3,
* 9.0d-4/
c
c Function routine selector.
c
go to (10,20,40,60,70,90,110,150,170,200,210,230,250,280,300,
* 320,330,340), nprob
c
c Helical valley function.
c
10 continue
tpi = eight*atan(one)
th = sign(cp25,x(2))
if (x(1) .gt. zero) th = atan(x(2)/x(1))/tpi
if (x(1) .lt. zero) th = atan(x(2)/x(1))/tpi + cp5
arg = x(1)**2 + x(2)**2
r = sqrt(arg)
t = x(3) - ten*th
f = c100*(t**2 + (r - one)**2) + x(3)**2
return
c
c Biggs exp6 function.
c
20 continue
f = zero
do 30 i = 1, 13
d1 = dble(i)/ten
d2 = exp(-d1) - five*exp(-ten*d1) + three*exp(-four*d1)
s1 = exp(-d1*x(1))
s2 = exp(-d1*x(2))
s3 = exp(-d1*x(5))
t = x(3)*s1 - x(4)*s2 + x(6)*s3 - d2
f = f + t**2
30 continue
return
c
c Gaussian function.
c
40 continue
f = zero
do 50 i = 1, 15
d1 = cp5*dble(i-1)
d2 = c3p5 - d1 - x(3)
arg = -cp5*x(2)*d2**2
r = exp(arg)
t = x(1)*r - y(i)
f = f + t**2
50 continue
return
c
c Powell badly scaled function.
c
60 continue
t1 = c10000*x(1)*x(2) - one
s1 = exp(-x(1))
s2 = exp(-x(2))
t2 = s1 + s2 - one - cp0001
f = t1**2 + t2**2
return
c
c Box 3-dimensional function.
c
70 continue
f = zero
do 80 i = 1, 10
d1 = dble(i)
d2 = d1/ten
s1 = exp(-d2*x(1))
s2 = exp(-d2*x(2))
s3 = exp(-d2) - exp(-d1)
t = s1 - s2 - s3*x(3)
f = f + t**2
80 continue
return
c
c Variably dimensioned function.
c
90 continue
t1 = zero
t2 = zero
do 100 j = 1, n
t1 = t1 + dble(j)*(x(j) - one)
t2 = t2 + (x(j) - one)**2
100 continue
f = t2 + t1**2*(one + t1**2)
return
c
c Watson function.
c
110 continue
f = zero
do 140 i = 1, 29
d1 = dble(i)/c29
s1 = zero
d2 = one
do 120 j = 2, n
s1 = s1 + dble(j-1)*d2*x(j)
d2 = d1*d2
120 continue
s2 = zero
d2 = one
do 130 j = 1, n
s2 = s2 + d2*x(j)
d2 = d1*d2
130 continue
t = s1 - s2**2 - one
f = f + t**2
140 continue
t1 = x(2) - x(1)**2 - one
f = f + x(1)**2 + t1**2
return
c
c Penalty function I.
c
150 continue
t1 = -cp25
t2 = zero
do 160 j = 1, n
t1 = t1 + x(j)**2
t2 = t2 + (x(j) - one)**2
160 continue
f = ap*t2 + t1**2
return
c
c Penalty function II.
c
170 continue
t1 = -one
t2 = zero
t3 = zero
d1 = exp(cp1)
d2 = one
do 190 j = 1, n
t1 = t1 + dble(n-j+1)*x(j)**2
s1 = exp(x(j)/ten)
if (j .gt. 1) then
s3 = s1 + s2 - d2*(d1 + one)
t2 = t2 + s3**2
t3 = t3 + (s1 - one/d1)**2
end if
s2 = s1
d2 = d1*d2
190 continue
f = ap*(t2 + t3) + t1**2 + (x(1) - cp2)**2
return
c
c Brown badly scaled function.
c
200 continue
t1 = x(1) - c1pd6
t2 = x(2) - c2pdm6
t3 = x(1)*x(2) - two
f = t1**2 + t2**2 + t3**2
return
c
c Brown and Dennis function.
c
210 continue
f = zero
do 220 i = 1, 20
d1 = dble(i)/five
d2 = sin(d1)
t1 = x(1) + d1*x(2) - exp(d1)
t2 = x(3) + d2*x(4) - cos(d1)
t = t1**2 + t2**2
f = f + t**2
220 continue
return
c
c Gulf research and development function.
c
230 continue
f = zero
d1 = two/three
do 240 i = 1, 99
arg = dble(i)/c100
r = (-fifty*log(arg))**d1 + c25 - x(2)
t1 = abs(r)**x(3)/x(1)
t2 = exp(-t1)
t = t2 - arg
f = f + t**2
240 continue
return
c
c Trigonometric function.
c
250 continue
s1 = zero
do 260 j = 1, n
s1 = s1 + cos(x(j))
260 continue
f = zero
do 270 j = 1, n
t = dble(n+j) - sin(x(j)) - s1 - dble(j)*cos(x(j))
f = f + t**2
270 continue
return
c
c Extended Rosenbrock function.
c
280 continue
f = zero
do 290 j = 1, n, 2
t1 = one - x(j)
t2 = ten*(x(j+1) - x(j)**2)
f = f + t1**2 + t2**2
290 continue
return
c
c Extended Powell function.
c
300 continue
f = zero
do 310 j = 1, n, 4
t = x(j) + ten*x(j+1)
t1 = x(j+2) - x(j+3)
s1 = five*t1
t2 = x(j+1) - two*x(j+2)
s2 = t2**3
t3 = x(j) - x(j+3)
s3 = ten*t3**3
f = f + t**2 + s1*t1 + s2*t2 + s3*t3
310 continue
return
c
c Beale function.
c
320 continue
s1 = one - x(2)
t1 = c1p5 - x(1)*s1
s2 = one - x(2)**2
t2 = c2p25 - x(1)*s2
s3 = one - x(2)**3
t3 = c2p625 - x(1)*s3
f = t1**2 + t2**2 + t3**2
return
c
c Wood function.
c
330 continue
s1 = x(2) - x(1)**2
s2 = one - x(1)
s3 = x(2) - one
t1 = x(4) - x(3)**2
t2 = one - x(3)
t3 = x(4) - one
f = c100*s1**2 + s2**2 + c90*t1**2 + t2**2 + ten*(s3 + t3)**2
* + (s3 - t3)**2/ten
return
c
c Chebyquad function.
c
340 continue
do 350 i = 1, n
fvec(i) = zero
350 continue
do 370 j = 1, n
t1 = one
t2 = two*x(j) - one
t = two*t2
do 360 i = 1, n
fvec(i) = fvec(i) + t2
th = t*t2 - t1
t1 = t2
t2 = th
360 continue
370 continue
f = zero
d1 = one/dble(n)
iev = -1
do 380 i = 1, n
t = d1*fvec(i)
if (iev .gt. 0) t = t + one/(dble(i)**2 - one)
f = f + t**2
iev = -iev
380 continue
return
c
c Last card of subroutine objfcn.
c
end