igital Design

AT

A

Digital Design with Chisel

Second Edition

Digital Design with Chisel

Second Edition

Martin Schoeberl

Copyright (©) 2016-2019 Martin Schoeberl

This work is licensed under a Creative Commons Attribution-ShareAlike
BY SA

4.0 International License. http://creativecommons.org/licenses/
by-sa/4.0/

Email: martin@jopdesign.com
Visit the source at https://github.com/schoeberl/chisel-book

Published 2019 by Kindle Direct Publishing,
https://kdp.amazon.com/

Library of Congress Cataloging-in-Publication Data

Schoeberl, Martin
Digital Design with Chisel
Martin Schoeberl

Includes bibliographical references and an index.
ISBN 9781689336031

Manufactured in the United States of America.
Typeset by Martin Schoeberl.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
martin@jopdesign.com
https://github.com/schoeberl/chisel-book
https://kdp.amazon.com/

Contents

Foreword
Preface
1 Introduction
1.1 Installing Chisel and FPGA Tools
1.1.1 macOS e
1.1.2 Linux/Ubuntu
1.1.3 Windows
1.1.4 FPGATools,
1.2 HelloWorld e
1.3 Chisel HelloWorld
1.4 AnIDEforChisel
1.5 Source Access and eBook Features
1.6 FurtherReading
1.7 EXercise o . v i i e e e e
2 Basic Components

2.1 Signal Typesand Constants
2.2 Combinational Circuits

22.1 Multiplexer
2.3 ReSers o e e e e e e

231 Counting oo
2.4 Structure with Bundleand Vec
2.5 Chisel Generates Hardware
2.6 Exercise e

Build Process and Testing

3.1 Building your Project withsbt00
3.1.1 Source Organization
3.1.2 Runningsbt L

CONTENTS

313 ToolFlow
32 Testingwith Chisel
3.2.1 PeekPokeTester
322 UsingScalaTest.
323 Waveforms
324 printf Debugging o
33 EXEICISES . . . v v v v it
3.3.1 A Minimal Project
332 ATestingExercise
Components
4.1 Components in Chisel are Modules
4.2 An Arithmetic LogicUnit.
43 BulkConnections
4.4 Lightweight Components with Functions

Combinational Building Blocks

5.1 Combinational Circuits
52 Decoder
53 Encoder
54 EXEICISE i i e e e e

Sequential Building Blocks

6.1 Registers e
6.2 Counters e
6.2.1 CountingUpandDown
6.2.2 Generating Timing with Counters
6.2.3 TheNerd Counter
6.24 ATimer.
6.2.5 Pulse-Width Modulation
6.3 ShiftRegisters e
6.3.1 Shift Register with Parallel Output
6.3.2 Shift Register with Parallel Load
6.4 Memory
6.5 EXercise

Input Processing
7.1 AsynchronousInput.
7.2 Debouncing

Contents

35
35
39
40
41

43
43
45
47
48

49
49
53
54
55
57
58
58
61
61
62
63
68

CONTENTS

10

11

7.3 Filtering of the Input Signal 72
7.4 Combining the Input Processing with Functions 73
7.5 EXErCiSe o v v v e e e 75
Finite-State Machines 77
8.1 Basic Finite-State Machine 77
8.2 Faster OutputwithaMealy FSM 81
83 MooreversusMealy 83
84 EXercise 87
Communicating State Machines 89
9.1 ALightFlasherExample 89
9.2 State Machine with Datapath 94
9.2.1 PopcountExample 94
9.3 Ready-ValidInterface, 99
Hardware Generators 103
10.1 Configure with Parameters 103
10.1.1 Simple Parameters 103
10.1.2 Functions with Type Parameters 104
10.1.3 Modules with Type Parameters 105
10.1.4 Parameterized Bundles 106
10.2 Generate Combinational Logic 107
10.3 UseInheritance 110
Example Designs 115
11.1 FIFOBuffer 115
11.2 ASerial Port 118
11.3 FIFO Design Variations 125
11.3.1 Parameterizing FIFOs 125
11.3.2 Redesigning the Bubble FIFO 126
11.3.3 Double Buffer FIFO 128
11.3.4 FIFO with Register Memory 130
11.3.5 FIFO with On-ChipMemory 132
11.4 EXercises oo v i it e e 135
11.4.1 Explore the Bubble FIFO 135
11.42 The UART 136
11.4.3 FIFO Exploration 137

Contents I

CONTENTS

12 Design of a Processor

12.1 Start withan ALU
12.2 Decoding Instructions . .

12.3 Assembling Instructions

12.4 Exercise

13 Contributing to Chisel

13.1 Setup the Development Environment

13.2 Testing.

13.3 Contribute withaPull Request

13.4 Exercise

14 Summary
A Chisel Projects
B Chisel 2
Bibliography

Index

Contents

139
139
143
145
147

149
149
150
150
151

153

155

157

161

163

List of Figures

2.1

22
23

3.1
32

4.1
42

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1

Logic for the expression (a & b) | c. The wires can be a single bit or
multiple bits. The Chisel expression, and the schematics are the same. .
Abasic 2:1 multiplexer.
A D flip-flop based register with a synchronous resetto 0.

Source tree of a Chisel project (using sbt)
Tool flow of the Chisel ecosystem.

A design consisting of a hierarchy of components.
An arithmetic logic unit, or ALU for short.

A2-bitto4-bitdecoder. e
A 4-bitto2-bitencoder.

A Dflipflopbasedregister.,
A D flip-flop based register with a synchronous reset.
A waveform diagram for a register withareset.
A D flip-flop based register with an enable signal.
A waveform diagram for a register with an enable signal.
An adder and a register resultincounter.
Counting €Vents. v v v it e e e e e
A waveform diagram for the generation of a slow frequency tick.
Aone-shottimer.
Pulse-width modulation.
A 4 stage shiftregister.o
A 4-bit shift register with parallel output.
A 4-bit shift register with parallel load.
A synchronous memory.
A synchronous memory with forwarding for a defined read-during-write

behavior..

Input synchronizer. oL

L1ST OF FIGURES

VI

7.2 Debouncing an input signal. 71
7.3 Majority voting on the sampled input signal. 72
8.1 A finite state machine (Moore type). 77
8.2 The state diagram of analarm FSM. 78
8.3 Arising edge detector (Mealy type FSM). 82
8.4 A Mealy type finite state machine. 82
8.5 The state diagram of the rising edge detector as Mealy FSM. 83
8.6 The state diagram of the rising edge detector as Moore FSM. 85
8.7 Mealy and a Moore FSM waveform for rising edge detection. 85
9.1 The light flasher split into a Master FSM and a Timer FSM. 90
9.2 The light flasher split into a Master FSM, a Timer FSM, and a Counter

FSM. . 92
9.3 A state machine withadatapath. 94
9.4 State diagram for the popcount FSM. 95
9.5 Datapath for the popcount circuit. 96
9.6 Theready-valid flowcontrol. 99
9.7 Data transfer with a ready-valid interface, earlyready 100
9.8 Data transfer with a ready-valid interface, lateready 100
9.9 Single cycle ready/valid and back-to-back trasnfers 101
11.1 A writer, a FIFO buffer,and areader. 115
11.2 One byte transmitted by a UART. 118

Contents

List of Tables

2.1 Chisel defined hardware operators. 13
2.2 Chisel defined hardware functions, invokedonv. 13
5.1 Truthtablefora2toddecoder.. 45
5.2 Truthtableforad4to2encoder. 47
8.1 State table for the alarm FSM. 80
12.1 LerosinStruction set.« v v v v i e e e e 140

VII

Listings

VIII

1.1

6.1
6.2
6.3

7.1

8.1
8.2
8.3

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3
11.4
11.5
11.6

A hardware Hello World in Chisel 5
Aone-shottimer 59
1 KiB of synchronous memory. 65
A memory with a forwarding circuit. 67
Summarizing input processing with functions. 74
The Chisel code for the alarm FSM. 79
Rising edge detection witha Mealy FSM. 84
Rising edge detection witha Moore FSM. 86
Master FSM of the light flasher., 91
Master FSM of the double refactored light flasher. 93
The top level of the popcount circuit. 96
Datapath of the popcount circuit. 97
The FSM of the popcount circuit. 98
Reading a text file to generate a logic table. 108
Binary to binary-coded decimal conversion. 109
Tick generation withacounter. 110
A tester for different versions of the ticker. 112
Tick generation withadowncounter. 113
Tick generation by countingdownto-1. 113
ScalaTest specifications for the ticker tests. 114
A single stage of the bubble FIFO. 117
A FIFO is composed of an array of FIFO bubble stages. 118
A transmitter fora serial port. oL 120
A single-byte buffer with a ready/valid interface. 121
A transmitter with an additional buffer. 122
Areceiver foraserial port.o 123

LISTINGS

11.7 Sending “Hello World!” via the serial port. 124
11.8 Echoing dataonthe serial port. 125
11.9 A bubble FIFO with a ready-valid interface. 127
11.10A FIFO with double bufferelements. 128
11.11 A FIFO with a register based memory. 130
11.12A FIFO withaon-chipmemory. 132
11.13Combining a memory based FIFO with double-buffer stage. 135
12.1 TheLeros ALU. 141
12.2 The Leros ALU function writtenin Scala. 142
12.3 The main part of the Leros assembler. 147

Contents IX

Foreword

It is an exciting time to be in the world of digital design. With the end of Dennard
Scaling and the slowing of Moore’s Law, there has perhaps never been a greater need
for innovation in the field. Semiconductor companies continue to squeeze out every
drop of performance they can, but the cost of these improvements has been rising drasti-
cally. Chisel reduces this cost by improving productivity. If designers can build more in
less time, while amortizing the cost of verification through reuse, companies can spend
less on Non-Recurring Engineering (NRE). In addition, both students and individual
contributors can innovate more easily on their own.

Chisel is unlike most languages in that it is embedded in another programming lan-
guage, Scala. Fundamentally, Chisel is a library of classes and functions representing
the primitives necessary to express synchronous, digital circuits. A Chisel design is re-
ally a Scala program that generates a circuit as it executes. To many, this may seem
counterintuitive: “Why not just make Chisel a stand-alone language like VHDL or Sys-
temVerilog?” My answer to this question is as follows: the software world has seen a
substantial amount of innovation in design methodology in the past couple of decades.
Rather than attempting to adapt these techniques to a new hardware language, we can
simply use a modern programming language and gain those benefits for free.

A longstanding criticism of Chisel is that it is “difficult to learn.” Much of this per-
ception is due to the prevalence of large, complex designs created by experts to solve
their own research or commercial needs. When learning a popular language like C++,
one does not start by reading the source code of GCC. Rather, there are a plethora of
courses, textbooks, and other learning materials that cater toward newcomers. In Digital
Design with Chisel, Martin has created an important resource for anyone who wishes to
learn Chisel.

Martin is an experienced educator, and it shows in the organization of this book. Start-
ing with installation and primitives, he builds the reader’s understanding like a building,
brick-by-brick. The included exercises are the mortar that solidifies understanding, en-
suring that each concept sets in the reader’s mind. The book culminates with hardware
generators like a roof giving the rest of the structure purpose. At the end, the reader is
left with the knowledge to build a simple, yet useful design: a RISC processor.

XI

FOREWORD

In Digital Design with Chisel, Martin has laid a strong foundation for productive
digital design. What you build with it is up to you.

Jack Koenig
Chisel and FIRRTL Maintainer
Staff Engineer, SiFive

XII Contents

Preface

This book is an introduction to digital design with the focus on using the hardware
construction language Chisel. Chisel brings advances from software engineering, such
as object-orientated and functional languages, into digital design.

This book addresses hardware designers and software engineers. Hardware designers,
with knowledge of Verilog or VHDL, can upgrade their productivity with a modern
language for their next ASIC or FPGA design. Software engineers, with knowledge of
object-oriented and functional programming, can leverage their knowledge to program
hardware, for example, FPGA accelerators executing in the cloud.

The approach of this book is to present small to medium-sized typical hardware com-
ponents to explore digital design with Chisel.

Foreword for the Second Edition

As Chisel allows agile hardware design, so does open access and on-demand printing
allow agile textbook publishing. Less than 6 months after the first edition of this book I
am able to provide an improved and extended second edition.

Besides minor fixes, the main changes in the second edition are as follows. The testing
section has been extended. The sequential building blocks chapter contains more exam-
ple circuits. A new chapter on input processing explains input synchronization, shows
how to design a debouncing circuit, and how to filter a noisy input signal. The example
designs chapter has been extended to show different implementations of a FIFO. The
FIFO variations also show how to use type parameters and inheritance in digital design.

Acknowledgements

I want to thank everyone who has worked on Chisel for creating such a cool hard-
ware construction language. Chisel is so joyful to use and therefore worth writing a
book about. I am thankful to the whole Chisel community, which is so welcoming and
friendly and never tired to answer questions on Chisel.

XIIT

PREFACE

I would also like to thank my students in the last years of an advanced computer
architecture course where most of them picked up Chisel for the final project. Thank
you for moving out of your comfort zone and taking up the journey of learning and using
a bleeding-edge hardware description language. Many of your questions have helped to
shape this book.

XIV Contents

1 Introduction

This book is an introduction to digital system design using a modern hardware construc-
tion language, Chisel [2]. In this book, we focus on a higher abstraction level than usual
in digital design books, to enable you to build more complex, interacting digital systems
in a shorter time.

This book and Chisel are targeting two groups of developers: (1) hardware designers
and (2) software programmers. Hardware designers who are fluid in VHDL or Verilog
and using other languages such as Python, Java, or Tcl to generate hardware can move
to a single hardware construction language where hardware generation is part of the
language. Software programmers may become interested in hardware design, e.g., as
future chips from Intel will include programmable hardware to speed up programs. It is
perfectly fine to use Chisel as your first hardware description language.

Chisel brings advances in software engineering, such as object-orientated and func-
tional languages, into digital design. Chisel does not only allow to express hardware at
the register-transfer level but allows you to write hardware generators.

Hardware is now commonly described with a hardware description language. The
time of drawing hardware components, even with CAD tools, is over. Some high-level
schematics can give an overview of the system but are not intended to describe the sys-
tem. The two most common hardware description languages are Verilog and VHDL.
Both languages are old, contain many legacies, and have a moving line of what con-
structs of the language are synthesizable to hardware. Do not get me wrong: VHDL
and Verilog are perfectly able to describe a hardware block that can be synthesized into
an ASIC. For hardware design in Chisel, Verilog serves as an intermediate language for
testing and synthesis.

This book is not a general introduction to hardware design and the fundamentals of
it. For an introduction of the basics in digital design, such as how to build a gate out
of CMOS transistors, refer to other digital design books. However, this book intends to
teach digital design at an abstraction level that is current practice to describe ASICs or
designs targeting FPGAs.! As prerequisites for this book, we assume basic knowledge
of Boolean algebra and the binary number system. Furthermore, some programming ex-

I'As the author is more familiar with FPGAs than ASICs as target technology, some design optimizations
shown in this book are targeting FPGA technology.

https://www.chisel-lang.org/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Binary_number

1 INTRODUCTION

perience in any programming language is assumed. No knowledge of Verilog or VHDL
is needed. Chisel can be your first programming language to describe digital hardware.
As the build process in the examples is based on sbt and make, basic knowledge of the
command-line interface (CLI, also called terminal or Unix shell) will be helpful.

Chisel itself is not a big language. The basic constructs fit on one page and can be
learned within a few days. Therefore, this book is not a big book, as well. Chisel is
for sure smaller than VHDL and Verilog, which carry many legacies. The power of
Chisel comes from the embedding of Chisel within Scala, which itself in an expres-
sive language. Chisel inherits the feature from Scala being “a language that grows on
you” [12]. However, Scala is not the topic of this book. The textbook by Odersky et
al. [12] provides a general introduction to Scala. This book is a tutorial in digital de-
sign and the Chisel language; it is not a Chisel language reference, nor is it a book on
complete chip design.

All code examples shown in this book are extracted from complete programs that have
been compiled and tested. Therefore, the code shall not contain any syntax errors. The
code examples are available from the GitHub repository of this book. Besides showing
Chisel code, we have also tried to show useful designs and principles of good hardware
description style.

This book is optimized for reading on a laptop or tablet (e.g., an iPad). We include
links to further reading in the running text, mostly to Wikipedia articles.

1.1 Installing Chisel and FPGA Tools

Chisel is a Scala library, and the easiest way to install Chisel and Scala is with sbt, the
Scala build tool. Scala itself depends on the installation of Java JDK 1.8. As Oracle has
changed the license for Java, it may be easier to install OpenJDK from AdoptOpenJDK.

1.1.1 macOS

Install the Java OpenJDK 8 from AdoptOpenJDK. On Mac OS X, with the packet man-
ager Homebrew, sbt and git can be installed with:

$ brew install sbt git

Install GTKWave and IntelliJ (the community edition). When importing a project,
select the JDK 1.8 you installed before (not Java 11!)

2 Contents

https://github.com/freechipsproject/chisel-cheatsheet/releases/latest/download/chisel_cheatsheet.pdf
https://www.scala-lang.org/
https://github.com/schoeberl/chisel-book
https://en.wikipedia.org/
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://adoptopenjdk.net/
https://adoptopenjdk.net/
https://brew.sh/
http://gtkwave.sourceforge.net/
https://www.jetbrains.com/idea/download/

1.2 HELLO WORLD

1.1.2 Linux/Ubuntu

Install Java and useful tools in Ubuntu with:
$ sudo apt install openjdk-8-jdk git make gtkwave

For Ubuntu, which is based on Debian, programs are usually installed from a Debian
file (.deb). However, as of the time of this writing, sbt is not available as a ready to
install package. Therefore, the installation process is a little bit more involved:

echo "deb https://dl.bintray.com/sbt/debian /" | \
sudo tee -a /etc/apt/sources.list.d/sbt.list

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 \
--recv 2EEQEA64E40A89B84B2DF73499E82A75642AC823

sudo apt-get update

sudo apt-get install sbt

1.1.3 Windows

Install the Java OpenJDK from AdoptOpenJDK. Chisel and Scala can also be installed
and used under Windows. Install GTKWave and IntelliJ (the community edition). When
importing a project, select the JDK 1.8 you installed before (not Java 11!) sbt can be
installed with a Windows installer, see: Installing sbt on Windows. Install a git client.

1.1.4 FPGA Tools

To build hardware for an FPGA, you need a synthesize tool. The two major FPGA ven-
dors, Intel® and Xilinx, provide free versions of their tools that cover small to medium-
sized FPGAs. Those medium-sized FPGAs are large enough to build multicore RISC
style processors. Intel provides the Quartus Prime Lite Edition and Xilinx the Vivado
Design Suite, WebPACK Edition. Both tools are available for Windows and Linux, but
not for macOS.

1.2 Hello World

Each book on a programming language shall start with a minimal example, called the
Hello World example. Following code is the first approach:

2former Altera

Contents 3

https://adoptopenjdk.net/
http://gtkwave.sourceforge.net/
https://www.jetbrains.com/idea/download/
https://www.scala-sbt.org/1.x/docs/Installing-sbt-on-Windows.html
https://git-scm.com/download/win
https://www.altera.com/products/design-software/fpga-design/quartus-prime/download.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html

1 INTRODUCTION

object HelloScala extends App{
println("Hello Chisel World!"™)
b

Compiling and executing this short program with sbt

$§ sbt run

leads to the expected output of a Hello World program:

[info] Running HelloScala
Hello Chisel World!

However, is this Chisel? Is this hardware generated to print a string? No, this is plain
Scala code and not a representative Hello World program for a hardware design.

1.3 Chisel Hello World

What is then the equivalent of a Hello World program for a hardware design? The
minimal useful and visible design? A blinking LED is the hardware (or even embed-
ded software) version of Hello World. If a LED blinks, we are ready to solve bigger
problems!

Listing 1.1 shows a blinking LED, described in Chisel. It is not important that you
understand the details of this code example. We will cover those in the following chap-
ters. Just note that the circuit is usually clocked with a high frequency, e.g., 50 MHz,
and we need a counter to derive timing in the Hz range to achieve a visible blinking. In
the above example, we count from O up to 25000000-1 and then toggle the blinking sig-
nal (b1lkReg := “blkReg) and restart the counter (cntReg := 0.U). That hardware then
blinks the LED at 1 Hz.

1.4 An IDE for Chisel

This book makes no assumptions about your programming environment or editor you
use. Learning the basics should be easy with just using sbt at the command line and an
editor of your choice. In the tradition of other books, all commands that you shall type
in a shell/terminal/CLI are preceded by a $ character, which you shall not type in. As an
example, here is the Unix 1s command, which lists files in the current folder:

$ 1s

4 Contents

1.5 SOURCE ACCESS AND EBOOK FEATURES

class Hello extends Module {
val io = IO0O(new Bundle {
val led = Output(UInt(l.W))
b
val CNT_MAX = (50000000 / 2 - 1).U;

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(C1.W))
cntReg := cntReg + 1.U
when(cntReg === CNT_MAX) {
cntReg := 0.U
blkReg := “blkReg
}
io.led := blkReg

Listing 1.1: A hardware Hello World in Chisel

That said, an integrated development environment (IDE), where a compiler is running
in the background, can speed up coding. As Chisel is a Scala library, all IDEs that
support Scala are also good IDEs for Chisel. It is possible in IntelliJ and Eclipse to
generate a project from the sbt project configuration in build. sbt.

In IntelliJ you can create a new project from existing sources with: File - New -
Project from Existing Sources... and then select the build. sbt file from the project.

In Eclipse you can create a project via

$ sbt eclipse

and import that project into Eclipse.’

Visual Studio Code is another option for a Chisel IDE. The Scala Metals extension
provides Scala support. On the left bar select Extensions and search for Metals and
install Scala (Metals). To import an sbt based project open the folder with File - Open.

1.5 Source Access and eBook Features

This book is open source and hosted at GitHub: chisel-book. All Chisel code examples,
shown in this book, are included in the repository. The code compiles with a recent ver-

3This function needs the Eclipse plugin for sbt.

Contents 5

https://www.jetbrains.com/help/idea/discover-intellij-idea-for-scala.html
https://www.eclipse.org/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=scalameta.metals/
https://github.com/schoeberl/chisel-book

1 INTRODUCTION

sion of Chisel, and many examples also include a test bench. We collect larger Chisel
examples in the accompanying repository chisel-examples. If you find an error or typo
in the book, a GitHub pull request is the most convenient way to incorporate your im-
provement. You can also provide feedback or comments for improvements by filing an
issue on GitHub or sending a plain, old school email.

This book is freely available as a PDF eBook and in classical printed form. The eBook
version features links to further resources and Wikipedia entries. We use Wikipedia
entries for background information (e.g., binary number system) that does not directly
fit into this book. We optimized the format of the eBook for reading on a tablet, such as
an iPad.

1.6 Further Reading

Here a list of further reading for digital design and Chisel:
e Digital Design: A Systems Approach, by William J. Dally and R. Curtis Harting,
is a modern textbook on digital design. It is available in two versions: using

Verilog or VHDL as a hardware description language.

The official Chisel documentation and further documents are available online:

e The Chisel home page is the official starting point to download and learn Chisel.

e The Chisel Tutorial provides a ready setup project containing small exercises with
testers and solutions.

e The Chisel Wiki contains a short users guide to Chisel and links to further infor-
mation.

e The Chisel Testers are in their own repository that contains a Wiki documentation.

e The Generator Bootcamp is a Chisel course focusing on hardware generators, as
a Jupyter notebook

e A Chisel Style Guide by Christopher Celio.

e The chisel-lab contains Chisel exercises for the course “Digital Electronics 2 at
the Technical University of Denmark.

6 Contents

https://github.com/schoeberl/chisel-examples
https://www.wikipedia.org/
http://www.cambridge.org/es/academic/subjects/engineering/circuits-and-systems/digital-design-systems-approach
https://www.chisel-lang.org/
https://github.com/ucb-bar/chisel-tutorial
https://github.com/freechipsproject/chisel3/wiki
https://github.com/freechipsproject/chisel-testers
https://github.com/freechipsproject/chisel-bootcamp
https://jupyter.org/
https://github.com/ccelio/chisel-style-guide
https://github.com/schoeberl/chisel-lab

1.7 EXERCISE

1.7 Exercise

Each chapter ends with a hands-on exercise. For the introduction exercise, we will
use an FPGA board to get one LED blinking.* As a first step clone (or fork) the
chisel-examples repository from GitHub. The Hello World example is in the folder
hello-world, set up as a minimal project. You can explore the Chisel code of the
blinking LED in src/main/scala/Hello.scala. Compile the blinking LED with the
following steps:

$ git clone https://github.com/schoeberl/chisel-examples.git
$ cd chisel-examples/hello-world/
$ sbt run

After some initial downloading of Chisel components, this will produce the Verilog
file Hello.v. Explore this Verilog file. You will see that it contains two inputs clock
and reset and one output io_led. When you compare this Verilog file with the Chisel
module, you will notice that the Chisel module does not contain clock or reset. Those
signals are implicitly generated, and in most designs, it is convenient not to need to
deal with these low-level details. Chisel provides register components, and those are
connected automatically to clock and reset (if needed).

The next step is to set up an FPGA project file for the synthesize tool, assign the
pins, compile® the Verilog code, and configure the FPGA with the resulting bitfile. We
cannot provide the details of these steps. Please consult the manual of your Intel Quartus
or Xilinx Vivado tool. However, the examples repository contains some ready to use
Quartus projects in folder quartus for several popular FPGA boards (e.g., DE2-115). If
the repository contains support for your board, start Quartus, open the project, compile
it by pressing the Play button, and configure the FPGA board with the Programmer
button and one of the LEDs should blink.

Gratulation! You managed to get your first design in Chisel running in an
FPGA!

If the LED is not blinking, check the status of reset. On the DE2-115 configuration,
the reset input is connected to SWO.

Now change the blinking frequency to a slower or a faster value and rerun the build
process. Blinking frequencies and also blinking patterns communicate different “emo-
tions”. E.g., a slow blinking LED signals that everything is ok, a fast blinking LED

4If you at the moment have no FPGA board available, continue to read as we will show you a simulation
version at the end of the exercise.

SThe real process is more elaborated with following steps: synthesizing the logic, performing place and
route, performing timing analysis, and generating a bitfile. However, for the purpose of this introduction
example we simply call it “compile” your code.

Contents 7

https://en.wikipedia.org/wiki/Light-emitting_diode
https://github.com/schoeberl/chisel-examples

1 INTRODUCTION

signals an alarm state. Explore which frequencies express best those two different emo-
tions.

As a more challenging extension to the exercise, generate the following blinking pat-
tern: the LED shall be on for 200 ms every second. For this pattern, you might decouple
the change of the LED blinking from the counter reset. You will need a second con-
stant where you change the state of the blkReg register. What kind of emotion does this
pattern produce? Is it alarming or more like a sign-of-live signal?

If you do not have an FPGA board (yet), you can still run the blinking LED example.
You will use the Chisel simulation. To avoid a too long simulation time change the clock
frequency in the Chisel code from 50000000 to 50000. Execute following instruction to
simulate the blinking LED:

§ sbt test

This will execute the tester that runs for one million clock cycles. The blinking fre-
quency depends on the simulation speed, which depends on the speed of your computer.
Therefore, you might need to experiment a little bit with the assumed clock frequency
to see the simulated blinking LED.

8 Contents

2 Basic Components

In this section, we introduce the basic components for digital design: combinational
circuits and flip-flops. These essential elements can be combined to build larger, more
interesting circuits.

Digital systems in general built use binary signals, which means a single bit or signal
can only have one of two possible values. These values are often called O and 1. How-
ever, we also use following terms: low/high, false/true, and de-asserted/asserted. These
terms mean the same two possible values of a binary signal.

2.1 Signal Types and Constants

Chisel provides three data types to describe signals, combinational logic, and registers:
Bits, UInt, and SInt. UInt and SInt extend Bits, and all three types represent a vector
of bits. UInt gives this vector of bits the meaning of an unsigned integer and SInt of a
signed integer.! Chisel uses two’s complement as signed integer representation. Here is
the definition for different types, an 8-bit Bits, an 8-bit unsigned integer, and a 10-bit
signed integer:

Bits (8.W)
UInt (8.W)
SInt (10.W)

The width of a vector of bits is defined by a Chisel width type (Width). The following
expression casts the Scala integer n to a Chisel width, which is used for the definition of
the Bits vector:

n.w
Bits(n.W)

Constants can be defined by using a Scala integer and converting it to a Chisel type:

0.U // defines a UInt constant of 0

IThe type Bits in the current version of Chisel is missing operations and therefore not very useful for user
code.

https://en.wikipedia.org/wiki/Two%27s_complement

2 BAsic COMPONENTS

-3.S // defines a SInt constant of -3

Constants can also be defined with a width, by using the Chisel width type:

8.U(4.W) // An 4-bit constant of 8

If you find the notion of 8.U and 4.W a little bit funny, consider it as a variant of an
integer constant with a type. This notation is similar to 8L, representing a long integer
constant in C, Java, and Scala.

Possible pitfall: One possible error when defining constants with a dedicated width is
missing the .W specifier for a width. E.g., 1.U(32) will not define a 32-bit wide constant
representing 1. Instead, the expression (32) is interpreted as bit extraction from position
32, which results in a single bit constant of 0. Probably not what the original intention
of the programmer was.

Chisel benefits from Scala’s type inference and in many places type information can
be left out. The same is also valid for bit widths. In many cases, Chisel will auto-
matically infer the correct width. Therefore, a Chisel description of hardware is more
concise and better readable than VHDL or Verilog.

For constants defined in other bases than decimal, the constant is defined in a string
with a preceding h for hexadecimal (base 16), o for octal (base 8), and b for binary
(base 2). The following example shows the definition of constant 255 in different bases.
In this example we omit the bit width and Chisel infers the minimum width to fit the
constants in, in this case 8 bits.

"hff".U // hexadecimal representation of 255
"0377".U // octal representation of 255
"p1111_1111".U // binary representation of 255

The above code shows how to use an underscore to group digits in the string that repre-
sents a constant. The underscore is ignored.

To represent logic values, Chisel defines the type Bool. Bool can represent a frue or
false value. The following code shows the definition of type Bool and the definition
of Bool constants, by converting the Scala Boolean constants true and false to Chisel
Bool constants.

Bool ()
true.B
false.B

10 Contents

2.2 COMBINATIONAL CIRCUITS

a —|
b —|

oai
. b ogic

Figure 2.1: Logic for the expression (a & b) | c. The wires can be a single bit or
multiple bits. The Chisel expression, and the schematics are the same.

2.2 Combinational Circuits

Chisel uses Boolean algebra operators, as they are defined in C, Java, Scala, and several
other programming languages, to described combinational circuits: & is the AND op-
erator and | is the OR operator. Following line of code defines a circuit that combines
signals a and b with and gates and combines the result with signal c with or gates.

val logic = (a & b) | ¢

Figure 2.1 shows the schematic of this combinatorial expression. Note that this circuit
may be for a vector of bits and not only single wires that are combined with the AND
and OR circuits.

In this example, we do not define the type nor the width of signal logic. Both are
inferred from the type and width of the expression. The standard logic operations in
Chisel are:

val and = a & b // bitwise and
val or = a | b // bitwise or
val xor = a ~ b // bitwise xor
val not = "a // bitwise negation

The arithmetic operations use the standard operators:

val add = a + b // addition

val sub = a - b // subtraction

val neg = -a // negate

val mul = a * b // multiplication
val div = a / b // division

val mod = a % b // modulo operation

The resulting width of the operation is the maximum width of the operators for addition
and subtraction, the sum of the two widths for the multiplication, and usually the width

Contents 11

https://en.wikipedia.org/wiki/Boolean_algebra

2 BAsic COMPONENTS

of the numerator for divide and modulo operations.”

A signal can also first be defined as a Wire of some type. Afterward, we can assign a
value to the wire with the := update operator.

val w = Wire(UInt(Q))
w:=a&hb
A single bit can be extracted as follows:
val sign = x(31)
A subfield can be extracted from end to start position:
val lowByte = largeWord(7, ©)
Bit fields are concatenated with Cat.
val word = Cat(ChighByte, lowByte)

Table 2.2 shows the full list of operators (see also builtin operators). The Chisel
operator precedence is determined by the evaluation order of the circuit, which follows
the Scala operator precedence. If in doubt, it is always a good praxis to use parentheses.”

Table 2.2 shows various functions defined on and for Chisel data types.

2.2.1 Multiplexer

A multiplexer is a circuit that selects between alternatives. In the most basic form, it
selects between two alternatives. Figure 2.2 shows such a 2:1 multiplexer, or mux for
short. Depending on the value of the select signal (sel) signal y will represent signal a
or signal b.

A multiplexer can be built from logic. However, as multiplexing is such a standard
operation, Chisel provides a multiplexer,

val result = Mux(sel, a, b)

2The exact details are available in the FIRRTL specification.

3The operator precedence in Chisel is a side effect of the hardware elaboration when the tree of hardware
nodes is created by executing the Scala operators. The Scala operator precedence is similar but not identi-
cal to Java/C. Verilog has the same operator precedence as C, but VHDL has a different one. Verilog has
precedence ordering for logic operations, but in VHDL those operators have the same precedence and are
evaluated from left to right.

12 Contents

https://github.com/freechipsproject/chisel3/wiki/Builtin-Operators
https://docs.scala-lang.org/tour/operators.html
https://en.wikipedia.org/wiki/Multiplexer
https://github.com/freechipsproject/firrtl/blob/master/spec/spec.pdf

2.2 COMBINATIONAL CIRCUITS

Operator Description Data types

* /% multiplication, division, modulus Ulnt, SInt

+ - addition, subtraction Ulnt, SInt

=== =/= equal, not equal Ulnt, Slnt, returns Bool
> >= < <= comparison Ulnt, SInt, returns Bool
<< >> shift left, shift right (sign extend on SInt) Ulnt, SInt

- NOT Ulnt, SInt, Bool

& | ° AND, OR, XOR Ulnt, SInt, Bool

! logical NOT Bool

&& || logical AND, OR Bool

Table 2.1: Chisel defined hardware operators.

Function Description Data types

v.andR v.orR v.xorR AND, OR, XOR reduction Ulnt, SInt, returns Bool

v(n) extraction of a single bit Ulnt, SInt
v(end, start) bitfield extraction Ulnt, SInt
Fill(n, v) bitstring replication, n times Ulnt, SInt
Cat(a, b, ...) bitfield concatenation Ulnt, SInt

Table 2.2: Chisel defined hardware functions, invoked on v.

les --

y —»

Figure 2.2: A basic 2:1 multiplexer.

Contents 13

2 BAsic COMPONENTS

where a is selected when the sel is true.B, otherwise b is selected. The type of sel is
a Chisel Bool; the inputs a and b can be any Chisel base type or aggregate (bundles or
vectors) as long as they are the same type.

With logical and arithmetical operations and a multiplexer, every combinational cir-
cuit can be described. However, Chisel provides further components and control ab-
stractions for a more elegant description of a combinational circuit, which are described
in a later chapter.

The second basic component needed to describe a digital circuit is a state element,
also called register, which is described next.

2.3 Registers

Chisel provides a register, which is a collection of D flip-flops. The register is implicitly
connected to a global clock and is updated on the rising edge. When an initialization
value is provided at the declaration of the register, it uses a synchronous reset connected
to a global reset signal. A register can be any Chisel type that can be represented as a
collection of bits. Following code defines an 8-bit register, initialized with 0 at reset:

val reg = RegInit(0.U(8.W))

An input is connected to the register with the := update operator and the output of the
register can be used just with the name in an expression:

reg := d
val q = reg

A register can also be connected to its input at the definition:
val nextReg = RegNext(d)

Figure 2.3 shows the circuit of our register definition with a clock, a synchronous
reset to 0.U, input d, and output q. The global signals clock and reset are implicitly
connected to each register defined.

A register can also be connected to its input and a constant as initial value at the defini-
tion:

val bothReg = RegNext(d, 0.0U)

To distinguish between signals representing combinational logic and registers, a com-
mon practice is to postfix register names with Reg. Another common practice, coming
from Java and Scala, is to use camelCase for identifier consisting of several words. The

14 Contents

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#D_flip-flop
https://en.wikipedia.org/wiki/Camel_case

2.4 STRUCTURE WITH BUNDLE AND VEC

/@— 19581

A

— clock J

Figure 2.3: A D flip-flop based register with a synchronous reset to 0.

convention is to start functions and variables with a lower case letter and classes (types)
with an upper case letter.

2.3.1 Counting

Counting is a fundamental operation in digital systems. On might count events. How-
ever, more often counting is used to define a time interval. Counting the clock cycles
and triggering an action when the time interval has expired.

A simple approach is counting up to a value. However, in computer science, and
digital design, counting starts at 0. Therefore, if we want to count till 10, we count from
0 to 9. The following code shows such a counter that counts till 9 and wraps around to
0 when reaching 9.

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 9.U, 0.U, cntReg + 1.U)

2.4 Structure with Bundle and Vec

Chisel provides two constructs to group related signals: (1) a Bundle to group signals of
different types and (2) a Vec to represent an indexable collection of signals of the same
type. Bundles and Vecs can be arbitrarily nested.

Contents 15

2 BAsic COMPONENTS

A Chisel bundle groups several signals. The entire bundle can be referenced as a
whole, or individual fields can be accessed by their name. We can define a bundle
(collection of signals) by defining a class that extends Bundle and list the fields as vals
within the constructor block.

class Channel () extends Bundle {
val data = UInt(32.W)
val valid = Bool(Q)

}

To use a bundle, we create it with new and wrap it into a Wire. The fields are accessed
with the dot notation:

val ch = Wire(new Channel())
ch.data := 123.U
ch.valid := true.B

val b = ch.valid

Dot notation is common in object-oriented languages, where x.y means x is a refer-
ence to an object and y is a field of that object. As Chisel is object-oriented, we use dot
notation to access fields in a bundle. A bundle is similar to a struct in C, a record in
VHDL, or a struct in SystemVerilog. A bundle can also be referenced as a whole:

val channel = ch

A Chisel Vec represents a collection of signals of the same type (a vector). Each
element can be accessed by an index. A Chisel Vec is similar to array data structures
in other programing languages.* A Vec is created by calling the constructor with two
parameters: the number of elements and the type of the elements. A combinational Vec
needs to be wrapped into a Wire

val v = Wire(Vec(3, UInt(4.W)))

Individual elements are accessed with (index).

v(®) := 1.0
v(l) := 3.U
v(2) := 5.0
val idx = 1.U(2.W)

4The name Array is already used in Scala.

16 Contents

2.4 STRUCTURE WITH BUNDLE AND VEC

val a = v(idx)

A vector wrapped into a Wire is a multiplexer. We can also wrap a vector into a
register to define an array of registers. Following example defines a register file for a
processor; 32 registers each 32-bits wide, as for a classic 32-bit RISC processor, like the
32-bit version of RISC-V.

val registerFile = Reg(Vec(32, UInt(32.W)))

An element of that register file is accessed with an index and used as a normal register.
registerFile(idx) := dIn

val dOut = registerFile(idx)

We can freely mix bundles and vectors. When creating a vector with a bundle type,
we need to pass a prototype for the vector fields. Using our Channel, which we defined
above, we can create a vector of channels with:

val vecBundle = Wire(Vec(8, new Channel()))

A bundle may as well contain a vector:

class BundleVec extends Bundle {
val field = UInt(8.W)
val vector = Vec(4,UInt(8.W))

When we want a register of a bundle type that needs a reset value, we first create a
Wire of that bundle, set the individual fields as needed, and then passing this bundle to
a RegInit:

val initVal = Wire(new Channel ())

initVal.data := 0.U
initVal.valid := false.B

val channelReg = RegInit(initVal)

With combinations of Bundles and Vecs we can define our own data structures, which
are powerful abstractions.

Contents 17

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/RISC-V

2 BAsic COMPONENTS

2.5 Chisel Generates Hardware

After seeing some initial Chisel code, it might look similar to classic programming lan-
guages such as Java or C. However, Chisel (or any other hardware description language)
does define hardware components. While in a software program one line of code after
the other is executed, in hardware all lines of code execute in parallel.

It is essential to keep in mind that Chisel code does generate hardware. Try to imag-
ine, or draw on a sheet of paper, the individual blocks that are generated by your Chisel
circuit description. Each creation of a component adds hardware; each assignment state-
ment generates gates and/or flip-flops.

More technically, when Chisel executes your code it runs as a Scala program, and by
executing the Chisel statements, it collects the hardware components and connects those
nodes. This network of hardware nodes is the hardware, which can spill out Verilog
code for ASIC or FPGA synthesis or can be tested with a Chisel tester. The network of
hardware nodes is what is executed in fully parallel.

For a software engineer imagine this immense parallelism that you can create in hard-
ware without needing to partition your application into threads and getting the locking
correct for the communication.

2.6 Exercise

In the introduction you implemented a blinking LED on an FPGA board (from chisel-
examples), which is a reasonable hardware Hello World example. It used only internal
state, a single LED output, and no input. Copy that project into a new folder and extend
it by adding some inputs to the io Bundle with val sw = Input(UInt(2.W)).

val io = IO(new Bundle {
val sw = Input(UInt(2.W))
val led = Output(UInt(l.W))
b

For those switches, you also need to assign the pin names for the FPGA board. You can
find examples of pin assignments in the Quartus project files of the ALU project (e.g.,
for the DE2-115 FPGA board).

When you have defined those inputs and the pin assignment, start with a simple test:
drop all blinking logic from the design and connect one switch to the LED output;
compile and configure the FPGA device. Can you switch the LED on an off with the
switch? If yes, you have now inputs available. If not, you need to debug your FPGA
configuration. The pin assignment can also be done with the GUI version of the tool.

18 Contents

https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples/blob/master/quartus/altde2-115/alu.qsf

2.6 EXERCISE

Now use two switches and implement one of the basic combinational functions, e.g.,
AND two switches and show the result on the LED. Change the function. The next step
involves three input switches to implement a multiplexer: one acts as a select signal, and
the other two are the two inputs for the 2:1 multiplexer.

Now you have been able to implement simple combinational functions and test them
in real hardware in an FPGA. As a next step, we will take a first look at how the build
process works to generate an FPGA configuration. Furthermore, we will also explore a
simple testing framework from Chisel, which allows you to test circuits without config-
uring an FPGA and toggle switches.

Contents 19

3 Build Process and Testing

To get started with more interesting Chisel code we first need to learn how to compile
Chisel programs, how to generate Verilog code for execution in an FPGA, and how to
write tests for debugging and to verify that our circuits are correct.

Chisel is written in Scala, so any build process that supports Scala is possible with
a Chisel project. One popular build tool for Scala is sbt, which stands for the Scala
interactive build tool. Besides driving the build and test process, sbt also downloads the
correct version of Scala and the Chisel libraries.

3.1 Building your Project with sbt

The Scala library that represents Chisel and the Chisel testers are automatically down-
loaded during the build process from a Maven repository. The libraries are referenced
by build.sbt. It is possible to configure build.sbt with latest.release to always
use the most actual version of Chisel. However, this means on each build the version is
looked up from the Maven repository. This lookup needs an Internet connection for the
build to succeed. Better use a dedicated version of Chisel and all other Scala libraries
in your build.sbt. Maybe sometimes it is also good to be able to write hardware code
and test it without an Internet connection. For example, it is cool to do hardware design
on a plane.

3.1.1 Source Organization

sbt inherits the source convention from the Maven build automation tool. Maven also
organizes repositories of open-source Java libraries.!

Figure 3.1 shows the organization of the source tree of a typical Chisel project. The
root of the project is the project home, which contains build.sbt. It may also include a
Makefile for the build process, a README, and a LICENSE file. Folder src contains
all source code. From there it is split between main, containing the hardware sources

IThat is also the place where you downloaded the Chisel library on your first build: https://
mvnrepository.com/artifact/edu.berkeley.cs/chisel3.

21

https://www.scala-sbt.org/
https://maven.apache.org/
https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3
https://mvnrepository.com/artifact/edu.berkeley.cs/chisel3

3 BUILD PROCESS AND TESTING

project
| _src
main
L scala
L package
L sub-package
test
| scala
L package
| target
| _generated

Figure 3.1: Source tree of a Chisel project (using sbt)

and test containing testers. Chisel inherits from Scala, which inherits from Java the or-
ganization of source in packages. Packages organize your Chisel code into namespaces.
Packages can also contain sub-packages. The folder target contains the class files and
other generated files. I recommend to also use a folder for generated Verilog files, which
is usually call generated.

To use the facility of namespaces in Chisel, you need to declare that a class/module
is defined in a package, in this example in mypacket:

package mypack
import chisel3._

class Abc extends Module {
val io = IO(new Bundle{})
}

Note that in this example we see the import of the chisel3 packet to use Chisel classes.

To use the module Abc in a different context (packet name space), the components of
packet mypacket need to be imported. The underscore (_) acts as wildcard, meaning that
all classes of mypacket are imported.

import mypack._

class AbcUser extends Module {
val io = IO(new Bundle{})

22 Contents

https://en.wikipedia.org/wiki/Java_package

3.1 BUILDING YOUR PROJECT WITH SBT

val abc = new Abc(Q)

}

It is also possible to not import all types from mypacket, but use the fully qualified name
mypack. Abc to refer to the module Abc in packet mypack.

class AbcUser2 extends Module {
val io = I0(new Bundle{})

val abc = new mypack.Abc()
}

It is also possible to import just a single class and create an instance of it:

import mypack.Abc

class AbcUser3 extends Module {
val io = IO0O(new Bundle{})

val abc = new Abc()

3.1.2 Running sbt

A Chisel project can be compiled and executed with a simple sbt command:
$ sbt run

This command will compile all your Chisel code from the source tree and searches
for classes that contain an object that includes a main method, or simpler that extends
App. If there is more than one such object, all objects are listed and one can be selected.
You can also directly specify the object that shall be executed as a parameter to sbt:

$ sbt "runMain mypacket.MyObject"

Per default sbt searches only the main part of the source tree and not the test part.”
However, Chisel testers, as described here, contain a main, but shall be placed in the

2This is a convention form Java/Scala that the test folder contains unit tests and not objects with a main.

Contents 23

3 BUILD PROCESS AND TESTING

test part of the source tree. To execute a main in the tester tree use following sbt
command:

$ sbt "test:runMain mypacket.MyTester"

Now that we know the basic structure of a Chisel project and how to compile and run
it with sbt, we can continue with a simple testing framework.

3.1.3 Tool Flow

Figure 3.2 shows the tool flow of Chisel. The digital circuit is described in a Chisel
class shown as Hello.scala. The Scala compiler compiles this class, together with
the Chisel and Scala libraries, and generates the Java class Hello.class that can be
executed by a standard Java virtual machine (JVM). Executing this class with a Chisel
driver generates the so-called flexible intermediate representation for RTL (FIRRTL),
an intermediate representation of digital circuits. In our example the file is Hello. fir.
The FIRRTL compiler performs transformations on the circuit.

Treadle is a FIRRTL interpreter to simulate the circuit. Together with the Chisel
tester it can be used to debug and test Chisel circuits. With assertions we can provide
test results. Treadle can also generate waveform files (Hello.vcd) that can be viewed
with a waveform viewer (e.g., the free viewer GTKWave or Modelsim).

One FIRRTL transformation, the Verilog emitter, generates Verilog code for synthesis
(Hello.v). A circuit synthesize tool (e.g., Intel Quartus, Xilinx Vivado, or an ASIC tool)
synthesizes the circuit. In an FPGA design flow, the tool generates the FPGA bitstream
that is used to configure the FPGA, e.g., Hello.bit.

3.2 Testing with Chisel

Tests of hardware designs are usually called test benches. The test bench instantiates the
design under test (DUT), drives input ports, observes output ports, and compares them
with expected values.

3.2.1 PeekPokeTester

Chisel provides test benches in the form of a PeekPokeTester. One strength of Chisel is
that it can use the full power of Scala to write those test benches. One can, for example,
code the expected functionality of the hardware in a software simulator and compare the
simulation of the hardware with the software simulation. This method is very efficient
when testing an implementation of a processor [6].

24 Contents

https://en.wikipedia.org/wiki/Java_virtual_machine
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_simulation_test_bench.htm

3.2 TESTING WITH CHISEL

3 3
chisel3.lib Hello.scala scala.lib
scalac
\/
Hello.class
Chisel
JVM
I m
. FIRRTL
Hello.fir JVM
Chisel
Tester
JVM
\ Verilog
the\?'\c:lle Emitter
JVM
/ v i
good/bad Hello.ved Hello.v
GTKWave Circuit
Synthesis
Y
Hello.bit
- —

Figure 3.2: Tool flow of the Chisel ecosystem.

Contents

25

3 BUILD PROCESS AND TESTING

To use the PeekPokeTester, following packages need to be imported:

import chisel3._
import chisel3.iotesters._

Testing a circuit contains (at least) three components: (1) the device under test (often
called DUT), (2) the testing logic, also called test bench, and (3) the tester objects that
contains the main function to start the testing.

The following code shows our simple design under test. It contains two input ports
and one output port, all with a 2-bit width. The circuit does a bit-wise AND to it returns
on the output:

class DeviceUnderTest extends Module {
val io = IO(new Bundle {
val a = Input(UInt(2.W))
val b = Input(UInt(2.W))
val out = Output(UInt(2.W))
b

io.out := io.a & io.b

}

The test bench for this DUT extends PeekPokeTester and has the DUT as a parameter
for the constructor:

class TesterSimple(dut: DeviceUnderTest) extends
PeekPokeTester (dut) {

poke(dut.io.a, 0.0)

poke(dut.io.b, 1.0U)

step (1)

println("Result is: " + peek(dut.io.out).toString)
poke(dut.io.a, 3.0U)

poke(dut.io.b, 2.0U)

step (1)

println("Result is: " + peek(dut.io.out).toString)

}

A PeekPokeTester can set input values with poke() and read back output values with
peek (). The tester advances the simulation by one step (= one clock cycle) with step(1).
We can print the values of the outputs with println(Q).

The test is created and run with the following tester main:

26 Contents

3.2 TESTING WITH CHISEL

object TesterSimple extends App {
chisel3.iotesters.Driver(() => new DeviceUnderTest()) { c =>
new TesterSimple(c)
}
}

When you run the test, you will see the results printed to the terminal (besides other
information):

[info] [0.004] SEED 1544207645120

[info] [0.008] Result is: 0

[info] [0.009] Result is: 2

test DeviceUnderTest Success: 0 tests passed in 7 cycles
taking 0.021820 seconds

[info] [0.010] RAN 2 CYCLES PASSED

We see that 0 AND 1 results in 0; 3 AND 2 results in 2. Besides manually inspecting
printouts, which is an excellent starting point, we can also express our expectations in
the test bench itself with expect(), having the output port and the expected value as
parameters. The following example shows testing with expect():

class Tester(dut: DeviceUnderTest) extends PeekPokeTester (dut) {

poke(dut.io.a, 3.U)
poke(dut.io.b, 1.U)
step (1)
expect(dut.io.out, 1)
poke(dut.io.a, 2.U)
poke(dut.io.b, 0.0U)
step (1)
expect(dut.io.out, 0)
}

Executing this test does not print out any values from the hardware, but that all tests
passed as all expect values are correct.

[info] [0.001] SEED 1544208437832

test DeviceUnderTest Success: 2 tests passed in 7 cycles
taking 0.018000 seconds

[info] [0.009] RAN 2 CYCLES PASSED

Contents 27

3 BUILD PROCESS AND TESTING

A failed test, when either the DUT or the test bench contains an error, produces an
error message describing the difference between the expected and actual value. In the
following, we changed the test bench to expect a 4, which is an error:

[info] [0.002] SEED 1544208642263

[info] [0.011] EXPECT AT 2 io_out got O expected 4 FAIL
test DeviceUnderTest Success: 1 tests passed in 7 cycles
taking 0.022101 seconds

[info] [0.012] RAN 2 CYCLES FAILED FIRST AT CYCLE 2

In this section, we described the basic testing facility with Chisel for simple tests.
However, in Chisel, the full power of Scala is available to write testers.

3.2.2 Using ScalaTest

ScalaTest is a testing tool for Scala (and Java), which we can use to run Chisel testers.
To use it, include the library in your build.sbt with the following line:

libraryDependencies += "org.scalatest" %% "scalatest" % "3.0.5"
% "test"

Tests are usually found in src/test/scala and can be run with:
$ sbt test

A minimal test (a testing hello world) to test a Scala Integer addition:

import org.scalatest._
class ExampleSpec extends FlatSpec with Matchers {

"Integers" should "add" in {
val i = 2
val j = 3
i + j should be (5)
}
}

Although Chisel testing is more heavyweight than unit testing of Scala programs, we
can wrap a Chisel test into a ScalaTest class. For the Tester shown before this is:

class SimpleSpec extends FlatSpec with Matchers {

28 Contents

http://www.scalatest.org/

3.2 TESTING WITH CHISEL

"Tester" should "pass" in {
chisel3.iotesters.Driver(() => new DeviceUnderTest()) { c =>
new Tester(c)
} should be (true)

The main benefit of this exercise is to be able to run all tests with a simple sbt test
(instead of a running main). You can run just a single test with sbt, as follows:

$ sbt "testOnly SimpleSpec"

3.2.3 Waveforms

Testers, as described above, work well for small designs and for unit testing, as it is
common in software development. A collection of unit tests can also serve for regression
testing.

However, for debugging more complex designs, one would like to investigate several
signals at once. A classic approach to debug digital designs is displaying the signals in
a waveform. In a waveform the signals are displayed over time.

Chisel testers can generate a waveform that includes all registers and all IO signals.
In the following examples we show waveform testers for the DeviceUnderTest from
the former example (the 2-bit AND function). For the following example we import
following classes:

import chisel3.iotesters.PeekPokeTester
import chisel3.iotesters.Driver
import org.scalatest._

We start with a simple tester that pokes values to the inputs and advances the clock with
step. We do not read any output or compare it with expect.

class WaveformTester(dut: DeviceUnderTest) extends
PeekPokeTester (dut) {

poke(dut.io.a, 0)
poke(dut.io.b, 0)
step (1)
poke(dut.io.a, 1)
poke(dut.io.b, 0)
step (1)

Contents 29

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Regression_testing

3 BUILD PROCESS AND TESTING

poke(dut.io.a, 0)
poke(dut.io.b, 1)
step (1)
poke(dut.io.a, 1)
poke(dut.io.b, 1)
step (1)

}

Instead we call Driver.execute with parameters to generate waveform files (.vcd files).

class WaveformSpec extends FlatSpec with Matchers {

"Waveform" should "pass" in {
Driver.execute(Array("--generate-vcd-output”, "on"), (O =>
new DeviceUnderTest()) { c =>
new WaveformTester (c)
} should be (true)

You can view the waveform with the free viewer GTKWave or with ModelSim. Start
GTKWave and select File — Open New Window and navigate to the folder where the
Chisel tester put the .vcd file. Per default the generated files are in test_run dir then
the name of the tester appended with a number. Within this folder you should be able to
find DeviceUnderTest.ved. You can select the signals from the left side and drag them
into the main window. If you want to save a configuration of signals you can do so with
File — Write Save File and load it later with File — Read Save File.

Explicitly enumerating all possible input values does not scale. Therefore, we will
use some Scala code to drive the DUT. Following tester enumerates all possible values
for the 2 2-bit input signals.

class WaveformCounterTester (dut: DeviceUnderTest) extends
PeekPokeTester (dut) {

for (a <- 0 until 4) {
for (b <- 0 until 4) {
poke(dut.io.a, a)
poke(dut.io.b, b)
step (1)
}

30 Contents

3.2 TESTING WITH CHISEL

We add a ScalaTest spec for this new tester

class WaveformCounterSpec extends FlatSpec with Matchers {

"WaveformCounter" should "pass" in {
Driver.execute (Array("--generate-vcd-output”, "on"), (O =>
new DeviceUnderTest()) { c =>
new WaveformCounterTester (c)
} should be (true)
}
}

and execute it with

sbt "testOnly WaveformCounterSpec"

3.2.4 printf Debugging

Another form of debugging is the so-called “printf debugging”. This form comes from
simply putting printf statements in C code to print variables of interest during the
execution of the program. This printf debugging is also available during testing of Chisel
circuits. The printing happens at the rising edge of the clock. A printf statement can
be inserted just anywhere in the module definition, as shown in the printf debugging
version of the DUT.

class DeviceUnderTestPrintf extends Module {
val io = IO(new Bundle {
val a = Input(UInt(2.W))
val b = Input(UInt(2.W))
val out = Output(UInt(2.W))

iD)
io.out := io.a & io.b
printf("dut: %d %d %d\n", io.a, io.b, io.out)

}

When testing this module with the counter based tester, which iterates over all possible
values, we get following output, verifying that the AND function is correct:

Circuit state created

[info] [0.001] SEED 1579707298694
dut: 0 0 0

Contents 31

3 BUILD PROCESS AND TESTING

dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut:
dut: 33

test DeviceUnderTestPrintf Success: 0 tests passed in 21 cycles

taking 0.036380 seconds
[info] [0.024] RAN 16 CYCLES PASSED

W wWwwwWNNNNRRPRPRRP
N RS WNRFERFSWNREFESWINR
NP NNMNHHRroro

Chisel printf supports C and Scala style formatting.

3.3 Exercises

For this exercise, we will revisit the blinking LED from chisel-examples and explore
Chisel testing.

3.3.1 A Minimal Project

First, let us find out what a minimal Chisel project is. Explore the files in the Hello
World example. The Hello.scala is the single hardware source file. It contains the
hardware description of the blinking LED (class Hello) and an App that generates the
Verilog code.

Each file starts with the import of Chisel and related packages:

import chisel3._

Then follows the hardware description, as shown in Listing 1.1. To generate the Verilog
description, we need an application. A Scala object that extends App is an application
that implicitly generates the main function where the application starts. The only action

32 Contents

https://github.com/freechipsproject/chisel3/wiki/Printing-in-Chisel
https://github.com/schoeberl/chisel-examples
https://github.com/schoeberl/chisel-examples/tree/master/hello-world
https://github.com/schoeberl/chisel-examples/tree/master/hello-world

3.3 EXERCISES

of this application is to create a new HelloWorld object and pass it to the Chisel driver
execute function. The first argument is an array of Strings, where build options can be
set (e.g., the output folder). The following code will generate the Verilog file Hello.v.

object Hello extends App {
chisel3.Driver.execute(Array[String](), () => new Hello(Q))
}

Run the generation of the example manually with

$ sbt "runMain Hello"

and explore the generated Hello.v with an editor. The generated Verilog code may
not be very readable, but we can find out some details. The file starts with a module
Hello, which is the same name as our Chisel module. We can identify our LED port
as output io_led. Pin names are the Chisel names with a prepended io_. Besides our
LED pin, the module also contains clock and reset input signals. Those two signals
are added automatically by Chisel.

Furthermore, we can identify the definition of our two registers cntReg and blkReg.
We may also find the reset and update of those registers at the end of the module defini-
tion. Note, that Chisel generates a synchronous reset.

For sbt to be able to fetch the correct Scala compiler and the Chisel library, we need
abuild.sbt:

scalaVersion := "2.11.7"

resolvers ++= Seq(
Resolver.sonatypeRepo("snapshots"),
Resolver.sonatypeRepo("releases")

)

libraryDependencies += "edu.berkeley.cs" %% "chisel3" % "3.2.2"
libraryDependencies += "edu.berkeley.cs" %% "chisel-iotesters"
% "1.3.2"

Note that in this example, we have a concrete Chisel version number to avoid checking
on each run for a new version (which will fail if we are not connected to the Internet,
e.g., when doing hardware design during a flight). Change the build.sbt configuration
to use the latest Chisel version by changing the library dependency to

libraryDependencies += "edu.berkeley.cs" %% "chisel3" %
"latest.release"

Contents 33

3 BUILD PROCESS AND TESTING

and rerun the build with sbt. Is there a newer version of Chisel available and will it be
automatically downloaded?

For convenience, the project also contains a Makefile. It just contains the sbt com-
mand, so we do not need to remember it and can generate the Verilog code with:

make

Besides a README file, the example project also contains project files for different
FPGA board. E.g., in quartus/altde2-115 you can find the two project files to define a
Quartus project for the DE2-115 board. The main definitions (source files, device, pin
assignments) can be found in a plain text file hello.qsf. Explore the file and find out
which pins are connected to which signals. If you need to adapt the project to a different
board, there is where the changes are applied. If you have Quartus installed, open that
project, compile with the green Play button, and then configure the FPGA.

Note that the Hello World is a minimal Chisel project. More realistic projects have
their source files organized in packages and contain testers. The next exercise will ex-
plore such a project.

3.3.2 A Testing Exercise

In the last chapter’s exercise, you have extended the blinking LED example with some
input to build an AND gate and a multiplexer and run this hardware in an FPGA. We will
now use this example and test the functionality with a Chisel tester to automate testing
and also to be independent of an FPGA. Use your designs from the previous chapter and
add a Chisel tester to test the functionality. Try to enumerate all possible inputs and test
the output with except().

Testing within Chisel can speed up the debugging of your design. However, it is
always a good idea to synthesize your design for an FPGA and run tests with the FPGA.
There you can perform a reality check on the size of your design (usually in LUTs and
flip-flops) and your performance of your design in maximum clocking frequency. As
a reference point, a textbook style pipelined RISC processor may consume about 3000
4-bit LUTs and may run around 100 MHz in a low-cost FPGA (Intel Cyclone or Xilinx
Spartan).

34 Contents

https://github.com/schoeberl/chisel-examples/tree/master/hello-world/quartus/altde2-115
https://github.com/schoeberl/chisel-examples/blob/master/hello-world/quartus/altde2-115/hello.qsf

4 Components

A larger digital design is structured into a set of components, often in a hierarchical
way. Each component has an interface with input and output wires, usually called ports.
These are similar to input and output pins on an integrated circuit (IC). Components are
connected by wiring up the inputs and outputs. Components may contain subcompo-
nents to build the hierarchy. The outermost component, which is connected to physical
pins on a chip, is called the top-level component.

Figure 4.1 shows an example design. Component C has three input ports and two
output ports. The component itself is assembled out of two subcomponents: B and C,
which are connected to the inputs and outputs of C. One output of A is connected to an
input of B. Component D is at the same hierarchy level as component C and connected
to it.

In this chapter, we will explain how components are described in Chisel and pro-
vide several examples of standard components. Those standard components serve two
purposes: (1) they provide examples of Chisel code and (2) they provide a library of
components ready to be reused in your design.

4.1 Components in Chisel are Modules

Hardware components are called modules in Chisel. Each module extends the class
Module and contains a field io for the interface. The interface is defined by a Bundle
that is wrapped into a call to I0(). The Bundle contains fields to represent input and
output ports of the module. The direction is given by wrapping a field into either a call
to Input () or Output (). The direction is from the view of the component itself.

The following code shows the definition of the two example components A and B
from Figure 4.1:

class CompA extends Module {
val io = IO0O(new Bundle {

val a = Input(UInt(8.W))
val b = Input(UInt(8.W))
val x = Output(UInt(8.W))
val y = Output(UInt(8.W))

35

4 COMPONENTS

A
A4
A
\

CompA

\4
\4

A
y

CompB » CompD —

Yy

A

CompC

Figure 4.1: A design consisting of a hierarchy of components.

i)

// function of A
}

class CompB extends Module {
val io = I0(new Bundle {
val inl = Input(UInt(8.W))
val in2 = Input(UInt(8.W))
val out = Output(UInt(8.W))
b

// function of B
}

Component A has two inputs, named a and b, and two outputs, named x and y. For
the ports of component B we chose the names inl1, in2, and out. All ports use an
unsigned integer (UInt) with a bit width of 8. As this example code is about connecting
components and building a hierarchy, we do not show any implementation within the
components. The implementation of the component is written at the place where the
comments states “function of X”. As we have no function associated with those example
components, we used generic port names. For a real design use descriptive port names,
such as data, valid, or ready.

Component C has three input and two output ports. It is built out of components A

36 Contents

4.1 COMPONENTS IN CHISEL ARE MODULES

and B. We show how A and B are connected to the ports of C and also the connection
between an output port of A and an input port of B:

class CompC extends Module {

val io = IO(new Bundle {
val in_a = Input(UInt(8.W))
val in_b = Input(UInt(8.W))
val in_c = Input(UInt(8.W))
val out_x = Output(UInt(8.W))
val out_y = Output(UInt(8.W))

b

// create components A and B
val compA = Module(new CompA(Q))
val compB = Module(new CompB())

// connect A

compA.io.a := io.in_a
compA.io.b := io.in_b
io.out_x := compA.io.Xx

// connect B

compB.io.inl compA.io.y
compB.io.in2 := io.in_c
io.out_y := compB.io.out

Components are created with new, e.g., new CompA(), and need to be wrapped into
a call to Module(). The reference to that module is stored in a local variable, in this
example val compA = Module(new CompA(Q)).

With this reference, we can access the 10 ports by dereferencing the io field of the
module and the individual fields of the IO Bundle.

The simplest component in our design has just an input port, named in, and an output
port named out.

class CompD extends Module {
val io = IO(new Bundle {
val in = Input(UInt(8.W))
val out = Output(UInt(8.W))
b

// function of D

Contents 37

4 COMPONENTS

The final missing piece of our example design is the top-level component, which itself
is assembled out of components C and D:

class TopLevel extends Module {
val io = IO(new Bundle {
val in_a = Input(UInt(8.W))
val in_b = Input(UInt(8.W))
val in_c = Input(UInt(8.W))
val out_m = Output(UInt(8.W))
val out_n = Output(UInt(8.W))
b

// create C and D
val ¢ = Module(new CompC(Q))
val d = Module(new CompD())

// connect C

c.io.in_a := io.in_a
c.io.in_b := io.in_b
c.io.in_c := io.in_c
io.out_m := c.io.out_x
// connect D

d.io.in := c.io.out_y
io.out_n := d.io.out

Good component design is similar to the good design of functions or methods in
software design. One of the main questions is how much functionality shall we put
into a component and how large should a component be. The two extremes are tiny
components, such an adder, and huge components, such as a full microprocessor,

Beginners in hardware design often start with tiny components. The problem is that
digital design books use tiny components to show the principles. But the sizes of the
examples (in those books, and also in this book) are small to fit into a page and to not
distract by too many details.

The interface to a component is a little bit verbose (with types, names, directions, IO
construction). As a rule of thumb, I would propose that the core of the component, the
function, should be at least as long as the interface of the component.

For tiny components, such as a counter, Chisel provides a more lightweight way to
describe them as functions that return hardware.

38 Contents

4.2 AN ARITHMETIC LOGIC UNIT

fn
|
|
\
—A—>»
ALU Y —»
— B —»

Figure 4.2: An arithmetic logic unit, or ALU for short.

4.2 An Arithmetic Logic Unit

One of the central components for circuits that compute, e.g., a microprocessor, is an
arithmetic-logic unit, or ALU for short. Figure 4.2 shows the symbol of an ALU.

The ALU has two data inputs, labeled A and B in the figure, one function input fn,
and an output, labeled Y. The ALU operates on A and B and provides the result at the
output. The input £n selects the operation on A and B. The operations are usually some
arithmetic, such as addition and subtraction, and some logical functions such as and, or,
xor. That’s why it is called ALU.

The function input fn selects the operation. The ALU is usually a combinational
circuit without any state elements. An ALU might also have additional outputs to signal
properties of the result, such as zero or the sign.

The following code shows an ALU with 16-bit inputs and outputs that supports: ad-
dition, subtraction, or, and and operation, selected by a 2-bit £n signal.

class Alu extends Module {
val io = IO(new Bundle {
val a Input (UInt(16.W))
val b = Input(UInt(l6.W))
val fn = Input(UInt(2.W))
val y = Output(UInt(16.W))
b

// some default value is needed
io.y := 0.U

// The ALU selection
switch(io.fn) {

Contents 39

https://en.wikipedia.org/wiki/Arithmetic_logic_unit

4 COMPONENTS

is(0.U) { io.y := io.a + io.b }
is(1.U) { io.y := io.a - io.b }
is(2.U0) { io.y := io.a | io.b }
is(3.U) { io.y := io.a & io.b }

}

In this example, we use a new Chisel construct, the switch/is construct to describe the
table that selects the output of our ALU. To use this utility function, we need to import
another Chisel package:

import chisel3.util._

4.3 Bulk Connections

For connecting components with multiple IO ports, Chisel provides the bulk connection
operator <>. This operator connects parts of bundles in both directions. Chisel uses the
names of the leaf fields for the connection. If a name is missing, it is not connected.

As an example, let us assume we build a pipelined processor. The fetch stage has a
following interface:

class Fetch extends Module {
val io = I0(new Bundle {
val instr = Output(UInt(32.W))
val pc = Output(UInt(32.W))
b
// ... Implementation od fetch

3
The next stage is the decode stage.

class Decode extends Module {
val io = IO(new Bundle {
val instr = Input(UInt(32.W))
val pc = Input(UInt(32.W))
val aluOp = Output(UInt(5.W))

val regA = Output(UInt(32.W))
val regB = Output(UInt(32.W))
bH
// ... Implementation of decode

40 Contents

4.4 LIGHTWEIGHT COMPONENTS WITH FUNCTIONS

The final stage of our simple processor is the execute stage.

class Execute extends Module {
val io = IO0O(new Bundle {
val aluOp = Input(UInt(5.W))
val regA = Input(UInt(32.W))
val regB = Input(UInt(32.W))
val result = Output(UInt(32.W))
b

// ... Implementation of execute

To connect all three stages we need just two <> operators. We can also connect the
port of a submodule with the parent module.

val fetch = Module(new Fetch())
val decode = Module(new Decode())
val execute = Module(new Execute)

fetch.io <> decode.io
decode.io <> execute.io
io <> execute.io

4.4 Lightweight Components with Functions

Modules are the general way to structure your hardware description. However, there is
some boilerplate code when declaring a module and when instantiating and connecting
it. A lightweight way to structure your hardware is to use functions. Scala functions
can take Chisel (and Scala) parameters and return generated hardware. As a simple
example, we generate an adder:

def adder (x: UInt, y: UInt) = {
X +y

}

We can then create two adders by simply calling the function adder.

val x = adder(a, b)
// another adder
val y = adder(c, d)

Contents 41

4 COMPONENTS

Note that this is a hardware generator. You are not executing any add operation during
elaboration, but create two adders (hardware instances). The adder is an artificial ex-
ample to keep it simple. Chisel has already an adder generation function, like +(that:
UInt).

Functions, as lightweight hardware generators, can also contain state (including a
register). Following example returns a one clock cycle delay element (a register). If a
function has just a single statement, we can write it in one line and omit the curly braces

0.

def delay(x: UInt) = RegNext(x)

By calling the function with the function itself as parameter, this generated a two clock
cycle delay.

val delOut = delay(delay(delIn))

Again, this is a too short example to be useful, as RegNext () already is that function
creating the register for the delay.

Functions can be declared as part of a Module. However, functions that shall be used
in different modules are better placed into a Scala object that collects utility functions.

42 Contents

5 Combinational Building Blocks

In this chapter, we explore various combinational circuits, basic building blocks that
we can use to construct more complex systems. In principle, all combinational circuits
can be described with Boolean equations. However, more often, a description in the
form of a table is more efficient. We let the synthesize tool extract and minimize the
Boolean equations. Two basic circuits, best described in a table form, are a decoder and
an encoder.

5.1 Combinational Circuits

Before describing some standard combinational building blocks, we will explore how
combinational circuits can be expressed in Chisel. The simplest form is a Boolean
expression, which can be assigned a name:

val e = (a & b) | ¢

The Boolean expression is given a name (e) by assigning it to a Scala value. The ex-
pression can be reused in other expressions:

val £ = "e

Such an expression is considered fixed. A reassignment to e with = would result in
a Scala compiler error: reassignment to val. A try with the Chisel operator :=, as
shown below,

e :=c&b

results in a runtime exception: Cannot reassign to read-only.

Chisel also supports describing combinational circuits with conditional updates. Such
a circuit is declared as a Wire. Then you uses conditional operations, such as when, to
describe the logic of the circuit. The following code declares a Wire w of type UInt and
assigns a default value of 0. The when block takes a Chisel Bool and reassigns 3 to w if
cond is true.B.

43

5 COMBINATIONAL BUILDING BLOCKS

val w = Wire(UInt(Q))

w := 0.U

when (cond) {
w := 3.U

}

The logic of the circuit is a multiplexer, where the two inputs are the constants ® and
3 and the condition cond the select signal. Keep in mind that we describe hardware
circuits and not a software program with conditional execution.

The Chisel condition construct when also has a form of else, it is called otherwise.
With assigning a value under any condition we can omit the default value assignment:

val w = Wire(UInt())

when (cond) {

w := 1.U
} otherwise {
w = 2.U

}

Chisel also supports a chain of conditionals (a if/elseif/else chain) with .elsewhen:

val w = Wire(UInt(Q))

when (cond) {
w = 1.U

} .elsewhen (cond2) {
w = 2.U

} otherwise {
w = 3.U

}

Note the ‘.’ in .elsewhen that is needed to chain methods in Scala. Those .elsewhen
branches can be arbitrary long. However, if the chain of conditions depends on a single
signal, it is better to use the switch statement, which is introduced in the following
subsection with a decoder circuit.

For more complex combinational circuits it might be practical to assign a default
value to a Wire. A default assignment can be combined with the wire declaration with
WireDefault.

val w = WireDefault (0.U)

44 Contents

5.2 DECODER

— a0 —»

— a1l —»

Decoder

— b0 —»

— b1 —»

— b2 —»

— b3 —»

Figure 5.1: A 2-bit to 4-bit decoder.

a

00
01
10
11

Table 5.1: Truth table for a 2 to 4 decoder.

when (cond) {
w := 3.0
}

// ... and some more complex conditional assignments

b

0001
0010
0100
1000

One might question why using when, .elsewhen, and otherwise when Scala has if,
else if, and else? Those statements are for conditional execution of Scala code, not
generating Chisel (multiplexer) hardware. Those Scala conditionals have their use in
Chisel when we write circuit generators, which take parameters to conditionally gener-

ate different hardware instances.

5.2 Decoder

A decoder converts a binary number of n bits to an m-bit signal, where m < 2". The
output is one-hot encoded (where exactly one bit is one).
Figure 5.1 shows a 2-bit to 4-bit decoder. We can describe the function of the decoder

with a truth table, such as Table 5.2.

A Chisel switch statement describes the logic as a truth table. The switch statement

Contents

45

https://en.wikipedia.org/wiki/Binary_decoder

5 COMBINATIONAL BUILDING BLOCKS

is not part of the core Chisel language. Therefore, we need to include the elements of
the package chisel.util.

import chisel3.util._

The following code introduces the switch statement of Chisel to describe a decoder:

result := 0.U

switch(sel) {

is (0.U) { result := 1.0}
is (1.U) { result := 2.0}
is (2.U0) { result := 4.U}
is (3.U) { result := 8.U}

}

The above switch statement lists all possible values of the sel signal and assigns the
decoded value to the result signal. Note that even if we enumerate all possible input
values, Chisel still needs us to assign a default value, as we do by assigning 0 to result.
This assignment will never be active and therefore optimized away by the backend tool.
It is intended to avoid situations with incomplete assignments for combinational cir-
cuits (in Chisel a Wire) that will result in unintended latches in hardware description
languages such as VHDL and Verilog. Chisel does not allow incomplete assignments.

In the example before we used unsigned integers for the signals. Maybe a clearer
representation of an encode circuit uses the binary notation:

switch (sel) {

is ("b00".U) { result := "b0001".U}
is ("b01".U) { result := "b0O10".U}
is ("b10".U) { result := "b0100".U}
is ("b11".U) { result := "b1000".U}

}

A table gives a very readable representation of the decoder function but is also a little
bit verbose. When examining the table, we see a regular structure: a 1 is shifted left by
the number represented by sel. Therefore, we can express a decoder with the Chisel
shift operation <<.

result := 1.U << sel

Decoders are used as a building block for a multiplexer by using the output as an
enable with an AND gate for the multiplexer data input. However, in Chisel, we do not

46 Contents

5.3 ENCODER

— a0 —»

— al —» — b0 —»
Encoder

— a2 —p F— b1 —»

— a3 —»

Figure 5.2: A 4-bit to 2-bit encoder.

a b
0001 00
0010 01
0100 10
1000 11

77N

Table 5.2: Truth table for a 4 to 2 encoder.

need to construct a multiplexer, as a Mux is available in the core library. Decoders can
also be used for address decoding, and then the outputs are used as select signals, e.g.,
different IO devices connected to a microprocessor.

5.3 Encoder

An encoder converts a one-hot encoded input signal into a binary encoded output signal.
The encoder does the inverse operation of a decoder.

Figure 5.2 shows a 4-bit one-hot input to a 2-bit binary output encoder, and Table 5.3
shows the truth table of the encode function. However, an encoder works only as ex-
pected when the input signal is one-hot coded. For all other input values, the output is
undefined. As we cannot describe a function with undefined outputs, we use a default
assignment that catches all undefined input patterns.

The following Chisel code assigns a default value of 00 and then uses the switch
statement for the legal input values.

b := "b00".U
switch (a) {

Contents 47

https://en.wikipedia.org/wiki/Encoder_(digital)

5 COMBINATIONAL BUILDING BLOCKS

is ("b0001".U) { b := "b00".U}
is ("b0010".U) { b := "bO1".U}
is ("b0100".U) { b := "b10".U}
is ("b1000".U) { b := "b1l1l".U}

5.4 Exercise

Describe a combinational circuit to convert a 4-bit binary input to the encoding of a 7-
segment display. You can either define the codes for the decimal digits, which was the
initial usage of a 7-segment display or additionally, define encodings for the remaining
bit pattern to be able to display all 16 values of a single digit in hexadecimal. When
you have an FPGA board with a 7-segment display, connect 4 switches or buttons to the
input of your circuit and the output to the 7-segment display.

48 Contents

https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Hexadecimal

6 Sequential Building Blocks

Sequential circuits are circuits where the output depends on the input and previous
values. As we are interested in synchronous design (clocked designs), we mean syn-
chronous sequential circuits when we talk about sequential circuits.! To build sequential
circuits, we need elements that can store state: the so-called registers.

6.1 Registers

The fundamental elements for building sequential circuits are registers. A register is a
collection of D flip-flops. A D flip-flop captures the value of its input at the rising edge
of the clock and stores it at its output. Alternatively, in other words: the register updates
its output with the value of the input on the rising edge of the clock.

Figure 6.1 shows the schematic symbol of a register. It contains an input D and an
output Q. Each register also contains an input for a clock signal. As this global clock
signal is connected to all registers in a synchronous circuit, it is usually not drawn in
our schematics. The little triangle on the bottom of the box symbolizes the clock input
and tells us that this is a register. We omit the clock signal in the following schematics.
The omission of the global clock signal is also reflected by Chisel where no explicit
connection of a signal to the register’s clock input is needed.

'We can also build sequential circuits with asynchronous logic and feedback, but this is a specific niche topic
and cannot be expressed in Chisel.

JAN

— clock J

Figure 6.1: A D flip-flop based register.

49

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#D_flip-flop

6 SEQUENTIAL BUILDING BLOCKS

In Chisel a register with input d and output q is defined with:
val g = RegNext(d)

Note that we do not need to connect a clock to the register, Chisel implicitly does this.
A register’s input and output can be arbitrary complex types made out of a combination
of vectors and bundles.

A register can also be defined and used in two steps:

val delayReg = Reg(UInt(4.W))
delayReg := delayIn

First, we define the register and give it a name. Second, we connect the signal delayIn
to the input of the register. Note also that the name of the register contains the string
Reg. To easily distinguish between combinational circuits and sequential circuits, it is
common practice to have the marker Reg as part of to the name. Also, note that names
in Scala (and therefore also in Chisel) are usually in CamelCase. Variable names start
with lowercase and classes start with upper case.

A register can also be initialized on reset. The reset signal is, as the clock signal,
implicit in Chisel. We supply the reset value, e.g., zero, as a parameter to the register
constructor RegInit. The input for the register is connected with a Chisel assignment
statement.

val valReg = RegInit(0.U(4.W))
valReg := inVal

The default implementation of reset in Chisel is a synchronous reset.> For a syn-
chronous reset no change is needed on a D flip-flop, just a multiplexer needs to be
added? to the input that selects between the initialization value under reset and the data
value.

Figure 6.2 shows the schematics of a register with a synchronous reset where the
reset drives the multiplexer. However, as synchronous reset is used quite often modern
FPGAs flip-flops contain a synchronous reset (and set) input to not waste LUT resources
for the multiplexer.

Sequential circuits change their value over time. Therefore, their behavior can be
described by a diagram showing the signals over time. Such a diagram is called a wave-

2Support for asynchronous reset is currently under development
3Current FPGA flip-flops contain a synchronous reset input. Therefore, no additional resources are needed
for the multiplexer.

50 Contents

https://en.wikipedia.org/wiki/Camel_case

6.1 REGISTERS

/@— 19581

— init

- data

A

Figure 6.2: A D flip-flop based register with a synchronous reset.

aock T LT LT LT LT LT LT L

reset [

inval 3 X s X R 74

regVal o X sk R X7
A B C D E F

Figure 6.3: A waveform diagram for a register with a reset.

form or timing diagram.

Figure 6.3 shows a waveform for the register with a reset and some input data applied
to it. Time advances from left to right. On top of the figure, we see the clock that drives
our circuit. In the first clock cycle, before a reset, the register content is undefined. In
the second clock cycle reset is asserted high, and on the rising edge of this clock cycle
(labeled B) the register takes the initial value 8. Input inval is ignored. In the next clock
cycle reset is 0, and the value of inVal is captured on the next rising edge (labeled C).
From then on reset stays 0, as it should be, and the register output follows the input
signal with one clock cycle delay.

Waveforms are an excellent tool to specify the behavior of a circuit graphically. Es-
pecially in more complex circuits where many operations happen in parallel and data
moves pipelined through the circuit, timing diagrams are convenient. Chisel testers can
also produce waveforms during testing that can be displayed with a waveform viewer
and used for debugging.

Contents 51

https://en.wikipedia.org/wiki/Digital_timing_diagram

6 SEQUENTIAL BUILDING BLOCKS

/<4— d|qeus —

- data

Figure 6.4: A D flip-flop based register with an enable signal.

cock T LT LT LT LT LT LT 1L
enable _I

inVal X 2 X 3 X > X 2 X ’ X 4
regEnable 2 X 3 > 2 X7
A B C D E F

Figure 6.5: A waveform diagram for a register with an enable signal.

A typical design pattern is a register with an enable signal. Only when the enable
signal is true (high), the register captures the input; otherwise, it keeps its old value.
The enable can be implemented, similar to the synchronous reset, with a multiplexer at
the input of the register. One input to the multiplexer is the feedback of the output of the
register.

Figure 6.4 shows the schematics of a register with enable. As this is also a com-
mon design pattern, modern FPGA flip-flops contain a dedicated enable input, and no
additional resources are needed.

Figure 6.5 shows an example waveform for a register with enable. Most of the time,
enable it high (true) and the register follows the input with one clock cycle delay. Only
in the fourth clock cycle enable is low, and the register keeps its value (5) at rising edge
D.

A register with an enable can be described in a few lines of Chisel code with a condi-

52 Contents

6.2 COUNTERS

A

Figure 6.6: An adder and a register result in counter.

tional update:

val enableReg = Reg(UInt(4.W))

when (enable) {
enableReg := inVal

3
A register with enable can also be reset:

val resetEnableReg = RegInit(0.U(4.W))

when (enable) {
resetEnableReg := inVal

}

A register can also be part of an expression. The following circuit detects the rising
edge of a signal by comparing its current value with the one from the last clock cycle.

val risingEdge = din & !RegNext(din)

Now that we have explored all basic uses of a register, we put those registers to good
use and build more interesting sequential circuits.

6.2 Counters

One of the most basic sequential circuits is a counter. In its simplest form, a counter is
a register where the output is connected to an adder and the adder’s output is connected
to the input of the register. Figure 6.6 shows such a free-running counter.

Contents 53

6 SEQUENTIAL BUILDING BLOCKS

/4_ uane —

\

\4

Figure 6.7: Counting events.

A free-running counter with a 4-bit register counts from 0 to 15 and then wraps around
to 0 again. A counter shall also be reset to a known value.

val cntReg = RegInit(0.U(4.W))
cntReg := cntReg + 1.U

When we want to count events, we use a condition to increment the counter, as shown
in Figure 6.7 and in the following code.

val cntEventsReg = RegInit(0.U(4.W))
when(event) {
cntEventsReg := cntEventsReg + 1.U

6.2.1 Counting Up and Down

To count up to a value and then restart with 0, we need to compare the counter value
with a maximum constant, e.g., with a when conditional statement.

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.0
when (cntReg === N) {
cntReg := 0.U

54 Contents

6.2 COUNTERS

3
We can also use a multiplexer for our counter:
val cntReg = RegInit(0.U(8.W))
cntReg := Mux(cntReg === N, 0.U, cntReg + 1.0)

If we are in the mood of counting down, we start by reseting the counter register with
the maximum value and reset the counter to that value when reaching 0.

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.0) {
cntReg := N

}

As we are coding and using more counters, we can define a function with a parameter
to generate a counter for us.

// This function returns a counter

def genCounter(n: Int) = {
val cntReg = RegInit(0.U(8.W))
cntReg := Mux(cntReg === n.U, 0.U, cntReg + 1.U)
cntReg

}

// now we can easily create many counters
val countl® = genCounter (10)
val count99 = genCounter (99)

The last statement of the function genCounter is the return value of the function, in this
example, the counting register cntReg.

Note, that in all the examples our counter had values between 0 and N, including N.
If we want to count 10 clock cycles we need to set N to 9. Setting N to 10 would be a
classic example of an off-by-one error.

6.2.2 Generating Timing with Counters

Besides counting events, counters are often used to generate a notion of time (time as
time on a wall clock). A synchronous circuit runs with a clock with a fixed frequency.

Contents 55

https://en.wikipedia.org/wiki/Off-by-one_error

6 SEQUENTIAL BUILDING BLOCKS

aock T LT LT LT LT LT L LT LT LT L
reset [

tick \ [[
counter o O 2 e)2)2 o1

Figure 6.8: A waveform diagram for the generation of a slow frequency tick.

The circuit proceeds in those clock ticks. There is no notion of time in a digital circuit
other than counting clock ticks. If we know the clock frequency, we can generate circuits
that generate timed events, such as blinking a LED at some frequency as we have shown
in the Chisel “Hello World” example.

A common practice is to generate single-cycle ficks with a frequency f;; that we
need in our circuit. That tick occurs every n clock cycles, where n = foiock/ frick and the
tick is precisely one clock cycle long. This tick is not used as a derived clock, but as
an enable signal for registers in the circuit that shall logically operate at frequency f;;ck-
Figure 6.8 shows an example of a tick generated every 3 clock cycles.

In the following circuit, we describe a counter that counts from 0 to the maximum
value of N - 1. When the maximum value is reached, the tick is true for a single
cycle, and the counter is reset to . When we count from 0 to N - 1, we generate one
logical tick every N clock cycles.

val tickCounterReg = RegInit(0.U(C4.W))

val tick = tickCounterReg === (N-1).U
tickCounterReg := tickCounterReg + 1.U
when (tick) {

tickCounterReg := 0.U
}

This logical timing of one tick every n clock cycles can then be used to advance other
parts of our circuit with this slower, logical clock. In the following code, we use just
another counter that increments by 1 every n clock cycles.

val lowFrequCntReg = RegInit(0.U(4.W))
when (tick) {
lowFrequCntReg := lowFrequCntReg + 1.U

56 Contents

6.2 COUNTERS

Examples of the usage of this slower logical clock are: blinking an LED, generating
the baud rate for a serial bus, generating signals for 7-segment display multiplexing, and
subsampling input values for debouncing of buttons and switches.

Although width inference should size the registers, it is better to explicitly specify the
width with the type at register definition or with the initialization value. Explicit width
definition can avoid surprises when a reset value of 0.U results in a counter with a width
of a single bit.

6.2.3 The Nerd Counter

Many of us feel like being a nerd, sometimes. For example, we want to design a highly
optimized version of our counter/tick generation. A standard counter needs following
resources: one register, one adder (or subtractor), and a comparator. We cannot do much
about the register or the adder. If we count up, we need to compare against a number,
which is a bit string. The comparator can be built out of inverters for the zeros in the
bit string and a large AND gate. When counting down to zero, the comparator is a large
NOR gate, which might be a little bit cheaper than the comparator against a constant in
an ASIC. In an FPGA, where logic is built out of lookup tables, there is no difference
between comparing against O or 1. The resource requirement is the same for the up and
down counter.

However, there is still one more trick a clever hardware designer can pull off. Count-
ing up or down needed a comparison against all counting bits, so far. What if we count
from N-2 down to -1? A negative number has the most significant bit set to 1, and a
positive number has this bit set to 0. We need to check this bit only to detect that our
counter reached -1. Here it is, the counter created by a nerd:

val MAX = (N - 2).S(8.W)
val cntReg = RegInit (MAX)
io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg (7)) {
cntReg := MAX
io.tick := true.B

Contents 57

https://en.wikipedia.org/wiki/Nerd

6 SEQUENTIAL BUILDING BLOCKS

\4

— » next » D Q | cnt =0 |+ done —»

Select

Figure 6.9: A one-shot timer.

6.2.4 A Timer

Another form of timer we can create, is a one-shot timer. A one-shot timer is like
a kitchen timer: you set the number of minutes and press start. When the specified
amount of time has elapsed, the alarm sounds. The digital timer is loaded with the time
in clock cycles. Then it counts down until reaching zero. At zero the timer asserts done.

Figure 6.9 shows the block diagram of a timer. The register can be loaded with the
value of din by asserting load. When the load signal is de-asserted counting down is
selected (by selecting cnt - 1 as the input for the register). When the counter reaches
0, the signal done is asserted and the counter stops counting by selecting input line of
the multiplexer that provides 0.

Listing 6.1 shows the Chisel code for the timer. We use an 8-bit register reg, that is
reset to . The boolean value done is the result of comparing reg with 0. For the input
multiplexer we introduce the wire next with a default value of 8. The when/elsewhen
block introduces the other two inputs with the select function. Signal load has priority
over the decrement selection. The last line connects the multiplexer, represented by
next, to the input of the register reg.

If we aim for a bit more concise code, we can directly assign the multiplexer values
to the register reg, instead of using the intermediate wire next.

6.2.5 Pulse-Width Modulation

Pulse-width modulation (PWM) is a signal with a constant period and a modulation of

58 Contents

https://en.wikipedia.org/wiki/Pulse-width_modulation

6.2 COUNTERS

val reg = RegInit(0.U(8.W))
val done = reg === 0.U

val next = WireInit(0.U)
when (load) {
next := din
} .elsewhen (!done) {
next := reg - 1.U
}

reg := next

Listing 6.1: A one-shot timer

PWM

Figure 6.10: Pulse-width modulation.

the time the signal is high within that period.

Figure 6.10 shows a PWM signal. The arrows point to the start of the periods of the
signal. The percentage of time the signal is high, is also called the duty cycle. In the
first two periods the duty cycle is 25 %, in the next two 50 %, and in the last two cycles
itis 75 %. The pulse width is modulated between 25 % and 75 %.

Adding a low-pass filter to a PWM signal results in a simple digital-to-analog con-
verter. The low-pass filter can be as simple as a resistor and a capacitor.

The following code example will generate a waveform of 3 clock cycles high every
10 clock cycles.

def pwm(nrCycles: Int, din: UInt) = {
val cntReg = RegInit(0.U(unsignedBitLength(nrCycles-1).W))
cntReg := Mux(cntReg === (nrCycles-1).U, 0.U, cntReg + 1.U)
din > cntReg

}

val din = 3.U
val dout = pwm(1l0, din)

Contents 59

https://en.wikipedia.org/wiki/Low-pass_filter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter

6 SEQUENTIAL BUILDING BLOCKS

We use a function for the PWM generator to provide a reusable, lightweight component.
The function has two parameters: a Scala integer configuring the PWM with the number
of clock cycles (nrCycles), and a Chisel wire (din) that gives the duty cycle (pulswidth)
for the PWM output signal. We use a multiplexer in this example to express the counter.
The last line of the function compares the counter value with the input value din to
return the PWM signal. The last expression in a Chisel function is the return value, in
our case the wire connected to the compare function.

We use the function unsignedBitLength(n) to specify the number of bits for the
counter cntReg needed to represent unsigned numbers up to (and including) n.* Chisel
also has a function signedBitLength to provide the number of bits for a signed repre-
sentation of a number.

Another application is to use PWM to dim an LED. In that case the eye serves as low-
pass filter. We expand the above example to drive the PWM generation by a triangular
function. The result is an LED with continuously changing intensity.

val FREQ = 100000000 // a 100 MHz clock input
val MAX = FREQ/1000 // 1 kHz

val modulationReg = RegInit(0.U(32.W))
val upReg = RegInit(true.B)

when (modulationReg < FREQ.U && upReg) {

modulationReg := modulationReg + 1.U

} .elsewhen (modulationReg === FREQ.U && upReg) {
upReg := false.B

} .elsewhen (modulationReg > 0.U && !upReg) {
modulationReg := modulationReg - 1.U

} .otherwise { // ©
upReg := true.B

3

// divide modReg by 1024 (about the 1 kHz)
val sig = pwm(MAX, modulationReg >> 10)

We use two registers for the modulation: (1) modulationReg for counting up and
down and (2) upReg as a flag to determine if we shall count up or down. We count
up to the frequency of our clock input (100 MHz in our example), which results in a
signal of 0.5 Hz. The lengthy when/.elsewhen/.otherwise expression handles the up-

4The number of bits to represent an unsigned number 7 in binary is |logs(n) |+ 1.

60 Contents

6.3 SHIFT REGISTERS

— din —» ~ dout &

A4
A4
A4

A AN A A

Figure 6.11: A 4 stage shift register.

or down-counting and the switch of the direction.

As our PWM counts only up to the 1000th of the frequency to generate a 1 kHz signal,
we need to divide the modulation signal by 1000. As real division is very expensive in
hardware, we simply shift by 10 to the right, which equates a division by 2! = 1024.
As we have defined the PWM circuit as a function, we can simply instantiate that circuit
with a function call. Wire sig represents the modulated PWM signal.

6.3 Shift Registers

A shift register is a collection of flip-flops connected in a sequence. Each output of a
register (flip-flop) is connected to the input of the next register. Figure 6.11 shows a
4-stage shift register. The circuit shifts the data from left to right on each clock tick. In
this simple form the circuit implements a 4-tap delay from din to dout.

The Chisel code for this simple shift register does: (1) create a 4-bit register shiftReg,
(2) concatenate the lower 3 bits of the shift register with the input din for the next input
to the register, and (3) uses the most significant bit (MSB) of the register as the output
dout.

val shiftReg = Reg(UInt(4.W))
shiftReg := Cat(shiftReg(2, 0), din)
val dout = shiftReg(3)

Shift registers are often used to convert from serial data to parallel data or from par-
allel data to serial data. Section 11.2 shows a serial port that uses shift registers for the
receive and send functions.

6.3.1 Shift Register with Parallel Output

A serial-in parallel-out configuration of a shift register transforms a serial input stream
into parallel words. This may be used in a serial port (UART) for the receive function.

Contents 61

https://en.wikipedia.org/wiki/Shift_register

6 SEQUENTIAL BUILDING BLOCKS

g3 q2 qi qo

A4
A4
A4

— serin —»

AN A A A

Figure 6.12: A 4-bit shift register with parallel output.

Figure 6.12 shows a 4-bit shift register, where each flip-flop output is connected to one
output bit. After 4 clock cycles this circuit converts a 4-bit serial data word to a 4-bit
parallel data word that is available in g. In this example we assume that bit O (the least
significant bit) is sent first and therefore arrives in the last stage when we want to read
the full word.

In the following Chisel code we initialize the shift register outReg with 0. Then we
shift in from the MSB, which means a right shift. The parallel result, q, is just the
reading of the register outReg.

val outReg = RegInit(0.U(4.W))
outReg := Cat(serIn, outReg(3, 1))
val g = outReg

Figure 6.12 shows a 4-bit shift register with a parallel output function.

6.3.2 Shift Register with Parallel Load

A parallel-in serial-out configuration of a shift register transforms a parallel input stream
of words (bytes) into a serial output stream. This may be used in a serial port (UART)
for the transmit function.

Figure 6.13 shows a 4-bit shift register with a parallel load function. The Chisel
description of that function is relatively straight forward:

val loadReg = RegInit(0.U(4.W))
when (load) {
loadReg := d
} otherwise {
loadReg := C
3

at(0.U, loadReg(3, 1))

62 Contents

6.4 MEMORY

peo| |
peo| |
peo|

| | |
d3 d2 di1 do

N N N N
0> L L L. R

A A A A

peo| —

Figure 6.13: A 4-bit shift register with parallel load.

val serOut = loadReg(®)

Note that we are now shifting to the right, filling in zeros at the MSB.

6.4 Memory

A memory can be built out of a collection of registers, in Chisel a Reg of a Vec. However,
this is expensive in hardware, and larger memory structures are built as SRAM. For
an ASIC, a memory compiler constructs memories. FPGAs contain on-chip memory
blocks, also called block RAMs. Those on-chip memory blocks can be combined for
larger memories. Memories in an FPGA usually have one read and one write port, or
two ports that can be switched between read and write at runtime.

FPGAs (and also ASICs) usually support synchronous memories. Synchronous mem-
ories have registers on their inputs (read and write address, write data, and write enable).
That means the read data is available one clock cycle after setting the address.

Figure 6.14 shows the schematics of such a synchronous memory. The memory is
dual-ported with one read port and one write port. The read port has a single input, the
read address (rdAddr) and one output, the read data (rdData). The write port has three
inputs: the address (wrAddr), the data to be written (wrData), and a write enable (wrEna).
Note that for all inputs, there is a register within the memory showing the synchronous
behavior.

To support on-chip memory, Chisel provides the memory constructor SyncReadMem.
Listing 6.2 shows a component Memory that implements 1 KiB of memory with byte-
wide input and output data and a write enable.

An interesting question is which value is returned from a read when in the same clock
cycle a new value is written to the same address that is read out. We are interested in
the read-during-write behavior of the memory. There are three possibilities: the newly
written value, the old value, or undefined (which might be a mix of some bits from

Contents 63

https://en.wikipedia.org/wiki/Static_random-access_memory

6 SEQUENTIAL BUILDING BLOCKS

— rdAddr —»| — rdData

— wrAddr —»>|

— wrData —»|

— wrEna —»|

Memory

Figure 6.14: A synchronous memory.

64 Contents

6.4 MEMORY

class Memory() extends Module {
val io = IO0O(new Bundle {
val rdAddr = Input(UInt(10.W))
val rdData = Output(UInt(8.W))
val wrEna = Input(Bool())
val wrData = Input(UInt(8.W))
val wrAddr = Input(UInt(10.W))
b

val mem = SyncReadMem(1024, UInt(8.W))
io.rdData := mem.read(io.rdAddr)
when(io.wrEna) {

mem.write(io.wrAddr, io.wrData)

}
}

Listing 6.2: 1 KiB of synchronous memory.

the old value and some of the newly written data). Which possibility is available in an
FPGA depends on the FPGA type and sometimes can be specified. Chisel documents
that the read data is undefined.

If we want to read out the newly written value, we can build a forwarding circuit
that detects that the addresses are equal and forwards the write data. Figure 6.15 shows
the memory with the forwarding circuit. Read and write addresses are compared and
gated with the write enable to select between the forwarding path of the write data or
the memory read data. The write data is delayed by one clock cycle with a register.

Listing 6.3 shows the Chisel code for a synchronous memory including the forward-
ing circuit. We need to store the write data into a register (wrDataReg) to be available in
the next clock cycle in order to fit the synchronous memory that also provides the read
value in the next clock cycle. We compare the two input addresses (wrAddr and rdAddr)
and check if wrEna is true for the forwarding condition. That condition is also delayed
by one clock cycle. A multiplexer selects between the forwarding (write) data or the
read data from memory.

Chisel also provides Mem, which represents a memory with synchronous write and
an asynchronous read. As this memory type is usually not directly available in an
FPGA, the synthesise tool will build it out of flip-flops. Therefore, we recommend

Contents 65

6 SEQUENTIAL BUILDING BLOCKS

= |
AND
JAN
rdAddr > rdData —»
JAN dout —»
wrAddr —»
JAN
—— wrData >
JAN
—— wrEna >
A Memory
L
A

Figure 6.15: A synchronous memory with forwarding for a defined read-during-write
behavior.

66 Contents

6.4 MEMORY

class ForwardingMemory () extends Module {
val io = IO0O(new Bundle {
val rdAddr = Input(UInt(10.W))
val rdData = Output(UInt(8.W))
val wrEna = Input(Bool())
val wrData = Input(UInt(8.W))
val wrAddr = Input(UInt(10.W))
b

val mem = SyncReadMem (1024, UInt(8.W))

val wrDataReg = RegNext(io.wrData)

val doForwardReg = RegNext(io.wrAddr === io.rdAddr &&

io.wrEna)
val memData = mem.read(io.rdAddr)
when(io.wrEna) {
mem.write(io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg, wrDataReg, memData)

Listing 6.3: A memory with a forwarding circuit.

Contents

67

6 SEQUENTIAL BUILDING BLOCKS

using SyncReadMem.

6.5 Exercise

Use the 7-segment encoder from the last exercise and add a 4-bit counter as input to
switch the display from ® to F. When you directly connect this counter to the clock
of the FPGA board, you will see all 16 numbers overlapped (all 7 segments will light
up). Therefore, you need to slow down the counting. Create another counter that can
generate a single-cycle tick signal every 500 milliseconds. Use that signal as enable
signal for the 4-bit counter.

Construct a PWM waveform with a generator function and set the threshold with a
function (triangular or a sine function). A triangular function can be created by counting
up and down. A sinus function with the use of a lookup table that you can generate with
a few lines of Scala code (see Section 10.2). Drive a LED on an FPGA board with that
modulated PWM function. What frequency shall your PWM signal be? What frequency
is the driver running?

68 Contents

7 Input Processing

Input signals from the external world into our synchronous circuit are usually not syn-
chronous to the clock; they are asynchronous. An input signal may come from a source
that does not have a clean transition from O to 1 or 1 to 0. An example is a bouncing
button or switch. Input signals may be noisy with spikes that could trigger a transition
in our synchronous circuit. This chapter describes circuits that deal with such input
conditions.

The latter two issues, debouncing switches, and filtering noise, can also be solved
with external, analog components. However, it is more (cost-)efficient to deal with
those issues in the digital domain.

7.1 Asynchronous Input

Input signals that are not synchronous to the system clock are called asynchronous sig-
nals. Those signals may violate the setup and hold time of the input of a flip-flop. This
violation may result in Metastability of the flip-flop. The Metastability may result in an
output value between 0 and 1 or it may result in oscillation. However, after some time
the flip-flop will stabilize at O or 1.

We cannot avoid Metastability, but we can contain its effects. A classic solution is
to use two flip-flops at the input. The assumption is: when the first flip-flop becomes
metastable, it will resolve to a stable state within the clock period so that the setup and
hold times of the second flip-flop will not be violated.

Figure 7.1 shows the border between the synchronous circuit and the external world.
The input synchronizer consists of two flip-flops. The Chisel code for the input syn-
chronizer is a one-liner that instantiates two registers.

val btnSync = RegNext(RegNext(btn))

All asynchronous external signals need an input synchronizer.! We also need to syn-
chronize an external reset signal. The reset signal shall pass through the two flip-flops

IThe exception is when the input signal is dependent on a synchronous output signal, and we know the max-
imum propagation delay. A classic example is the interfacing an asynchronous SRAM to a synchronous
circuit, e.g., by a microprocessor.

69

https://en.wikipedia.org/wiki/Metastability_(electronics)

7 INPUT PROCESSING

Synchronous circuit

— btn »

A4
A4

~ btnSync —»

External world

Figure 7.1: Input synchronizer.

before it is used as the reset signal for other flip-flops in the circuit. Concrete the de-
assertion of the reset need to be synchronous to the clock.

7.2 Debouncing

Switches and buttons may need some time to transition between on and off. During
the transition, the switch may bounce between those two states. If we use such a signal
without further processing, we might detect more transition events than we want to. One
solution is to use time to filter out this bouncing. Assuming a maximum bouncing time
of tpounce We will sample the input signals with a period T' > tpounce. We will only use
the sampled signal further downstream.

When sampling the input with this long period, we know that on a transition from 0
to 1 only one sample may fall into the bouncing region. The sample before will safely
read a 0, and the sample after the bouncing region will safely read a 1. The sample in
the bouncing region will either be 0 or a 1. However, this does not matter as it then
belongs either to the still 0 samples or to the already 1 samples. The critical point is that
we have only one transition from 0 to 1.

Figure 7.2 shows the sampling for the debouncing in action. The top signal shows the
bouncing input, and the arrows below show the sampling points. The distance between
those sampling points needs to be longer than the maximum bouncing time. The first
sample safely samples a 0, and the last sample in the figure samples a 1. The middle
sample falls into the bouncing time. It may either be O or 1. The two possible outcomes
are shown as debounce A and debounce B. Both have a single transition from 0 to 1.
The only difference between these two outcomes is that the transition in version B is

70 Contents

7.2 DEBOUNCING

bouncing in

I

debounced A

debounced B

Figure 7.2: Debouncing an input signal.

one sample period later. However, this is usually a non-issue.

The Chisel code for the debouncing is a little bit more evolved than the code for the
synchronizer. We generate the sample timing with a counter that delivers a single cycle
tick signal, as we have done in Section 6.2.2.

val FAC = 100000000/100

val btnDebReg = Reg(Bool())

val cntReg = RegInit(0.U(32.W))
val tick = cntReg === (FAC-1).U

cntReg := cntReg + 1.U
when (tick) {
cntReg := 0.U
btnDebReg := btnSync
3

First, we need to decide on the sampling frequency. The above example assumes a
100 MHz clock and results in a sampling frequency of 100 Hz (assuming that the bounc-
ing time is below 10 ms). The maximum counter value is FAC, the division factor. We
define a register btnDebReg for the debounced signal, without a reset value. The register

Contents 71

7 INPUT PROCESSING

- tick

en en en

- din

\4

|
L

Majority voting

«— o —

dout=(a&b)l(a&c)l(b&c)

dout

v

Figure 7.3: Majority voting on the sampled input signal.

cntReg serves as counter, and the tick signal is true when the counter has reached the
maximum value. In that case, the when condition is true and (1) the counter is reset to
0 and (2) the debounce register stores the input sample. In our example, the input signal
is named btnSync as it is the output from the input synchronizer shown in the previous
section.

The debouncing circuit comes after the synchronizer circuit. First, we need to syn-
chronize in the asynchronous signal, then we can further process it in the digital domain.

7.3 Filtering of the Input Signal

Sometimes our input signal may be noisy, maybe containing spikes that we might sam-
ple unintentionally with the input synchronizer and debouncing unit. One option to
filter those input spikes is to use a majority voting circuit. In the simplest case, we take
three samples and perform the majority vote. The majority function, which is related
to the median function, results in the value of the majority. In our case, where we use
sampling for the debouncing, we perform the majority voting on the sampled signal.
Majority voting ensures that the signal is stable for longer than the sampling period.

72 Contents

https://en.wikipedia.org/wiki/Majority_function

7.4 COMBINING THE INPUT PROCESSING WITH FUNCTIONS

Figure 7.3 shows the circuit of the majority voter. It consists of a 3-bit shift register
enabled by the tick signal we used for the debouncing sampling. The output of the three
registers is feed into the majority voting circuit. The majority voting function filters any
signal change shorter than the sample period.

The following Chisel code shows the 3-bit shift register, enabled by the tick signal
and the voting function, resulting in the signal btnClean.

Note, that a majority voting is very seldom needed.

val shiftReg = RegInit(0.U(3.W))
when (tick) {
// shift left and input in LSB
shiftReg := Cat(shiftReg(l, ®), btnDebReg)
}
// Majority voiting
val btnClean = (shiftReg(2) & shiftReg(l)) | (shiftReg(2) &
shiftReg(®)) | (shiftReg(l) & shiftReg(0))

To use the output of our carefully processed input signal, we first detect the rising
edge with a RegNext delay element and then compare this signal with the current value
of btnClean to enable the counter to increment.

val risingEdge = btnClean & !RegNext(btnClean)

// Use the rising edge of the debounced and
// filtered button to count up
val reg = RegInit(0.U(C8.W))
when (risingEdge) {
reg := reg + 1.U

}

7.4 Combining the Input Processing with Functions

To summarize the input processing, we show some more Chisel code. As the presented
circuits might be tiny, but reusable building blocks, we encapsulate them in functions.
Section 4.4 showed how we can abstract small building blocks in lightweight Chisel
functions instead of full modules. Those Chisel functions create hardware instances,
e.g., the function sync creates two flip-flops connected to the input and to each other.
The function returns the output of the second flip-flop. If useful, those functions can be
elevated to some utility class object.

Contents 73

7 INPUT PROCESSING

def sync(v: Bool) = RegNext(RegNext(v))
def rising(v: Bool) = v & !RegNext(v)

def tickGen(fac: Int) = {
val reg = RegInit(0.U(log2Up(fac).W))

val tick = reg === (fac-1).U
reg := Mux(tick, 0.U, reg + 1.U)
tick

}

def filter(v: Bool, t: Bool) = {
val reg = RegInit(0.U(C3.W))
when (t) {
reg := Cat(reg(l, 0), v)
}
(reg(2) & reg(l)) | (reg(2) & reg(®)) | (reg(l) & reg(®))
}

val btnSync = sync(btn)

val tick = tickGen(fac)
val btnDeb = Reg(Bool())
when (tick) {

btnDeb := btnSync
}

val btnClean = filter(btnDeb, tick)
val risingEdge = rising(btnClean)

// Use the rising edge of the debounced
// and filtered button for the counter
val reg = RegInit(0.U(8.W))
when (risingEdge) {

reg := reg + 1.U

}

Listing 7.1: Summarizing input processing with functions.

74 Contents

7.5 EXERCISE

7.5 Exercise

Build a counter that is incremented by an input button. Display the counter value in
binary with the LEDs on an FPGA board. Build the complete input processing chain
with: (1) an input synchronizer, (2) a debouncing circuit, (3) a majority voting circuit to
suppress noise, and (4) an edge detection circuit to trigger the increment of the counter.

As there is no guarantee that modern button will always bounce, you can simulate
the bouncing and the spikes by pressing the button manually in a fast succession and
using a low sample frequency. Select, e.g., one second as sample frequency, i.e., if the
input clock runs at 100 MHz, divide it by 100,000,000. Simulate a bouncing button
by pressing several times in fast succession before settling to a stable press. Test your
circuit without and with the debouncing circuit sampling at 1 Hz. With the majority
voting, you need to press between one and two seconds for a reliable increment of the
counter. Also, the release of the button is majority voted. Therefore, the circuit only
recognizes the release when it is longer than 1-2 seconds.

Contents 75

8 Finite-State Machines

A finite-state machine (FSM) is a basic building block in digital design. An FSM can be
described as a set of states and conditional (guarded) state transitions between states.
An FSM has an initial state, which is set on reset. FSMs are also called synchronous
sequential circuits.

An implementation of an FSM consists of three parts: (1) a register that holds the
current state, (2) combinational logic that computes the next state that depends on the
current state and the input, and (3) combinational logic that computes the output of the
FSM.

In principle, every digital circuit that contains a register or other memory elements
to store state can be described as a single FSM. However, this might not be practical,
e.g., try to describe your laptop as a single FSM. In the next chapter, we describe how
to build larger systems out of smaller FSMs by combining them into communicating
FSMs.

8.1 Basic Finite-State Machine

Figure 8.1 shows the schematics of an FSM. The register contains the current state.
The next state logic computes the next state value (next_state) from the current state
and the input (in). On the next clock tick, state becomes next_state. The output logic

state
Next Ouput
state |— nextState —p>| > put | out »
. logic
logic
— in
JAN

Figure 8.1: A finite state machine (Moore type).

71

8 FINITE-STATE MACHINES

bad event bad event

reset

red/
ring bell

orange

Figure 8.2: The state diagram of an alarm FSM.

computes the output (out). As the output depends on the current state only, this state
machine is called a Moore machine.

A state diagram describes the behavior of such an FSM visually. In a state diagram,
individual states are depicted as circles labeled with the state names. State transitions
are shown with arrows between states. The guard (or condition) when this transition is
taken is drawn as a label for the arrow.

Figure 8.2 shows the state diagram of a simple example FSM. The FSM has three
states: green, orange, and red, indicating a level of alarm. The FSM starts at the green
level. When a bad event happens the alarm level is switched to orange. On a second
bad event, the alarm level is switched to red. In that case, we want to ring a bell; ring
bell is the only output of this FSM. We add the output to the red state. The alarm can be
reset with a clear signal.

Although a state diagram may be visually pleasing and the function of an FSM can be
grasped quickly, a state table may be quicker to write down. Table 8.1 shows the state
table for our alarm FSM. We list the current state, the input values, the resulting next
state, and the output value for the current state. In principle, we would need to specify
all possible inputs for all possible states. This table would have 3 x 4 = 12 rows. We
simplify the table by indicating that the clear input is a don’t care when a bad event
happens. That means bad event has priority over clear. The output column has some
repetition. If we have a larger FSM and/or more outputs, we can split the table into two,
one for the next state logic and one for the output logic.

Finally, after all the design of our warning level FSM, we shall code it in Chisel.
Listing 8.1 shows the Chisel code for the alarm FSM. Note, that we use the Chisel type
Bool for the inputs and the output of the FSM. To use Enum and the switch control
instruction, we need to import chisel3.util. .

The complete Chisel code for this simple FSM fits into one page. Let us step through
the individual parts. The FSM has two input and a single output signal, captured in a

78 Contents

https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/State_diagram

8.1 BASIC FINITE-STATE MACHINE

import chisel3._
import chisel3.util._

class SimpleFsm extends Module {
val io = IO(new Bundle({
val badEvent = Input(Bool())
val clear = Input(Bool())
val ringBell = Output(Bool())

B

// The three states
val green :: orange :: red :: Nil = Enum(3)

// The state register
val stateReg = RegInit(green)

// Next state logic
switch (stateReg) {
is (green) {
when (io.badEvent) {
stateReg := orange
}
}
is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
b
}
is (red) {
when (io.clear) {
stateReg := green
b
}

}

// Output logic
io.ringBell := stateReg === red

}

Listing 8.1: The Chisel code for the alarm FSM.

Contents

79

8 FINITE-STATE MACHINES

Table 8.1: State table for the alarm FSM.
Input

State Bad event Clear Nextstate Ring bell

green 0 0 green 0
green 1 - orange 0
orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0

red 0 0 red 1

red 0 1 green 1

Chisel Bundle:

val io = I0(new Bundle{
val badEvent = Input(Bool())
val clear = Input(Bool())
val ringBell = Output(Bool())
b

Quite some work has been spent in optimal state encoding. Two common options are
binary or one-hot encoding. However, we leave those low-level decisions to the syn-
thesize tool and aim for readable code.! Therefore, we use an enumeration type with
symbolic names for the states:

val green :: orange :: red :: Nil = Enum(3)

The individual state values are described as a list where the individual elements are
concatenated with the :: operator; Nil represents the end of the list. An Enum instance
is assigned to the list of states. The register holding the state is defined with the green
state as the reset value:

val stateReg = RegInit(green)

The meat of the FSM is in the next state logic. We use a Chisel switch on the state
register to cover all states. Within each is branch we code the next state logic, which
depends on the inputs, by assigning a new value for our state register:

!In the current version of Chisel the Enum type represents states in binary encoding. If we want a different
encoding, e.g., one-hot encoding, we can define Chisel constants for the state names.

80 Contents

8.2 FASTER OUTPUT WITH A MEALY FSM

switch (stateReg) {

is (green) {

when (io.badEvent) {
stateReg := orange

}

}

is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
}
}
is (red) {
when (io.clear) {
stateReg := green
}
}

3
Last, but not least, we code our ringing bell output to be true when the state is red.
io.ringBell := stateReg === red

Note that we did not introduce a next_state signal for the register input, as it is
common practice in Verilog or VHDL. Registers in Verilog and VHDL are described in
a special syntax and cannot be assigned (and reassigned) within a combinational block.
Therefore, the additional signal, computed in a combinational block, is introduced and
connected to the register input. In Chisel a register is a base type and can be freely used
within a combinational block.

8.2 Faster Output with a Mealy FSM

On a Moore FSM, the output depends only on the current state. That means that a
change of an input can be seen as a change of the output earliest in the next clock cycle.
If we want to observe an immediate change, we need a combinational path from the
input to the output. Let us consider a minimal example, an edge detection circuit. We
have seen this Chisel one-liner before:

val risingEdge = din & !RegNext(din)

Contents 81

8 FINITE-STATE MACHINES

AND risingEdge —»
w. 9=a9

Figure 8.3: A rising edge detector (Mealy type FSM).

— din

A4

A

state
Next
state |— nextState — >
logic Output | 4 &

—in logic
T /\

Figure 8.4: A Mealy type finite state machine.

A4

Figure 8.3 shows the schematic of the rising edge detector. The output becomes 1 for
one clock cycle when the current input is 1 and the input in the last clock cycle was 0.
The state register is just a single D flip-flop where the next state is just the input. We
can also consider this as a delay element of one clock cycle. The output logic compares
the current input with the current state.

When the output depends also on the input, i.e., there is a combinational path between
the input of the FSM and the output, this is called a Mealy machine.

Figure 8.4 shows the schematic of a Mealy type FSM. Similar to the Moore FSM, the
register contains the current state, and the next state logic computes the next state value
(next_state) from the current state and the input (in). On the next clock tick, state
becomes next_state. The output logic computes the output (out) from the current state
and the input to the FSM.

Figure 8.5 shows the state diagram of the Mealy FSM for the edge detector. As the
state register consists just of a single D flip-flop, only two states are possible, which
we name zero and one in this example. As the output of a Mealy FSM does not only
depend on the state, but also on the input, we cannot describe the output as part of the

82 Contents

https://en.wikipedia.org/wiki/Mealy_machine

8.3 MOORE VERSUS MEALY

0/0 1/0
11

reset

0/0

Figure 8.5: The state diagram of the rising edge detector as Mealy FSM.

state circle. Instead, the transitions between the states are labeled with the input value
(condition) and the output (after the slash). Note also that we draw self transitions, e.g.,
in state zero when the input is ® the FSM stays in state zero, and the output is 0. The
rising edge FSM generates the 1 output only on the transition from state zero to state
one. In state one, which represents that the input is now 1, the output is 8. We only want
a single (cycle) puls for each rising edge of the input.

Listing 8.2 shows the Chisel code for the rising edge detection with a Mealy machine.
As in the previous example, we use the Chisel type Bool for the single-bit input and
output. The output logic is now part of the next state logic; on the transition from
zero to one, the output is set to true.B. Otherwise, the default assignment to the output
(false.B) counts.

One can ask if a full-blown FSM is the best solution for the edge detection circuit,
especially, as we have seen a Chisel one-liner for the same functionality. The hardware
consumptions is similar. Both solutions need a single D flip-flop for the state. The
combinational logic for the FSM is probably a bit more complicated, as the state change
depends on the current state and the input value. For this function, the one-liner is easier
to write and easier to read, which is more important. Therefore, the one-liner is the
preferred solution.

We have used this example to show one of the smallest possible Mealy FSMs. FSMs
shall be used for more complex circuits with three and more states.

8.3 Moore versus Mealy

To show the difference between a Moore and Mealy FSM, we redo the edge detection
with a Moore FSM.

Figure 8.6 shows the state diagram for the rising edge detection with a Moore FSM.
The first thing to notice is that the Moore FSM needs three states, compared to two

Contents 83

8 FINITE-STATE MACHINES

import chisel3._
import chisel3.util._

class RisingFsm extends Module {
val io = IO(new Bundle{
val din = Input(Bool())
val risingEdge = Output(Bool())
b

// The two states
val zero :: one :: Nil = Enum(2)

// The state register
val stateReg = RegInit(zero)

// default value for output
io.risingEdge := false.B

// Next state and output logic
switch (stateReg) {
is(zero) {
when(io.din) {
stateReg := one
io.risingEdge := true.B
}
3
is(one) {
when(!io.din) {
stateReg := zero
}
3

Listing 8.2: Rising edge detection with a Mealy FSM.

84 Contents

8.3 MOORE VERSUS MEALY

reset

Figure 8.6: The state diagram of the rising edge detector as Moore FSM.

cock T LI LT LT LT LT LT L
[T
[

din i \
risingEdge Mealy J \

risingEdge Moore | \ | \

Figure 8.7: Mealy and a Moore FSM waveform for rising edge detection.

states in the Mealy version. The state puls is needed to produce the single-cycle puls.
The FSM stays in state puls just one clock cycle and then proceeds either back to the
start state zero or to the one state, waiting for the input to become 0 again. We show
the input condition on the state transition arrows and the FSM output within the state
representing circles.

Listing 8.3 shows the Moore version of the rising edge detection circuit. It uses
double the number of D flip-flops than the Mealy or direct coded version. The resulting
next state logic is therefore also larger than the Mealy or direct coded version.

Figure 8.7 shows the waveform of a Mealy and a Moore version of the rising edge
detection FSM. We can see that the Mealy output closely follows the input rising edge,
while the Moore output rises after the clock tick. We can also see that the Moore output
is one clock cycle wide, where the Mealy output is usually less than a clock cycle.

From the above example, one is tempted to find Mealy FSMs the better FSMs as
they need less state (and therefore logic) and react faster than a Moore FSM. However,
the combinational path within a Mealy machine can cause trouble in larger designs.
First, with a chain of communicating FSM (see next chapter), this combinational path
can become lengthy. Second, if the communicating FSMs build a circle, the result is

Contents 85

8 FINITE-STATE MACHINES

import chisel3._
import chisel3.util._

class RisingMooreFsm extends Module {
val io = IO(new Bundle{
val din = Input(Bool())
val risingEdge = Output(Bool())
b

// The three states
val zero :: puls :: one :: Nil = Enum(3)

// The state register
val stateReg = RegInit(zero)

// Next state logic

switch (stateReg) {
is(zero) {

when(io.din) {

stateReg := puls
}
}
is(puls) {
when(io.din) {
stateReg := one
} .otherwise {
stateReg := zero
}
3

is(one) {
when(!io.din) {
stateReg := zero
}
3
}

// Output logic
io.risingEdge := stateReg === puls

}

Listing 8.3: Rising edge detection with a Moore FSM.

86 Contents

8.4 EXERCISE

a combinational loop, which is an error in synchronous design. Due to a cut in the
combinational path with the state register in a Moore FSM, all the above issues do not
exist for communicating Moore FSMs.

In summary, Moore FSMs combine better for communicating state machines; they
are more robust than Mealy FSMs. Use Mealy FSMs only when the reaction within the
same cycle is of utmost importance. Small circuits such as the rising edge detection,
which are practically Mealy machines, are fine as well.

8.4 Exercise

In this chapter, you have seen many examples of very small FSMs. Now it is time to
write some real FSM code. Pick a little bit more complex example and implement the
FSM and write a test bench for it.

A classic example for a FSM is a traffic light controller (see [3, Section 14.3]). A
traffic light controller has to ensure that on a switch from red to green there is a phase
in between where both roads in the intersection have a no-go light (red and orange).
To make this example a little bit more interesting, consider a priority road. The minor
road has two car detectors (on both entries into the intersection). Switch to green for the
minor road only when a car is detected and then switch back to green for the priority
road.

Contents 87

9 Communicating State Machines

A problem is often too complex to describe it with a single FSM. In that case, the
problem can be divided into two or more smaller and simpler FSMs. Those FSMs then
communicate with signals. One FSMs output is another FSMs input, and the FSM
watches the output of the other FSM. When we split a large FSM into simpler ones, this
is called factoring FSMs. However, often communicating FSMs are directly designed
from the specification, as often a single FSM would be infeasible large.

9.1 A Light Flasher Example

To discuss communicating FSMs, we use an example from [3, Chapter 17], the light
flasher. The light flasher has one input start and one output 1ight. The specification
of the light flasher is as follows:

e when start is high for one clock cycle, the flashing sequence starts;
o the sequence is to flash three times;

e where the light goes on for six clock cycles, and the light goes off for four
clock cycles between flashes;

e after the sequence, the FSM switches the 1ight off and waits for the next start.

The FSM for a direct implementation! has 27 states: one initial state that is waiting
for the input, 3 X 6 states for the three on states and 2 x 4 states for the off states. We do
not show the code for this simple-minded implementation of the light flasher.

The problem can be solved more elegantly by factoring this large FSM into two
smaller FSMs: the master FSM implements the flashing logic, and the timer FSM im-
plements the waiting. Figure 9.1 shows the composition of the two FSMs.

The timer FSM counts down for 6 or 4 clock cycles to produce the desired timing.
The timer specification is as follows:

I'The state diagram is shown in [3, p. 376].

89

9 COMMUNICATING STATE MACHINES

start light
— | Master FSM

»
P

timerLoad
timerSelect

<
<
timerDone

=
3
(0]
g

Figure 9.1: The light flasher split into a Master FSM and a Timer FSM.

e when timerLoad is asserted, the timer loads a value into the down counter, inde-
pendent of the state;

e timerSelect selects between 5 or 3 for the load;

e timerDone is asserted when the counter completed the countdown and remains
asserted;

e otherwise, the timer counts down.

Following code shows the timer FSM of the light flasher:

val timerReg = RegInit(0.U)
timerDone := timerReg === 0.U

// Timer FSM (down counter)
when (! timerDone) {

timerReg := timerReg - 1.U
}
when (timerLoad) {

when (timerSelect) {

timerReg := 5.U
} .otherwise {
timerReg := 3.U

}

90 Contents

9.1 A LIGHT FLASHER EXAMPLE

val off :: flashl :: spacel :: flash2 :: space2 :: flash3
Nil = Enum(6)
val stateReg = RegInit(off)

val light = WireDefault(false.B) // FSM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer with a
load

val timerSelect = WireDefault(true.B) // select 6 or 4 cycles

val timerDone = Wire(Bool())

timerLoad := timerDone

// Master FSM
switch(stateReg) {

is(off) {

timerLoad := true.B

timerSelect := true.B

when (start) { stateReg := flashl }
}
is (flashl) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := spacel }
}
is (spacel) {

when (timerDone) { stateReg := flash2 }
}
is (flash2) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := space2 }
}
is (space2) {

when (timerDone) { stateReg := flash3 }
}
is (flash3) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := off }
}

Listing 9.1: Master FSM of the light flasher.
Contents 91

9 COMMUNICATING STATE MACHINES

start light
Master FSM

- A A

gl 5| ¢ R

2| ¢| &8 S| & 8

“E-‘ o| & €| € =

= g g o o S

Yy v~© \ A

Timer Counter

Figure 9.2: The light flasher split into a Master FSM, a Timer FSM, and a Counter FSM.

Listing 9.1 shows the master FSM.

This solution with a master FSM and a timer has still redundancy in the code of
the master FSM. States flashl, flash2, and flash3 are performing the same function,
states spacel and space2 as well. We can factor out the number of remaining flashes
into a second counter. Then the master FSM is reduced to three states: off, flash, and
Space.

Figure 9.2 shows the design with a master FSM and two FSMs that count: one FSM
to count clock cycles for the interval length of on and off’; the second FSM to count the
remaining flashes.

Following code shows the down counter FSM:

val cntReg = RegInit(0.U)
cntDone := cntReg === 0.U

// Down counter FSM
when(cntLoad) { cntReg := 2.U }
when (cntDecr) { cntReg := cntReg - 1.U }

Note, that the counter is loaded with 2 for 3 flashes, as it counts the remaining flashes
and is decremented in state space when the timer is done. Listing 9.2 shows the master
FSM for the double refactored flasher.

Besides having a master FSM that is reduced to just three states, our current solution
is also better configurable. No FSM needs to be changed if we want to change the length
of the on or off intervals or the number of flashes.

In this section, we have explored communicating circuits, especially FSM, that only

92 Contents

9.1 A LIGHT FLASHER EXAMPLE

val off :: flash :: space :: Nil = Enum(3)
val stateReg = RegInit(off)

val light = WireDefault(false.B) // FSM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer with a
load

val timerSelect = WireDefault(true.B) // select 6 or 4 cycles

val timerDone = Wire(Bool())

// Counter connection

val cntLoad = WireDefault(false.B)

val cntDecr = WireDefault(false.B)

val cntDone = Wire(Bool())

timerLoad := timerDone

switch(stateReg) {
is(off) {
timerLoad := true.B
timerSelect := true.B
cntlLoad := true.B
when (start) { stateReg := flash }
}
is (flash) {
timerSelect := false.B
light := true.B
when (timerDone & !cntDone) { stateReg := space }
when (timerDone & cntDone) { stateReg := off }
}
is (space) {
cntDecr := timerDone
when (timerDone) { stateReg := flash }
}
}

Listing 9.2: Master FSM of the double refactored light flasher.

Contents 93

9 COMMUNICATING STATE MACHINES

dinValid popCntValid
— > —>
dinReady FSM popCntReady
«——

A A
\ A
din opCnt

—> Datapath L»

Figure 9.3: A state machine with a datapath.

exchange control signals. However, circuits can also exchange data. For the coordinated
exchange of data, we use handshake signals. The next section describes the ready-valid
interface for flow control of unidirectional data exchange.

9.2 State Machine with Datapath

One typical example of communicating state machines is a state machine combined
with a datapath. This combination is often called a finite state machine with datap-
ath (FSMD). The state machine controls the datapath, and the datapath performs the
computation. The FSM input is the input from the environment and the input from the
datapath. The data from the environment is fed into the datapath, and the data output
comes from the datapath. Figure 9.3 shows an example of the combination of the FSM
with the datapath.

9.2.1 Popcount Example

The FSMD shown in Figure 9.3 serves as an example that computes the popcount, also
called the Hamming weight. The Hamming weight is the number of symbols different
from the zero symbol. For a binary string, this is the number of ‘1’s.

The popcount unit contains the data input din and the result output popCount, both
connected to the datapath. For the input and the output we use a ready-valid handshake.
When data is available, valid is asserted. When a receiver can accept data it asserts
ready. When both signals are asserted the transfer takes place. The handshake signals

94 Contents

https://en.wikipedia.org/wiki/Hamming_weight

9.2 STATE MACHINE WITH DATAPATH

Valid
Result read

Finished

Figure 9.4: State diagram for the popcount FSM.

are connected to the FSM. The FSM is connected with the datapath with control signals
towards the datapath and with status signals from the datapath.

As a next step, we can design the FSM, starting with a state diagram, shown in Fig-
ure 9.4. We start in state Idle, where the FSM waits for input. When data arrives,
signaled with a valid signal, the FSM advances to state Load to load a shift register. The
FSM proceeds to the next state Count, there the number of ‘1’s is counted sequentially.
We use a shift register, an adder, an accumulator register, and a down counter to perform
the computation. When the down counter reaches zero, we are finished and the FSM
moves to state Done. There the FSM signals with a valid signal that the popcount value
is ready to be consumed. On a ready signal from the receiver, the FSM moves back to
the Idle state, ready to compute the next popcount.

The top level component, shown in Listing 9.3 instantiates the FSM and the datapath
components and connects them with bulk connections.

Figure 9.5 shows the datapath for the popcount circuit. The data is loaded into the shf
register. On the load also the cnt register is reset to 0. To count the number of ‘1’s, the
shf register is shifted right, and the least significant bit is added to cnt each clock cycle.
A counter, not shown in the figure, counts down until all bits have been shifted through
the least significant bit. When the counter reaches zero, the popcount has finished. The
FSM switches to state Done and signals the result by asserting popCntReady. When the
result is read, signaled by asserting popCntValid the FSW switches back to Idle.

On a load signal, the regData register is loaded with the input, the regPopCount
register reset to 0, and the counter register regCount set to the number of shifts to be
performed.

Otherwise, the regData register is shifted to the right, the least significant bit of the

Contents 95

9 COMMUNICATING STATE MACHINES

class Po
val io

val

val

val

val

val

val

»

pCount extends Module {

= IO(new Bundle {

dinValid = Input(Bool())
dinReady = Output(Bool())
din = Input(UInt(8.W))
popCntValid = Output(Bool())
popCntReady = Input(Bool())
popCnt = Output(UInt(4.W))

val fsm = Module(new PopCountFSM)
ta = Module(new PopCountDataPath)

val da

fsm.io

.dinValid := io.dinValid

io.dinReady := fsm.io.dinReady

io.pop
fsm.io

data.i
io.pop
data.i
fsm.io

CntValid := fsm.io.popCntValid
.popCntReady := io.popCntReady

0o.din := io.din

Cnt := data.io.popCnt
o.load := fsm.io.load
.done := data.io.done

Listing 9.3: The top level of the popcount circuit.

0o —»

din

96

A4

////J shf

-

0 —»

count

cnt

y

Figure 9.5: Datapath for the popcount circuit.

Contents

9.2 STATE MACHINE WITH DATAPATH

class PopCountDataPath extends Module {

val io =

val din

IO(new Bundle {
= Input (UInt(8.W))

val load = Input(Bool())
val popCnt = Output(UInt(4.W))
val done = Output(Bool())

b

val dataReg = RegInit(0.U(8.W))
val popCntReg = RegInit(0.U(8.W))
val counterReg= RegInit(0.U(4.W))

dataReg := 0.U ## dataReg(7, 1)
popCntReg := popCntReg + dataReg(®)
val done = counterReg === 0.U
when (!done) {

counterReg := counterReg - 1.U
3
when(io.load) {

dataReg := io.din

popCntReg := 0.U

counterReg := 8.U

}

// debug output
printf("%x %d\n", dataReg, popCntReg)

io.popCnt
:= done

io.done

:= popCntReg

Listing 9.4: Datapath of the popcount circuit.

Contents

97

9 COMMUNICATING STATE MACHINES

class PopCountFSM extends Module {

val io = IO(new Bundle {
val dinValid = Input(Bool())
val dinReady = Output(Bool())
val popCntValid = Output(Bool())
val popCntReady = Input(Bool())
val load = Output(Bool())
val done = Input(Bool())

b

val idle :: count :: done :: Nil = Enum(3)
val stateReg = RegInit(idle)

io.load := false.B

io.dinReady := false.B
io.popCntValid := false.B

switch(stateReg) {

is(idle) {
io.dinReady := true.B
when(io.dinValid) {
io.load := true.B
stateReg := count
}
3

is(count) {
when(io.done) {
stateReg := done
}
3
is(done) {
io.popCntValid := true.B
when(io.popCntReady) {
stateReg := idle
}
}

Listing 9.5: The FSM of the popcount circuit.

98 Contents

9.3 READY-VALID INTERFACE

— valid —»]

|4 ready —
Sender y Receiver

— data —»

Figure 9.6: The ready-valid flow control.

regData register added to the regPopCount register, and the counter decremented until
it is 0. When the counter is 0, the output contains the popcount. Listing 9.4 shows the
Chisel code for the datapath of the popcount circuit.

The FSM starts in state idle. On a valid signal for the input data (dinValid) it
switches to the count state and waits till the datapath has finished counting. When the
popcount is valid, the FSM switches to state done and waits till the popcount is read
(signaled by popCntReady). Listing 9.5 shows the code of the FSM.

9.3 Ready-Valid Interface

Communication of subsystems can be generalized to the movement of data and hand-
shaking for flow control. In the popcount example, we have seen a handshaking interface
for the input and the output data using valid and ready signals.

The ready-valid interface [3, p. 480] is a simple flow control interface consisting of
data and a valid signal at the sender side (producer) and a ready signal at the receiver
side (consumer). Figure 9.6 shows the ready-valid connection. The sender asserts valid
when data is available, and the receiver asserts ready when it is ready to receive one
word of data. The transmission of the data happens when both signals, valid and ready,
are asserted. If either of the two signals is not asserted, no transfer takes place.

Figure 9.7 shows a timing diagram of the ready-valid transaction where the receiver
signals ready (from clock cycle 1 on) before the sender has data. The data transfer
happens in clock cycle 3. From clock cycle 4 on neither the sender has data nor the
receiver is ready for the next transfer. When the receiver can receive data in every clock
cycle, it is called an “always ready” interface and ready can be hardcoded to true.

Figure 9.8 shows a timing diagram of the ready-valid transaction where the sender
signals valid (from clock cycle 1 on) before the receiver is ready. The data transfer
happens in clock cycle 3. From clock cycle 4 on neither the sender has data nor the
receiver is ready for the next transfer. Similar to the “always ready” interface we can
envision and always valid interface. However, in that case the data will probably not

Contents 99

9 COMMUNICATING STATE MACHINES

ready _]

cock T LT LI LT LT LT LT L
|
\
X

valid]
Y D

data

Figure 9.7: Data transfer with a ready-valid interface, early ready

0 1 2

3
cock T LT LT LT LT LILT L
—

ready
valid _] \
data X D X

Figure 9.8: Data transfer with a ready-valid interface, late ready

100 Contents

9.3 READY-VALID INTERFACE

o 1 2 3 4 5 6
aock T LT LT LT LT LT LT L
ready [[L
valid [[|-
data N o1 X Yz [\ b3

Figure 9.9: Single cycle ready/valid and back-to-back trasnfers

change on signaling ready and we would simply drop the handshake signals.

Figure 9.8 shows further variations of the ready-valid interface. In clock cycle 1 both
signals (ready and valid become asserted just for a single clock cycle and the data
transfer of D1 happens. Data can be transferred back-to-back (in every clock cycle) as
shown in clock cycles 4 and 5 with the transfer of D2 and D3

To make this interface composable neither ready not valid is allowed to depend
combinational on the other signal. As this interface is so common, Chisel defines the
DecoupledIO bundle, similar to the following:

class DecoupledIO[T <: Data](gen: T) extends Bundle {
val ready = Input(Bool())
val valid = Output(Bool())
val bits = Output(gen)

}

The DecoupledIO bundle is parameterized with the type for the data. The interface
defined by Chisel uses the field bits for the data.

One question remains if the ready or valid may be de-asserted after being active and
no data transfer has happened. For example a receiver might be ready for some time
and not receiving data, but due to some other events may become not ready. The same
can be envisioned with the sender, having data valid only some clock clock cycles and
becoming non-valid without a data transfer. If this behavior is allowed or not is not
part of the ready-valid interface, but needs to be defined by the concrete usage of the
interface.

Chisel places no requirements on the signaling of ready and valid when using the
class DecoupledIO. However, the class IrrevocableIO places following restrictions on
the sender:

Contents 101

9 COMMUNICATING STATE MACHINES

A concrete subclass of ReadyValidIO that promises to not change the value
of bits after a cycle where valid is high and ready is low. Additionally,
once valid is raised it will never be lowered until after ready has also been
raised.

Note that this is a convention that cannot be enforced by using the class IrrevocableIO.

AXI uses one ready-valid interface for each of the following parts of the bus: read
address, read data, write address, and write data. AXI restricts the interface that once
ready or valid is asserted it is not allowed to get de-asserted until the data transfer
happened.

102 Contents

10 Hardware Generators

The strength of Chisel is that it allows us to write so-called hardware generators. With
older hardware description languages, such as VHDL and Verilog, we usually use an-
other language, e.g., Java or Python, to generate hardware. The author has often written
small Java programs to generate VHDL tables. In Chisel, the full power of Scala (and
Java libraries) is available at hardware construction. Therefore, we can write our hard-
ware generators in the same language and execute them as part of the Chisel circuit
generation.

10.1 Configure with Parameters

Chisel components and functions can be configured with parameters. Parameters can be
as simple as an integer constant, but can also be a Chisel hardware type.

10.1.1 Simple Parameters

The basic way to parameterize a circuit is to define a bit width as a parameter. Param-
eters can be passed as arguments to the constructor of the Chisel module. Following
example is a toy example of a module that implements an adder with a configurable bit
width. The bit width n is a parameter (of Scala type Int) of the component passed into
the constructor that can be used in the IO bundle.

class ParamAdder (n: Int) extends Module {
val io = I0(new Bundle{
val a Input (UInt(n.W))
val b = Input(UInt(n.W))
val c Output (UInt(n.W))
b

io.c := io.a + io.b

}

Parameterized versions of the adder can be created as follows:

103

10 HARDWARE GENERATORS

val add8 = Module(new ParamAdder (8))
val addl16 = Module(new ParamAdder (16))

10.1.2 Functions with Type Parameters

Having the bit width as a configuration parameter is just the starting point for hardware
generators. A very flexible configuration is the usage of types. That feature allows for
Chisel to provide a multiplexer (Mux) that can accept any types for the multiplexing. To
show how to use types for the configuration, we build a multiplexer that accepts arbitrary
types. Following function defines the multiplexer:

def myMux[T <: Data](sel: Bool, tPath: T, fPath: T): T = {

val ret = WireDefault(fPath)
when (sel) {

ret := tPath
}

ret

}

Chisel allows parameterizing functions with types, in our case with Chisel types. The
expression in the square brackets [T <: Data] defines a type parameter T set is Data
or a subclass of Data. Data is the root of the Chisel type system.

Our multiplexer function has three parameters: the boolean condition, one parameter
for the true path, and one parameter for the false path. Both path parameters are of type
T, an information that is provided at function call. The function itself is straight forward:
we define a wire with the default value of fPath and change the value if the condition
is true to the tPath. This condition is a classic multiplexer function. At the end of the
function, we return the multiplexer hardware.

We can use our multiplexer function with simple types such as UInt:

val resA = myMux(selA, 5.U, 10.0)

The types of the two multiplexer paths need to be the same. Following wrong usage of
the multiplexer results in a runtime error:

val resErr = myMux(selA, 5.U, 10.S)
We define our type as a Bundle with two fields:

class ComplexIO extends Bundle {

104 Contents

10.1 CONFIGURE WITH PARAMETERS

val d = UInt(10.W)
val b Bool ()
}

We can define Bundle constants by first creating a Wire and then setting the subfields.
Then we can use our parameterized multiplexer with this complex type.

val tVal = Wire(new ComplexIO)
tVal.b := true.B

tVal.d := 42.U

val fVal = Wire(new ComplexIO)
fval.b := false.B

fval.d := 13.U

// The mulitplexer with a complex type
val resB = myMux(selB, tVal, fVal)

In our initial design of the function, we used WireInit to create a wire with the type
T with a default value. If we need to create a wire just of the Chisel type without using
a default value, we can use fPath. cloneType to get the Chisel type. Following function
shows the alternative way to code the multiplexer.

def myMuxAlt[T <: Data](sel: Bool, tPath: T, fPath: T): T = {

val ret = Wire(fPath.cloneType)

ret := fPath

when (sel) {
ret := tPath

}

ret

10.1.3 Modules with Type Parameters

We can also parameterize modules with Chisel types. Let us assume we want to design
a network-on-chip to move data between different processing cores. However, we do
not want to hardcode the data format in the router interface; we want to parameterize
it. Similar to the type parameter for a function, we add a type parameter T to the Mod-
ule constructor. Furthermore, we need to have one constructor parameter of that type.
Additionally, in this example, we also make the number of router ports configurable.

Contents 105

10 HARDWARE GENERATORS

class NocRouter[T <: Data](dt: T, n: Int) extends Module {
val io =I0(new Bundle {
val inPort = Input(Vec(n, dt))
val address = Input(Vec(n, UInt(8.W)))
val outPort = Output(Vec(n, dt))
b

// Route the payload according to the address
//

To use our router, we first need to define the data type we want to route, e.g., as a Chisel
Bundle:

class Payload extends Bundle {
val data = UInt(16.W)
val flag = Bool()

b

We create a router by passing an instance of the user-defined Bundle and the number of
ports to the constructor of the router:

val router = Module(new NocRouter(new Payload, 2))

10.1.4 Parameterized Bundles

In the router example, we used two different vectors of fields for the input of the router:
one for the address and one for the data, which was parameterized. A more elegant
solution would be to have a Bundle that itself is parametrized. Something like:

class Port[T <: Data](dt: T) extends Bundle {
val address = UInt(8.W)
val data = dt.cloneType

}

The Bundle has a parameter of type T, which is a subtype of Chisel’s Data type.
Within the bundle, we define a field data by invoking cloneType on the parameter.
However, when we use a constructor parameter, this parameter becomes a public field
of the class. When Chisel needs to clone the type of the Bundle, e.g., when it is used in
a Vec, this public field is in the way. A solution (workaround) to this issue is to make
the parameter field private:

106 Contents

10.2 GENERATE COMBINATIONAL LOGIC

class Port[T <: Data](private val dt: T) extends Bundle {
val address = UInt(8.W)
val data = dt.cloneType

}

With that new Bundle, we can define our router ports

class NocRouter2[T <: Data](dt: T, n: Int) extends Module {
val io =I0(new Bundle {
val inPort = Input(Vec(n, dt))
val outPort = Output(Vec(n, dt))
b

// Route the payload according to the address
//

and instantiate that router with a Port that takes a Payload as a parameter:

val router = Module(new NocRouter2(new Port(new Payload), 2))

10.2 Generate Combinational Logic

In Chisel, we can easily generate logic by creating a logic table with a Chisel Vec from
a Scala Array. We might have data in a file, that we can read in during hardware genera-
tion time for the logic table. Listing 10.1 shows how to use the Scala Source class form
the Scala standard library to read the file “data.txt”, which contains integer constants in
a textual representation.

A few words on the maybe a bit intimidating expression:

val table = VecInit(array.map(_.U(8.W)))

A Scala Array can be implicitly converted to a sequence (Seq), which supports the map-
ping function map. map invokes a function on each element of the sequence and returns a
sequence of the return value of the function. Our function _.U(8.W) represents each Int
value from the Scala array as a _ and performs the conversion from a Scala Int value to
a Chisel UInt literal, with a size of 8-bits. The Chisel object VecInit creates a Chisel
Vec from a sequence Seq of Chisel types.

We can use the full power of Scala to generate our logic (tables). E.g., generate a
table of fixpoint constants to represent a trigonometric function, compute constants for
digital filters, or writing a small assembler in Scala to generate code for a microprocessor

Contents 107

10 HARDWARE GENERATORS

import chisel3._
import scala.io.Source

class FileReader extends Module {
val io = IO(new Bundle {
val address = Input(UInt(8.W))
val data = Output(UInt(8.W))
b

val array = new Array[Int](256)
var idx = 0

// read the data into a Scala array

val source = Source.fromFile("data.txt")
for (line <- source.getlLines()) {
array(idx) = line.toInt
idx += 1
}

// convert the Scala integer array into the Chisel type Vec
val table = VecInit(array.map(_.U(8.W)))

// use the table
io.data := table(io.address)

Listing 10.1: Reading a text file to generate a logic table.

108 Contents

10.2 GENERATE COMBINATIONAL LOGIC

import chisel3._

class BcdTable extends Module {
val io = IO(new Bundle {
val address = Input(UInt(8.W))
val data = Output(UInt(8.W))
b

val array = new Array[Int](256)

// Convert binary to BCD
for (i <- ® to 99) {

array (i) = ((i/10)<<4) + i%10®
}

val table = VecInit(array.map(_.U(8.W)))
io.data := table(io.address)

Listing 10.2: Binary to binary-coded decimal conversion.

written in Chisel. All those functions are in the same code base (same language) and
can be executed during hardware generation.

A classic example is the conversion of a binary number into a binary-coded decimal
(BCD) representation. BCD is used to represent a number in a decimal format using 4
bits fo each decimal digit. For example, decimal 13 is in binary 1101 and BCD encoded
as 1 and 3 in binary: 060010011. BCD allows displaying numbers in decimal, a more
user-friendly number representation than hexadecimal.

We can write a Java program that computes the table to convert binary to BCD. That
Java program prints out VHDL code that can be included in a project. The Java program
is about 100 lines of code; most of the code generating VHDL strings. The key part of
the conversion is just two lines.

With Chisel, we can compute this table directly as part of the hardware generation.
Listing 10.2 shows the table generation for the binary to BCD conversion.

Contents 109

https://en.wikipedia.org/wiki/Binary-coded_decimal

10 HARDWARE GENERATORS

class UpTicker(n: Int) extends Ticker(n) {
val N = (n-1).U

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.0

when (cntReg === N) {
cntReg := 0.U

3

io.tick := cntReg === N

Listing 10.3: Tick generation with a counter.

10.3 Use Inheritance

Chisel is an object-oriented language. A hardware component, the Chisel Module is a
Scala class. Therefore, we can use inheritance to factor a common behavior out into a
parent class. We explore how to use inheritance with an example.

In Section 6.2 we have explored different forms of counters, which may be used
for a low-frequency tick generation. Let us assume we want to explore those different
versions, e.g., to compare their resource requirement. We start with an abstract class to
define the ticking interface:

abstract class Ticker(n: Int) extends Module {
val io = IO0O(new Bundle{
val tick = Output(Bool())
bH
}

Listing 10.3 shows a first implementation of that abstract class with a counter, counting
up, for the tick generation.

We can test all different versions of our ticker logic with a single test bench. We just
need to define the test bench to accept subtypes of Ticker. Listing 10.4 shows the Chisel
code for the tester. The TickerTester has several parameters: (1) the type parameter [T
<: Ticker] to accept a Ticker or any class that inherits from Ticker, (2) the design
under test, being of type T or a subtype thereof, and (3) the number of clock cycles we

110 Contents

10.3 USE INHERITANCE

expect for each tick. The tester waits for the first occurrence of a tick (the start might be
different for different implementations) and then checks that tick repeats every n clock
cycles.

With a first, easy implementation of the ticker, we can test the tester itself, probably
with some println debugging. When we are confident that the simple ticker and the
tester are correct, we can proceed and explore two more versions of the ticker. List-
ing 10.5 shows the tick generation with a counter counting down to 0. Listing 10.6
shows the nerd version of counting down to -1 to use less hardware by avoiding the
comparator.

We can test all three versions of the ticker by using ScalaTest specifications, creating
instances of the different versions of the ticker and passing them to the generic test
bench. Listing 10.7 shows the specification. We run only the ticker tests with:

sbt "testOnly TickerSpec”

Contents 111

10 HARDWARE GENERATORS

import chisel3.iotesters.PeekPokeTester
import org.scalatest._

class TickerTester[T <: Ticker](dut: T, n: Int) extends
PeekPokeTester(dut: T) {

// -1 is the notion that we have not yet seen the first tick
var count = -1
for (i <- ® ton * 3) {
if (count > 0) {
expect (dut.io.tick, 0)

}

if (count == 0) {
expect(dut.io.tick, 1)

}

val t = peek(dut.io.tick)
// On a tick we reset the tester counter to N-1,
// otherwise we decrement the tester counter
if (vt == 1) {
count = n-1
} else {
count -=1

step (1)

Listing 10.4: A tester for different versions of the ticker.

112 Contents

10.3 USE INHERITANCE

class DownTicker(n: Int) extends Ticker(n) {
val N = (n-1).U

val cntReg = RegInit(N)

cntReg := cntReg - 1.U

when(cntReg === 0.U) {
cntReg := N

3

io.tick := cntReg ===

Listing 10.5: Tick generation with a down counter.

class NerdTicker(n: Int) extends Ticker(n) {
val N = n

val MAX = (N - 2).S(8.W)
val cntReg = RegInit (MAX)
io.tick := false.B

cntReg := cntReg - 1.S

when(cntReg (7)) {
cntReg := MAX
io.tick := true.B

Listing 10.6: Tick generation by counting down to -1.

Contents 113

10 HARDWARE GENERATORS

class TickerSpec extends FlatSpec with Matchers {

"UpTicker 5" should "pass" in {
chisel3.iotesters.Driver(() => new UpTicker(5)) { c =>
new TickerTester(c, 5)
} should be (true)
3

"DownTicker 7" should "pass" in {
chisel3.iotesters.Driver(() => new DownTicker (7)) { c =>
new TickerTester(c, 7)
} should be (true)
}

"NerdTicker 11" should "pass" in {
chisel3.iotesters.Driver(() => new NerdTicker(11)) { c =>
new TickerTester(c, 11)
} should be (true)

Listing 10.7: ScalaTest specifications for the ticker tests.

114 Contents

11 Example Designs

In this section, we explore some small size digital designs, such as a FIFO buffer, which
are used as building blocks for a larger design. As another example, we design a serial
interface (also called UART), which itself may use the FIFO buffer.

11.1 FIFO Buffer

We can decouple a write (sender) and a reader (receiver) by a buffer between the writer
and reader. A common buffer is a first-in, first-out (FIFO) buffer. Figure 11.1 shows a
writer, the FIFO, and a reader. Data is put into the FIFO by the writer on din with an
active write signal. Data is read from the the FIFO by the reader on dout with an active
read signal.

A FIFO is initially empty, singled by the empty signal. Reading from an empty FIFO
is usually undefined. When data is written and never read a FIFO will become full.
Writing to a full FIFO is usually ignored and the data are lost. In other words, the
signals empty and full serve as handshake signals

Several different implementations of a FIFO are possible: E.g., using on-chip mem-
ory and read and write pointers or simply a chain of registers with a tiny state machine.
For small buffers (up to tens of elements) a FIFO organized with individual registers
connected into a chain of buffers is a simple implementation with a low resource re-
quirement. The code of the bubble FIFO is available in the chisel-examples repository.

!For completeness, the Chisel book repository contains a copy of the FIFO code as well.

— write —p [— read —
la— full —— — empty —»|

Writer FIFO Py Reader
— din —p»] — dout —p»]

Figure 11.1: A writer, a FIFO buffer, and a reader.

115

https://en.wikipedia.org/wiki/FIFO_%28computing_and_electronics%29
https://github.com/schoeberl/chisel-examples

11 EXAMPLE DESIGNS

We start by defining the IO signals for the writer and the reader side. The size of the
data is configurable with size. The write data are din and a write is signaled by write.
The signal full performs the flow control at the writer side.

class WriterIO(size: Int) extends Bundle {
val write = Input(Bool())
val full = Output(Bool())
val din = Input(UInt(size.W))

The reader side provides data with dout and the read is initiated with read. The empty
signal is responsible for the flow control at the reader side.

class ReaderIO(size: Int) extends Bundle {
val read = Input(Bool())
val empty = Output(Bool())
val dout = Output(UInt(size.W))

Listing 11.1 shows a single buffer. The buffer has a enqueueing port eng of type
WriterIO and a dequeueing port deq of type ReaderIO. The state elements of the buffer
is one register that holds the data (dataReg and one state register for the simple FSM
(stateReg). The FSM has only two states: either the buffer is empty or full. If the
buffer is empty, a write will register the input data and change to the full state. If the
buffer is full, a read will consume the data and change to the empty state. The 1O ports
full and empty represent the buffer state for the writer and the reader.

Listing 11.2 shows the complete FIFO. The complete FIFO has the same IO interface
as the individual FIFO buffers. BubbleFifo has as parameters the size of the data word
and depth for the number of buffer stages. We can build a depth stages bubble FIFO
out of depth FifoRegisters. We crate the stages by filling them into a Scala Array.
The Scala array has no hardware meaning, it just provides us with a container to have
references to the created buffers. In a Scala for loop we connect the individual buffers.
The first buffer’s enqueueing side is connected to the enqueueing IO of the complete
FIFO and the last buffer’s dequeueing side to the dequeueing side of the complete FIFO.

The presented idea of connecting individual buffers to implement a FIFO queue is
called a bubble FIFO, as the data bubbles through the queue. This is simple, and a good
solution when the data rate is considerable slower than the clock rate, e.g., as a decouple
buffer for a serial port, which is presented in the next section.

However, when the data rate approaches the clock frequency, the bubble FIFO has
two limitations: (1) As each buffer’s state has to toggle between empty and full, which

116 Contents

https://en.wikipedia.org/wiki/Flow_control_(data)

11.1 FIFO BUFFER

class FifoRegist
val io = IO(ne
val enqg = ne

val deq = ne

B

val empty
val stateReg =
val dataReg =

when(stateReg
when(io.enq.
stateReg
dataReg :=

}

}.elsewhen(stateReg

when(io.deq.
stateReg
dataReg :=

}
}.otherwise {
// There sho

}

io.enqg.full :=
io.deq.empty
io.deq.dout :=

full

er(size: Int) extends Module {
w Bundle {

w WriterIO(size)

w ReaderIO(size)

Nil = Enum(2)
RegInit (empty)
RegInit(0.U(size.W))

=== empty) {
write) {

= full

io.enqg.din

full) {

read) {

1= empty

0.U // just to better see empty slots in the
waveform

uld not be an otherwise state

(stateReg === full)
:= (stateReg === empty)
dataReg

Listing 11.1: A single stage of the bubble FIFO.

Contents

117

11 EXAMPLE DESIGNS

class BubbleFifo(size: Int, depth: Int) extends Module {
val io = I0(new Bundle {
val enqg = new WriterIO(size)
val deq = new ReaderIO(size)

i)

val buffers = Array.fill(depth) { Module(new
FifoRegister(size)) }

for (i <- O until depth - 1) {
buffers(i + 1).io.enq.din := buffers(i).io.deq.dout
buffers(i + 1).io.enqg.write := “buffers(i).io.deq.empty
buffers(i).io.deq.read := “buffers(i + 1).io.enq.full

3

io.enqg <> buffers(0®).io.enq

io.deq <> buffers(depth - 1).io.deq

Listing 11.2: A FIFO is composed of an array of FIFO bubble stages.

\ (bo Y b1 Y b2 Y b3 | ba } b5 | b6 | b7 |

Figure 11.2: One byte transmitted by a UART.

means the maximum throughput of the FIFO is 2 clock cycles per word. (2) The data
needs to bubble through the complete FIFO, therefore, the latency from the input to the
output is at least the number of buffers. I will present other possible implementations of
FIFOs in Section 11.3.

11.2 A Serial Port

A serial port (also called UART or RS-232) is one of the easiest options to communicate
between your laptop and an FPGA board. As the name implies, data is transmitted
serially. An 8-bit byte is transmitted as follows: one start bit (0), the 8-bit data, least
significant bit first, and then one or two stop bits (1). When no data is transmitted, the
output is 1. Figure 11.2 shows the timing diagram of one byte transmitted.

We design our UART in a modular way with minimal functionality per module. We
present a transmitter (TX), a receiver (RX), a buffer, and then usage of those base com-

118 Contents

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/RS-232

11.2 A SERIAL PORT

ponents.

First, we need an interface, a port definition. For the UART design, we use a ready/-
valid handshake interface, with the direction as seen from the transmitter.

class Channel extends Bundle {
val data = Input(Bits(8.W))
val ready = Output(Bool())
val valid = Input(Bool())

The convention of a ready/valid interface is that the data is transferred when both
ready and valid are asserted.

Listing 11.3 shows a bare-bone serial transmitter (Tx). The IO ports are the txd port,
where the serial data is sent and a Channel where the transmitter can receive the charac-
ters to serialize and send. To generate the correct timing, we compute a constant for by
computing the time in clock cycles for one serial bit.

We use three registers: (1) register to shift the data (serialize them) (shiftReg), (2) a
counter to generate the correct baud rate (cntReg), and (3) a counter for the number of
bits that still need to be shifted out. No additional state register of FSM is needed, all
state is encoded in those three registers.

Counter cntReg is continuously running (counting down to 0 and reset to the start
value when 0). All action is only done when cntReg is 0. As we build a minimal
transmitter, we have only the shift register to store the data. Therefore, the channel is
only ready when cntReg is 0 and no bits are left to shift out.

The IO port txd is directly connected to the least significant bit of the shift register.

When there are more bits to shift out (bitsReg =/= 0.U), we shift the bits to the right
and fill with 1 from the top (the idle level of a transmitter). If no more bits need to be
shifted out, we check if the channel contains data (signaled with the valid port). If so,
the bit string to be shifted out is constructed with one start bit (0), the 8-bit data, and
two stop bits (1). Therefore, the bit count is set to 11.

This very minimal transmitter has no additional buffer and can accept a new character
only when the shift register is empty and at the clock cycle when cntReg is 0. Accept-
ing new data only when cntReg is 0 also means that the ready flag is also de-asserted
when there would be space in the shift register. However, we do not want to add this
“complexity” to the transmitter but delegate it to a buffer.

Listing 11.4 shows a single byte buffer, similar to the FIFO register for the bubble
FIFO. The input port is a Channel interface, and the output is the Channel interface with
flipped directions. The buffer contains the minimal state machine to indicate empty or
full. The buffer driven handshake signals (in.ready and out.valid depend on the state

Contents 119

11 EXAMPLE DESIGNS

class Tx(frequency: Int, baudRate: Int) extends Module
val io = IO(new Bundle {
val txd = Output(Bits(1l.W))
val channel = new Channel ()

»

val BIT_CNT = ((frequency + baudRate / 2) / baudRate
1) .asUInt ()

val shiftReg = RegInit(0x7£f£f.0U)
val cntReg = RegInit(0.U(20.W))
val bitsReg = RegInit(0.U(4.W))

io.channel.ready := (cntReg === 0.U) && (bitsReg ===
io.txd := shiftReg(0)

when (cntReg === 0.U) {

cntReg := BIT_CNT
when(bitsReg =/= 0.U) {
val shift = shiftReg >> 1
shiftReg := Cat(1.U, shift(9, 0))
bitsReg := bitsReg - 1.U
}.otherwise {
when(io.channel.valid) {
// two stop bits, data, one start bit
shiftReg := Cat(Cat(3.U, io.channel.data), 0.U)
bitsReg := 11.U
}.otherwise {
shiftReg := 0x7£ff.U

}

}.otherwise {
cntReg := cntReg - 1.U
}

Listing 11.3: A transmitter for a serial port.

120 Contents

11.2 A SERIAL PORT

class Buffer extends Module {
val io = IO0O(new Bundle {
val in = new Channel ()

val out = Flipped(new Channel())

1D)
val empty :: full :: Nil = Enum(2)
val stateReg = RegInit(empty)
val dataReg = RegInit(0.U(8.W))
io.in.ready := stateReg === empty
io.out.valid := stateReg === full
when(stateReg === empty) {
when(io.in.valid) {
dataReg := io.in.data
stateReg := full
}

}.otherwise { // full
when(io.out.ready) {
stateReg := empty
}
}

io.out.data := dataReg

Listing 11.4: A single-byte buffer with a ready/valid interface.

Contents

121

11 EXAMPLE DESIGNS

class BufferedTx(frequency: Int, baudRate: Int) extends Module {
val io = I0(new Bundle {
val txd = Output(Bits(1l.W))
val channel = new Channel ()
b
val tx = Module(new Tx(frequency, baudRate))
val buf = Module(new Buffer())

buf.io.in <> io.channel
tx.io.channel <> buf.io.out
io.txd <> tx.io.txd

Listing 11.5: A transmitter with an additional buffer.

register.

When the state is empty, and data on the input is valid, we register the data and
switch to state full. When the state is full, and the downstream receiver is ready, the
downstream data transfer happens, and we switch back to state empty.

With that buffer we can extend our bare-bone transmitter. Listing 11.5 shows the
combination of the transmitter Tx with a single-buffer in front. This buffer now relaxes
the issue that Tx was ready only for single clock cycles. We delegated the solution of
this issue to the buffer module. An extension of the single word buffer to a real FIFO
can easily be done and needs no change in the transmitter or the single byte buffer.

Listing 11.6 shows the code for the receiver (Rx). A receiver is a little bit tricky, as it
needs to reconstruct the timing of the serial data. The receiver waits for the falling edge
of the start bit. From that event, the receiver waits 1.5 bit times to position itself into
the middle of bit 0. Then it shifts in the bits every bit time. You can observe these two
waiting times as START_CNT and BIT_CNT. For both times, the same counter (cntReg) is
used. After 8 bits are shifted in, valReg signals an available byte

Listing 11.7 shows the usage of the serial port transmitter by sending a friendly mes-
sage out. We define the message in a Scala string (msg) and converting it to a Chisel Vec
of UInt. A Scala string is a sequence that supports the map method. The map method
takes as argument a function literal, applies this function to each element, and builds
a sequence of the function’s return values. If the function literal shall have only one
argument, as it is in this case, the argument can be represented by _. Our function literal
calls the Chisel method .U to convert the Scala Char to a Chisel UInt. The sequence is
then passed to VecInit to construct a Chisel Vec. We index into the vector text with

122 Contents

11.2 A SERIAL PORT

class Rx(frequency: Int, baudRate: Int) extends Module {
val io = IO0O(new Bundle {
val rxd = Input(Bits(1l.W))
val channel = Flipped(new Channel())
iD)

val BIT_CNT = ((frequency + baudRate / 2) / baudRate - 1).U
val START_CNT = ((3 * frequency / 2 + baudRate / 2) /
baudRate - 1).U

// Sync in the asynchronous RX data
// Reset to 1 to not start reading after a reset
val rxReg = RegNext(RegNext(io.rxd, 1.U), 1.U)

val shiftReg = RegInit(’A’.U(8.W))
val cntReg = RegInit(0.U(20.W))
val bitsReg = RegInit(0.U(4.W))
val valReg = RegInit(false.B)

when(cntReg =/= 0.U) {

cntReg := cntReg - 1.U
}.elsewhen(bitsReg =/= 0.U0) {
cntReg := BIT_CNT
shiftReg := Cat(rxReg, shiftReg >> 1)
bitsReg := bitsReg - 1.U
// the last shifted in
when(bitsReg === 1.0U) {
valReg := true.B
}
// wait 1.5 bits after falling edge of start
}.elsewhen(rxReg === 0.U) {
cntReg := START_CNT
bitsReg := 8.U
}
when(valReg && io.channel.ready) {
valReg := false.B
}
io.channel.data := shiftReg
io.channel.valid := valReg

Listing 11.6: A receiver for a serial port.

Contents 123

11 EXAMPLE DESIGNS

class Sender(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val txd = Output(Bits(1.W))
b

val tx = Module(new BufferedTx(frequency, baudRate))
io.txd := tx.io.txd
val msg "Hello World!"

val text = VecInit(msg.map(_.U))
val len = msg.length.U

val cntReg = RegInit(0.U(8.W))

tx.io.channel.data := text(cntReg)
tx.io.channel.valid := cntReg =/= len

when(tx.io.channel.ready && cntReg =/= len) {
cntReg := cntReg + 1.U
}

Listing 11.7: Sending “Hello World!” via the serial port.

124 Contents

11.3 FIFO DESIGN VARIATIONS

class Echo(frequency: Int, baudRate: Int) extends Module {
val io = IO0O(new Bundle {
val txd = Output(Bits(l.W))
val rxd = Input(Bits(1l.W))
iD)

val tx = Module(new BufferedTx(frequency, baudRate))
val rx = Module(new Rx(frequency, baudRate))

io.txd := tx.io.txd

rx.io.rxd := io.rxd

tx.io.channel <> rx.io.channel

Listing 11.8: Echoing data on the serial port.

the counter cntReg to provide the individual characters to the buffered transmitter. With
each ready signal we increase the counter until the full string is sent out. The sender
keeps valid asserted until the last character has been sent out.

Listing 11.8 shows the usage of the receiver and the transmitter by connecting them
together. This connection generates an Echo circuit where each received character is
sent back (echoed).

11.3 FIFO Design Variations

In this section we will implement different variations of a FIFO queue. To make these
implementations interchangeable we will use inheritance, as introduced in Section 10.3.

11.3.1 Parameterizing FIFOs

We define an abstract FIFO class with a Chisel type as parameter to be able to buffer
any Chisel data type. In the abstract class we also test that the parameter depth has a
useful value.

abstract class Fifo[T <: Data](gen: T, depth: Int) extends
Module {
val io = IO(new FifoIO(gen))

Contents 125

11 EXAMPLE DESIGNS

assert(depth > 0, "Number of buffer elements needs to be
larger than 0")

In Section 11.1 we defined our own types for the interface with common names for
signals, such as write, full, din, read, empty, and dout. The input and the output of
such a buffer consists of data and two signals for handshaking (e.g., we write into the
FIFO when it is not full.

However, we can generalize this handshaking to the so called ready-valid interface.
E.g, we can enqueue an element (write into the FIFO) when the FIFO is ready. We
signal this at the writer side with valid. As this ready-valid interface is so common,
Chisel provides a definition of this interface in DecoupledIO as follows:?

class DecoupledIO[T <: Data](gen: T) extends Bundle {
val ready = Input(Bool())
val valid = Output(Bool())
val bits = Output(gen)

}

With the DecoupledIO interface we define the interface for our FIFOs: a FifoIO with an
enqg enqueue and a deq dequeue port consisting of read-valid interfaces. The DecoupledIO
interface is defined from the writer’s (producer’s) view point. Therefore, enqueue port
of the FIFO needs to flip the signal directions.

class FifoIO[T <: Data](private val gen: T) extends Bundle {
val enq = Flipped(new DecoupledIO(gen))
val deq = new DecoupledIO(gen)

}

With the abstract base class and an interface we can specialize for different FIFO
implementations optimized for different parameters (speed, area, power, or just simplic-

ity).

11.3.2 Redesigning the Bubble FIFO

We can redefine our bubble FIFO from Section 11.1 using standard ready-valid inter-
faces and being parametrizable with a Chisel data type.

Listing 11.9 shows the refactored bubble FIFO with ready-valid interface. Note what
we put the Buffer component inside from BubbleFifo as private class. This helper class

2This is a simplification, as DecoupledIO actually extends an abstract class.

126 Contents

11.3 FIFO DESIGN VARIATIONS

class BubbleFifo[T <: Data](gen: T, depth: Int) extends
Fifo(gen: T, depth: Int) {

private class Buffer () extends Module {
val io = IO(new FifoIO(gen))

val fullReg RegInit(false.B)
val dataReg = Reg(gen)

when (fullReg) {
when (io.deq.ready) {
fullReg := false.B
}
} .otherwise {
when (io.enq.valid) {

fullReg := true.B
dataReg := io.enq.bits
b
}
io.eng.ready := !fullReg
io.deqg.valid := fullReg
io.deq.bits := dataReg

}

private val buffers = Array.fill(depth) { Module(new
Buffer()) }
for (i <- O until depth - 1) {
buffers(i + 1).io.enq <> buffers(i).io.deq

}

io.enqg <> buffers(0).io.enqg
io.deq <> buffers(depth - 1).io.deq

Listing 11.9: A bubble FIFO with a ready-valid interface.

Contents 127

11 EXAMPLE DESIGNS

is only needed for this component and therefore we hide it and avoid polluting the name
space. The buffer class has also been simplified. Instead of an FSM e use only a single
bit, fullReg, to note the state of the buffer: full or empty.

The bubble FIFO is simply, easy to understand, and uses minimal resources. How-
ever, as each buffer stage has to toggle between empty and full, the maximum bandwidth
of this FIFO is two clock cycles per word.

One could consider to look at both interface sides in the buffer to be able to accept a
new word when the producer valid and the consumer is ready. However, this introduces
a combinational path from the consumer handshake to the producer handshake, which
violates the semantics of the ready-valid protocol.

11.3.3 Double Buffer FIFO

One solution is stay ready even when the buffer register if full. To be able to accept a
data word from the producer, when the consumer is not ready we need a second buffer,
we call it the shadow register. When the the buffer is full, new data is stored in the
shadow register and ready is de-asserted. When the consumer becomes ready again,
data is transferred from the data register to the consumer and from the shadow register
into the data register.

class DoubleBufferFifo[T <: Data](gen: T, depth: Int) extends
Fifo(gen: T, depth: Int) {

private class DoubleBuffer[T <: Data](gen: T) extends Module {
val io = IO(new FifoIO(gen))

val empty :: one :: two :: Nil = Enum(3)
val stateReg = RegInit(empty)

val dataReg = Reg(gen)

val shadowReg = Reg(gen)

switch(stateReg) {
is (empty) {
when (io.enqg.valid) {
stateReg := one
dataReg := io.enq.bits
3
}
is (one) {
when (io.deq.ready && !io.enq.valid) {
stateReg := empty

128 Contents

11.3 FIFO DESIGN VARIATIONS

}
when (io.deq.ready && io.enq.valid) {
stateReg := one
dataReg := io.enq.bits
}
when (!io.deq.ready && io.enqg.valid) {
stateReg := two
shadowReg := io.enq.bits
}
}
is (two) {
when (io.deq.ready) {
dataReg := shadowReg
stateReg := one
3
b
}
io.enqg.ready := (stateReg === empty || stateReg === one)
io.deq.valid := (stateReg === one || stateReg === two)
io.deq.bits := dataReg

}

private val buffers = Array.fill((depth+1)/2) { Module(new
DoubleBuffer(gen)) 1}

for (i <- O until (depth+1)/2 - 1) {
buffers(i + 1).io.enq <> buffers(i).io.deq

}

io.enq <> buffers(0).io.enq

io.deq <> buffers((depth+1)/2 - 1).io.deq

Listing 11.10: A FIFO with double buffer elements.

Listing 11.10 shows the double buffer. As each buffer element can store two entries
we need only half of the buffer elements (depth/2). The DoubleBuffer contains two
registers, dataReg and shadowReg. The consumer is served always from shadowReg.
The double buffer has three states: empty, one, and two, which signal the fill level of the
double buffer. The buffer is ready to accept new data when is it in state empty or one.
The has valid data when it is in state one or two.

Contents 129

11 EXAMPLE DESIGNS

If we run the FIFO at full speed and the consumer is always ready the steady state of
the double buffers are one. Only when the consumer de-asserts ready, the queue fills up
and the buffers enter state two. However, compared to a single bubble FIFO, a restart
of the queue takes only half the number fo clock cycles for the same buffer capacity.
Similar the fall through latency is half of the bubble FIFO.

11.3.4 FIFO with Register Memory

When you come with a software engineering background you may have been wondering
that we built hardware queues out of many small individual small buffer elements, all
executing in parallel and handshaking with upstream and downstream elements. For
small buffers this is probably the most efficient implementation.

A queue in software is usually used by a sequential code in a single thread. Or as
a queue to decouple a producer and consumer thread. In this setting a fixed size FIFO
queue is usually implemented as a circular buffer. Two pointers point into read and
write positions in a memory set aside for the queue. When the pointers reach the end of
the memory, the are set back to the begin of that memory. The difference between the
two pointers is the number of elements in the queue. When the two pointers point to the
same address, the queue is either empty or full. To distinguish between empty and full
we need another flag.

We can implement such a memory based FIFO queue in hardware as well. For small
queues, we can use a register file (i.e., aReg(Vec())). Listing 11.11 shows a FIFO queue
implemented with memory and read and write pointers.

class RegFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen:
T, depth: Int) {

def counter(depth: Int, incr: Bool): (UInt, UInt) = {
val cntReg = RegInit(0.U(log2Ceil (depth).W))
val nextVal = Mux(cntReg === (depth-1).U, 0.U, cntReg + 1.0U)
when (incr) {
cntReg := nextVal
}
(cntReg, nextVal)
}

// the register based memory
val memReg = Reg(Vec(depth, gen))

val incrRead = WireDefault(false.B)

130 Contents

https://en.wikipedia.org/wiki/Circular_buffer

11.3 FIFO DESIGN VARIATIONS

val incrWrite = WireDefault(false.B)
val (readPtr, nextRead) = counter(depth, incrRead)
val (writePtr, nextWrite) = counter(depth, incrWrite)

val emptyReg = RegInit(true.B)
val fullReg = RegInit(false.B)

when (io.enqg.valid && !'fullReg) {

memReg(writePtr) := io.enq.bits
emptyReg := false.B
fullReg := nextWrite === readPtr
incrWirite := true.B

when (io.deq.ready && !emptyReg) {
fullReg := false.B

emptyReg := nextRead === writePtr
incrRead := true.B
}
io.deq.bits := memReg(readPtr)
io.enqg.ready := !fullReg
io.deqg.valid := !emptyReg

Listing 11.11: A FIFO with a register based memory.

As there are two pointers that behave the same, being incremented on an action and
wrap around at the end of the buffer, we define a function counter that implements
those wrapping counters. With log2Ceil(depth) .W we compute the bit length of the
counter. The next value is either an increment by 1 or a wrap around to 0. The counter
is incremented only when the input incr is true.B.

Furthermore, as we need also the possible next value (increment or 0 on wrap around),
we return this value from the counter function as well. In Scala we can return a so called
tuple, which is simply a container to hold more than one value. The syntax to create such
a duple is simply wrapping the comma separated values in parentheses:

val t = (vl1, v2)

We can deconstruct such a tuple by using the parenthesis notation on the left hand side
of the assignment:

Contents 131

11 EXAMPLE DESIGNS

val (x1, x2) =t

For the memory we us a register of a vector (Reg(Vec(depth, gen)) of Chisel data
type gen. We define two signal to increment the read and write pointer and create the
read and write pointers with the function counter. When both pointer are equal, the
buffer is either empty or full. We define two flags to for the notion of empty and full.

When the producer asserts valid and the FIFO is not full we: (1) write into the buffer,
(2) ensure emptyReg is de-asserted, (3) mark the buffer full if the write pointer will catch
up with the read pointer in the next clock cycle (compare the current read pointer with
the next write pointer), and (4) signal the write counter to increment.

When the consumer is ready and the FIFO is not empty we: (1) ensure that the
fullReg is de-asserted, (2) mark the buffer empty if the read pointer will catch up with
the write pointer in the next clock cycle, and (3) signal the read counter to increment.

The output of the FIFO is the memory element at the read pointer address. The ready
and valid flags are simply derived from the full and empty flags.

11.3.5 FIFO with On-Chip Memory

The last version of the FIFO used a register files to represent the memory, which is a
good solution for a small FIFO. For larger FIFOs it is better to use on-chip memory.
Listing 11.12 shows a FIFO using a synchronous memory for storage.

class MemFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen:
T, depth: Int) {

def counter(depth: Int, incr: Bool): (UInt, UInt) = {
val cntReg = RegInit(0.U(log2Ceil (depth).W))
val nextVal = Mux(cntReg === (depth-1).U, 0.U, cntReg + 1.0U)
when (incr) {
cntReg := nextVal
}
(cntReg, nextVal)

val mem = SyncReadMem(depth, gen)
val incrRead = WireDefault(false.B)
val incrWrite = WireDefault(false.B)

val (readPtr, nextRead) = counter(depth, incrRead)
val (writePtr, nextWrite) = counter(depth, incrWrite)

132 Contents

11.3 FIFO DESIGN VARIATIONS

val
val

emptyReg
fullReg

Re

idle
stateReg
shadowReg

val vali
val

val

when (io.enqg.val
mem.write(writ
emptyReg := fa
fullReg nex
incrWrite t

}

val data mem.r
// Handling of t
// with an addit
switch(stateReg)
is(idle) {
when (! emptyR
stateReg
fullReg
emptyReg
incrRead

}

}
is(valid) {
when(io.deq.
when(!empt
stateReg
fullReg
emptyReg
incrRead
otherwis
stateReg

}
}

} otherwise
shadowReg
stateReg

B

RegInit (true.B)

gInit(false.B)

d full

Nil = Enum(3)

RegInit(idle)

Reg(gen)

id &&
ePtr,
1se.B
tWrite
rue.B

I fullReg) {
io.enqg.bits)

readPtr

ead(readPtr)

he one cycle memory latency
ional output register

{

eg) {
valid
false.B
nextRead
true.B

writePtr

ready) {
yReg) {

;= valid
false.B
nextRead ===
true.B

writePtr

e

I~

idle

{

data
full

Contents 133

11 EXAMPLE DESIGNS

}
is(full) {
when(io.deq.ready) {
when (! emptyReg) {
stateReg := valid
fullReg := false.B
emptyReg := nextRead === writePtr
incrRead := true.B
} otherwise {
stateReg := idle
}
}
3
}
io.deq.bits := Mux(stateReg === valid, data, shadowReg)
io.eng.ready := !fullReg
io.deq.valid := stateReg === valid || stateReg === full

Listing 11.12: A FIFO with a on-chip memory.

The handling of read and write pointer is identical to the register memory FIFO.
However, a synchronous on-chip memory delivers the result of a read in the next clock
cycle, where the read of the register file was available in the same clock cycle.

Therefore, we need some additional FSM and a shadow register to handle this latency.
We read the memory out and provide the value of the top of the queue to the output port.
If that value is not consumed, we need to store it in the shadow register shadowReg while
reading the next value from the memory. The state machine consists of three states to
represent: (1) an empty FIFO, (2) a valid data read out from the memory, and (3) head
of the queue in the shadow register and valid data (the next element) from the memory.

The memory based FIFO can efficiently hold larger amounts of data in the queue and
has a short fall through latency. In the last design, the output of the FIFO may come
directly from the memory read. If this data path is in the critical path of the design, we
can easily pipeline our design by combining two FIFOs. Listing 11.13 shows such a
combination. On the output of the memory based FIFO we add a single stage double
buffer FIFO to decouple the memory read path from the output.

134 Contents

11.4 EXERCISES

class CombFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen:
T, depth: Int) {

val memFifo = Module(new MemFifo(gen, depth))

val bufferFIFO = Module(new DoubleBufferFifo(gen, 2))
io.enq <> memFifo.io.enq

memFifo.io.deq <> bufferFIFO.io.enq
bufferFIFO.io.deq <> io.deq

Listing 11.13: Combining a memory based FIFO with double-buffer stage.

11.4 Exercises

This exercise section is a little bit longer as it contains two exercises: (1) exploring
the bubble FIFO and implement a different FIFO design; and (2) exploring the UART
and extending it. Source code for both exercises is included in the chisel-examples
repository.

11.4.1 Explore the Bubble FIFO

The FIFO source also includes a tester that provokes different read and write behavior
and generates a waveform in the value change dump (VCD) format. The VCD file
can be viewed with a waveform viewer, such as GTKWave. Explore the FifoTester in
the repository. The repository contains a Makefile to run the examples, for the FIFO
example just type:

$ make fifo

This make command will compile the FIFO, run the test, and starts GTKWave for wave-
form viewing. Explore the tester and the generated waveform.

In the first cycles, the tester writes a single word. We can observe in the waveform
how that word bubbles through the FIFO, therefore the name bubble FIFO. This bub-
bling also means that the latency of a data word through the FIFO is equal to the depth
of the FIFO.

The next test fills the FIFO until it is full. A single read follows. Notice how the
empty word bubbles from the reader side of the FIFO to the writer side. When a bubble
FIFO is full, it takes a latency of the buffer depth for a read to affect the writer side.

Contents 135

https://github.com/schoeberl/chisel-examples
https://en.wikipedia.org/wiki/Value_change_dump
http://gtkwave.sourceforge.net/
https://github.com/schoeberl/chisel-examples/blob/master/src/test/scala/simple/FifoTester.scala

11 EXAMPLE DESIGNS

The end of the test contains a loop that tries to write and read at maximum speed.
We can see the bubble FIFO running at maximum bandwidth, which is two clock cycles
per word. A buffer stage has always to toggle between empty and full for a single word
transfer.

A bubble FIFO is simple and for small buffers has a low resource requirement. The
main drawbacks of an n stage bubble FIFO are: (1) maximum throughput is one word
every two clock cycles, (2) a data word has to travel n clock cycles from the writer end
to the reader end, and (3) a full FIFO needs n clock cycles for the restart.

These drawbacks can be solved by a FIFO implementation with a circular buffer.
The circular buffer can be implemented with a memory and read and write pointers.
Implement a FIFO as a circular buffer with four elements, using the same interface,
and explore the different behavior with the tester. For an initial implementation of the
circular buffer use, as a shortcut, a vector of registers (Reg(Vec(4, UInt(size.W)))).

11.4.2 The UART

For the UART example, you need an FPGA board with a serial port and a serial port
for your laptop (usually with a USB connection). Connect the serial cable between
the FPGA board and the serial port on your laptop. Start a terminal program, e.g.,
Hyperterm on Windows or gtkterm on Linux:

§ gtkterm &

Configure your port to use the correct device, with a USB UART this is often something
like /dev/ttyUSB®. Set the baud rate to 115200 and no parity or flow control (hand-
shake). With the following command you can create the Verilog code for the UART:

$ make uart

Then use your synthesize tool to synthesize the design. The repository contains a Quar-
tus project for the DE2-115 FPGA board. With Quartus use the play button to synthesize
the design and then configure the FPGA. After configuration, you should see a greeting
message in the terminal.

Extend the blinking LED example with a UART and write 0 and 1 to the serial line
when the LED is off and on. Use the BufferedTx, as in the Sender example.

With the slow output of characters (two per second), you can write the data to the
UART transmit register and can ignore the read/valid handshake. Extend the example
by writing repeated numbers 0-9 as fast as the baud rate allows. In this case, you have
to extend your state machine to poll the UART status to check if the transmit buffer is
free.

136 Contents

https://en.wikipedia.org/wiki/Circular_buffer

11.4 EXERCISES

The example code contains only a single buffer for the Tx. Feel free to add the FIFO
that you have implemented to add buffering to the transmitter and receiver.

11.4.3 FIFO Exploration

Write a simple FIFO with 4 buffer elements in dedicated registers. Use 2-bit read and
write counters, which can just just overflow. As a further simplification consider the
situation when the read and write pointers are equal as empty FIFO. This means you
can maximally store 3 elements. This simplification avoids the counter function from
the example in Listing 11.11 and the handling of the empty or full with the same pointer
values. We do not need empty or full flags, as this can be derived form the pointer values
alone. How much simpler is this design?

The presented different FIFO designs have different design tradeoffs relative to fol-
lowing properties: (1) maximum throughput, (2) fall through latency, (3) resource re-
quirement, and (4) maximum clock frequency. Explore all FIFO variations in different
sizes by synthesizing them for an FPGA; the source is available at chisel-examples.
Where are the sweet spots for FIFOs of 4 words, 16 words, and 256 words?

Contents 137

https://github.com/schoeberl/chisel-examples

12 Design of a Processor

As one of the last chapters in this book, we present a medium size project: the design,
simulation, and testing of a microprocessor. To keep this project manageable, we design
a simple accumulator machine. The processor is called Leros [8] and is available in
open source at https://github.com/leros-dev/leros. We would like to mention
that this is an advanced example and some computer architecture knowledge is needed
to follow the presented code examples.

Leros is designed to be simple, but still a good target for a C compiler. The descrip-
tion of the instructions fits on one page, see Table 12.1. In that table A represents the
accumulator, PC is the program counter, i is an immediate value (0 to 255), Rn a register
n (0 to 255), o a branch offset relative to the PC, and AR an address register for memory
access.

12.1 Start with an ALU

A central component of a processor is the arithmetic logic unit, or ALU for short. There-
fore, we start with the coding of the ALU and a test bench. First, we define an Enum to
represent the different operations of the ALU:

object Types {
val nop :: add :: sub :: and :: or :: xor :: 1ld :: shr :: Nil
= Enum(8)
}

An ALU usually has two operand inputs (call them a and b), an operation op (or opcode)
input to select the function and an output y. Listing 12.1 shows the ALU.

We first define shorter names for the three inputs. The switch statement defines the
logic for the computation of res. Therefore, it gets a default assignment of 0. The
switch statement enumerates all operations and assigns the expression accordingly. All
operations map directly to a Chisel expression. In the end, we assign the result res to
the ALU output y

For the testing, we write the ALU function in plain Scala, as shown in Listing 12.2.

139

https://leros-dev.github.io/
https://github.com/leros-dev/leros
https://en.wikipedia.org/wiki/Arithmetic_logic_unit

12 DESIGN OF A PROCESSOR

Opcode Function Description

add A=A+Rn Add register Rn to A

addi A=A+i Add immediate value i to A

sub A=A-Rn Subtract register Rn from A

subi A=A-i Subtract immediate value i from A
shr A=A>>>1 Shift A logically right

load A =Rn Load register Rn into A

loadi A=i Load immediate value i into A
and A =AandRn And register Rn with A

andi A=Aandi And immediate value i with A

or A=AorRn Or register Rn with A

ori A=Aori Or immediate value i with A

xor A =AxorRn Xor register Rn with A

Xori A =Axori Xor immediate value i with A
loadhi Ais_g=i Load immediate into second byte
loadh2i Arz_16=1 Load immediate into third byte
loadh3i Az =1 Load immediate into fourth byte
store Rn=A Store A into register Rn

jal PC=A,Rn=PC+2 Jump to A and store return address in Rn
ldaddr AR =A Load address register AR with A
loadind A =mem[AR+(i << 2)] Load a word from memory into A
loadindbu A = mem[AR+i]7_g Load a byte unsigned from memory into A
storeind mem[AR+(i << 2)]=A Store A into memory

storeindb mem[AR+i]7_g=A Store a byte into memory

br PC=PC+o Branch

brz ifA==0PC=PC+o Branch if A is zero

brnz ifAl=0PC=PC+o0 Branch if A is not zero

brp if A>=0PC=PC+o0 Branchif A is positive

brn if A<OPC=PC+o Branch if A is negative

scall scall A System call (simulation hook)

140

Table 12.1: Leros instruction set.

Contents

12.1 START WITH AN ALU

class Alu(size: Int) extends Module {
val io = IO0O(new Bundle {
val op = Input(UInt(3.W))
val a = Input(SInt(size.W))
val b = Input(SInt(size.W))
val y = Output(SInt(size.W))
b

val op = io.op

val a = io.a

val b = io.b

val res = WireDefault(®.S(size.W))

switch(op) {

is(add) {
res := a + b
}
is(sub) {
res := a - b
}
is(and) {
res := a &b
}
is(Cor) {
res :=a | b
}
is(xor) {
res :=a "~ b
}
is (shr) {
// the following does NOT result in an unsigned shift
// res := (a.asUInt >> 1).asSInt
// work around
res := (a > 1) & Ox7fffffff.S
}
is(ld) {
res := b
}
}
io.y := res

Listing 12.1: The Leros ALU.

Contents 141

12 DESIGN OF A PROCESSOR

def alu(a: Int, b: Int, op: Int): Int = {

op match {

case 1 => a + b

case 2 =>a - b

case 3 => a & b

case 4 =>a | b

case 5 =>a " b

case 6 => b

case 7 => a >>> 1

case _ => -123 // This shall not happen

Listing 12.2: The Leros ALU function written in Scala.

While this duplication of hardware written in Chisel by a Scala implementation does not
detect errors in the specification; it is at least some sanity check. We use some corner
case values as the test vector:

// Some interesting corner cases
val interesting = Array(l, 2, 4, 123, 0, -1, -2, 0x80000000,
Ox7fffffff)

We test all functions with those values on both inputs:

def test(values: Seq[Int]) = {
for (fun <- add to shr) {
for (a <- values) {
for (b <- values) {

poke(dut.io.op, fun)
poke(dut.io.a, a)
poke(dut.io.b, b)
step (1)
expect(dut.io.y, alu(a, b, fun.toInt))

142 Contents

12.2 DECODING INSTRUCTIONS

Full, exhaustive testing for 32-bit arguments is not possible, which was the reason we
selected some corner cases as input values. Beside testing against corner cases, it is also
useful to test against random inputs:

val randArgs = Seq.fill(100) (scala.util.Random.nextInt)
test (randArgs)

You can run the tests within the Leros project with
$ sbt "test:runMain leros.AluTester"
and shall produce a success message similar to:

[info] [0.001] SEED 1544507337402

test Alu Success: 70567 tests passed in 70572 cycles taking
3.845715 seconds

[info] [3.825] RAN 70567 CYCLES PASSED

12.2 Decoding Instructions

From the ALU, we work backward and implement the instruction decoder. However,
first, we define the instruction encoding in its own Scala class and a shared package. We
want to share the encoding constants between the hardware implementation of Leros,
an assembler for Leros, and an instruction set simulator of Leros.

package leros.shared {

object Constants {
val NOP = 0x00
val ADD = 0x08
val ADDI = 0x09
val SUB = 0x0c
val SUBI = 0x0d
val SHR = 0x10
val LD = 0x20
val LDI 0x21
val AND 0x22
val ANDI = 0x23
val OR = 0x24
val ORI = 0x25
val XOR = 0x26

Contents 143

12 DESIGN OF A PROCESSOR

val XORI 0x27
val LDHI = 0x29
val LDH2I = 0x2a
val LDH3I = 0x2b
val ST = 0x30

//

For the decode component, we define a Bundle for the output, which is later fed partially
into the ALU.

class DecodeOut extends Bundle {
val ena = Bool()
val func = UInt(Q)
val exit = Bool()

}

Decode takes as input an 8-bit opcode and delivers the decoded signals as output. Those
driving signals are assigned a default value with WireDefault.

class Decode() extends Module {
val io = IO(new Bundle {
val din = Input(UInt(8.W))
val dout = Output(new DecodeOut)
b

val f = WireDefault (nop)
val imm = WireDefault(false.B)
val ena = WireDefault(false.B)

io.dout.exit := false.B

The decoding itself is just a large switch statement on the part of the instruction that
represents the opcode (in Leros for most instructions the upper 8 bits.)

switch(io.din) {

is(ADD.U) {
f := add
ena := true.B
}
is(ADDI.U) {
f := add
imm := true.B
ena := true.B

144 Contents

12.3 ASSEMBLING INSTRUCTIONS

}
is(SUB.U) {
f := sub
ena := true.B
}
is(SUBI.U) {
f := sub
imm := true.B
ena := true.B
}
is(SHR.U) {
f := shr
ena := true.B
}
//

12.3 Assembling Instructions

To write programs for Leros we need an assembler. However, for the very first test,
we can hard code a few instructions, and put them into a Scala array, which we use to
initialize the instruction memory.

val prog = Array[Int](
0x0903, // addi 0x3
0x09ff, // -1
0x0d02, // subi 2
0x21lab, // 1di Oxab
0x230f, // and 0x0f
0x25c3, // or 0xc3
0x0000

)

def getProgramFix() = prog

However, this is a very inefficient approach to test a processor. Writing an assembler
with an expressive language like Scala is not a big project. Therefore, we write a simple
assembler for Leros, which is possible within about 100 lines of code. We define a
function getProgram that calls the assembler. For branch destinations, we need a symbol
table, which we collect in a Map. A classic assembler runs in two passes: (1) collect the
values for the symbol table and (2) assemble the program with the symbols collected

Contents 145

12 DESIGN OF A PROCESSOR

in the first pass. Therefore, we call assemble twice with a parameter to indicate which
pass it is.

def getProgram(prog: String) = {
assemble (prog)

}

// collect destination addresses in first pass
val symbols = collection.mutable.Map[String, Int](Q)

def assemble(prog: String): Array[Int] = {
assemble(prog, false)
assemble (prog, true)

}

The assemble function starts with reading in the source file' and defining two helper
functions to parse the two possible operands: (1) an integer constant (allowing decimal
or hexadecimal notation) and (2) to read a register number.

def assemble(prog: String, pass2: Boolean): Array[Int] = {

val source = Source.fromFile(prog)
var program = List[Int](Q)
var pc = 0

def toInt(s: String): Int = {
if (s.startsWith("0x")) {
Integer.parselnt(s.substring(2), 16)
} else {
Integer.parselInt(s)

def regNumber(s: String): Int = {
assert(s.startsWith("r"), "Register numbers shall start
with \"r\’")
s.substring(l).tolnt
3

Listing 12.3 shows the core of the assembler for Leros. A Scala match expression

IThis function does not actually read the source file, but for this discussion we can consider it as the reading
function.

146 Contents

12.4 EXERCISE

for (line <- source.getLines()) {

if (!pass2) println(line)

val tokens = line.trim.split(" ")

val Pattern = "(.*:)".r

val instr = tokens(®) match {
case "//" => // comment
case Pattern(l) => if (!pass2) symbols +=

(l.substring(®, l.length - 1) -> pc)

case "add" => (ADD << 8) + regNumber (tokens(l))
case "sub" => (SUB << 8) + regNumber (tokens(1l))
case "and" => (AND << 8) + regNumber (tokens(1l))
case "or" => (OR << 8) + regNumber(tokens (1))
case "xor" => (XOR << 8) + regNumber (tokens(1l))
case "load" => (LD << 8) + regNumber (tokens(1l))
case "addi" => (ADDI << 8) + toInt(tokens (1))
case "subi" => (SUBI << 8) + toInt(tokens(1l))
case "andi" => (ANDI << 8) + toInt(tokens(1l))
case "ori" => (ORI << 8) + toInt(tokens(1l))
case "xori" => (XORI << 8) + toInt(tokens(1l))
case "shr" => (SHR << 8)

// ..

case "" => // println("Empty line")

case t: String => throw new Exception("Assembler error:
unknown instruction: " + t)

case _ => throw new Exception("Assembler error")

Listing 12.3: The main part of the Leros assembler.

covers the core of the assembly function.

12.4 Exercise

This exercise assignment in one of the last Chapters is in a very free form. You are at
the end of your learning tour through Chisel and ready to tackle design problems that
you find interesting.

One option is to reread the chapter and read along with all the source code in the
Leros repository, run the test cases, fiddle with the code by breaking it and see that tests
fail.

Contents 147

https://github.com/leros-dev/leros

12 DESIGN OF A PROCESSOR

Another option is to write your implementation of Leros. The implementation in the
repository is just one possible organization of a pipeline. You could write a Chisel sim-
ulation version of Leros with just a single pipeline stage, or go creasy and superpipeline
Leros for the highest possible clocking frequency.

A third option is to design your processor from scratch. Maybe the demonstration of
how to build the Leros processor and the needed tools has convinced you that processor
design and implementation is no magic art, but the engineering that can be very joyful.

148 Contents

13 Contributing to Chisel

Chisel is an open-source project under constant development and improvement. There-
fore, you can also contribute to the project. Here we describe how to set up your envi-
ronment for Chisel library development and how to contribute to Chisel.

13.1 Setup the Development Environment

Chisel consists of several different repositories; all hosted at the freechips organization
at GitHub.

Fork the repository, which you like to contribute, into your personal GitHub account.
You can fork the repository by pressing the Fork button in the GitHub web interface.
Then from that fork, clone your fork of the repository. In our example, we change
chisel3, and the clone command for my local fork is:

$ git clone git@github.com:schoeberl/chisel3.git

To compile Chisel 3 and publish as a local library execute:

$ cd chisel3
sbt compile
$ sbt publishlLocal

&~

Watch out during the publish local command for the version string of the published
library, which contains the string SNAPSHOT. If you use the tester and the published ver-
sion is not compatible with the Chisel SNAPSHOT, fork and clone the chisel-tester repo
as well and publish it locally.

To test your changes in Chisel, you probably also want to set up a Chisel project, e.g.,
by forking/cloning an empty Chisel project, renaming it, and removing the .git folder
from it.

Change the build.sbt to reference the locally published version of Chisel. Further-
more, at the time of this writing, the head of Chisel source uses Scala 2.12, but Scala
2.12 has troubles with anonymous bundles. Therefore, you need to add the following
Scala option: "-Xsource:2.11". The build. sbt should look similar to:

149

https://github.com/freechipsproject
https://github.com/freechipsproject
https://github.com/freechipsproject/chisel-testers
https://github.com/schoeberl/chisel-empty
https://github.com/freechipsproject/chisel-template/issues/35

13 CONTRIBUTING TO CHISEL

scalaVersion := "2.12.6"
scalacOptions := Seq("-Xsource:2.11")

resolvers ++= Seq(
Resolver.sonatypeRepo("snapshots"),
Resolver.sonatypeRepo("releases")

)

libraryDependencies +=

"edu.berkeley.cs" %% "chisel3" % "3.2-SNAPSHOT"
libraryDependencies +=

"edu.berkeley.cs" %% "chisel-iotesters" % "1.3-SNAPSHOT"

Compile your Chisel test application and take a close look if it picks up the local
published version of the Chisel library (there is also a SNAPSHOT version published,
so if, e.g., the Scala version is different between your Chisel library and your application
code, it picks up the SNAPSHOT version from the server instead of your local published
library.)

See also some notes at the Chisel repo.

13.2 Testing

When you change the Chisel library, you should run the Chisel tests. In an sbt based
project, this is usually run with:

$ sbt test

Furthermore, if you add functionality to Chisel, you should also provide tests for the
new features.

13.3 Contribute with a Pull Request

In the Chisel project, no developer commits directly to the main repository. A contri-
bution is organized via a pull request from a branch in a forked version of the library.
For further information, see the documentation at GitHub on collaboration with pull
requests. The Chisel group started to document contribution guidelines.

150 Contents

https://github.com/freechipsproject/chisel3#for-chisel-developers
https://help.github.com/articles/creating-a-pull-request-from-a-fork/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://help.github.com/categories/collaborating-with-issues-and-pull-requests/
https://github.com/freechipsproject/chisel-lang-governance/blob/master/reviewer_guidelines.md

13.4 EXERCISE

13.4 Exercise

Invent a new operator for the UInt type, implement it in the Chisel library, and write
some usage/test code to explore the operator. It does not need to be a useful operator;
just anything will be good, e.g., a ? operator that delivers the lefthand side if it is
different from O otherwise the righthand side. Sounds like a multiplexer, right? How
many lines of code did you need to add?"

As simple as this was, please be not tempted to fork the Chisel project and add your
little extensions. Changes and extension shall be coordinated with the main developers.
This exercise was just a simple exercise to get you started.

If you are getting bold, you could pick one of the open issues and try to solve it.
Then contribute with a pull request to Chisel. However, probably first watch the style of
development in Chisel by watching the GitHub repositories. See how changes and pull
requests are handled in the Chisel open-source project.

"' A quick and dirty implementation needs just two lines of Scala code.

Contents 151

https://github.com/freechipsproject/chisel3/issues

14 Summary

This book presented an introduction to digital design using the hardware construction
language Chisel. We have seen several simple to medium-sized digital circuits described
in Chisel. Chisel is embedded in Scala and therefore inherits the powerful abstraction
of Scala. As this book is intended as an introduction, we have restricted our examples
to simple uses of Scala. A next logical step is to learn a few basics of Scala and apply
them to your Chisel project.

I would be happy to receive feedback on the book, as I will further improve it and
will publish new editions. You can contact me at mailto:masca@dtu.dk, or with an
issue request on the GitHub repository. I am also happily accepting pull requests for the
book repository for any fixes and improvements.

Source Access

This book is available in open source. The repository also contains slides for a Chisel
course and all Chisel examples: https://github.com/schoeberl/chisel-book

A collection of medium-sized examples, which most are referenced in the book, is
also available in open source. This collection also contains projects for various popular
FPGA boards: https://github.com/schoeberl/chisel-examples

153

mailto:masca@dtu.dk
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-examples

A Chisel Projects

Chisel is not (yet) used in many projects. Therefore, open-source Chisel code to learn
the language and the coding style is rare. Here we list several projects we are aware of
that use Chisel and are in open source.

Rocket Chip is a RISC-V [13] processor-complex generator that comprises the Rocket
microarchitecture and TileLink interconnect generators. Originally developed at
UC Berkeley as the first chip-scale Chisel project [1], Rocket Chip is now com-
mercially supported by SiFive.

Sodor is a collection of RISC-V implementations intended for educational use. It con-
tains 1, 2, 3, and 5 stages pipeline implementations. All processors use a simple
scratchpad memory shared by instruction fetch, data access, and program loading
via a debug port. Sodor is mainly intended to be used in simulation.

Patmos is an implementation of a processor optimized for real-time systems [10]. The
Patmos repository includes several multicore communication architectures, such
as a time-predictable memory arbiter [7], a network-on-chip [9] a shared scratch-
pad memory with an ownership [11]. At the time of this writing, Patmos is still
described in Chisel 2.

FlexPRET is an implementation of a precision timed architecture [14]. FlexPRET im-
plements the RISC-V instruction set and has been updated to Chisel 3.1.

Lipsi is a tiny processor intended for utility functions on a system-on-chip [6]. As
the code base of Lipsi is very small, it can serve as an easy starting point for
processor design in Chisel. Lipsi also showcases the productivity of Chisel/Scala.
It took me 14 hours to describe the hardware in Chisel and run it on an FPGA,
write an assembler in Scala, write a Lipsi instruction set simulator in Scala for
co-simulation, and write a few test cases in Lipsi assembler.

OpenSoC Fabric is an open-source NoC generator written in Chisel [5]. It is intended
to provide a system-on-chip for large-scale design exploration. The NoC itself
is a state-of-the-art design with wormhole routing, credits for flow control, and
virtual channels. OpenSoC Fabric is still using Chisel 2.

155

https://github.com/chipsalliance/rocket-chip
https://en.wikipedia.org/wiki/RISC-V
https://www.sifive.com/
https://github.com/ucb-bar/riscv-sodor
https://github.com/t-crest/patmos
https://github.com/pretis/flexpret
https://github.com/schoeberl/lipsi
http://www.opensocfabric.org/

A CHISEL PROJECTS

DANA is a neural network accelerator that integrates with the RISC-V Rocket processor
using the Rocket Custom Coprocessor (RoCC) interface [4]. DANA supports
inference and learning.

If you know an open-source project that uses Chisel, please drop me a note so I can
include it in a future edition of the book.

156 Contents

https://github.com/bu-icsg/xfiles-dana

B Chisel 2

This book covers version 3 of Chisel. Moreover, Chisel 3 is recommended for new
designs. However, there is still Chisel 2 code out in the wild, which has not yet been
converted to Chisel 3. There is documentation available on how to convert a Chisel 2
project to Chisel 3:

e Chisel2 vs. Chisel3 and

e Towards Chisel 3

However, you might get involved in a project that still uses Chisel 2, e.g., the Pat-
mos [10] processor. Therefore, we provide here some information on Chisel 2 coding
for those who have started with Chisel 3.

First, all documentation on Chisel 2 has been removed from the web sites belong-
ing to Chisel. We have rescued those PDF documents and put them on GitHub at
https://github.com/schoeberl/chisel2-doc. You can use the Chisel 2 tutorial
by switching to the Chisel 2 branch:

$ git clone https://github.com/ucb-bar/chisel-tutorial.git
$ cd chisel-tutorial
$ git checkout chisel2

The main visible difference between Chisel 3 and 2 are the definitions of constants,
bundles for IO, wires, memories, and probably older forms of register definitions.

Chisel 2 constructs can be used, to some extent, in a Chisel 3 project by using the
compatibility layer using as package Chisel instead of chisel3. However, using this
compatibility layer should only be used in a transition phase. Therefore, we do not
cover it here.

Here are two examples of basic components, the same that have been presented for
Chisel 3. A module containing combinational logic:

import Chisel._

class Logic extends Module {
val io = new Bundle {

157

https://github.com/freechipsproject/chisel3/wiki/Chisel3-vs-Chisel2
https://github.com/schoeberl/chisel-examples/blob/master/TowardsChisel3.md
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos
https://github.com/schoeberl/chisel2-doc

B CHISEL 2

val a = UInt(INPUT, 1)
val b = UInt(INPUT, 1)
val ¢ = UInt(INPUT, 1)
val out = UInt(OUTPUT, 1)

io.out := io.a & io.b | io.c

Note that the Bundle for the IO definition is not wrapped into an I0(Q) class. Further-
more, the direction of the different IO ports is defined as part of the type definition, in
this example as INPUT and OUTPUT as part of UInt. The width is given as the second
parameter.

The 8-bit register example in Chisel 2:

import Chisel._

class Register extends Module {
val io = new Bundle {
val in = UInt(INPUT, 8)
val out = UInt(OUTPUT, 8)

}

val reg = Reg(init = UInt(0, 8))
reg := io.in

io.out := reg

}

Here you see a typical register definition with a reset value passed in as a UInt to the
named parameter init. This form is still valid in Chisel 3, but the usage of RegInit
and RegNext is recommended for new Chisel 3 designs. Note also here the constant
definition of an 8-bit wide 0 as UInt (0, 8).

Chisel based testing C++ code and Verilog code are generated by calling chiselMainTest
and chiselMain. Both “main” functions take a String array for further parameters.

import Chisel._
class LogicTester(c: Logic) extends Tester(c) {

poke(c.io.a, 1)
poke(c.io.b, 0)

158 Contents

poke(c.io.c, 1)
step (1)
expect(c.io.out, 1)

}

object LogicTester {
def main(args: Array[String]): Unit = {

chiselMainTest (Array("--genHarness", "--test",
"--backend", "c",
"--compile", "--targetDir", "generated"),

() => Module(new Logic())) {
c => new LogicTester(c)

}

import Chisel._

object LogicHardware {
def main(args: Array[String]): Unit = {
chiselMain(Array("--backend", "v"
Logic()))

, O => Module(new

A memory with sequential registered read and write ports is defined in Chisel 2 as:

val mem = Mem(UInt(width = 8), 256, seqRead = true)

val rdData = mem(Reg(next = rdAddr))
when(wrEna) {
mem(wrAddr) := wrData

}

Contents

159

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Krste Asanovié, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Al-
bert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg,
Huy Vo, and Andrew Waterman. The rocket chip generator. Technical Report
UCB/EECS-2016-17, EECS Department, University of California, Berkeley, Apr
2016.

Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing hard-
ware in a Scala embedded language. In Patrick Groeneveld, Donatella Sciuto, and
Soha Hassoun, editors, The 49th Annual Design Automation Conference (DAC
2012), pages 1216-1225, San Francisco, CA, USA, June 2012. ACM.

William J. Dally, R. Curtis Harting, and Tor M. Aamodt. Digital design using
VHDL: A systems approach. Cambridge University Press, 2016.

Schuyler FEldridge, Amos Waterland, Margo Seltzer, and Jonathan Ap-
pavooand Ajay Joshi. Towards general-purpose neural network computing. In
2015 International Conference on Parallel Architecture and Compilation (PACT),
pages 99-112, Oct 2015.

Farzaf Fatollahi-Fard, David Donofrio, George Michelogiannakis, and John Shalf.
Opensoc fabric: On-chip network generator. In 2016 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), pages 194-203,
April 2016.

Martin Schoeberl. Lipsi: Probably the smallest processor in the world. In Archi-
tecture of Computing Systems — ARCS 2018, pages 18-30. Springer International
Publishing, 2018.

Martin Schoeberl, David VH Chong, Wolfgang Puffitsch, and Jens Sparsg. A time-
predictable memory network-on-chip. In Proceedings of the 14th International

161

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

162

Workshop on Worst-Case Execution Time Analysis (WCET 2014), pages 53-62,
Madrid, Spain, July 2014.

Martin Schoeberl and Morten Borup Petersen. Leros: The return of the accumu-
lator machine. In Martin Schoeberl, Thilo Pionteck, Sascha Uhrig, Jiirgen Brehm,
and Christian Hochberger, editors, Architecture of Computing Systems - ARCS
2019 - 32nd International Conference, Proceedings, pages 115-127. Springer, 1
2019.

Martin Schoeberl, Luca Pezzarossa, and Jens Sparsg. A minimal network interface
for a simple network-on-chip. In Martin Schoeberl, Thilo Pionteck, Sascha Uhrig,
Jiirgen Brehm, and Christian Hochberger, editors, Architecture of Computing Sys-
tems - ARCS 2019, pages 295-307. Springer, 1 2019.

Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel
Prokesch. Patmos: A time-predictable microprocessor. Real-Time Systems,
54(2):389-423, Apr 2018.

Martin Schoeberl, Térur Biskopstg Strgm, Oktay Baris, and Jens Sparsg. Scratch-
pad memories with ownership. In 2019 Design, Automation and Test in Europe
Conference Exhibition (DATE), 2019.

Bill Venners, Lex Spoon, and Martin Odersky. Programming in Scala, 3rd Edition.
Artima Inc, 2016.

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. The
risc-v instruction set manual, volume i: Base user-level isa. Technical Report
UCB/EECS-2011-62, EECS Department, University of California, Berkeley, May
2011.

Michael Zimmer. Predictable Processors for Mixed-Criticality Systems and
Precision-Timed I/0. PhD thesis, EECS Department, University of California,
Berkeley, Aug 2015.

Contents

Index

ALU, 39, 139
arithmetic operations, 11
Array, 15

Assembler, 145
Asynchronous Input, 69

BCD, 109
Binary-coded decimal, 109
Bit
concatenation, 12
extraction, 12
reduction, 12
Bitfield
concatenation, 12
extraction, 12
Bool, 10
Bubble FIFO, 116
Bulk connection, 40
Bundle, 15

Chisel
Contribution, 149
Examples, 6, 155
Chisel 2, 157
Circular buffer, 130
read pointer, 130
write pointer, 130
Clock, 49
Collection, 15
Combinational circuit, 43

Communicating state machines, 89

Component, 35
Counter, 53
Counting, 15

Data forwarding, 65
Datapath, 95
Debouncing, 70
Decoder, 45
DecoupledlO, 126
Double buffer FIFO, 128

Edge detection, 73
elsewhen, 44
Encoder, 47

FIFO, 115
FIFO buffer, 115
File reading, 107
Finite-State Machine
Mealy, 82
Moore, 78
Finite-state machine, 77
First-in, first-out buffer, 115
Flip-flop, 49
FSM, 77
FSMD, 94
Function components, 41

Hardware generators, 103

163

INDEX

if/elseif/else, 44
Inheritance, 110
Initialization, 50
Integer
constant, 10
signed, 9
unsigned, 9
width, 9
10 interface, 35

Leros, 139

Logic generation, 107
Logic table generation, 107
Logical clock, 57

logical operations, 11

Majority voting, 72
Memory, 63
Metastability, 69
Module, 35
Multiplexer, 12

Object-oriented, 110
Operators, 12
otherwise, 44

Parameters, 103
Ports, 35
Processor, 139
ALU, 139
instruction decode, 143

RAM, 63
Ready-valid interface, 99, 126
Register, 14, 49
with enable, 52
Reset, 50

sbt, 21
ScalaTest, 28

164 Contents

Serial port, 118

Source organization, 21

SRAM, 63

State diagram, 78

State machine with datapath, 94
Structure, 15

switch, 46

Synchronous memory, 63
Synchronous sequential circuit, 77

Testing, 24

Tick, 56

Timing diagram, 51
Timing generation, 55
tuple, 131

Type parameters, 104

UART, 118
Vector, 15

Waveform diagram, 51
when, 44

