Digital Design in the 21st Century: Chisel

Martin Schoeberl

Technical University of Denmark

October 12, 2019

1/36

Motivating Example:
Lipsi: Probably the Smallest Processor in the World

» Tiny processor
» Simple instruction set
» Shall be small
> Around 200 logic cells, one FPGA memory block
» Hardware described in Chisel
> Available at https://github.com/schoeberl/lipsi
> Usage

» Utility processor for small stuff
» In teaching for introduction to computer architecture

» The design took place on the island Lipsi

2/36

https://github.com/schoeberl/lipsi

The Design of Lipsi on Lipsi

Lipsiz 2 Winimalsbie Hicroconboalies sl

D 5;’1«;3(@' O‘“‘C"ﬂf ”‘"""’V\/ 2> 25\/((?5/([’1}(";&!\5\

Lm,;‘ Lipse

oy Rizoole:! (U rey indivek /s Seyet=e)
:” o &bt dafapath Fbit varisile lagth instrackions
. b Acey + BUIE) Fegither iy memory
b 25¢ byfc imsbuactiony 15l byte dat s
Dfapate 1 /
2o

hen on

3/36

Lipsi Implementation

v

Hardware described in Chisel

Tester in Chisel
Assembler in Scala
» Core case statement about 20 lines
Reference design of Lipsi as software simulator in Scala
Testing:
> Self testing assembler programs
» Comparing hardware with a software simulator

All in a single programming language!
All in a single program
How much work is this?

4/36

Chisel is Productive

vVvyvyVvVvyyy

v

All coded and tested in less than 14 hours!

The hardware in Chisel

Assembler in Scala

Some assembler programs (blinking LED)
Simulation in Scala

Two testers

BUT, this does not include the design (done on paper)

5/36

Motivating Example: Lipsi, a Tiny Processor

» Show in Intellid (if beamer allows)

6/36

The Slides are Online

» https://github.com/schoeberl/chisel-book/wiki

7/36

https://github.com/schoeberl/chisel-book/wiki

Goals for this Intro

» Get an idea what Chisel is
» Will show you code snippets

A first high level view of the main features of Chisel
Reconsider how to describe hardware

Some experience report from usage at DTU
Pointers to more information

vVvYyyVvyy

Have your first Chisel design running in an FPGA!

8/36

Chisel

» A hardware construction language
» Constructing Hardware In a Scala Embedded Language
> [f it compiles, it is synthesisable hardware
» Say goodby to your unintended latches

» Chisel is not a high-level synthesis language

» Single source two targets

» Cycle accurate simulation (testing)
» Verilog for synthesis

» Embedded in Scala

» Full power of Scala available
» But to start with, no Scala knowledge needed

» Developed at UC Berkeley

9/36

Some Notes on Scala

v

Object oriented
Functional
Strongly typed
» With very good type inference

vy

v

Could be seen as Java++

Compiled to the JVM
» Good Java interoperability
» Many libraries available

v

10/36

Chisel vs. Scala

» A Chisel hardware description is a Scala program

» Chisel is a Scala library

» When the program is executed it generates hardware

» Chisel is a so-called embedded domain-specific language

11/36

Expressions are Combinational Circuits

(a | b) & "(c ™ d)

val addval = a + b
val orvVal = a | b
val boolVal = a >= b

» The usual operations

» Simple name assignment with val
» Width inference

» Type inference

» Types: Bits, Ulnt, Sint, Bool

12/36

Registers

val cntReg = RegInit(0.U(32.W))

cntReg := cntReg + 1.0

» Type inferred by initial value (= reset value)
» No need to specify a clock or reset signal

» Also definition with an input signal connected:

val r = RegNext(nextVal)

13/36

Functional Abstraction

def addSub(add: Bool, a: UInt, b: Ulnt)
Mux (add, a+b, a-b)

val res = addSub(cond, a, b)

def rising(d: Bool) = d && !RegNext(d)

» Functions for repeated pieces of logic
» May contain state

» Functions may return hardware

14/36

Bundles

class DecodeExecute extends Bundle {
val rsl = UInt(32.W)
val rs2 = UInt(32.W)
val immVal = UInt(32.W)
val aluOp = new AluOp()

» Collection of values in named fields
» Like struct or record

15/36

Vectors

val myVec = Vec(3, SInt(10.W))

myVec(0) := -3.S
val y = myVec(2)

> Indexable vector of elements
» Bundles and Vecs can be arbitrarely nested

16/36

IO Ports

class
val
val
val

Channel extends Bundle {
data = Input(UInt(8.W))
ready = Output(Bool())
valid = Input(Bool())

» Ports are Bundles with directions

» Direction can also be assigned at instantiation:

class
val
val

ExecuteIO extends Bundle {
dec = Input(new DecodeExecute())
mem = Output(new ExecuteMemory())

17/36

Modules

class Adder extends Module {
val io = IO(new Bundle {
val a = Input(UInt(4.W))
val b = Input(UInt(4.W))
val result = Output(UInt(4.W))

b
val addvVal = io.a + io.b
io.result := addVal

» Organization of components

» 10 ports defined as a Bundle named io and wrapped into
an 100

» Created (instantiated) with:

val adder = Module(new Adder())

18/36

Hello World in Chisel

class Hello extends Module {
val io = IO(new Bundle {
val led = Output (UInt(1l.W))
b
val CNT_MAX = (50000000 / 2 - 1).U;

val cntReg RegInit (0.U(32.W))
val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U
when(cntReg === CNT_MAX) {
cntReg := 0.U
blkReg := "blkReg
}

io.led := blkReg

19/36

Connections

» Simple connections just with assignments, e.g.,

adder.io.a := ina
adder.io.b := inb

» Automatic bulk connections between components

dec.io <> exe.io
mem.io <> exe.io

20/36

Generic Components

val ¢ = Mux(cond, a, b)

» This is a multiplexer
» Input can be any type

21/36

Testing

class CounterTester(c: Counter) extends
PeekPokeTester(c) {
for (i <- O until 5) {

println(i.toString + ": " +
peek(c.io.out).toString())
step (1)

}
}

» Within Chisel with a tester (= Scala program)
» May include waveform generation

» peek and poke to read and set values
» Remember the BASIC days ;-)

» printf in simulation on rising edge

printf("Counting %x\n", rl)

22/36

Component Generation

val cores = new Array[Module](32)

for (j <- ® until 32)
cores(j) = Module(new CPUQ))

» Use Scala array to collect components
» Generation with a Scala loop

23/36

Conditional Component Generation

val icache =
if (TYPE == METHOD)
Module (new MCache())

else if (TYPE == LINE)
Module (new ICache())
else

ChiselError.error ("Unsupported Type")

» Use Scala if/else for conditional component types
» Code example from Patmos
» We parse an XML file for the configuration

24/36

Logic Generation

» Read afile into a table

» E.g., to read in ROM content for a processor
» Generate a truth table algorithmically

» E.g., generate binary to BCD translation

» Use the full power of Scala

val byteArray =
Files.readAllBytes(Paths.get(fileName))
val arr = new Array[Bits](byteArray.length)
for (i <- O until byteArray.length) {
arr(i) = Bits(byteArray(i), 8)
}

val rom = Vec[Bits](arr)

25/36

An IDE for Chisel

Eclipse or IntelliJ
Scala plugin
For an Eclipse project: sbt eclipse

For Intellid: File - New - Project from Existing Sources...,
open build.sbt

> Show it

26/36

Chisel in the T-CREST Project

» Patmos processor rewritten in Chisel

> As part of learning Chisel
» 6.4.2013: Chisel: 996 LoC vs VHDL: 3020 LoC
» But VHDL was very verbose, with records maybe 2000 LoC

» Memory controller, memory arbiters, 10 devices in Chisel

» Several Phd, master, and bachelor projects:

» Patmos stack cache

» Method cache for Patmos — Chisel was relative easy
» TDM based memory arbiter — trouble with Chisel

» RISC stack cache — no issues with Chisel

» and more ongoing

27/36

Chisel in Teaching

vVvyvyVvVvyy

v

Using/offering it in Advanced Computer Architecture
Spring 2016—2018 all projects have been in Chisel
Several Bachelor and Master projects

Students pick it up reasonable fast

For software engineering students easier than VHDL

Switch Digital Electronics 2 at DTU to Chisel (spring
semester 2020)

Issue of writing a program instead of describing hardware
remains

28/36

A Chisel Book

Digital Design
with Chisel

Martin Schoeberl

» Available in open access (PDF)
» In paper from Amazon

29/36

Further Information

» https://www.chisel-lang.org/

» https://github.com/ucb-bar/chisel-tutorial

» https://github.com/ucb-bar/generator-bootcamp
» http://groups.google.com/group/chisel-users

» https://github.com/schoeberl/chisel-book

30/36

https://www.chisel-lang.org/
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book

Hello World in Chisel and Examples

git clone
https://github.com/schoeberl/chisel -examples.git

» or download from
https://github.com/schoeberl/chisel-examples

» This contains a minimal Chisel project with the blinking
LED

» Has ready to use project files for:

» Altera DEO

> Altera DE1

» Altera DE2-115

» Altera DE10-Nano
» BeMicro

» Plus a simple ALU for HW test and showing Chisel Tester
» Plus some more examples to explore

31/36

https://github.com/schoeberl/chisel-examples

What is a Minimal Chisel Project?

» Scala class (e.g., Hello.scala)
» Build info in build. sbt for sbt:

scalaVersion := "2.11.7"

libraryDependencies += "edu.berkeley.cs" %%
"chisel3" % "3.1.2"

» Run the process manually (look into the Makefile)

32/36

Additional Files in the Hello World Example

> A Makefile

» Optional Verilog or VHDL top level file
» Quartus project files quartus/altde2-115/hello.q{p|s}f

» List of source files, device and pin assignments
> plain text files, look into hello.gsf

33/36

Summary

» We need a modern language for hardware/systems design

» Chisel builds on the power of object-oriented and
functional Scala

» Chisel is good for hardware generators

34/36

Lab Time

» Get a blinking LED working on the FPGA board
» Clone or download the repository now

git clone \\
https://github.com/schoeberl/chisel-examples.git

cd chisel-examples/hello-world

make

v

Start Quartus

Open the project at
chisel-examples/hello-world/quartus/altde2-115

Synthesize with the Play button
» Configure the FPGA with the Programmer button
You have your first Chisel design running!

v

v

v

35/36

Change the Design

Use gedit, or the editor you like most
Sourceisin .../src/main/scala/Hello.scala

Rerun the example
Optional:
» Change to an asymmetric blinking, e.g., 200 ms on every

second
» Setup IntelliJ with a Scala project

>

>

» Change blinking frequency
>

>

36/36

