
Digital Design in the 21st Century: Chisel

Martin Schoeberl

Technical University of Denmark

October 12, 2019

1 / 36



Motivating Example:
Lipsi: Probably the Smallest Processor in the World

I Tiny processor
I Simple instruction set
I Shall be small

I Around 200 logic cells, one FPGA memory block
I Hardware described in Chisel
I Available at https://github.com/schoeberl/lipsi
I Usage

I Utility processor for small stuff
I In teaching for introduction to computer architecture

I The design took place on the island Lipsi

2 / 36

https://github.com/schoeberl/lipsi


The Design of Lipsi on Lipsi

3 / 36



Lipsi Implementation

I Hardware described in Chisel
I Tester in Chisel
I Assembler in Scala

I Core case statement about 20 lines
I Reference design of Lipsi as software simulator in Scala
I Testing:

I Self testing assembler programs
I Comparing hardware with a software simulator

I All in a single programming language!
I All in a single program
I How much work is this?

4 / 36



Chisel is Productive

I All coded and tested in less than 14 hours!

I The hardware in Chisel
I Assembler in Scala
I Some assembler programs (blinking LED)
I Simulation in Scala
I Two testers

I BUT, this does not include the design (done on paper)

5 / 36



Motivating Example: Lipsi, a Tiny Processor

I Show in IntelliJ (if beamer allows)

6 / 36



The Slides are Online

I https://github.com/schoeberl/chisel-book/wiki

7 / 36

https://github.com/schoeberl/chisel-book/wiki


Goals for this Intro

I Get an idea what Chisel is
I Will show you code snippets

I A first high level view of the main features of Chisel
I Reconsider how to describe hardware
I Some experience report from usage at DTU
I Pointers to more information
I Have your first Chisel design running in an FPGA!

8 / 36



Chisel

I A hardware construction language
I Constructing Hardware In a Scala Embedded Language
I If it compiles, it is synthesisable hardware
I Say goodby to your unintended latches

I Chisel is not a high-level synthesis language
I Single source two targets

I Cycle accurate simulation (testing)
I Verilog for synthesis

I Embedded in Scala
I Full power of Scala available
I But to start with, no Scala knowledge needed

I Developed at UC Berkeley

9 / 36



Some Notes on Scala

I Object oriented
I Functional
I Strongly typed

I With very good type inference
I Could be seen as Java++
I Compiled to the JVM
I Good Java interoperability

I Many libraries available

10 / 36



Chisel vs. Scala

I A Chisel hardware description is a Scala program
I Chisel is a Scala library
I When the program is executed it generates hardware
I Chisel is a so-called embedded domain-specific language

11 / 36



Expressions are Combinational Circuits

(a | b) & ˜(c ˆ d)

val addVal = a + b

val orVal = a | b

val boolVal = a >= b

I The usual operations
I Simple name assignment with val
I Width inference
I Type inference
I Types: Bits, UInt, SInt, Bool

12 / 36



Registers

val cntReg = RegInit(0.U(32.W))

cntReg := cntReg + 1.U

I Type inferred by initial value (= reset value)
I No need to specify a clock or reset signal

I Also definition with an input signal connected:

val r = RegNext(nextVal)

13 / 36



Functional Abstraction

def addSub(add: Bool, a: UInt, b: UInt) =

Mux(add, a+b, a-b)

val res = addSub(cond, a, b)

def rising(d: Bool) = d && !RegNext(d)

I Functions for repeated pieces of logic
I May contain state
I Functions may return hardware

14 / 36



Bundles

class DecodeExecute extends Bundle {

val rs1 = UInt(32.W)

val rs2 = UInt(32.W)

val immVal = UInt(32.W)

val aluOp = new AluOp()

}

I Collection of values in named fields
I Like struct or record

15 / 36



Vectors

val myVec = Vec(3, SInt(10.W))

myVec(0) := -3.S

val y = myVec(2)

I Indexable vector of elements
I Bundles and Vecs can be arbitrarely nested

16 / 36



IO Ports

class Channel extends Bundle {

val data = Input(UInt(8.W))

val ready = Output(Bool())

val valid = Input(Bool())

}

I Ports are Bundles with directions
I Direction can also be assigned at instantiation:

class ExecuteIO extends Bundle {

val dec = Input(new DecodeExecute())

val mem = Output(new ExecuteMemory())

}

17 / 36



Modules
class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(4.W))

val b = Input(UInt(4.W))

val result = Output(UInt(4.W))

})

val addVal = io.a + io.b

io.result := addVal

}

I Organization of components
I IO ports defined as a Bundle named io and wrapped into

an IO()
I Created (instantiated) with:

val adder = Module(new Adder())

18 / 36



Hello World in Chisel

class Hello extends Module {

val io = IO(new Bundle {

val led = Output(UInt(1.W))

})

val CNT_MAX = (50000000 / 2 - 1).U;

val cntReg = RegInit(0.U(32.W))

val blkReg = RegInit(0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {

cntReg := 0.U

blkReg := ˜blkReg

}

io.led := blkReg

}

19 / 36



Connections

I Simple connections just with assignments, e.g.,

adder.io.a := ina

adder.io.b := inb

I Automatic bulk connections between components

dec.io <> exe.io

mem.io <> exe.io

20 / 36



Generic Components

val c = Mux(cond, a, b)

I This is a multiplexer
I Input can be any type

21 / 36



Testing

class CounterTester(c: Counter) extends

PeekPokeTester(c) {

for (i <- 0 until 5) {

println(i.toString + ": " +

peek(c.io.out).toString())

step(1)

}

}

I Within Chisel with a tester (= Scala program)
I May include waveform generation
I peek and poke to read and set values

I Remember the BASIC days ;-)
I printf in simulation on rising edge

printf("Counting %x\n", r1)

22 / 36



Component Generation

val cores = new Array[Module](32)

for (j <- 0 until 32)

cores(j) = Module(new CPU())

I Use Scala array to collect components
I Generation with a Scala loop

23 / 36



Conditional Component Generation

val icache =

if (TYPE == METHOD)

Module(new MCache())

else if (TYPE == LINE)

Module(new ICache())

else

ChiselError.error("Unsupported Type")

I Use Scala if/else for conditional component types
I Code example from Patmos
I We parse an XML file for the configuration

24 / 36



Logic Generation

I Read a file into a table
I E.g., to read in ROM content for a processor

I Generate a truth table algorithmically
I E.g., generate binary to BCD translation

I Use the full power of Scala

val byteArray =

Files.readAllBytes(Paths.get(fileName))

val arr = new Array[Bits](byteArray.length)

for (i <- 0 until byteArray.length) {

arr(i) = Bits(byteArray(i), 8)

}

val rom = Vec[Bits](arr)

25 / 36



An IDE for Chisel

I Eclipse or IntelliJ
I Scala plugin
I For an Eclipse project: sbt eclipse
I For IntelliJ: File - New - Project from Existing Sources...,

open build.sbt
I Show it

26 / 36



Chisel in the T-CREST Project

I Patmos processor rewritten in Chisel
I As part of learning Chisel
I 6.4.2013: Chisel: 996 LoC vs VHDL: 3020 LoC
I But VHDL was very verbose, with records maybe 2000 LoC

I Memory controller, memory arbiters, IO devices in Chisel
I Several Phd, master, and bachelor projects:

I Patmos stack cache
I Method cache for Patmos – Chisel was relative easy
I TDM based memory arbiter – trouble with Chisel
I RISC stack cache – no issues with Chisel
I and more ongoing

27 / 36



Chisel in Teaching

I Using/offering it in Advanced Computer Architecture
I Spring 2016–2018 all projects have been in Chisel
I Several Bachelor and Master projects
I Students pick it up reasonable fast
I For software engineering students easier than VHDL
I Switch Digital Electronics 2 at DTU to Chisel (spring

semester 2020)
I Issue of writing a program instead of describing hardware

remains

28 / 36



A Chisel Book

I Available in open access (PDF)
I In paper from Amazon

29 / 36



Further Information

I https://www.chisel-lang.org/

I https://github.com/ucb-bar/chisel-tutorial

I https://github.com/ucb-bar/generator-bootcamp

I http://groups.google.com/group/chisel-users

I https://github.com/schoeberl/chisel-book

30 / 36

https://www.chisel-lang.org/
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/generator-bootcamp
http://groups.google.com/group/chisel-users
https://github.com/schoeberl/chisel-book


Hello World in Chisel and Examples

git clone

https://github.com/schoeberl/chisel-examples.git

I or download from
https://github.com/schoeberl/chisel-examples

I This contains a minimal Chisel project with the blinking
LED

I Has ready to use project files for:
I Altera DE0
I Altera DE1
I Altera DE2-115
I Altera DE10-Nano
I BeMicro

I Plus a simple ALU for HW test and showing Chisel Tester
I Plus some more examples to explore

31 / 36

https://github.com/schoeberl/chisel-examples


What is a Minimal Chisel Project?

I Scala class (e.g., Hello.scala)
I Build info in build.sbt for sbt:

scalaVersion := "2.11.7"

libraryDependencies += "edu.berkeley.cs" %%

"chisel3" % "3.1.2"

I Run the process manually (look into the Makefile)

32 / 36



Additional Files in the Hello World Example

I A Makefile
I Optional Verilog or VHDL top level file
I Quartus project files quartus/altde2-115/hello.q{p|s}f

I List of source files, device and pin assignments
I plain text files, look into hello.qsf

33 / 36



Summary

I We need a modern language for hardware/systems design
I Chisel builds on the power of object-oriented and

functional Scala
I Chisel is good for hardware generators

34 / 36



Lab Time

I Get a blinking LED working on the FPGA board
I Clone or download the repository now

git clone \\

https://github.com/schoeberl/chisel-examples.git

cd chisel-examples/hello-world

make

I Start Quartus
I Open the project at
chisel-examples/hello-world/quartus/altde2-115

I Synthesize with the Play button
I Configure the FPGA with the Programmer button
I You have your first Chisel design running!

35 / 36



Change the Design

I Use gedit, or the editor you like most
I Source is in .../src/main/scala/Hello.scala
I Change blinking frequency
I Rerun the example
I Optional:

I Change to an asymmetric blinking, e.g., 200 ms on every
second

I Setup IntelliJ with a Scala project

36 / 36


