
Chisel Basic Operations

Martin Schoeberl

Technical University of Denmark

October 12, 2019

1 / 35

Chisel Data Types

I Data types for values on wires or state elements
I Raw collection of bits is type Bits
I Simple types to represent integer numbers

I Unsigned and signed
I Subtype of Bits

I Interesting way to specify constants
I Automatic bit width inference
I Boolean values are of type Bool, a single bit value

1.U

"habcd".U

"b0101".U

-5.S

true.B

2 / 35

Chisel Data Types

I Bit width can be explicitly specified with a width type
I SInt will be sign extended
I UInt will be zero extended

0.U(32.W)

"habcd".U(24.W)

-5.S(16.W)

I Bundles for a named collection of values
I Vecs for indexable collection of values
I Chisel data types are different from Scala builtin types

(e.g., Scala’s Int)

3 / 35

Bitwise Logical Operations

I Bitwise NOT, AND, OR, and XOR
I Automatic size extension to larger operand

val notVal = ˜x

val maskOut = x & "b00001111".U

val orVal = x | y

val xorVal = x ˆ y

I Bit reduction
I Results in a single bit

x.andR

x.orR

x.xorR

4 / 35

Arithmetic Operations

I Addition, subtraction, multiplication, division, modulos
I Automatic size extension to larger operand

+, -, *, /, %

I Left and right shifts
I Left shift extends bit width
I Right shift reduces bit width

<<, >>

5 / 35

Bitfield Manipulations

I Extract a single bit

val sign = x(31)

I Extract a sub field from end to start position

val lowByte = word(7, 0)

I Concatenate bit fields

val word = Cat(highByte, lowByte)

6 / 35

Comparison

I The usual operations
I Unusual equal and unequal operator symbols
I To keep the original Sala operators usable for references

I Operands are UInt and SInt
I Operands can be Bool for equal and unequal
I Result is Bool

===, =/=

>, >=, <, <=

7 / 35

Boolean Logical Operations

I Operands and result are Bool
I Logical NOT, AND, and OR

val notX = !x

val bothTrue = a && b

val orVal = x || y

8 / 35

Combinational Circuits

I Circuit is a graph of nodes
I A node is a hardware operator with zero or more inputs
I Textual expression to wire up nodes
I Named wires with some (unspecified) width

(a | b) & ˜c

9 / 35

Combinational Circuits

I Simple expressions represent a circuit tree
I Arbitrary directed acyclic graphs need named

subexpressions
I Using Scala’s val keyword for variables that don’t change
I Referenced multiple times

val cond = a & b

val result = (cond & selA) | (!cond & selB)

10 / 35

Register

I State elements
I Has it’s own Chisel type Reg
I Positive edge triggered D flip-flop
I Synchronous reset
I Clock and reset are hidden wires

val q = RegNext(d)

I d is the input, q the output
I Register type is inferred by the input (d) type

11 / 35

Register

I Reset value as parameter on a RegInit constructor

val initReg = RegInit(0.U(8.W))

I With this forward declaration we later assign the input

initReg := initReg + 1.U

I A register can also be defined within an expression

val risingEdge = din & !RegNext(din)

12 / 35

Multiplexer

I So common: a component provided by Chisel
I Could be implemented with conditional updates
I Automagical type selection on input types

val selection = Mux(cond, trueVal, falseVal)

13 / 35

A Small Circuit

I Our Chisel knowledge is complete enough
to implement any digital circuit

I Maybe not in the most elegant way ;-)
I A counter is a simple basic component
I The following counts form 0 to 100

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 100.U,

0.U, cntReg + 1.U)

14 / 35

The Complete Counter Module

class Counter extends Module {

val io = IO(new Bundle {

val cnt = Output(UInt(8.W))

})

val cntReg = RegInit(0.U(8.W))

cntReg := Mux(cntReg === 100.U,

0.U, cntReg + 1.U)

io.cnt := cntReg

}

15 / 35

Data Aggregation

I A Bundle groups several named fields
I Like a C struct or VHDL record
I Vec is a vector of elements with the same type
I Can be arbitrary mixed

class AluFields extends Bundle {

val function = UInt(2.W)

val inputA = UInt(8.W)

val inputB = UInt(8.W)

val result = UInt(8.W)

}

16 / 35

Vectors

I Indexable vector of elements
I Elements can be Chisel basic elements, or bundles
I Type is specified as second parameter

val myVec = Vec(3, SInt(10.W))

val y = myVec(2)

myVec(0) := -3.S

I A register file as a register of a vector

val vecReg = Reg(Vec(32, SInt(32.W)))

17 / 35

Ports

I Ports used to connect modules
I Ports are bundles with directions

class AluIO extends Bundle {

val function = Input(UInt(2.W))

val inputA = Input(UInt(4.W))

val inputB = Input(UInt(4.W))

val result = Output(UInt(4.W))

}

18 / 35

Port Directions

I Can be assigned at instantiation

class ExecuteIO extends Bundle {

val dec = Input(new DecodeExecute())

val mem = Output(new ExecuteMemory())

}

19 / 35

Port Directions

I Can be reversed with the Flipped
I Convenient to have one bundle definition working as

source and destination used between two modules

class Channel extends Bundle {

val data = Input(UInt(32.W))

val ready = Output(Bool())

val valid = Input(Bool())

}

class ChannelUsage extends Bundle {

val input = new Channel()

val output = Flipped(new Channel())

}

20 / 35

Modules
I Modules are used to organize the circuit
I Similar to VHDL components (entity/architecture)
I A class that inherits from Module
I Circuit description in the constructor
I Interface (port) is a Bundle, wrapped into an IO(), and

stored in the field io

class Adder extends Module {

val io = IO(new Bundle {

val a = Input(UInt(4.W))

val b = Input(UInt(4.W))

val result = Output(UInt(4.W))

})

val addVal = io.a + io.b

io.result := addVal

}

21 / 35

Module Usage

I Create with new and wrap into a Module()
I Interface port via the io field
I Note the assignment operator := on io fields

val adder = Module(new Adder())

adder.io.a := ina

adder.io.b := inb

val result = adder.io.result

22 / 35

Conditional Assignments

I Conditional update of a value
I Needs to be declared as a Wire
I Last assignment counts
I Is basically a multiplexer

val v = Wire(UInt())

v := 5.U

when (condition) {

v := 0.U

}

when (c1) { v := 1.U }

when (c2) { v := 2.U }

23 / 35

The Counter With a Conditional Update

class Counter2 extends Module {

val io = IO(new Bundle {

val cnt = Output(UInt(8.W))

})

val cntReg = RegInit(0.U(8.W))

cntReg := cntReg + 1.U

when (cntReg === 100.U) {

cntReg := 0.U

}

io.cnt := cntReg

}

24 / 35

Chained Conditionals

I Chain of conditionals with .elsewhen
I With an optional else path with .otherwise
I Note that Scala has if/else

I Does NOT result in hardware
I Are used to conditionally generate hardware
I We will look at this later

I Note the “.” at the operators

when (c1) { v := 1.U }

.elsewhen (c2) { v := 2.U }

.otherwise { v := 3.U }

25 / 35

Switch Statement

I Series of comparisons
I Chisel allows combinational logic be updated conditionally
I Chisel disallows incomplete specified logic (= latches)
I Chisel will report a runtime error

switch(fn) {

is(0.U) { result := a + b }

is(1.U) { result := a - b }

is(2.U) { result := a | b }

is(3.U) { result := a & b }

}

26 / 35

More Chisel Example Code

I The time-predictable processor Patmos
I An SRAM controller for the DE2-115 board
I An SSRAM controller
I An UART
I A memory arbiter
I Caches
I ...
I https://github.com/t-crest/patmos

27 / 35

https://github.com/t-crest/patmos

More Chisel Documentation

I Textbook “Digital Design with Chisel”
I V 1.0 is out
I https://github.com/schoeberl/chisel-book

I Feedback is welcome
I Contains all the slides

28 / 35

https://github.com/schoeberl/chisel-book

Chisel Tutorial from UCB

I Collection of small exercises
I Only in simulation, no hardware required (+/-)
I All examples in one design

I Results in a little bit more complex setup
I Needs an Internet connection

I Tests against latest Chisel version

29 / 35

Chisel Tutorial

I Get the tutorial

git clone

https://github.com/ucb-bar/chisel-tutorial.git

cd chisel-tutorial

I Test the installation with a Hello World
I Living in src/main/scala/hello/Hello.scala

sbt run

I May take some time

30 / 35

Very Minimal Hello World

class Hello extends Module {

val io = IO(new Bundle {

val out = Output(UInt(8.W))

})

io.out := 42.U

}

I Produces hardware for a single constant

31 / 35

Testing the Minimal Hello World

class HelloTests(c: Hello) extends

PeekPokeTester(c) {

step(1)

expect(c.io.out, 42)

}

I Drive the simulation with step(1), which is a single clock
tick

I Test output against expected value

32 / 35

Tutorial Problems

sbt "test:runMain problems.Launcher Mux2"

I This example should already work
I Read the hardware description and test code
I Source organized in main and test folders
I Problems and testers are in package/folder problems

33 / 35

Tutorial Problems

sbt "test:runMain problems.Launcher Mux4"

I The test should fail
I Fix the Mux4 component so that the tests complete

34 / 35

More Problems

I Explore more problems to solve
I Suggestions:

I Accumulator
I VecSchiftRegister (maybe)

I Change the Blinking LED example so that
I It flashes for 1/5 second every second

35 / 35

